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doktorsexamen torsdagen den 28 maj kl 10.15 i Kollegiesalen, Administrations-
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Abstract
This thesis considers laminar-turbulent transition in wall bounded shear

flows, with a focus on transition emanating from a pair of oblique disturbance
waves. The oblique waves interact nonlinearly and transfers disturbance energy
into streamwise vortices, which generate streamwise streaks through a linear
mechanism that operates also at conditions where stability theory predicts
decay of all eigenmodes. If the strength of this transient growth is sufficient
to produce streaks with an amplitude exceeding a threshold value, the streaks
break down through what is described as a secondary instability operating
on the streaks, which is not to be confused with the traditional secondary
instability operating on finite amplitude waves.

A survey of transition in plane Poiseuille and Blasius flows is presented
together with a description of different methods for generating disturbances in a
flow experiment. Details about the specific methods for disturbance generation
used in the present investigations are also given.

Experimental investigations of oblique transition in plane Poiseuille and
Blasius flow have been made using hot-wire measurements and flow visual-
isations. The main effort in the experimental work has been in describing
the structure of the flows, but also to determine the amplitude of individual
frequency-spanwise wavenumber modes and their development during the tran-
sition process. During an initial stage of each experiment, measurements on
the stability characteristics of single waves were compared to results from linear
stability calculations.

Spatial direct numerical simulations (DNS) together with numerical mod-
elling of the vibrating ribbons used in the plane Poiseuille flow experiments
helped to clarify the reason for symmetry properties observed in the measure-
ments.

A model experiment is also reported which was designed to study the
last stage in the oblique transition scenario. Stationary streamwise streaks
of large amplitudes were generated and the breakdown of the streaks was in-
vestigated both at unforced conditions and by forcing with phase controlled
time-dependent disturbances. Most of the experimental results were found to
be in agreement with previous theoretical and numerical work.
Descriptors: laminar-turbulent transition, oblique wave, oblique transition,
nonlinear interaction, transient growth, streak instability, Tollmien-Schlichting
wave, hot-wire measurement, flow visualisation, linear stability, numerical sim-
ulation
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CHAPTER 1

Introduction

Traditionally, transition from laminar to turbulent flow has been studied by
investigating under which conditions infinitesimal two-dimensional waves (also
known as Tollmien–Schlichting waves or TS-waves) can grow in amplitude.
Since the growth of two-dimensional waves could not always explain experi-
mental observations, researchers turned their interest towards the possibility
for finite amplitude two-dimensional waves to become unstable with respect
to low amplitude three-dimensional disturbances. This so-called secondary
instability has been successful in describing transition initiated by artifically
generated two-dimensional waves. Direct numerical simulations of the govern-
ing equations and theoretical work have both resulted in close agreement with
data obtained from measurements. The obvious question then follows: How
relevant is it to assume the presence of finite amplitude two-dimensional waves
in a general flow situation? In an environment with a low level of background
disturbances, such as exists at free flight conditions, growing two-dimensional
waves can be of importance. However, there are many other situations where
two-dimensional waves cannot be amplified from background disturbances or
with such high disturbance levels that transition occurs on a time scale much
faster than it takes for two-dimensional waves to amplify enough to become
unstable to three-dimensional disturbances.

In 1993 a paper by Trefethen et al. was published in Science summariz-
ing work on the stability of flows made by a few research groups during the
previous ten years. The paper discussed the role of linear mechanisms in dis-
turbance growth and described how large transient growth can be obtained
at conditions for which traditional stability theory predicts exponentially de-
caying disturbances. These results also suggest that the concept of transient
growth may explain experimental observations where transition from laminar
to turbulent flow is obtained at Reynolds numbers much below theoretically
predicted values.

Laminar-turbulent transition is usually described as a process involving
three stages: the receptivity problem, the stability problem and the break-
down. During the receptivity stage external disturbances are transformed to
instability waves inside the boundary layer. This important stage is, however,
not treated in the present thesis, which instead focuses on the growth of distur-
bances and the breakdown of the flow. Usually the stability problem considers
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Figure 1.1. Geometry of the investigated flows. The top
figure shows plane Poiseuille flow and the bottom a Blasius
boundary layer flow.

the growth of low amplitude two-dimensional waves but we will start from a
pair of oblique waves of small, but finite amplitude. The waves will interact
with each other and form streamwise oriented vortices. An interaction between
these vortices and the mean flow will result in regions of high- and low-speed
fluid alternating in the spanwise direction. If the structures grow in amplitude
and break down, this scenario will in the following be referred to as ‘oblique
transition’.

Transient growth of three-dimensional structures, which is an important
part of the oblique transition scenario, may occur whenever a three dimensional
disturbance is introduced into a boundary layer. Such disturbances have been
studied in several experiments over the last decade by e.g. disturbing the flow
through a small hole or a membrane at the wall or from the free stream. For
such experiments transient growth of the disturbance is usually observed.

A complication in these studies is that it is hard to get a complete and
accurate description of the initial disturbance. The control of the resulting
disturbance is also limited. Therefore the possibility to use two oblique waves to
study transiently growing disturbances is attractive since the initial disturbance
in this case can be well described both mathematically and experimentally.

Oblique transition does, however, not only occur in model experiment but
has probably significance in a number of natural situations. For instance in
supersonic flows where the most unstable linear waves are oblique and one
would expect that interaction between various oblique modes would give rise
to the oblique transition scenario. For low levels of free stream turbulence the
disturbances give rise to wave packets and the interaction among such wave
packets may also give rise to oblique transition. Also for higher levels of free
stream turbulence where generation of streaky structures occur oblique waves
may play an important role for the breakdown.
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The thesis is based on four papers (I-IV) which describe results obtained
from experiments on oblique transition in two of the canonical shear flows,
namely plane Poiseuille flow (paper I) and Blasius flow (paper II). A sketch
of the flow geometries and a definition of Reynolds numbers related to the
flows are shown in figure 1.1. The experiments consisted of measurements of
the disturbance field resulting from a forcing with deterministic wave distur-
bances (so-called controlled forcing). Two methods to force the oblique waves
have been used; in the plane Poiseuille flow case vibrating ribbons were used,
whereas for the boundary layer the waves were introduced through periodic
(both in time and in the spanwise direction) suction and blowing through a
slit. Direct numerical simulations (paper III) were also used to clarify some
features observed in the experiments, whereas one experiment was especially
designed to investigate the secondary instability and breakdown of the streaky
structures (paper IV).



CHAPTER 2

Stability theory

This chapter covers some useful issues in stability theory that will be used later
in this thesis as well as in some of the included papers.

The Navier–Stokes equations together with the continuity equation de-
scribe the flow of a fluid. For an incompressible Newtonian fluid they read

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi (1)

∂ui
∂xi

= 0 (2)

where ui, p are the velocity and pressure fields, ρ and ν the density and kine-
matic viscosity and fi describes the action of body forces. A right-handed co-
ordinate system is used where (x1, x2, x3) = (x, y, z) are the streamwise, wall
normal and spanwise axes. The corresponding velocities are denoted (u, v, w).
For the flat plate boundary layer the origin is located on the centreline at the
leading edge, whereas for the channel flow the origin is on the centreline half-
way between the lower and upper wall (different streamwise positions are used
for the origin).

By assuming the absence of body forces and a base flow in the streamwise
direction with a variation in the wall-normal direction and by considering lin-
ear disturbances (squared disturbance quantities are neglected), the following
equations can be derived[

(
∂

∂t
+ U

∂

∂x
)∇2 − U ′′ ∂

∂x
− 1
Re
∇4

]
v = 0, (3)[

(
∂

∂t
+ U

∂

∂x
) − 1

Re
∇2

]
η = −U ′ ∂v

∂z
(4)

The equations describe the evolution of any linear disturbance (the derivation
of the equations can be found in e.g. Hallbäck et al. 1996). U is the laminar
base flow, ∇ is the nabla-operator and the normal (perturbation) vorticity is
given by

η =
∂u

∂z
− ∂w

∂x

4



2.1 STABILITY THEORY FOR LINEAR WAVES 5

2.1 Stability theory for linear waves

Equations describing the behaviour of individual wave disturbances with infin-
itesimal amplitudes can be derived from equations (3) and (4) by introducing
normal-modes of the form

v(x, y, z, t) = Real
[
ṽ(y)ei(αx+βz−ωt)

]
(5)

η(x, y, z, t) = Real
[
η̃(y)ei(αx+βz−ωt)

]
(6)

where α and β are the streamwise and spanwise wave numbers and ω is the
angular frequency of oscillation. The result is the following pair of equations[

(−iω + iαU)(D2 − k2) − iαU ′′ − 1
Re

(D2 − k2)2

]
ṽ = 0 (7)[

(−iω + iαU) − 1
Re

(D2 − k2)
]
η̃ = −iβU ′ ṽ (8)

in which D = d/dy and k2 = α2 + β2. The equations are known as the
Orr–Sommerfeld and Squire equations, respectively. Together with boundary
conditions, these equations form eigenvalue problems for the normal velocity
and vorticity. The horizontal velocity components can be determined from

ũ =
i

k2
(α
∂ṽ

∂y
− βη̃) (9)

w̃ =
i

k2
(β
∂ṽ

∂y
+ αη̃) (10)

If only two-dimensional waves are considered (so-called Tollmien–Schlichting
or TS-waves), it is sufficient to solve (7) and (9) together with appropriate
boundary conditions to get ṽ and ũ. However, if oblique waves (β 6= 0) are of
interest the complete set of equations (7)-(10) need to be solved in order to get
all velocity components. The boundary conditions for plane Poiseuille flow are

ṽ =
∂ṽ

∂y
= η̃ = 0 , y = ±1

whereas for a boundary layer flow they are

ṽ =
∂ṽ

∂y
= η̃ = 0 , y = 0

ṽ =
∂ṽ

∂y
= η̃ → 0 , y →∞

Wave disturbances can either be considered to evolve in time or in space,
and the corresponding stability problems are known as the temporal or the
spatial problem. The temporal problem is solved for the complex eigenvalue
ω with α, β and Re appearing as real parameters. In this case the sign of
the imaginary part of the angular frequency ωi determines if the disturbance
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Figure 2.1. Amplitude profiles for plane Poiseuille flow at
Re = 1600 and ω = 0.42. Comparison between measurements
(by Elofsson & Alfredsson) of the streamwise disturbance ve-
locity (◦) and eigenfunctions of u (——) and v (- - -) normalized
by the maximum of u.

decays or grows with time. For ωi < 0 the disturbance decays whereas growth
occurs for ωi > 0. A disturbance with ωi = 0 is said to be neutral. For the
spatial problem the streamwise wave number α is complex and the angular
frequency appears as a real parameter. In this case growth occurs in space if
αi < 0.

Figure (2.1) shows examples of eigenfunctions for a Tollmien–Schlichting
wave in plane Poiseuille flow. The numerical results, obtained by solving the
spatial Orr–Sommerfeld equation with a shooting method, are compared with
measurements of the streamwise disturbance velocity.

Squire’s transformation and oblique waves
By using the transformation proposed by Squire (1933) it is possible to obtain
information about oblique waves by solving the disturbance equations for two-
dimensional waves. The transformation is as follows

α2
2D = α2

3D + β2
3D = k2

Re2D =
α2

3D

k2
Re3D

where the subscripts 2D and 3D refers to Tollmien–Schlichting and oblique
waves, respectively. The effect of the transformation is illustrated in figure 2.2
which shows neutral stability curves (contours of ωi = 0) for plane Poiseuille
flow. Squire’s transformation was derived for temporally growing waves in a
parallel basic flow. For the spatial case it can be applied at neutral conditions.
From the last of these equations one can see that a two-dimensional wave
becomes unstable at a lower Reynolds number than the corresponding oblique
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Figure 2.2. Curves of neutral stability for different wave an-
gles (φ = arctan(β/α)) in plane Poiseuille flow.

wave. This observation is known as Squire’s theorem and is probably the main
reason why three-dimensional disturbances for a long time were neglected in
studies of laminar-turbulent transition.

An example of eigenfunctions for oblique waves in plane Poiseuille flow is
given in figure 2.3. The calculated eigenfunctions are plotted together with a
measured distribution of the streamwise disturbance velocity. When comparing
with a two-dimensional wave it is seen that the positions where maximum u
occurs have moved closer to the centreline for the oblique wave.

2.2 Linear growth mechanisms

Recently there has been an increased awareness of the importance of linear
growth of three-dimensional disturbances in the transition process, especially
at subcritical Reynolds numbers. The need for linear growth mechanisms can
be motivated by considering the so-called Reynolds–Orr equation, which de-
scribes the evolution of the disturbance kinetic energy. In the equation there
are only terms that correspond to linear terms in the disturbance equations
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Figure 2.3. Amplitude profiles for an oblique wave (ϕ = 45◦)
in channel flow at Re = 2000 and ω = 0.33. Comparison be-
tween measurements (by Elofsson & Alfredsson) of the stream-
wise velocity (◦) and eigenfunctions of u (——), v (- - -) and
w (− · −) normalized by the maximum of u.

and therefore it has been concluded that a linear mechanism is necessary for
disturbance growth (see Henningson 1995).

For the inviscid case Ellingsen & Palm (1975) showed that streamwise
independent three-dimensional disturbances would lead to a linear growth of
the streamwise disturbance amplitude with time. Landahl (1980) investigated
localized disturbances and demonstrated that the disturbance energy grows at
least linearly with time as the disturbed region elongates in the streamwise
direction. The studies mentioned above both describe a growth that is linear
in time with no damping effects due to viscosity and can therefore be referred
to as an algebraic instability.

The mechanism behind the described growth is the lift-up effect (see Lan-
dahl 1977), which is the generation of horizontal velocity perturbations by the
upward or downward movement of fluid elements in a region with mean shear.
By essentially conserving the horizontal velocity, the fluid elements will create
a defect in the velocity profile at their new position.

The lift-up effect is also of great importance in viscous flows. Instead of
the algebraic instability seen in the inviscid case the flow will rather experience
a transient algebraic growth, since viscosity will eventually limit the growth.
Mathematically, the transient growth can be explained as a result of decaying
non-orthogonal eigenfunctions (see e.g. Trefethen et al. 1993).

One of the first studies which demonstrated the existence of transient
growth in a viscous flow was the work by Hultgren & Gustavsson (1981). They
investigated the temporal development of three-dimensional disturbances in a
parallel boundary layer flow and found an initial linear growth followed by
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a viscous decay. Later investigations of transient growth have been able to
describe and quantify the growth in a number of flow situations. Studies in
plane Poiseuille and Blasius flows will be presented in chapter 3, references to
investigations of transient growth in other flows can be found in the review by
Henningson (1995).

