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Abstract

In modern paper manufacturing free liquid jets are used to distribute the fibre
suspension to the paper machine. It is believed that the homogeneity of the jet
flow is of vital importance to obtain a good quality paper. The present investiga-
tion has been undertaken in order to better understand the development of free,
plane liquid jets. Both the development of the basic laminar flow as well as its
stability have been investigated. This includes both the formulation of the prob-
lem with the appropriate boundary conditions, obtaining solutions for the basic
flow field and to the stability equations for two-dimensional wave disturbances
as well as comparisons with experiments. The experiments have been made with
two different nozzles, a plane channel flow nozzle giving a nearly parabolic out-
flow velocity distribution and a slit nozzle which closely approximates an inviscid
jet. Both flow visualization and velocity measurements of the jet flow have been
made. The basic flow of the channel flow jet was analyzed and the relaxation
length determined. The stability analysis showed that the boundary conditions
at the jet surface were important for the instability, assuming an inviscid ambient
gas overestimated the instability considerably as compared to a viscous gas. The
stability calculations show that two types of wave disturbances may exist, either
sinuous or varicose. Depending on the parameters of the problem (such as the
Reynolds number and the basic velocity distribution) one or several modes may
be unstable. These modes were mapped in the parameter range of the present
experiments and the sinuous modes were found to be the most unstable. Hot wire
anemometry measurements of controlled forced disturbances showed that these
waves also were sinuous. When the waves reach a certain amplitude they break
up which creates strong streaky structures in the jet.
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CHAPTER 1

Introduction

Paper manufacturing originates from China and the technology is more than 2000
years old. Despite the long history of paper manufacturing the basic principle
has not changed and is still based on letting a suspension of water and fibres
settle on a permeable surface which traps the fibres but allows the water to pass.
As the water is removed the fibres form a network, a fibre mat, which after de-
hydration becomes a paper sheet. For a long time the sheets were handmade but
the process has been automated and is today continuous. The fibre suspension is
formed into a plane liquid jet by a nozzle, a so called headbox, and distributed
on one or between two moving permeable bands or wires. The velocity of the jet
is 10-35 m/s and it is typically 5-10 m wide and 1 cm thick. After being trapped
between the two wires the water is removed by pressure pulses created by roll nips,
e.g. two counter-rotating cylinders, or blades pressed against the moving wires.
Finally the remaining water is removed by heat. The fibre suspensions which are
fed to the paper machine usually have a fibre concentration less than 1% but still
such a suspension is a non-Newtonian liquid where fibres tend to flocculate and
form fibre networks.

The development of modern paper technology, when it comes to the forming
part, i.e. the first part of the paper machine, is towards higher velocities and
multi-layered forming. Multi-layered forming (see figure 1.1) is done by ejecting
two or more co-planar jets which consist of different fibre suspensions. By this
procedure it is possible to produce a paper where the properties varies throughout
the sheet. This will for example make it possible to have a core with strong paper
covered with surface layers that give good printing quality.

Problems in the final product can consist of density and thickness variations
in the sheet as well as unwanted orientation of the fibres. Specifically, streaky
structures can be found in both the machine direction, i.e. the streaks are in
the direction of the jet, and in the cross machine direction. These problems
are primarily believed to originate from non-homogeneities in the liquid jet flow,
since the fibre network will form very quickly after entering between the wires and
prevent further mixing and re-distribution. In order to understand the origins of
these problems and hopefully improve the possibility to control the flow process,
the behaviour of the free liquid jet flow has to be understood. The present work
consists of a theoretical and experimental study of the fluid mechanics of plane
liquid jets, and is part of a larger effort within the FaxénLaboratory, KTH, to
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Figure 1.1. Nozzles producing liquid jets. Simple (left) and for
multi-layered forming (right). a) nozzle, b) liquid jet and c) sepa-
ration vanes.

understand the fluid mechanics of the first stages in the forming process of modern
paper machines.

1.1. Previous studies of liquid jets

The flow of free, especially cylindrical, liquid jets has attracted much attention
during the history of fluid mechanics. Free liquid jets are used in many industrial
applications, for example jet cutting, fuel injection and cooling through impinge-
ment. Also, as mentioned earlier, the most common method used when producing
paper includes the flow of a plane liquid jet. The research concerning cylindrical
liquid jets has mainly been focused on liquid jet break-up to be able to predict
and control the droplet size.

1.1.1. Laminar flow of liquid jets. The laminar flow of liquid jets will depend
on geometry and nozzle shape. If the flow of a plane i.e. two-dimensional liquid
jet, is considered to be inviscid and irrotational, i.e. potential flow, a solution for
the location of the free surface and the velocity field can be obtained by conformal
mapping. For a jet emanating from a two dimensional orifice (slit), the solution
can be found in many fluid dynamics textbooks, see for example Lamb (1932),
Pai (1954) and Batchelor (1967). This can be extended to a nozzle with varying
angle of contraction, Söderberg (1994).
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The outflow from a plane two-dimensional channel with an upstream fully
developed laminar flow, the so called plane Poiseuille flow, was analyzed by
Tillet (1968). He did this by a boundary layer assumption and gave a solution in
form of a series expansion, which shows that the streamwise velocity undergoes
a relaxation from the fully developed parabolic profile at the end of the channel
to a uniform velocity distribution. The analysis is only valid for high Reynolds
numbers.

For the flow of more general liquid jets, which are partly or fully domi-
nated by viscous forces the basic flow has to be solved with numerical methods.
Nickell, Tanner & Caswell (1974) made a numerical investigation of the circular
liquid jet at low Reynolds numbers. The aim was to investigate the die swell phe-
nomenon, which is a typical effect of a non-Newtonian fluid, e.g. polymer melts.
A jet that expands directly when leaving the nozzle is said to experience a die
swell. For a low Reynolds number Newtonian jet this occurs too. This was dis-
covered experimentally by Gavis & Modan (1967). They found that the circular
liquid jet expanded for Reynolds numbers below 16. The calculations by Nickell
et al. also showed that the Newtonian die-swell is about 13%. The reason for
this was mainly the stress singularity at the end of the nozzle where the boundary
conditions change from no-slip to no-shear.

The flow of a plane liquid jet emanating from a nozzle with varying contraction
ratio, i.e the converging angle of the nozzle, was investigated numerically by
Yu & Liu (1992). The results show that also the plane liquid jet expands for low
Reynolds numbers. When the contraction ratio increases the expansion of the jet
at low Reynolds numbers becomes smaller. Also, when the Reynolds number is
increased a high contraction ratio gives a location of the surface as predicted by
the theory for a potential jet.

1.1.2. Stability and break-up of cylindrical jets. One of the earliest results
concerning the hydrodynamics of liquid jets was obtained by Plateau (1873), who
predicted the most probable droplet size by considering the surface area of a liquid
cylinder. The surface tension can also be expressed as a surface energy, and by
minimization of the surface area the energy is also at a minimum state. This is
obtained if the column breaks up into pieces that are 2πa long, where a is the
radius of the cylinder. The theoretical result was in agreement with experimental
results by Savart (1833).

As one of the earliest results using linear stability theory Rayleigh (1896) con-
sidered a liquid jet with a uniform velocity distribution, i.e. the flow is parallel
and the velocity constant throughout the jet. Viscosity in the liquid is neglected,
i.e. the flow is assumed to be inviscid. No effects of the ambient gas are con-
sidered but superficial forces are assumed to act on the surface of the jet. The
analysis was performed by the assumption that the surface of the jet is subjected
to an infinitesimal perturbation and predicts that the liquid cylinder will break
up into droplets for axisymmetric disturbances only. It also shows that break-up
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will occur only for disturbances with a wavelength λ that satisfies λ > 2πa, where
a is the radius of the cylinder.

Since then linear stability theory has been used extensively for various flow
situations, for example, different types of channel flow and boundary layer flow
along a flat plate. Linear stability theory for the break-up of a cylindrical jet has
later been extended to include viscosity and non-linear effects. This has been done
experimentally and numerically, and is reviewed by McCarthy & Molloy (1974)
and Bogy (1979). It is shown experimentally, (Goedde & Yuen, 1970), that non-
linear effects cause ligaments between the drops when the jet disintegrates and
the conclusion is that non-linear effects dominate the growth process.

The effect of a non-uniform velocity distribution inside a cylindrical jet has
also been considered theoretically by Leib & Goldstein (1986) and experimentally
by Debler & Yu (1988). The theoretical result is based on a spatial stability anal-
ysis, and the conclusion is that the growth of a disturbance is lower when the
velocity profile in the liquid jet deviates from the uniform. The experiments by
Debler & Yu (1988), were carried out by investigating the stability of a circular
liquid jet emanating from tubes of varying length. With a constant flow rate
through the tubes the profiles at the end of the tubes were more or less devel-
oped. The experiments gave qualitatively the same result, i.e. the growth rate is
reduced with a non-uniform profile. They also showed that the turbulence level
in the tube had a significant effect on the break-up length of the jet. A higher
turbulence level gave a more rapid disintegration of the jet.

These investigations are all concerned with the axisymmetric disturbance which
break-up into discrete droplets. This type of break-up is also denoted ‘vari-
cose’. If the velocity of the jet is increased the break-up will be different, see
Hoyt & Taylor (1977). They made visualizations of a circular liquid jet ema-
nating from a converging nozzle where the end was a short straight pipe. The
experiment also allowed for a co-flowing gas which could have a higher velocity
than the liquid in the jet. Close to the exit short waves, i.e. wavelengths orders
of magnitude smaller than the jet diameter, could be seen which broke up a few
jet diameters downstream. The result of the break-up was formation of spray
droplets, and the break-up was not sensitive to the velocity of the ambient gas.
Further downstream a helical disturbance could be seen growing. This disturbance
had a large amplitude and was enhanced by a higher velocity of the gas.

The wavelengths found for the short waves were compared with linear stability
results by Brennen (1970), which were obtained for a hydrodynamic cavity behind
axisymmetric headforms.

1.1.3. Stability and break-up of plane liquid jets. The stability of a plane
liquid jet has not been studied to the same extent as the cylindrical. A plane jet
is basically two-dimensional with a thickness that is small compared to its width.
Also, the basic flow is assumed to be symmetric with respect to the centreline of
the jet. One type of instability is a two-dimensional travelling wave disturbance,
which can be either symmetric or anti-symmetric, see figure 1.2.
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Figure 1.2. Definition of symmetry. Symmetric or varicose (left)
and antisymmetric or sinuous (right).

Earlier work have studied the stability of plane liquid jets at different levels
of approximation. If a liquid jet with no ambient gas is considered this can be
done in basically the same manner and with the same assumptions of uniform
velocity and surface tension as the study by Rayleigh (1896) of the circular jet,
see Drazin & Reid (1981). This study shows that the jet is stable to all kinds
of disturbances since surface tension always has a damping effect and forces the
surface back to its rest state when perturbed. This is the opposite to the result for
the circular geometry, since for the plane jet there is no transport of information,
when surface tension is considered, from one surface of the jet to the other.

To improve this result Hagerty & Shea (1955) assumed that the jet was sur-
rounded by an inviscid gas, and as the jet moved through the gas, which was
at rest, it resulted in an aerodynamic drag on the perturbed surface of the jet.
The result is that the jet is unstable to external perturbations within a limited
wavelength band.

These results were further improved by Li & Tankin (1991), who made the
same type of calculation but for a viscous liquid. The conclusions from their
study was that the main reason for instability is the aerodynamic drag from the
surrounding gas, but, in a certain parameter region viscosity enhances the growth.
Surface tension always acts as a restoring force.

Experimental investigations concerning plane liquid jets have mainly been
through flow visualizations, but also measurements of spray angle and break-
up lengths have been done. Mansour & Chigier (1991) studied atomization and
investigated the break-up length of a plane liquid jet with co-flowing gas, where
the gas has a higher velocity than the jet. This configuration is interesting since
in combustion annular liquid jets with co-flowing high speed gas are used for
fuel injection. Measurements of the turbulent flowfield in a free liquid jet were
made by Wolf, Incropera & Wiskanta (1992). Also, visualizations and measure-
ments of mean flow and turbulence quantities, by Laser Doppler Velocimetry, for
a high Reynolds number jet emanating from a converging channel was made by
Lindqvist (1996).
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Figure 1.3. Nozzles used. Channel (left) and slit (right).

1.2. Present work

The present work examines the flow and stability of laminar plane liquid jets.
Special emphasis is put on the influence of the nozzle producing the liquid jet. A
nozzle can have many different shapes, but to limit the investigation two canonical
shapes of the nozzle have been considered, one which consists of a plane channel
and the other which consists of a slit, figure 1.3.

The channel nozzle is assumed to have a fully or partly developed laminar
upstream flow. If the channel is long enough the velocity distribution in the
channel will take the form of a parabola. When this emanates into a ambient gas
with a lower viscosity and density the fluid inside the jet will be redistributed to
eventually become uniform.

The process of velocity profile relaxation has been investigated numerically.
The result is that the distance, `R, to reach a uniform velocity distribution is
`R = 0.36aRe, where Re is the Reynolds number based on half the channel height
a and the mean velocity. This shows that the relaxation of the jet is a weaker
process than for developing channel flow, for which the entrance length, `E, is
given by `E = 0.16aRe, see e.g. Schlichting (1979). Also, the calculation shows
that this length is approximately independent of the flow profile at the end of the
channel. The effect of a surrounding gas was also examined. If the viscosity of
the gas is smaller than the viscosity of the liquid in the jet the effect was shown
to be small. Experimental measurements of the velocity profile inside the jet was
made with a Pitot tube. These were compared with calculations which showed a
fair agreement confirming the theoretical calculations.

The flow through the slit nozzle on the other hand is mainly inviscid. It
has been shown in numerical calculations that the location of the free surface,
as predicted by inviscid theory, is in good agreement with numerical calculations
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and experiments for high contraction angles of the nozzle, Yu & Liu (1992). Also,
Pitot tube measurements of the liquid jet emanating from the slit nozzle were
made in the present study. These show that the jet also has a uniform velocity
distribution close to the nozzle, and is in agreement with inviscid theory.

