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Abstract

Direct Numerical Simulation of a Turbulent
Boundary Layer with Passive Scalar Transport

Qiang Li

Department of Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

A direct numerical simulation (DNS) of a spatially developing turbulent
boundary layer with passive scalars over a flat plate under zero pressure
gradient (ZPG) is carried out. The Navier-Stokes equations are solved by
employing a spectral method with 1024×289×128 grid points in the stream-
wise, wall-normal and spanwise directions, respectively. The Reynolds num-
ber based on the free-stream velocity and inlet displacement thickness is
450 and the molecular Prandtl numbers are ranging from 0.2 to 2, while
both isothermal and isoflux wall boundary conditions are considered. An
extensive number of turbulence statistics for both flow and scalar fields in-
cluding the mean statistical quantities (e.g. skin friction coefficient, Stanton
number, turbulent Prandtl number), turbulence intensities (e.g. root-mean-
square (RMS) fluctuations, Reynolds stresses and scalar fluxes including
the corresponding budgets) and higher order quantities (e.g. skewness and
flatness factors) are computed and compared to existing experimental and
numerical simulations at comparable Reynolds number. Agreements as well
as discrepancies are discussed while the influences of the Reynolds num-
ber, molecular Prandtl number and wall boundary conditions are also high-
lighted. The velocity and the scalar streaks are examined through spanwise
two-point correlations, and quadrant analyses and joint probability density
functions (JPDF) are employed to investigate the coherence between the
velocity and the scalar fluctuations. The behaviours of the Reynolds shear
stress and the wall-normal scalar flux for Pr = 0.71 are similar to each
other, indicating that they might be generated by the same mechanism and
a close correlation exists between the streamwise velocity and the scalar for
Pr = 0.71.

Descriptors: Turbulence, Direct Numerical Simulation (DNS), Turbulent
Boundary Layer, Passive Scalar, Prandtl Number, Near-Wall Behaviour.
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Somebody did a golden deed;
Somebody proved a friend in need;
Somebody sang a beautiful song;
Somebody smiled the whole day long;
Somebody thought, “Tis sweet to live”;
Somebody said, “I’m glad to give”;
Somebody fought a valiant fight;
Somebody lived to shield the right;
Was the “somebody” you?

— somebody

Fröken Lise vid fjorton år
Snörd och rak och sedig g̊ar,
Alla dar moraler f̊ar
Af en fransk bedagad hexa,
Dansar, spelar, f̊ar beröm,
Sk̊adar englar i hvar dröm,
Tecknar blommor p̊a sin söm,
Medan egna blomster växa.

Unga Lindor, dödligt kär,
Snart den skönas hand begär,
Häftig, varm och trägen är,
Lofvar dyrt att evigt brinna.
Ringar, nipper, bref och bud,
Klagan, tjusning, brutna ljud,
Offer till de giftas gud —
Nu är fröken Lise grefvinna.

— Anna Maria Lenngren
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Chapter 1

Introduction

Turbulence is a universal phenomenon. Most flows in nature and engineer-
ing applications are turbulent, i.e. the flow field fluctuates rapidly in both
time and space. Examples of such flows include billowing of clouds in the
sky, oceanic currents, the flow over the wing of an aircraft or the flow over
a gas turbine blade. Some flows in everyday life are deliberately made to
be turbulent, e.g. coffee stirring, tea pouring and cocktail shaking. Such
inherent random and complex characteristics make turbulence to be an in-
tellectual challenge for a great number of scientists and engineers and will
continue to pose this challenge in the future. Consequently, a huge amount
of theoretical and experimental work was done during the last two centuries
to shed some light on this mysterious field.

The first example of a visualisation of a flow developing from laminar into
turbulent motion is the famous experiment carried out by Osborne Reynolds
in 1883. He studied the flow of water in a glass tube using ink as a dye.
For low flow rates a steady dye stream was observed to follow a straight
path through the tube. As the flow rate was increased, at some point, “the
colour band would all at once mix up with the surrounding water, and fill
the rest of the tube with a mass of coloured water”. In order to quantify
these experimental results, he introduced a non-dimensional number Re =
UL
ν

, now known as the Reynolds number, in his classic paper published
later (Here U denotes the velocity scale, L the length scale and ν is the
kinematic viscosity). The flow will become turbulent if the Reynolds number
exceeds a critical value. The Reynolds number can be interpreted as a
measure of the ratio between the inertial and viscous forces acting on a
fluid particle and subsequently proved to be the parameter that determines
the dynamic similarity of the viscous flows. It is by far one of the most
important dimensionless numbers in fluid mechanics.

Another typical example demonstrating the nature of a turbulent flow
is the meandering of the smoke from a cigarette, see e.g. Libby (1996). The
smoke first moves straight upward and suddenly changes to a turbulent sta-
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tus. This experiment not only provides the visualisation of the turbulence
but also the spreading of a passive scalar in a turbulent flow. A passive
scalar is a diffusive contaminant in a fluid flow that, due to its low concen-
tration, has no influence on the fluid motion but however is influenced by
the fluid motion. Typical passive scalars are weakly heated flow, i.e. small
amounts of heat, or pollutants in atmospheric or ocean flows. An under-
standing and prediction of the passive scalar behaviour in a turbulent flow
is crucial since the turbulent momentum and scalar transport play a key
role in many engineering applications and will be of growing importance in
global environmental problems (Kasagi and Iida, 1999).

When a fluid flows above a solid body, the fluid elements in a thin layer
near the body surface will be retarded due to the effect of friction within
the fluid while the other elements outside this thin layer are not affected.
This thin layer is usually called the boundary layer. The concept of the
boundary layer was first proposed by Ludwig Prandtl in 1905. He hypoth-
esised that the viscous effects were negligible everywhere except in a thin
layer close to the solid boundary of the body where the no-slip condition
had to be fulfilled. In the boundary layer many interesting parameters of
the aerodynamic property of the body are determined. Thus it is of great
engineering significance in most applications.

Although the phenomena of turbulent flows vary from one to the other,
the governing equations describing the motion of the Newtonian fluids are
always the same. These equations are called Navier-Stokes (N-S) equa-
tions, named after Claude-Louis Navier and George Gabriel Stokes who
first formulated them in 19th century. Combined with the continuity equa-
tion (conservation of mass) and the scalar transport equation which governs
the evolution of the scalar field, a system of five equations consisting of five
variables (three velocity components, pressure and scalar concentration) is
established. However, the N-S equations are non-linear and time dependent
partial differential equations, therefore no analytical solutions exists except
for some very simple flow cases. So one has to calculate the solutions of the
N-S equations numerically with the aid of supercomputers.

Due to the rapid progress in high performance computers, the direct nu-
merical simulation (DNS) became an important tool for turbulence research
in the past couple of decades (Moin and Mahesh, 1998). A review of the
turbulent heat transfer at the same time is made by Kasagi and Iida (1999).
DNS provides three dimensional, time-dependent numerical solutions to the
N-S equations and the scalar transport equation. These equations are sup-
posed to be solved as accurately as possible without employing any turbu-
lence models, hence a DNS must be performed on a fine numerical grid in
order to capture all the scales arising in the turbulent flow. It should be
noted that the Reynolds number in typical engineering application flows are
usually quite high and an increase of the Reynolds number gives rise to the
excitation of smaller and smaller turbulent scales, e.g. see Pope (2000). A
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simple scaling argument leads to the conclusion that the computational time
for a DNS, in which one resolves the Kolmogorov viscous scales, i.e. all the
relevant flow structures, is roughly proportional to Re3 (Moin and Mahesh,
1998). Therefore an enormous challenge for the supercomputer when per-
forming DNS is the wide range of the scales which makes the simulation
large and time consuming. Despite the demanding nature, DNS has proven
to be a very useful and efficient tool for the turbulence research (Moin and
Mahesh, 1998; Kasagi and Iida, 1999).

For the DNS of the turbulent scalar transfer, not only the Reynolds
number (Re) but also the molecular Prandtl number (Pr) has to be consid-
ered. The molecular Prandtl number is a dimensionless number which is a
measure of the ratio between viscous diffusion and scalar diffusion. Typical
values for Pr are 0.71 for air and many other gases, around 7 for water,
between 100 and 40,000 for engine oil and around 0.025 for mercury (White,
2006). The first such direct numerical simulations were performed by Rogers
et al. (1986) in a homogeneous shear flow and by Kim and Moin (1989) in
a channel flow of Pr = 0.1, 0.71 and 2.0 with Reτ = 180 where Reτ is
the Reynolds number based on the friction velocity uτ and the channel half
width h. Later, Lyons and Hanratty (1991) made a similar DNS of uτ = 150
and Pr = 1. Kasagi et al. (1992) and Kasagi and Ohtsubo (1993) performed
DNS at Reτ = 150 and Pr = 0.71 and 0.025. Wikström (1998) made the
DNS with a higher Reynolds number of Reτ = 265 while Pr = 0.71. Abe
et al. (2004) made a DNS with Reτ up to 1024 and Pr = 0.025 and 0.71.
Chung and Sung (2003) did a DNS of a turbulent concentric annular pipe
flow at ReDh

= 8900 which is based on the bulk mean velocity Um and
the hydraulic diameter Dh and Pr = 0.71. All these simulations are done,
however, with a Pr no more than two. This is because the smallest scales
in the scalar fluctuation decrease with the increase of Pr. Therefore the
DNS becomes an even more difficult task when the Prandtl number is high.
The ratio of the largest to the smallest scale is approximately proportional
to Re

3

4 Pr
1

2 at very high Pr (Batchelor, 1959; Tennekes and Lumley, 1972).
With the help of larger parallel computers, Kawamura et al. (1998) per-
formed the DNS in periodic channel flow at Reτ = 180 but for a wider
range of Pr from 0.025 to 5.0. Na and Hanratty (2000) ran a channel flow
DNS reaching Pr of 10 with Reτ = 150.

So far the DNS of the turbulent scalar transfer, e.g. heat transfer, is
mainly focused on fully developed turbulent channel flow because of its
simple geometry and the nature to reveal the mechanism of convective heat
transfer between fluid and a solid wall. Only few DNS were done for a
thermal turbulent boundary layer even its geometry is not too complex. As
reported in Kong et al. (2000), D. M. Bell and J. H. Ferziger were the first
to run a direct numerical simulation of a thermal boundary layer. Later
Kong et al. (2000) did a DNS of thermal boundary layer at Reθ = 300 and
the Pr = 0.71 where Reθ is based on the free-stream velocity U∞ and the
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inlet momentum thickness θ.
Even though the use of numerical tools for studying scalar transfer

steadily increased in the last decades, experimental measurements can not
be replaced by numerical simulation. For many flow cases, numerical results
do not give reliable predictions of scalar transfer because of uncertainty in
turbulence models or flow conditions. Under such a circumstance, experi-
mental measurements are needed to determine the performance of a thermal
system. On the other hand, experimental results are required to verify the
numerical methods and turbulence models.

The understanding of the spreading of a passive scalar in turbulent flows
was initially gained through wind tunnel experiments. The early studies of
heat transfer were done by Corrsin (1952), Warhaft and Lumley (1978),
Tavoularis and Corrsin (1981) and Sirivat and Warhaft (1983) in grid-
generated turbulence and homogeneous turbulence. For channel, pipe and
boundary layer flows, the experiments before 1970 are reviewed in the pa-
per by Kader and Yaglom (1972). During the last twenty years, Hishida
and Nagano (1979) and Nagano and Tagawa (1995) did experiments in fully
developed pipe flow to investigate the transport mechanism in turbulence
to correlate the transfer processes of momentum and scalar with coherent
motions. Nagano and Tagawa (1988) measured various types of moments
of velocity and scalar fluctuations in a fully developed pipe flow. Zhu and
Antonia (1993) measured the temperature dissipation in a fully developed
turbulent channel flow. Later, Mosyak et al. (2001) and Hetsroni et al.
(2001) carried out experiments to study the wall temperature fluctuations
under different wall boundary conditions, and also the thermal coherent
structure in a fully developed channel flow. For the turbulent boundary
layer flows, Hoffmann and Perry (1979) examined the similarity between
the Reynolds shear stress 〈u′v′〉 and scalar flux 〈v′θ′〉. Iritani et al. (1985)
examined the relation between the coherent structures and the temperature
fluctuations near the wall. Krishnamoorthy and Antonia (1987) and Antonia
et al. (1988) did experiments to investigate the temperature dissipation and
the correlation between the longitudinal velocity fluctuation and tempera-
ture fluctuation in the near wall region. Anselmet et al. (1994) investigated
the statistical relationship between a passive scalar and its dissipation. Be-
naissa et al. (1999) studied of the conditional correlation between a passive
scalar and its dissipation.

This thesis is a study of passive scalar transport in a turbulent boundary
layer spatially developing over a flat plate with zero pressure gradient (ZPG).
The investigation is performed using direct numerical simulation (DNS).
The Reδ∗

0
based on the free-stream velocity U∞ and the inlet displacement

thickness δ∗0 is 450 and Pr are chosen as 0.2, 0.71 and 2.0. Isothermal
and isoflux wall boundary conditions are employed for comparison. The
numerical code used for the present DNS was developed by Lundbladh et al.
(1999) at the Royal Institute of Technology (KTH). A spectral method is
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adopted in this code which is more accurate than the finite element or finite
difference method. Therefore less numerical errors are expected and this
is very important for a numerical simulation. The goal of this thesis is to
extend our knowledge about the scalar turbulent boundary layer flows to
a wider range of both Reynolds number and Prandtl numbers and also to
generate a data base for the research community.
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Chapter 2

Theoretical Formulation

2.1 Governing Equations

2.1.1 Velocity field

The governing equations for an incompressible (laminar and turbulent) flow
of a viscous fluid are the Navier-Stokes equation and the continuity equation,
here written in tensor notation

Dui

Dt
≡ ∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
, (2.1)

∂ui

∂xi
= 0 , (2.2)

where the operator D
Dt

is the material derivative which denotes the rate of
change in a coordinate system following the local velocity field. (x1, x2, x3)
= (x, y, z) are the Cartesian coordinates in the streamwise, wall-normal and
spanwise direction, respectively, (u1, u2, u3) = (u, v, w) are the corresponding
instantaneous velocity fields, p is the total pressure while ρ and ν are the
density and kinematic viscosity of the fluid. The summation convention is
implied over repeated indices. The streamwise and spanwise directions will
be alternatively termed as the horizontal directions.

In many applications, it is the mean flow rather than the rapid fluctua-
tions that is interesting and important. Naturally the Reynolds decompo-
sition of the flow field variables into a mean and a fluctuating quantity is
introduced by

ui = 〈ui〉 + u′
i , (2.3)

p = 〈p〉 + p′ , (2.4)

where the angular brackets denote the mean part and a prime denotes the
fluctuating part. In a statistically stationary turbulent flow, the mean value
of a flow quantity can be taken as the time average or as an average in the
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homogeneous directions. Generally the mean of a quantity is the ensemble
average over an infinite number of realizations. In the present case the mean
of a quantity f(x, y, z, t) is defined by

〈f〉(x, y) = lim
T→∞

1

T

∫ ∞

0

f(x, y, z, t)dt , (2.5)

where the z dependence disappears since it is a homogeneous direction.
By inserting the Reynolds decompositions into the equations (2.1), (2.2)

and taking the average, we obtain the Reynolds averaged Navier-Stokes
(RANS) and the continuity equations

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj
(ν

∂〈ui〉
∂xj

− 〈u′
iu

′
j〉) , (2.6)

∂〈ui〉
∂xi

= 0 . (2.7)

The quantity 〈u′
iu

′
j〉 in equation (2.6) is the Reynolds stress tensor which

originates from the non-linear convection term in equation (2.1). One can
never solve the equation (2.6) by introducing transport equation of the
Reynolds stress tensor since higher order moments of the turbulent field
will be involved in the newly introduced transport equation. This is the
so-called closure problem.

