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Abstract

The stability of an autobalancing system is investigated. This work is
divided into three parts.

The first part is concerned with the stability in an isotropic two correction
mass autobalancer. By isotropic it is meant that the system has the same
stiffness and damping in the horizontal and vertical direction. It is shown
that the equations of motion can be transformed, in the isotropic case, to
a time independent form. This transformation reduces the complexity of
the stability computations. The equilibrium positions are calculated. Linear
stability analysis is done about these equilibriums. The influence of different
parameters are investigated, such as the rotational speed, the suspension
stiffness and damping, internal damping acting on the compensating masses
and different mass configurations. It is shown that instability can occur
when the rotational speed is above the natural frequency of the system. It
is also shown that stability can depend on the amount of imbalance load in
the system. When the internal damping acting on the correction masses is
reduced, a super critical hopf bifurcation occurs.

The second part is concerned with the anisotropic autobalancer, i.e. with
different stiffness and damping in horizontal and vertical directions. In this
case the equations of motions are time dependant and stability analysis is
performed by integrating the variational equations over one half period. It
is shown that given enough separation in the horizontal and vertical natural
frequency, regions of stability occur when the rotational speed is varied. It
is also shown that some of the phenomena occurring in the isotropic auto-
balancer also occurs in the anisotropic autobalancer.

The third part studies the case when more than two compensating masses
are used. This adds some complexity to the stability calculations since using
three compensating masses gives a family of equilibrium positions. This
means that the stability has to be calculated for all possible equilibrium
configurations.
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Chapter 1

Introduction

Autobalancing of rotating machines using moving correction masses is best
accomplished where one wants to correct imbalanced rotation varying in
time. The type of imbalance can be both static, dynamic or a combination of
both. Depending on the design of the autobalancers continuously or discrete
balancing can be achieved. The discrete balancing usually involves some
sort of locking mechanism of the correction masses. The need of a locking
mechanism is due to the fact that continuous balancing can only be achieved
when certain system parameters are chosen correctly. The most noticeable
system parameter, regarding continuous balancing, is the rotary speed.

The term auto in autobalancing refers to the fact that it is a passive
system. By passive it is meant that no active forces are needed to move the
correction masses. Therefore no controllers are needed in the system.

The idea behind autobalancers is old and the first patents are from the
1920’s. There is not a widespread use of autobalance although there exist
many different patents on the subject, mostly regarding the design of locking
mechanism of the moving correction masses. Why autobalancers have not
been used more widely depends on several things. For example the forces
that move the correction masses to their proper location is small compared
to the normal forces. The normal forces tend to be very high in practical ap-
plications which also require high surface finish and high precision in balance
rings and correction masses. However this is not a serious obstacle since ball
bearing manufactures have mastered these skills. It therefore seems that the
most likely manufacturer of autobalancers will be the ball bearing industry.
Another serious drawback is that it does not work at all rotary speeds, and
this is here analyzed in greater detail. This means that for some systems,
operating at rotary speeds which are not in the autobalancing regime, it is
not possible to use this technique. In some system it might still be possible
to use it with a locking mechanism of the correction masses. Locking mech-
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anisms have been tested in turning lathes and stationary grinding machines.
During normal operation the spindle is rigidly connected to the machine and
the correction masses are locked. When imbalance occur one can release the
spindle so it is suspended with springs. This allows the machine to enter the
autobalancing regime and consequently the corrections masses are released.
After autobalancing has occurred the correction masses are locked and the
spindle is rigidly connected to the machine again. The locking mechanism is
usually a mechanical device but other types exist. For example fluids with a
melting point so that it is possible to have it solid when the correction masses
are locked and melted when they move. The heating needed is usually accom-
plished by electrical means. Another important aspect of the problem is how
system parameters should be chosen to achieve satisfactory autobalancing.
It is commonly believed that the only criterion for autobalancing is that the
rotary speed is above the natural frequency of system (see section 1.2 for an
explanation). However this is not true in general and only appears to be one
of several requirements on the system, as will be shown later. Theoretical
studies in this field have been performed to prove this common misbelief.
These theoretical studies, see for example V.I. Kravchenko et al., see [2] [4]
[3], have reached this conclusion by simplifying the problem. The nice thing
about these studies is that they have obtained analytical results. With some
heuristic reasoning one is lead to the same conclusion (see section 1.2).

Autobalancers have successfully been used in grinding machines, such as
the Atlas Copco Grinder GTG 40 equipped with an SKF Auto-Balancing
Unit. Imbalance occur in grinding machines because of wear. This installa-
tion has reduced vibration levels to less than half of the vibrations occurring
without the autobalancing unit. This means that the operator now can use
the grinding machine without time restrictions. Other successful attempts
have been washing machines where the load causes imbalance during spin
drying. This has been tested, with good result, by Wascator in their com-
mercial washing machines. Other areas where it has been tested with various
results are refrigerator compressors to reduce noise from piston movements,
fans operating in environments where dirt attaches to the blades such that
when the dirt comes imbalance occurs.

1.1 Objectives

This work is mainly focused on how different parameters influence the auto-
balancing system. In previous work by the author, see [1] it is shown that
a relatively simple analytical model accurately models a real autobalancing
system. This was accomplished by numerical simulations and measurements
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Figure 1.1: Picture of the experimental machine. The suspension is similar
to a washing machine suspension. Two balance rings can be fitted on the
axis of rotation. The correction masses are ballbearing balls.

on an experimental autobalancer built by the author, see picture 1.1. Since
the model accurately describes the real system, stability analysis are made
on the equations of motion. Calculations are performed on a plane isotropic
and anisotropic two-ball balancer. In the last chapter it is shown how calcu-
lations on an autobalancer equipped with more than two balls can be made.
Equations of motions are linearized and eigenvalues and eigenvectors are cal-
culated about the equilibrium positions. Also normal form calculations are
performed to analyze hopf bifurcations.

While working on the experimental machine a self sustained oscillation of
the ball bearing balls, about their equilibrium position was found. This was
not possible to explain with previous stability analysis. However, it will later
be shown that these oscillations can be predicted by analytical /numerical
means.

1.2 Illustrative model
There are two common designs of autobalancers. The most common design is

letting balls move in a circular ring centered about the axis of rotation. This
ring is usually filled with some viscous media such as oil. It will be shown
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later that choosing the right viscosity is of major importance to achieve good
performance. This construction is used in the GTG 40 grinding machine
mentioned above. The second design is to use pendulum arms mounted on
the axis of rotation. This design has been used in turning lathes. There also
exist autobalancers where the moving correction masses are small carriages
with wheels mounted on them. The reason for using carriages is that it can
be designed with a better weight to occupied volume ratio, therefore reducing
the volume of the balance rings compared to ball balancers. However, the
carriage is a more complex design compared to using balls and is therefore not
widely used. However in respect to the models used in this work these designs
are mechanically equivalent and can be modelled with the same analytical
model.

To get an idea of how autobalancing works consider figure 1.2. Assume
that the system has low damping compared to the critical damping (for an
introduction to basic theory of vibration see for example Thomson, Theory
of Vibration with Applications [7]). The behavior to exploit is that we will
have a 7 phase shift when the rotary speed is above the natural frequency of
the system.