The instabilities of the jet flow was studied through flow visualization us-
ing both the shadowgraph method and by adding reflective flakes to the water.
Several different types of instabilities were observed. For the channel jet flow
two-dimensional waves were observed on the surface of the jet. These waves grow
in amplitude and break up. The particle visualizations show that the break-up
occurs along a well defined line parallel to the nozzle. The break-up causes a
streamwise streaky structure and a partial disintegration of the jet. In both noz-
zles another type of stationary as well as non-stationary streaky instabilities were
observed originating from inside of the nozzle. However, the streaks caused by
the break-up of the waves appear to be the stronger. With increasing velocity the
break-up moves closer to the channel outlet. This type of instability could not be
found in the slit nozzle at any velocity possible to obtain in the experiments.

The jet emanating from the channel nozzle has been analyzed with linear
stability theory and five different unstable modes were found, three anti-symmetric
and two symmetric. These are unstable for different wavenumbers and positions in
the jet. In the experiments waves on the jet were triggered by acoustic excitation
at velocities below where the ‘natural’ waves occurred. Measurements of these
with the use of hot wire anemometry were performed, showing that the triggered
waves were anti-symmetric. The spatial variation of the wavelength of the waves
were obtained by image processing of the flow visualization experiments.



CHAPTER 2

Basic assumptions and geometry

A free liquid jet is produced by forcing a liquid through a nozzle and out into a
gas. The characteristics of the jet depend on the geometry of the nozzle, upstream
conditions and physical properties of the liquid and gas. Here the plane liquid
jet is assumed to be emanating from a converging channel, see figure 2.1, with an
upstream specified flow. Both the liquid and gas are assumed to be incompressible
Newtonian fluids. The equations governing the liquid and gas phases are the
momentum equations

ρ

(
∂ui
∂t

+ uk
∂ui
∂xk

)
= − ∂p

∂xi
+ µ

∂2ui
∂xk∂xk

+ ρfi, i = 1, 2, 3. (1)

and the continuity equation

∂ui
∂xi

= 0, (2)

where u = u(x, t) = uiei = uex+ vey +wez, is the velocity vector, p the pressure,
ρ the density, µ the dynamic viscosity and fi an external volume force.

The orientation and geometry of the nozzle can be seen in figure 2.1, where
the x-direction also will be referred to as the streamwise direction of the jet, the

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

x = xs x = 0

y

x =∞

x

Figure 2.1. Principle of geometry and flow
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y-direction as normal and the z-direction, (not shown in the figure), as spanwise
to the jet.

The liquid in the jet and the ambient gas are separated by a surface upon
which surface tension forces acts, and the location of this free surface is given by

H(x, y, z, t) = y − h(x, z, t) = 0, (3)

where h(x, z, t) is unknown. To be able to determine h an equation has to be
formulated which couples the velocity field and the location of the surface. The
equation of motion for the free surface is given by the kinematic condition that a
liquid particle on the surface always will remain there. This gives that

∂H
∂t

+ ui
∂H
∂xi

= 0.

By replacing H in this equation with the right hand side of eq. (3) this can be
written as an equation for h,

∂h

∂t
+ u

∂h

∂x
+ w

∂h

∂z
= v at y = h(x, z, t). (4)

Hence the normal velocity of the surface is the same as the normal velocity v of a
fluid element that exists there. This is true for the liquid in the jet as well as for
the gas outside the jet,

∂h

∂t
+ ul,g

∂h

∂x
+ wl,g

∂h

∂z
= vl,g at y = h(x, z, t).

Here superscripts l and g denote the liquid and gas phase respectively, a notation
that will be used in the following. If both phases are considered to be viscous there
is a no-slip condition between the liquid and gas which gives that the velocities in
all three directions have to be continuous across the free surface,

uli = ugi at y = h(x, z, t). (5)

This also implies that a derivative of any order of the primitive variables ui or
p, with respect to the streamwise or spanwise coordinates, x or z, are continuous
across the surface. This can be seen from

d

dx
ul,gi (x, h(x)) =

∂ul,gi
∂x

+
dh

dx

∂ul,gi
∂h

and since the last term is identical for both phases we obtain

∂uli
∂x

=
∂ugi
∂x

. (6)

Together with the continuity equation this gives that

∂vg

∂y
=
∂vl

∂y
, at y = h(x, z, t). (7)

The body force in eq.(1) is considered since in any type of experimental set-up
or practical application gravity will always be present and either bend or stretch
the jet depending on the direction to which it is directed. If the jet is directed in
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any other direction than vertical the stability of the jet will also be affected by
gravity.

The gravity will only be taken into account to be able to compare experimental
and numerical results. When gravity is considered it is assumed to be acting only
in the streamwise direction of the jet, which is consistent with the experimental
set-up,

f = g ex.

2.1. Boundary conditions

The equations describing the flow of the liquid jet and ambient gas as well as the
location of the free surface have to be complemented with appropriate boundary
and initial conditions. In the converging channel the walls consist of solid surfaces
which give no-slip conditions for the flow,

u = v = w = 0 at y = ±yw xs < x ≤ 0.

For x > 0, i.e. for the free jet, boundary conditions must also be specified for
the ambient gas away from the jet. Also conditions that describe the liquid-gas
interface have to be formulated. The surface separating the liquid in the jet and
the gas is subjected to pressure and viscous stresses from each of the phases. Also,
the surface is influenced by surface tension effects. At the surface there has to be
a force balance,

sli − sgi = sγi , (8)

where s = siei is the stress at the surface, see figure 2.2, and γ denotes the
superficial forces.

The stresses from the liquid and gas are given by projecting the stress tensor
for each fluid phase,

σl,gij = −pl,gδij + µl,g(
∂ul,gi
∂xj

+
∂ul,gj
∂xi

),

onto the normal of the surface, figure 2.2,

sl,gi = σl,gij nj (9)

where the normal is given by

n =
∇H(x, y, z, t)

|∇H(x, y, z, t)| =
(
−∂h
∂x
, 1,−∂h

∂z

)
|∇H(x, y, z, t)|−1, (10)

and

|∇H(x, y, z, t)| =
(

1 + (
∂h

∂x
)2 + (

∂h

∂z
)2

) 1
2

.
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nñ

s

t
a

Figure 2.2. Definition of vectors on the free surface.

The surface is assumed to have an infinitesimal thickness and the jump in stress
due to surface tension is a vector given by,

sγi = γ(
1

Rx

+
1

Rz

)ni = γ
∂nj
∂xj

ni,

where γ is the coefficient of surface tension, Rx and Rz are the radiia of curvature
in the xy- and yz-plane respectively. This gives three conditions at the surface,
i = 1, 2, 3,

−(pl − pg)δijnj + µl(
∂uli
∂xj

+
∂ulj
∂xi

)nj − µg(
∂ugi
∂xj

+
∂ugj
∂xi

)nj = γ
∂nj
∂xj

ni. (11)

Because of the definition of the normal to the free surface, eq. (10), these three
conditions are all non-linear.

If the equations are restricted to a two-dimensional formulation in the xy-
plane, these boundary conditions will look like

− (pl − pg)nx + 2(µl − µg)∂u
l

∂x
nx +

(
µl
∂ul

∂y
− µg ∂u

g

∂y

)
ny

+ (µl − µg)∂v
l

∂x
= γ

(
∂nx
∂x

+
∂ny
∂y

)
nx,
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− (pl − pg)ny + 2(µl − µg)∂v
l

∂y
ny +

(
µl
∂ul

∂y
+ µg

∂ug

∂y

)
nx

+ (µl − µg)∂v
l

∂x
nx = γ

(
∂nx
∂x

+
∂ny
∂y

)
ny.

where the conditions for continuous velocity at the surface have been used, eqs. (5)-
(7). To simplify these the definition of the normal to the surface, eq. 10, is used

(pl − pg)hx − 2(µl − µg)∂u
l

∂x
hx +

(
µl
∂ul

∂y
− µg ∂u

g

∂y

)
+ (µl − µg)∂v

l

∂x
= γ

d

dx

(
hx√

1 + h2
x

)
hx,

− (pl − pg) + 2(µl − µg)∂v
l

∂y
−
(
µl
∂ul

∂y
+ µg

∂ug

∂y

)
hx

− (µl − µg)∂v
l

∂x
hx = −γ d

dx

(
hx√

1 + h2
x

)
.

The tangential shear on the surface is obtained if the stress, s, is projected
onto the tangent to the surface t = (ny,−nx),

t · (sl − sg − sγ) = 0.

This gives

4(µl − µg)∂v
l

∂y
hx +

{
µl
∂ul

∂y
− µg ∂u

g

∂y

}
(1− h2

x)

+ (µl − µg)∂v
l

∂x
(1− h2

x) = γ
d

dx

(
hx√

1 + h2
x

)
hx, (12)

Then the stresses are projected onto ñ = (nx,−ny), figure 2.2,

ñ · (sl − sg − sγ) = 0,

which gives

(pl − pg)(1− h2
x) + 2(µl − µg)∂u

l

∂x
(1 + h2

x) = γ
d

dx

(
hx√

1 + h2
x

)
(1− h2

x). (13)

These new boundary conditions, eqs. (12) and (13), show that the ambient gas
only enters through the pressure and the first normal derivative of the streamwise
velocity.

The remaining boundary conditions are obtained from the assumption that
the flow is symmetric with respect to the centreline of the channel and jet.

∂u

∂y
= 0, v = 0,

∂p

∂y
= 0 at y = 0.
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2.2. Flow of the surrounding gas

The flow of the surrounding gas depends on the geometry outside the jet. In order
to investigate the effect of a viscous gas without making assumptions about the
geometry and without having to solve the flow for the gas phase an approximate
explicit expression for the tangential shear of the gas phase on the surface of the
jet is assumed.

To estimate the friction of the gas the solution to Stokes first problem, the
infinite starting plate (see e.g. Schlichting (1979)), is used,

ug = usurface(1− erf η), where η = (y − a)/(νgt) 1
2 , (14)

where usurface is the streamwise velocity of the surface of the jet. From this
expression the tangential shear at the free surface in the streamwise direction is
given by

σ = µg
∂ug
∂y

= −µgusurface(πνgt)−
1
2 . (15)

where νg is the kinematic viscosity of the gas. The tangential shear is a function
of time, t, but can be converted into a downstream distance by

t = Umx.

With this substituted for t in eq. (15) the shear at a position x of the surface is
given by

σ = −µgusurface(
Um
πνgx

)
1
2 .

This assumption for shear is considered only since an exact solution of the flow
field in the gas outside of the jet depend on the far field conditions for the gas,
and, when performing the stability analysis the analytical solution provides an
easy access to the velocity distribution in the gas.

2.3. Scaling of the governing equations

In the following we will express the equations in non-dimensional form. The
reference length is defined as the half channel height, a, at the exit x = 0 and the
reference velocity is defined from the flow rate Q through the nozzle, Um = Q/a.
This will give Um as the mean velocity at the exit, x = 0. These are introduced
in eq. (1) for both phases and give the following non-dimensional form of the
momentum equation

∂ũi
∂t

+ ũk
∂ũi
∂x̃k

= −∂p̃
l,g

∂x̃i
+

1

Rel,g
∂2ũi

∂x̃k∂x̃k
+

1

Fr2
, (16)

and the continuity equation

∂ũi
∂x̃i

= 0, (17)
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where the velocity vector, pressure and derivatives in non-dimensional form are
given by

ũi =
ui
Um

, p̃l,g =
p

ρl,gU2
m

and
∂

∂x̃i
=

1

a

∂

∂xi
.

The Reynolds number, Rel,g, and the Froude number, Fr, are defined as

Rel,g = ρl,gUma/µ
l,g and Fr = Um/(ag)

1
2 .

As the Froude number is independent of density and viscosity, it is the same in
the momentum equations for both liquid and gas while for the Reynolds number
the relation is given by

Reg =
ρ̃

µ̃
Rel,

where ρ̃ = ρg/ρl is the density ratio and µ̃ = µg/µl is the ratio of the dynamic
viscosities. This also gives that

p̃l = ρ̃ p̃g,

if the unscaled pressure p is the same in both liquid and gas.
The scaling of the no-slip and symmetry boundary conditions is trivial while

the conditions for the liquid-gas interface, (12) and (13), are divided by µlUm/a
and ρlU2

m/a respectively. This gives

4(1− µ̃)
∂ṽl

∂y
hx +

{
∂ũl

∂y
− µ̃∂ũ

g

∂y

}
(1− h2

x)

+ (1− µ̃)
∂ṽl

∂x
(1− h2

x) =
1

We

d

dx

(
hx√

1 + h2
x

)
hx, (18)

(p̃l − ρ̃p̃g)(1− h2
x) +

2

Rel
(1− µ̃)

∂ũl

∂x
(1 + h2

x) =

1

We

d

dx

(
hx√

1 + h2
x

)
(1− h2

x). (19)

where We = ρlU2
ma/γ is the Weber number. There is no need to introduce a

scaling of the normal of the surface since hx = h̃x̃.
The explicit expression for the shear in the gas phase at the surface can be

scaled to give,

∂ũ

∂ỹ
= −ũsurface(

Uma

πνg
1

x̃
)

1
2 = −ũsurface(

Reg

πx̃
)

1
2 .
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2.4. Inlet and outlet conditions

The upstream conditions depend on the geometry of the nozzle. One could think
of a vast amount of different designs. Even for the plane channel the upstream
conditions are not simple, but could take various forms.

2.4.1. Channel nozzle. Far upstream, i.e. x ¿ 0, the flow is entering a plane
channel with a uniform velocity distribution. The flow then starts to develop
and if the channel is long enough the result will be the well known case of plane
Poiseuille flow. This developing flow has been described by Schlichting (1979) and
gives the inlet length, `E, for fully developed Poiseuille flow as a linear function
of Reynolds number,

`E = 0.16aRe

where Re is the Reynolds number based on half channel height a and mean velocity
Um. The validity of this expression for high Reynolds numbers is discussed by
Van Dyke (1970).

The liquid jet should also satisfy a global momentum- and mass conservation,
see appendix A.