The transport equation for the Reynolds stress tensor is obtained by
multiplying equation (2.1) (after subtracting the mean equation (2.6)) with
uj , adding the corresponding equation with switched indices i, j and taking
the average. The resulting equation reads

∂〈u′
iu

′
j〉

∂t
+ 〈ul〉

∂〈u′
iu

′
j〉

∂xl
= −

(

〈u′
ju

′
l〉

∂〈ui〉
∂xl

+ 〈u′
iu

′
l〉

∂〈uj〉
∂xl

)

+
1

ρ

(

〈p′ ∂u′
i

∂xj
〉 + 〈p′

∂u′
j

∂xi
〉
)

− 1

ρ

∂

∂xl

(

〈u′
ip〉δjl + 〈u′

jp〉δil

)

−
∂〈u′

iu
′
ju

′
l〉

∂xl
+ ν

∂2〈u′
iu

′
j〉

∂xl∂xl
− 2ν〈∂u′

i

∂xl

∂u′
j

∂xl
〉 , (2.8)

where δij is Kronecker delta, defined by

δij =
{ 1 if i = j

0 if i 6= j
. (2.9)

The different terms in equation (2.8) are denoted as

Rij ≡ 〈u′
iu

′
j〉 ,

Pij ≡ −〈u′
ju

′
l〉

∂〈ui〉
∂xl

− 〈u′
iu

′
l〉

∂〈uj〉
∂xl

,
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Πij ≡ 1

ρ

(

〈p′ ∂u′
i

∂xj
〉 + 〈p′

∂u′
j

∂xi
〉
)

,

Gij ≡ −1

ρ

∂

∂xl

(

〈u′
ip〉δjl + 〈u′

jp〉δil

)

,

Tij ≡ −
∂〈u′

iu
′
ju

′
l〉

∂xl
,

Dij ≡ ν
∂2〈u′

iu
′
j〉

∂xl∂xl
,

εij ≡ 2ν〈∂u′
i

∂xl

∂u′
j

∂xl
〉 , (2.10)

where Rij is the Reynolds stress tensor, Pij is the production term due to
mean flow field gradient, whose trace (Pii) represents twice the production
of turbulent energy which describes the transfer of energy from the mean
flow to the turbulent fluctuations. Πij is the pressure-strain rate correlation
tensor, which is traceless, i.e. Πii = 0 and represents the inter-component
redistribution of the turbulent energy between Reynolds stress terms. Gij is
the divergence of the pressure-velocity correlation, also known as the pres-
sure diffusion term, which represents spatial redistribution of the energy
among different Reynolds stress components due to inhomogeneities in the
flow field. Tij is the turbulent diffusion term which is the divergence of the
triple correlation tensor, acting as a spatial redistribution term. Dij is the
molecular diffusion term acting to even out the turbulent stresses by spatial
redistribution, whereas εij is the viscous dissipation rate tensor acting as
a destruction term of turbulent kinetic energy and stresses. The transport
equation for Reynolds stress can thus be rewritten as

D̄Rij

D̄t
≡ ∂Rij

∂t
+ 〈ul〉

∂Rij

∂xl
= Pij + Πij + Gij + Tij + Dij − εij . (2.11)

The transport equation for the kinetic energy k ≡ 1
2
〈u′

iu
′
i〉 is

∂k

∂t
+ 〈uj〉

∂k

∂xj
= −〈u′

iu
′
j〉

∂〈ui〉
∂xj

− 1

ρ

∂〈u′
jp〉

∂xj
− 1

2

∂〈u′
iu

′
iu

′
j〉

∂xj
+ 2ν〈u′

i

∂2u′
i

∂xj∂xj
〉 ,

(2.12)

where the last term on the right hand side, 2ν〈u′
i

∂2u′

i

∂xj∂xj
〉 can be split into a

molecular diffusion term Dp
K and a pseudo dissipation term εp

K or a viscous
diffusion term DK and a true dissipation term εK as follows

2ν〈u′
i

∂2u′
i

∂xj∂xj
〉 = ν

∂2k

∂xj∂xj
− ν〈∂u′

i

∂xj

∂u′
i

∂xj
〉 (2.13)

or

2ν〈u′
i

∂2u′
i

∂xj∂xj
〉 = 2ν

∂〈u′
is

′
ij〉

∂xj
− 2ν〈s′ijs′ij〉 , (2.14)
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where s′ij is the fluctuating strain rate tensor defined by

s′ij =
1

2
(
∂u′

i

∂xj
+

∂u′
j

∂xi
) . (2.15)

The transport equation (2.12) can be written as

D̄k

D̄t
≡ ∂k

∂t
+ 〈uj〉

∂k

∂xj
= Pk + Gk + Tk + Dp

k − εp
k (2.16)

or
D̄k

D̄t
≡ ∂k

∂t
+ 〈uj〉

∂k

∂xj
= Pk + Gk + Tk + Dk − εk . (2.17)

The different terms on the right hand side of the equation (2.16) and equa-
tion (2.17) are denoted as

Pk ≡ 1

2
Pii = −〈u′

iu
′
j〉

∂〈ui〉
∂xj

, (2.18)

Gk ≡ 1

2
Gii = −1

ρ

∂〈u′
jp

′〉
∂xj

, (2.19)

Tk ≡ 1

2
Tii = −1

2

∂〈u′
iu

′
iu

′
j〉

∂xj
, (2.20)

εp
k ≡ 1

2
εii = ν〈∂u′

i

∂xj

∂u′
i

∂xj
〉 , (2.21)

εk ≡ 2ν〈s′ijs′ij〉 , (2.22)

Dp
k ≡ 1

2
Dii = ν

∂2k

∂xj∂xj
, (2.23)

Dk ≡ 2ν
∂〈u′

is
′
ij〉

∂xj
, (2.24)

where Pk is the turbulent energy production, εk is the true viscous dissi-
pation, εp

k is the pseudo dissipation, Gk is the pressure diffusion, Tk is the
turbulent diffusion, Dk and Dp

k are the viscous diffusion and the molecular
diffusion.

Actually the difference between the true dissipation εk and pseudo dissi-
pation εp

k of turbulent kinetic energy k is quite small. In almost all circum-
stances, the distinction of these two terms is not important.

2.1.2 Scalar field

The governing equations for a passive scalar share many similarities with
those of the velocity field for an incompressible flow of a viscous fluid. The
transport equation for a passive scalar is given by

∂θ

∂t
+ ui

∂θ

∂xi
= α

∂2θ

∂xi∂xi
, (2.25)
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where θ is the passive scalar, e.g. temperature or pollutant concentration,
and α the scalar molecular diffusivity. Again, the summation convention is
implied over repeated indices.

In analogy to the Reynolds decomposition of the velocity field, the in-
stantaneous scalar may also be split into a mean and a fluctuating part

θ = 〈θ〉 + θ′ . (2.26)

By inserting this decomposition into equation (2.25) and taking average, we
obtain the averaged transport equations for the scalar

∂〈θ〉
∂t

+ 〈ui〉
∂〈θ〉
∂xi

=
∂

∂xi

(

α
∂〈θ〉
∂xi

− 〈u′
iθ

′〉
)

. (2.27)

The scalar flux term 〈u′
iθ

′〉 in equation (2.27), due to the non-linear convec-
tion term in (2.25), leaves the equation unclosed.

The transport equation for the scalar flux is given by

∂〈u′
iθ

′〉
∂t

+ 〈ul〉
∂〈u′

iθ
′〉

∂xl
= −

(

〈u′
lθ

′〉∂〈ui〉
∂xl

+ 〈u′
iu

′
l〉

∂〈θ〉
∂xl

)

+
1

ρ
〈p′ ∂θ′

∂xi
〉 − 1

ρ

∂〈p′θ′〉
∂xi

− ∂〈u′
iu

′
lθ

′〉
∂xl

+
∂

∂xl

(

α〈u′
i

∂θ′

∂xl
〉 + ν〈θ′∂u′

i

∂xl
〉
)

− (ν + α)〈∂u′
i

∂xl

∂θ′

∂xl
〉 , (2.28)

which is similar to that for the Reynolds stress, i.e. equation (2.8). The
different terms on the right hand side of the equation (2.28) are

Pθi ≡ −〈u′
lθ

′〉∂〈ui〉
∂xl

+ 〈u′
iu

′
l〉

∂〈θ〉
∂xl

, (2.29)

Πθi ≡ 1

ρ
〈p′ ∂θ′

∂xi
〉 , (2.30)

Gθi ≡ −1

ρ

∂〈p′θ′〉
∂xi

, (2.31)

Tθi ≡ −∂〈u′
iu

′
lθ

′〉
∂xl

, (2.32)

Dθi ≡ ∂

∂xl

(

α〈u′
i

∂θ′

∂xl
〉 + ν〈θ′∂u′

i

∂xl
〉
)

, (2.33)

εθi ≡ (ν + α)〈∂u′
i

∂xl

∂θ′

∂xl
〉 , (2.34)

where Pθi is the production term due to both the mean gradients of velocity
and scalar, Πθi is the pressure scalar-gradient correlation term, Gθi is the
divergence of the pressure-scalar correlation term, Tθi is the turbulent diffu-
sion term, Dθi is the molecular diffusion term and εθi the dissipation term,
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respectively. Thus the transport equation of scalar flux written in symbolic
form is

D̄〈u′
iθ

′〉
D̄t

= Pθi + Πθi + Gθi + Tθi + Dθi − εθi . (2.35)

The transport equation for half of the scalar variance, kθ ≡ 1
2
〈θ′θ′〉,

which corresponds to the turbulent kinetic energy k, is obtained by multi-
plying equation (2.25) (after subtracting the mean equation (2.27)) with the
fluctuating scalar θ′ and then taking the average. This yields

∂kθ

∂t
+〈ul〉

∂kθ

∂xl
= −〈u′

lθ
′〉∂〈θ〉

∂xl
− 1

2

∂〈u′
lθ

′θ′〉
∂xl

+α
∂2kθ

∂xl∂xl
−α〈 ∂θ′

∂xl

∂θ′

∂xl
〉 . (2.36)

The different terms on the right hand side of the (2.36) are denoted as

Pθ ≡ −〈u′
lθ

′〉∂〈θ〉
∂xl

, (2.37)

Tθ ≡ −1

2

∂〈u′
lθ

′θ′〉
∂xl

, (2.38)

Dθ ≡ α
∂2kθ

∂xl∂xl
, (2.39)

εθ ≡ α〈 ∂θ′

∂xl

∂θ′

∂xl
〉 , (2.40)

where Pθ is the production which is due to the mean scalar gradient, εθ

is the dissipation rate of kθ, Dθ and Tθ are the molecular and turbulent
diffusion of kθ. The transport equation for kθ rewritten in symbolic form is

D̄kθ

D̄t
= Pθ + Tθ + Dθ − εθ . (2.41)

2.2 Boundary Layer Equations and Scalings

2.2.1 Boundary layer equations

In a statistically stationary and two-dimensional boundary layer with the
standard boundary layer approximations, i.e. negligible streamwise diffusion
( ∂

∂x
≪ ∂

∂y
) and constant pressure through the boundary layer (〈p〉 = 〈p〉(x)),

the mean flow equations (2.6), (2.27) and (2.7) reduce to

〈u〉∂〈u〉
∂x

+ 〈v〉∂〈u〉
∂y

= −1

ρ

d〈p〉
dx

+
∂

∂y

(

ν
∂〈u〉
∂y

− 〈u′v′〉
)

, (2.42)

〈u〉∂〈θ〉
∂x

+ 〈v〉∂〈θ〉
∂y

=
∂

∂y

(

α
∂〈θ〉
∂y

− 〈v′θ′〉
)

, (2.43)

∂〈u〉
∂x

+
∂〈v〉
∂y

= 0 . (2.44)
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Note that in equation (2.42), we use d〈p〉
dx

instead of ∂〈p〉
∂x

. That is the result
of having taken into account the boundary layer approximation for the pres-
sure, i.e. 〈p〉 is constant through the boundary layer and is a function of x
only. The closure problem appears again in the two-dimensional turbulent
boundary layer due to the two additional unknown terms, 〈u′v′〉 and 〈v′θ′〉,
in equations (2.42) and (2.43),respectively.

2.2.2 Boundary layer scalings

For boundary layer problems, an important concept is the self similarity
which means that from one streamwise position x to another, the velocity
profiles look similar and the same holds for the scalar profile. By proper
scaling, all the profiles at different downstream positions collapse onto a
single curve. According to Barenblatt (1996), the first application was made
by Joseph Fourier in 1822 in the context of heat conduction.

For a turbulent boundary layer flow, one always seeks the similarity
solutions for the mean velocity and mean scalar profiles in the inner and
outer regions of the boundary layer separately. These two regions are of
different characteristics. The individual terms in equation (2.42) and (2.43)
are of different importance in these two regions of the turbulent boundary
layer, e.g. the convection terms are significant in the outer region while the
viscous and the scalar flux terms are only important in the inner region.

The inner region scaling

The behaviour of the flow in the near wall region is of great importance
because many features of the flow of engineering significance are determined
in the inner layer. The inner layer was first treated in the work by Ludwig
Prandtl. The boundary layer equation for the flow field in the inner part
simplified from the equation (2.42) reads

0 = ν
∂2〈u〉
∂y2

− ∂

∂y
〈u′v′〉 . (2.45)

Integrating equation (2.45) we get

τ

ρ
≡ ν

∂〈u〉
∂y

− 〈u′v′〉 =

(

ν
∂〈u〉
∂y

− 〈u′v′〉
) ∣
∣
∣
y=0

= ν
∂〈u〉
∂y

∣
∣
∣
y=0

≡ τw

ρ
. (2.46)

Note that the Reynolds stress 〈u′v′〉 disappears at the wall due to the no-
slip boundary condition, τ is the total mean shear stress and τw is the total
mean shear stress at the wall.

We define the characteristic length scale in the inner region to be

l∗ ≡
ν

uτ
, (2.47)
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where uτ is the friction velocity and defined as

uτ ≡
√

τw

ρ
=

√

ν
∂〈u〉
∂y

∣
∣
∣
y=0

. (2.48)

The wall-normal distance expressed in viscous scaling, also called inner scal-
ing or wall units, becomes

y+ ≡ y

l∗
=

yuτ

ν
. (2.49)

Using viscous scaling, the mean streamwise velocity can be written in the
form

u+ ≡ 〈u〉
uτ

= Φ1(y
+) . (2.50)

Equation (2.50) is referred to as the law of the wall. Here we assume outer
geometrical restrictions, i.e. the outer length scale to be of negligible influ-
ence sufficiently close to the wall, and assume the velocity and Reynolds
shear stress profiles to be functions of y+ only rather than y+ and Re which
is defined by Re = UL

ν
where U denotes the velocity scale, L the length scale

and ν is the kinematic viscosity. Thus the law of the wall will be universal,
i.e. the function Φ1 will be the same mathematical function for all flows at
sufficiently high Reynolds number. Under such circumstances, the law of the
wall is found to agree well with measurements and simulations for y < 0.3δ,
where δ is the boundary layer thickness. Usually we define the thickness of
the boundary layer to be at the position where streamwise velocity u reaches
the 99% of the free-stream velocity U∞

u(y = δ99%) = 0.99U∞ . (2.51)

Similarly as the mean velocity, the Reynolds shear stress using viscous
scaling can be written in the form

〈u′v′〉+ ≡ −〈u′v′〉
u2

τ

= Φ2(y
+) , (2.52)

which is found to hold for y < 0.1δ when the Reynolds number of the flow
is very high.

Using viscous scaling, the equation (2.46) can be written as

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 (2.53)

or
Φ′

1(y
+) + Φ2(y

+) = 1 . (2.54)

Very close to the wall, the viscous effects are expected to be dominant so
that the viscous stress becomes much larger than the Reynolds shear stress.
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This region is the so-called viscous sub-layer. In this layer equation (2.45)
(after neglecting the Reynolds shear stress term) can be integrated to yield

u+ = y+ . (2.55)

This relation implies that the velocity profile is a linear function of only one
variable, which in turn depends on both x and y. This linear relation is
found to be valid for y+ < 5, see e.g. Pope (2000).

In the case of the scalar, we expect a similar behaviour as for the velocity
field. By the same reasoning as above, the boundary layer equation for the
scalar field in the inner part simplified from equation (2.43) reads

0 = α
∂2〈θ〉
∂y2

− ∂〈v′θ′〉
∂y

. (2.56)

Similarly, the law of the wall for scalar field reads

θ+ ≡ θw − 〈θ〉
θτ

= Φθ(y
+, P r) , (2.57)

where function Φθ is a universal function which is dependent on y+ and the
molecular Prandtl number Pr which is defined by Pr = ν

α
where ν is the

kinematic viscosity and α the scalar molecular diffusivity. θw is the scalar
concentration at the wall. θτ is called friction scalar or friction temperature
if θ is considered to be a temperature. According to Cebeci and Bradshaw
(1984), the friction temperature is analogous to the friction velocity uτ and
defined by

θτ ≡ qw

ρcpuτ
, (2.58)

where ρ is the density of the fluid, cp is the heat capacity of the fluid, uτ is
the friction velocity and qw is the rate of the heat transfer from the wall to
the flow which is defined by

qw = −k
d〈θ〉
dy

∣
∣
∣
y=0

, (2.59)

where k is the thermal conductivity and this equation is referred to as the
heat conduction law or Fourier’s law.

Analogously, very close to the wall, a conductive sub-layer exists for
the scalar field as a viscous sub-layer for the velocity field. From the heat
conduction law, we can derive the equation for the conductive sub-layer

θ+ = Pr y+ . (2.60)

This linear relation is found to be valid for Pr y+ < 3 (Cebeci and Bradshaw,
1984).
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The outer region

The turbulent boundary layer is not expected to explicitly depend on the
viscosity ν in the outer region, thus the viscous stress is to be negligible.
Hence, equation (2.42) can be reduced to

〈u〉∂〈u〉
∂x

+ 〈v〉∂〈u〉
∂y

= −∂〈u′v′〉
∂y

. (2.61)

The pressure term vanished since we are dealing with a zero pressure gradient
(ZPG) case, i.e. d〈p〉

dx
= 0.

We define the characteristic length scale in the outer region to be

∆ ≡ δ∗ . (2.62)

where the δ∗ is the displacement thickness defined by

δ∗ =

∫ ∞

0

(

1 − 〈u〉
U∞

)

dy . (2.63)

The outer scaling for the wall-normal distance is formed as

η ≡ y

∆
=

y

δ∗
. (2.64)

The gross characteristic of the turbulence in the outer part of the turbulent
boundary layer is inviscid, and the Reynolds shear stress in the outer region
results in a drag on the flow and generates a velocity defect (〈u〉 − U∞),
which is expected to be proportional to the wall friction characterised by
uτ . Therefore, the mean velocity is scaled as

〈u〉 − U∞

uτ
= Ψ1(η) , (2.65)

which is called the velocity defect law and the Reynolds shear stress is scaled
as

−〈u′v′〉
u2

τ

= Ψ2(η) . (2.66)

If the velocity scale for the scaling of the Reynolds shear stress is chosen as
another variable, consistency would require that the ratio uτ

U∞

has to be as-

sumed to approach a constant at infinite high Reynolds number (Österlund,
1999).