When the driving angular velocity w of the system is below the natural
frequency of the system we will have zero phase shift between the line AB
and BC in figure 1.2. The natural frequency of the system is here defined as

k
wn_\/M—f_m—i_Z?lmi' (1.1)
where M is the system mass and m is the mass of the unbalanced component
and m; is the mass of the i’th compensating mass. If m and the m;’s are
small compared to M the expression for the natural frequency reduces to the
normal expression w, = \/k/M. A small mass on a ring centered about the
axis of rotation B would then move, as indicated in the figure, to the same side
as the unbalance. This would increase the amplitude, line AB thus making
the vibrations worse. However, when the system rotates at speeds above the
natural frequency of the system we will have a 7 phase shift between the line
AB and BC. A small mass, positioned the same way as before, would then
tend to the opposite side of the unbalanced component. Assuming that this
quasi static argument holds and that there are at least two masses moving
symmetrically about the line BC the amplitude AB would decrease. In this
quasi static argument it is assumed that the damping is small compared to
the critical damping, which implies a phaseshift of = radians when w goes
from just below to just above the natural frequency. It is also assumed that
there are no inertial forces due to the compensating masses acting on the
system.
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1. Centrifugal force

2. Projection of centrifugal
force on the normal
direction

3. Normal force

4. Driving force

Figure 1.2: Figure showing the direction the centrifugal force would move a
small imaginary mass on a ring when angular velocity is below and above
the natural frequency of the system.

If more damping where present this phase shift would occur through a
large region and this analysis would fail since it would not be clear what
would happen when w is in the range around w,,.
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Chapter 2

Analytical model

2.1 Derivation of equations of motion

To investigate the dynamics of autobalancing an analytical model constrained
to move in a plane is used. This might appear to be a serious constraint since
in most autobalancers the static unbalance is not situated in the same plane
as the autobalancer. However, when using a one plane auto balancer one is
forced to place the autobalancer as close as possible to the plane of unbalance.
Therefore the plane analytical model will closely resemble an actual system,
such as a grinding machine equipped with an autobalancer. If it is not
possible to put the auto balancer in the plane of static unbalance or if you
have dynamical unbalance one could use two auto balancers, letting the static
or dynamic unbalance be situated anywhere between the autobalancers. This
setup is for example used in washing machines. Actually it is possible to let
the plane of static unbalance be situated outside the auto balancers.

In this model (see figure 2.1) the mass M is able to move in the n; nj
plane. Linear springs and a linear viscous dampers are attached to mass
M. Springs are considered to work in orthogonal directions to each other,
the same applies to the dampers. The springs equilibrium position is the
point A, therefore the displacement of mass M is measured from A to B
with coordinates x; along n; and x5 along ns. The rotating mass is divided
into two parts, the mass M with centre of mass at B and the mass m with
centre of mass at C situated a distance e from B. The point C is assumed
to be rotating about the geometrical centre B with angular velocity w. The
compensating masses, with mass m; and rotational inertia i;, are assumed be
rotating, without slipping, on a circular path centered about the geometrical
centre B. The distance from B to the centre of mass of the compensating
mass is [; and the radius of the compensating masses are r;. The angular

7
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Figure 2.1: The auto balancing model.

coordinate is a;. The forces acting on the compensating masses are assumed
to linear in their relative speed compared to the rim. The viscous damping
acting on the correction masses will be referred to as internal damping. The
viscous damping from dampers will be referred to as external damping. The
derivation of the equations of motion was made in Sophia, see [5]. Sophia is
a set of routines for doing mechanics in computer algebra packages, such as
Maple and Mathematica. Sophia was developed by Professor Martin Lesser
at KTH. The equations of motion are

=n

M'iy 4 cri@ + kg = mew® cos(wt) + Y myli(dy; sin(oy) + & cos(ay)), (2.1)
i=1

M'iy + coiby + koy = mew? sin(wt) + Z mgl; (& cos(a;) — a2 sin(ay)), (2.2)
i=1

(m; + 25 )lice; + 1;(6; + %) (cy — w) = my(&ysin(oy) — @ cos(ay)) (2.3)
i1=1,...,n,
where M’ equals (M + m + > ; m;) and is introduced since it occurs fre-

quently. Parameter m is superfluous since the masses M and m are rigidly
connected. It is introduced since parameter analysis will be simplified by it.



Chapter 3

The isotropic case

3.1 Derivation of equations

The isotropic case, where k; equals ks and ¢; equals ¢, is interesting since
it is possible to get the equations of motion in a time independent form.
An example of a isotropic system could be an autobalancer mounted on a
rotating shaft, where the shaft is stiffly mounted. To get the equations in a
time independent form is accomplished by expressing the position of point B
relative to the point A with coordinates along the axis a; and ay (see figure
3.1). It can be expressed as a substitution

x1 = ¢ cos(wt) — qosin(wt) (3.1)
xo = qp sin(wt) + go cos(wt) (3.2)
a;=0,+wt,i=1,...,n. (3.3)

inserted into equations 2.1,2.2,2.3. Furthermore, since equations 2.1 and 2.2
are the projections of the time derivative of the linear momentum along ny
and ns we now need the projections along a; and as,.

This is easily accomplished in Sophia since it has the ability to express
vectors in all defined reference frames. The time independent equations can
be written as

M 0 G n c —2wM’ G n
0 M || é 2M" —c g2

R 71 el EC
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Figure 3.1: Coordinates in the rotating frame.

and

(mi + BB, + (6 + BB =
m; ((G1 — w1 — 2wdo) sin(B;) + (—Gz + w?g2 — 2wdy) cos(B;)) (3.5)

1=1,...,n.

We will first study a system with two correction masses. Using more
than two correction masses will result in a system with a family of indifferent
equilibrium positions. See chapter 5 for an explanation.

We will always assume that the correction masses have equal mass and
equal distance from the axis of rotation, this will be the case in an auto-
balancer with two ball bearings in a circular race filled with some viscous
media. We will also assume that the parameters, 6;,v;, regarding the viscous
damping acting on the correction masses are equal.
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3.2 Equilibrium positions

To find the equilibrium positions we first rewrite the system of equations in
3.5 and set all time derivatives to zero, the resulting equations are

—qusin(3;) + gz cos(f,) =0
—q18in(B3y) + gz cos(By) =0 . (3.6)

This can be split into two kinds of solutions. The first is when ¢ » equals zero
and f3; , are given by the system of equations in 3.4 and can be expressed as

B, =m— cos_l(%";lell), (3.7)
By=m+cos (gme) (3.8)

This is the preferred solution where the system is balanced and no vibrations
exists. This is actually two solutions since 3, and /3, can be interchanged to
produce a new solution. These solutions only exist when

|me| < 2myl;. (3.9)

The absolute value should be interpreted that e, the distance from the geo-
metrical centre to the mass centre of the unbalanced component, can be both
positive and negative. Negative e only means that the unbalance is situated
at the opposite side of the defined positive side in figure 2.1. To obtain the
other solutions we rewrite the equations in 3.6 as