2.4.2. Slit nozzle. The flow through a slit nozzle is assumed to be well described
by inviscid theory. This assumption is made based on the boundary layer solution
to the flow in a convergent channel, figure 2.3. The slit nozzle is replaced by a
convergent channel where the nozzle edges are positioned at x = a. The boundary
layer thickness, δ, at this position would then be δ = 3a(Rel)−

1
2 . At Re = 2000

this gives δ ≈ a/15, which means that the effect of viscosity is limited to a region
close to the wall and for an inviscid jet the fluid is accelerating close to the nozzle
edges, see e.g. Söderberg (1994).
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AAAAAAAAAAAAAAAAAAAAAA

U(x)

a

δ

y

x

Figure 2.3. The flow in a converging channel where the origo is
considered to be a sink and U(x) is the potential solution to the
problem, (inviscid irrotational flow).



CHAPTER 3

Numerical solution of basic flow

The basic flow of a plane liquid jet is assumed to be independent of the spanwise
coordinate z and therefore considered to be well described by the two-dimensional
Navier-Stokes equations1. Further assumptions are that the flow is laminar and
steady. Also, the flow is assumed to be symmetric with respect to the yz-plane.

The equations (16) and (17) are solved by the method of finite differences. A
solution is sought in the domain bounded by

xs ≤ x ≤ x∞,

in the streamwise direction, and

0 ≤ y ≤ yw for xs < x ≤ x∞,

0 ≤ y ≤ h(x) for 0 < x ≤ x∞,

in the normal direction. Here x∞ is set to be a point far downstream of the
nozzle where the flow is assumed to be parallel. The equations are solved for the
primitive variables u, v and p. The domain is partly bounded by the free surface,
which is unknown, and therefore the calculation has been made on an adaptive
grid. This means that a new grid has to be generated everytime the location of
the free surface changes in physical space. The surface will always coincide with
a part of the top boundary in the computational domain, which will give a well
defined surface as a part of the solution.

The transform that will map the physical domain onto the computational is
given by

ξ = ξ(x, y) and η = η(x, y).

These variables represent a conformal transformation and satisfy the Laplace equa-
tion

ξxx + ξyy = 0 and ηxx + ηyy = 0,

and the Cauchy-Riemann conditions

ξx = ηy and ξy = −ηx.

1In the following all equations will be given in non-dimensional form, except where otherwise
stated.

17
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If these variables are introduced into equations (16) and (17), the following trans-
formed equations are obtained

UC ∂u

∂ξ
+ V C ∂u

∂η
= −(

ξx
J

∂p

∂ξ
+
ηx
J

∂p

∂η
) +

1

Re
(
∂2u

∂ξ2
+
∂2u

∂η2
) (20)

UC ∂v

∂ξ
+ V C ∂v

∂η
= −(

ξy
J

∂p

∂ξ
+
ηy
J

∂p

∂η
) +

1

Re
(
∂2v

∂ξ2
+
∂2v

∂η2
) (21)

∂UC

∂ξ
+
∂V C

∂η
= 0, (22)

where the assumption of a steady flow has been used. Here J is the determinant
of the Jacobian matrix, J, of the transformation,

J =

[
ξx ξy
ηx ηy

]
⇒ J = |J| = ξxηy − ξyηx.

UC and V C are velocities in the transformed coordinate system in the ξ and η
directions, respectively, given by

UC = (ξxu+ ξyv)/J and V C = (ηxu+ ηyv)/J.

A conformal transformation is by definition also orthogonal and has several advan-
tages compared to a non-conformal transformation. The grid related parameters
are limited and second derivatives of transform variables, ξ and η, are not present
in the equations. These may otherwise degrade the accuracy of the solution if
the grid is distorted. The transform coordinates can also be interpreted as rep-
resenting the potential and streamfunction, of an inviscid irrotational flow in the
geometry prescribed by the walls, centreline and free surface.

An adaptive conformal grid requires the Laplace equation for the transform
variables to be solved repeatedly. Since this is done numerically sharp corners
can give a grid where internal vertices ends up outside the physical domain. The
flow of the ambient gas was not calculated but instead treated explicitly by the
approximation introduced in section 2.2.

3.1. Boundary conditions

In order to solve the transformed equations the boundary conditions has to be
transformed too. The no-slip conditions at the wall, eq. (2.1), will not be affected
by this,

u = v = 0 at y = yw.

At the centreline the x and ξ coordinates are parallel, i.e. ξy = 0, we obtain

∂p

∂y
= ξy

∂p

∂ξ
+ ηy

∂p

∂η
= ηy

∂p

∂η
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Hence

∂p

∂η
= 0 at y = η = 0.

which is also true for the streamwise velocity u. The conditions at the centreline
then becomes

∂u

∂η
= 0, v = 0, and

∂p

∂η
= 0 at η = 0. (23)

The condition for the stresses at the surface, eq. (11), contains several derivatives
of the transformation variables. The expressions becomes more complicated and
are implemented as is. The velocity normal to the surface is parallel to the η
direction in the computational domain. This gives

V C = 0 at η = 1. (24)

This can be set in a more useful form with the aid of the transformed continuity
equation (see eq. 22), which can be integrated in the η direction. Together with
eq. (24) this results in an integral expression,∫ 1

0

(
∂UC

∂ξ
+
∂V C

∂η

)
dη =

∫ 1

0

∂UC

∂ξ
dη + V C

η=1

− V C

η=0

=
∂

∂ξ

∫ 1

0

UC dη = 0

⇒
∫ 1

0

UC dη = constant.

This replaces the kinematic condition at the free surface. Totally there are six
conditions. Five of these are needed to solve the equations of motion and one to
find the location of the free surface.

3.2. Discretization

The equations (20)-(22), are discretized by the method of finite differences. The
computational domain is rectangular and the grid equidistant, figure 3.1. The
dependent variables u, v and p are evaluated at the same point. Since the con-
formal transformation gives the potential flow in the geometry prescribed by the
wall, centreline and free surface, the viscous and inviscid flowfields are assumed
to be similar, if the streamfunction is considered. Hence the flow will be close
to parallel in the computational domain. All second derivatives are represented
with central differences and the first order derivatives by a mixed upwind-central
difference scheme in order to prevent non-physical oscillations in the solution. The
discretizations of the derivatives at the node j, k are given by[

∂u

∂ξ

]
j,k

=
1

2∆ξ
(uj+1,k − uj−1,k) +

q

3∆ξ
(−uj+1,k + 3uj,k − 3uj−1,k + uj−2,k)[

∂2u

∂ξ2

]
j,k

=
1

∆ξ2 (uj+1,k + 2uj,k − uj−1,k)
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Figure 3.1. Gridpoints in computational domain.

q
[
∂u
∂ξ

]
j,k

error type

0 (uj+1,k − uj−1,k)/2∆ξ O(∆ξ2) central

0.375 (3uj+1,k + 3uj,k − 7uj−1,k + uj−2,k)/8∆ξ O(∆ξ2) QUICK

0.5 (2uj+1,k + 3uj,k − 6uj−1,k + uj−2,k)/6∆ξ O(∆ξ3) third order

1.5 (3uj,k − 4uj−1,k + uj−2,k)/2∆ξ O(∆ξ2) upwind

Figure 3.2. Dependence of q.

The parameter q is continuously variable in the interval, 0 ≤ q ≤ 1.5. It is used
to control the degree of upwind discretization. Some examples of discretizations
can be found in table (3.2). All choices of q produces a scheme where the error
is of second order except for the case q = 0.5, when the scheme will be of third
order.

3.3. Solution method

The discretized equations (20)-(22), are solved by an iterative method, which can
be described by figure (3.3). First the initial grid is calculated. This is done by
using the location of the free surface given by the solution to the flow of a potential
jet. The initial guess for the flow is also taken from this solution. Starting with
this initial guess the equations are solved implicitly in the η-direction starting at
the upstream boundary, j = 3. The first two ξ positions are determined by the
choice of inlet conditions. If, for example a plane channel with fully developed
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Generate grid by use of the
solution for the potential jet

⇒ ξ0(x, y), η0(x, y)

?

Calculate initial guess

⇒ u0
j,k, v

0
j,k and p0

j,k

?

Solve equations by march-
ing downstream

⇒ un+1
j,k , v

n+1
j,k and pn+1

j,k

??

Compare new solution with
previous

err =
∑
j

∑
k

|un+1
j,k − unj,k|

?

Calculate new surface loca-
tion

⇒ hm+1
j

?

Compare new surface loca-
tion with previous

err =
∑
j

|hm+1
j − hmj |

?

Converged solution

⇒ uj,k, vj,k and pj,k

-

err > ε

6

Generate and
evaluate new
grid

⇒ ξm+1
j,k , ηm+1

j,k

�

err > ε

Figure 3.3. Solution method



22 NUMERICAL SOLUTION OF BASIC FLOW

flow is investigated, the velocity distribution in the η-direction is the same for
both points, which is equal to setting v = 0 as a boundary condition. At the
centreline the boundary conditions (23), are specified at all streamwise positions,
whereas inside the nozzle the zero velocity conditions are used at the wall. When
the equations are solved for the flow outside the jet the conditions (24) and (18)
are used instead of the no-slip conditions.

The flow is solved iteratively with QUICK differencing, table 3.2, and subse-
quent downstream marches and underrelaxation, see e.g. Fletcher (1991). Dur-
ing these iterations the free surface is fixed and when the solution is sufficiently
converged the location of the surface is corrected with the aid of the remain-
ing boundary condition eq. (4). After correcting the location of the surface the
Laplace equations for the transform variables are solved and derivatives of the
transform variables re-evaluated. This iterative procedure is repeated until the
solution is sufficiently converged.

3.4. Results for the basic flow

Calculations have been performed by the method described in the previous section.
The aim has been to provide some insight in the flow of plane liquid jets. Also
these calculations provide basic velocity distributions for stability calculations.
The liquid jet is emanating from a plane channel with an upstream parabolic
velocity distribution, i.e. plane Poiseuille flow. Calculations were made for the
case of a jet flowing into vacuum, and the effect of a not fully developed flow in
the channel was examined. Also, calculations were made to study the effect of a
viscous ambient gas and gravity acting in the streamwise direction.

3.4.1. Channel flow. The outflow from a plane channel with an upstream fully
developed Poiseuille flow can be seen in figure 3.4. The figure shows the velocity
distribution at several downstream positions for both the u and v components.
The v velocity is several orders of magnitude smaller the u velocity and is therefore
multiplied by a factor of 500. The u profile at x = −40 represents the upstream
boundary condition, the perfect parabola obtained in a plane Poiseuille flow. The
normal velocity at this point is identically zero. These conditions are constant
throughout the channel. The effect of the downstream nozzle appears within one
channel height from the exit. At the next position, x = 0 the profile represents the
end of the channel, i.e. the nozzle edge. Here the streamwise velocity distribution
has changed. The centreline velocity has decreased slightly and the profile is wider.
This can also be seen by examination of the normal velocity distribution at the
same point. This shows that fluid is transported from the centreline towards the
walls. At the walls however, the normal velocity is directed towards the centre
of the channel. When the fluid leaves the channel the boundary condition will
change from no-slip to no-shear which will result in an acceleration of the fluid
at the surface. The acceleration is highest directly after the nozzle edge after
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Figure 3.4. Velocity profile relaxation, Re = 1000, 1/We = 0,
ρ̃ = 0 and µ̃ = 0. u-velocity (top) and v-velocity (bottom). v is
here scaled up 500 times compared to u

which it decays. At x = 40 the streamwise velocity at the surface is 0.8 Um, and
the jet has undergone a contraction. This contraction is a consequence of the
conservation of momentum and mass flow. Also, this profile has inflexion points.
The profiles at positions further downstream are all similar to this.

In figure 3.5 both velocity components have been plotted against the η- and
the y-coordinates. The left part of each graph shows the velocity plotted against
the computational coordinate η. This clearly shows how the relaxation seems to
occur with the two points at η = ±0.48 as fixed for positions downstream of the
nozzle. The right part shows the velocity plotted against the ‘real’ coordinate y.
Also in this figure the v-velocity has been scaled up 500 times.

In figure 3.6 the streamwise velocity at the surface and centreline of the jet is
plotted against the scaled coordinate x/Re for a range of Reynolds numbers. Also
the location of the free surface is plotted in this figure.
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Figure 3.5. Velocity profile relaxation u (left) and v (right). Plot-
ted against η and y, (left and right in each graph).
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Figure 3.6. Velocity at the centreline and surface as well as the
location of the free surface. (◦) Re = 100, (×) Re = 1000; (—)
Re = 10000, ρ̃ = 0 and µ̃ = 0.

In section 2.4.1 the entrance length, `E, for developing channel flow was dis-
cussed, and it scales as x/Re. A relaxation length, `R, for the channel jet can also
be found from figure 3.6. If defining `R as the length from the edge of the channel
to the downstream location where |usurface − uCL| < 0.01, then

`R = 0.36 xRe.

This figure also shows that the distance to reach the final jet thickness is con-
siderably shorter than the time it takes for the velocity to reach uniformity, the
difference is approximately a factor of five.

Calculations have also been performed with profiles at the nozzle edge that
deviates from the parabolic. These were obtained by starting the calculation with



3.4. RESULTS FOR THE BASIC FLOW 25

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c E

c R    

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

c E

c R    

Figure 3.7. Relaxation length as a function of entrance length for
the velocity profile, (left), and surface location (right). (◦) Re =
1000; (+) Re = 10000, ρ̃ = 0 and µ̃ = 0.

a uniform velocity distribution at the upstream boundary. The inlet length `E
and the relaxation length `R are defined as

`E = cE aRe

`R = cR aRe

respectively, where a is half the channel height. The inlet length was then varied
for two different Reynolds numbers, Re = 1000, 10000. Thus for each inlet length
there is one corresponding relaxation length `R = f(`E). The results can be seen
in figure 3.7. The left graph contains the result for the relaxation of the velocity
profile and the right graph contains the relaxation of the free surface. In both
graphs the scaling with the Reynolds number seems to be applicable too. However,
the relaxation length for the velocity is only changing slightly, while the length
for the surface changes more clearly. The points for cE = 0 are not calculated but
assumed to be valid since if there is no channel there will be no change to the
uniform velocity profile.

If, in a real flow situation, the jet is directed downwards, gravity will cause an
acceleration of the fluid in the jet. Figure 3.8 shows the result for a jet, where the
Froude number was kept constant, Fr = 20, and the Reynolds number was varied.
This corresponds to changing the viscosity of the liquid and keeping channel height
and velocity constant. As the figure shows a low Reynolds number means that
the effect of gravity during the relaxation process is small, this since the length
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Figure 3.8. Velocity at centreline and surface, Fr = 20. (solid)
Re = 100; (dotted) Re = 500; (dash-dotted) Re = 1000

between the nozzle and end of relaxation is longer when the Reynolds number is
increased. Thus, assuming that the velocity is the same for two liquid jets with
different viscosity, the time for the gravity to act is shorter for the liquid with
highest viscosity, i.e. lowest Reynolds number.