The structures that show the largest transient growth are streamwise in-
dependent disturbances (α = 0) with a fairly narrow spanwise scale. As an
example we can consider plane Poiseuille flow, for which the amplitude of a
streamwise independent disturbance with a spanwise wave length near 3h can
grow to a value of 28 times its initial value at Re = 2000 (see Trefethen et
al. 19931). This growth is quite large especially if one considers that it occurs
for a subcritical Reynolds number where all individual wave disturbances de-
cay (Recr = 5772 for plane Poiseuille flow). One can further note that by only
using the least damped mode as in the study by Gustavsson (1991), almost the
same growth will be obtained as found by solving the variational problem for
the optimal growth.

Transient growth is a strong candidate to explain why transition observed
in an experiment usually occurs at a lower Re than what is predicted for the
least damped eigenmode. However, at supercritical Re there will be a competi-
tion between exponentially growing eigenmodes and linear growth mechanisms
in determining the onset of transition.

As described above, viscous damping will eventually cause disturbances to
decay in many situations. However, as pointed out by Luchini (1996), this is
not the situation in a growing boundary layer where the weak viscous damping
is insufficient to damp the algebraic growth. For a parallel flow the viscous
decay is exponential and will eventually be larger than the algebraic growth,
but for a growing boundary layer, both the viscous decay and the growth is
algebraic and there are situations for which the growth can be larger than the
decay.

2.3 Secondary instability and nonlinear breakdown

2.3.1 Nonlinear interactions and conditions for resonance. Nonlinear
interactions involving three waves can occur if the wave number vectors of the
waves satisfy

k1 = k2 + k3 where ki = (αi, βi)

The amplitude of the resulting wave will then be the product of the amplitudes
of the two other waves. If in addition the angular frequencies of the waves
match

ωr,1 = ωr,2 + ωr,3

1They showed that the maximum transient growth scales as Re/71.5 and occurs for

α = 0 and β = 2.04.



10 STABILITY THEORY

31

-1

-2

1

2

α

β

2

Figure 2.4. Figure illustrating nonlinear interactions occur-
ring in the oblique transition scenario.

a resonance is said to occur. Provided that the individual waves have am-
plitudes of similar order they will force each other at resonance conditions,
resulting in large growth rates.

Figure 2.4 illustrates nonlinear interactions involved in the oblique transi-
tion scenario. Initially only the two modes marked with open symbols contain
energy, but nonlinear interactions redistribute energy among other wave num-
ber components. Wave number modes that receive energy in the first genera-
tion are marked by filled symbols, and the nonlinear interactions are shown by
the arrows which indicate addition or subtraction of wave number vectors. In
the next generation of nonlinear interactions, all energy containing modes will
participate. We will in the following make use of a notation where modes are
expressed as a pair of integers multiplying the streamwise and spanwise wave
numbers of the initial oblique waves. The initial oblique waves are then de-
noted the (1,±1) modes and a TS-wave with the same frequency as the oblique
waves will be noted a (1, 0) mode.

2.3.2 Secondary instability of waves. Transition starting from Tollmien-
Schlichting waves (two-dimensional waves) proceeds through a stage where vor-
tices dominate. Flow visualisation studies and hot-wire measurements have
indicated the appearance of two different vortical patterns at this stage. One
structure consists of aligned Λ-shaped vortices and the other of Λ-vortices ar-
ranged in a staggered pattern. The former is denoted K-type transition after
Klebanoff, and the case with a staggered pattern is usually called subharmonic
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transition since a spectrum obtained by a hot-wire positioned in the flow would
indicate a subharmonic frequency. There have been many investigations on
these transition scenarios and several alternative names have appeared. K-
type transition is also called fundamental, aligned and peak-valley splitting.
Alternative names for subharmonic transition are C-type, H-type, N-type and
staggered and we will usually refer to it as N-type transition.

Which of the scenarios that will be observed in a transitional flow is mainly
governed by the amplitudes of the individual waves. N-type transition is gen-
erally observed at lower disturbance amplitudes of the two-dimensional wave.
However, in plane Poiseuille flow experiments, K-type transition is usually ob-
served (as opposed to theoretical predictions and observations from direct nu-
merical simulations).

Several models have been proposed to explain the different vortex patterns.
The models found to be of most relevance will be described below.

Subharmonic transition
Two main models are associated with the subharmonic secondary instability.
The model by Craik (1971) uses weakly nonlinear theory, whereas the secondary
instability theory (Orszag & Patera 1983, Herbert 1983) makes use of Floquet
theory to investigate the linear stability of a modified baseflow with respect to
three-dimensional disturbances. This modified baseflow is the combination of
the undisturbed flow and a two-dimensional wave of finite amplitude.

Craik’s model was originally put forward to explain the rapid growth of
three-dimensional disturbances observed in experimental investigations of K-
type transition, but the strongest growth occurred for subharmonic instead of
fundamental frequencies. The model considers nonlinear interactions between
a two-dimensional wave of fundamental frequency and a pair of oblique waves

Aei(α1x−ω1t) and Bei(α2x±β2z−ω2t)

Rapid growth occurs at resonance conditions

α1 = 2α2 , ω1 = 2ω2

i.e. if the oblique waves have a subharmonic frequency. These conditions also
imply that the phase velocities of the waves should be equal. The resonance
conditions are rather strict and can only be fulfilled for some specific spanwise
wave numbers.

A more general model which explains subharmonic transition was presented
by Herbert (1983). This model also involves a two-dimensional wave and a
pair of subharmonic three-dimensional disturbances, but the three-dimensional
disturbances are now Squire modes, whose phase speed is independent of the
spanwise wave number. This allows an instability to occur for a range of
spanwise wave numbers.

K-type transition
The flow structures associated with K-type transition has been recognized since
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the beginning of the 1960’s. However, several observed features are still not
fully understood. These features involve the question whether there exists a
preferred spanwise wavelength or not, and also which of the proposed reso-
nances is of greatest importance?

Characteristic for K-transition is the appearance of so-called spikes (large-
amplitude fluctuations) seen in the streamwise velocity. These are now be-
lieved (see Kachanov et al. 1985) to result from local phase synchronization
of three-dimensional disturbances with frequencies which are harmonics to the
fundamental wave.

The wave-resonance concept by Kachanov (1987) explains the growing har-
monics with a cascade of four-wave resonances involving waves of type

(ω1, 0) , (2ω1, 0) and (ω1,±β)

Waves involved in this series of resonances have been observed in measurements
at the spike stage (see the review by Kachanov 1994 for a description).

Examples of other models describing K-transition are the fundamental res-
onance by Herbert, which involves

(ω1, 0) , (0,±β) and (ω1,±β),

or a combination of Herbert’s resonance and the wave-resonance concept.
The models described above for K- and N-type transition all involve a finite

amplitude TS-wave, which later distorts as three-dimensional disturbances gain
in amplitude. However, the oblique transition scenario (see chapter 4) does
not need to rely on two-dimensional waves but rather starts directly from a
nonlinear interaction between a pair of oblique waves.



CHAPTER 3

Transition in plane Poiseuille and Blasius flows

This chapter concentrates on describing the first stages of the transition pro-
cess, occurring before the formation and growth of turbulent spots. Further
information on the late transition stages in plane Poiseuille and Blasius flows
can be found in Henningson, Johansson & Alfredsson (1994) and Riley & Gad-
el-Hak (1985). Oblique transition is not treated in this chapter, but a detailed
description is given in chapter 4.

The chapter starts with a survey of methods for the generation of con-
trolled disturbances in an experiment and it also gives some information on
how disturbances can be modelled in a direct numerical simulation.

3.1 Methods for generating disturbances

In order to get accurate and detailed information about the complicated process
of transition from laminar to turbulent flow, controlled disturbances are usually
introduced in experiments. The idea is to generate deterministic disturbances
and then study their behaviour. If studies of this kind are to be of any wider
interest, it is of course important that the generated disturbances resemble
those that are observed for transition at unforced conditions (also known as
natural transition). By prescribing specific disturbances as initial or inflow
conditions in a direct numerical simulation, one can also make use of ‘controlled
disturbances’ in such investigations.

3.1.1 Experimental disturbance generation. Numerous methods for the
generation of disturbances have appeared since the study by Nikuradse (1933),
who used periodic suction through the surface of a flat plate model in order to
experimentally verify the stability theory of Tollmien and Schlichting. Methods
for disturbance generation differ in the way they were designed to effect the
flow and in their degree of control. There are methods which only allow the
amplitude to be controlled whereas other make it possible to control the com-
plete disturbance spectrum. According to Gaponenko & Kachanov (1994), the
general requirements for disturbance generators are: they should have a small
effect on the mean flow, they should generate disturbances of a given spectrum
and they should provide a possibility to control the spectrum. Examples of

13



14 TRANSITION IN PLANE POISEUILLE AND BLASIUS FLOWS

various disturbance sources, arranged after the desired disturbance type, are
presented in the following.

Vibrating ribbon
One of the most well-known devices for generation of two-dimensional wave dis-
turbances is the vibrating ribbon. This technique was first used by Schubauer
& Skramstad (1947) in their classical investigation of transition in a flat plate
boundary layer. A metal ribbon mounted near a wall is exposed to a station-
ary magnetic field and the motion of the ribbon is achieved by connecting the
ribbon to an alternating current. There are some limitations with the vibrat-
ing ribbon technique such as a non-uniform amplitude distribution along the
ribbon span, the need for a relaxation distance close to the ribbon and the pos-
sibility that the ribbon effects the mean flow (see Mack 1984 and Saric 1990).
If the ribbon is oriented in an oblique angle to the direction of the mean flow
it is also possible to generate oblique waves (as shown by e.g. Elofsson & Al-
fredsson 1995).

Acoustic forcing
It is known that acoustic disturbances in the free stream can generate distur-
bances inside the boundary layer through a receptivity process. Saric, Hoos &
Radeztsky (1991) made experiments on the boundary layer receptivity of sound
with two-dimensional roughness elements. They put a roughness element on
their flat plate model and used acoustic forcing from the free stream to excite
TS-waves, which were found to be in close agreement with results from linear
stability theory. Later Breuer et al. (1996) studied the interaction between
broad-band acoustic waves (the background noise in their wind tunnel) and
two-dimensional roughness elements. Their results demonstrated that a simi-
lar receptivity mechanism is active in broad-band acoustic forcing as for forcing
at a single frequency.

One can also note that oblique waves and pair of oblique waves can be
generated with acoustic forcing and a roughness step at an oblique angle to the
flow direction.

Point source
For studies of localized disturbances, loudspeakers have commonly been uti-
lized. Gaster & Grant (1975) used a short duration acoustic pulse, injected
through a small hole in their flat plate model, to generate a wave packet which
later becomes modulated. Variations on the theme are harmonically excited
point sources or, as in the investigation by Shaikh & Gaster (1994), excitation
by deterministic white noise. Hole diameters in these studies are in the range
0.5 to 0.8 mm.

Wave packets can be decomposed into individual modes with Fourier tech-
niques. Gaster & Grant used power spectra and were therefore limited to in-
formation about amplitudes. However, if experimental data allows a complex
spanwise Fourier transform to be made, one can obtain complete information
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on both amplitude growth and dispersion characteristics for various wave angles
(see Kachanov & Michalke 1994).

In the experiments by Breuer & Haritonidis (1990) a localized disturbance
was generated by the motion of a 9 mm by 17 mm latex membrane mounted in
the flat plate model. The membrane surface was activated by connecting the
cavity below it to either a high- or a low-pressure source.

Another method for generating localized disturbances is the use of a spark
discharge. This technique generates strong disturbances and it has been used
in stability experiments in supersonic flows and also in the study of turbulent
spots by Wygnanski, Sokolov & Friedman (1976). Strong disturbances can also
be generated by the injection of fluid through the flat plate surface or channel
walls (see e.g. Henningson & Alfredsson 1987).

Stationary disturbance generator
Another category of forcing may be denoted continuous. Klebanoff, Tidstrom
& Sargent (1962) used strips of tape positioned below their vibrating ribbon to
control the three-dimensionality in the flow. Other examples of this type are
roughness elements or obstacles, as in the investigation of subcritical transition
by Nishioka & Asai (1985). A similar type of forcing can also be achieved with
continuous suction or injection through slits in a wall.

Complex wave generators
Perhaps beeing the most interesting, and also the most difficult to design, are
systems which allow control of the complete spectrum of a disturbance. With
this we mean devices which can generate disturbances with a desired (complex)
frequency-wavenumber spectrum.

Liepmann, Brown & Nosenchuck (1982) used periodic heating of a nichrome
strip to generate two-dimensional disturbances on a flat plate in a water tunnel.
Later Robey (1987) developed a flush-mounted heater array for the generation
of phase-controlled three-dimensional disturbances. Corke & Mangano (1989)
developed a spanwise array of wire segments which could be heated individ-
ually. Their disturbance generator was operated in a wind tunnel at forcing
frequencies up to about 40 Hz. An additional long wire mounted just upstream
of the array was used to force two-dimensional waves, and this arrangement
made it possible to simultaneously generate phase-controlled two- and three-
dimensional disturbances. Both types of wave generators described above use
local heating near a wall to cause a change in the viscosity and the effect of
the heating can be compared to a small wall-normal surface oscillation (see
Liepmann et al.).

Another interesting method to generate disturbances with a given spectrum
was developed by Gaponenko & Kachanov (1994). Their source consists of a
spanwise array of pipes which connects to the surface of the flat plate model
through a narrow slit. Each pipe is connected to a loudspeaker and the spanwise
wavenumber of the disturbance can be controlled by changing the phase of the
loudspeaker signals and the pattern by which the speakers are connected to the
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pipes. A similar version of the disturbance source was used by Bake, Kachanov
& Fernholz (1996) in their investigation of the nonlinear stages of transition in
a Blasius-like flow developing on the wall of an axisymmetric wind tunnel.

Corke, Krull & Ghassemi (1992) used a 52 µm thick piezoelectrical film to
excite three-dimensional modes in their study of the far wake behind an airfoil.
The film had a total area of 300× 150 mm2 and was wrapped around the surface
of the airfoil. A total of 60 forcing elements and their electrodes were created by
vapor depositing an alloy onto the film. The airfoil had cavities located below
the portions of the film which contained the active forcing elements. Periodic
disturbances were generated by the motion obtained when applying a periodic
voltage to the elements. Measurements are reported at forcing frequencies up to
100 Hz but the technique should have a potential to reach a frequency response
of about 500 Hz.

3.1.2 Modelling of controlled experiments in numerical simulations.
Much success has been achieved in obtaining detailed information from the
transition process by direct numerical simulations (DNS). Some numerical sim-
ulations have aimed at a direct comparison with existing experiments that have
used controlled disturbances. In order to obtain a close agreement between sim-
ulations and experiments, experience has shown that it is important to model
the forcing in a careful way.

Perhaps the most common and easiest way to simulate controlled distur-
bances is to directly include disturbance modes in the initial conditions or in
the inflow boundary conditions. In a simulation with a TS-wave for instance,
the disturbance mode would be the least damped Orr–Sommerfeld mode at the
given conditions. Several examples of direct numerical simulations using this
technique can be found in the review by Kleiser & Zang (1991).