2 = tan(3,) , (3.10)

q1

© — tan(B,) . (3.11)

q1

This show that if g; 7 is not equal to zero the solution in terms of 3, , can be
written as

52251+n7r7n20717”' (312)

For n = 0, which means that the two correction masses are in the same place,
the solution for ¢; 2 in term of 3; will be

_ (i@t (mew? 4 2l cos(By) + 2ewmlie? sin(B) o
¢ (k — M) + (cw)? A

_2(k = WEM)miliw? sin(B,) — cw(mew? + 2mylw? COS(ﬁl))/g 14)
@ = (k — w2 M)? + (w)? A

Inserting 3.13 and 3.14 into 3.10 will result, after some manipulation in

(k — w*M"Ymesin(8;) + cwme cos(3,) + 2cwmyl; = 0 (3.15)
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which has a real solution if

(k —w?M')? + (cw)? > (cw)? <2m1l1> : (3.16)

Fixing all parameters except for w, which we will vary, and letting me <
2myly we see that equation 3.16 will not have any solution for w about
\/k/M'. The exact bifurcation points can be obtained by solving for the
equality in equation 3.16. Also note that fixing all parameters, except for
me, equation 3.16 won’t have any solutions when me is below some value.
The solution of 3.15 can be found in Appendix A. Equation 3.15 will, in
general, have two solutions in 3

Now turning back to equation 3.12 and setting n = 1, which physically
means that the correction masses are on opposite sides, and following the
same route as before results in

(k — w?* M Ymew?

= 1
« (k — w2M)2 + (cw)?’ (3.17)
B —cwmew? (3.18)
= (k —w?M")? + (cw)? '
The solution for (3; will then be
7 —cw
61 = tan 1 <m) . (319)

It is worth noting that equation 3.17 and 3.18 will be the equilibrium solution
to a simple rotating unbalance isotropically suspended and that equation 3.19
will be the phase angle as it is usually defined. This is also two solutions
since (3; and (3, can be interchanged to produce a new solution.

In all the system have six equilibrium positions in this coordinate repre-
sentation, four of which are physically distinguishable. These four equilib-
rium positions are schematically drawn in figure 3.2 below.

3.3 Linear stability analysis

It is now possible to linearize equation 3.4 and 3.5 to study the stability
of the four equilibrium positions. The equations of motions are put on the
standard form

M(z)x = f(x). (3.20)
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Equilibrium 1 Equilibrium 2
.,
- a <
Equilibrium 3 Equilibrium 4

Figure 3.2: Schematically showing the 4 physical solutions. A is the centre
of rotation. B is the geometrical centre. This figure is made for a particu-
lar choice of parameters. Note that all positions depend on the amount of
unbalance load.

where © = [ql,qg,ﬁl,ﬁ%ql,qg,ﬁl,@]T, M(z) and f(x) are easily derived
from 3.4 and 3.5. We will now study the eigenvalues and eigenvectors for A
that control the stability about the equilibrium positions where

-1 Of (z0:)

A=M"(x;) e (3.21)
where x(; are the four equilibrium positions. A will now be a function of
the system parameters. It is possible to derive A analytically and in this
case it is done with the help of Maple. However, it is not possible to derive
the analytical expression for the eigenvalues and eigenvectors of A (eight
order system). We therefore insert numerical values for the parameters and
equilibrium positions and calculate the eigenvalues and eigenvectors of A
numerically. The criterion for stability is that the eigenvalue of A with the
maximum real part is negative. This would assure asymptotic stability when
we are close to the equilibrium position. We therefore define the stability as

w* = max real \; (3.22)

i=1..2n
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| Par | Value || Par ‘ Value ‘
1.000 || my 0.010
1.000 || I, /r? | 0.004
0.700 || {4 1.000
0.010 || &, 0.005
1.000 || v, 0.000

msm;ri

Table 3.1: Parameters used for stability analysis.

where \; are the eigenvalues of A. Thus, if w* is negative the equilibrium
position is stable and if its positive the equilibrium is unstable. Therefore
plotting w* as a function of the parameters we are interested in examining
will show the stability of selected parameters. Since different \; will have
maximum real part when parameters are varied, w* will in genereal be a
non-smooth function of the varied parameters.

3.4 Parameter study

What is usually of interest is to vary w for a given system to see under
what rotational speeds the system behaves as desired. It is also important,
as we shall see, to investigate different amounts of unbalance by varying m
and e, since we don’t want a system where stability depends on the amount
of unbalance. These three, or two since it is the product of m and e that
is important, are the most critical when one wants to install a predesigned
autobalancing device in a pre-existing system without modifying the suspen-
sion of the system. We first pick some parameter values and compare with a
previous stability analysis. By setting M equal to one all other masses will
be measured in terms of this unit mass. We also set k and [; to one. This
means that lengths will be measure in terms of /; and spring constants in
terms of k;. For example the conversion factor between natural units of time
and common units will be vV Mk~1.

In table 3.1 the rest of the parameters are found. These parameters
correspond somewhat to the experimental machine used. By assigning a
value to all parameters except for one parameter we can plot the eigenvalue
with the maximum real part as a function of the varying parameter.

3.4.1 Stability when the rotational speed is varied

In figure 3.3 all parameters are assigned the values in table 3.1 and w is varied
between 0 and 6. The same plot is done for each equilibrium position.
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0

Figure 3.3: The stability as function of w, the rotational speed. The numbers
correspond to the equilibrium positions. The cross indicates the natural
frequency as defined in expression 1.1. Parameters from table 3.1.

The left graph in figure 3.3 shows, for low values of w, that we have a
stable solution for type 3 equilibrium position and the rest of the equilibrium
points are unstable. The third equilibrium represents a solution where the
correction masses are at the same position and at the same position as the
unbalance. This shows that at low rotational speeds the correction masses
will increase the unbalance compared to a system without autobalancing.

The cross indicates the natural frequency of the system as expressed in
1.1. According to previous stability analysis made by V.I. Kravchenko et
al., see [2] [4] [3] the region to the left of the cross is stable. In this graph
the difference between our stability point, the crossing of zero, and the point
obtained in previous work is small. We will however see a greater difference
when other parameters are varied. The right picture shows that at higher
w the only stable equilibrium is type 1, which is the desired equilibrium
position, for the selected parameters. One of the assumptions in earlier
stability analysis is that external damping is small, which corresponds to
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Figure 3.4: The result of decreasing c from 0.7 to 0.1 with the rest of the
parameters from table 3.1.

small ¢ here. Therefore, decreasing ¢ should make the point where stability
is attained come closer to the cross. In figure 3.4 the viscous damping c is
reduced to 0.1. The result is the opposite of previous analysis. It is possible,
by also decreasing the damping on the correction masses, parameter 6;, to
move the crossing point even further away from the natural frequency of the
system. It is appearant that previous stability analysis oversimplified the
problem.