The equation (2.43) of scalar field in the outer region can be reduced to

〈u〉∂〈θ〉
∂x

+ 〈v〉∂〈θ〉
∂y

= −∂〈v′θ′〉
∂y

. (2.67)

Similar consideration leads to the defect law for the scalar

〈θ〉 − θ∞
θτ

= Ψθ(η) , (2.68)

where θ∞ is the scalar concentration in the free-stream and θτ the friction
scalar.
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The overlap region

From the analysis above, we know that the velocity and scalar fields are
governed by different laws (equations (2.50), (2.52), (2.57), (2.65), (2.66),
(2.68)) in the inner and outer regions of the boundary layer. However at
high enough Reynolds number, the outer edge of the inner layer can overlap
the inner edge of the outer layer. This means the behaviour of equations
(2.50), (2.52) and (2.57)) for y+ → ∞ should coincide with that given by the
equations (2.65), (2.66) and (2.68) for η → 0. Hence in the so-called overlap
region where l∗ ≪ y ≪ δ∗, all the equations are valid simultaneously. The
classical treatment is a matching of the equations involving both inner and
outer regions. Following the derivation by Tennekes and Lumley (1972), we
obtain

Φ1(y
+) =

〈u〉
uτ

=
1

κ
ln(y+) + A , (2.69)

Ψ1(η) =
〈u〉 − U∞

uτ
=

1

κ
ln(η) + B , (2.70)

where κ is called the Kármán constant. The constants κ ≈ 0.41, A ≈ 5.2
and B ≈ 1 can be found from the experiments.

Equations (2.69) and (2.70) are the velocity distribution in the overlap
region and also called logarithmic law or log-law for short. The value of the
Kármán constant, κ, is set to 0.41 throughout this thesis. Österlund et al.
(2000) proposed a value for the Kármán constant of 0.38 for large enough
Reynolds number. However, Spalart (1988) has shown that the traditional
value of 0.41 gives good agreement for lower Reynolds numbers.

The log-law for the scalar field takes the same form as the velocity field

Φθ(y
+, P r) =

θw − 〈θ〉
θτ

=
1

κθ
ln(y+) + Aθ(Pr) , (2.71)

Ψθ(η) =
θ∞ − 〈θ〉

θτ
=

1

κθ
ln(η) + Bθ(Pr) , (2.72)

where the Kármán constant for the scalar field, κθ = 0.33 (Wikström, 1998).
Both Aθ and Bθ are functions of Pr. It might be more logical to write the
argument of the logarithm as Pry+, that is, incorporating the scalar con-
ductivity rather than the viscosity, but this will merely change the constant
Aθ without eliminating it.

A typical mean streamwise velocity profile of a turbulent boundary layer
denoted by the open circle, is shown in Figure 2.1. As we can see the DNS
data fits the log-law very well in the log region. In the outer region of the
boundary layer, a departure is observed. The outer region in which there is a
departure from the law of the wall is frequently called the wake region. There
are several parameterisations available for the wake region, e.g. the wake
function proposed by Coles (1956). However they are completely empirical.

16



For the profile of the mean scalar, it is essentially the same as for the mean
streamwise velocity. It is anticipated that a wake region for the mean scalar
profile also does exist.

 y+

 <
u

>
+

10
0

10
1

10
2

10
3

0

5

10

15

20

25

Figure 2.1: Mean streamwise velocity profile. Log-law, ◦ DNS.

One should always bear in mind that we assume that α∂〈θ〉
∂y

is dominant

in the inner region while 〈v′θ′〉 is dominant in the outer region. However this

might be inaccurate since α∂〈θ〉
∂y

can vary tremendously with the molecular
Prandtl number which is depended on the particular fluid. Prandtl numbers
for viscous fluids like oils can easily exceed 100, while those for liquid metals
can be as low as 0.001. We know that in the inner and outer regions, the
terms neglected are not zero, they are merely small compared to the other
ones. By choosing a different Prandtl number, the situation may be reversed.
For the present we would like to neglect 〈v′θ′〉 in the inner region and α∂〈θ〉

∂y

in the outer region. This means we are restricted to O(Pr) = 1. The use
of the Φθ in equation (2.57) which is a function of y+ and Pr is a way of
compensating for this effect. For more details, see e.g. Kays and Crawford
(1993).
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Chapter 3

Direct Numerical Simulation

3.1 Non-dimensional Equations

It is often convenient to work with a non-dimensional form of the Navier-
Stokes equations and the scalar transport equation. The non-dimensional
form of the variables are

u⋆
i =

ui

U∞
, x⋆

i =
xi

δ∗0
, p⋆ =

p

ρU2
∞

, t⋆ =
tU∞

δ∗0
,

θ⋆ =
Θ − Θ∞

Θw − Θ∞
, for the isothermal boundary condition

θ⋆ =
k(Θ − Θ∞)

qwδ∗0
, for the isoflux boundary condition (3.1)

where ⋆ signifies a non-dimensional variable. xi is the coordinates. U∞ is
the undisturbed laminar streamwise free-stream velocity at x = 0 and t = 0
as the velocity scale, δ∗0 is the displacement thickness of the undisturbed
streamwise velocity at x = 0 and t = 0. ρ is the density of the fluid. The
reference scalar concentrations are chosen to be the scalar concentration
at the wall Θw and the one in the free-stream Θ∞. qw is the rate of the
scalar transfer from the wall to the flow defined by equation (2.59) and k is
the scalar conductivity. Unless specified otherwise the superscript ⋆ will be
dropped from the non-dimensional variables for simplicity.

The non-dimensional governing equations are given in the following form

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, (3.2)

∂ui

∂xi
= 0 , (3.3)

∂θ

∂t
+ ui

∂θ

∂xi
=

1

RePr

∂2θ

∂xi∂xi
, (3.4)
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where the Reynolds number Re is based on the free-stream velocity U∞

and the inlet displacement thickness δ∗0 , Pr is the molecular Prandtl num-
ber. The buoyancy effect and fluid property variation with the scalar are
neglected, i.e. the scalar is regarded as a passive scalar. The multiplication
of RePr is another non-dimensional number, named Péclet number (Pe).
This dimensionless number represents the ratio of convective transport of
scalar to scalar molecular diffusion.

3.2 Boundary Conditions

The velocity and scalar fields are periodic in the horizontal directions whereas
specified boundary conditions at the wall and in the free-stream are needed
to solve the governing equations.

3.2.1 Boundary conditions for flow field

At the wall, the no-slip boundary conditions read, i.e. the velocity of the
fluid at a solid surface must be equal to the velocity of the surface,

u|y=0 = 0, v|y=0 = 0, w|y=0 = 0 (3.5)

and
∂v

∂y

∣
∣
∣
y=0

= 0 , (3.6)

which is derived from the continuity equation.
The flow is assumed to extend to an infinite distance perpendicular to

the plate, but due to the impracticability of discretizing a infinite domain a
truncated domain has to be considered. At the upper boundary in the free-
stream an artificial boundary condition is applied. The simplest possible
boundary condition is a Dirichlet condition, i.e.

ui|y=yL
= Ui|y=yL

, (3.7)

where yL is the height of the solution domain in the wall-normal direction
in physical space. The size of the solution domain in the streamwise and
spanwise directions are denoted by xL and zL, respectively. Ui(x, y) is a
laminar base flow that is chosen as the Blasius flow for the present case.

However, the desired flow solution generally contains a disturbance and
that will be forced to zero by the Dirichlet condition. This introduces an
error compared to the exact solution for which the boundary condition is
applied at an infinite distance from the wall. The error may result in in-
creased damping of disturbances in the boundary layer (Lundbladh et al.,
1999). Some improvement can be made by imposing a Neumann condition

∂ui

∂y

∣
∣
∣
y=yL

=
∂Ui

∂y

∣
∣
∣
y=yL

, (3.8)

which is implemented in the present DNS code.
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3.2.2 Boundary conditions for scalar field

In the present implementation for the scalar field, we use two types of wall
boundary conditions. One is an isothermal wall and the other is an isoflux
wall. The boundary conditions for these two walls are given by

θ|y=0 = 1 , for the isothermal boundary condition

∂θ

∂y

∣
∣
∣
y=0

= −1 , for the isoflux boundary condition (3.9)

These two kinds of wall boundary conditions are actually two limiting cases
of the physical configuration. Considering θ to be the temperature concen-
tration, the isothermal wall boundary condition corresponds to a situation
where the fluid with negligible density ρ, heat capacity cp and thermal con-
ductivity k is heated by an infinitely thick wall with large density ρw, heat
capacity cpw and thermal conductivity kw. Hence the thermal activity ratio

K defined by
√

ρcpk
ρwcpwkw

is vanishing in this case. The isoflux wall boundary
condition, however, is an opposite case of the isothermal one. It signifies an
extremely thin wall with small density, heat capacity and thermal conduc-
tivity while the corresponding fluid properties are quite large. This leads to
a thermal activity ratio K of ∞ (Tiselj et al., 2001a). In order to reveal the
details of the heat transfer near the wall for a more general case, one has to
solve the conjugate heat transfer problem with a given thickness, material
properties of the solid wall and the properties of the fluid. For more details
about conjugate heat transfer, see e.g. Kasagi et al. (1989).

The boundary condition in the free-stream is

θ|y=yL
= 0 . (3.10)

3.3 Computational Domain

In this thesis we are considering a turbulent boundary layer flow over a flat
plate with a passive scalar under a uniform free-stream with zero pressure
gradient (ZPG). The simulation starts with a laminar Blasius boundary
layer at the inlet (Rex = 68450 where Rex is the Reynolds number based
on the streamwise position x and the free-stream velocity U∞), then the
laminar flow is tripped by a random volume force strip to transition and
finally becomes turbulent. The trip forcing in the present case is located at
the wall with streamwise position at x = 10 corresponding to Rex = 72950.

The computational domain consists of a three dimensional cuboid bounded
at the lower edge by a flat plate with no-slip boundary condition. The
boundary layer will grow in the domain starting with an initial boundary
layer thickness δ∗0 . In the streamwise direction the computational domain is
bounded by the fringe region, which will be described in Section 3.4.3.
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All the relevant quantities of the flow are scaled with the inlet boundary
layer displacement thickness δ∗0, the free-stream velocity U∞ and the viscos-
ity ν, i.e. the same dimensions used by Skote (2001) and Schlatter (2001).
The Reynolds number based on the inlet displacement thickness and free-
stream velocity is set to be 450. The distance from the leading edge x0 can
then be computed from

x0

δ∗0
=

Reδ∗
0

1.722
= 152.11 , (3.11)

which corresponds to Rex = 68450 or Reθ = 175. The simulation is car-
ried out in a computational box with the length xL, height yL and width
zL being 750δ∗0, 40δ∗0 and 34δ∗0. The streamwise extent of the box must
for spatially developing flows include the length of the fringe region which
typically accounts for around 10% of the total length of the computational
domain. In the present case the fringe length is chosen to be 90. The ver-
tical extent of the box must include the whole boundary layer. Depending
on the choice of free-stream boundary condition, the box may include only
the boundary layer or a few times more. The sufficiency of the box height
may be investigated through numerical experiments.

We use 1024 × 289 × 128 grid points in the streamwise, wall-normal
and spanwise directions, respectively. The grid spacing is uniform in the
streamwise and spanwise directions. A Gauss-Lobatto distribution is used
in the wall-normal direction. The Gauss-Lobatto collocation points are

yi = cos(π
i

Ny
), i = 0, 1, 2, . . . , Ny . (3.12)

This gives the spacing to be of order N−2
y near the wall, and in the middle

of the computational box to be of order N−1
y where Ny is the number of

grid points in the wall-normal direction, see e.g. Canuto et al. (1988) for
details. The grid spacings in the wall units are ∆x+ ≈ 17, ∆z+ ≈ 6.3,
∆y+

min ≈ 0.025 at the wall and ∆y+
max ≈ 4.6 at the edge of the boundary

layer based on the friction velocity at the x = 150 of the computational box
where the flow becomes turbulent.

We use an adaptive computational time stepping for this DNS. The time
step is regulated to keep the Courant-Friederichs-Lewy (CFL) number close
to the maximum CFL which is calculated from the velocities in physical
space and set to 0.9

√
8 for the four stage Runge-Kutta method. For more

details see Lundbladh et al. (1999) or Schlatter (2001). The code was com-
piled for 64 processors (parallel vector processors with distributed memory).
The average time step size ∆t is about 0.02378 which corresponds to around
40 seconds in wall-clock time. Statistics are sampled at every 32 time steps

and averaged for about 1000 time units
δ∗
0

U∞

.
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3.4 Numerical Method

3.4.1 Numerical scheme

The numerical code used for the calculations presented in this thesis has been
developed and improved during the past years at KTH Stockholm. The code
solves the incompressible Navier-Stokes equations and can be run on parallel
computers, using OpenMP (Multi Processing) or MPI (Message passing
interface) with shared or distributed memory. It was applied successfully
in a number of works by a number of users on a variety of workstations
and super computers, see e.g. Lundbladh et al. (1999) or Skote (2001). The
following description is partly taken from Lundbladh et al. (1999), Skote
(2001) and Schlatter (2001).

The direct numerical simulation has been performed with the spectral al-
gorithm described in detail in Lundbladh et al. (1999). In a spectral method
the solution is approximated by an expansion in smooth (global) functions,
e.g. trigonometric functions as in our case, which provides a fast convergence
rate to the approximation of the real solution, i.e. the so-called spectral con-
vergence. The earliest applications to partial differential equations were
developed by Kreiss and Oliger (1972) and Orszag (1972), who named the
method pseudo-spectral. The term pseudo-spectral refers to the multiplica-
tions of the non-linear terms, which are calculated in physical space to avoid
the evaluation of convolution sums. The transformation between physical
and spectral space can be efficiently done by Fast Fourier Transform (FFT)
algorithms that became generally known in the 1960’s.

The high accuracy in spectral methods compared to finite element or
finite difference discretizations is the result of the fast convergence rate of
spectral approximations to a function mentioned above. Efficient implemen-
tations of pseudo-spectral methods can be made thanks to the lower costs
of performing FFTs. Moreover, the data structure makes the algorithms
suitable for both vectorization and parallelization. However, the spectral
approximation in single domain limits the applications to rather simple ge-
ometries.

3.4.2 Discretization

The algorithm used for solving the equations (3.2), (3.4) and (3.3) is similar
to that for channel geometry of Kim et al. (1987), using Fourier series expan-
sion in the wall parallel (streamwise and spanwise) directions and Chebyshev
series in the wall-normal direction using the Chebyshev tau method (CTM).

The time advancement used is a four-step low storage third-order Runge-
Kutta method for the non-linear terms and a second-order Crank-Nicolson
method for the linear terms. The non-linear terms are calculated in physical
space rather than spectral space (pseudo-spectral method). Aliasing errors
from the evaluation of the non-linear terms are removed by the 3/2-rule when
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the horizontal FFTs are calculated. Although no rigorous stability criterion
for the Navier-Stokes equations integrated by a Runge-Kutta scheme exists,
the stability analysis for the four stage Runge-Kutta method shows a sta-
bility limit of CFL =

√
8. This is used in the adaptive time stepping to

calculate the maximal stable time step size ∆t.
The numerical code is written in FORTRAN 77 and consists of two

major parts. One linear part where the equations are solved in spectral
space, and one non-linear part where the non-linear terms in the equations
are computed in physical space. The linear part needs data for one spanwise
position at a time since the equations are solved in the wall-normal direction.
The non-linear part needs data for one y position at a time since the FFT is
performed in the horizontal (streamwise and spanwise) directions. The flow
variables are stored at an intermediate level with spectral representation
in the horizontal directions and physical representation in the wall-normal
direction. All spatial derivatives are calculated with spectral accuracy. The
main computational effort in these two parts is in the FFT.

3.4.3 Fringe region

For the present DNS, since the boundary layer is developing in the down-
stream direction, it is necessary to use non-periodic boundary conditions in
the streamwise direction. So a fringe region, similar to that described by
Nordström et al. (1999), is added downstream of the physical domain to
retain periodic boundary conditions for the Fourier discretization. In the
fringe region, the disturbances are damped and the flow is forced from the
outflow of the physical domain to the inflow. In this way the physical do-
main and the fringe region together satisfy periodic boundary conditions.
The fringe region is implemented by the addition of a volume force F into
the Navier-Stokes equations

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
+ Fi . (3.13)

The forcing term is
Fi = λ(x)(Ui − ui) , (3.14)

where λ(x) is the strength of the forcing. λ(x) is a non-negative fringe
function which is significantly non-zero only within the fringe region and
designed to minimize the upstream influence. Ui is the same base flow field
used for the initial calculation and the boundary conditions, which also
contains the desired flow solution in the fringe. The streamwise velocity
component of Ui is calculated as

Ux(x, y) = ũ(x, y) + [ũ(x + xL, y) − ũ(x, y)] S

(
x − xmix

∆mix

)

, (3.15)
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where ũ(x, y) is normally a solution to the boundary layer equations. xL

denotes the extent of the computational domain. xmix and ∆mix are chosen
so that the prescribed flow within the fringe region smoothly changes from
the outflow velocity of the physical domain to the desired inflow velocity.
S is a smooth step function described in equation (3.17). The wall-normal
component Uy is then calculated from the equation of continuity, and the
spanwise velocity Uz is set to zero for the present simulation since the base
flow is two dimensional.

rise
︸ ︷︷ ︸

fall
︸ ︷︷ ︸

Figure 3.1: A sketch of the fringe function λ(x).

A convenient form of the fringe function λ is described as follows

λ(x) = λmax[S

(
x − xstart

∆rise

)

− S

(

x − xend

∆fall
+ 1

)

] , (3.16)

where λmax is the maximum strength of the damping. xstart to xend is the
spatial extent of the region where the damping function is non-zero and
∆rise and ∆fall denote the rise and fall distance of the damping function.
See Figure 3.1 for detail. S(x) is a smooth step function rising from zero for
negative x to one for x ≥ 1. We have used the following form for S, which
has the advantage of having continuous derivatives of all orders for x 6= 0
and x 6= 1

S(x) =

{ 0 x ≤ 0

1/
[

1 + exp
(

1
x−1

+ 1
x

)]

0 < x < 1

1 x ≥ 1

. (3.17)

To achieve maximum damping both the total length of the fringe and
λmax have to be tuned. The actual shape of λ(x) is less important for
the damping but it should have its maximum closer to xend other than to
xstart. See Nordström et al. (1999) for an investigation of the fringe region
technique.