Up to this point the ambient gas has been assumed to be inviscid. Clearly
viscosity will affect the flow of the jet, since this will create a shear, i.e. drag, on
the surface. In figure 3.9 results are shown for a constant Reynolds number for
the jet with µ̃ varying. This figure shows that an increase of the viscosity of the
gas causes the jet to expand downstream. Also the velocity in the jet decreases.
The effect becomes more and more dominant when the viscosity ratio is increased.
The asymptotic behaviour of the jet will be dictated by the assumption made for
the flow of the ambient gas. For a ratio comparable to a water jet emanating into
the air the effect of a viscous ambient gas is very small in the relaxation region,
i.e. from the end of the channel to `R.
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Figure 3.9. Velocity profile for Re = 1000. (solid) µ̃ = 0.01;
(dotted) µ̃ = 0.1; (dash-dotted) µ̃ = 10. Positions for profiles, from
left to right are x = 0, 40, 80, 120, 160.



CHAPTER 4

Linear stability

Linear stability theory is often used as a tool to predict the transition from laminar
to turbulent flow. The idea is to subject a laminar flow to a small, i.e. infinitesi-
mal, perturbation and investigate if the disturbance grows in time and/or space.
Also the stability of the plane liquid jet can be examined in this way.

The present flow visualization results of plane liquid jets emanating from the
plane channel flow nozzle, clearly show waves on the surface of the jet. These
waves are initially homogenous in the spanwise direction. Hence, the disturbance
is two-dimensional and independent of the spanwise coordinate.

The stability investigation is also limited to two-dimensional travelling wave
disturbances, which means that the possibility for three dimensional disturbances
are excluded, e.g. stationary roll cells or oblique waves.

The basic flow is a function of both x and y, but the variation in the streamwise
direction is assumed to be slow compared to the streamwise wavelength of the
disturbance. This means that the basic flow can be assumed to be locally parallel,
i.e. only dependent on the y-coordinate.

4.1. Linear stability equations

The velocity field can be divided into the basic flow field and the disturbance flow
field such that

u = {U(y) + u′(x, y, t), v′(x, y, t)} and p = P + p′(x, y, t),

where the variables are scaled according to section 2.3, but with the lengthscale
taken to be alocal, i.e. half the undisturbed local jet thickness, and primes denotes
disturbance quantities. This decomposition can be inserted into the Navier-Stokes
equations eqs. (16) and (17), and after linearization, i.e. neglecting terms that
are quadratic in the disturbance quantities, this becomes

∂u

∂t
+ U

∂u

∂x
+vDU = −∂p

∂x
+

1

Rel,glocal
(
∂2u

∂x2
+
∂2u

∂y2
) (25)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Rel,glocal
(
∂2v

∂x2
+
∂2v

∂y2
) (26)

28



4.1. LINEAR STABILITY EQUATIONS 29

where the primes have been dropped1 and D = d/dy. Similarly for the continuity
equation

∂u

∂x
+
∂v

∂y
= 0. (27)

The Reynolds number Rel,glocal represents a local quantity that is obtained when
scaling the dimensional equations with half the local jet thickness, alocal, the local
mean velocity in the jet and the viscosity for the liquid and gas respectively. Since
the flow rate is constant in the jet this means that the Reynolds number will be
constant at all positions. The scaling of the length and velocity variables will
however change. This implies that when the whole jet is considered the results
obtained at one streamwise position has to be converted to the ‘global’ scaling,
i.e. the half channel height and mean velocity in the channel.

The linearized momentum and continuity equations (25)–(27), can be used to
obtain an equation for the v-disturbance

(
∂

∂t
+ U

∂

∂x
)∇2v −D2U

∂v

∂x
=

1

Rel,g
∇4v. (28)

This equation is linear in x and t, hence a normal mode ansatz can be made

v = v̂(y) exp [iα(x− ct)]. (29)

where v̂(y) is the amplitude function, α the streamwise wavenumber and c the
phase speed. By substituting eq. (29) into eq. (28) this becomes the well known
Orr-Sommerfeld equation,

iα(U − c)(v̂′′ − α2v̂)− iαD2Uv̂ =
1

Rel,g
(v̂iv − 2α2v̂′′ + α4v̂). (30)

The Orr-Sommerfeld equation (30) together with the correct boundary conditions
forms an eigenvalue problem,

F(α, c,Re) = 0.

This eigenvalue problem is solved for the complex eigenvalue c = cr + ici, by
choosing a fixed Reynolds number and a real wavenumber α. The real part cr
gives the phase velocity of the disturbance and the imaginary part ci together
with the wavenumber gives the growth rate in time, αci. If ci > 0 the flow is
linearly unstable, i.e. the disturbance is growing in time.

The disturbances on the free surfaces are given by,

H+1(x, y, t) = y − 1− h+1(x, t) = 0 at y = 1,

H−1(x, y, t) = y + 1− h−1(x, t) = 0 at y = −1.

1Throughout the rest of this chapter uppercase letters indicate quantities related to the
basic laminar flow field, and lowercase letters indicate disturbance quantities.
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If these expressions are inserted into the kinematic condition for the surfaces this
gives

∂h±1

∂t
+ U l,g ∂h±1

∂x
= vl,g at y = ±1. (31)

With the normal mode ansatz

h±1 = ĥ±1 exp [iα(x− ct)],
the kinematic condition becomes

iα(U l,g − c)ĥ±1 = v̂l,g at y = ±1. (32)

Here ĥ±1 is the amplitude of the disturbances at the two surfaces. Because of the
symmetry of the basic flow with respect to the centreline of the jet, even and odd
solutions to the eigenvalue problem can be treated separately2. This means that
the eigenvalue problem can be solved in half the jet. The boundary conditions at
the centreline are determined by the choice of even or odd solutions. The result
of the eigenvalue problem is several different eigenvalues. To each eigenvalue
belongs an eigenfunction, i.e. v̂. The eigenvalue and the eigenfunction are said to
represent a ‘mode’.

4.2. Boundary conditions at the surface

The boundary conditions at the surface, eq. (8), are also linearized with use of
the fact that the basic flow field satisfies the boundary conditions. At y = 1 + h
the boundary conditions are written as,

∂vl

∂x
+
∂ul

∂y
+
dU l

dy
− µ̃

(
∂vg

∂x
+
∂ug

∂y
+
dU g

dy

)
= 0 (33)

pl − 2

Rel
∂vl

∂y
− ρ̃pg + µ̃

2

Rel
∂vg

∂y
+

1

We

∂2h

∂x2
= 0. (34)

These are linearized to the location of the boundary of the basic flow, y = 1. The
assumption that the flow is parallel gives the following condition for the shear of
the basic flow at the jet surface,

dU l

dy y=1

= µ̃
dU g

dy y=1

.

Hence these two terms should cancel in eq. (33), but since the surface is perturbed
a distance h from its laminar state this is not the case. This can be seen from a
series expansion of the derivative at y = 1, which gives

dU l,g

dy y=1+h

=
dU l,g

dy y=1

+ h
d2U l,g

dy2
y=1

+O(h2).

2A v-even solution is equivalent to anti-symmetric wave and vice versa, see figure 1.2.
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For the basic flow

d2U l

dy2
y=1

6= d2U g

dy2
y=1

,

in general. The boundary condition, eq. (33), can then with the aid of the conti-
nuity equation (27), be written as

∂2vl

∂x2
− ∂2vl

∂y2
− µ̃

(
∂2vg

∂x2
− ∂2vg

∂y2

)
+

(
d2U l

dy2
− µ̃d

2U l

dy2

)
dh

dx
= 0 (35)

The pressure in eq. (34) can be removed by using the streamwise momentum
equation (25) and the continuity equation (27). This gives(

∂

∂t
− U l ∂

∂x

)
∂vl

∂y
− 1

Rel

(
3
∂2

∂x2
+

∂2

∂y2

)
∂vl

∂y

− ρ̃
(
∂

∂t
− U g ∂

∂x

)
∂vg

∂y
+

µ̃

Rel

(
3
∂2

∂x2
+

∂2

∂y2

)
∂vg

∂y
+

1

We

∂4h

∂x4
= 0. (36)

The normal velocity is continuous across the surface, and since it in the basic
flow is zero, v has to be continuous at y = 1,

vl = vg. (37)

However, the streamwise velocity should also be continuous across the surface,
y = 1, but if the basic flow is varying with y, then the condition becomes

ul + U l + h
dU l

dy
= ug + U g + h

dU g

dy
,

where a series expansion of the basic flow around y = 1 has been performed
and terms quadratic in the disturbance quantities dropped. The basic flow is
continuous, hence

ul + h
dU l

dy
= ug + h

dU g

dy
, (38)

which by taking ∂/∂x and using the continuity equation (27) can be written as

−∂v
l

∂y
+
dh

dx

dU l

dy
+
∂vg

∂y
− dh

dx

dU g

dy
= 0. (39)

4.2.1. Flow of an ambient inviscid gas. If the ambient gas is inviscid a solu-
tion to the disturbance quantities can be found analytically. We study the upper
half plane y ≥ 0 and the flow of the gas can be described by a velocity potential
φ, which satisfies

∇2φ = 0,

with the far field boundary condition

lim
y→∞

φ = 0.
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With the normal mode ansatz, eq. (29), the solution for y ≥ 1 is

φ = C exp{α[1− y + i(x− ct)]}, (40)

where the constant C has to be determined. There is no shear between the liquid
and gas, hence the streamwise component of the velocity is discontinuous at the
surface. The basic flow of the gas is considered to be zero everywhere, and the
kinematic condition, eq. (31), becomes

vg + U l,g ∂h

∂x
= vl ⇒ vg = vl − U l∂h

∂x
. (41)

By combining eqs. (40) and (41), C is evaluated and the velocity potential in the
gas becomes

φ = −v
l − iαĥU l

α
exp{α[1− y + i(x− ct)]}.

The pressure on the surface from the gas is then given by the unsteady Bernoulli
equation,

pg = −∂φ
∂t

= ic(vl − iαĥU l) exp{α[1− y + i(x− ct)]}.

This inviscid treatment of the flow in the gas is similar to what was used by
Li & Tankin (1991).

4.3. Solution method

There exist several solution methods for the eigenvalue problem generated by
the linear stability theory, such as shooting methods that are used to find one
single eigenvalue at the time, and methods that solve for the complete eigenvalue
spectrum.

Here the eigenvalue problem has been solved with a spectral method, where
the solution is represented as an infinite sum of Chebyshev polynomials,

v̂ =
∞∑
n=0

bnTn(y), for− 1 ≤ y ≤ 1, (42)

where Tn is the n-th Chebyshev polynomial and bn coefficients to be determined.
The series is truncated at some finite value N and inserted into the equation and
boundary conditions. This gives a linear system of the form

Lb = cMb,

where b = {b0, b1, b2, . . . , bN−1, bN} is the coefficient vector to the Chebyshev
expansion (42). The matrices L andM are given by

L = iαU(T′′ − α2T)− iαU ′′T− 1

Rel,g
(Tiv − 2α2T′′ + α4T) (43)

M = iα(T′′ − α2T), (44)
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Figure 4.1. growth rate as a function of wavenumber. We = 40,
Re = 63.2, ρ̃ = 0.1, (◦) Data from Li & Tankin (1991) and (–)
calculation with inviscid ambient gas. Also, calculations with a
viscous gas µ̃ = 0.001. (- -) δ99 = 0.023, (- · -) 0.072 and (· · · ) 0.22.
Even modes (left) and odd modes (right).

where T(k) is a matrix representing the k:th derivative of the Chebyshev polyno-
mials. The zeros of the highest order polynomial are chosen as collocation points.
The grid points are given as

ym = cos
πm

N
, −1 ≤ y ≤ 1, m = 0, 1, . . . , N − 1, N

which will give a distribution with grid points clustered at the ends of the interval.
The matrices (43) and (44) have dimension (N +1)× (N +1). To these are added
the boundary conditions (35)-(39) and the kinematic equation (32) for the free
surface. This is done for the liquid as well as for the surrounding gas. The
conditions at the free surface will couple these matrices. The resulting general
eigenvalue problem can be solved with standard numerical methods. Here the
eigenvalue problem was solved by the generalized eigenvalue solver, eig, built into
the commercially available mathematical software Matlab.

4.4. Linear stability results for uniform jet flow

The stability of the plane liquid jet was analyzed for various initial velocity profiles
and for various parameter regions. However, first results of calculations for a
jet with a uniform velocity distribution are presented in order to compare with
earlier reported results, Li & Tankin (1991). These results were obtained with
the assumption that the surrounding gas is inviscid, and with a basic velocity
distribution in the gas that is zero everywhere, i.e. there is a difference in the
velocity for the gas and liquid at the surface.
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In figure 4.1 the growth rate is plotted as a function of wavenumber. For
this case only one unstable even mode and one unstable odd mode exist. The
figure contains one graph showing the growth rate for the even mode and one
graph showing the growth rate for the odd mode at Re = 63.2. For this Re the
even mode is the most unstable for all wavenumbers. This Reynolds number was
chosen to be able to compare the numerical results directly with the results by
Li & Tankin. Hence, it is a way to validate the numerical solution method used
here.

4.4.1. The effect of a viscous ambient gas. A viscous ambient gas will in-
fluence both the mean velocity distribution in the jet as well as the stability of
the jet flow. If the viscosity ratio µ̃, is small the influence on the mean velocity
profile will be small, but the influence on the stability may still be large. This is
due to the fact that in the inviscid case the source of instability is the pressure
variation over the waves due to the velocity discontinuity at the surface. In the
case of a viscous gas there will be a no-slip condition at the surface, which will
change the boundary conditions for the disturbance and hence the stability.