3.4.2 Stability when the imbalance load is varied

Assume that we have a machine with parameters according to table 3.1 and
running it at w = 5.0 as figure 3.3 tells us that this is a stable choice for w
and for the chosen m. It is now important to check stability when we vary
the imbalance load. We vary the load by changing me in the range from zero
load to 20 percent above the limit given by inequality 3.9. It is important
to see what happens when the load is above the limit given by 3.9 since the
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-0.1
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m

Figure 3.5: The result of varying the load by changing m. The numbers
corresponds to the equilibrium positions. The angular velocity w = 5. The
rest of the parameters from table 3.1.

wanted equilibrium position type 1 does not exist in this region. In figure
3.5 the result is displayed. At zero load we have an indifferent equilibrium
since all positions where the compensating masses are at opposite sides are
allowed. Note that equilibrium type 1 and 4 are both indifferent since they
represent the same equilibrium position at zero load.

Close to maximum load, me is somewhat less than 0.002, the stability of
equilibrium type 1 is lowered, point A in figure 3.5. At maximum load the
stability of equilibrium type 1 and 2 coincide. When the load is above the
maximum load capacity only equilibrium type 2 is stable. Only looking at
equilibrium type 1 and 2 we have two stable and one unstable equilibrium
when me is below maximum load (equilibrium type 1 is actually two equi-
librium positions since (3; and (3, can be interchanged). When me is above
0.02 only one stable equilibrium exists (equilibrium type 2). We therefore
have a supercritical pitchfork bifurcation at m equal to 0.02. This is positive
since it means that overloading the autobalancer, at high rotational speeds,
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0.04

o2 T

-0.02

’,(M)

-0.04

-0.06

0.08 i i i i i i i i i
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
m

Figure 3.6: By increasing external damping and decreasing internal damping
the system will be unstable for certain loads.

will result in that the two correction masses will be at opposite side of the
imbalance, ie. the autobalancer will work as well as possible.

The local maxima at me ~ 0.014 is interesting since it is possible to let
it grow by increasing the external viscous damping and decreasing internal
viscous damping. This is accomplished by increasing the external damping
from ¢ = 0.7 to ¢ = 2.7 and decreasing the internal damping from 6; = 0.005
to 61 = 0.002. In figure 3.6 the local maxima has grown becoming unstable,
since w* is greater than zero. We then have a system where the stability
depends on the amount of load. This could potentially be a problem when
using an autobalancer if is not tested with all admissible loads. In figure
3.6 the local maxima has grown and become unstable. Generally it seems
like increased external viscous damping requires increased internal damping.
We can test this hypothesis by doing a contour plot of w* as function of
external damping ¢ and internal damping 6;. In figure 3.7 contour plots with
different loads are found, the zero contour line divides the stable region from
the unstable.  As seen in figure 3.7b-d the zero contour line is increasing
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Figure 3.7: Contour plots of the maximum real part of eigenvalues as function
of external damping, parameter ¢, and internal damping, parameter 6,. Pa-
rameters from table 3.1 and w = 5. The load in a m = 0.002, in b m = 0.008,
in ¢ m = 0.014 and in d m = 0.019.

in internal damping with increasing external damping. It is worth noting
that optimal damping, in terms of linear stability, depends on the amount of
load. Therefore, choosing the right amount of internal damping and external
damping has to be a compromise so that sufficient stability is guaranteed
at all amounts of load taken from a figure such as 3.7. In figure 3.5 we see
that the local maxima has a maximum at m ~ 0.014. This correspond to an
equilibrium position §; ~ 2 and 3, ~ 2£. From all contour plots in figure
3.8 we see that the zero contour line has a maximum in 6; at m ~ 0.014.
Therefore it seems natural to test a two correction mass autobalancer with
a load so that the equilibrium positions of the two correction masses will be
%’r and %’r. This test would then assure stability for all other loads.
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Figure 3.8: Contour plots of the maximum real part of eigenvalues as func-
tion of external load, parameter m, and internal damping, parameter 0;.
Parameters from table 3.1 and w = 5. The external damping, parameter c
equals , in a 0.5, in b 1.0, in ¢ 1.5, in d 2.0.

3.4.3 Varying the mass of the compensating masses

The maximum amount of imbalance the autobalancer can compensate for,
with zero resulting amplitude, is equal to 2m;/; assuming two compensating
masses of equal mass and distance from the geometric centre. Assuming
that we have limited space available where the autobalancer is mounted we
could increase m; and decrease [, but still keeping two times their product
to a constant value given by the maximum imbalance. The dynamics of the
system will then change, which can be seen by looking at equations 3.4 and
3.5. In equation 3.4 nothing will be changed since the only place where m; and
l; occur is as a product and that is kept constant by our assumption above.
However, in equation 3.5 we will have a term like 6;/; multiplied by ﬁz and the
right hand will be multiplied by m;. Keeping some sort of balance between
the viscous forces and the right hand side forces we expect that increasing m;
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Figure 3.9: Border line dividing stable from unstable region when the mass
and distance from geometrical centre to compensating masses are varied but
their product is kept constant and equal to 0.01. Numbers indicating mass
m;. Regions to the northwest of border line is stable. Parameters taken from
table 3.1 except for m; = 0.014

and decreasing l; will have to be compensated for by increasing 6;. That this
is the case can be seen in figure 3.9 where the border line between stable and
unstable regions have been plotted for various m; and ;. cult also seems like
the border when c is increased tends to some limiting value in 6;. This would
imply that if 6, is chosen above this limiting value stability will not depend
on c. One could argue whether this low internal damping actually will occur
in a real system. There are a lot of factors which actually could produce a
system close to this boundary. For example in a washing machine with the
drum mounted horizontally it is not desirable to activate the compensating
masses at revolutions lower than the stable limit given by figure 3.3. To
activate the compensating masses the viscous force must overcome the force
from gravity so that the balls start moving with the outer rim. This might
impose a constraint on the viscosity of the oil, lower viscosity will activate
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the compensating masses at higher revolutions. Another important factor
is temperature. In a system which is operating under different temperature
conditions the viscosity of oil might change dramatically, maybe so much
that the stability boundary is crossed.

It is also interesting to see how the stability changes when this product,
2maly, is held constant and the mass and length is varied. In figure 3.10 two
cases are compared. Line one correspond to a system where the compensating
mass is equal to 0.01. Line two correspond to a mass equal to 0.05. In
both systems the product 2m;l; is held constant and is equal to 0.01. The
parameter controlling the viscous damping, ¢, is increased in the second
system following the reasoning above. As seen in the figure 3.10 the increased
mass system shows a superior stability over the lower mass system. Also
note that the first curve segment in the system with a heavier compensating
mass decreases earlier and more rapidly than the low mass system. One
would then expect that the system with a heavier compensating mass would
perform better compared to a system with a lighter compensating mass. In
section 3.6 it is shown that this the case.

3.5 Hopf bifurcations and chaos

In figure 3.9 the border line between stable and unstable regions are drawn for
some different choices of system parameters. As argued before there might
be situations when the internal damping is low, even so low that the border
line might be crossed. It is therefore important to know what will happen
when crossing the stability boundary.

A bifurcation will occur when a equilibrium point changes stability. For
an excellent introduction to bifurcation theory nonlinear dynamics see [6].