Figure 3.2 illustrates the variation of the boundary layer thickness and
the mean flow profile in the computational box as well as a typical fringe
function λ(x). Note that the analysis presented above also applies for the
scalar field.
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Figure 3.2: The boundary layer thickness δ of a flow that grows downstream
in the physical domain and is reduced in the fringe region by the forcing.
The flow profile is returned to the desired inflow profile in the fringe region,
where the fringe function λ(x) is non-zero.

3.5 Base Flow

To start the simulation, initial velocity and scalar profiles must first be
generated which are also used in the fringe region as base flow. In the
present simulation a Blasius velocity profile is chosen to be the base flow.
It is a similarity laminar boundary layer profile derived from the laminar
boundary layer equations for flow over a flat plate which is a special case of
the Falkner-Skan equations. The Falkner-Skan equations read

f ′′′ +
m + 1

2
ff ′′ + m

[

1 − (f ′)2
]

= 0 (3.18)

and
1

Pr
g′′ +

m + 1

2
fg′ + n(1 − g)f ′ = 0 , (3.19)

where f and g are the dimensionless stream function and scalar function
and defined by

f ′(η) =
u

U∞
(3.20)

and

g(η) =
Θ − Θ∞

∆T
, (3.21)

respectively and ∆T is defined by

∆T = Θw − Θ∞ , for the isothermal boundary condition

∆T =
qwδ∗0

k
, for the isoflux boundary condition

which is consistent with the non-dimensional scaling in equation (3.1). U∞

is the laminar streamwise free-stream velocity at x = 0 and t = 0, δ∗0 is the
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displacement thickness of the undisturbed streamwise velocity at x = 0 and
t = 0. Θw and Θ∞ are the reference scalar concentrations at the wall and
in the free-stream. qw is the rate of the scalar transfer from the wall to the
flow and k is the scalar conductivity. f and g are functions of η only where
η is the similarity variable and depends on both x and y. A prime denotes
the derivative with respect to η. The constants m and n in equations (3.18)
and (3.19) are defined by

m =
x

U∞

dU∞

dx
(3.22)

and

n =
x

∆T

d∆T

dx
. (3.23)

In the present DNS with zero pressure gradient (ZPG), both m and n are
0 for the isothermal boundary condition while m = 0 and n = 0.5 for the
isoflux boundary condition. For more details, see e.g. Schlichting (1987) or
Cebeci and Bradshaw (1984).

The base flow can either be parallel or space developing. For a spatially
developing flow as in our case the base flow from the upstream and the
downstream end are blended in the fringe region. The start and blending
length must be specified. Typically the start is given as a negative number,
i.e. the distance upstream of the inflow boundary where the blend starts is
given. Here we choose x = −90 for the start of blending.

To examine whether the base flow is converged or not, we ran a test
case without imposing any disturbances. The simulation was run for a total

of 5000 time units
δ∗
0

U∞

. The velocity and scalar profiles at the end of the
simulation are compared with the initial profiles and the difference is of an
order of 10−6 to 10−5, so we draw a conclusion that the base flow is really
converged and could be used for the simulation.
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Chapter 4

Averaged Results

A direct numerical simulation was being carried out during the last few
months. A large amount of statistics of both the mean flow and scalar dis-
tributions and the corresponding fluctuations was obtained. In this chapter
these results and comparisons with other simulations as well as experimen-
tal data of different types of flow will be presented. All the quantities are

averaged for a long enough time span of 1000 time units
δ∗
0

U∞

to make sure
that they are converged. However each quantity is only compared at some
of the available positions so that the figures will not be too cluttered. The
chosen positions may vary from one to the other, but for most of the results,
the positions are chosen in the turbulent region. Moreover the results will
be compared at the same Reynolds numbers rather than at the same down-
stream positions, since different experiments and simulations have different
flow conditions, so only comparisons at specific values of Reynolds number
provide meaningful results.

In Section 4.1, the numerical parameters used in the simulation as well
as the relation between different types of Reynolds numbers and the down-
stream positions are summarised. The hydrodynamic results of the numer-
ical simulation are discussed in Section 4.2 with the scalar transfer results
discussed in Section 4.3. At last the comparisons between the flow field and
scalar field are made in Section 4.4.

4.1 Numerical Parameters

A summary of the major parameters of the simulation and an overview of
the relation between different types of Reynolds numbers and downstream
positions are listed in Tables 4.1 and 4.2. The variation of Reδ∗ and Reθ

with Rex is shown in Figure 4.1. Note that, at the inlet, the flow is still
laminar.
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Rex at inlet (x = 0) 68450
Reδ∗ at inlet (x = 0) 450
Reθ at inlet (x = 0) 175

Reδ99 at inlet (x = 0) 46

xL (with fringe region) 750
yL 40
zL 34

fringe start xstart 660
fringe end xend 750

fringe strength λmax 1.0
∆rise 50
∆fall 15

start of blending -90
blending length 75

number of grid points in x (Nx) 1024
number of grid points in y (Ny) 289
number of grid points in z (Nz) 128

Table 4.1: Parameters for the direct numerical simulation.

x Rex Reδ∗ Reθ Reδ99

0 68450 450 175 46
100 113450 537 341 160
150 135950 617 396 180
200 158450 704 455 197
250 180950 788 515 218
300 203450 871 571 236
350 225950 950 628 256
400 248450 1024 680 271
450 270950 1094 728 282
500 293450 1164 779 303
550 315950 1234 830 316
600 338450 1286 867 327

Table 4.2: Various Reynolds numbers with respect to the downstream lo-
cations. x denotes the non-dimensional streamwise positions. Rex, Reδ∗

and Reθ are the Reynolds numbers based on x, displacement thickness δ∗,
momentum thickness θ and free-stream velocity U∞ while Reδ99 is based on
the 99% of the boundary layer thickness δ99 and local friction velocity uτ .

4.2 Hydrodynamic Results

The hydrodynamic results obtained from the DNS are shown in this section.
In general, the agreements with other simulation and experimental results
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Figure 4.1: Reynolds number based on displacement Reδ∗ and momentum
thickness Reθ versus Reynolds number based on downstream positions Rex.

Reδ∗ , Reθ.

are exceptional for most of the quantities.

4.2.1 Mean flow results
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Figure 4.2: Mean streamwise velocity profile at different downstream posi-
tions. at Reθ = 396, at Reθ = 628, at Reθ = 830, Log-
law. (a) Inner scaling, (b) Outer scaling.

In Figure 4.2, the mean streamwise velocity profiles at several down-
stream positions are plotted in inner and outer scaling, respectively. For
inner scaling the mean streamwise velocity 〈u〉 is scaled by uτ and the wall-
normal distance y is scaled by ν

uτ
where ν is the kinematic viscosity and uτ

is the friction velocity defined by equation (2.48). For the outer scaling, the
mean streamwise velocity 〈u〉 is scaled by U∞ and the wall-normal distance
y is scaled by δ∗ where U∞ is the free-stream velocity and δ∗ the local dis-
placement thickness. From Figure 4.2 (a), we see that inside the viscous

29



sub-layer, the calculated mean velocity profile follows the relation of

u+ = y+ (4.1)

fairly well and the final station profile compares well with the classical log-
law

u+ =
1

κ
ln y+ + A , (4.2)

where κ = 0.41 and A = 5.2 (Pope, 2000), and the wake region is apparent.
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Figure 4.3: Comparison of the mean streamwise velocity 〈u〉 with other
numerical simulations. Present DNS at Reθ = 670, ◦ Spalart (1988)
at Reθ = 670, ∗ Komminaho and Skote (2002) at Reθ = 666, 2 Moser et al.
(1999) at Reτ = 590, Log-law.

Figure 4.3 compares the mean streamwise velocity profile with other DNS
data from Spalart (1988), Komminaho and Skote (2002) and Moser et al.
(1999). The agreement between the current simulation and other DNS is
very good.

Note that the mean velocity profiles rise steeply from the wall and then
become flatter away from the wall. This “flatness” of the mean velocity
profiles is quantified by the shape factor H12, which is defined by

H12 =
δ∗

θ
=

δ1

δ2

, (4.3)

where δ∗ is the displacement thickness and θ the momentum thickness. They
are also denoted as δ1 and δ2, respectively and defined by

δ∗ ≡ δ1 =

∫ ∞

0

(

1 − 〈u〉
U∞

)

dy (4.4)

and

θ ≡ δ2 =

∫ ∞

0

〈u〉
U∞

(

1 − 〈u〉
U∞

)

dy , (4.5)
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respectively. These two quantities are different measures of the boundary
layer thickness in a similar way as the 99% boundary layer thickness. For
the laminar Blasius boundary layer profile the shape factor H12 = 2.59 and
H12 = 1.38 for a fully developed turbulent boundary layer flow at high Re
(Purtell et al., 1981).
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Figure 4.4: Variation of the shape factor with the downstream positions.
Present DNS, ◦ Roach and Brierley (1992).

In Figure 4.4, the variation of H12 with downstream positions is shown
as well as the experimental results from Roach and Brierley (1992). A slowly
decrease of H12 with the increase of Reynolds number in the turbulent region
is observed. The agreement with the experimental data is only good in the
fully turbulent region since the experiment was set up to examine the bypass
transition in a boundary layer under the influence of free-stream turbulence.

In addition, the profiles of 99% boundary layer thickness as well as the
displacement thickness δ1 and the momentum thickness δ2 are shown in
Figure 4.5.
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Figure 4.5: Different measures of the boundary layer thickness ver-
sus the downstream positions. (a) 99% boundary layer thickness δ99,
(b) displacement thickness δ1, momentum thickness δ2.
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The evolution of the skin friction coefficient cf is shown in Figure 4.6.
The computed skin friction shows laminar, transient and turbulent be-
haviours. An overshoot of the peak is observed which was also reported
by previous studies, see e.g. Rai and Moin (1993) or Gilbert and Kleiser
(1991). The overshoot has been observed in the coarse resolution simulation
of the current case, but slightly diminished as the resolution was increased,
which is consistent with the general behaviour of spectral methods applied
to transitional flows.
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Figure 4.6: Skin friction coefficient cf versus the Reynolds number.
Present DNS, Kays and Crawford (1993), Schoenherr (1932),

Smits et al. (1983).

In Figure 4.6, the lower dashed line is the theoretical laminar skin friction
solution. The upper dashed line is the turbulent solution given by Kays and
Crawford (1993) which is

cf = 0.025Re
− 1

4

θ . (4.6)

Empirical formulas from Schoenherr (1932) and Smits et al. (1983), which
read

cf = 0.31
(

ln2(2Reθ) + 2 ln(2Reθ)
)−1

(4.7)

and

cf = 0.024Re
− 1

4

θ , (4.8)

are also included for comparison. All the solutions collapse with our DNS
result very well except the power-law approximation suggested by Kays and
Crawford (1993) which is usually valid for high Reynolds number turbulent
boundary layer flow, therefore predicts a higher cf than the present case.

The free-stream velocity U∞ and a parameter β related to the pressure
gradient defined as

β =
δ∗

τw

dp

dx
, (4.9)
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where δ∗ is the displacement thickness and τw is the shear stress at the wall,
are shown in Figure 4.7. These quantities indicate some general features of
the flow, i.e. constant free-stream velocity and zero-pressure gradient. The
sharp negative peak in the end of the domain of β is due to the fringe region.
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Figure 4.7: Variation of the free-stream velocity U∞ and β with downstream
positions. (a) Free-stream velocity U∞, (b) β.

4.2.2 Turbulent statistics

The root-mean-square (RMS) values of the velocity and pressure fluctua-
tions and Reynolds shear stress normalised by the friction velocity uτ are
shown in Figure 4.8. The wall-normal distance y is normalised by the viscous
scale ν

uτ
. The peak RMS values of all the three components of the veloc-

ity, pressure fluctuations and Reynolds shear stress increase with a higher
Reynolds number. In particular, the increase for the wall-normal and the
spanwise components, vrms and wrms, are more significant compared to that
of the streamwise component urms. This is in agreement with the previous
study by Moser et al. (1999). The peak value of the Reynolds shear stress
−〈u′v′〉 also increases and the peak position moves away from the wall with
the increase of the Reynolds number. Apparently, the RMS of the veloc-
ity fluctuations are more sensitive to the Reynolds number than the mean
quantities. In fact, according to Moser et al. (1999), even the wall limiting
behaviour of the RMS profiles vary with different Reynolds number. This
is clearly shown in the case of the prms in Figure 4.8 (e). The present hight
of the box in viscous units is about 900, so there is not upper boundary
influence.

The RMS values of the velocity and pressure fluctuations and Reynolds
shear stress normalised by the free-stream velocity U∞ are shown in Figure
4.9. The wall-normal distance y is normalised by the outer scale δ∗. Opposite
behaviours compared to Figure 4.8 are observed. The peak values of the
RMS of the velocity components and the shear stress decrease with a higher
Reynolds number as well as the peak positions move towards the wall. In the

33



 y+

 u
rm

s
+

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

 y+

 v
rm

s
+

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2(a) (b)

 y+

 w
rm

s
+

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

 y+
 −

<
u

’v
’>

+
0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(c) (d)

 y+

 p
rm

s
+

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3(e)

Figure 4.8: RMS values of the velocity, pressure fluctuations and Reynolds
shear stress versus downstream positions in inner scaling. at Reθ =
396, at Reθ = 628, at Reθ = 830. (a) urms, (b) vrms, (c) wrms, (d)
−〈u′v′〉, (e) prms.

outer region, for each quantity, all the profiles at different Reynolds number
collapse with each other.

4.2.3 Vorticity fluctuations

Figure 4.10 shows the profiles of the non-dimensional RMS values of the

vorticity fluctuations, i.e. normalised by the viscous scale u2
τ

ν
. The stream-

wise component has its maximum at the wall and in addition, displays a
local maximum at y+ ≈ 20. Almost at the same location, the peak value of
the wall-normal component is located. However, the spanwise component
of the RMS value of the vorticity fluctuation decreases monotonically from
the wall. It is also noted that although the different components behave
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Figure 4.9: RMS values of the velocity, pressure fluctuations and Reynolds
shear stress versus downstream positions in outer scaling. at Reθ =
396, at Reθ = 628, at Reθ = 830. (a) urms, (b) vrms, (c) wrms, (d)
−〈u′v′〉, (e) prms.

differently in the near wall region, away from the wall, i.e. y+ > 40, they
are almost identical. This is in contrast to the RMS values of the velocity
fluctuations shown in Figure 4.8. According to Moin and Kim (1982), the
different behaviours lie in that the relative contribution of small scales to
vorticity fluctuations is significantly larger than their contribution to veloc-
ity fluctuations and away from the wall the small scales tend to be isotropic.

Figure 4.11 shows the dependence of the RMS values of the vorticity
fluctuations on the Reynolds number. In the near wall region, the RMS
values of the streamwise and spanwise vorticity fluctuations decrease with
the increase of the Reynolds number. The wall-normal vorticity fluctuation,
however, tends to become independent of the Reynolds number in the near
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wall region as reported by Antonia and Kim (1994). The invariance of the
wall-normal component ω′+

y with Reynolds number is consistent with the
invariance of the streak spacing in wall units.
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Figure 4.11: RMS values of the vorticity fluctuations with varying Reynolds
number. at Reθ = 396, at Reθ = 628, at Reθ = 830.

4.2.4 Reynolds stress budget

One main advantage of DNS is to compute the various terms in the budgets
of the turbulent transport equations that are difficult to measure. The
budget data obtained by DNS gives detailed information to evaluate the
turbulence models and is of great help to develop new turbulence modelling
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approaches (Mansour et al., 1988).
The Reynolds stress equation written in a concise way is

D̄Rij

D̄t
≡ ∂Rij

∂t
+ 〈ul〉

∂Rij

∂xl
= Pij − εij + Cij + Dij + Tij , (4.10)

where Rij is the Reynolds stress tensor, Pij is the production term, εij

is the viscous dissipation rate tensor, Cij is the velocity pressure-gradient
correlation term and can be split into two terms, namely Πij the pressure
strain term and Gij the pressure diffusion term. Tij is the turbulent diffusion
term and Dij is the molecular diffusion term. These terms are defined by
equation (2.10). Note that in the present study, all the terms appearing in
the budgets are explicitly evaluated. The residuals of the individual budgets
are of the order 10−3 to 10−2 in viscous scaling.
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Figure 4.12: Reynolds stress budgets. Production, Dissipation,
Turbulent diffusion, Velocity pressure diffusion, + Molecular dif-

fusion, ∗ Mean convection. (a) Streamwise Reynolds stress R11, (b) wall-
normal Reynolds stress R22, (c) Spanwise Reynolds stress R33, (d) Reynolds
shear stress R12.

Figure 4.12 shows the various budget terms of the Reynolds stresses as
functions of the wall-normal distance y+ = yuτ

ν
, where uτ is the friction

velocity, ν is the kinematic viscosity. All the quantities are in wall units,

i.e. non-dimensionalized by u4
τ

ν
. The budgets for the Reynolds stresses are

essentially the same as in Spalart (1988) for a zero-pressure gradient (ZPG)
boundary layer. Note that, as opposed to Spalart (1988), in the present
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DNS a spatially developing boundary layer is considered, i.e. the mean con-
vection terms are non-zero. In most of the budget plots, the production and
dissipation terms are the dominant terms. The contribution of the mean
convection term is negligible near the wall and only becomes noticeable in
the outer region of the boundary layer, i.e. y > 0.5δ99. Conversely, the
viscous diffusion term carries sufficient energy to balance the viscous dissi-
pation in the immediate neighbourhood of the wall where the production
is small. As expected, the near wall behaviour is similar to the shape and
magnitude that observed in a channel flow by Moin and Kim (1982) and
Couette flow by Komminaho and Skote (2002).

