
flash informatique  N° 10 SPÉCIAL CALCUL À HAUTE PERFORMANCE – 21 DÉCEMBRE 2010

L'écriture des fichiers des résultats de simulations 
numériques est depuis longtemps le goulot d'étran-
glement du calcul à haute performance. La visuali-
sation in-situ permet à l'utilisateur de se connecter 
directement à une simulation en cours d'exécution, 
pour examiner les données et en faire des représen-
tations graphiques. C'est donc un nouvel atout dans 
la course aux calculs de grande taille, en évitant le 
besoin d'écrire des données massives sur les disques. 
Mais, c'est aussi une technique facile d'utilisation 
pour des calculs de taille plus restreinte, pour laisser 
l'ingénieur se concentrer sur le développement de 
l'algorithme numérique, en rajoutant une interface 
graphique en très peu d'effort.

Writing results of numerical simulations to disk files 
has long been a bottleneck in high-performance 
computing. In-situ visualization libraries enable the 
user to connect directly to a running simulation, 
examine the data, do numerical queries and cre-
ate graphical output while the simulation executes. 
It addresses the need of extreme scale simulation, 
eschewing the need to write data to disk. Yet, it can 
also be used on the desktop by anyone wanting to 
concentrate on coding an algorithm, and adding a 
graphical user interface in a few button clicks.

The annual Supercomputing conference (SC10) has just closed 
its doors. Several machines around the world are now beyond the 
1 petaFLOPS range (one quadrillion floating point operations 
per second). Running simulations on these machines means us-
ing a computation distributed over 100,000 to more than several 
millions of processing elements. And writing results to disk files 
hits a major bottleneck. The access speed of disk drives is several 
orders of magnitude smaller than that of cpu-to-memory access-
es. Future systems already in the design phase for the exascale 
era will only worsen this situation. (Read about the brutal facts of 
HPC at www.hp2c.ch/background/hpcfacts).
Thus, the need to eschew I/O to disk, in favor of in-situ visuali-
zation: visualize while the simulation is running, gaining direct 
access to the memory pointers of the simulation code, asking 
the simulation to do its normal iterative processing with regular 
checks to service visualization requests.
2010 is the first year that the Supercomputing Conference pro-
poses tutorials in in-situ visualization. In fact, not just one, but 
two libraries in open-source form were demonstrated. The Para-
View package proposes a co-processing toolkit [1] while the VisIt 

package demonstrated its in-situ support with the libsim library 
[2].
This article will present the VisIt library, because it is much more 
mature, and easier to operate. But the fundamental operating 
modes are similar in both libraries.

Simulation codes and I/O

Many scientific applications involve the solution of partial dif-
ferential equations. These equations are discretized on a grid of 
cells or nodes and an approximation to the solution is generally 
found by iterating until a convergence threshold or when a maxi-
mum number of iterations is reached. What happens in between 
can be a long story. The programmer is faced with many chal-
lenges. Setting up the correct boundary conditions; iterating over 
the right data arrays; writing the data results in a format that is 
compatible with visualization tools. Given the availability of to-
day’s computing platforms, the programmer is encouraged to try 
bigger and bigger computing challenges, and will sooner or later 
move to parallel computing. With it comes the challenge of do-
ing parallel I/O to disk, and to do it efficiently. This is still today 
where simulation codes are less advanced, exacerbating the I/O 
bottleneck discussed above. Writing I/O code has also often been 
the last and least fun process in implementing numerical simula-
tions. Researchers prefer concentrating their coding efforts into 
the numerical parts akin to their discipline, leaving the I/O for last.
In the 1990s, scientific visualization has flourished as a post-pro-
cessing activity. Running computer simulation consisted in doing 
batch-oriented computation on large clusters or supercomputers, 
followed by interactive visualization. This led to the development 
of many application-driven file formats for archiving, and to the 
necessity to develop writing and reading programs to encode, and 
later decipher the data file contents. The interaction with disk files 
has been a mandatory and often painful fact of scientific visu-
alization, before one could even create the first image. To make 
things even worse, the visualization hardware is traditionally 
smaller, or even much smaller than the supercomputing platform 
first used for the computations, and the time spent reading data 
from disk files can be the major performance hit preventing inter-
active data exploration, impeding data discovery.

Instrumentation

What if one could directly visualize the progress of a simulation, 
with a live connection to the simulation code, being able to peek 
at any memory arrays and mesh structures, being able to confirm 
the correct simulation setup and iterations, without the need to 
save data to disk?

Simulations go Live, a.k.a.
in-situ visualization
Jean M. Favre, jfavre@cscs.ch, CSCS (Swiss National Supercomputing Center), Visualization Software Engineer

Analyse



99 N° 10 SPÉCIAL CALCUL À HAUTE PERFORMANCE – 21 DÉCEMBRE 2010

Serve a Visualization
Request?