If two complex conjugate eigenvalues crosses from the left half plane into
the right half plane a Hopf bifurcation typically occurs. Since the real part is
positive in the right half plane the equilibrium point looses its stability. When
crossing the imaginary axis in this way two things can happen. We might see
oscillations in the system approching some limiting amplitude resulting in a
limit cycle. This is called a supercritical Hopf bifurcation. When the real
part is small and positive the limit cycle will be sinusoidal with an angular
frequency equal to the imaginary part of the crossing eigenvalues. We might
also find sinusoidal oscilliations that continues to grow exponentially away
from the equlibrium point. In this case local analysis can not tell what
will happen. This is called a subcritical Hopf bifurcation. In engineering
this is potentially a much more dangerous bifurcation, since the supercritical
bifurcation will have an amplitude proportinal to /i — p, , where p is the
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Figure 3.10: Comparison of stability when the compensating mass is in-
creased. Line 1 m; = 0.01,/; = 1 and 6; = 0.005. Line 2 m; = 0.05,; = 0.2
and 6; = 0.04. Rest of the parameters from table 3.1.

bifurcation parameter we are interested in varying and p = p, when crossing
the imaginary axis. This applies for small p’s. Since our system have four
degrees of freedom, which results in eight state variables, there is somewhat
more to it. The dynamics of the system will approach a 2-dimensional surface
embedded in the eight dimensional state space of our system. This surface
is called the centre manifold. The trajectories approach this centre manifold
because the other eigenvalues still have a negative real part. The shape of
the surface and the dynamics on this surface depends on the parameters of
the system.

If the stability boundary is crossed and a subcritical Hopf bifurcation
occur, the system might experience violent vibrations due to the compensat-
ing masses movement. However, if there instead will be a supercritical Hopf
bifurcation, the result will be a stable limit cycle. This stable limit cycle
will manifest itself as small oscillation of the balls about their equilibrium
position with resulting small vibrations of the suspended mass.
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To examine this a numerical experiment can be made in the stable and
the unstable regions. From figure 3.9 we have that at 6; = 0.0065 the system
will be in the stable region and that 6; = 0.0045 it will be in the unstable
region for m = 0.02. In figure 3.11 the phase portrait of 3, , is plotted for
various values of ;. All trajectories are plotted after the initial transients
has dissapeared. Since 3;, can be interchanged to produce a new solution,
both solutions are plotted. At §; = 0.0065 the system remains at the stable
fixpoint. At 6; = 0.0045 a 1 periodic limit cycle exists. This limit cycle can
be observed in the experimental machine when external damping is high or
interal damping is low. There is one noticable feature of this limit cycle, one
of the compensating masses has a larger amplitude than the other. This is
also observed in the experimental machine. The time of the oscillations also
agrees with the measured. Continuing to lower the internal damping results
in period doubling. At 6; = 0.0032 we have a 2 periodic limit cycle and
at 61 = 0.00305 we have a 4 periodic limit cycle. This results at even lower
internal damping in a chaotic motion of the compensating masses. When 6; =
0.00302 we have a chaotic motion of the system. At 6; = 0.003 something
interesting happens, the two correction masses start changing positions with
each other. This would of course be hard to realize since that would mean
that the balls would have to move through each other. That some sort of
Hopf bifurcation occur can be seen in figure 3.12 where one pair of eigenvalues
are crossing the real axis when the internal damping 6; is varied from 0.01
to 0.003.

Using centre manifold theory and normal form analysis it is possible to
calculate whether a stable or unstable Hopf bifurcation will occur. This was
done for the border in figure 3.9 where m = 0.02. These calculations show
that a stable Hopf bifurcation will occur for this particular border. This in
combination with the experimental machine would indicate that a stable Hopf
bifurcation will occur when the internal damping acting on the compensating
masses are lowered.

3.6 Numerical experiments

We have employed a local stability analysis, i.e. we examined the stability
of the linearized equations of motion about the equilibrium position. It is
therefore interesting to examine whether local stability will influence the
complete motion. To see this we could devise some rules which determines
a good performance from a poor one and run a series of time simulations.
These simulations can then be compared to the local stability analysis. As
usual the problem is to decide what separates a good performance from
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Figure 3.11: Phase portrait of 3, , when varying the internal damping ¢;.
Period doubling occurs and at low internal damping chaotic motion is found.
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Figure 3.12: Showing the crossing of eigenvalues of the real axis when 6; is
varied. Cross indicates 6; = 0.01 and ring 6; = 0.003.

a poor one. To the authors knowledge there does not exist any accepted
performance test to evaluate autobalancers. The following is proposed as a
candidate for such criteria. In most cases an autobalancer is fitted where
one can not foresee the amount of unbalance and its position. Therefore the
most common situation will be that the autobalancer is compensating for an
unbalance and suddenly this amount of unbalance and its position change.
A corresponding time simulation will then have initial conditions; all speeds
are set to zero and the position of the axis of rotation is at the geometrical
centre. The angular position of the correction masses are chosen randomly
which corresponds to a system balancing some unbalance at some position.
The new unbalance situated at zero angular position is randomly chosen
and within the maximum balancing capability. We could then measure the
time or number of revolutions until the amplitude of the oscillations are
below some specified value. This value could be a fraction of the maximum
amplitude in the simulation or some value determined by what is acceptable
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| Par | Value(Common) |[Par | 1 | 2 | 3 |
M 1.000 || ¢ 1.8 0.7 0.7
k 1.000 || 61 0.003 | 0.005 | 0.003
m 0-0.02 | my 0.01 | 0.01 | 0,05
e 1.000 || [ 1.0 1.0 0.2
o 0.000 || 1,/+Z | 0.004 | 0.004 | 0.040

Table 3.2: Parameters used for numerical comparison.

as amplitude. To test this evaluation method 10000 numerical simulations
were made on some different choices of parameters. The measurement used
were the number of revolutions before the amplitude becomes permanently
smaller than one fifth of 2m,l; /M . The amplitude 2m;l;/M correspond
to the amplitude one would have if the unbalance me equals 2ml; and the
rotary speed w is much greater than the natural frequency of the system. In
figure 3.13 the stability of three different parameter choices is plotted , when
the load is varied. The parameters used can be found in table 3.2. In the left
table the parameters that are common to all three system are found. In figure
3.14 the outcome is displayed as a histogram over the number of revolutions.
The mean value and standard deviation is also displayed. The first system has
relatively high external damping c; and low internal damping ¢; compared
to system two. System one has somewhat better stability at low loads but
worse at the middle region compared to system two. System one and two
have identical compensating masses. System two clearly behaves better than
system one, both the mean value and the standard deviation is lower than
in system one. Since figure 3.13 only displays the stability of the linearized
system there is no reason to expect that the full nonlinear system will behave
the same way. We are not even guaranteed that the system will tend to
the equilibrium position. However these three histogram display the result
of 30000 simulations and not one has not reached the equilibrium position.
The idea is that when the system is reaching its equilibrium position it has to
spend some time in the region where the linear model accurately models the
behavior and therefore it should have some correspondence with the outcome
in the histograms. In system three the mass of the compensating mass is
increased five times over system one and two. The length [; is also reduced
to one fifth of system one and two. Following the reasoning in section 3.4.3
the internal damping 6, is increased to compensate for the inertial forces due
to a heavier mass. As seen in figure 3.13 this system show a higher stability
than both system one and two. The outcome of the numerical simulations is
displayed in histogram three of figure 3.14. Parameter set three shows both
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Figure 3.13: Stability when the load is varied. The three different plots
correspond to the parameters found in table 3.1.