In figure 4.1 results are also plotted for a jet with a viscous ambient gas,
µ̃ =0.001, and a basic flow of the gas given by eq. (14) in section 2.2. This small
value of µ̃ was chosen to exemplify the large effect of a viscous ambient gas. Since
the basic flow of the jet is only slightly changed by the gas, it is assumed to be
independent of the streamwise coordinate. To characterize the flow the thickness
of the boundary layer in the surrounding gas is used. This is defined as δ99 and is
taken at the position where the velocity of the gas is 1% of the mean velocity in
the jet, Um. Both the odd mode and the even mode are significantly damped for
higher wavenumbers. From the figure it is also clear that for lower wavenumbers
the viscosity in the gas may enhance the growth rate.

In the figure the growth rate is plotted for three different thicknesses of the
boundary layer in the gas. This shows that the growth rate decreases when the
thickness of the boundary layer is increased, which is equivalent with a reduced
shear at the interface.

4.5. Linear stability results for viscous jet flow

The complete formulation of the stability problem for the plane liquid jet contains
several parameters, Re, We, α, µ̃ and ρ̃. It also depends on the downstream
position as well as the inlet length for the basic flow. The effect of all parameters
can not be investigated and the results presented are based on the flow of a water
jet in air. This means that µ̃ and ρ̃ will be kept constant. For T = 20◦C the
viscosity for water is µl = 1.01 · 10−3 kg/ms and for air µg = 1.79 · 10−5 kg/ms,
which gives a viscosity ratio µ̃ = 0.0177. Similarly for the density ρl = 997 kg/m3

and ρg = 1.21 kg/m3, which gives ρ̃ = 1.21 · 10−3. The surface tension was set to
be γ = 0.070 N/m.
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Figure 4.2. Unstable regions for a plane liquid jet emanating form
a channel surrounded by a viscous gas. The shaded area indicates
an unstable region. Also, the growth rate is indicated by contours
of constant growth rate, ∆αci = 0.005. The left column contains
the results for the even modes and the right column the result for
the odd modes. From top to bottom Re = 125, 250, 500, 1000,
2000.
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Figure 4.3. Qualitative description of the location of the unstable
modes in figure 4.2. Even modes (left) and odd modes (right)

4.5.1. Stability diagrams. Figure 4.2 shows unstable regions for a plane liquid
jet emanating from a channel with an upstream parabolic velocity profile. In the
figure results for five different Reynolds numbers are shown, Re = 125, 250, 500,
1000 and 2000. The vertical axis in the graphs represents the ‘global’ wavenumber
and the horizontal axis the streamwise position scaled with the Reynolds number.
As the velocity distribution scales with x/Re, it is also convenient to present the
stability diagrams as function of this variable.

The jet is unstable in the shaded region of the figures with a growth rate
indicated by contour curves. The figure shows both even modes (left column),
and odd modes (right column). When the Reynolds number is increased the
shaded regions grows. It should be noted that an increase in Reynolds number
gives that for a constant x/Re the x-position moves downstream.

Three different unstable anti-symmetric (even) modes can be found in fig-
ure 4.2. The unstable regions for these modes partially overlap and are difficult
to separate. However, one of these three even modes appears as a bounded region
with a centre at α ≈ 1.5. This mode becomes unstable a distance downstream the
nozzle and becomes stable again further downstream. In figure 4.3 the locations
of the different modes are given qualitatively. The bounded mode corresponds to
region III.

This region can be clearly seen for the lowest Reynolds number, Re = 125.
As the Reynolds number is increased both the upstream end and maximum of
this region moves towards higher x/Re. It is also expanding in the wavenumber
direction. The maximum growth rate for this region increases to Re = 1000, after
which it decreases.

There is no similar region for the odd modes. However, if this bounded region
of instability for the even modes is excluded, the graphs for the two remaining
even modes are similar to the graphs for the odd modes. The qualitative location
for these modes are given by regions I and II in figure 4.3.
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Figure 4.4. Streamwise velocity profiles for the four positions in
figure 4.5. (—) x/Re = 0.037, (- -) 0.069, (- · -) 0.149, (· · ·) 0.306.

For Re = 125 the regions given by I and II are concentrated to the lower
left corner, i.e. close to the nozzle and to low wavenumbers. This region has
two branches, one which is orientated parallel to the vertical axis and one which
is parallel to the horizontal axis. When the Reynolds number is increased the
branch closest to the α axis extends towards higher wavenumbers and further
downstream. The slope from high growth rate to no growth at all is very steep,
since the contour curves are stacked together in this region. For Re = 2000 the
region seems to be parallel to the α-axis, for α > 0.5. This is not the case since for
higher wavenumbers than those shown in the graph, the growth rate decreases.
The maximum growth in this region is found at α ≈ 1.5. The second branch,
i.e. the region orientated along the x/Re-axis, also expands for higher Reynolds
numbers and becomes parallel to the axis for x/Re = 0.2. However, it seems
to extend somewhere from the middle of the α-axis in the graph. The unstable
region for the odd modes has a similar behaviour but the area of the region is
larger and the maximum growth rate is lower.

To investigate the effect of the velocity profile on the stability, the profiles at
four positions, x/Re = 0.037, 0.069, 0.149, 0.306 were examined with respect to
wavenumber and Reynolds number. The velocity profiles can be seen in figure 4.4
and the corresponding stability diagrams in figure 4.5. The vertical axis of the
graphs in figure 4.5 represents the ‘local‘ wavenumber, i.e. scaling is performed
with the local jet thickness, and the horizontal axis represents the Reynolds num-
ber, Re. As for figure 4.2 even and odd modes are shown, and the unstable regions
are shaded. The qualitative location of the modes can be found in figure 4.6. As
for the figure 4.5 the streamwise position of the velocity profiles will change when
the Reynolds number changes.
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Figure 4.5. The maximum growth rate as a function of Reynolds
number for four positions in the jet with a fully developed Poiseuille
flow inside the channel. Distance between two contourlines ∆αci =
0.005. The left column contains the v-even modes and the right odd
modes. From top to bottom x/Re = 0.037, 0.069, 0.149, 0.306.
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Figure 4.6. Qualitative description of the location of the unstable
modes in figures 4.5. Even modes (left) and odd modes (right)

The first position chosen was at x/Re = 0.037. This is a position where the
location of the free surface is still changing. Consider first the even modes. For
the lowest Reynolds number shown, Re = 100, there is an unstable region II
for α < 0.6. When the Reynolds number is increased the growth rate increases
and region II extends towards higher wavenumbers. For a Reynolds number only
slightly higher a second unstable region III can be seen. This is the same region as
the bounded region found in figure 4.2, and the maximum is found at α ≈ 1.5 and
Re ≈ 400. Behind this the low wavenumber region II can be seen extending to
higher wavenumbers with increasing Reynolds number. For Re ≈ 1000 the third
unstable region I can be identified. The growth rate for this region increases
quickly with Reynolds number, and the maximum growth is found at α ≈ 1.9.
This region seems to occur at Re ≈ 1000 for all waveneumbers in the wavenumber
region shown. For the odd modes a similar behaviour can be found for regions I
and II.

For the velocity profile at x/Re = 0.069 the growth rate for all regions has
decreased. All regions have also moved towards higher Reynolds numbers. To the
next position at x/Re = 0.149 the decrease is continued. Especially the growth
rate in region I has decreased for both the even and the odd mode.

The lowest graphs represent x/Re = 0.306,where region I has vanished totally
while region III still can be seen, but now starting at Re ≈ 2500. For all four
position the extent of region II only changes slightly.

In figure 4.7 the flow of the ambient gas is the same as for figure 4.5. However,
the velocity distribution in the jet is uniform and assumed to be unaffected by the
gas. As can be seen in the figure only one type of mode is unstable. By comparison
between figures 4.5 and 4.7 it is clear that this mode is almost independent of the
velocity distribution.

4.5.2. Amplitude distribution of the disturbance. The separation of the
modes in the unstable regions has been done by examining the eigenvalue spectra
and the eigenfunctions. These can be seen in figures 4.8-4.10. These figures all
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Figure 4.7. The maximum growth rate as a function of Reynolds
number for four positions in a uniform jet with viscous ambient gas.
Distance between two contourlines ∆αci =0.005. The left column
contains the v-even modes and the right odd modes. From top to
bottom x/Re = 0.037, 0.069, 0.149, 0.306.
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contain six graphs with the upper left graph in each figure representing the eigen-
value spectrum. The horizontal axis represents the real part of the eigenvalues,
which is the same as the phase velocity, cr. It should be remembered that the
velocity is normalized with the mean velocity of the jet. The vertical axis repre-
sents the growth rate, αci. An eigenvalue above αci = 0, corresponds to a growing
disturbance.

Five more graphs are shown in each figure, and these represents the eigenfunc-
tions for five different eigenvalues. Those graphs are marked, eI,II,III and oI,II ,
corresponding to the eigenvalue with the same marking in the eigenvalue spectrum.
The eigenvalues are related to figures 4.2, 4.5 and 4.7 through the subscripts I, II
and III, whereas e indicates an even mode and o an odd mode. The vertical axis
in these graphs represents the y-axis, with the location of the centreline at y = 0
and the free surface at y = 1. In the graphs the u-disturbance amplitude is given
as a solid line and the amplitude for the v-disturbance as a dash-dotted line. At
the top of each of those five graphs the corresponding eigenvalue is presented with
phase speed cr and growth rate αci.

Figure 4.8 shows a typical eigenvalue spectrum for region I, Re = 5000 and
α = 1.5. As can be seen mode eI gives maximum growth, and for this the
maximum amplitude in the eigenfunction for the streamwise velocity is found at
the location for the inflection point in the basic velocity profile. The phase speed
of this disturbance is very close to the mean velocity for the jet at this location.
There is a similar odd mode oI , with a slightly lower growth rate and higher
phase velocity. The modes representing region II have the maximum streamwise
velocity at the surface.

Mode eIII has as an eigenfunction that is similar to modes eI and oI . In order
to see that this is really the mode corresponding to region III the eigenvalue
spectra was plotted for a fixed wavenumber α = 1.5, for Reynolds numbers starting
from Re = 500 and increasing. The stepsize was kept sufficiently small, to allow
tracking of the individual modes.

Figure 4.9 is representative for region II. The Reynolds number and wavenum-
ber have changed compared to figure 4.8, Re = 1000 and α = 0.3. The maximum
growth rate is found for mode oII . The eigenfunction corresponding to this mode
gives the maximum disturbance velocity at the surface, both for the normal as
well as for the streamwise velocity. For the even mode the maximum is found at
the centreline. The mode corresponding to region III has the u-maximum at the
inflection point and the v-maximum and the centreline. Also, the v-velocity is
close to zero at the surface for eIII .

Figure 4.10 shows the eigenvalue spectrum from the centre of region III. The
even mode eIII , which has no counterpart if the odd modes is the most unstable.
The eigenfunction for this mode gives two maxima for the u-velocity, one which
is close to the surface and one which is slightly below the inflection point. The
normal velocity is zero at the surface which implies that the amplitude of the
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Figure 4.8. Eigenvalue spectrum and eigenfunctions for x/Re =
0.149. Re = 5000 and α = 1.5 (region I ). (◦) v-even and (+) v-odd
modes. (—) u-amplitude and (- · -) v-amplitude. Calculated with
a non-uniform velocity profile and viscous ambient gas.
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Figure 4.9. Eigenvalue spectrum and eigenfunctions for x/Re =
0.149. Re = 1000 and α = 0.3 (region II ). (◦) v-even and (+) v-odd
modes. (—) u-amplitude and (- · -) v-amplitude. Calculated with
a non-uniform velocity profile and viscous ambient gas.
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Figure 4.10. Eigenvalue spectrum and eigenfunctions for x/Re =
0.149. Re = 1000 and α = 1.5 (region III ). (◦) v-even and (+)
v-odd modes. (—) u-amplitude and (- · -) v-amplitude. Calculated
with a non-uniform velocity profile and viscous ambient gas.
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Figure 4.11. Eigenvalue spectra and eigenfunctions for x/Re =
0.149. Re = 1000 and α = 1.5 (region III ). (◦) v-even and (+)
v-odd modes. (—) u-amplitude and (- · -) v-amplitude. Calculated
with a non-uniform velocity profile and viscous ambient gas.
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waves on the surface is zero. The other four modes all have maxima close to or
at the surface for both velocity components.

The calculation includes the ambient gas, and figure 4.11 shows the same
parameters as figure 4.9 with the amplitude of the disturbance velocities in the
air added in the graphs. The v disturbance velocity is continuous across the
surface. This is given by the boundary condition, eq. (37). The amplitude of the
streamwise velocity disturbance is larger in the gas at the surface of the jet than
in the liquid. This discontinuity is given by eq. (38).

Since the flow is unbounded there exists a continuous branch in the eigenvalue
spectra, see e.g Drazin & Reid (1981). For figures 4.8–4.11 this continuous branch
can be found close to the real axis, i.e. cr = 0.

4.5.3. Effect of varying entrance length. The importance of the basic veloc-
ity distribution can be examined by replacing the upstream fully developed flow
with a partially developed flow. Four different inlet lengths have been chosen,
which give different velocity profiles at the end of the channel. The result can
be seen in figure 4.12. The modes that are unstable directly after the end of the
channel, region I, have a growth rate that decreases with decreasing inlet length.
This is also true for the bounded mode, region III. However, the low wavenumber
modes, region II seems to be almost unaffected by the change in velocity profile.
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Figure 4.12. Unstable regions for a plane liquid jet emanating
from a channel with varying entrance length, from top to bottom
`E = 15, 30, 70, 110, and Re = 1000. The shaded area indicates an
unstable region. Also, the growth rate is indicated by contours of
constant growth rate. ∆αci =0.005. The left column contains the
plane for v-even modes and the left odd modes. Calculated with
viscous ambient gas.



CHAPTER 5

Experimental set-up

5.1. The flow loop and the nozzle

Two different types of plane water-jets have been produced with the apparatus
shown in figure 5.1. The apparatus consists of three main parts, the headbox where
the nozzle is mounted, the dump tank and the submerged centrifugal pump. The
flow rate was adjusted with a valve downstream the pump. The maximum flow
rate of the pump is 340 l/min and the maximum pressure head 125 kPa. The
jet width at the outlet is 150 mm and with a 2 mm jet it is possible to obtain a
jet velocity of 11 m/s but for thicker jets the velocity is reduced. The maximum
obtainable Reynolds number based on jet thickness is around 25 · 103.