The aim of the numerical simulation by Elofsson & Lundbladh (1994) was
to find the reason for the difference in symmetry which was found when compar-
ing experimental results of oblique transition in a plane channel flow (Elofsson
& Alfredsson 1995) with a DNS by Schmid & Henningson (1992). In the ex-
periment a pair of oblique waves were generated by vibrating ribbons mounted
at 45◦ angle to the flow direction (one at each channel wall). To closely model
the experiment Elofsson & Lundbladh used time-dependent body-forces in the
regions occupied by the ribbons. By adjusting the amplitude of the body-forces
to match urms from the experiment in one position, close agreement between
experiments and DNS was found throughout the whole region (see figure 3.1).

In the work by Berlin, Wiegel & Henningson (1998) comparisons were made
between experiments on oblique transition in a boundary layer flow and DNS.
The experiments used periodic blowing and suction through a spanwise array
consisting of 40 slits, each 10 mm wide. Several methods to model the experi-
mental forcing were investigated in the simulations. The closest agreement was
obtained when the wall-normal velocity was specified in a region at the wall.
In this region the velocity was applied in a step-wise fashion to simulate the
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Figure 3.1. Stationary disturbance field caused by a pair of
oblique waves in plane Poiseuille flow for Re = 2000. Ex-
perimental results are shown in the top figure and simulation
results in the bottom (from Elofsson & Lundbladh 1994).

individual slits, and to account for the lower response from suction than for
blowing the amplitude during the suction phase was reduced.

3.2 Transition studies in plane Poiseuille flow

3.2.1 Linear and nonlinear two-dimensional disturbances. From the
solution of the Orr–Sommerfeld equation it is known that plane Poiseuille flow
is unstable to small-amplitude two-dimensional disturbances for Reynolds num-
bers above Recr = 5772 (Orszag 1971). Experimental observations of the sta-
bility of controlled wave disturbances were first made by Kao & Park (1970),
who obtained a transitional Reynolds number (Retr) of about 2200 in a water
channel with an aspect ratio of 8. However, the first satisfactory experimen-
tal verification of the linear stability theory was reported by Nishioka, Iida &
Ichikawa (1975). With the use of a carefully designed air-flow channel they
managed to obtain a background disturbance level less than 0.05 %, which
allowed the flow to stay laminar up to Re = 8000, although at this Re the
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flow was not fully developed1 . Disturbances generated by a vibrating ribbon
were studied both at subcritical and supercritical Re and the experimental
observations were found to be in accordance with linear stability theory.

In other experiments transition has been observed to occur at Reynolds
numbers as low as 1000. Davies & White (1928) observed transition atRe about
1100 in a channel with a highly disturbed inlet flow and Patel & Head (1969)
detected turbulent bursts at Re = 1035. Since infinitesimal two-dimensional
disturbances are stable at these Reynolds numbers, theories including the ef-
fect of finite amplitude disturbances were also considered. The two-dimensional
mean-field theory by Meksyn & Stuart (1951) suggests a Recr of about 2900
with a threshold amplitude of 8 %. Later extensions to this theory results in
similar Reynolds numbers (Stuart 1960, Watson 1960) and therefore it seems
that analysis of this type is of limited interest for the understanding of subcrit-
ical transition.

3.2.2 Two- and three-dimensional disturbances. Since theories concern-
ing finite amplitude effects of two-dimensional waves were unable to explain the
values of Retr observed in experiments, interest was later focused on the in-
fluence of three-dimensional disturbances on the transition process. Orszag &
Kells (1980) made direct numerical simulations and found three-dimensional
disturbances to have a strongly destabilizing effect. Their simulations also
showed that transition can occur at Reynolds numbers of order 1000 for fi-
nite amplitude disturbances. Similar Retr was found by Carlson, Widnall &
Peeters (1982) in their flow visualization study of triggered and naturally oc-
curring transition. Nishioka & Asai (1985) found a minimum transition Re
in the same range and determined the threshold amplitude to be close to the
disturbance amplitudes found in fully developed turbulent channel flows.

The secondary instability theory (see chapter 2) considers the development
of three-dimensional disturbances on a base flow consisting of the mean par-
abolic flow and a Tollmien-Schlichting wave. Two different vortical patterns
are found in numerical simulations, one in which aligned Λ-vortices appear
(K-type) and one where the vortices are arranged in a staggered pattern (N-
type). In experiments, however, only the K-type pattern is observed, unless
disturbances with a subharmonic frequency are forced simultaneously with the
fundamental wave (see Ramazanov 1985).

A general explanation for the discrepancy between experimental observa-
tions and theoretical predictions was given by Kim & Moser (1989), who demon-
strated that staggered vortical structures are unlikely in transition at unforced
conditions. By doing numerical simulations at Re = 10000 they found that

1The flow had not reached a fully parabolic velocity profile at the downstream end of

the channel.
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subharmonic transition was only achieved if their ‘minus’ modes2 were contin-
uously suppressed. The minus modes are forced by background disturbances
in the form of roundoff errors present in the simulations. When the product of
the amplitude of the minus modes and the fundamental mode (which is expo-
nentially growing at this Re) exceeds the amplitude of the background noise,
the fundamental modes begin to grow and K-type transition will be observed.

A different explanation was offered by Singer, Reed & Ferziger (1989).
They made numerical simulations and found the presence of low amplitude
vortices in the base flow to cause K-type transition. They argued that stream-
wise vortices of these amplitudes are inherent in all experimental facilities.

Asai & Nishioka (1989) investigated the origin of the three-dimensional
wave which had been observed in their experiments. They had earlier observed
subcritical transition to occur when the amplitude of an artifically generated
TS-wave exceeded about 1 %. Transition was initiated by a distortion of the
wavefront which later developed into a peak–valley structure. It was found that
the interaction between the generated TS-wave and the disturbed mean flow
resulted in the three-dimensional wave. For low amplitudes of the TS-wave
this was the result of a second-order coupling between the wave and the mean
flow, and the three-dimensional wave decayed. At TS-amplitudes above 1 %
the wavefront distortion was in the form of a secondary instability leading to
a growing peak–valley structure.

In addition to the numerical simulations mentioned in the above text, there
are several other numerical works which have contributed to the understanding
of transition in plane Poiseuille flow. Zang & Krist made numerical simulations
at Reynolds numbers of 1500, 5000 and 8000 for different initial conditions.
They looked at many different aspects and gave a detailed picture of the flow
field for a K-type transition at Re = 1500.

Saiki et al. (1993) compared their spatial simulations, using both K- and N-
type inflow conditions, with results from experiments, theory and temporal sim-
ulations. Many things were in common but some differences were found when
comparing their low-amplitude case with previous temporal simulations. As
opposed to findings from temporal simulations on forced secondary instability,
they found a higher growth for N-type transition than for K-type. This result
is though in accordance both with the secondary instability theory of Herbert
and with results from temporal simulations which allow the most competitive
modes to evolve (by prescribing random three-dimensional disturbances and
two-dimensional modes as initial conditions).

An investigation of the late stages of transition was reported by Sandham
& Kleiser (1992). They processed data from a numerical simulation of K-
type transition at Re = 5000 and presented a detailed view of the transition

2Their minus mode is the sum of the Squire mode and, what essentially is, the spanwise

component of the Orr–Sommerfeld mode.
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process from the stage where Λ-structures are observed up to fully developed
turbulence.

3.2.3 Three-dimensional disturbances. With a modern view on transi-
tion, three-dimensional disturbances are not only found to be more important
than two-dimensional ones but they can also dominate the flow field during the
whole transition process.

As described in section 2.2, the importance of three-dimensional distur-
bances in the inviscid case were demonstrated by Ellingsen & Palm (1975) and
Landahl (1980). The viscous case was considered by Gustavsson (1991), who
investigated the evolution of a small three-dimensional disturbance through
the complete solution to the linear initial-value problem. He found an ini-
tial growth in the disturbance energy even though all the individual modes
decayed. Klingmann (1991) made experiments on a localized disturbance at
subritical Reynolds numbers. The disturbance, generated by the injection of
a short-duration jet through one of the channel walls, developed into growing
elongated streaky structures. Depending on the initial amplitude the distur-
bance eventually decayed or a turbulent spot was formed. Her results indicated
that the important mechanism behind the growth of the structures is linear,
which also supports the work by Gustavsson.

The direct numerical simulations and eigenfunction expansions by Hen-
ningson, Lundbladh & Johansson (1993) gave further support for the transient
growth of disturbances through a linear mechanism. They investigated the
evolution of different localized disturbances in plane Poiseuille and boundary
layer flow, and their results indicated that the formation of streaky structures
from localized disturbances is a general feature of transition in wall bounded
shear flows.

3.3 Transition studies in Blasius flow

3.3.1 Linear stability. Boundary layer flow developing along a flat plate
at zero pressure-gradient differs from plane Poiseuille flow in that the flow is
not strictly parallel and that the relevant Reynolds number increases in the
streamwise direction. Early experimental investigations indicated amplified
disturbances at higher frequencies and lower Re than what was predicted by
stability theory. The discrepancy was by many attributed to the assumption
of a parallel flow in the stability calculations, although Gaster (1974) found
the destabilizing effect of a non-parallel flow assumption to be small. Fasel
& Konzelmann (1990) made numerical simulations where the growth of the
boundary layer was taken into account and confirmed Gaster’s theoretical re-
sult. Experimental evidence in the line with the results of Gaster and Fasel
& Konzelmann was reported by Klingmann et al. (1993). They also suggested
that a failure to achieve a Blasius like flow in the leading edge region might



3.3 TRANSITION STUDIES IN BLASIUS FLOW 21

be an explanation for the discrepancy between previous experiments and linear
stability theory.

Although not beeing too important for predictions of Tollmien–Schlichting
waves, non-parallel effects must be taken into account when three-dimensional
instability waves are considered. Using PSE calculations, Bertolotti (1991)
demonstrated the increasing effect of non-parallelism with growing wave angle.
Kachanov & Michalke (1994) compared experimental results with parallel-flow
theory and obtained larger growth rates from the experiments than from theory.
They concluded that this observation most probably could be explained by
non-parallel effects. However, they also demonstrated that the effect of non-
parallelism on dispersion characteristics of oblique waves is small.

A comparison between experiments and stability theory for oblique waves
was made by Gaster (1975) when he compared his wave packet model to the
initial growth stages from the measurements by Gaster & Grant (1975). Cohen,
Breuer & Haritonidis (1991) made a detailed investigation on the evolution of
a wave packet, measuring distributions of all three velocity components. After
the transient part of their generated disturbance had decayed the remaining
wave packet could be described as a superposition of individual modes, which
were in close accordance with linear stability theory. Subsequently the wave
packet also entered a weakly nonlinear stage and developed into a turbulent
spot.

3.3.2 Three-dimensional disturbances. Since the investigation by Kle-
banoff, Tidstrom & Sargent (1962), three-dimensional disturbances are known
to be of great importance for the transition process in boundary layer flows.
Indications of, what is now known as, N-type transition were not found in ex-
periments until the hot-wire measurements by Kachanov, Kozlov & Levchenko
(1977) and the flow visualizations of Thomas & Saric (1981). In contrast to
plane Poiseuille flow, there exist many detailed data from boundary layer ex-
periments, which is mainly because it is simpler to do experiments in a Blasius
flow. As for plane channel flow most of the interest has been in studying
the nonlinear breakdown originating from the combination of a finite am-
plitude Tollmien–Schlichting wave and oblique waves. Experimental studies
have mainly concerned controlled two-dimensional waves and their interaction
with three-dimensional disturbances either in the form of background noise
or forced through roughness elements. However, starting with the work by
Corke & Mangano (1989) experiments have also been made on two- and three-
dimensional waves with controlled amplitude and phase. Further information
on the breakdown process in Blasius flows involving Tollmien–Schlichting waves
and the concept of secondary instability can be found in the reviews by Her-
bert (1988), Kleiser & Zang (1991) and Kachanov (1994).

In descriptions of the secondary instability scenarios, K-type is commonly
associated with an aligned pattern of Λ-structures and the appearance of ‘spikes’
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in velocity signals, whereas subharmonic transition results in a staggered pat-
tern and spikes are considered to be absent. However, the study by Bake,
Kachanov & Fernholz (1996) showed that spikes can also be present at condi-
tions where subharmonic resonance occurs and a staggered pattern is observed.

Free stream turbulence
It is well known that an increased level of free stream turbulence reduces the
transitional Reynolds number. The free stream vortices result in two different
types of disturbances inside the boundary layer and an additional disturbance
type propagating with the free stream velocity at the edge of the boundary
layer. At lower levels of free stream turbulence, TS-waves can be observed
coexisting with slowly fluctuating elongated structures3 . As the level of free
stream turbulence increases the elongated structures will dominate the flow.
This latter situation occurs in e.g. turbomachinery applications and the transi-
tion process is known as bypass since it by-passes the stage with exponentially
growing TS-waves.

Several interesting experiments on boundary layer receptivity at low levels
of free stream turbulence has been undertaken by Kendall (1985, 1990, 1991).
These studies have described the appearance and growth of wave packets and
have also revealed the presence of low-frequency fluctuations growing as x1/2.
The same scaling was also seen in the study by Westin et al. (1994) who also
showed the near similarity in profiles of the streamwise perturbation velocity. A
summary of experiments on boundary layer receptivity at relatively low levels
of free stream turbulence was recently presented by Kendall (1998).

The importance of the normal component of the free stream fluctuations
was demonstrated by Voke & Yang (1995) in a large-eddy simulation at a high
level of free stream turbulence. They did not detect transition when the free
stream fluctuations only contained the streamwise component, while pure wall-
normal disturbances resulted in nearly the same result as for fully isotropic free
stream turbulence.

In a situation with coexisting TS-waves and low-frequency oscillations, in-
teractions between the individual disturbances can give rise to new structures.
To gain more insight into this fairly complex situation, Bakchinov et al. (1998)
studied the interaction between a TS-wave and elongated streamwise streaks
of high- and low-speed fluid. The latter disturbance is similar to structures
observed when free stream turbulence is present. A strong interaction between
the disturbances was observed and oblique structures were found to be of im-
portance in the later transition stages.

Localized disturbances
Observations of localized disturbances in the form of wave packets are described
above (see 3.3.1). Here we present some results on localized disturbances which

3Denoted Klebanoff-mode oscillations (since they were first observed by P.S. Klebanoff).
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cannot simply be described as a superposition of exponentially growing eigen-
modes.

Breuer & Haritonidis (1990) investigated the development of localized dis-
turbances generated by the motion of a membrane mounted flush with the
surface of a flat plate (see also 3.1.1). In addition to a wave packet of Gaster-
type, the up–down motion of the membrane caused a transient disturbance to
form. The growth of the latter disturbance was due to a linear mechanism and
it resulted in an inclined shear layer in the streamwise velocity.