The streamwise Reynolds stress 〈u′u′〉 budget plotted in Figure 4.12 (a)
shows that the production term P11 is the dominant positive term in the
range y+ > 5, and has a maximum of 0.5 in the buffer region at y+ = 11,
then falls to 0.1 at y+ = 50. The location of the peak production were
also found experimentally to be y+ ≈ 11 in channel and pipe flow by Sahay
and Sreenivasan (1999). Moreover, the production almost balances with
the dissipation and the velocity pressure-gradient correlation terms. For
the wall-normal Reynolds stress 〈v′v′〉 and spanwise Reynolds stress 〈w′w′〉
budgets which are shown in Figure 4.12 (b) and (c), respectively, the velocity
pressure-gradient correlation and dissipation terms are dominant rather than
the production terms. For the Reynolds shear stress 〈u′v′〉 budget shown in
Figure 4.12 (d), the production and the velocity pressure-gradient correlation
terms are important. The other two shear stress budgets are not shown since
the different terms in those budgets are just varying around zero.
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A comparison of the budget for the turbulent kinetic energy k = 1
2
〈u′

iu
′
i〉

with the DNS data from Spalart (1988) is shown in Figure 4.13. The
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Reynolds number based on the momentum thickness for both cases is 670.
From the plots we see that the agreement between both the DNS data is
very good.

An investigation of the dependence on the Reynolds number of Rii (no
summation) and R12 is plotted in Figure 4.14. All the components increase
with higher Reynolds number. Especially, for the streamwise component
R11, the wall values of the dissipation and molecular diffusion increase ap-
preciably towards large Reynolds number.
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Figure 4.14: Reynolds stress budgets compared at different Reynolds num-
bers. at Reθ = 396, at Reθ = 628, at Reθ = 830. (a) Stream-
wise component R11, (b) Wall-normal component R22, (c) Spanwise compo-
nent R33, (d)Shear component R12.

Pressure strain correlation

The pressure strain terms Πij and pressure diffusion term Gij are actually
split from the velocity pressure-gradient term Cij

Cij = Πij + Gij . (4.11)

It is well known that the pressure strain terms Πij play a significant role
in the energy redistribution. The profiles of the diagonal elements of Πij

as well as an enlargement in the near wall region are shown in Figure 4.15.
DNS data from Moser et al. (1999) is also included for comparison. These
three terms are responsible for the exchange of the energy between the three
components of the turbulent kinetic energy (Hinze, 1975). A positive sign of
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Πii (no summation) indicates an energy gain from other components whereas
a negative sign denotes an energy loss. Very close to the wall, one can find
that almost all the energy is transferred from the wall-normal component Π22

to the horizontal components Π11 and Π33. This phenomenon was observed
by Daly and Harlow (1970) and later termed by Moin and Kim (1982) as
the splatting or impingement effect. The splatting effect is an important
property of the flow in the vicinity of the wall and should be taken into
account in the modelling of the near wall turbulence (Moin and Kim, 1982).
For more discussions about the split about the pressure velocity gradient
terms, see e.g. Mansour et al. (1988).
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Figure 4.15: Pressure strain correlation terms versus the wall-normal dis-
tance at Reθ = 670. Streamwise component Π11, Wall-normal
component Π22, Spanwise component Π33, 2 Moser et al. (1999) at
Reτ = 590.

4.2.5 Reynolds stress anisotropy

The Reynolds stress anisotropy tensor is defined by

aij =
Rij

k
− 2

3
δij , (4.12)

where Rij is the Reynolds stress tensor, k is the turbulent kinetic energy
and δij is the Kronecker delta. The Reynolds stress anisotropy tensor aij

has zero trace, i.e. aii = 0, and thus two non-zero invariants, IIa and IIIa.
They are defined by

IIa = aijaji (4.13)

and
IIIa = aijajkaki . (4.14)

As described by Lumley and Newman (1977), all anisotropic states can
be characterised by these two invariants and represented in the so-called
anisotropy invariant map (AIM) which is bounded by the lines 8/9 + IIIa =
IIa and 6III2a = II3a. These lines represent two-component and axisymmetric
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turbulence, respectively. Sometimes it is convenient to replace IIa and IIIa
by another two independent variables η and ζ defined by

6η2 = −2IIa (4.15)

and
6ζ3 = 3IIIa . (4.16)

The AIM path for the boundary layer flow of different wall-normal po-
sitions at Reθ = 830 is shown in Figure 4.16. The present case is very
similar to the results of boundary layer flow and Couette flow by Kommi-
naho and Skote (2002). Close to the wall the turbulence is very near the
two-component limit, approaching the one-component limit near the edge
of the viscous sub-layer at y+ ≈ 7 and then the AIM path turns towards the
isotropic state. There is some agglomeration of points at y+ ≈ 150 which in-
dicates the log region and is also observed by Komminaho and Skote (2002).
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Figure 4.16: AIM at Reθ = 830 versus wall-normal positions.

4.2.6 Higher order statistics

The skewness and flatness factors for a statistically stationary variable
a(x, y, z, t) are defined as

S(a) =
〈a′3〉
〈a′2〉 3

2

(4.17)

and

F (a) =
〈a′4〉
〈a′2〉2 . (4.18)

The skewness indicates the relative extent of negative and positive fluctua-
tions about the mean value. If S(a) > 0, the positive fluctuations dominate
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while the negative fluctuations dominate if S(a) < 0. The flatness deter-
mines the extent of symmetric but remote deviations from the mean. For
a quantity which has a Gaussian distribution, the skewness and flatness are
0 and 3, respectively. The velocity and pressure skewness and flatness fac-
tors in the near wall region compared with the simulation by Moser et al.
(1999) are plotted in Figures 4.17 and 4.18. As seen from Figure 4.17,
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Figure 4.17: Skewness factor distributions of the velocities and pressure at
Reθ = 830. DNS, 2 Moser et al. (1999) at Reτ = 590. (a) S(u), (b)
S(v), (c) S(w), (d) S(p).

all the skewness factor distributions except S(w) and S(p) are in very good
agreement in the near wall region with Moser et al. (1999). Moreover, the
present DNS predicts lower values at the wall than those from Moser et al.
(1999) for the computed flatness of all the velocity components. Especially,
for the flatness of the wall-normal velocity, the present DNS result is about
15, while the one from Moser et al. (1999) is about 40. For the flatness
of the wall-normal velocity component see also the discussion in Durst and
Beronov (2003). For the flatness factor of the pressure fluctuation at the
wall, Kim (1989) reported 5.0, Schewe (1983) reported 4.9 while the present
DNS is 4.7.

The velocity and pressure skewness and flatness factors as a function of
the wall-normal distance are shown in Figure 4.19. The skewness and flat-
ness factors of a Gaussian distribution are also included for reference. All the
skewness factors deviate from those values of a Gaussian distribution except
the spanwise velocity component. For the flatness factor distributions, all
the velocity components and pressure reach their maxima at the wall which
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Figure 4.18: Flatness factor distributions of the velocities and pressure at
Reθ = 830. DNS, 2 Moser et al. (1999) at Reτ = 590. (a) F (u), (b)
F (v), (c) F (w), (d) F (p).
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Figure 4.19: Skewness and flatness factor distributions of the velocities and
pressure at Reθ = 830. Streamwise velocity, wall-normal velocity,

Spanwise velocity, + Pressure, Gaussian distribution. (a) Skewness
factor, (b)Flatness factor.

means the turbulence in the vicinity of the wall is highly intermittent. Away
from the wall, the pressure flatness is significantly higher than those of the
velocity fluctuations which implies in the outer region of the boundary layer
the pressure is more intermittent and can also be shown by the probability
density function of these quantities. A similar behaviour of the pressure in
the channel flow is reported by Kim et al. (1987).

From Figure 4.19, we also observe that there exist very high peaks near
the boundary layer edge at y+ ≈ 350 of the skewness and flatness factors
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for all the velocities and pressure components which are not present in the
channel flow simulation. These high peaks are also observed in an experi-
mental study in a turbulent boundary layer flow by Österlund and Johansson
(1999). These are clearly related to the structure of the outer boundary layer
edge, i.e. intermittency of the wake region. Outside the boundary layer, all
the skewness and flatness factors decrease rapidly toward the values of 0
and 3, respectively. This is consistent with the Gaussian character in the
free-stream.

4.2.7 Turbulent structure of the flow fields

Moin and Kim (1982) investigated the organised structure associated with
wall-bounded flows. But due to the coarse mesh used in the computation,
some quantitative structure such as the streak spacing in the wall region
was not consistent with the experiments. In the present simulation, we have
a sufficient grid resolution, ∆z+ ≈ 6.3, to capture the formation of the near
wall streak.

The spanwise two-point correlation coefficient of a statistically stationary
variable a(x, y, z, t) is defined by

Raa(x, y,∆z, t) =
〈a′(x, y, z, t)a′(x, y, z + ∆z, t)〉

〈a′(x, y, z, t)2〉 , (4.19)

where ∆z is the spanwise separation. The spanwise two-point correlations
for the three velocity components and pressure at y+ = 4.9 are plotted in
Figure 4.20. For each of the velocity correlations, a minimum is observed.
The streamwise correlation Ruu first becomes negative and reaches a min-
imum at ∆z+ ≈ 60. The magnitude of this minimum first increases with
increasing wall-normal distance, and then reaches a maximum at the wall-
normal position where the urms has a maximum. Afterwards, it will decrease
until it disappears in the free-stream (not shown here). The separation at
which the minimum occurs is an estimate of the distance between a high
speed streak and a low speed streak, so the mean spacing of streaks should
be roughly twice this distance. The presence of the minimum of Rvv at
∆z+ ≈ 25 is consistent with the numerical results of Kim et al. (1987). This
separation is a measure of the mean diameter of the streamwise vortices in
the near wall region. The minimum of Rww appears at ∆z+ ≈ 60 and indi-
cates the existence of the counter-rotating vortex pairs. According to Kim
et al. (1987), the minimum of Rww does not exist for y+ > 30 and is more
likely due to the splatting effect which is also true for the present DNS. One
interesting thing is that the spanwise two-point correlation coefficient of the
pressure does not have the negative excursion which is also observed by Kim
(1989).

Figure 4.21 shows the dependence of the spanwise two-point correlation
coefficients of the streamwise velocity fluctuation on various downstream
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Figure 4.20: Spanwise two-point correlation coefficients of the velocity and
pressure fluctuations at y+ = 4.9 with Reθ = 830. Ruu, Rvv,

Rww, Rpp.
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Figure 4.21: Spanwise two-point correlation coefficients of the streamwise
velocity fluctuation with varying Reynolds numbers. at Reθ = 628,

at Reθ = 728, at Reθ = 830.

positions. It is interesting to note that the first minimum becomes less
prominent as the Reynolds number increases. This is due to the fact that the
streamwise streaks are clustered for a higher Reynolds number as reported
by Abe et al. (2001). We also found that the mean streak spacing was
increasing as departing from the wall.

The present low-speed streak spacing shown in Figure 4.22 predicts a
larger value than those experimental data of turbulent boundary layer flow
by Smith and Metzler (1983), Westin et al. (1994) and DNS data of turbulent
channel flow by Kim et al. (1987). This can possibly be explained by the
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Figure 4.22: Variation of the mean spanwise steak spacings with varying
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present choice of the spanwise domain size which is a little bit small, i.e.
about z+ ≈ 750.
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Figure 4.23: Comparison of the spanwise two-point correlation coefficients
of the velocity and pressure fluctuations with other simulation. at
y+ = 4.9 with Reθ = 830, at y+ = 14.5 with Reθ = 830, ◦ Iwamoto
(2002) at Reτ = 645. (a) Ruu, (b) Rvv, (c) Rww, (d) Rpp.

A comparison with the DNS data from Iwamoto (2002) with Reτ = 645
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at y+ ≈ 5 and 15 is displayed in Figure 4.23. Due to the difference between
the Reynolds numbers, the first minimum of Ruu and Rww become less
prominent as mentioned earlier. However, one interesting thing is that the
wall-normal component Rvv seems to be Reynolds number independent.

4.2.8 Probability density functions

A different perspective on the characteristics of the fluctuations of one or
more variables is provided by the probability density function (PDF). The
PDF distributions of the velocity and pressure fluctuations at various wall-
normal positions, ranging from y+ = 5 in the viscous sub-layer to y+ = 500
in the free-stream, are shown in Figures 4.24 to 4.27. A Gaussian distri-
bution with zero mean and matching variance is also shown as a reference.
The velocity and pressure fluctuations are normalised by the corresponding
RMS values, and the probability density distributions are normalised in such
a way that the area under each curve is unity.

The PDF of the streamwise velocity fluctuation is positively skewed in
the near wall region, which can also been seen from the skewness factor S(u),
and successively changes to negatively skewed. Very far away from the wall,
e.g. in the free-stream, the PDF of the streamwise velocity fluctuation is
close to the Gaussian distribution. The probability density distribution at
y+ = 4.87 is highly asymmetric where the skewness factor is 0.7. A long
positive tail at this wall-normal position is observed and can be interpreted
as being caused by the sweep motion. At y+ ≈ 15, P (u′) is nearly symmetric
with S(u) ≈ 0. The general shape of P (u′) agrees well with the experiment
study by Zarić (1975) at available wall-normal positions. Conversely, the
PDF of the wall-normal velocity fluctuation is close to the Gaussian distri-
bution in the near wall region, and depart from the Gaussian distribution
far away from the wall which is also reported by Nagano and Tagawa (1988).
However, very close to the wall and at the edge of the boundary layer, the
large F (v′) values lead to more pointy distributions. The PDF of the pres-
sure fluctuation is negatively skewed throughout the boundary layer until
in the free-stream. By comparing these PDF with those of the streamwise
velocity fluctuation, we found that relatively large contributions are from
the high intensity fluctuations, i.e. | p

prms
| > 3. On the other hand, the cor-

responding contribution to the streamwise velocity fluctuation is negligible.
This is also reported by Kim and Lee (1991) in turbulent channel flow.

4.2.9 Quadrant analysis

During the past 50 years, there have been numerous studies of the turbulent
flow field near the wall to investigate the structure of the Reynolds stress
which associated with the turbulence production. Many of the studies show
that the low speed fluid in the region near the wall occasionally erupts
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Figure 4.24: PDF of the streamwise velocity fluctuation u′ at Reθ = 830. (a)
y+ = 1.92, S(u) = 0.90, (b) y+ = 4.87, S(u) = 0.67, (c) y+ = 9.74, S(u) =
0.17, (d) y+ = 29.3, S(u) = −0.33, (e) y+ = 48.7, S(u) = −0.28, (f) y+ =
97.4, S(u) = −0.34, (g) y+ = 292.4, S(u) = −1.84, (h) y+ = 486.7, S(u) =
0.25.

violently into the high speed outer region of the boundary layer. Kline et al.
(1967) and Kim et al. (1971) were among the first to name this process
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Figure 4.25: PDF of the wall-normal velocity fluctuation v′ at Reθ = 830.
(a) y+ = 1.92, S(v) = 0.30, (b) y+ = 4.87, S(v) = 0.08, (c) y+ = 9.74, S(v) =
−0.17, (d) y+ = 29.3, S(v) = −0.06, (e) y+ = 48.7, S(v) = 0.16, (f) y+ =
97.4, S(v) = 0.28, (g) y+ = 292.4, S(v) = 1.16, (h) y+ = 486.7, S(v) = 0.09.

as “bursting” which was later used by Corino and Brodkey (1969), Wallace
et al. (1972), Willmarth and Lu (1972) and Lu and Willmarth (1973) among
others. During a bursting process, as described by Kim et al. (1971), the low
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Figure 4.26: PDF of the spanwise velocity fluctuation w′ at Reθ = 830.
(a) y+ = 1.92, S(w) = −0.10, (b) y+ = 4.87, S(w) = −0.05, (c) y+ =
9.74, S(w) = −0.03, (d) y+ = 29.3, S(w) = 0.07, (e) y+ = 48.7, S(w) =
−0.01, (f) y+ = 97.4, S(w) = 0.03, (g) y+ = 292.4, S(w) = 0.14, (h) y+ =
486.7, S(w) = −0.16.

speed streaks were observed first to lift up slowly away from the wall, then
start a growing oscillation and finally break up into more chaotic motion.
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Figure 4.27: PDF of the pressure fluctuation p′ at Reθ = 830. (a) y+ =
0, S(p) = 0.01, (b) y+ = 4.87, S(p) = −0.06, (c) y+ = 9.74, S(p) = −0.26,
(d) y+ = 29.3, S(p) = −0.48, (e) y+ = 48.7, S(p) = −0.51, (f) y+ =
97.4, S(p) = −0.48, (g) y+ = 292.4, S(p) = −1.13, (h) y+ = 486.7, S(p) =
−0.07.