The water is fed from the pump to the headbox through a hardened PVC hose
which is connected to a stiff PVC tube just upstream the headbox. The PVC-
tube was divided into two before entering the headbox. To minimise vibrations the
headbox was tightly fixed to a heavy workshop machinery tripod standing directly
on the basement floor. In order to damp pressure pulsations in the system a small
air pocket was kept at the top of the supply loop.

The headbox had the dimensions 25x25x15 cm3 and was made of Plexiglas
allowing optical access to its interior. At the outlet of the headbox different
nozzle geometries can be inserted. The two nozzles used in this study were a two-
dimensional vena contracta type and a plane channel nozzle which will produce
a more or less fully developed plane Poiseuille flow. The width of the nozzles
was 15 cm. Due to surface tension acting on the free rims of a plane jet, the jet
tend to contract in the spanwise direction (see e.g. Taylor (1959)). To avoid this
and in order to ensure the two dimensionality of the jet, the sides of the jet were
prevented to contract by letting side walls extend 20 cm beyond the nozzle exit.
The orientation of the jet was chosen such that the jet emanates vertically to
simplify shadowgraph visualizations and to avoid a bending of the jet by gravity.

The jet flow quality depends on the upstream conditions in the headbox, such
as flow inhomogeneities and turbulence level and scales. In order to reduce such
disturbances the water, when entering the headbox, had to pass a flow distributor
consisting of a 30 mm thick bed of packed 4 mm diameter glass beads. Down-
stream this distributor the flow passed two fine meshed screens which reduce the
turbulence level and also give a pressure drop which helps making the flow uni-
form. Downstream the screens a 6 cm long honeycomb with a cell diameter of 5
mm aligns the flow. Finally a screen was mounted as an arc with the top directed

48
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in the flow direction. This made it possible for air bubbles to move up to the
sides at start up of the flow loop. Air bubbles did however easily get stuck at this
screen and therefore it was possible to manually vibrate the screen by inserting
a bar from the nozzle opening. The last screen had a porosity of 0.60 and for
all velocities the Reynolds number based on wire diameter was less than 10 and
hence this final screen was subcritical. The arc-shape of the screen will redirect
the flow slightly and this will have some effect on the velocity distribution in the
jets but the effect is assumed to be negligible. A pressure transducer was mounted
on the wall of the headbox downstream the last screen and the transducer output
was calibrated against the jet flow rate.

The slit nozzle consisted of two 5 mm thick brass pieces which were machined
sharp at the outlet side. They could easily be moved in order to change the slit
width.

The channel nozzle consisted of a contraction made of two quarter cylinders
with a radius of 5 cm followed by two 4 cm long flat plates, all made of brass.
Also for this nozzle the channel width could be varied.

Both nozzles were carefully polished before performing any experiments. The
sharp edges were checked regularly to ensure that they had no damages which
could disturb the jet. Damage to the edges (or even a water droplet stuck at the
outlet) showed up in the visualizations as a stationary wave pattern on the surface
having a V-shape with the origin at the edge.

The flow of the gas surrounding the jet will influence the flow of the jet. With
the present design of the nozzles and headbox the air flow should be similar for
the two different orifices tested.

5.2. Flow visualization

Two different methods have been used to visualize the flow of the plane jet, namely
the shadowgraph method and reflective flakes (iriodin) seeded in the water. For
both methods the images have been processed to obtain not only qualitative but
also quantitative information.

5.2.1. Shadowgraph method. For the shadowgraph method, figure 5.2 i, the
jet was illuminated from one side by an ordinary slide projector standing 5 m from
the jet. The distance should be as large as possible since the light source ideally
should approximate a point light source. When the light from the projector pass
through the jet any curvature of the surface of the jet, will give rise to a deflection
of the light. This will be seen as a pattern of shadows on a semi-transparent
plate which is mounted on the other side of the jet. This pattern corresponds
to the irregularities on the surface of the liquid jet. The sharpness of the pat-
tern depends on the distance between the jet and plate, and a shorter distance
gives a sharper picture. The semi-transparent plate had vertical and horizontal
centimeter markings in order to simplify measurements in the shadowgraph image.
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Figure 5.1. Experimental setup, a) head box, b) dump tank, c)
centrifugal pump.

5.2.2. Reflective flakes. Reflective flakes were used to visualize phenomena
inside the jet. These flakes react on the shear, and tend to orient along stream
surfaces. In order to detect a gradient in the flow, only a small concentration
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Figure 5.2. Visualization set-ups. i) shadowgraph; ii) particle vi-
sualization with a light sheet from the side; iii) particle visualization
with a light sheet normal to the jet. a) liquid jet, b) light source,
c) semi-transparent plate, d) camera, e) black background, f) laser,
g) glass cylinder and h) laser sheet.

of the flakes is needed. The jet was then illuminated with a laser sheet in two
different configurations, shown in figure 5.2 ii and iii.

The laser sheet was created by letting the laser beam from a 10 mW semi-
conductor laser pass through a glass cylinder. In the first configuration the light
sheet was led into the jet from the side, figure 5.2 ii. The light sheet had a
thickness of approximately 1 mm, which allowed an illumination of the core of
the jet. In the second configuration the sheet was directed normal to the jet,
5.2 iii, which allowed for illumination of the thickness variation of the jet. For
both configurations a black non-reflecting curtain was used as a background to
improve the contrast.

5.2.3. Video recording and photography. Both the shadowgraph and par-
ticle visualizations were recorded. Photos of the visualizations were taken by an
Olympus OM-2 camera with 35 mm black and white as well as colour slide film.
Also, video recordings were made with a greyscale CCD-camera and a Hi8 video
recorder. The use of video allows transient events to be captured as long as the
speed of these is not too high. To improve the time resolution further a high-speed
CCD-camera (Kappa 100) was used. This allowed sequences to be captured at
500 frames per second.

5.2.4. Image processing. To determine the wave length of the wave distur-
bance accurately image processing of the video recordings was made. Frames
from the video recording of the shadowgraph visualization were transferred to a
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Macintosh PowerPC/8500 computer via a Scion LG-3 frame grabber card. From
each frame a small strip (typically 10 pixels wide) representing the centre of the
jet was extracted and transferred to the numerical software Matlab. To remove
noise the images were averaged in the spanwise direction. The result was a signal
with a clear waveform. This signal was then divided into overlapping sequences
and the streamwise length of these was typically a few wavelengths. However the
background light intensity varied almost linearly in the streamwise direction and
therefore the following expression for the intensity variation, I(x), was fitted to
the data in the least square sense,

I(x) = A sin(kx+ ϕ) +Bx+ Im.

Here A is the amplitude of the wave, k the wavenumber, ϕ the phase, B the
coefficient for the linear trend of the intensity and Im the mean intensity in the
image. Since this was made on a series of sequences for different streamwise
positions, the downstream development with x of the wavenumber could be found.
In order to improve the accuracy this was done for 50-100 consecutive frames, and
the results were averaged. From the wavenumber the wave length and the phase
speed of the waves (knowing their angular frequency) could easily be obtained.

5.3. Velocity measurements

Velocity measurements in the jet were made both to determine the mean flow de-
velopment and to investigate the disturbance flow. The mean flow measurements
were made with a Pitot tube, whereas the time dependent velocity measurements
were made with hot wire anemometry.

5.3.1. Pitot tube measurements. Jet velocity profiles were measured with a
Pitot tube constructed from a small stainless steel tube. The original tube had
inner and outer diameters of 0.4 mm and 0.6 mm, respectively. To reduce the
spatial dimension of the Pitot tube tip the tube was flattened and sharpened at
its end, resulting in an inner opening of 0.08 mm and an outer width of 0.2 mm.
Special care was taken to ensure that the edges of the hole were sharp and this
was checked with a microscope. The probe could be manually traversed through
the jet. The pressure measured with the Pitot tube was transmitted by PVC-
tubes to a differential pressure transducer. The pressure transducer measured the
difference between the total pressure from the Pitot tube and the atmospheric
pressure, which was assumed to be the same as the static pressure in the jet.

It was necessary to ensure that there was no air present in the tubing from the
Pitot tube to the pressure transducer, which otherwise could have an effect on the
pressure reading. The lack of air in the pressure sensing system was possible to
determine not only by the transparency of the tubes, but also by monitoring the
adjustment time when subjected to a change in pressure. When fully functioning
the response time was less than 0.5 s, but if an air bubble entered the system
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this time increased dramatically. The Pitot tube and pressure transducer were
calibrated against a known height of water before and after the measurements.

5.3.2. Hot wire anemometry measurements. Hot wire anemometry was
used to determine the amplitude and phase distributions of the travelling wave
disturbance. The anemometer used was a Dantec M01 and the hot film probe
was the boundary layer type R15. It has a cylindrical sensor with a diameter of
70 µm and a sensing length of 1.25 mm. The hot film probe could be traversed
through the jet with the same traversing mechanism as used for the Pitot tube
measurements.

To obtain absolute measurements from hot wire anemometry the anemometer
system has to be calibrated. However, since the procedure to obtain absolute
readings is quite cumbersome since hot film anemometry in water is subjected to
various sources of drift, it was decided to only obtain relative readings of the wave
amplitude. If the amplitude of the fluctuating signal is small the relation between
the signal from the anemometer and the velocity can be assumed to be linear.
This can easily be seen from the King’s law expression given by

u = k1(E − E0)
1/n,

where E is the output from the anemometer at u velocity, E0 the output at zero
velocity, and k1 and n constants determined by calibration. A series expansion
around the mean velocity Um or the voltage at this velocity Em, gives

Um + ∆U = k1

(
(Em + ∆E)2 − E2

0

)1/n
=

k1

(
E2
m − E2

0

)1/n
+

[
2k1

n

Em
Em + E0

(
E2
m − E2

0

)1/n
]
ε+O(ε2),

where

ε =
∆E

Em − E0

.

Hence if ∆E ¿ Em − E0, then

∆U ∼ ∆E.

The experimental set-up to determine the wave characteristics can be seen in
figure 5.3. The hot film probe was traversed through the jet at a distance of 20 mm
downstream of the nozzle. The waves were triggered by a loudspeaker mounted
on the nozzle and a signal generator was used to drive the loudspeaker at a fixed
frequency. The signal to the speaker was sampled to a Macintosh Classic com-
puter simultaneously as the signal from the anemometer by a GW Instruments,
inc. MacAdios-adio A/D-converter. By traversing the probe through the jet and
sample at a number of locations the phase of the disturbance could be found by
using the generator signal as reference.
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Figure 5.3. Measurements with hot wire anemometry. a) head-
box, b) liquid jet, c) loudspeaker, d) signal generator, e) hot wire
probe, f) anemometer, g) A/D converter and h) computer.



CHAPTER 6

Experimental results

Measurements of the streamwise velocity distribution and flow visualizations were
made with both the channel and the slit nozzle. The results showed significant
differences in the behaviour of jets emanating from these nozzles. Special emphasis
was put on the development of the wave instability which was studied both with
flow visualization and hot wire anemometry.

6.1. Mean flow development in the channel jet

Velocity profiles were measured with a Pitot tube at the end of the channel and
at four downstream positions, x = 0, 10, 20, 30, 40 mm, see figure 6.1. In this
figure results from two measurement series are shown. These were taken in the
central region of the jet, where the Pitot tube was totally submerged. When this
was not the case capillary waves could be seen upstream the point where the
surface was disturbed. The occurrence of these waves was determined through
visual inspection of the surface of the jet close to the tip of the Pitot tube. Also,
if the Pitot tube was not fully inside the jet the measured pressure was slowly

0 1 1 1 1 1
-1

-0.5

0

0.5

1

u

  y   

Figure 6.1. Velocity distribution in the channel jet. (—) cal-
culated, (+) and (◦) measured, (– –) parabolic profile with the
same maximum velocity as the measured profile. Um = 1.3 m/s,
a = 0.55 mm, Re = 700, profiles at x = 0, 10, 20, 30, 40 mm.

55



56 EXPERIMENTAL RESULTS

fluctuating. This was a result of an unsteady flow past the tip of the tube, i.e.
the water covered the tube intermittently.

The result from a numerical solution, obtained with the method described in
chapter 3 of the entrance flow in a plane channel, was fitted to the measured veloc-
ity profile at x = 0. This gave an entrance length of `E ≈ 80a, which corresponds
well to the length of the plane part of the channel nozzle which is 73a. The fitted
profile at the end of the channel was then used as the upstream boundary condi-
tion in a calculation with the same parameters as in the experiment. Since the
experimental jet was directed vertically, gravity was included in this calculation.

The result of this calculation can also be seen in figure 6.1. As a reference
a parabolic profile with the same maximum velocity is also shown. This shows
that the flow in the channel was not a fully developed parabolic flow. At the
four downstream positions the jet is contracting according to the calculation,
as the profile relaxation accelerates the liquid at the surface. The velocity at the
centreline of the jet does not decrease, but increases slightly a distance downstream
due to gravity.

The region in the jet where measured points satisfy the condition that the Pitot
tube should be totally submerged is shrinking downstream implying that the jet
is contracting. The contraction can also be seen in figure 6.2, which is a time
averaged image of a particle visualization with the set-up shown in figure 5.2 iii.
This image is taken from below at an angle to the jet. The nozzle can be seen in
the top of the image where the brightest regions are reflections from the nozzle.
The image was averaged over 100 frames to reduce noise and enhance contrast.
The gradual contraction of the jet can be seen clearly.

6.2. Channel jet instabilities

6.2.1. Natural waves on the surface of the jet. The outflow from the plane
channel nozzle was visualized with the shadowgraph method, and a series of eight
images at different velocities can be seen in figure 6.3. The velocities range from
1.3–4.4 m/s and the corresponding Re from 700–2400. The dark regions at the
sides of the jet are the side walls which prevent the spanwise contraction of the
jet. Along the sides and at the bottom of the images centimeter markings can be
seen. For all images the channel width is 1.1 mm.

At a low velocity, Um = 1.3 m/s, the only disturbance on the jet surface is
capillary waves originating from the vertical side walls and free rims at the sides
of the jet, figure 6.3 a. The origins of these capillary waves are primarily the
upstream ends of the side walls, which form small upward facing steps to the flow.
However, the flow in the centre of the jet is assumed to be unaffected by these
disturbances.