In the study by Cohen, Breuer & Haritonidis (1991) the disturbance source
had been modified to reduce the effect of the transient disturbance. This was
achieved by the use of an air-pulse introduced through a perforated disk (with a
diameter of 5 mm) located at a streamwise position corresponding to Branch I
for a TS-wave at the generated frequency. They extended the work by Gaster &
Grant (1975) by making detailed measurements of all three velocity components
both inside and outside the boundary layer. The measurements revealed the
large differences in the disturbance structure inside and outside the boundary
layer during the late transition stages. These observations were ascribed to the
normal vorticity, in its strong influence on the three-dimensional modes when
the vorticity is forced by the large mean shear inside the boundary layer.

Another interesting study on localized disturbances is the work by Grek,
Kozlov & Ramazanov (1985). At intermediate forcing amplitudes, they ob-
served a decaying localized structure with a small, almost constant, spanwise
extent. This disturbance is different from wave packets and turbulent spots,
but seems to be similar to the transient disturbances observed by Breuer &
Haritonidis (1990).

The streaky structures observed in studies of localized disturbances are
similar to those found at elevated levels of free stream turbulence. High- and
low-speed streaks are also observed in oblique transition (see chapter 4) and
their general role in laminar-turbulent transition was discussed by Alfredsson
& Matsubara (1996).



CHAPTER 4

Oblique transition

Oblique transition originates from the nonlinear interaction between a pair of
oblique waves with wave angles of equal magnitude but opposite sign. Nonlinear
interaction distributes disturbance energy among various wave numbers, and
in particular to low streamwise wave numbers (i.e. streamwise streaks) which
can experience a strong algebraic growth. If the amplitude of the streamwise
streaks reaches above a threshold the streaks may become unstable with respect
to low amplitude time-dependent disturbances and the flow will break down.
Since the transition scenario utilizes the transient growth mechanism, which is
operative also at low Reynolds number, transition can occur at subcritical Re.

Figure 4.1 shows a flow visualisation of oblique transition in a flat plate
boundary layer (photo by Elofsson & Matsubara). The flow direction is from
left to right and a homogeneous smoke layer was introduced through a spanwise
oriented slit in the flat plate, located 60 mm upstream of the left edge of the
picture. The picture was taken with a camera in the wind tunnel ceiling and
the light was provided with a flashlight from downstream. Oblique waves are
first seen to evolve into a staggered pattern of Λ-shaped structures and later
the flow breaks down.

4.1 Studies on oblique transition

Schmid & Henningson (1992) used a pair of finite amplitude oblique waves
as initial conditions in a direct numerical simulation of transition in plane
Poiseuille flow at Reynolds numbers of 1500 and 2000. The use of oblique
waves resulted in a rapid growth of disturbance energy followed by breakdown.
This growth was identified to result from a linear mechanism and the dominat-
ing mode was found to be the (0,2)-component (see 2.3.1 for definitions). When
compared with the traditional secondary instability scenario starting with sim-
ilar initial disturbance energy, oblique transition was found to be considerably
faster.

Spatial simulations of oblique transition was reported by Lundbladh et
al. (1994). For plane Poiseuille flow they investigated different initial ampli-
tudes at Re = 2000 and found the spatial simulations to be in qualitative
agreement with the temporal ones by Schmid & Henningson (1992).

24
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Figure 4.1. Flow visualisation of oblique transition in a Bla-
sius flow (U0=7 m/s and F=97). The photo covers 400 mm
in the streamwise direction downstream of x=270 mm. The
spanwise distance is 260 mm at the left and 235 mm at the
right side of the picture.

The first experimental investigation of oblique transition in plane Poseuille
flow was made by Elofsson & Alfredsson (1995). Oblique wave disturbances
were generated by two vibrating ribbons, which were mounted at opposite
channel walls. It was clear from the measurements that a pair of oblique waves
resulted in stationary large amplitude structures. Depending on the amplitude,
the structures either slowly decayed after an initial growth or wave disturbances
with a fundamental or superharmonic frequency to the initial waves increased
in amplitude and breakdown eventually occurred. For the investigated wave
angles and a Reynolds number of 2000, streak amplitudes below ≈ 12 % did not
result in growing harmonics and breakdown, whereas larger streak amplitudes
did. The experimental findings confirmed the results from the previous numer-
ical simulations. However, when viewed in a cross-stream plane, the measured
streamwise velocity field was not identical in symmetry with the corresponding
field from the DNS.

An explanation for the observed difference in symmetries was later provided
by Elofsson & Lundbladh (1994). The action of the vibrating ribbons used
in the experiments of Elofsson & Alfredsson (1995) was closely modelled in
spatial numerical simulations (see also section 3.1.2). This resulted in the
same symmetry in the spatial DNS as observed in the experiments, and the
explanation for this symmetry was a non-uniform strength of the nonlinear
forcing in cross-stream planes. The strength of the nonlinear forcing at a given
point is proportional to the product of the individual wave amplitudes at that
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point, which in turn depends on the distance travelled from the vibrating ribbon
and on the wall-normal position. However, despite the difference in symmetry
compared with the simulations by Schmid & Henningson, the general features
are found to be the same (i.e. the same modes are active during the transition).

Berlin, Lundbladh & Henningson (1994) studied oblique transition in a
zero pressure gradient boundary layer flow with the use of direct numerical
simulations. They observed a similar scenario as for the channel flow and
conjectured that oblique transition in shear flows involves three stages. Firstly,
a nonlinear generation of streamwise vortices by the oblique waves; secondly,
generation of streaks through the lift-up effect; and thirdly, breakdown due to a
secondary instability operating on the streaks. Berlin et al. also compared their
simulations with results by Joslin, Streett & Chang (1993), who did not observe
fully developed turbulence despite a longer computational box and a higher Re
at the inflow. It was suggested that the reason for this was a difference in
inflow conditions. Berlin et al. used Orr–Sommerfeld modes where the normal
vorticity was excluded whereas Joslin et al. made use of complete eigenmodes.

The first experimental investigation of oblique transition in a flat plate
boundary layer was carried out at DLR in Göttingen by Wiegel (1996). He
used particle image velocimetry (PIV) and hot-wire anemometry to document
the flow field obtained by controlled forcing with a wave generator using blowing
and suction. These measurements showed the flow structure and provided in-
formation about the growth in streak amplitude and urms in various frequency
bands. However, the investigation did not evaluate the results by decomposing
it in various spanwise wave numbers.

A comparison between Wiegels experiment and direct numerical simula-
tions which carefully modelled the experiment was presented by Berlin, Wiegel
& Henningson (1998). From the simulation results Berlin et al. identified sim-
ilar features as had earlier been observed in investigations of K- and N-type
transition. The similarities were explained by the presence of oblique waves
and streamwise vortices in all three transition scenarios, although of different
strength. For further details about the modelling of the wave generator see also
section 3.1.2.

The results found in the experiments by Elofsson (1998) differed from the
ones presented by Wiegel in that transition occurred farther downstream. It
was found that even if the streak amplitudes caused by transient growth were
too low to directly trigger streak instability, breakdown was initiated at a later
stage after the initially damped oblique waves had amplified through the un-
stable region. The difference between the two experiments is mainly explained
by the use of different parameters, but may also be explained by the methods
used to generate the disturbances and the difference in wind tunnel flow quality.
Whereas Wiegel (1996) generated disturbances which entered the boundary
layer through individual slits, Elofsson allowed disturbances from individual
pipes to mix in a slit before entering the flow.
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4.1.1 The generality of oblique transition. The importance of a pair of
oblique waves has also been recognized in other flow situations, thus indicat-
ing the generality of the transition scenario. For a flat plate boundary layer at
low supersonic Mach numbers, the most unstable wave modes are oblique. This
fact makes the oblique transition concept interesting also in compressible flows.
Fasel, Thumm & Bestek (1993) investigated two different transition scenarios
in a compressible boundary layer at a Mach number (M) of 1.6 with the aid of
direct numerical simulations. Despite a lower initial amplitude, the simulation
with a pair of oblique waves as boundary conditions resulted in much faster
breakdown than for their simulation of a fundamental transition. Similar re-
sults were obtained from nonlinear PSE-calculations by Chang & Malik (1994)
at M = 1.6. They compared oblique transition results with subharmonic tran-
sition and found the subharmonic type to require larger initial amplitudes.
Chang & Malik also pointed out (as earlier hypothesized by Schmid & Hen-
ningson 1992 in an incompressible flow) that oblique transition constitutes the
second stage in the secondary instability with subharmonic waves.

Other studies of oblique transition are those of Gathmann, Si-Ameur &
Mathey (1993) in a supersonic shear layer between streams with M = 4.5 and
M = 1.6, and Sandham, Adams & Kleiser (1994) in a compressible flat plate
boundary layer at a Mach number of 2.

4.2 The different stages in oblique transition

This section contains a brief description of the characteristic stages observed in
oblique transition, accompanied by experimental results which exemplify some
of its features.

Forcing of streamwise vortices through nonlinear interactions
The first stage in the oblique transition scenario is the generation of stream-
wise vortices through nonlinear interactions between the oblique waves. It was
shown in section 2.3.1 that the first generation of nonlinear interactions between
the pair of waves (1,±1) will result in an energy transfer to the (0,±2)-modes
(or the streamwise vortex modes). The generation of vortices from the oblique
waves can also be understood by considering the streamwise component of the
vorticity equation (see Elofsson & Alfredsson 1998). If the nonlinear forcing
terms in the equation are averaged over one period in time, the net contribution
is seen to form a pattern which would give rise to streamwise vortices.

Transient growth of streaks
Streamwise vortices, forced by the oblique waves, will generate streaks through
an interaction with the mean shear (a process also known as lift-up). The
streaks will grow in amplitude and come to dominate the structure of the
flow. In addition to the streaks, a Λ-structure is also observed as the flow
evolves. These vortices appear in a staggered pattern and they are clearly
seen in figure 4.1. The appearance of Λ-vortices can also be seen in hot-wire
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Figure 4.2. Contours of u obtained from measurements at
x = 300 mm and y/δ∗ = 0.9 in a Blasius flow.

measurements (figure 4.2). This figure shows the evolution in time of the total
velocity with the time-averaged field subtracted for the boundary layer on a
flat plate.

4.2.1 Breakdown caused by streak instability. The last stage in the
oblique transition scenario can be described as streak breakdown due to a
secondary instability operating on the streaks (not to be confused with the
secondary instability theory for TS-waves).

It was found by Reddy et al. (1998) that the threshold energy for transition
in channel flows through streak breakdown is at least two orders of magnitude
lower than for transition initiated by TS-waves at subcritical Reynolds num-
bers. The streaks were either initiated by streamwise vortices directly or by vor-
tices generated from a pair of oblique waves. The experimental study by Elof-
sson, Kawakami & Alfredsson (1997) on streak instability in plane Poiseuille
flow showed that growth rates for the secondary instability increased linearly
with the streak amplitude and that the most unstable mode was sinuous. The
streaks were generated by continuous suction through slits and the secondary
instability was studied by using controlled forcing from an earphone or a pair of
earphones. Figure 4.3 shows some results from this investigation of the instabil-
ity of streaks. The top figure (a) shows the N -factor (ln(u/u0)) plotted against
the streamwise coordinate for initial amplitudes ranging from urms=0.12% to
0.6%. From the figure it is clear that the initial growth rate is independent of
the forcing amplitude over a fairly wide amplitude range. Figure 4.3(b) displays
the dependence of the growth-rate, γ = N/(x1 − x0), on the streak amplitude
for Reynolds numbers ranging between 2000 and 2900, whereas the dependence
on the angular frequency ω (=2πfh/UCL) is shown in (c). It can be noticed
that since the range of amplified frequencies is rather wide, the frequencies
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Figure 4.3. (a) Amplitude growth for different forcing ampli-
tudes. (b) The dependence of γ on ∆Umax for three different
Re: ◦, 2000; •, 2500; ∗, 2900. (c) The dependence of γ on
forcing frequency ω.

seen in the breakdown stage of oblique transition will probably be the harmon-
ics to the initial waves which are in the amplified range, which is in contrast
to the situation where streak breakdown is initiated by random background
disturbances.

In the work by Waleffe (1995, 1997), breakdown of streaks was identified as
one element in a self-sustaining process for shear flow instability. The process
described by Waleffe also occurs in the near-wall region of turbulent shear flows
at high Re.

Experimental observations of the breakdown give a similar view in plane
Poiseuille and Blasius flow. Spectra indicates that harmonics to the fundamen-
tal frequency grow in the downstream direction and later, the spectra are also
filled between the harmonics. At some positions velocity signals show large
fluctuations occurring locally within the fundamental period.
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4.3 Oblique transition in relation to other scenarios

What are the similarities between oblique transition and other studies of tran-
sition? A staggered pattern of Λ-vortices is usually connected to subharmonic
transition but is also observed in transition starting from a pair of oblique waves
(see figure 4.2). This is not that surprising since once the oblique waves in the
subharmonic scenario have reached a sufficient amplitude, the same nonlinear
interactions as seen in oblique transition should be activated. Similarities be-
tween oblique transition and K- and N-type transition are further described in
Berlin et al. (1998).

Elongated regions of high and low-speed fluid are observed in investigations
of localized disturbances and the growth of these disturbances has been shown
to be due to a linear mechanism. Yet another example of a flow situation
which show similarities with oblique transition is transition influenced by free
stream turbulence. The wall-normal distribution of the streamwise disturbance
velocity and a disturbance growth proportional to x1/2 are similar in both cases.



CHAPTER 5

Summary of papers

Paper 1
This paper describes results from hot-wire measurements of oblique transition
in an air channel. The aim of the study was to experimentally investigate tran-
sition originating from a pair of oblique waves, which at the time the study was
initiated, had recently been shown from direct numerical simulations (Schmid
& Henningson 1992) to cause rapid transition at subcritical Reynolds num-
bers. A pair of oblique waves were generated with vibrating ribbons mounted
at oblique angles to the flow direction, with one ribbon at each channel wall.

The oblique waves resulted in a growth of elongated structures of alter-
nating high- and low-speed fluid in the spanwise direction (denoted stream-
wise streaks). For the investigated wave angles, transition was seen to occur
through the growth of higher harmonics to the generated waves if the ampli-
tude of the streamwise streaks become large. For amplitudes below the thresh-
old, the streaks decayed slowly downstream after the initial growth. Fourier
transforms were used for decomposing the data from the measurements into
frequency-wavenumber modes, and the streamwise evolution of the energy in
the modes were found to be in good qualitative agreement with earlier results
from direct numerical simulations. The regions with the highest amplitude of
time-dependent disturbances were found to be associated with large spanwise
gradients in the mean flow. In addition, the stability characteristics of sin-
gle disturbance waves at low amplitudes were determined and the results were
found to be in agreement with linear stability calculations. These results ex-
tended the rather limited amount of experimental results on wave disturbances
in plane Poiseuille flow previously reported in the literature.

Paper 2
The second paper considers oblique transition in a Blasius boundary layer and
the investigation involved hot-wire measurements and flow visualizations in the
MTL wind tunnel at the Department of Mechanics, KTH. Wave disturbances
were generated through periodic blowing and suction through a transverse slit
in the flat plate model and the quality of the disturbance source was verified
against results from stability calculations. A dominant feature of the flow was
the appearance of streamwise streaks with spanwise positions and wave length
governed by the initial waves. However, the spanwise wave length of the streaks
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changed during the breakdown stage and this observation was more distinct for
measurements with a narrower spanwise length, which was suggested to be con-
nected to the wave length of optimal disturbances. In addition to the streaks,
Λ shaped structures were seen in contour plots of the streamwise disturbance
velocity in zt-planes at upstream positions.