Some of the insights into boundary layer structure gained from DNS are
summarized in the paper by Robinson (1991).
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The quadrant analysis is one of the various structures detection tech-
niques which provides detailed information about the contributions to the
total production from various events occurring in the flow and has been no-
tably used, e.g. by Rajagopalan and Antonia (1982), Alfredsson and Johans-
son (1984) and Wark and Nagib (1991). The analysis divides the Reynolds
shear stress into four categories according to the signs of u′ and v′. The first
quadrant, u′ > 0 and v′ > 0, contains outward motion of high speed fluids;
the second quadrant, u′ < 0 and v′ > 0, contains the motion associated
with the ejections of the low speed fluids moving from the wall; the third
quadrant, u′ < 0 and v′ < 0, contains wall-ward motion of low speed fluids;
the fourth quadrant, u′ > 0 and v′ < 0, contains the motion associated with
the sweep events of the high speed fluids moving towards the wall. Thus the
first and third quadrant contribute to the negative production, i.e. positive
Reynolds stress, while the second and fourth quadrant contribute to the
positive production, i.e. negative Reynolds stress. Table 4.2.9 summarises
the signs of the u′, v′ and u′v′ and associated types of motion described
above. Both Kim et al. (1971) and Corino and Brodkey (1969) agree that
the bursting phenomenon is an important process for the Reynolds stress
and thus the turbulent energy production. The largest contributions to

quadrant sign of u′ sign of v′ sign of u′v′ type of motion

1 + + + Interaction(outward)
2 - + - Ejection
3 - - + Interaction(wall-ward)
4 + - - Sweep

Table 4.3: Classification of the fluid motion in (u, v)-plane.

the Reynolds stress are either from the ejection or the sweep events and
this can be seen from the Figure 4.28 which shows the contribution to the
Reynolds stress from each quadrant as a function of the non-dimensional
wall-normal distance. The Reynolds shear stress are normalised by the local
mean shear stress 〈u′v′〉. The present results are in good agreement with the
simulation by Kim et al. (1987). At y+ ≈ 12, usually associated with the
maximum production of the turbulent kinetic energy, the contribution from
the ejection motion equals that from the sweep motion and is about 60%
of the 〈u′v′〉. The present data is slightly different from the experimental
results obtained by Wallace et al. (1972) where they have the contribution
from the ejection motion and sweep motion equals at y+ ≈ 15 and is about
70% of the 〈u′v′〉. Departure from the balance point, y+ ≈ 12, the sweep
motion appears to be more dominant closer to the wall while the ejection
motion more important away from the wall. As reported by Willmarth and
Lu (1972), at y+ = 30, the contribution from the ejection motion is 85%
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larger than the sweep motion. However, for the present case, it is only about
35% larger. The difference might lie in the high Reynolds number of the
experiments by Willmarth and Lu (1972). The contributions from the other
two types of motion, namely outward interaction and wall-ward interaction,
are approximately equal through the entire boundary layer. At y+ ≈ 20, the
contributions from outward interaction and wall-ward interaction are equal.
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Figure 4.29: Fractional contribution to Reynolds shear stress 〈u′v′〉 as a func-
tion of threshold H. Ejection motion, Sweep motion, Outward
motion, Wall-ward motion.

Fractional contributions from the four quadrants to the total Reynolds
shear stress above a certain threshold value H at y+ = 50 is shown in Figure
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4.29. The purpose of using the threshold value is to single out the large
contribution to 〈u′v′〉. The contributions that remain in the (u, v) plane are
the ones that occur outside a certain region bounded by four hyperbolae,

|u′v′|
urmsvrms

< H, in each quadrant.

4.3 Scalar Transport Results

Five different scalars (see Table 4.4) with either different boundary condi-
tions or Prandtl numbers are simulated. Results are shown by comparing
either different Prandtl numbers or different boundary conditions with the
variation of the downstream positions. Note that all the scalars are trans-
formed from θ to 1 − θ to simulate a cooling wall.

scalar boundary condition Pr

θ1 isothermal 0.2
θ2 isothermal 0.71
θ3 isoflux 0.71
θ4 isothermal 2.0
θ5 isoflux 2.0

Table 4.4: List of the different scalars with either different boundary condi-
tions or Prandtl numbers.

4.3.1 Reynolds’ analogy

For a fluid with Pr = 1 such that the kinematic viscosity for the momentum
transfer equals the molecular diffusivity of the scalar transfer, the boundary
layer governing equations (2.6) and (2.27) become identical for the mean
velocity and the mean scalar. Thus the solutions to the boundary value
problems for 〈u〉 and 〈θ〉 must be equivalent which requires the wall-normal
derivatives at the wall are the same after appropriate non-dimensionalisation

∂〈u〉
∂y

=
∂〈θ〉
∂y

. (4.20)

Expressed in non-dimensional form, it is

St =
cf

2
, (4.21)

where St is the Stanton number, see definition in equation (4.27), and cf

is the skin friction coefficient. According to Cebeci and Bradshaw (1984),
although the analogy between the momentum transfer and scalar transfer
is not exact, it is frequently close enough for a dimensionless quantity of
the scalar field to be equated to the corresponding one in the flow field
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by multiplying with an “analogy factor”. The most common factor is the
Reynolds analogy factor defined by the ratio of the Stanton number to half
of the skin friction coefficient. For the case of Pr = 1, the Reynolds’ analogy
factor 2St

cf
is unit.

4.3.2 Mean scalar results

The five mean scalar profiles normalised by the friction scalar θτ , which is
defined by equation (2.58), are shown in Figure 4.30. As expected, these
profiles look very similar to the streamwise velocity profile shown in Figure
4.2. The logarithmic region is not that clear for θ1 as shown in Figure 4.30
(a). If the Pr number is even lower, the logarithmic region will not exist due
to the thickening of the conductive sub-layer (Kasagi and Ohtsubo, 1993).
An increase of the mean scalar value with the increasing Prandtl number
is clearly observed which indicates that the scalar boundary layer thickens
with the decreasing Prandtl number.

The mean profile of θ2, i.e. isothermal boundary condition and Pr =
0.71, together with the empirical formula suggested by Kader (1981) and
DNS results by Kawamura et al. (1998) is plotted in Figure 4.31. Inside the
conductive sub-layer, the calculated mean scalar profile follows the relation
of

θ+ = Pry+ (4.22)

fairly well. In the log region, all the profiles collapse with the log-law

θ+ = 2.195 ln y+ + 13.2Pr − 5.66 (4.23)

suggested by Bejan (1995). The formula suggested by Kader (1981) reads

θ+ = Pry+ exp(−Γ)+

{

2.12 ln

[

(1 + y+)
2.5(2 − y

δ
)

1 + 4(1 − y
δ
)2

]

+ β(Pr)

}

exp(− 1

Γ
) ,

(4.24)
where

Γ =
10−2(Pry+)4

1 + 5Pr3y+
(4.25)

and
β(Pr) = (3.85Pr

1

3 − 1.3)2 + 2.12 lnPr , (4.26)

where δ is the 99% boundary layer thickness. Kader (1981) proposed this
formula after investigating several experimental data. This formula is shown
to be a function of the molecular Prandtl number Pr, Reynolds number Re
as well as the boundary layer thickness δ. As shown in the figure, the
agreement between the computed results and Kader’s formula is very good.
The mean scalar profile also agrees with the DNS results from Kawamura
et al. (1998) very well in spite of the different boundary conditions. This
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Figure 4.30: Mean scalar profiles at different downstream positions. at
Reθ = 396, at Reθ = 628, at Reθ = 830. (a) θ1, (b) θ2, (c) θ3, (d)
θ4, (e) θ5.

verifies the previous findings by Tiselj et al. (2001b) that the boundary
condition for scalar does not affect the mean scalar profile.

The Stanton number St for a scalar boundary layer is analogous to
the skin friction coefficient for a momentum boundary layer. This non-
dimensional scalar transfer coefficient is defined by

St =
qw

ρU∞Cp(θw − θ∞)
, (4.27)

where qw is the rate of the scalar transfer from the wall to the flow, ρ is
the density of the fluid, U∞ is the free-stream velocity, Cp is the specific
scalar, θw and θ∞ are the scalar concentrations at the wall and in the free-
stream, respectively. The variation of the Stanton number with different
downstream positions is shown in Figure 4.32. The lower and upper dashed
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Figure 4.31: Mean scalar profile compared with other numerical simulation
and empirical data. θ2 at Reθ = 830, Log-law, ∗ Kader (1981),
3 Kawamura et al. (1998) at Reτ = 395.

lines are the laminar and modified form of the turbulent solutions suggested
by Kays and Crawford (1993).

It is not surprising that the Stanton number profiles look very similar to
the one of the skin friction coefficient, see Figure 4.6, for the isothermal case.
An overshoot is also observed in each plot. However, for the isoflux boundary
condition, one interesting thing is found that the overshoot vanishes.

Another important parameter in scalar transfer is the turbulent Prandtl
number Prt. The turbulent Prandtl number plays an important role in the
prediction of the near wall scalar transfer using turbulence models and is
defined as the ratio of the turbulent eddy viscosity νt to the eddy diffusivity
αt,

Prt =
νt

αt
, (4.28)

where νt and αt are defined by (strictly only for parallel flows)

νt = −〈u′v′〉
∂〈u〉
∂y

(4.29)

and

αt = −〈v′θ′〉
∂〈θ〉
∂y

. (4.30)

The Reynolds’ analogy is the simplest model for the turbulent Prandtl num-
ber since it leads to the equivalence of the eddy viscosity for the momentum
transfer and the eddy diffusivity of the scalar transfer such that the Prt = 1
(Kays and Crawford, 1993).

To analyse the near wall asymptotic behaviour of the turbulent scalar
statistics, we expand the velocity and scalar distributions in Taylor series.
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Figure 4.32: Stanton number St versus the Reynolds number. Present
DNS, Kays and Crawford (1993). (a) θ1, (b) θ2, (c) θ3, (d) θ4, (e) θ5.

Considering the continuity and dynamic equations under the no-slip and
isothermal and isoflux boundary conditions, 〈u〉, u′, v′, 〈θ〉, θ′ are expressed
in the following form (Monin and Yaglom, 1971)

〈u〉 = a1y + a4y
4 + · · · ,

u′ = b1y + b2y
2 + · · · ,

v′ = c2y
2 + c3y

3 + · · · . (4.31)

For an isothermal boundary condition, 〈θ〉, θ′ are expanded as

〈θ〉 = d0 + d1y + d4y
4 + · · · ,

θ′ = e1y + e2y
2 + · · · , (4.32)

while in the case of an isoflux boundary condition, the scalar and its fluctu-
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ation are

〈θ〉 = f0 + f1y + f3y
3 + · · · ,

θ′ = g0 + g1y + g3y
3 + · · · , (4.33)

where the coefficients ai, bi, ci, di, ei, fi and gi (i = 0, 1, 2, . . .) are functions
of x, z and t. Note that the second and third order terms in the mean
velocity vanish together with the first order term in the wall-normal velocity
fluctuation. The second and third order terms in the mean scalar and the
second order term in the scalar fluctuation vanish for an isothermal boundary
condition. On the other hand, only the second order term in the mean scalar
and the scalar fluctuation vanish for an isoflux boundary condition.

From the equations (4.31) and (4.32) the streamwise and wall-normal
scalar fluxes for the isothermal boundary condition are given by

〈u′θ′〉 = b1e1y
2 + · · · ,

〈v′θ′〉 = c2e1y
3 + · · · . (4.34)

On the other hand, for the isoflux boundary condition, the streamwise and
wall-normal scalar fluxes derived using equation (4.31) and (4.33) are

〈u′θ′〉 = b1g0y + · · · ,

〈v′θ′〉 = c2g0y
2 + · · · . (4.35)

Substitution of equation (4.34) and (4.35) into equation (4.29) and (4.30)
yields the relations of Prt for isothermal and isoflux boundary conditions

Prt =
b1c2d1

a1c2e1

+ · · · (4.36)

and

Prt =
b1c2f1

a1c2g0

y + · · · . (4.37)

From the Figure 4.33, it is clear that the limiting behaviours of Prt for
both the isothermal and isoflux boundary conditions are well predicted in
the present DNS. The variation of Prt at Reθ = 830 with the wall-normal
distances is plotted in Figure 4.34. The turbulent Prandtl number is often
assumed to be a constant value which is independent of the wall-normal
distance and the molecular Prandtl number. However, the dependence on
the wall-normal distance and Pr has long been a subject of many investiga-
tions (Kestin and Richardson, 1963; Kader and Yaglom, 1972). Kays (1994)
proposed a correlation for Prt based on several independent experiments. It
showed a rather steep increase as the wall was approached. For the present
DNS, the Prt for the scalars θ2 and θ4 with the isothermal boundary con-
dition approach approximately a constant value of about 1.1 at the wall
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Figure 4.33: Near wall behaviour of the turbulent Prandtl number Prt at
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Figure 4.34: Turbulent Prandtl number Prt versus the wall-normal distance
at Reθ = 830. θ1, θ2, + θ3, θ4, θ5.

which is independent on the molecular Prandtl number. This behaviour is
also reported by many previous studies, e.g. Kong et al. (2000) and Jacobs
and Durbin (2000) for turbulent boundary layer flow and Kim and Moin
(1989) and Kasagi et al. (1992) for fully developed turbulent channel flow.
However, the profile of the scalar θ1 with Pr = 0.2 is different from the
others. The value of the Prt at the wall for θ1 is about 0.95 and increases
from the wall to the peak value of 1.2 at y+ ≈ 45. And throughout the
boundary layer, clear difference with the other profiles can be seen. This
might be a low Pr effect. A similar behaviour was observed by Kasagi and
Ohtsubo (1993) for a channel flow of a much lower Pr of 0.025.

For all the three cases of the isothermal boundary condition considered
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here, the values of the turbulent Prandtl number remain above 1 until y+ ≈
90 − 100, which is larger than the value of y+ ≈ 60 − 70 reported by Kong
et al. (2000), and less than 1 as y+ > 100. On the contrary, the profiles of
the turbulent Prandtl number for the isoflux wall are different from those
of the isothermal wall. In this case, the turbulent Prandtl numbers are zero
at the wall which can be seen from equation (4.37). Far away from the
wall, Figure 4.34 suggests that the distributions of Prt for Pr = 0.71 and
2 with different boundary conditions follow each other closely. This feature
is in accordance with the previous studies by Jischa and Rieke (1979) and
Antonia and Kim (1991).
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Figure 4.35: Comparison of Prt with other DNS data. θ2 at Reθ = 628,
◦ Kasagi et al. (1992) at Reτ = 150, 3 Kawamura et al. (1998) at Reτ = 180.

A comparison of the Prt of θ2 with the DNS data from Kasagi et al.
(1992) and Kawamura et al. (1998) at the same Prandtl number, i.e. Pr =
0.71, is plotted in Figure 4.35. Both these two simulations are channel flow
with the Reynolds numbers being Reτ = 150 and Reτ = 180, respectively.
As seen from the plot, in the near wall region, the agreement with both the
simulations is good.

Similarly as for the flow field, we can also define the corresponding
boundary layer thickness measurements for the scalar field, i.e. the 99%
scalar boundary layer thickness δθ

99, the scalar displacement thickness δθ
1

and the scalar momentum thickness δθ
2. The δθ

99 is defined as

〈θ〉(y = δθ
99) = 0.99θ∞ , (4.38)

while the scalar displacement thickness δθ
1 and the scalar momentum thick-

ness δθ
2 are defined by

δ∗θ ≡ δθ
1 =

∫ ∞

0

(

1 − 〈θ〉 − θw

θ∞ − θw

)

dy (4.39)
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and

θθ ≡ δθ
2 =

∫ ∞

0

〈θ〉 − θw

θ∞ − θw

(

1 − 〈θ〉 − θw

θ∞ − θw

)

dy , (4.40)

where θw and θ∞ are the scalar concentrations at the wall and in the free-
stream, respectively. The profiles of 99% scalar boundary layer thickness
as well as the scalar displacement thickness δθ

1 and the scalar momentum
thickness δθ

2 are shown in Figures 4.36 and 4.37.
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Figure 4.36: Different measures of the scalar boundary layer thickness
versus the downstream positions. Scalar displacement thickness δθ

1,
Scalar momentum thickness δθ

2. (a) θ1, (b) θ2, (c) θ3, (d) θ4, (e) θ5.

4.3.3 Turbulent statistics

The root-mean-square (RMS) values of the scalar fluctuations normalised
by the friction scalar θτ are shown in Figure 4.38. The wall-normal distance
is normalised by ν

uτ
. Note that the RMS values at the walls in Figure 4.38
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Figure 4.37: 99% scalar boundary layer thickness versus the downstream
positions. (a) θ1, (b) θ2, (c) θ3, (d) θ4, (e) θ5.

(c) and (e) are non-zero due to the isoflux boundary condition. A plot of the
wall values of the RMS of the scalar fluctuations for the isoflux boundary
condition is shown in Figure 4.39.

As can be seen from the plot, the wall values of the RMS of the scalar
fluctuations which employed the isoflux boundary conditions are increas-
ing as the Reynolds number is increased. However this is different with a
previous study by Kong et al. (2000) who reported that the wall values of
the RMS of the scalar fluctuations are constant and independent on the
Reynolds number range in their study.

For each scalar of the isothermal boundary condition, the RMS values of
the scalar fluctuations with different Reynolds numbers collapse with each
other for y+ < 10. The peak values increase with an increase of the Reynolds
number. In the outer region, the profiles of the RMS scalar fluctuations
are different from each other owing to the Reynolds number effect. This
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Figure 4.38: RMS values of the scalar fluctuation at different downstream
positions. at Reθ = 396, at Reθ = 628, at Reθ = 830. (a) θ1,
(b) θ2, (c) θ3, (d) θ4, (e) θ5.

behaviour is exactly the same as the RMS value of the streamwise velocity.
The maximum RMS values of the scalar fluctuation increase as the Pr is
increasing, the peak value of the RMS values of the scalar fluctuation at
Pr = 0.2 is about 3 times smaller than that at Pr = 2. It is also observed
that the peak position moves away from the wall as the Prandtl number is
decreased.

A comparison of the RMS values of the scalar fluctuation with different
boundary conditions at Reθ = 628 is plotted in Figure 4.40. Like the profiles
of the turbulent Prandtl number, differences can only be seen in the near
wall region. Far away from the wall the influence of the scalar boundary
conditions is negligible. According to Tiselj et al. (2001a), the influence
ranges of the scalar boundary conditions are at y+ ≈ 15 for Pr = 0.71 and
y+ ≈ 6 − 8 for Pr = 5 − 7. However, the present DNS predict a little bit
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Figure 4.40: Comparison of the RMS values of the scalar fluctuation with
different boundary conditions. θ2, θ3, θ4, θ5.

larger values than those reported by Tiselj et al. (2001a).
The RMS value of θ2 compared with other DNS data from Kasagi et al.

(1992) and Kawamura et al. (1998) is shown in Figure 4.41. The agreement
with the DNS data from Kasagi et al. (1992) is only good very close to the
wall. Very good agreement can be observed with the data from Kawamura
et al. (1998). A higher peak value is obtained by Kawamura et al. (1998)
which is due to the higher Reynolds number. The maximum scalar fluctua-
tion of θ2 occurs at y+ ≈ 18, which is the same as the other two simulations
and also as the same as the one reported by Lu and Hetsroni (1995). This
position is slightly higher than the location of maximum streamwise velocity
fluctuations which is y+ ≈ 14 and consistent with the previous studies by
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Figure 4.41: Comparison of the RMS values of the scalar fluctuation with
other DNS data. θ2 at Reθ = 830, ◦ Kasagi et al. (1992) at Reτ = 150,
3 Kawamura et al. (1998) at Reτ = 395.