lower mean value and lower standard deviation than both system one and
two. It therefore seems that one should choose heavier compensating masses
close to the axis of rotation over lighter masses far from the axis of rotation.
It also seems that the local stability tells something about the dynamics of
the global system and can be used as a reasonable guide to optimize a system.
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unbalance.
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Chapter 4

Anisotropic case

4.1 Derivation of equations

Most constructions where an autobalancer might fit in is clearly anisotropic.
For example a common use of autobalancers are in washing machines. When
spin drying the wash is not evenly distributed and as result of this an un-
balance exist. The suspension in washing machines is not isotropic since
the drum is usually standing on or hanging from springs almost vertically
mounted. This will give a much lower natural frequency in the horizontal
plane than in the vertical plane. It should be noted that using autobalanc-
ing techniques in washing machines requires two balancing rings, since the
location along the axis of rotation of the unbalance is not static. Also there
might exist dynamic unbalance in a washing machine. Using two balance
rings solves both these problems. Another anisotropic case occurs when a
grinding machine is operated. When a grinding machine is operated the sus-
pension parameters will depend on the configuration and whether the grinder
is in contact with the work piece or not.

The equations used in the anisotropic analysis are equations 2.1, 2.2 and
2.3 with the substitution 3.3. Using substitutions 3.1 and 3.2 will result in
lengthy equations which are more time consuming to compute numerically
than equations 2.1, 2.2 and 2.3 with the substitution 3.3. Substitution 3.3 is
used so that the state, when the system is balanced, will be at zero speed in
all state variables. Using substitution 3.3 the equations of motion will look
like

i=n

M'iq+eri+hzy = mew?® cos(wt)+Y mls(B; sin(B4wt)+(8;4+w)? cos(B+wt)),
i=1
(4.1)

31
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i=n

M'iy+coiathons = mew” sin(wt)+» ml;(B; cos(B;+wt)—(B;4+w)? sin(3,+wt)),
i=1
(4.2)

(m; + Tl%)lzﬁz + 1;(6; + %&)ﬁz = m;(&;sin(B; + wt) — &9 cos(B; + wt))
i=1,....n (4.3)
where M’ equals (M + m + >I*; m;), as before, and is introduced since
it occurs frequently. We we still use the assumption that the parameters

describing the compensating masses are equal and that the balancing device
is capable of balancing the unbalance, i.e.

me < 2mql;. (4.4)

The only equilibrium position in this coordinate representation will be

@ =0, (4.5)
g2 =0, (4.6)
Bi=m—cos  (505) (4.7)
By =1+ cos™ (gn) (4.8)

4.2 Linear stability analysis

We now have an explicit time dependence in the equations of motion. The
way to go for calculating the stability of the equilibrium position is to use
Poincaré maps. The equations of motions can be written as

M(z,t)i = f(z,1) (4.9)

where z = [a:l,acg,ﬁl,ﬁg,:icl,:tg,ﬁl,BﬂT. Both M(t,z) and f(z,t) are i}—”
periodic, as can be seen from equations 4.1 to 4.3. It therefore seems natural
to look at the configuration at intervals of Qf in t. The k’th intersection of
the Poincaré map will then be when t = %’rk The Poincaré map is then
defined by

L1 = q)(l'k, 27’(’/0}) (410)

where ®(z,t) is the flow of solutions i.e. ®(x,t) represents all solutions to
4.9 with initial conditions ®(x,0) = z. If we have a equilibrium z,, clearly
zg = P(xg,27/w). In the general case z may vary with time between the
intersections. However, in our case the equilibrium is given by 4.5 to 4.8
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and does not vary in time. Wheter this equilibrium is stable or not depends
on the derivatives of ®(zg,27/w) with respect to x. The criterion for a
equilibrium position to be stable is that the eigenvalues of ®,(x¢, 27 /w) have
a magnitude that is less than one. To calculate ®,(z¢,27/w) we start with
inserting ®(z,t) into 4.9, this gives

M(®,t)P; = f(D,1). (4.11)
We then take the implicit derivative with respect to x, which result in,
M, (2,t)0,P, + M(P,t)P;, = fo(D,1)D, (4.12)
In our case ®(zg,t) = xo, thus it does not depend on ¢ and its derivative
with respect to t is therefore zero. We are then left with
M (20,t)®; 0 = fu(z0,t)Dy. (4.13)
Changing the order of differentiation of ®;, and inverting M gives
D, = M~ (wo,t) fo(z0, ) Dy (4.14)

which is a differential equation for ®,. The initial condition for ®, comes
from differentiating ®(z,0) = x with respect to z, i.e. ®,(z,0) = I where I
is the identity matrix. This differential equation is, in our case, numerically
integrated to produce ®,(xg, 27 /w).

By looking more carefully at equations 4.1 to 4.2 we see that there exists
a symmetry under the simple substitution

t - t4—, (4.15)
w

Ti2 — —T12, (4.16)

Prz — Big (4.17)

which will give equations 4.1 to 4.2 again. Therefore, we only have to inte-
grate 4.14 over the interval ¢ : € : [0, 7/w] and using the symmetry to calculate
@, (20, 2m/w). The symmetry can be written as

- - -2

-1 0
-1

O, (9,27 /w) = O, (zg,m/w)| . (4.18)

O R OO oo oo
_ o O O O o oo
L

cCoococorR OO
coocoo~RoOoO
|
—

OO OO O oo
OO OO oo
o O
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| Par | Value || Par ‘ Value ‘
M | 1.000 || e 1.000
kq 1.000 || mq 0.010
ko 0.500 || 14 1.000
Ca 0.350 || 61 0.005
m 0.010 || v, 0.000

Table 4.1: Parameters used for the anisotropic stability analysis.

Since stability is governed by the eigenvalues of ®,(zo,27/w) we define

W™ = max | \; |
i=1..2n
where \; are the eigenvalues of @, (zg, 27 /w). The stability w** is then plotted
as a function of the parameters we are interested in varying and when it is
below one the equilibrium point is stable. The difference here compared to
to the isotropic case, found in section 3.3, is that w** will now show the
amplitude decay per turn compared to w*, in the isotropic case, which show
the exponential decay in time.