Fourier transforms were applied to decompose the disturbance velocity in
frequency-wavenumber modes, which allowed the downstream development of
the amplitude in various modes to be followed, and also wall-normal profiles
of individual modes to be plotted. The flow visualizations displayed the whole
transition process, from the upstream pattern of the oblique waves to the ap-
pearance of a short-wavelength motion on the side of the low-speed regions
followed by a turbulent state.

Paper 3
Spatial direct numerical simulations were used to clarify the cause of a span-
wise non-symmetry with respect to the channel centreline, which was observed
in paper 1. The vibrating ribbons in the experiment were modeled by adding
volume forces to the Navier-Stokes equations in the regions occupied by the
ribbons. Both the stationary blockage effect and the time-dependent forcing
from the ribbons were investigated by the use of different numerical models.
The stationary blockage effect could be observed to change the flow direction
close to the ribbons but was found to be of negligible influence some distance
downstream. It was also found that the spanwise non-symmetry seen in the
experiments resulted from the placement of the ribbons at opposite channel
walls, causing the onset of nonlinear interactions to occur at different down-
stream positions for different cross stream coordinates.

The investigation further indicated that close agreement between simula-
tion results and experimental data can be obtained by using a numerical model
that closely reflects the actual geometry in an experimental situation.

Paper 4
In Paper 4 the last stage of the oblique transition scenario was investigated in
a model experiment through hot-wire measurements and flow visualizations.
The instability and breakdown of streamwise streaks was studied in a plane
Poiseuille channel, both at unforced conditions and when phase-controlled forc-
ing was applied with earphones at one of the channel walls. Local suction
through slits in the wall was used for generating the streaks, which showed
a linear growth with the streamwise distance in the region located closest
to the slits. For an unforced secondary disturbance, exponentially growing
time-dependent disturbances appeared if the amplitude of the streaks increased
above a threshold amplitude. These secondary disturbances were out-of-phase
across low-speed streaks which is the result of a sinuous (or anti-symmetric)
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disturbance mode. The same kind of mode also appeared at forced condi-
tions, even a symmetrically forced disturbance mode eventually developed into
a sinuous mode.

Secondary disturbances at forced conditions showed an exponential growth
and for streak amplitudes above the threshold, the growth rates were found to
increase linearly with the streamwise co-ordinate. These observations together
with a phase velocity determined to 0.69 UCL were similar to theoretical obser-
vations. However, the experiments differed from theory in that the threshold
in streak amplitude for growth of secondary disturbances did not change with
the Reynolds numbers studied in the experiments.
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Westin and Daniel Söderberg. Johan has assisted with many things during
all years and Daniel has helped to solve many computer related problems.
I have also enjoyed the company in the lab and on other activities together
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An experimental study of oblique transition
in a Blasius boundary layer flow

Per A. Elofsson

Department of Mechanics, KTH, S-100 44 Stockholm, Sweden

Abstract

Transition initiated by a pair of oblique waves was investigated experimentally in
a Blasius boundary layer flow by using hot-wire measurements and flow visualisa-
tion. The oblique waves were generated by periodic blowing and suction through
an array of pipes connecting to the flow through a transverse slit in the flat plate
model. The structure of the flow field is described and the amplitude of individual
frequency-spanwise wave number modes was determined from Fourier transforms
of the disturbance velocity. In contrast to results from investigations of oblique
transition at subcritical flow conditions, the transition process at the present con-
ditions suggests the combined effect of transient growth of streaks and a second
stage with exponential growth of oblique waves to initiate the final breakdown
stage.

1 Introduction

The importance of three-dimensional disturbances in the transition process has
been recognized since the boundary layer measurements by Klebanoff, Tidstrom
& Sargent (1962), who found it necessary to control the three-dimensionality in
their experiments by placing strips of tape below the vibrating ribbon used for
generating wave disturbances. The secondary instability scenario considers ini-
tially two-dimensional (Tollmien–Schlichting or TS) waves which grow in ampli-
tude and develop into a three-dimensional stage. Two different three-dimensional
stages have been identified, one in which Λ-shaped structures appear in an aligned
pattern and another stage where Λ-shaped structures are seen in a staggered pat-
tern. Transition involving the former is usually denoted K-type (after the first
investigation by Klebanoff et al. 1962) or fundamental transition, whereas the
staggered structures are part of the transition scenario denoted H-type, N-type
or subharmonic. The first experimental observation of subharmonic transition
was made by Kachanov, Kozlov & Levchenko (1977) and the transition scenario
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has later been carefully investigated by Corke & Mangano (1989) with the use of
controlled two- and three-dimensional waves.

The secondary instability theory was put forward by Orszag & Patera (1983)
and Herbert (1983). Further information on the concept of secondary instability
can be found in the review by Herbert (1988). Experimental studies on the
breakdown mechanisms of boundary layer flows are described by Kachanov (1994)
and information on numerical investigations is presented in the review by Kleiser
& Zang (1991).

Results both from experiments with forced TS-waves and direct numerical
simulations (DNS) have indeed been in close agreement with the secondary insta-
bility theory, but this scenario needs a two-dimensional wave to be present. An
alternative route to transition in contrast to the secondary instability mechanism
may be the so-called oblique transition scenario, which operates without the need
for a two-dimensional wave.

1.1 Oblique transition. Oblique transition originates from the nonlinear in-
teraction between a pair of oblique waves with wave angles of equal magnitude
but opposite sign. Nonlinear interaction distributes disturbance energy among
various wave numbers, and in particular to low streamwise wave numbers which
can experience a strong growth due to a linear mechanism. This so-called tran-
sient growth of the streamwise independent structures is essentially due to the
combined effect of an inviscid growth and a viscous decay. However, if the ampli-
tude of the streamwise streaks reaches above a threshold the streaks may become
unstable with respect to low amplitude time-dependent disturbances and the flow
may break down. Since the transition scenario utilizes the transient growth mech-
anism, which is operative also at low Reynolds number, transition can occur at
subcritical Re.

The first study of oblique transition in an incompressible flow was the di-
rect numerical simulations by Schmid & Henningson (1992). They used a pair
of finite amplitude oblique waves as initial conditions in temporal simulations
of transition in plane Poiseuille flow at subcritical Reynolds numbers. The use
of oblique waves resulted in a rapid growth of disturbance energy followed by
breakdown. This growth was identified to result from a linear mechanism and
the dominating structure was a streamwise independent structure with twice the
spanwise wavenumber of the original oblique waves. When compared with the
traditional secondary instability scenario starting with similar initial disturbance
energy, oblique transition was found to be considerably faster.

Other investigations of oblique transition are the calculations using PSE the-
ory and spatial DNS by Joslin, Streett & Chang (1993) and the spatial DNS by
Berlin, Lundbladh & Henningson (1994). Both of these studies governed oblique
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transition in a boundary layer flow at zero pressure gradient. Joslin et al. did
not reach a fully developed turbulent stage despite a longer computational box
and a higher Re at the inflow. It was suggested that the reason for this was a
difference in inflow conditions. Berlin et al. used Orr–Sommerfeld modes where
the normal vorticity was excluded whereas Joslin et al. made use of complete
eigenmodes. Berlin et al. also conjectured that oblique transition in shear flows
involves three stages. Firstly, a nonlinear generation of streamwise vortices by
the oblique waves; secondly, generation of streaks through the lift-up effect; and
thirdly, breakdown due to a secondary instability operating on the streaks.

Elofsson & Alfredsson (1995, 1998) made experiments on oblique transition
in plane Poiseuille, where the pair of waves were generated by two vibrating
ribbons mounted at opposite channel walls. For initial wave amplitudes in a lower
range, elongated streamwise structures slowly decayed after an initial growth.
For higher wave amplitudes, disturbances with a fundamental or superharmonic
frequency to the initial waves increased in amplitude and breakdown eventually
occurred. The experimental findings confirmed the results from the previous
numerical simulations.

An experimental investigation of oblique transition in a flat plate boundary
layer was carried out at DLR in Göttingen by Wiegel (1996). He used particle
image velocimetry (PIV) and hot-wire anemometry to document the flow field
obtained by controlled forcing with a wave generator using blowing and suction.
These measurements showed the flow structure and provided information about
the growth in streak amplitude and urms in various frequency bands.

Berlin, Wiegel & Henningson (1998) presented a comparison between the
measurements of Wiegel and direct numerical simulations. The closest agreement
was obtained when the experimental wave generator was modelled in detail by
prescribing the boundary conditions for the wall-normal disturbance velocity at
the wall in a step-wise fashion, and by using different amplitudes for positive and
negative disturbance velocity. By imposing a pressure gradient in the simulations,
the initial agreement with the experimental data was further improved. Berlin et
al. also described the similarities between oblique transition and the two transition
scenarios that are described with the secondary instability theory (K- and N-type
transition).

The importance of a pair of oblique waves has also been recognized in other
flow situations, thus indicating a generality of the transition scenario. For a flat
plate boundary layer at low supersonic Mach numbers, the most unstable modes
are oblique. This fact makes the oblique transition concept perhaps even more
interesting in compressible flows. Fasel, Thumm & Bestek (1993) investigated two
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different transition scenarios in a compressible boundary layer at a Mach num-
ber of 1.6 with the aid of direct numerical simulations. Despite a lower initial
amplitude, the simulation with a pair of oblique waves as boundary conditions
resulted in much faster breakdown than for their simulation of fundamental tran-
sition (i.e. transition initiated by a two-dimensional wave and a pair of oblique
waves with a fundamental frequency). Similar results were obtained by Chang
& Malik (1994) who used nonlinear PSE calculations to compare oblique and
subharmonic transition at a Mach number of 1.6. They found that transition
originating from a pair of oblique waves required lower initial amplitudes than for
the secondary instability of subharmonic type. It is important to recognize that
once the amplitude of the oblique waves in the subharmonic transition scenario
becomes large, similar conditions exist as for the initial stage in oblique transition
and a similar downstream development can therefore be expected.

Other studies of oblique transition are those of Gathmann, Si-Ameur &
Mathey (1993) in a supersonic shear layer and Sandham, Adams & Kleiser (1994)
in a compressible flat plate boundary layer at a Mach number of 2.

1.2 Transient growth. The second stage in the oblique transition scenario is
the generation and transient growth of streaks. Transient growth results from an
inviscid algebraic instability (see Ellingsen & Palm 1975 and Landahl 1980) which
is limited by viscous damping.

One of the first studies which showed the existence of transient growth in
a viscous flow was the work by Hultgren & Gustavsson (1981). They investi-
gated the temporal development of three-dimensional disturbances in a parallel
boundary layer flow and found an initial linear growth followed by a viscous
decay. Later investigations of transient growth have been able to quantify the
growth in different flow situations and also to determine the optimal disturbance
type. Some examples of studies of transient growth are Boberg & Brosa (1988),
Gustavsson (1991), Butler & Farrell (1992), Klingmann (1992) and Trefethen et
al. (1993). For further references see the review by Henningson (1995).

Recent work on the spatial instability in Blasius flows have shown that the
largest spatial energy growth occurs for streamwise vortices near the leading edge
which evolves into streamwise streaks further downstream. Luchini (1997) used a
Reynolds number independent formulation and found that the maximum spatial
growth occurred for vortices with a spanwise wavenumber of βδ = 0.45, (β =
2π/λz where λz is the spanwise wavelength and δ =

√
νx/U0). The same value

of the optimal spanwise wavenumber was also found by Andersson, Berggren &
Henningson (1998) for Rex = 106 and larger. In addition to these results they
also proposed a simple model for prediction of the transition location. The model



1 INTRODUCTION 5

involved a single constant which was found to correlate well with experimental
data on transition at free stream turbulence levels ranging from 1 % to 5 %.

1.3 Breakdown of streaks. The last stage in the oblique transition scenario
can be described as streak breakdown due to a secondary instability operating
on the streaks (not to be confused with the secondary instability theory for TS-
waves). For streaks initiated either by streamwise vortices directly or by vortices
generated from a pair of oblique waves, Reddy et al. (1998) found that the thresh-
old energy for transition in channel flows through streak breakdown is at least two
orders of magnitude lower than for transition initiated by TS-waves at subcritical
Reynolds numbers.

An experimental work by Elofsson, Kawakami & Alfredsson (1997) on streak
instability in plane Poiseuille flow showed that growth rates for the secondary
instability increased linearly with the streak amplitude and that the most unstable
mode was sinuous (or anti-symmetric). The streaks were generated by continuous
suction and the secondary instability was studied by using controlled forcing from
an earphone or a pair of earphones.

It can be noticed that since the range of amplified frequencies is rather wide,
the frequencies seen in the breakdown stage of oblique transition will rather be the
harmonics of the initial waves which are in the amplified range and not the specific
frequency which experiences the largest growth. This is in contrast to the situation
where streak breakdown is initiated by random background disturbances.

In the work by Waleffe (1995, 1997), streak breakdown was identified as one
element in a self-sustaining process for shear flow instability. Waleffe also hypoth-
esized that this process occurs in the near-wall region of turbulent shear flows.

Bakchinov et al. (1995) observed streak breakdown in an experimental work
in a Blasius boundary layer flow. Streamwise vortices were generated by elongated
roughness elements and the breakdown of the streaks were investigated both at
unforced conditions and for the case with controlled excitation of wave distur-
bances by a vibrating ribbon. The instability of the spanwise modulated mean
flow was found to be similar to the sinuous mode observed in Görtler flows.

The experimental setup is described in § 2 with special emphasis on the
method used for generating the wave disturbances. In § 3 the flow quality is
adressed, both by describing the characteristics of the mean flow and by comparing
experimental results for single waves with stability theory. Experimental results
on oblique transition are presented in § 4, and § 5 contains some further discussion
and conluding remarks.
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2 Experimental arrangement

The measurements were made in the MTL wind tunnel at the Department of
Mechanics, KTH. This is a closed return tunnel with a streamwise turbulence
intensity in the empty test-section of less than 0.02 % in the velocity range 10-60
m/s. A flat plate model was installed horizontally in the 7 m long test section
(cross section 0.8 by 1.2 m2). The model is equipped with a trailing edge flap and
has an asymmetric leading edge which results in a short pressure gradient region at
the leading edge. A fine-meshed screen was installed 50 mm upstream of the hinge
for the trailing edge flap. The combination of the screen and the flap was used
to adjust the flow at the leading edge to compensate for the extra blockage below
the plate due to the pipes and tubes for the disturbance generation, (without the
screen a flap angle of about 11◦ would have been required). The experimental
setup is shown in figure 1 (a).