Kong et al. (2000) and Kim and Moin (1989).
The wall-normal distribution of the streamwise and wall-normal scalar

fluxes are shown in Figures 4.42 and 4.43. The scalar fluxes are non-
dimensionlised by uτθτ and the wall-normal distance by uτ

ν
. From the plots,

we see that as the Prandtl number is decreased, the turbulent scalar flux
also becomes smaller due to the thickening of the conductive sub-layer. The
wall-normal component is smaller than the streamwise scalar flux by an or-
der of magnitude at Pr = 2. However, as Pr is decreased, the difference
between the streamwise and wall-normal components become smaller. This
is due to the fact that turbulent scalar fluxes are more isotropic when the Pr
is small. This is consistent with the previous study by Kasagi and Ohtsubo
(1993). We also found that the peak position of the scalar flux moves fur-
ther away from the wall when the Prandtl number is smaller and the peak
position value of the streamwise scalar flux is closer to the wall compared
to that of the wall-normal scalar flux. This may be due to the fact that the
wall-normal scalar flux is heavily damped in the near wall region. Again,
the difference due to the different boundary conditions is only significant in
the near wall region.

In addition, by comparing the wall-normal scalar flux of θ2 and the
Reynolds shear stress 〈u′v′〉 one can find that the profiles of these two quan-
tities are almost identical. The similar distributions reveal that they are
likely to be generated by similar mechanisms.
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Figure 4.42: Streamwise and wall-normal scalar flux fluctuations for isother-
mal boundary condition at different downstream positions. at Reθ =
396, at Reθ = 628, at Reθ = 830. (a) θ1, (b) θ2, (c) θ4. (1) Stream-
wise scalar flux, (2) Wall-normal scalar flux.

4.3.4 Scalar flux budget

Figure 4.44 shows the budget for the fluctuating scalar variance kθ, which
is defined by

kθ =
1

2
〈θ′θ′〉 . (4.41)

Each term in the budget equation is normalised by u2
τ θ2

τ

ν
. From the plots we

have seen that the convection term is negligible throughout the boundary
layer. The contribution from the molecular diffusion to the budget is con-
fined near the wall. Although the production and dissipation are two major
terms for all the three Prandtl numbers calculated here, the turbulent and
molecular diffusion terms play a more important role throughout a signifi-
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Figure 4.43: Streamwise and wall-normal scalar flux fluctuations for isoflux
boundary condition at different downstream positions. at Reθ = 396,

at Reθ = 628, at Reθ = 830. (a) θ3, (b) θ5. (1) Streamwise scalar
flux, (2) Wall-normal scalar flux.

cant portion of the boundary layer with increasing Prandtl number. This
is also reported previously by Jacobs and Durbin (2000). For the dominant
terms, the peak values increase and the peak positions move towards the
wall as Pr is increased. As can clearly be seen from the plots, the molecular
diffusion and dissipation terms are strongly influenced by the boundary con-
ditions near the wall which implies that the influence of the scalar boundary
conduction in the near wall region can not be neglected.

A comparison of the fluctuating scalar variance for θ2 is displayed in
Figure 4.45 with the channel DNS data of Kawamura et al. (1998) which is
obtained under the same boundary condition and Pr as the present DNS.
Very good agreement with the DNS data of Kawamura et al. (1998) can be
seen in the near wall region.

The budgets for the streamwise and wall-normal scalar fluxes are shown
in Figures 4.46 and 4.47. For the streamwise scalar flux 〈u′θ′〉 budget, the
production and dissipation terms are dominant in the whole region and the
molecular diffusion term is only noticeable in the near wall region. The
scalar pressure gradient correlation term is small and always lies on the loss
side while the turbulent diffusion term behaves the same as in the budget
for the fluctuating scalar variance.

For the wall-normal scalar flux 〈v′θ′〉 budget, the production term is
negative in this case. It is well known that, in case of the fluid with Pr ≥ 0.7,
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Figure 4.44: Budget for the fluctuating scalar variance at Reθ = 830.
Production, Dissipation, Turbulent diffusion, Velocity

pressure diffusion, + Molecular diffusion, ∗ Mean convection. (a) θ1, (b)
θ2, (c) θ3, (d) θ4, (e) θ5.

the dissipation is negligible because of the isotropy in the dissipation scale.
From the present DNS, it has actually been seen that the dissipation is
negligibly small for Pr = 2.0 except in the vicinity of the wall. Thus, the
production is balanced mainly by the scalar pressure-gradient correlation
term. According to Kawamura et al. (1998), in a low Prandtl number fluid,
the dissipation is dominant because it takes place in eddies of a larger scale.
They reported that the scalar pressure-gradient term is dominant for Pr =
4.0 and 5.0 while the dissipation term is overwhelming for Pr = 0.05. They
also reported that the scalar pressure-gradient and the dissipation terms
become comparable at Pr = 0.2 which is not true for the present DNS. This
might be due to the different types of flow. The spanwise scalar flux budget
is not shown here since each term in the budget is small and just fluctuating
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Figure 4.45: Comparison of the budget of the fluctuating scalar variance with
other DNS data. Production, Dissipation, Turbulent diffusion,

Velocity pressure diffusion, + Molecular diffusion, ∗ Mean convection,
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around zero.
A comparison of the scalar fluxes for θ2 is displayed in Figure 4.48 with

the channel DNS data of Kawamura et al. (1998). Very good agreement
with the DNS data of Kawamura et al. (1998) can be seen in the near wall
region for the streamwise component. For the wall-normal component, a
larger but still insignificant difference is observed. This difference might be
due to the Reynolds number difference and different flow types.

In addition, the budgets of the scalar fluxes 〈u′θ′〉 and 〈v′θ′〉 look very
much like those of the Reynolds stresses 〈u′u′〉 and 〈u′v′〉, respectively for
Pr = 0.71. But this is not true for the present small Prandtl number case,
i.e. Pr = 0.2. At even lower Prandtl number, see e.g. Kasagi and Ohtsubo
(1993) with Pr = 0.025, the budgets profiles look even much more different.

Pressure scalar-gradient correlation

The budget equations for the streamwise and wall-normal scalar fluxes con-
tain terms involving the scalar pressure-gradient correlation Cθi. Like the
velocity pressure-gradient split, the scalar pressure-gradient term can also be
split into a pressure-scalar diffusion term Gθi and a pressure scalar-gradient
term Πθi in the same way as follows

Cθi = Πθi + Gθi . (4.42)

These terms used in the scalar turbulence models are especially important.
Among them, the pressure scalar-gradient term is the dominant one. The
pressure scalar-gradient profiles versus the wall-normal positions at Reθ =
830 are plotted in Figure 4.49.
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Figure 4.46: Budgets of the streamwise and wall-normal scalar flux fluctu-
ations at Reθ = 830 for isothermal boundary condition. Production,

Dissipation, Turbulent diffusion, Scalar pressure diffusion, +
Molecular diffusion, ∗ Mean convection. (a) θ1, (b) θ2, (c) θ4. (1) Streamwise
scalar flux, (2) Wall-normal scalar flux.

Due to the wall boundary conditions, the wall-normal component at
the wall is non-zero for the isothermal boundary condition and zero for the
isoflux boundary condition. The streamwise and the spanwise components
are opposite, i.e. zero at the wall for the isothermal boundary condition and
non-zero for the isoflux boundary condition.

4.3.5 Higher order statistics

The skewness and flatness factors at different downstream positions are
shown in Figures 4.50 and 4.51 for all the different scalars. Far away from
the wall, neither the skewness factors nor the flatness factors are affected
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Figure 4.47: Budgets of the streamwise and wall-normal scalar flux fluc-
tuations at Reθ = 830 for isoflux boundary condition. Production,

Dissipation, Turbulent diffusion, Scalar pressure diffusion, +
Molecular diffusion, ∗ Mean convection. (a) θ3, (b) θ5. (1) Streamwise scalar
flux, (2) Wall-normal scalar flux.
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Figure 4.48: Comparison of the budget of the scalar fluxes with other
DNS data. Production, Dissipation, Turbulent diffusion,

Velocity pressure diffusion, + Molecular diffusion, ∗ Mean convection,
3 Kawamura et al. (1998). (a) 〈u′θ′〉, (b) 〈v′θ′〉.

by the wall boundary conditions. Near the wall, S(θ) behave differently for
different wall boundary conditions. For the isoflux wall, the S(θ) are closer
to 0 which indicates that the scalar fluctuations are more symmetric in the
vicinity of the wall than those of the isothermal wall. For the isothermal
wall, within the sub-layer, S(θ) are positive which is consistent with the
positive values of S(u) and also reported by Antonia and Danh (1977). At
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Figure 4.49: Pressure scalar-gradient correlation terms versus the wall-
normal distance at Reθ = 830. Streamwise component, Wall-
normal component, Spanwise component. (a) θ1, (b) θ2, (c) θ3, (d) θ4,
(e) θ5.

y+ ≈ 20, S(θ2) changes the sign. This wall-normal position is about twice
larger than the one for the streamwise velocity and becomes larger as Pr
decreases. This might be interpreted as that the scalar sub-layer thickness
becomes thicker for smaller Pr.

The flatness factors, F (θ), in the case of the isoflux wall, are almost con-
stant and closer to 3 near the wall. As in the case of an isothermal boundary
condition, F (θ) increase above 3 as the wall is approached. Further away
from the wall, at y+ ≈ 18, F (θ2) appears to reach its lowest value around
2.3 which is not so distinct as that exhibited by F (u). At larger wall-normal
positions, unlike the behaviour of F (u), F (θ2) increases slower towards 3.
One interesting thing is that the wall values of both the S(θ) and F (θ) for
the isothermal boundary condition seem to be Prandtl number independent.
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In the outer region, the skewness and flatness factors for both isothermal
and isoflux wall increase rapidly which indicates the existence of the inter-
mittent region similarly as for the velocity and pressure. The maximum
peak values of S(θ) and F (θ) are much higher than those of the S(u) and
F (u) which is also observed in experiments by Antonia and Danh (1977).
Outside the boundary layer, both S(θ) and F (θ) decrease rapidly toward
the values of 0 and 3, respectively.

Up to y+ = 100, as the Reynolds number increases, it seems that the
skewness and flatness factors increase only slightly for the isothermal bound-
ary condition. However, for the isoflux boundary condition, the situation is
opposite. Both the skewness and flatness factors are much more affected by
the Reynolds number. A comparison of the skewness and flatness factors
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Figure 4.50: Variation of the skewness and flatness factors for isothermal
boundary condition with downstream positions. at Reθ = 396, at
Reθ = 628, at Reθ = 830. (a) θ1, (b) θ2, (c) θ4. (1) Skewness factors,
(2) Flatness factors.
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Figure 4.51: Variation of the skewness and flatness factors for isoflux
boundary condition with downstream positions. at Reθ = 396, at
Reθ = 628, at Reθ = 830. (a) θ3, (b) θ5. (1) Skewness factors, (2)
Flatness factors.

of θ2 at Reθ = 628 with the channel DNS data from Kasagi et al. (1992)
of Pr = 0.71 at Reτ = 150 is shown in Figure 4.52. The agreement is very
good in the near wall region, but poor far from the wall due to different
types of flow.
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Figure 4.52: Comparison of skewness and flatness factor of θ2 at Reθ = 628
with other DNS data. S(θ2), F (θ2), ◦ Kasagi et al. (1992) at
Reτ = 150.
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4.3.6 Turbulent structure of the scalar fields
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Figure 4.53: Spanwise two-point correlation coefficients of the scalar fluc-
tuations at y+ = 9.8 with Reθ = 830. Rθ1θ1

, Rθ2θ2
, + Rθ3θ3

,
Rθ4θ4

, Rθ5θ5
.

Kim and Moin (1989) reported that the correlation coefficient between
the streamwise velocity and the scalar of Pr = 0.71 and 2.0 is as high as
0.95 in the wall region. Due to this high correlation between the streamwise
velocity and the scalar, we expect that the mean spanwise spacing of the
thermal streaks is about 100 in wall units. By examining the spanwise two-
point correlation of the scalar fluctuations as in the case of the streamwise
velocity, we find that the mean spanwise spacing of the scalar streaks is more
or less as we expected.

The spanwise two-point correlations of the different scalars at y+ = 10
are shown in Figure 4.53. From the plot, we can see that at this wall-normal
position, even though there is a large difference between the Prandtl num-
bers of θ2 and θ4 of the isothermal boundary condition, almost no difference
between Rθ2θ2

and Rθ4θ4
exists. In contrast to the mean scalar profiles

which are strongly affected by the Pr, see Figure 4.30, Rθθ for the isother-
mal boundary condition appears to be independent of the molecular Prandtl
number. However, an obvious deviation of Rθ1θ1

from Rθ2θ2
and Rθ4θ4

indi-
cates that this can not be true when the Prandtl number is too small (Kim
and Moin, 1989). On the contrary, the scalars of the isoflux boundary condi-
tion seem to be much more affected by the Prandtl number and have larger
mean spanwise spacings than those of the isothermal boundary condition.

Figure 4.54 shows the dependence of the spanwise two-point correlation
coefficients of the scalar fluctuations on downstream positions. In a similar
way as the streamwise velocity fluctuation, the first minimum becomes less
prominent as the Reynolds number increases. This might be due to the
fact that the scalar streaks are clustered for a higher Reynolds number.
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Figure 4.54: Spanwise two-point correlation coefficients of the scalar fluctua-
tion with varying Reynolds numbers. at Reθ = 628, at Reθ = 728,

at Reθ = 830. (a) θ1, (b) θ2, (c) θ3, (d) θ4, (e) θ5.

Additionally as expected, the mean streak spacing is increasing as departing
from the wall. Figure 4.55 shows the variation of the mean spanwise spacing
of the scalar streaks at Reθ = 830 versus the wall-normal distances y+. The
scalar streak spacings for the isothermal wall boundary condition are similar
to that of the low-speed streaks, but are smaller than the those for the isoflux
wall, especially in the near wall region.

4.3.7 Probability density functions

The PDF distributions of the different scalar fluctuations at various wall-
normal positions, from y+ = 5 in the conductive sub-layer to y+ = 300
at the edge of the boundary layer, are shown in Figure 4.56 to 4.60. A
Gaussian distribution is also shown as a reference denoted by the dashed
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Figure 4.55: Variation of the mean spanwise scalar steaks spacing with
varying wall-normal positions at Reθ = 830. 3 θ1, △ θ2, ∇ θ3, � θ4, � θ5.

line. As what we did for the velocity and pressure fluctuations, the scalar
fluctuations are also normalised by the corresponding RMS values, and the
probability density distributions are normalised in such a way that the area
under each curve is unity.

The PDF of the scalar fluctuations of the isothermal boundary condition
are positively skewed in the near wall region, which can also been seen from
the skewness factors S(θ), and successively changes to negatively skewed. A
long negative tail at y+ ≈ 5 also exists as the one for the streamwise velocity
and this can be interpreted as being caused by the sweep-type motion. At
larger wall-normal positions, P (θ′) become symmetric, which are the same
positions where S(θ) = 0. Very far away from the wall at y+ ≈ 300, the PDF
of the scalar fluctuations are extremely negatively skewed which indicates
the existence of the intermittent region.

P (θ′2) compared with the channel DNS data from Abe et al. (2004) at
y+ ≈ 10 and y+ ≈ 200 is plotted in Figure 4.61. Agreement with the channel
DNS is good as seen from the plot.

By examining the PDF distributions of θ′2 and u′ at y+ = 1.92 shown in
Figures 4.24 and 4.60, we found that the negative tail of the P (θ′2) does not
extend as far as that for the P (u′). This is also reported by Zarić (1975) and
Abe et al. (2004). According to Abe et al. (2004), this noticeable difference
is closely associated with the large wall pressure fluctuation. And the im-
portance of the pressure in causing the dissimilarity between the momentum
and scalar fields has been reported by several researchers, e.g. Kong et al.
(2001).
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Figure 4.56: PDF of θ′1 with Pr = 0.2 and isothermal wall and Reθ = 830.
(a) y+ = 1.92, S(u) = 1.08, (b) y+ = 4.87, S(u) = 1.02, (c) y+ =
9.74, S(u) = 0.85, (d) y+ = 29.3, S(u) = 0.37, (e) y+ = 48.7, S(u) = 0.20,
(f) y+ = 73.1, S(u) = 0.10, (g) y+ = 97.4, S(u) = 0.03, (h) y+ =
292.3, S(u) = −1.72.

4.3.8 Quadrant analysis

A quadrant analysis of the wall-normal scalar flux 〈v′θ′〉 is performed in order
to investigate the coherence between the velocity and scalar fluctuations
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Figure 4.57: PDF of θ′2 with Pr = 0.71 and isothermal wall and Reθ =
830. (a) y+ = 1.92, S(u) = 1.05, (b) y+ = 4.87, S(u) = 0.83, (c) y+ =
9.74, S(u) = 0.40, (d) y+ = 29.3, S(u) = −0.13, (e) y+ = 48.7, S(u) =
−0.21, (f) y+ = 73.1, S(u) = −0.26, (g) y+ = 97.4, S(u) = −0.23, (h)
y+ = 292.3, S(u) = −1.92.

and the results are shown in Figure 4.62. The present results are in good
agreement with the simulation by Kong et al. (2000).