4.3 Parameter study

We start our stability examination by varying w for a system given by para-
meters from table 4.1 below. This particular choice of parameters will give
a system where the natural frequencies will be quite close to each other and
their ratio will be equal to /2. In figure 4.1 w is varied from zero to seven.
Note the similarities compared to figure 3.3. In previuos stability analysis
the region between the leftmost cross and middle cross was considered stable
and the region between the middle and rightmost cross unstable. To the right
of the rightmost cross the region was considered stable. By separating the
natural frequencies in the horizontal and vertical direction with a higher ratio
than given by the parameters in table 4.1 we will get a stable middle region.
In figure 4.2 the ratio of natural frequency in the horizontal and vertical di-
rection is 10. This explains why it is possible to mount an autobalancer more
stiffly in one direction compared to the other and run it at a rotary speed
between the natural frequencies in horizontal and vertical direction. In this
case the previous stability results predicts the middle region quite accurately
but fails to predict the stability in the high w region. In general we will have
a stable middle region when we have large separation of natural frequencies
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Figure 4.1: The stability as a function of the rotational speed. The crosses
indicate the natural frequencies in the vertical direction and in the the hori-
zontal direction. The middle cross indicates the rms of the two frequencies.
Parameters from table 4.1.
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Figure 4.2: The stability as a function of w when the spring constant in the
horizontal and the vertical direction differs greatly. Parameter values from
table 4.1 except for ko = 100, ¢c; = 0.7 and m = 0.014.



36 CHAPTER 4. ANISOTROPIC CASE

1.05

o"(m)

0.8

i i i i i i i i
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
m

Figure 4.3: The result of varying the unbalance load by changing m. The
angular velocity w = 5. The rest of the parameters from table 4.1.

and no stable middle region when we have low separation. We can also infer
from figure 4.2 that we should run an autobalancer with these parameters
at w ~ 3.5 if we want maximum decay in amplitude per turn. If instead
we are interested in maximum decay in time we can run the autobalancer
somewhere between w ~ 3.5 and w ~ 6.3.

4.3.1 Stability when the imbalance load is varied

The anisotropic case with varying load show the same behaviour as the
isotropic case. In figure 4.3 the load is varied in the range where the au-
tobalancer is capable of balancing. The figure shows the same features as
the figure in the isotropic case. The local maxima at m ~ 0.014 is still
present, corresponding to a equilibrium position of the compensating masses
where 3, ~ %” and (3, ~ %. It is possible by decreasing the viscous damping
acting on the compensating masses to let the local maxima grow and become
unstable. It is also useful to examine the case when we are running at a ro-
tational speed between the two natural frequencies. In figure 4.4 , w = 5,
which is between the two natural frequencies. The stability plot is similar to
the other stability plots when m is varied.
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Figure 4.4: The result of varying the unbalance load by changing m when
running at a revolutionary speed between the two natural frequencies. The
angular velocity w = 5. Parameters from table 4.1 except k; = 100 and
Cy = 0.7.
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Chapter 5

Multiple correction masses

5.1 Introduction

Using only two correction masses is usually not volume efficient since there
will be a lot of unused space in the balance rings. This, of course, depends on
the design of the balancing ring, but since most balance rings use ballbearings
with a radius which is less than the radius of the balance rings, more than
two balls are more volume efficient. Using more than two correction masses
results in a system capable of correcting for a higher imbalance load. The
maximum number of correction masses to use is the amount which fills half
the ring with correction masses.

5.2 Equilibrium positions

An aspect of using more than two correction masses is that we will get a
family of equilibrium positions where the compensating masses correct for the
unbalance. For example when we have three correction masses we will have
a one parameter family of equilibrium positions. Figure 5.1 show that there
will be a combined centre of mass of the unbalance and the third correction
mass. The position of the combined centre of mass is labeled D in figure
5.1. We call this the new unbalance. By varying the angular position, angle
(5, of the third correction mass, the point D will take different positions. In
order to calculate the equilibrium position of the two other correction masses
the distance from the geometrical centre to the centre of gravity of the new
unbalance is needed. Labeling this distance, in the figure from B to D, with
€’ it can be expressed as

, \/(m1l1 sin 33)% 4+ (me + myl; cos (33)?
©= m+my '

(5.1)
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Now exchanging e for ¢/ and m for m+m; the expressions for the equilibrium
positions 3.7-3.8 are valid with the exception that an angle « is added to
(; and (,. This angle compensates for the new angular position of the
unbalance, see figure 5.1. Note that « is the angle between BC and BD and
can be expressed as

a = atan2(mql; sin B3, me + myly cos () (5.2)

where atan2 is the two argument arctangent function. We can not choose
any value for 35 since the last two correction masses must be able to corrrect
for the new unbalance. This can be stated as

(m+my)e’ < 2myly. (5.3)
Inserting the expression for € and equating this for G5 gives

3(m1l1)2 — (me)2

2memqly

cos 33 < (5.4)

This shows, as expected, that if the imbalance is less or equal to m;l; we can
freely vary (5. For the parameter study it is worth observing that we only
need to vary (35 in the region 0 to 7 since it will be symmetric to the region
0 to —m.

In the anisotropic case this equilibrium position will be the only one in
this coordinate representation. However, the isotropic case will have some
more equilibrium positions. To derive these equilibrium positions we return
to equation 3.5. Setting all time derivatives to zero we get

—qsinf3; + qgcosB; = 0,1 =1,2,3. (5.5)
The solutions of this, in terms of (3, are,

/62 — /81 + Tl/ﬂ-, n = 0, 1, (5.6)
By = By+km:k=0,1 (5.7)

which corresponds to two physical solutions since n = 0,k = 1 is physically
equal ton =1,k =0 and n =1 and £k = 1. The two physical solutions are
that the correction masses are at the same angular positon 3, = (3, = 35 and
that one of the correction masses is at the opposite side 3, = 3, = 35 — 7.
If we would have four correction masses we would also have the case where
there are two correction masses together on opposite sides. The solutions
for ¢; and ¢» can easily be obtained from the equilibrium equations given
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Centre of mass of unbalance and the
third compensating mass

Compensating for unbalance and
third compensating mass

Figure 5.1: Using more than two correction masses will, depending on the
unbalance load, result in a family of equilibrium positions. The equilibrium
positions will therefore be indifferent.

in section 3.2. Obtaining the first solution when 3, = (3, = 35 is done by
replacing 2m, with 3m; in equations 3.13,3.14 and results in

(k= w?M')(mew® + 3miliw” cos ;) + 3cwmy liw? sin ) (5.8)
@ = ((k —w?M'")? + (cw)? T

3(k — w?M"ymyliw?sin B, — cw(mew? + 3myliw? cos 7))

Q@ = (s — W20 + (cw)? . (5.9)

This will result in, in terms of 3,
(k — w*M"Ymesin 3, + cwme cos 3, + 3cwmyl; =0 (5.10)

which has a real solution if

(k — W M')? + (cw)? > (cw)? <3mlll) . (5.11)

This shows that depending on the choice of parameter values there might not
exist a real solution. Equation 5.10 has two roots resulting in two physically
different solutions. The next case, when 3, = (3, = 33 — m, is similar to the
above except that 3m; has to replaced by m;. The reason why this can be
done is that the opposite side correction mass, labeled 3, will compensate for
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the correction mass labeled 2 leaving only correction mass number 1. This
case will also result in two physically different solutions. All in all we have
five physically distinguishable solutions. If we were to extend to use greater
number of correction masses we would have for four correction masses, six
equilibrium positions and five would give seven and so on.