A co-ordinate system is used with the x-axis in the streamwise direction, the
y-axis is normal to the flat plate and the z-axis is in the spanwise direction. The
origin is located on the centreline at the leading edge and the y-position is the
distance from the surface of the plate. The velocities associated with the (x, y, z)
co-ordinate system are (u, v, w).

The streamwise velocity component was measured with 2.5 µm platinum sin-
gle wire probes using an AN-1003 constant temperature anemometer. A calibra-
tion function of the following type was used

U = k1(E2 −E2
0)1/n + k2(E −E0)1/2, (1)

where E is the anemometer voltage at the velocity U , E0 the voltage at zero
velocity and the coefficients k1, k2 and n are determined from a best fit of the
data to the calibration function. The variation in the wind tunnel air tempera-
ture during measurements was within ±0.1◦ and no temperature corrections of
the anemometer signal was therefore deemed necessary. The hot-wire probe was
positioned with a 5-axis traversing system controlled by a Macintosh Q950. This
computer also controlled the National Instruments cards that were used for data
acquisition and waveform generation. In order to avoid aliasing problems, the
hot-wire signal was low-pass filtered before it was acquired with a 16-bit A–D
converter. Two different methods were used during the measurement sessions, ei-
ther the filter built into the anemometer or an external programmable filter with
a linear phase (Kemo VBF10).
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Figure 1. Experimental arrangement; (a) side-view of part of the test section with external equipment;
(b) plug containing smoke slit and disturbance source; (c) cut-view.
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For the flow visualisation studies, a thin sheet metal was placed on top of
the flat plate model in the region downstream of the disturbance source. The
sheet metal (with a thickness of 0.5 mm) was painted black and its upstream end
was chamfered to give a smooth junction to the surface of the flat plate model.
A homogeneous smoke layer was introduced inside the boundary layer through
a transverse slit located 166 mm downstream of the leading edge. The smoke
produced by a fog-generator entered a tank which was connected to the smoke
slit in the flat plate. To control the thickness of the smoke layer, the tank was
equipped with a variable pressure blower and a valve at the outlet. Pictures were
taken through a hole in the upper wall with a camera mounted on the roof of the
wind tunnel and light provided by a flashlight mounted downstream the camera
but inside the test section.

2.1 Generation of wave disturbances. Controlled wave disturbances are gen-
erated through a transverse slit located 189 mm downstream the leading edge.
The slit has a spanwise length 330 mm, a streamwise width of 0.8 mm and is
10 mm deep. An insert, consisting of 40 pipes equidistantly spaced in the span-
wise direction, is mounted below the slit. The pipe outlets that face the bottom
of the slit have been flattened to give a rectangular cross section and the other
end of the pipes are connected to loudspeakers (diameter=254 mm, 100 W) with
flexible tubes. Details of the disturbance source are shown in figure 1 together
with an overview of the experimental setup. Inserts with different cross sections
and spanwise spacing were manufactured, however the reported measurements
were made with a pipe cross section of 0.8 mm by 6.0 mm and a spanwise spac-
ing of 8.0 mm, unless otherwise stated. By changing the loudspeaker signals and
the connection pattern of the tubes, it was possible to generate two-dimensional
and/or oblique waves and also to control the spanwise wavelength (in discrete
steps) of the oblique waves. The method used for disturbance generation is sim-
ilar to the one reported by Bake, Kachanov & Fernholz (1996) and originally
described by Gaponenko & Kachanov (1994).

At maximum six loudspeakers were used in the present measurements. The
signals for the loudspeakers were generated with a 6 channel D–A board and audio
amplifiers were used for driving the loudspeakers. A connector box equipped with
precision potentiometers allowed fine adjustment of the amplitude of separate
loudspeakers. Each loudspeaker was fitted with a cover plate from which flexible
tubes connected to the pipes of the disturbance source.

The experiments were focused on measurements of transition initiated by a
pair of oblique waves with equal streamwise wavenumbers and spanwise wavenum-
bers of equal magnitude but opposite sign. In addition to the studies of oblique
transition initial measurements were also made on single oblique waves.
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pipe no. 0 1 2 3 4 5

pair of waves 2 sin(ωt) sin(ωt) − sin(ωt) −2 sin(ωt) − sin(ωt) sin(ωt)

single wave sin(ωt+ nπ
3 )

Table 1. Forcing signals for one wavelength at ∆ϕ = 60◦.

A single oblique wave is obtained if the following signal is used for the loud-
speaker driving the pipe with index n

An = A sin(ωt + n∆ϕ)

where A is the amplitude, ω is the angular frequency and ∆ϕ is the phase shift be-
tween consecutive pipes. Using the same notation, the loudspeaker signal required
when generating a pair of oblique waves can be written as

An = A sin(ωt + n∆ϕ) +A sin(ωt − n∆ϕ)

= 2A sin(ωt) cos(n∆ϕ)

As an example table 1 compares the signals required for a single wave and
for a pair of waves when the phase shift between individual pipes is 60◦. This
case corresponds to the conditions used for most of the measurements and it
results in a spanwise wavelength of 48 mm. From the table it can be seen that for
the generation of a single oblique wave six different signals are needed for each
spanwise wavelength, whereas only four different signals are required when a pair
of oblique waves are being forced. Therefore, the generation of a single oblique
wave requires more amplifiers, loudspeakers etc. than the generation of a pair of
oblique waves at the same conditions.

Adjustment of the loudspeaker signals
The procedure for adjusting the loudspeaker signals was facilitated by the loud-
speakers linear amplitude response through the whole operating range. This lin-
earity was verified for all loudspeakers at three different frequencies; at the highest
and lowest expected operating frequencies and at the mid-frequency. Although
the measured value of the wave amplitude (at the generated frequency) showed an
almost linear response to the loudspeaker voltage over a wide range, the amplitude
of the harmonics limited the operating voltage. The maximum operating voltage
was chosen to be the voltage for which the wave amplitude of the first harmonic
was one decade below the amplitude at the fundamental when measuring 10 mm
downstream of the disturbance source. Typically this resulted in a loudspeaker
voltage of about 5.5 Vrms at an impedance of 8 Ω.
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The first step in the adjustment procedure was to obtain base-settings for
the speaker voltages, which was done by connecting each loudspeaker to the same
set of pipes and then adjust the voltages until the measured wave amplitude
was the same. This set of base voltages was found to be the same at different
frequencies, although the absolute wave amplitude of course changed with the
frequency. During different measurement sessions extending over a period of 18
months, the changes made in the base settings were less than 0.5 %.

The method used in the final stage of the adjustment procedure depended on
which case was going to be measured. For measurements with a single oblique
wave or with a pair of oblique waves using a phase shift of 90◦, the procedure was
quite straightforward. All loudspeakers were then connected to the corresponding
pipes and the spanwise distribution of the wave amplitude was measured while the
speakers were operated at their base voltages (or at the base settings multiplied
with a constant). From the measured distribution the settings were adjusted and
the distribution was remeasured. After the final iteration the new base settings
were registered.

For the most common operating conditions with a pair of oblique waves and
a phase shift of 60◦ between the individual pipes, the procedure was slightly
different. An initial matching of speaker voltages was now first made within two
groups. One group consisted of the pipes operated at a lower amplitude (pipes
with numbers 1,2,4 and 5 in table 1) and the other of the pipes driven by speakers
operated at a higher voltage (pipes with number 0 and 3 in table 1). The speaker
voltages were matched so that the higher wave amplitudes were twice the lower
ones. After this matching all loudspeakers were operated at the same time and the
spanwise distribution was measured, and in some cases the loudspeaker voltages
were readjusted.

After finishing the adjustment of the speakers at one wave amplitude, the
voltages at a higher wave amplitude were easily obtained by multiplying all base
voltages by the same constant. The spanwise uniformity in wave amplitude was
always better than 1 %, whereas the variation in phase across the span was less
than 0.4◦. Note that for the case with a pair of oblique waves, the uniformity in
amplitude applies to the amplitude at peaks and the uniformity in phase is within
the regions between the 180◦ phase shifts.

2.2 Experimental conditions and procedure. Most of the measurements
were made with free stream velocities of U0 = 8.2 m/s or 9.1 m/s. Initial measure-
ments with a single oblique wave were also made at lower velocities and the flow
visualisations were made for velocities ranging from about 4 m/s up to 10 m/s.
Wave frequencies range from f = 38 Hz to f = 80 Hz and they are usually
expressed as the non-dimensional frequency parameter (F = 2πfν · 106/U2

0 ).
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Measurements of length are expressed in millimeters in horizontal planes whereas
wall-normal distances are either given in mm or as the non-dimensional Blasius
co-ordinate (η = y

√
U0/νx).

As a measure of the strength of the stationary disturbance field we use Ud
defined as

Ud(x, y, z) = U(x, y, z)− 1
z1 − z0

∫ z1

z0

U(x, y, z) dz, (2)

where z0 and z1 are the spanwise limits of the measurement region. For the
fluctuating disturbance field we either use the amplitude (half the peak-to-peak
value) or the root mean square of the streamwise disturbance velocity. These
measures are denoted u′ and urms, respectively. The notation u′ is connected to
a single frequency component (usually the generated frequency), whereas urms is
the sum over all frequencies unless a specific frequency is stated, urms,f .

The structure of the flow was mapped out by traversing the hot-wire probe
and measuring sets of data triggered by a reference signal from the waveform
generation. Data was obtained in the following ways; by measuring wall-normal
profiles at a fixed spanwise location for various streamwise positions (xy-plane),
by traversing the probe in the spanwise direction at a fixed η for various stream-
wise positions (xz-plane) and by measurements of wall-normal profiles at a fixed
streamwise location for various spanwise positions (yz-plane). In addition to these
measurements in complete planes, numerous profiles were measured at single loca-
tions. Besides the measurements of the perturbed flow, wall-normal profiles were
also measured at fully laminar (unperturbed) conditions. These profiles were used
for obtaining the wall-normal position.

Each measurement position typically involved 20 triggered sets of 4096 points
acquired with a sampling frequency in the range between 3.5 kHz and 5 kHz. The
frequency was adjusted so that each set contained an integer number of periods
of the generated wave. The laminar measurements involved fewer (untriggered)
samples acquired with a lower frequency.

3 Flow quality

Information about the flow quality in the setup is presented by showing the pres-
sure distribution along the flat plate model and also by comparing measurements
for a single oblique wave with results from stability calculations.

Figure 2 shows the pressure distributions above the plate, obtained from
hot-wire measurements outside the boundary layer edge and then calculated as
cp = 1 − (u/uref)2. Local peaks are observed in the streamwise distribution of
cp near x = 120 and x = 160 mm. The former is probably caused by a sealed
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Figure 2. Pressure distribution obtained from hot-wire mea-
surements for U0 = 7.0 m/s. (a) Streamwise distribution, refer-
ence position is at x = 400 mm; (b) spanwise distributions at
x = 120 & 500 mm.

slit at x = 95 mm, which was used in a previous experiment, whereas the latter
peak is at the leading edge junction. The spanwise distribution at x = 120 mm
shows a minimum at z = 0 and an increasing value of cp to the sides. This is
probably a result of the blockage from the tubes of the disturbance source, which
extend ≈ 20 mm below the plate at a position of 190 mm from the leading edge.
However, this effect is not observed in the measurements at x = 500 mm.

The variation in the shape factor (H12) was found to be within ≈ 0.5 % from
measurements, on several occasions, at five spanwise positions over a region of
z = ±150 mm for every 100 mm in the streamwise direction. However, the mean
value was H12 = 2.63 which is slightly above the theoretical value for a Blasius
boundary layer. The reason for this deviation is not clear, but the results may
suffer from not measuring close enough to the flat plate surface, to measure the
y = 0 position accurately.
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Figure 3. Comparison between: ◦, measurements; ——, PSE
calculations by A. Hanifi. (a) Amplitude profiles at x = 210,
270 and 510 mm; (b) corresponding phase profiles. F = 106,
U0 = 8.2 m/s and β = 131 m−1.

3.1 Comparison with stability theory. In order to verify the quality of the
disturbance source, measurements were also made when a single oblique wave was
generated and the results were compared with PSE calculations.

Figure 3 shows wall-normal profiles of amplitude and phase at the frequency
of the generated oblique wave. Results from measurements with U0 = 8.2 m/s and
F = 106 at three different streamwise positions are compared with stability theory.
The amplitudes have been normalised with their maximum (the largest amplitude
from the measurements was u′ = 1.0 % at x = 210 mm) and the phase profiles
were uniformly shifted to match in the outer part of the boundary layer. Both the
amplitude and the phase profiles are in agreement with theoretical distributions
at x = 510 mm, but the deviation between measurements and PSE calculations
is larger closer to the disturbance source. One can note that the first amplitude
and phase profiles were measured at a position located only 20 mm downstream
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Figure 4. Amplitude evolution: ◦, measurements; ——, PSE
calculation by A. Hanifi. F = 59, U0 = 8.2m/s and β = 131m−1.

of the slit. This distance should be related to the streamwise wavelength at these
conditions which is ≈ 41 mm.

The streamwise evolution of the maximum of a measured amplitude is com-
pared with PSE results in figure 4. These experimental data were obtained by
traversing the hot-wire probe through the amplitude maximum at conditions for
which U0 = 8.2 m/s and F = 59. Streamwise coordinates are expressed as

√
Rex

and the amplitude from measurements and calculations have been normalised
with their respective values at the first measurement position (

√
Rex = 330).

The measured amplitude maximum initially decays less than the calculated, but
downstream of

√
Rex = 400 the measurements indicate a lower amplitude. One

explanation for the deviation between measurements and theory may be the rel-
atively high initial amplitude, which is required if one should be able to measure
the amplitude downstream at these damped conditions. The maximum amplitude
at the first streamwise position was u′ ≈ 1.6 %.

Another aspect which is important to consider when evaluating the quality of
a disturbance generator is the spanwise uniformity of the generated waves. With
the technique used in the present experiment, the spanwise uniformity is mainly
governed by the similarity of the individual pipes and how the loudspeaker am-
plitudes have been adjusted. For the test measurements with a single oblique
wave, one iteration with adjustments of the loudspeaker amplitudes was usually
considered sufficient. The uniformity obtained after such a coarse adjustment is
shown in figure 5. This figure shows the spanwise distribution of wave amplitude
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Figure 5. Oblique wave at F = 200 and β = 131 m−1. (a)
Spanwise profile of amplitude; (b) corresponding phase profile.
Measurements at x = 210 mm near η = 1.5.

and phase obtained by traversing the hot-wire probe at a constant height 20 mm
downstream of the wave generator. The deviation from the average wave ampli-
tude is within 9 % at this streamwise position, however, further away from the
disturbance source the uniformity is improved.