80



 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 
 

−4 −3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 
 

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5(a) (b)

 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 
 

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 θ’/θ
rms

 
 P

(θ
’/

θ rm
s) 

−4 −3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45(c) (d)

 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 
 

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 

−4 −3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45(e) (f)

 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 
 

−4 −3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 θ’/θ
rms

 

 P
(θ

’/
θ rm

s) 
 

−5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5(g) (h)

Figure 4.58: PDF of θ′3 with Pr = 0.71 and isoflux wall and Reθ = 830. (a)
y+ = 0, S(u) = −0.24, (b) y+ = 4.87, S(u) = −0.20, (c) y+ = 9.74, S(u) =
−0.18, (d) y+ = 29.3, S(u) = −0.34, (e) y+ = 48.7, S(u) = −0.37, (f) y+ =
73.1, S(u) = −0.42, (g) y+ = 97.4, S(u) = −0.40, (h) y+ = 292.3, S(u) =
−1.96.

For the scalars with the isothermal boundary condition, the contributions
to the wall-normal scalar flux are either from the ejection-type events in the
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Figure 4.59: PDF of θ′4 with Pr = 2 and isothermal wall and Reθ = 830. (a)
y+ = 1.92, S(u) = 0.99, (b) y+ = 4.87, S(u) = 0.53, (c) y+ = 9.74, S(u) =
−0.10, (d) y+ = 29.3, S(u) = −0.59, (e) y+ = 48.7, S(u) = −0.57, (f) y+ =
73.1, S(u) = −0.58, (g) y+ = 97.4, S(u) = −0.48, (h) y+ = 292.3, S(u) =
−2.04.

second quadrant, i.e. θ < 0 and v′ > 0, or the sweep-type events in the
fourth quadrant, i.e. θ > 0 and v′ < 0. This can be seen from the Figure
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Figure 4.60: PDF of θ′5 with Pr = 2 and isoflux wall and Reθ = 830. (a)
y+ = 0, S(u) = −0.68, (b) y+ = 4.87, S(u) = −0.55, (c) y+ = 9.74, S(u) =
−0.68, (d) y+ = 29.3, S(u) = −0.96, (e) y+ = 48.7, S(u) = −0.84, (f) y+ =
73.1, S(u) = −0.83, (g) y+ = 97.4, S(u) = −0.75, (h) y+ = 292.3, S(u) =
−2.00.

4.62 which shows the contribution to the wall-normal scalar flux from each
quadrant as a function of the non-dimensional wall-normal distance. The
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Figure 4.61: Comparison of the PDF of θ′2 with other DNS data. • Present
DNS at Reθ = 830, 3 Abe et al. (2004) at Reτ = 395. (a) y+ ≈ 10, (b)
y+ ≈ 200.
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Figure 4.62: Fractional contribution to the wall-normal scalar flux 〈v′θ′〉.
Ejection motion, Sweep motion, outward motion, Wall-

ward motion.(a) v′θ′1, (b) v′θ′2, (c) v′θ′3, (d) v′θ′4, (e) v′θ′5.
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wall-normal scalar flux is normalised by the local mean scalar flux 〈v′θ′〉.
For θ2, the contribution from the sweep-like motion predominates in the
near wall region y+ < 12, while that from the ejection-like motion becomes
largest in the region y+ > 12. The contributions from the other two types
of motion, namely outward interaction-type and wall-ward interaction-type,
are approximately equal through the entire boundary layer. These features
are essentially the same as seen in the contribution to the Reynolds shear
stress 〈u′v′〉 shown in Figure 4.28. On the other hand, for the scalars with
the isoflux boundary condition, the profiles of the contribution to 〈v′θ′〉 are
almost the same as those with the isothermal boundary condition in the
region y+ > 10. However, near the wall y+ < 10, the absolute values of the
contribution from each quadrant are higher than those with the isothermal
wall boundary condition. It is notable that the contributions from the first
and third quadrants are not negligible at y+ < 10 in case of the isoflux
boundary condition.

Fractional contributions from the four quadrants to the total wall-normal
scalar flux above a certain threshold value H at y+ = 50 are shown in Figure
4.63. From the plot, one can recognise that the scalar transport processes
are dominated by the large amplitude ejection-type and sweep-type motions.
The contributions from the other two interaction-type motions are negligible
for H > 2.5. The present results compare well with the experimental results
by Nagano and Tagawa (1988).

4.4 Flow Field VS. Scalar Field

In order to examine the relation between the streamwise velocity and the
scalars further more, we consider the probability density function of the
Reynolds stress and the wall-normal scalar flux. We also use the joint prob-
ability density function (JPDF) between velocity and scalar fluctuations to
give the quantitative measures for the interconnection between the flow and
scalar fields.

4.4.1 PDF of the Reynolds stress and scalar flux

The PDF of the Reynolds stress and the scalar flux at y+ ≈ 30 are shown in
Figure 4.64. The distribution of the u′v′ is found to be very similar to that
reported by Willmarth and Lu (1972) at the same wall-normal position. The
distribution also has very long tails for extreme values of u′v′ and a sharp
peak at u′v′ = 0. One exception is that the tail for u′v′

〈u′v′〉 < 0 reported by

Willmarth and Lu (1972) is vanishing rapidly while the one for the present
case extends for larger values. According to Willmarth and Lu (1972), the
long tail is a result of the spiky nature of the Reynolds stress contributions
during bursting events.
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Figure 4.63: Fractional contribution to the wall-normal scalar flux 〈v′θ′〉
as a function of threshold H. Ejection motion, Sweep motion,

outward motion, Wall-ward motion. (a) v′θ′1, (b) v′θ′2, (c) v′θ′3, (d)
v′θ′4, (e) v′θ′5.

In Figure 4.64 (a), a Gaussian distribution of the u′v′ suggested by Lu
and Willmarth (1973) is included for comparison. They assume that u′

and v′ are two statistically dependent random variables with correlation
coefficient Ruv = −0.44, each obeying the Gaussian distribution. The joint
distribution function of u′ and v′ is

P (u1, v1) =
1

2(1 − R2
uv)

1

2

exp

( −1

2(1 − R2
uv)

(u2
1 − 2Ruvu1v1 + v2

1)

)

, (4.43)

where u1 = u′

urms
and v1 = v′

vrms
. After some transformations and integra-
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Figure 4.64: PDF of u′v′ and v′θ′ at y+ = 29.3 and Reθ = 830. (a) P (u′v′),
(b) P (v′θ′1) , (c) P (v′θ′2), (d) P (v′θ′3), (e) P (v′θ′4), (f) P (v′θ′5).

tions, the probability density function for the normalised u′v′

〈u′v′〉 reads

P

(
u′v′

〈u′v′〉

)

=
Ruv

π(1 − R2
uv)

1

2

exp

(

R2
uv〈u′v′〉

1 − R2
uv

)

K0

(∣
∣
∣
∣

Ruv〈u′v′〉
1 − R2

uv

∣
∣
∣
∣

)

, (4.44)

where K0 is the zeroth-order K Bessel function. The agreement with the
present DNS data appears to be satisfactory. Note that as u′v′ → 0, the

Bessel function approaches infinity. Thus P
(

u′v′

〈u′v′〉

)

→ 0 as u′v′ → 0. The

distribution of u′v′ indicates the intermittent character of u′v′ near 0 since
u′v′ will stay around 0 for most of the time which is also reported by Lu
and Willmarth (1973).

The profiles of the PDF of the scalar fluxes are almost the same as the
one for u′v′ which indicates a strong similarity between u′ and θ′. The for-
mula of the Gaussian distribution for the scalar fluxes is similar to equation
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(4.44). One interesting finding is that for the present DNS, even though
the distributions of the velocity components and scalars do not obey the
Gaussian distribution which can be seen from the PDF of each variable, the
PDF of the Reynolds shear stress and the scalar fluxes still collapse with
the equation (4.44).

4.4.2 Joint PDF
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Figure 4.65: JPDF of (u′, θ′) at y+ ≈ 5 and Reθ = 830. (a) P (u′, θ′1), (b)
P (u′, θ′2), (c) P (u′, θ′3), (d) P (u′, θ′4), (e) P (u′, θ′5).

The high correlation between u′ and θ′ can also be seen in Figure 4.65
and 4.66 where the JPDF of (u′, θ′), (u′, v′) and (v′, θ′) at y+ ≈ 5 with
Reθ = 830 are shown. A strong positive correlation between u′ and θ′2 and a
mild negative correlation between v′ and θ′2 are observed. These observations
are essentially the same as those found by Kim (1988) and Kim and Moin
(1989). However, for Pr = 0.2, u′ is less correlated with θ1 due to the low Pr
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Figure 4.66: JPDF of (u′, v′) and (v′, θ′) at y+ ≈ 5 and Reθ = 830. (a)
P (u′, v′), (b) P (v′, θ′1) , (c) P (v′, θ′2), (d) P (v′, θ′3), (e) P (v′, θ′4), (f) P (v′, θ′5).

effect. Abe et al. (2004) also reported that for Pr = 0.025, the wall shear
stress and the surface scalar flux are less correlated. We also found that
less correlated relation between u′ and θ3 and θ5. This is due to the isoflux
boundary condition. Note that a perfect correlation will be represented by
a straight line. Due to the high correlation between u′ and θ′2, the JPDF of
(v′, θ′2) looks very similar to that of (u′, v′). Moreover, the JPDF of (v′, θ′1)
which is also very similar to the distribution of (u′, v′), seems not affected
by the low Pr effect. But the boundary condition still impose influences on
the JPDF which can be seen from Figure 4.66 (d) and (f).

4.4.3 Instantaneous fields

Figure 4.67 shows the instantaneous streamwise velocity fluctuation at y+ ≈
7 in the (x, z) plane as well as the scalar fluctuations. Note that all the
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Figure 4.67: Instantaneous flow and scalar fields at y+ ≈ 7. (a) u′, (b) θ′1,
(c) θ′2, (d) θ′3, (e) θ′4, (f) θ′5.

plots shown here are only part of the computational domain and obtained
at the same instant. The viscous units are defined by the friction velocity
uτ at about the center at the domain, i.e. x = 350. Streaky structures are
clearly observed in both the streamwise velocity and scalar fluctuation for
the isothermal wall boundary condition at Pr = 0.71 and a strong similarity
exists between them. The region of low and high scalar concentrations are
elongated in the streamwise direction with a mean spanwise spacing similar
to that of the streamwise velocity fluctuation. In the case of the isoflux wall
boundary condition, the scalar streak spacing becomes larger than that for
the isothermal case, see also Figure 4.55. It is also clear from Figure 4.67
that low-speed fluids are associated with low scalar concentration region and
high-speed fluids with high scalar concentration region which is consistent
with the experimental observation by Iritani et al. (1985).
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

A direct numerical simulation (DNS) of a spatially developing turbulent
boundary layer with passive scalars over a flat plate under zero pressure
gradient (ZPG) is carried out. The Reynolds number based on the inlet dis-
placement thickness Reδ∗

0
is 450 and Prandtl numbers are varying from 0.2

to 2 while two wall boundary conditions are employed. A spectral method,
i.e. Fourier series in the horizontal directions and Chebychev expansion in
the wall-normal direction, is used for the spatial derivatives in conjunction
with Runge-Kutta and Crank-Nicolson schemes for time advancement. The
computed velocity and scalar fields were compared with the existing exper-
imental and numerical simulation data, in general, the agreement is very
good.

The velocity profile agrees with the log-law very well while the mean
scalar profiles are in good agreement with the empirical formula suggested
by Kader (1981) and do not depend on the type of the wall boundary condi-
tions employed. The mean scalar profiles for the isoflux boundary condition
are slightly lower than those for the isothermal boundary condition in the
logarithmic region, and the logarithmic region does not exist for Pr = 0.2
and becomes more distinguished as Pr increases. The skin friction coeffi-
cient and the Stanton numbers for different scalars all follow the solutions
suggested by Kays and Crawford (1993). The turbulent Prandtl numbers
with isothermal boundary condition seem to be independent of the molec-
ular Prandtl number near the wall except the low Prandtl number case of
Pr = 0.2 while they decrease to zero at the wall for the isoflux case.

With the increase of the Reynolds number, the increase of the wall-
normal and spanwise velocity RMS fluctuation components in wall units is
more enhanced than that of the streamwise component. For the scalar field,
the RMS values of the scalar fluctuations retain non-zero values at the wall
for isoflux boundary condition and become zero for isothermal boundary
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condition. Away from the wall, the RMS profiles of the scalars for both wall
boundary conditions are almost identical. As Pr decreases, the scalar fluxes
are also decreased with their peak positions moving away from the wall.

The Reynolds stress budgets reveal that several terms that are negligible
away from the wall become more important close to the wall. The budget for
the turbulence kinetic energy k reveals that the velocity pressure-gradient
term remains small relative to the dissipation and molecular diffusion terms
near the wall. Away from the wall, the production and the dissipation terms
are the dominant terms as estimated by Tennekes and Lumley (1972). The
velocity pressure-gradient term acts as a dominant term in the wall-normal,
spanwise and shear stress budgets. The same behaviour is also found for
the scalar pressure-gradient term, but when the Prandtl number is low, it
no longer acts as a dominant term for the scalar fluxes budgets. The similar
distributions of the scalar flux and Reynolds stress budgets suggest that
they might be generated by similar mechanisms and modelled in the same
manner.

The structures of the velocity and scalar fields are also examined. It is
found that the scalar of Pr = 0.71 is highly correlated with the streamwise
velocity. The streaky structures found in the near wall region in the flow
field are also observed in the scalar field with more or less the same non-
dimensional mean spacing which is almost independent of the molecular
Prandtl numbers except the case for Pr = 0.2. The present spacings for both
the velocity and scalar fields are slightly higher than the other simulation
data and experimental results. This is attributed to the narrow box in the
spanwise direction in the present DNS. By examining the spanwise two-point
correlation coefficients of u′ and θ′, we learn that the negative peaks become
less prominent as the Reynolds number increases.

The probability density function (PDF) distributions of u′ and θ′ can be
approximated with Gaussian ones in the log-law region, but not in the other
regions. Quadrant analyses and related joint probability density function
(JPDF) distributions show that in general, both the velocity and scalar fluc-
tuations are influenced strongly by the ejection and sweep types of motions,
but less related with interaction-type motions. In the near wall region, the
sweep motions play a dominant role in the production processes of Reynolds
shear stress and wall-normal scalar flux and ejection motions predominate
in the remaining region whereas the contributions from the interaction-type
motions are negligible. However, for the isoflux boundary condition, the
contributions of the wall-normal scalar flux from the interaction-type mo-
tions in the near wall region are not negligible unlike those for the isothermal
wall boundary condition.

The instantaneous velocity and scalar fields near the wall show that a
stronger coherence exists between the streamwise velocity u and scalar of
Pr = 0.71 for the isothermal wall than for the isoflux wall. The scalar
streak spacings in case of the isoflux wall are larger than those in case of
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the isothermal wall. Again all these analyses of u′ and θ′ underline the close
similarity between the velocity and scalar fields close to the wall.

5.2 Outlook

Due to the computationally very expensive nature of the present calcula-
tion, not all the results are fully converged. Therefore, a natural extension
of the present work is the continuation of the runs to obtain fully converged
statistics, even for higher order ones. To make the code more effective, the
parallelization in the streamwise direction in the code will be done in the
future. It would be also interesting to make a longer and wider compu-
tational domain to reach a higher Reynolds number and to capture larger
scale motions and structures in the outer region or to employ other different
boundary conditions. By adopting a multi-grid approach or SGS modelling,
we can examine scalar behaviours with a higher Pr. Some Large Eddy Sim-
ulations (LES), sub-grid models for both the flow and passive scalar could
be done in the future based on the present DNS results. To look at the
Reynolds analogy in the presence of free-stream turbulence (FST) with by-
pass transition is also worth doing. One could also try to implement active
scalars to look at the instabilities, e.g. Rayleigh-Bénard problem or finger
problem.
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provided by the Center for Parallel Computers (PDC) at the Royal Institute
of Technology (KTH) and the National Supercomputer Center in Sweden
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J. M. Österlund, A. V. Johansson, H. M. Nagib, and M. H. Hites. A note
on the overlap region in turbulent boundary layers. Phys. Fluids, 12(1):
1–4, 2000.

S. B. Pope. Turbulent Flows. Cambridge University Press, Cambridge, U.K.,
2000.

L. P. Purtell, P. S. Klebanoff, and F. T. Buckley. Turbulent boundary layer
at low Reynolds number. Phys. Fluids, 24(5):802–811, 1981.

M. M. Rai and P Moin. Direct numerical simulation of transition and tur-
bulence in a spatially evolving boundary layer. J. Comp. Phys., 109(2):
169–192, 1993.

S. Rajagopalan and R. A. Antonia. Use of a quadrant analysis technique to
identify coherent structures in a turbulent boundary layer. Phys. Fluids,
25(6):949–956, 1982.

P. E. Roach and D. H. Brierley. The influence of a turbulent freestream
on zero pressure gradient transitional boundary layer development, part
I: Test cases T3A and T3B. In Numerical Simulation of Unsteady Flows
and Transition to Turbulence, ERCOFTAC, pages 319–347. Cambridge
University Press, Cambridge, U.K., 1992.

S. K. Robinson. Coherent motions in the turbulent boundary layer. Ann.
Rev. Fluid Mech., 23:601–639, 1991.

M. Rogers, P. Moin, and W. Reynolds. The structure and modeling of the
hydrodynamic and passive scalar fields in homogeneous turbulent shear
flow. Technical Report TF-25, Stanford University, U.S.A., 1986.

100



A. Sahay and K. Sreenivasan. The wall-normal position in pipe and channel
flow at which viscous and turbulent shear stresses are equal. Phys. Fluids,
11(10):3186–3188, 1999.

G. Schewe. On the structure and resolution of wall-pressure fluctuations
associated with turbulent boundary-layer flow. J. Fluid Mech., 134:311–
328, 1983.

P. Schlatter. Direct numerical simulation of laminar-turbulent transition in
boundary layer subject to free-stream turbulence. Master’s thesis, Insti-
tute of Fluid Dynamics, ETH, Zürich, Switzerland, 2001.
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