Solve Next Step

Check for
convergence or,

end-of-loop

Exit

Initialization

fig. 1 – the control flow loop of a simulation instrumented for in-situ visualization

Compilation and flow control

VisIt uses the basic client-server model, with a client running the 
GUI, and a parallel server [3]. The server runs an Engine Library 
where all the visualization algorithms are implemented. Running 
with an in-situ connection, consists in compiling and linking our 
simulation codes with the libsim library to gain access to VisIt’s 
Engine Library. One then uses VisIt’s client, the GUI component. 
Any visualization query available through VisIt’s standard GUI is 
also available to the simulation. No previously defined visualiza-
tion scenario must be encoded. At any time while the simulation 
executes, VisIt’s GUI will be able to connect and disconnect from 
it.

fig. 2 – pseudo-color display of temperature at timestep 877 during the execution 
of a Laplacian solver

Implementing the execution control of figure 1 might require 
some code re-organization, but the changes are usually small. 
Loops are usually found in the execution path of a simulation, and 
we only need to add a few control lines to allow the following:

z Establish the connection to the VisIt GUI.
z Receive and serve requests for data queries.
z Disconnect and let the simulation continue.
Our instrumentation of a FORTRAN95 simulation of a free-surface 
flow (FVRIVER) at CSCS required 68 lines of new source code. Not 
a big change in the main looping code!

Data Access

The main premise of in-situ visualization is to gain access to the 
memory contents of the simulation. Both C and FORTRAN simula-
tions can be instrumented.
A second source code change to make is to enable read access to 
the pertinent data structures in the simulation code. All memory 
arrays can be advertized, enabling access to mesh and field vari-
ables, at any timestep, and for any parallel compute nodes partici-
pating in the simulation.
Meta-data information needs to be sent to the GUI. Meta-data 
are information about the mesh size, type and partitioning in the 
simulation, plus the number and type of variables available. This 
exchange of protocol with the GUI enables all the visualization 
techniques implemented for that type of data. For example, if a 
2D rectilinear mesh with a variable called temperature is adver-
tized, the user will be able to request a pseudo-coloring display of 
the surface, as well as iso-contour levels, histograms (etc…) of the 
scalar temperature.
Figure 2 shows such display. Source code for the Laplacian solver 
pictured here is available for your own testing [4].
Giving access to the temperature array (T) of the simulation above 
is done with few lines of code:

! FORTRAN code
allocate (T(XX, YY))
nTuples = XX * YY

visitvardatasetd(
  h, VISIT_OWNER_SIM, 1, nTuples, T)

// C code
float *T = malloc(XX * YY * 4);
nTuples = XX * YY;
VisIt_VariableData_setDataF(
 h, VISIT_OWNER_SIM, 1, nTuples, T);

The single most-important thing to notice is the flag VISIT_
OWNER_SIM which indicates that the simulation code owns 
the memory pointer and is thus responsible for its deallocation. 
The visualization server component, loaded via a run-time dlo-
pen() call when the connection is first established, is then free 
to use the pointer in read-only mode, to construct the visualiza-
tion requested. This is the best scenario, thanks to a linear and 
compact array allocation, requiring no memory duplication. There 
will however be other cases, when an existing simulation code 
has a predefined memory usage which presents data in a more 
distributed - fragmented - manner. Just think of memory alloca-
tions dispersed across many struct() or C++ class members. In 
that case, the driver needs to gather the memory objects into a 
compact array allocated on purpose, and the visualization is said 
to own the memory pointer gathering the data. The VISIT_OWN-
ER_COPY would distinguish this case.

Simulations go Live, a.k.a. in-situ visualization



flash informatique1010  N° 10 SPÉCIAL CALCUL À HAUTE PERFORMANCE – 21 DÉCEMBRE 2010flash informatique

Interaction with the simulation

Interaction with the simulation can be done through a command 
panel with buttons enabling iteration controls such as next, up-
date, run, etc.
Besides visualization commands, a simulation code can also be 
instrumented to receive other types of inputs, such as parameters 
to influence the next steps in the simulation. The best demonstra-

tion is available in the Mandelbrot.C example of VisIt’s source tree. 
In that demo, parameter inputs typed at the console, are used in 
future iterations to modify the number of levels and refinement 
ratio of the AMR grid used by the simulation.

Images

Let us not forget the original goal of visualization: to make pic-
tures. Once connected to a simulation, with a set of visualization 
representations selected on-the-fly at a given timestep, we can 
instruct the Visualization server to save images to disk while the 
simulation iterates. We are thus replacing a possible enormous 3D 
transient archiving of results of raw data, with a sequence of well 
defined visualization images.

Conclusion

VisIt’s in-situ visualization support, a mature interface to parallel 
FORTRAN and C codes, is an answer to one of HPC’s fundamental 
road block towards increased performance at extreme scale. But it 
can also serve with modestly sized computations run on clusters, 
for anyone wanting to free himself from I/O and data formatting 
issues, to connect live, to a running simulation, and gain access 
to a myriad of visualization algorithms implemented and rigor-
ously tested in VisIt’s main visualization library. The author wishes 
to encourage any scientist writing his or her simulation code to 
install the open source VisIt (it is now far easier than it used to 
be), instrument their source code with compilation flags to con-
ditionally compile the VisIt in-situ support, and then launch their 
simulation and connect the GUI with it.

References

[1] www.paraview.org/Wiki/SC10_Coprocessing_Tutorial;
[2] visitusers.org/index.php?title=VisIt-tutorial-in-situ;
[3] visitusers.org/index.php?title=500words;
[4] portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExam-

ples/Simulations/contrib/pjacobi/ n

Simulations go Live, a.k.a. in-situ visualization

Water height above the river bed at two different timesteps during an in-situ visualization connection with the solver FVRIVER of Matthew Cordery at CSCS