4 Oblique transition results

4.1 Flow structure. A dominating feature of the oblique transition scenario is
the formation of large amplitude longitudinal structures. Figure 6 shows contours
of Ud and u′ in a streamwise-spanwise plane at η = 1.55 for a high-amplitude forc-
ing. The notation high-amplitude forcing corresponds to a maximum initial am-
plitude of ≈ 7.5 % in the fundamental frequency when measured at x = 210 mm,
whereas forcing at 30 % lower speaker voltages is denoted low-amplitude. The
spanwise extent of the figure represents 2λz,01 and the streamwise region covers
the distance from the position where the forcing is applied to x = 1520 mm. Ud

1The spanwise wave length of the oblique waves is denoted λz,0.
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Figure 6. Contour plots in a streamwise-spanwise plane at η =
1.55 with a high-amplitude forcing for U0 = 9.1 m/s and F = 43.
(a) Ud, contours: ±2%, ±6%,..; (b) u′, contours: 2%, 4%, . . .

is characterized by narrow elongated regions of positive and negative values with
a spanwise wavelength of λz,0/2 (see figure 6 a, note that the z-axis is stretched
relative to the x-axis by a factor of two). After an initial growth in amplitude,
Ud stays almost constant between x = 400 mm and x = 1200 mm. Starting
at x ≈ 1200 mm both the amplitude and the dominating spanwise wavelength is
seen to increase downstream. The wave amplitude u′ (see figure 6 b) decays down-
stream of the disturbance source, and at the same time the spanwise positions of
the maxima change from the centre of low-speed streaks to regions between low-
and high-speed streaks at x = 400 mm. Near x = 1200 mm the amplitude starts
to grow and downstream of x ≈ 1300 mm maxima of u′ are located at spanwise
positions between low- and high-speed regions.

The formation of the streaks and how their spanwise positions relate to the
forcing is illustrated by figure 7, which shows spanwise profiles of amplitude and
phase at the fundamental frequency and also Ud. At x = 210 mm, which is
about 20 mm downstream of the wave generator, the maximum amplitude of the
wave disturbance is approximately 7.5 % and the phase changes by 180◦ at each
position where the amplitude goes to zero. The streaks are not fully developed
at this position but a cosine shaped distribution can be observed with minima in
Ud at spanwise positions where the wave amplitude attains maxima. However, at
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Figure 7. Spanwise profiles at η = 1.55 of: (a) u′ ; (b) phase;
(c) Ud. ——, Measurements at x = 210 mm; – – –, x = 410 mm.
Same conditions as in figure 6.

the second streamwise position Ud has increased to a value of about ±6 % while
the wave amplitude has decayed (u′ ≈ 2 %) and changed its structure. Maxima
in u′ are now connected to spanwise positions located at the zero-crossings of Ud,
which is the result of a higher amplitude in the spanwise wavenumber 3β0 than
in the original wavenumber β0.

Figure 8 shows contours of Ud in cross-stream planes. In order to illustrate
the increase of disturbance size with the streamwise direction, the wall-normal
coordinate is here presented in dimensional units. For reference, the boundary
layer edge (η = 5) and η = 2 are indicated by horizontal dotted lines at each
streamwise position. A wall normal position of η = 2 is approximately where
the maximum streak amplitude is located and also where so-called Klebanoff
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Figure 8. Contour plots of Ud in cross-stream planes for a high-
amplitude forcing with F=43 at U0=9.1 m/s. (a) Measurements
at x=410 mm; (b) x=610 mm; (c) x=1210 mm; (d) x=1610 mm.
Contours in (a-c): ±0.5%, ±1.5%,..; in (d): ±1%, ±3%, . . .
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Figure 9. Contour plots of u′ in cross-stream planes for a high-
amplitude forcing with F=43 at U0=9.1 m/s. (a) Measurements
at x=410 mm; (b) x=610 mm; (c) x=1210 mm; (d) x=1610 mm.
Contours in (a-c): 0.2%, 0.4%,..; in (d): 1%, 2%, . . .
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modes2 have their maximum amplitude. When comparing the figures at x = 410,
x = 610 and x = 1210 mm (figure 8 a–c) the maximum amplitude is observed
to be similar, and also the spanwise position of the streaks is constant. It can
be observed that the streaks grow in the wall-normal direction with increasing x
and extend at all x across the full boundary layer. However, the disturbance is
small outside the boundary layer in contrast to e.g. the vortex dominated Görtler
flow. This indicates that the vortical motion is weak in the present case. At
x = 1610 mm (figure 8 d) the picture is quite different. Both the streak positions
and the spanwise wavelength have now changed and the amplitude has increased
from its value at x = 1210 mm.

The corresponding contours of u′ are shown in figure 9. At x = 410 mm
the structure is dominated by amplitude maxima located at y ≈ 1.5 mm and
at spanwise positions between the streaks. Maxima with a slightly lower ampli-
tude are also observed further out from the wall at spanwise positions where Ud
is negative. These maxima grow in amplitude and move closer to the wall at
the next measurement station (x = 610 mm), whereas the amplitude maxima
associated with spanwise gradients in Ud have decayed at this position. Fig-
ure 9 (c) displays contours at x = 1210 mm where a larger spanwise wavelength
is observed together with an increased peak amplitude. Yet a larger amplitude
appears at x = 1610 mm where the structure bears some resemblance with the
one at the first streamwise position, though extended in the wall-normal direction
and slightly shifted along the z-axis. When forcing with a 20 % lower amplitude
the structure will look in a similar way except for x = 610 mm, where only the
maxima associated with low-speed regions are visible.

4.2 Spectral representation. Information about the behaviour of individual
frequency-wavenumber modes was obtained by applying Fourier transforms to the
measured data. Data sets were multiplied with a Kaiser-Bessel type window before
time sequences were Fourier transformed and the resulting amplitudes were cor-
rected for the window functions. The amplitudes were recalculated to correspond
to amplitudes in frequency bands of 1 Hz before being plotted. No windowing
was used for the spanwise Fourier transform.

Figure 10 shows the streamwise evolution of the amplitude of (ω, β)-modes
for two different forcing amplitudes. A frequency-wavenumber decomposition was
made at 10 heights through the boundary layer, and for each mode the maximum
amplitude was plotted. The data was measured over a distance of one spanwise
wavelength of the original wave with a separation of 2 mm between the points.
From the two figures it can be seen that, the difference in forcing amplitude does

2Klebanoff modes are e.g. observed in Blasius flows subjected to elevated levels of free

stream turbulence (described in Kendall 1985).
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Figure 10. Amplitude of (ω, β)-modes normalized by U0 =
9.1 m/s for different forcing amplitudes with F = 43 and β0 =
131m−1. (a) Low-amplitude forcing; (b) high-amplitude forcing.

not influence the general character. For a higher initial amplitude (figure 10b),
the mode amplitudes are generally higher and the growth of modes with higher
frequencies sets in at an earlier streamwise position than for the lower initial
amplitude (figure 10a). Initially the modes of highest amplitude are the (1,1)
and the (0,2), where the former initially decays and the amplitude of the latter is
almost constant after x = 400 mm. The initial decay of the (1,1) mode ceases near
x = 600 mm and the mode starts to grow downstream, which can be understood
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Figure 11. Amplitude of (ω, β)-modes normalized by U0 =
9.1 m/s for a high-amplitude forcing with F = 43 and β0 =
163 m−1.

by comparing with the conditions for neutral growth. For a growing boundary
layer at the conditions of figure 10, branch I is located near x = 680 and branch II
near x = 1360 mm. A strong growth of modes with non-zero frequencies sets in
at x ≈ 1200 mm for the lower initial amplitude and further upstream for the
higher. One can also note that the (0,1) mode grows to a large amplitude at the
last measurement positions, which was also seen as a change in the streak spacing
in figure 6 (a). A similar distribution of mode-amplitudes at the first streamwise
positions was also obtained from an decomposition of measurements extending
over two spanwise wavelengths at a constant boundary layer height of η = 1.55.

From studies on optimal transient growth it is known that the largest growth
occurs for a specific value of the spanwise wavenumber β. We investigated two
different spanwise wavelengths and figure 11 shows the amplitude growth for a
smaller wavelength (a higher value of β) than in figure 10. The major difference
compared with the smaller β is that starting from x ≈ 1200 mm the dominating
stationary disturbance is now the (0, 1)-mode instead of the (0, 2). This can
probably be explained by comparing with the β that gives the largest transient
growth. Butler & Farrell (1992) found the optimal spanwise wavelength to be
βδ∗ = 0.65 at Reδ∗ = 1000 for a parallel Blasius flow, where δ∗ = 1.72(νx/U0)1/2.
This can be compared with the experimental values of the fundamental spanwise
wavenumber which are βδ∗ = 0.37 for the standard spacing and βδ∗ = 0.46 for
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the narrow spacing at x = 1610. The corresponding values for the (0,2) mode
are twice as large and at the last streamwise position for the narrow case, β
for (0,1) is closer to the optimal spanwise wavenumber than (0,2). However,
according to the investigation by Andersson, Berggren & Henningson (1998) on
spatial optimal disturbances in a growing boundary layer, the optimal β would
rather be βδ = 0.45 or βδ∗ = 0.77. Their calculations determined the disturbance
at the leading edge which experienced the largest spatial energy growth when
observed at a downstream position x.

Wall-normal profiles of some of the most important modes are presented in
figure 12 for various streamwise positions. The figures are based on the same
data as was used in figure 10. During the measurements the main interest was in
capturing the streak amplitude and therefore information is lacking in the region
closest to the wall. Profiles of the (0, 2)-mode have similar shape at all streamwise
positions with the maximum located near η = 2.2, while the amplitude maximum
of the other stationary mode appears at an increasing height with increasing x (if
the two first streamwise positions are excluded).

Figure 13 shows amplitude spectra measured at different streamwise positions
for a fixed η and spanwise position. A reference level is indicated to the right of
each spectrum. Besides the generated frequency and its harmonics, additional
peaks are observed at the first streamwise positions. These elevations above the
background level are believed to originate from probe vibrations caused by vor-
tex shedding from the midsection of the boundary layer probe. When proceeding
downstream transition is first observed as an increase in the amplitude of harmon-
ics, later followed by a distributed elevation of the amplitude at all frequencies.
One can note the rapid increase in the amplitude of higher frequencies occurring
between x = 1360 and x = 1510 mm, a distance of approximately two streamwise
wavelengths of the initial oblique waves. Spectra measured at z = 24.7 mm (not
shown) had a narrower range of frequencies that were elevated above the back-
ground level. For this case the rapid growth started a bit further downstream
than for the spanwise position shown in figure 13, however, spectra measured at
the two most downstream positions were similar for both cases.

4.3 Time representation. Phase-averaged velocity data from streamwise po-
sitions near the disturbance generator are shown in figure 14. Each figure shows
contours of u over three periods in time from a region covering two spanwise
wavelengths of the oblique waves. The data is the average of 25 sets of triggered
velocity traces measured at 129 equidistant spanwise positions. Since the hori-
zontal axes displays the time, a spatial representation of the fields is obtained by
assuming that the flow is from right to left. The first figure shows the field at
x = 210 mm where a regular wave pattern is seen. Further downstream Λ-shaped



4 OBLIQUE TRANSITION RESULTS 25

1015

1012

109

106

103

100

10-3

10-6

A

9008007006005004003002001000

f (Hz)

Figure 13. Amplitude spectra for a low-amplitude forcing at
U0 = 9.1 m/s and F = 43. Measurements at η = 1.5, z = 29.2
and x = 210, 610, 1010, 1210, 1310, 1360, 1410, 1460 & 1510 mm.
Consecutive spectra are shifted 20 Hz and multiplied by 102n.

regions of positive or negative deviations from the time average are observed in a
staggered pattern. At the streamwise positions shown in this figure, the amplitude
of the time dependent disturbances decays (as the stationary streaks increase in
amplitude).

Characteristic velocity traces from three streamwise positions are shown in
figure 15 for 6 periods of the initial waves. The traces are grouped after which
height in the boundary layer they were measured at, and the traces within each
group represents from bottom to top x = 1410, 1510 & 1610 mm. All traces were
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Figure 14. Contours of u at η = 1.5 for a high-amplitude forcing
with F = 43 and β0 = 131 m−1 at U0 = 9.1 m/s. (a) Measure-
ments at x = 210; (b) x = 310; (c) x=610. Contour spacing is
1% in (a,b) and 0.5 % in (c).
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Figure 15. Velocity traces at z = −12 and x = 1410, 1510 and
1610 mm are shown at three heights through the boundary layer.
Traces at each height are separated by 0.3 U0 and represents,
from bottom to top, x = 1410, 1510 & 1610 mm.

measured for a high-amplitude forcing at z = −12, which corresponds to a position
between a low- and high-speed streak. At η = 1.4 and x = 1510 a high-frequency
motion of low amplitude is seen over a few periods and at the last streamwise
position the amplitude of higher frequencies have increased substantially and can
now be seen at all three wall-normal positions.

4.4 Flow visualisation. Flow visualisations were made to obtain a clearer pic-
ture of the spatial development of the oblique transition. The photos in figure 16
show top views of the flow at two different conditions. In both cases a dimen-
sional forcing frequency of f = 51 Hz was used, however, figure 16 (a) is at a
free stream velocity of about 8.4 m/s and the velocity used in figure 16 (b) is
U0 = 7.0 m/s. The corresponding dimensionless frequency parameters are then
F = 69 and F = 97, respectively. Both photos displays a streamwise length of
422 mm starting 40 mm downstream of the slit from which the disturbances are
generated. The spanwise distance is 229 mm at the upstream side of the photos
(the flow is from left to right in the figures) and 206 mm at the downstream end.
For constant free stream and forcing conditions, the breakdown position can be
altered by changing the amount of smoke seeped into the boundary layer. This
was utilized in the figures to allow the whole transition scenario to be observed
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Figure 16. Flow visualisation showing a streamwise-spanwise
plane where the flow is from left to right. (a) At U0 = 8.4 m/s
and F = 69; (b) U0 = 7.0 m/s and F = 97.

at one camera position. A wave field is observed in the left part of the pho-
tos and further downstream Λ-shaped structures appear in a staggered pattern.
Breakdown is seen in the downstream end of both photos, but the pictures differ
slightly in the way and also at which streamwise location breakdown occurs. The
forcing amplitude for F = 69 (figure 16a) was lower than for the higher F . One
should note that the streamwise position at which the flow breaks down in the
visualisations is farther upstream than for the hot-wire measurements.

Details of the breakdown for F = 69 is shown in figure 17, which covers
162 mm in the streamwise direction and a spanwise distance of 90 mm in the
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Figure 17. Detail of the breakdown stage in figure 16 (a).

upstream end. The photo indicates a vortical motion having a streamwise wave-
length shorter than that of the initial waves.

5 Concluding remarks

Results from an experimental investigation of oblique transition in a Blasius
boundary layer have been reported, where wave disturbances were generated with
periodic blowing and suction through a spanwise array of pipes. The disturbance
generating system was found to give waves which developed in agreement with
linear theory.

The forcing of two oblique waves resulted in an interaction and the formation
of streamwise streaks. The streaks were found to grow initially until they saturate
and then their amplitude stays nearly constant over a streamwise distance of
about 800 mm. When viewed in cross-stream planes, the streaks were seen to be
located inside the boundary layer with their maximum amplitude at a wall-normal
position near η = 2.