When the velocity is increased, Um = 1.5 m/s, periodic darker and brighter
lines parallel to the nozzle start to appear in the shadowgraph image, figure 6.3 b.
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Figure 6.2. Particle visualization of the contraction of the jet.
The nozzle can be seen at the top of the image.

These are a result of waves on the surface of the jet. The wavelength is of the
order of 3 mm.

In figure 6.3 c, the velocity of the jet is increased further, Um = 1.7 m/s. In
the region x = 7–8 cm of this image localized irregularities can be seen in the jet,
which indicate the development of three dimensional disturbances. These seem to
originate from the break-up of the waves and occur randomly.

As the velocity increases the break-up moves closer to the nozzle, figures 6.3 d–
f. The velocities are Um = 1.8, 1.9 and 2.0 m/s, respectively. Also, the location
of the break-up becomes more localized to a line parallel with the nozzle when
the velocity is increased. Downstream of the break-up streaky structures in the
streamwise direction can be seen in the visualization, figures 6.3 e,f. The break-up
of the waves cause spray formation on the surface, i.e. drop formation, and at
higher velocities this spray formation increases. In figures 6.3 g,h it makes the
visualizations to become blurry, since the large amount of small drops will deflect
the light randomly. In the last image the break-up is so strong that holes start to
appear in the jet, which can be seen as bright spots in figure 6.3 h.

6.2.2. Waves forced by acoustic excitation. With a loudspeaker attached to
the headbox it was possible to trigger waves in the jet before naturally occurring
waves were observed. When this is done with a fixed frequency, the phase of the
waves is also fixed, relative to the phase of the loudspeaker signal.

The waves could also be triggered by noise, for instance by clapping your hands
a few meters away from the jet.
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Figure 6.3. Wave development and break-up for naturally oc-
curring disturbances visualized with the shadowgraph technique.
a = 0.55 mm, a) 1.3 m/s, b) 1.5 m/s, c) 1.7 m/s, d) 1.8 m/s, e)
1.9 m/s, f) 2.0 m/s, g) 2.2 m/s, h) 4.4 m/s.
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a) b)

c) d)

Figure 6.4. Shadowgraph visualization of forced wave distur-
bances Re = 700 and a = 0.55 mm. a) f = 340 Hz, b) 485 Hz,
c) 612 Hz, d) 669 Hz.

Figure 6.4 shows a series of four images of the jet at Re = 700 at four different
forcing frequencies. In the figure the Reynolds number is just below the limit of
naturally occurring waves. The images show the response to different frequencies
starting at the lowest frequency for which it was possible to obtain waves with
the audio equipment used, and ending with the highest frequency. By iteratively
lowering the amplitude of the forcing signal and changing the frequency it was
possible to determine the frequency for which the waves were most unstable. This
frequency was found to be f ≈ 530 Hz.

By image processing it is possible to get quantitative measurements from these
images. Figure 6.5 shows the downstream development of the wavenumber and
amplitude of the waves, where the amplitude is taken from the intensity variation
and evaluated according to appendix B. The left graph shows the variation of
the wavenumber α as a function of the distance from the nozzle x, where x = 0
corresponds to the nozzle edge. In the graph results for four frequencies are
shown and these frequencies are the same as for figure 6.4. As can be seen the
wavenumber decreases downstream and for all four frequencies, which indicates
that the phase velocity increases. The phase velocity was always close to the mean
velocity.
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Figure 6.5. The downstream variation of the wavenumber (left)
and amplitude (right) for four frequencies, Re = 700 and a =
0.55 mm. (∗) f = 340 Hz, (×) 485 Hz, (+) 612 Hz, (◦) 669 Hz.

In the right graph the logarithm of the amplitude is plotted as a function of
x. Lines of constant slope obtained through least-squares fits are also shown. A
straight line in this diagram indicates an exponentially growing disturbance. The
curves have been shifted vertically to simplify a comparison. The amplitude grows
faster for the two low frequencies than for the two high frequencies, at least when
it comes to the intensity variation in the images.

The method used to obtain the amplitude variation has to be validated before
it is possible to draw any conclusions from these results. This should be made
against a well known case where the amplitude variation is known or possible to
measure by some other method.

To facilitate a comparison between linear stability theory and the present ex-
perimental results figure 6.6 was calculated. This figure shows in a and b curves
of constant growth rate for the even and odd modes, respectively. The contours of
constant growth rate are shown as solid black lines and the frequency of the wave
disturbance is indicated by white contour lines, labelled with the frequency in Hz.
The thick line is the demarcation line between two unstable modes. Along this
line the frequency change is discontinuous. In the lower two figures (c and d) the
growth rate from figures a and b have been integrated along lines of constant α.
A comparison between figure 6.5 and figure 6.6 c show that the wavenumber vari-
ation along a constant frequency shows good agreement between the theoretical
results and the experiments. It is not possible from this graph to explain why the
largest sensitivity of the wave disturbance was obtained at f ≈ 530 Hz, however
this frequency is in the range of the most unstable frequencies. One should bear
in mind that a spatial analysis may change the picture, especially since in the
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Figure 6.6. Contourplots of the growth rate (top) and integrated
growth rate (bottom). The basic flow is calculated with gravity,
Re = 700, a = 0.55 mm and γ = 0.070 N/m.

region close to the nozzle the frequency contour curves are almost parallel to the
α-axis and hence the group velocity is small.

Since the wave phase is fixed by the signal to the loudspeaker, it is possible
to measure the phase difference between this signal and the signal from the hot
film anemometer traversed in the normal direction through the jet. The phase-
and amplitude distribution in the jet can be seen in figure 6.7. The waves are
anti-symmetric or sinuous, corresponding to a v̂-even mode. In the figure the
calculated amplitude distributions for the two most unstable modes are also shown
for the present flow parameters (i.e. Reynolds number, velocity distribution and
frequency of the disturbance). As can be seen neither of these distributions fit
the measured distribution well, however a linear combination of the two give good
agreement. At this position only the first mode is unstable, but closer to the
inlet the second mode is the most unstable, so therefore both modes may appear
simultaneously.

If the width of the channel is increased it gives a less developed flow and
visualizations show that the waves start to occur at higher Reynolds numbers.
This was also the case for the break-up, which was delayed. It was also noted
that the flow of the surrounding air seems to have little or no influence on the



62 EXPERIMENTAL RESULTS

0 0.5 1
-0.5

0

0.5

  amplitude

  y    

-90 0 90
-0.5

0

0.5

  deg.

  y    

Figure 6.7. Phase distribution in the jet (left) and amplitude dis-
tribution (right) in the jet. Waves are triggered by a loudspeaker at
530 Hz. Re = 700, a = 0.55 mm. The maximum disturbance am-
plitude is approximately 0.5% of Um. In the left picture amplitude
distributions from linear theory are also shown, (- - -) first mode,
(- · -) second mode and (· · ·) linear combination.

occurrence of these waves. This was investigated by blocking the airflow and
changing the geometry outside the jet.

6.2.3. Break-up of the waves. The channel jet was also visualized with reflec-
tive flakes and a laser sheet in the xz-plane, see figure 5.2 ii. In these visualiza-
tions the waves cannot be seen at all, but instead the break-up of the waves can
be clearly seen, figure 6.8. This figure contains images from the visualization at
three different velocities. Both an instantaneous image as well as image-processed
and time averaged images are shown.

At low velocity when the spots start to appear in the shadowgraph visualiza-
tion, figure 6.3 b, the break-up can be seen as a local phenomenon, figure 6.8 a.
The break-up originates from a point and it appears to create a pair of streaks
originating at this single point. To enhance this structure the image is also shown
after performing image-processing with edge-detection, figure 6.8 b. The edge-
detection routine trace intensity gradients in the image.

At a slightly higher velocity streaks cover the width of the jet, figure 6.8 c.
These appear as stronger than the streaks found upstream the break-up. The
origins of these streaks are located along a ragged line parallel to the nozzle, and
if the break-up is averaged over 100 frames this line can be clearly seen. The
break-up line is straight and parallel to the nozzle, figure 6.8 d. In the centre of
this image the averaging also shows that the break-up occurs more often at specific
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a) b)

c) d)

e) f)

Figure 6.8. Visualization of the wave break-up with particle vi-
sualization. The straight line at the top is the nozzle outlet,
a = 0.55 mm. a) single frame and b) edge detection of the break-
up at Um = 1.9 m/s, c) single frame and d) time average of the
break-up at Um = 2.0 m/s, e) single frame and f) time average of
the break-up at Um = 2.2 m/s.

spanwise locations, which give the streaky structure a clear periodicity. To the
left in the averaged image the break-up is more stochastic since the averaging
gives a more even reflection from the particles. Upstream of the averaged streaks
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Figure 6.9. Channel jet with shadowgraph visualization. The
waves are triggered at f = 530 Hz.

in the centre of the image low amplitude streaks with the same spanwise location
can be seen. These originate from the nozzle.

6.2.4. Effect of upstream flow inhomogeneities. The waves found in the
channel jet occur ‘naturally’ and are not perfectly homogeneous in the spanwise
direction. Phase shifts of the waves can be seen in the jet. With particle visual-
izations vertical streaks originating from the nozzle was found. These cause the
phase shift and were found to be stationary or slowly oscillating in the spanwise
direction. A closer investigation of the conditions inside the nozzle showed that
one explanation for these streaks were air bubbles trapped under the last screen.
These bubbles cause vortices which are stretched through the nozzle. Occasion-
ally, when the velocity was high, these bubbles were found to be oscillating.

Surface roughnesses and particles on the channel walls also caused stationary
streaks in the jet. An example of this can be found in figure 6.9. At the top
of the image the jet is emanating from the nozzle. A small roughness at one of
the channel walls causes a stationary streak, which creates capillary waves. The
streak also causes phase shifts in the waves on the surface. Note, that in this
visualization the waves were forced.

6.2.5. Effect of turbulence intensity on the break-up. To investigate the
influence of upstream disturbances on the break-up of the waves the last screen
was removed. This gives a higher turbulence level at the entrance of the channel.
When the screen was mounted the particles showed a steady laminar flow in the
entrance region, and with the screen removed the flow was clearly more turbulent.
The break-up of the waves was unaffected by this change at higher velocities when
a clear break-up line could be seen in the images, but at low velocities spots could
be observed more often with the screen removed, i.e. with a relatively higher
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turbulence intensity. The presence of phase shifts in the waves increased, and also
an increase of streaky structures upstream the break-up was found.

6.3. Slit jet

Pitot tube measurements were only performed at one position for the slit nozzle
jet, at x = 20 mm. The velocity distribution was uniform in the whole region
where measurements were possible. As for the channel nozzle, measurements
could only be performed when the Pitot tube was completely inside the jet.

The visualizations were performed by the same methods as for the channel jet.
Figure 6.10 shows 4 images of the slit jet with particle visualization. The nozzle
can be seen at the top of these images, and at the left side and bottom of each
of the images a scale with centimeter markings can be seen. The jet thickness is
a = 0.5 mm in all images.

The first of these figures, figure 6.10 a, show the slit jet at a low velocity, Re =
1300. A streaky region in the centre of the jet can be seen, but if compared with
the channel jet there is no apparent difference between the two cases. The streaks
are stationary or slowly oscillating in the spanwise direction. By inspection of the
conditions in the nozzle these can be explained in the same way, i.e. originating
from disturbances inside the nozzle. However, at velocities where waves can be
found for the channel jet, the slit jet is undisturbed. Waves could not be found at
any velocity, at least not in the range which could be achieved with the present
experimental apparatus. For higher velocities, figure 6.10 b-d, the streakiness
becomes stronger. At low velocities the streaks seem to be fairly stationary but
at the higher velocities they move randomly in the spanwise direction.

Streaks with a different behavior can also be found. These differ from the
streaks discussed earlier. A transient phenomenon observed consists of two streaks
which start at a spanwise position. From the first point of appearance they move
at high velocity in opposite directions. The velocity of this motion is considerably
higher than the rocking motion induced by the bubbles below the last screen.
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a) b)

c) d)

Figure 6.10. Slit jet with particle visualization, a = 0.5 mm. a)
Re = 1300, b) 2000, c) 2900, d) 4000. Scales can be seen at left side
and bottom, 1 div.=1cm.



CHAPTER 7

Discussion

In order to understand the development of free, plane liquid jets, both the develop-
ment of the basic laminar flow as well as its stability have been investigated. This
includes both the formulation of the problem with the appropriate boundary con-
ditions, obtaining solutions for the basic flow field and to the stability equations
for two-dimensional wave disturbances, as well as comparisons with experiments.
The experiments have also shown that the wave instability results in a break-up
of the laminar jet. This break-up gives rise to a turbulent jet which appears to
contain streaky structures.

7.1. Basic flow development

The basic flow field of the plane liquid jet depends mainly on the nozzle geom-
etry and the Reynolds number. For an inviscid ambient gas the jet will acquire
a uniform velocity distribution far downstream. The jet will also contract in the
downstream direction. The final jet velocity and width are given by conservation
of mass and momentum. The relaxation length, `R, for the velocity distribu-
tion inside the jet was found to be practically independent of how well developed
the flow is when it leaves the nozzle. This seems as first as a paradox but can
be explained by the fact that the relevant length scale for the relaxation length
will be the half channel width, and therefore it will be independent of the en-
trance length. When the boundary condition changes at the nozzle outlet and
the relaxation process starts momentum has to be re-distributed over the full jet
thickness. If instead the re-distribution of the velocity only had to take place over
a thin boundary layer close to the jet surface then the entrance length would be
an important parameter. However, for the location of the free surface the relax-
ation length `R was found to depend on the development length inside the nozzle.
The relaxation length for the jet thickness was about one-fifth of the relaxation
length for the velocity distribution to become uniform, for a jet emanating from a
channel with an upstream fully developed parabolic profile. It was also found that
the characteristic downstream development lengths `R and `E are proportional to
Re.

A viscous ambient gas will affect the velocity distribution in the jet slightly.
Here a thin boundary layer will develop at the surface of the jet in order to fulfill
the boundary condition of no-slip. The relaxation process will be slowed down
and further downstream it will also give an expansion of the jet, as compared to
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the case with an inviscid outer gas. This expansion takes place since momentum
flux is drained from the liquid jet to the ambient gas by the shear on the surface.
In all physical applications a viscous gas will be present, and because of this the
jet will never become uniform far downstream. Instead it will continue to expand.
However, if the viscosity and density of the gas are lower than for the liquid this
process can be considered to be slow.