These solutions only exists when both ¢; and ¢, are equal to zero. This is
important since one could else believe that there exist solutions when (3, = «
and 3, = o + m. However this is not possible since compensating mass 3,
angle 35, is not rigidly connected to the unbalance and would in this case
start to move. This is the case for the other unbalanced solutions as well.

5.3 Linear stability analysis

The stability analysis is performed by linearization of the equations of motion
given by equation 3.4 and 3.5. The equations of motion are put in the form

M(z)i = f(z) (5.12)

where z now equals [QI7 42, 517 527 537 (117 q.27 517 527 63]T' The linear Stablhty
is now governed by A, which equals

A(sz) :M_I(Z'Oi)M,Zi: ]_,..,5 (513)
’ ’ Ox

where z(; are the five equilibrium positions given in the previous section. A
can be derived analytically but the eigenvalues and eigenvectors are calcu-
lated numerically. Since the first equilibrium position, where the system is
balanced and no vibrations exists, is indifferent, we expect that one of the
eigenvalues of A(zg ;) should be zero. The condition for stability is that the
rest of the eigenvalues are less than zero. Therefore we define the stability as

Wi = max ) Re \; (5.14)

J i=1..2n—

where \; are the eigenvalues of A(xzg ;) and A9, is the zero eigenvalue and is
therefore removed. It is important to check stability for all admissible values
of 35 since zp; is a function of 35. If the stability condition holds for all
admissible values of (35 the system will certainly selfbalance if you are close
to the equilibrium position. It is also important to check the stability of
the other equilibrium positions since we don’t want them to be stable in the
operating region.
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| Par | Value || Par ‘ Value ‘

M 1.000 || e 1.000
k1 1.000 || my 0.010
ko 0.500 || {3 1.000
Co 0.350 || 61 0.005
m | 0-0.03 || v, 0.000

Table 5.1: Parameters used for multiple mass stability analysis.

5.4 Parameter study

The parameter study is complicated by the fact that we now have to vary
not only the parameter we are interested in but also the equilibrium position.
Starting with the parameters found in table 5.1 where we vary the load
between 0 and 0.3 which is the maximum load the system is capable of
balancing. The stability w;** is plotted as a contour plot since this controls
the asymptotic behaviour of small disturbances. In figure 5.2 the greyed area
in the upper left corner corresponds to the condition found in 5.4 for 3;. The
zero at m = 0.1 and B3 = 7 is the result of another indifferent equilibrium
position, namely that the balancing mass and correction mass are of equal
mass. Since they are on opposite side the two other correction masses they
may assume any position where they are on opposite side. From figure 5.3,
where the stability for the five other equilibrium positions are plotted, we see
that they are all unstable in the regime where the autobalancer is capable of
balancing the imbalance. When overloaded the balanced equilibrium cease to
exist. Equilibrium type 5 then becomes the only stable one. This equlibrium
position physically corresponds to the three compensating masses being at
the opposite side of the unbalanced component. This means that the system
is working as well as possible when overloaded.

It is also possible to get a system where stability depends on the amount
of imbalance. This can be accomplished by lowering the damping acting on
the correction masses. In figure 5.4 three regions are unstable when we lower
01 to 0.0007. For low amount of imbalance, m about 0.002, it does not exist
any stable equilibrium. The case for m about 0.02 is somewhat better since
there exist stable equilibrium for 35 is some intervals. What might happen
in a real system when starting in region 2 and 3 is that the correction masses
might move outside the unstable region and stabilize in a stable region. This
is somewhat supported by numerical simulations. However, this behaviour
is not guaranteed.
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-0.06
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Figure 5.2: Contour plot of stability w}** when m is varied from 0 to 0.3
and (35 in the range 0 to the value given by equality in 5.4. Parameters from
table 5.1.
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1 i 1 i i i i
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
m

Figure 5.3: Plot of w5*;when m is varied from 0 to 0.4. Equilibrium position
five become stable when m is above 0.3, which is the maximum amount of
unbalance the system can correct for. This means that the system work as
well as possible when overloaded. Parameters from tabel 5.1.
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0.025

0.02

€0.015

0.01

0.005

Figure 5.4: Contour plot of the stability when m is varied from 0 to 0.3 and
B in the range 0 to the value given by equality in 5.4. Parameters from
table 5.1 except for the damping acting on the correction masses, 6;=0.0007.
The dashed area are unattainable, see inequality 5.4. The dark grey area is
unstable.
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Conclusions

This analysis has mainly been concerned with local stability analysis. One
of the most important conclusions that one can draw from local analysis is
that the natural frequency is not the border between stable and unstable
balancing operations. However, it seems like running the autobalancer above
the natural frequency is a necessary condition for stability.

The local analysis also tells us that the unbalanced equilibrium positions
found in the isotropic case are not in general stable in regimes where the
balanced equilibrium is stable. This would assure, for example in a system
where the unbalance suddenly changes, that the correction masses would not
move to an unbalanced equilibrium. The anisotropic case do not show these
unbalanced equilibriums.

Another important conclusion is that the autobalancer work as well as
possible when overloaded, i.e. all correction masses end up in a stable con-
figuration at the opposite side of the unbalanced component.

This analysis also tells us something about the effects of internal damp-
ing compared to external damping. If we have high external’ damping and
low internal damping the autobalancer might be unstable. This effect is par-
ticularly noticeable when using two correction masses situated at an angle
j:‘?jf radians from the line connecting the geometrical centre and the centre
of mass of the unbalanced component. This unstability results in a periodic
motion of the compensating masses about the balanced equilibrium position.

The anisotropic case, where we have a different spring constant and damp-
ing constant in the horizontal and vertical direction, shows a somewhat more
complicated stability when the rotational speed is varied. We might then
have, depending on the magnitude of separation in horizontal and vertical

!The damping from dampers are referred to as external damping and internal damping
is the damping acting on the correction masses.
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direction, alternating unstable and stable regions when the rotational speed
is varied.

It is also shown that it is possible to extend this local stability analysis
when more than two correction masses are used. However, we will then
have indifferent equilibrium positions. The same instabilities show up in the
multiple correction mass case, such as unstabillity due to low internal/high
external damping and stability depending on the amount of unbalance.

Although local analysis does not tell what happens when the dynamics
are far from the equilibrium position there seems to be a correspondence
between the complete dynamics and the local dynamics. This is supported
by the numerical simulations. It therefore seems possible to use local analysis
for guidance when designing an autobalancing system.
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Chapter 8

Appendix

8.1 Appendix A

8.2 Solution of equation 3.15
Equation 3.15 can be written as two equations,
(k — w*M")Ymesin(B,) + cwme cos(B,) + 2cwmyly = 0

and,
sin(3,)? + cos(3;)* = 1

to get two well defined solutions. The solution can be written as,

—be + \/a4 —a?(b? — ?))

COS(ﬁl) = a2 + b2
and,
) —bcos —c
() = <)
where,

a=me(k—wM')?
b = mecw
c = 2cwmqly

ol

(8.3)

(8.4)

(8.5)
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