The inviscid flow from the slit nozzle was calculated by Söderberg (1994).
Both these results and the present measurements clearly show that the basic flow
is well described by inviscid theory. Boundary layers will of course be present
because of the no-slip condition at the nozzle walls, but these will be very thin at
the exit since the flow is strongly accelerated. For nozzles with contraction angles
that are in between the channel and slit nozzles (i.e. in between 0 and 90 degrees)
there will be a gradual change from fully developed viscosity dominated flow to
an almost inviscid flow.

7.2. Instabilities and break-up of plane liquid jets

Laminar shear flows which have a velocity distribution with an inflection point,
where the shear is at a maximum, are known to be highly unstable. This is,
according to linear stability theory for parallel flows a necessary but not sufficient
condition for the jet to be inviscidly unstable, see e.g. Drazin & Reid (1981). In
the case of a channel flow nozzle the relaxation of the jet velocity distribution from
parabolic-like at the channel outlet to uniform, results in a velocity distribution
with inflection points close to the jet surfaces. These may give rise to inflection
type wave instabilities. In the experiments with the channel flow nozzle wave
disturbances were observed to occur naturally.

The stability calculations were made assuming two-dimensional wave distur-
bances. Furthermore the flow was assumed to be locally parallel, i.e. the wave
length of the wave disturbance was assumed to be small compared to the char-
acteristic length scale for the development of the basic flow field. The stability
was investigated in the temporal sense where the stability of a disturbance of a
specific wave length is considered. Two types of wave disturbances may exist,
either sinuous or varicose. Depending on the parameters of the problem (such as
the Reynolds number and the basic velocity distribution) one or several modes
may be unstable. For typical parameter ranges studied up to five different un-
stable modes were found. Three of these were sinuous (anti-symmetric) and two
were varicose (symmetric). The two symmetric modes have counterparts in the
anti-symmetric modes and the first of these two pairs has eigenfunctions with a
maximum amplitude at the point of inflection. The other pair of modes has maxi-
mum growth located at low wavenumbers. These two modes have their maximum
amplitude at the surface.

The fifth mode (eIII), is only found in a limited part of the parameter space.
The eigenfunction of v̂ show that the amplitude is zero at the surface for low Re,
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i.e. it does not distort the jet surface. Since it does not distort the jet surface it
cannot be observed through shadowgraph visualization. The origin of this mode
is not clear.

The measured amplitude distribution of the forced wave disturbance was found
to originate from a sinuous mode. However, neither of the three modes could
approximate the amplitude distribution accurately. Instead a linear combination
of the surface wave mode (eII) and the fifth mode (eIII) give a good approximation
of the measured distribution.

The break-up of the waves creates strong streaky structures in the jet which
are stronger than the streaks originating from the nozzle. This can be judged
based on the appearance of the streaks with particle visualization. The origin of
the break-up is not clear, but may be related to the interaction between two or
more unstable modes.

7.3. Relevance to paper manufacturing and future work

The Reynolds numbers in this study are much smaller than those typically oc-
curring in modern paper manufacturing. The presence of fibres and fibre flocs
will however influence the generation and destruction of turbulence, which will
result in turbulent length scales larger than the size of the fibres and/or flocs.
In analogy with the Kolmogorov dissipation length scale hypothesis this would
correspond to a large value of the kinematic viscosity. Based on this a relevant
Reynolds number can not be derived with a viscosity taken to be the same as for
water, but it should be considerably higher. Therefore the present results may
not only serve as a thorough study of free, plane Newtonian jets but also have
relevance for the fibre suspension jets at high velocities.

In order to investigate the influence of fibres similar experiments should be
made with fibre suspensions. This would give the possibility to find an effective
viscosity for fibre suspensions which may be used for modelling purposes.

7.4. Conclusions

• If a plane liquid jet emanates from a nozzle with a partially or fully developed
flow the process of velocity profile relaxation will always be present. The effect
of this process depends on the contraction ratio of the nozzle. A slit nozzle will
give a velocity distribution which is close to that of the potential flow solution.

• Stability calculations are strongly affected by the boundary conditions applied
to the jet surface. With the assumption of an inviscid gas the strength of the
instability is strongly overpredicted for most wave numbers.
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• The profile relaxation process may cause a wavy instability of the jet. Linear
stability theory as well as experiments have shown that the most unstable
mode is of sinuous type. Controlled experiments where a wave disturbance
was excited at the nozzle have shown how the wave number and frequency of
the disturbance are related which also gives that the phase speed of the waves
is close to the mean flow speed of the jet.

• The waves were found to increase in amplitude in the downstream direction and
break up if the velocity of the liquid is high enough. The break-up results in
strong streamwise streaks which affects the whole width of the jet. It will also
cause partial disintegration of the jet, i.e. spray formation. The streamwise
streaks caused by the break-up is much stronger than streaks originating from
the inside of the nozzle.

• Streaky structures were also observed when disturbances existed in the head
box, both for the channel and the slit nozzles.
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moléculaires, cited by Lord Rayleigh in Theory of Sound, 2nd edn, vol. II. Dover.
Rayleigh, Lord. 1896 Theory of Sound , 2nd edn, vol. II. Dover.
Savart F. 1833 Ann. Chem. 53, 337.
Schlichting, H. Boundary layer theory, 7:th edn. McGraw-Hill.

72



BIBLIOGRAPHY 73
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APPENDIX A

Conservation laws for a free liquid jet

Consider a steady two-dimensional laminar liquid jet emanating from a channel
into an inviscid gas. The streamwise momentum equation is given by

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
,

and the continuity equation by

∂u

∂x
+
∂v

∂y
= 0.

The flow of the jet is assumed to be symmetric with respect to the centreline
of the jet, y = 0, and these equations are non-dimensionalized with the mean
velocity in the channel and the half channel height. At the solid walls there are
no-slip conditions for u and v, and at the surface of the jet there are the no-shear
condition and the condition that there should be no flow across the surface of the
jet. The wall and free surface of the jet is given by y = h(x).

The streamwise momentum equation is integrated from the centreline to the
wall/surface, ∫ h

0

[
u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
− 1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)]
dy = 0.

The integration of the convective terms gives∫ h

0

(
u
∂u

∂x
+ v

∂u

∂y

)
dy =

∫ h

0

∂u2

∂x
dy + [uv]h =

d

dx

∫ h

0

u2 dy +

[
u(v − dh

dx
u)

]
h

, (1)

where [. . . ]h implies that the expression within the brackets is evaluated at h.
Here we have made use of the following relation

d

dx

∫ g2(x)

g1(x)

f(x) dy =

∫ g2(x)

g1(x)

df(x, y)

dx
dy +

dg2(x)

dx
f(x, g2(x))−

dg1(x)

dx
f(x, g1(x)).

The second term on the R.H.S in eq. (1) is zero both at the wall and at the surface
of the jet. This since at the wall both u and v are zero and at the surface

u
dh

dx
= v,

74



A.1. POISEUILLE FLOW CASE 75

which is the kinematic equation for the free surface in a steady flow. This gives
that ∫ h

0

(
u
∂u

∂x
+ v

∂u

∂y

)
dy =

d

dx

∫ h

0

u2 dy.

The integration of the pressure term gives∫ h

0

∂p
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d

dx

∫ h

0

p dy − dh
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[p]h,

and of the viscous stress terms∫ h

0
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,

since

∂u

∂y
= v = 0 at y = 0.

The integration of the streamwise momentum equation finally gives

d

dx

∫ h

0
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u2 + p

)
dy +

[
−pdh

dx
+

1

Re

{
∂v
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− ∂u
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}]
h

= 0. (2)

If the surrounding gas is inviscid the jet will become uniform far downstream

dh

dx
=

[
∂u

∂y

]
h

=

[
∂v

∂x

]
h

= 0 when x→∞,

and the pressure is assumed to be constant, which gives that∫ h

0

u2 dy = u2
∞h∞

The conservation law related to the mass flow is obtained by integration of
the continuity equation∫ h

0

(
∂u

∂x
+
∂v

∂y

)
dy =

d

dx

∫ h

0

u dy +

[
v − dh

dx
u

]
h

=
d

dx

∫ h

0

u dy = 0, (3)

which gives ∫ h

0

u dy = u∞h∞.

A.1. Poiseuille flow case

Consider a channel with a fully developed parabolic profile, u(y) = 1 − y2. If
the Reynolds number is assumed to be large and the pressure constant, eq. (2)
becomes

d

dx

∫ h

0

u2 dy = 0.
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This gives that ∫ h

0

u2 dy =
8

15
= Cmomentum,

which is independent of x. Also the equation for the conservation of mass flow,
eq. (3), gives that ∫ h

0

u dy =
2

3
= Cmassflow.

Hence far downstream

U2
∞h∞ = Cmomentum

U∞h∞ = Cmassflow

which will give

h∞ =
C2
massflow

Cmomentum
=

5

6
.

This is valid in the limit Re→∞.



APPENDIX B

Image analysis of shadowgraph visualization

An expression will be derived in order to couple the amplitude of waves on thin
liquid sheet and the intensity variation of a shadowgraph visualization.

B.1. Intensity as a function of curvature

The liquid sheet is assumed to have a constant thickness whereas and the surface
of the liquid sheet is subjected to sinuous perturbations. If the shadowgraph
method is used parallel light passes through the sheet. This is modelled with the
aid of geometrical optics where the sheet is assumed to be a thin lens, which can
have several configurations, see figure 1.2 in Chapter 1.

We limit our interest to the maxima and minima of the waves. At these
points the normal to the surface is parallel to the incoming light. We hence study
only central rays, which gives the following expression for a surface according to
figure B.1.

1

a
=

(
nliquid
ngas

− 1

)(
1

R1

+
1

R2

)
,

where R1,2 are the radiia of curvature for the two liquid-gas interfaces, ngas and
nliquid denotes the refraction indices and a is the so called focal distance. In this
expression the radiia are both defined as positive if the jet forms a bi-convex lens.
With this assumption it is clear that for the anti-symmetric case R1 = −R2,
which implies that the rays will pass through the jet undisturbed. Hence only a
symmetric disturbance would cause a deflection of the rays. However, it may be
shown that if the lens is not assumed to be thin and the two interfaces have the

Surface A Surface B Mode

convex convex anti-symmetric

convex concave symmetric

concave convex anti-symmetric

concave concave symmetric
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∆
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Figure B.1. Geometric relations for two initially parallel rays
passing through a thin liquid sheet.

same radius R, separated by a distance h, this gives

1

bα3
=

(
nliquid
ngas

− 1

)(
1− 1

1 + εh/R

)
1

R
, (1)

1

bβ3
=

(
nliquid
ngas

− 1

)(
1

1− εh/R − 1

)
1

R
, (2)

where the superscripts α and β denote the concave-concave and convex-convex
cases, respectively, and ε = 1− ngas/nliquid.

Now, consider two rays passing through the undisturbed jet. These originate
far away from the jet and at a point x1, before they pass through the jet the rays
are parallel and separated by a distance ∆1. This distance will be the same at
a point x3 after passing an undisturbed liquid sheet, and the light flux between
these two rays is constant.

Geometric properties, see figure B.1, will now give for a distorted liquid sheet

∆2

b2 + h
=

∆1

b2

,

∆3

b3 − d
=

∆2

b3

,

which together with the deflection at the first surface,

b2 =
R

ε
,
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and eqs. (1) and (2), can be reduced to

∆α
3

∆1

= 1 +
εh

R
− σεh

R2
, (3)

where α indicates that this is for the concave-concave case and we define σ as

σ = d

(
nliquid
ngas

− 1

)
.

In a similar way this can be done for the convex-convex case,

∆β
3

∆1

= 1− εh

R
− σεh

R2
. (4)

Now by subtracting eq. (4) from eq. (3)

∆α
3

∆1

− ∆β
3

∆1

= 2
εh

R
. (5)

If the surface of the jet is disturbed the rays will now be distorted due to
the curvature of the surface. One of the rays is considered to be passing through
the centre of the wave crest, and hence remain undisturbed. The other ray will
pass though a position where the curvature will cause a deflection. After passing
through the sheet the rays will diverge or converge depending on if the surfaces
are convex or concave. At a point after that the rays have passed through the jet,
x3, the distance between these hence has changed and since the flux between them
will remain constant the intensity at this point will also change. The conservation
of the light flux can then be expressed as

I1∆1 = I2∆2 = I3∆3. (6)

Eq. (5) together with eq. (6) gives

I1

Iα3
− I1

Iβ3
= 2

εh

R
. (7)

A relative change, Λ, in intensity can be expressed as

Iα,β3 = I1(1 + Λα,β), Λα,β =
Iα,β3 − I1

I1

,

which together with eq. (7) becomes

2
εh

R
=

1

1 + Λα
− 1

1 + Λβ
.

which if we assume that Λα = −Λβ = Λ, can be reduced to

1

|R| =
1

εh

∣∣∣∣ Λ

1− Λ2

∣∣∣∣ . (8)
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B.2. Surface curvature as function of wave amplitude

The surface of the liquid sheet is given by

F(x, y) = y − f(x) = y − c+ A sin(kx),

where c is an arbitrary constant, A the amplitude of the waves and k the wavenum-
ber. The normal to this surface, n, is given by

n = ∇F/|∇F| = (−fx, 1)/|∇F|, |∇F| =
√

1 + f2
x ,

hence the radius of curvature is defined as,

1

R
= ∇ · n = ∇ · (∇F/|∇F|)

⇒ 1

R
= −fxx(1 + f 2

x)
−1/2 + f 2

xfxx(1 + f 2
x)
−3/2

= Ak2 sin(kx)
{
1 + A2k2 cos2(kx)

}−1/2

− A3k4 cos2(kx) sin(kx)
{
1 + A2k2 cos2(kx)

}−3/2
.

But we are only interested of the curvature where the wave has its maximum, and
this gives

⇒ 1

R
= Ak2, (9)

which is an exact relation between the amplitude of the wave and the curvature
of the surface.

Together eqs. (8) and (9) give the amplitude as a function of wavenumber and
intensity,

|A|k2 =
1

εh

∣∣∣∣ Λ

1− Λ2

∣∣∣∣ .