The breakdown of the streaks occurs through the growth of higher harmon-
ics of the initial waves and from a decomposition of the disturbance amplitude
into individual frequency-wavenumber modes, the streamwise evolution of the
amplitude in (ω, β) modes could be followed. The decomposition also allowed
wall-normal profiles to be plotted. Other features seen in the transition process
was the appearance at upstream positions of Λ-shaped structures in a staggered
pattern.

Results from flow visualizations where a smoke-layer was introduced near the
flat plate surface showed oblique waves followed by the Λ-structures and finally
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U0 F β u′0 ∆U(x=1000 mm)

9.1 m/s 43 131 m−1 8.5 % ±5 %

9.1 m/s 43 131 m−1 6.3 % ±3.5 %

9.1 m/s 43 163 m−1 9.5 % ±2.5 %

8.2 m/s 59 131 m−1 9.0 % ±13 %

Table 2. Experimental conditions and results for some of the
investigated cases. u′0 is the maximum amplitude of the two
oblique waves at x=210 mm.

breakdown. Structures with a short streamwise wavelength were observed on the
sides of the low-speed regions prior to breakdown.

In the present investigation of oblique transition, a general picture of the
transition scenario can be described as: a rapid growth of streamwise streaks
together with a decay in the amplitude of the initial oblique waves, a second
stage where the streak amplitude is constant and a growth of the oblique waves
which might be governed by linear stability, followed by the final stage where both
stationary and time-dependent modes grow, eventually evolving into a turbulent
state.

The amplitude of the streaks in the first stage depends on the wave am-
plitude, the decay rate of the oblique waves, the spanwise wavenumber and the
Reynolds number at the disturbance source. The strength of the transient growth
is governed by the latter two, whereas the first two determines the input to the
streamwise vortices through a nonlinear interaction. For the conditions presented
in this report a streak amplitude of ≈ ±5 % was reached near x=800 mm. From
measurements at a higher F , where the initial decay of the oblique waves is
smaller, a streak amplitude of about ±13 % was reached (see also table 2). De-
spite the larger streak amplitude in this case, the location for the transition onset
did move upstream with less than 100 mm. The growth of the waves in the second
stage is motivated by the observations made in connection with figure 10, where
it was found that the growth of the (1,1) mode started at the location of branch I
for the present conditions. In the final stage, the mode which has the highest
amplitude will depend on the specific conditions. In particular, the effect of the
initial amplitude and the spanwise wavenumber was shown in section 4.2.

Berlin, Wiegel & Henningson (1998) reported on measurements and direct nu-
merical simulations at U = 12 m/s and F = 59. The measurements indicated the
appearance of high-frequency fluctuations approximately 350 mm downstream of
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the disturbance source. A similar development could be obtained in the direct nu-
merical simulations by a detailed modelling of the disturbance source. The growth
observed in the DNS was quite sensitive to the method used for modelling the
disturbances and the method which was finally chosen resulted in the most rapid
development. It can be hypothesized that the forcing method used in the present
experiments, where disturbances from individual pipes are mixed in a common
slit before entering the boundary layer, results in a different transition location
than for the wave generator used in the measurements reported by Berlin et al.
They used separate slits for each spanwise position and the edge effects of these
slits may result in disturbance energy also in smaller spanwise scales. However,
the main reason for the difference with the present investigation is probably the
conditions that determines the strength of the transient growth of the streaks,
and thereby the conditions for streak instability.

In an experimental investigation of oblique transition in plane Poiseuille flow
at a subcritical Reynolds number (Elofsson & Alfredsson 1998), transition only
occurred if the streak amplitude reached above a threshold level. For the present
study in a Blasius flow, there is a second chance for transition to occur even if
the streak amplitude at the initial stage is not sufficiently high to directly trigger
a streak instability. Initially the generated oblique waves are damped, but as
the wave travels downstream it reaches the unstable region and starts to grow,
whereafter the final stage shows a strong growth of both stationary and time-
dependent modes.
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Poiseuille flow
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Abstract

Results from spatial numerical simulations on ribbon induced oblique wave transi-
tion in plane Poiseuille flow are presented and comparisons are made with exper-
imental results. The vibrating ribbons were modeled by adding volume forces to
the Navier-Stokes equations in the regions occupied by the ribbons. The spanwise
non-symmetry seen in experiments was found to result from the placement of the
ribbons at opposite channel walls, causing the onset of nonlinear interactions to
occur at different downstream positions for different cross stream coordinates.

1 Introduction

Transition to turbulence takes place even if the linearized disturbance equations for
the laminar flow only exhibit damped eigenmodes. Traditionally this fact has been
explained by the effect of nonlinearity and a large number of nonlinear mechanisms
have been proposed for the disturbance growth in various flows. More recently the
necessity of energy growth for the linearized equations have been emphasized.
When all eigenmodes are damped this comes in the form of a transient growth,
which, although limited in time, can be quite strong in shear flows.

In plane two dimensional incompressible shear flows, the growth of eigenmodes
is first observed (i.e. for the lowest Reynolds numbers) for purely two-dimensional
waves, and many studies of instability, both theoretical and experimental, have
concentrated on these. However, the transient growth is found to be significantly
greater for three dimensional, oblique, waves and especially for the streamwise
vortex - streak interaction, denoted lift-up by Landahl (1975).

†Present address: Volvo Aerospace Corp., S-461 81 Trollhättan, Sweden
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An interesting scenario for transition is found for a disturbance starting as
two oblique waves each making an angle to the mean flow of the same magnitude
but with opposite sign. These may grow transiently and also nonlinearly pro-
duce streamwise vortices. The vortices in turn force a strong transient growth of
streamwise streaks with high and low streamwise velocity alternating in the span-
wise direction. Provided the amplitude is high enough, the streaks which have
inflectional velocity profiles may become unstable to small scales and the laminar
flow rapidly breaks down into turbulence.

The coupling of oblique waves – streamwise vortices and streaks was found to
give a rapid transition for localized disturbances in plane channel and boundary
layer flows in the investigation of Henningson, Lundbladh & Johansson (1993).
The localized disturbance was then modeled by a periodic one using two oblique
waves by Schmid & Henningson (1992) They performed numerical simulations
of plane channel flow, where they found a similar rapid transition as observed
for localized disturbances. In their study the initial disturbance was spanwise
symmetric, and as this symmetry is preserved by the Navier-Stokes equations, the
subsequent transition process retained the symmetry.

In the experiments of Elofsson & Alfredsson (1995) two oblique waves were
generated in a plane channel flow by two vibrating ribbons which were placed at
opposite channel walls. The resulting flow had strong similarities to that simulated
by Schmid & Henningson, giving a transition at relatively low amplitudes in spite of
the low Reynolds number, 2000 based on half channel width and laminar centreline
velocity. The transition proceeded primarily through the generation of a number
of harmonics to the primary frequency, only eventually giving a more smooth
spectrum. This shows that although the amplitude is high and has the appearance
of the turbulence the flow is almost periodic in time for some distance downstream
of the ribbons.

However, the flow downstream of the ribbons was not found to be spanwise
symmetric. In a view normal to the channel wall the experimental arrangement
is spanwise symmetric, but due to the fact that the vibrating ribbons are placed
near either wall the symmetry is not exact.

The present study aims to reconciliate previous numerical and experimental
results with the use of a numerical model, which more closely reflects the geometry
of the physical experiment reported by Elofsson & Alfredsson. Especially we try
to find the cause of the observed non-symmetry in the experiment. A general
comparison of the experimental and numerical data is also attempted.
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Figure 1. Experimental setup

2 Experimental apparatus and reference quantities

The experiments by Elofsson & Alfredsson(1995) were carried out in an air-flow
channel consisting of two parallel glass plates separated by a distance 8.2 mm and
having an aspect ratio of 101 (see Figure 1). Wave disturbances were generated
with the two vibrating ribbons positioned approximately 1000 mm downstream
of the channel entrance. The ribbons were made of a phosphor bronze alloy and
they had a width, thickness and working length of 3 mm, 0.05 mm and 320 mm,
respectively. The ribbons were positioned 0.5mm from the channel walls in a mag-
netic field from five horseshoe type permanent magnets evenly distributed along
each ribbon and mounted outside the channel walls. A sinusoidal signal provided
by a function generator and amplified by a stereo amplifier excited the ribbons.
A 2.5 µm diameter platinum hot-wire was used for measuring the streamwise ve-
locity component, and the hot-wire probe could be traversed automatically in the
spanwise and wall-normal directions and manually in the streamwise direction.

We will take the reference length for both the experiment and simulation to
be the half channel width h = 4.1 mm, and the reference velocity scale to be
the the centreline velocity of the undisturbed laminar flow Ucl. This velocity was
adjusted so that the Reynolds number was R = hUcl/ν = 2000, which gave a
centreline velocity of about Ucl = 7.3 m/s. The coordinate system has the x-axis
aligned in the streamwise, the y-axis in the wall normal and the z-axis in the
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spanwise direction, the corresponding velocities are u, v and w. The origin is at
the crossing point for the two ribbons and halfway between the lower and upper
plate, so that their coordinates are y = −1 and y = 1 respectively. We will also
use the ribbonwise z′ and chordwise x′ coordinates in a system rotated 45◦ around
the y-axis.

In the results discussed in this paper the angular frequency of oscillation was
held at ω = 0.34 which corresponds to a dimensional frequency of about 96 Hz.

3 Numerical method

We will use a numerical simulation program solving the full three-dimensional
incompressible Navier-Stokes equations developed by Lundbladh, Henningson &
Johansson (1992). The program uses Fourier-Chebyshev spectral methods, similar
to those of Kim, Moin & Moser (1987). The simulation program has recently been
modified to handle spatial development of disturbances in channel and boundary
layer flows. In a fringe region a forcing term is added to the Navier-Stokes equa-
tions. It is implemented such that the disturbances flowing out of the box were
eliminated and the flow returned to its laminar state. This technique, which allows
the streamwise expansion in Fourier modes to be retained while prescribing inflow
and outflow conditions, is described in Lundbladh & Henningson (1993).

3.1 Model of vibrating ribbons. The effect of the vibrating ribbons can most
easily be modeled by application of a time varying volume force. The following
force is applied to the streamwise momentum equation for the lower and upper
ribbon :

Fl = A cos(ωt)exp{−[(x− z)/c]2 − [(y− yl)/d]2 − (z/l)30}
Fu = A cos(ωt)exp{−[(x+ z)/c]2 − [(y− yu)/d]2 − (z/l)30} (1)

Here A and ω are the amplitude and angular frequency of the forcing. The
half chord c = 1 and half thickness d = 0.02 are chosen larger than the physical
dimension in order to limit the demands on the numerical resolution. The physical
distance from the wall of the ribbons is set by using −yl = yu = 0.878. To limit the
computational domain we have chosen to set the half span of the ribbons l = 12.
The high power for the z dependence yields a forcing which for the central 85 %
of the ribbon span is constant to within 1 %.

A partial justification for this rough modeling is that the amplitude of the
ribbons is not known from the experiments. Thus it is necessary to adjust the
amplitude to correspond to a measurement of the disturbance amplitude at some
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position downstream of the ribbons. The exact cross section of the ribbon then to
a first approximation only affects the flow close to the ribbon itself.

3.2 Model of a stationary ribbon. Even when not vibrating, the ribbons act as
a flow blockage and generate a non-homogeneous flow downstream, which although
weak, would break the spanwise symmetry. Since the oblique ribbons are placed
at either wall they may act as guiding vanes, giving the flow a small amount
of streamwise vorticity. To investigate this effect the flow around a stationary
ribbon needs to be solved. Unlike the non-stationary disturbance we cannot adjust
the strength of the stationary ribbon to the experiments since no measurements
exist for this effect (and because of its small magnitude found below it would be
extremely hard to measure except close to the ribbon).

We are thus forced to use a more accurate modeling for this part. In the
region occupied by the ribbon we add a damping term to the Navier-Stokes which
is proportional to the velocity :

ut = NS(u) − λ(x, y, z)u (2)

Where u = (u, v, w)T and NS(u) is the Navier-Stokes operator. λ is only
(signficantly) nonzero inside the ribbon. This is equivalent to the action of a
porous medium, and in the limit of infinite λ we obtain the solution for a solid
ribbon.

For a ribbon running along the z′-direction we choose :

λ(x, y) = λ0exp{−[x′/c′]8 − [(y− yl)/d]4} (3)

Since we do not have any data to match the far field to, the parameters must
now be taken as the real physical values c′ = 1.5mm = 0.36h and d = 25µm =
0.006h. The magnitude of the damping was increased until no flow occured inside
the ribbon. The final value used was λ0 = 4000.

The small size of the ribbon and the sharp gradients of the flow around it
require very fine grids to resolve, thus it is in practise impossible to simulate the
full 3D flow around the ribbons in this way. However, we can find the flow around
one ribbon accurately if we assume that the flow is homogeneous in the z′-direction
, which is usually designated the infinite sweep approximation. To this solution a
simplified model of the same type as for the time dependent problem above can be
matched. The simplified model can then be extended to two ribbons with finite
length.

Figure 2 shows the solution for the flow around one infinite swept ribbon near
the lower wall. Note that there is a wake formed behind the ribbon. At x′-positions
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Figure 2. Flow around infinite stationary ribbon. (top) stream-
wise disturbance velocity, contour spacing 0.01; (bottom) span-
wise velocity, contour spacing 0.005. Negative contours are
dashed.

close to the ribbon it acts as a blockage. This moves the position of maximum
streamwise velocity towards the opposite wall, leading to a surplus velocity in the
upper half of the channel. Further downstream there is a velocity deficit in the
whole channel due to the increased resistance.

As can be seen in the spanwise velocity component the flow deflects from the
streamwise direction to become more chordwise after the ribbon.

The present effect can be understood in terms of a pressure gradient driven
flow. There is a pressure drop across the ribbon which deflects the flow towards the
chord direction. An analogy can be made with a porous wall (or screen) inserted
in the channel perpendicular to the channel walls and parallel to the ribbon. It
is well known that the flow in this case is deflected towards the normal to the
screen. In the limiting case of very low porosity (high pressure drop) the flow
leaves the porous wall in the direction normal to it. Under the ribbon the flow is
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Figure 3. Close up of flow around ribbon. Streamwise velocity,
contour spacing 0.02.

indeed deflected by about 43◦, i.e the flow is almost chordwise. However, further
downstream at x′ = 10 the deflection is about 0.7◦ at the channel centreline
increasing to about 2◦ at the lower wall and 4◦ at the upper wall.

A close-up of the streamwise velocity near the ribbon shown in Figure 3 reveals
the sharp gradients near the ribbon. The closed contour line gives the extent of
the ribbon, and shows that the no-slip condition is satisfied. There is a reduced
flow under the ribbon and in the boundary layer above it which means that the
ribbon acts as a partial blockage.

A simple model for the effect of the ribbon is given by the following volume
force applied to the momentum equation:

F =

Au′0
Aw′

 exp{−[x′/c′]2 − [(y − yl)/d]2} (4)

Here we use the same dimension of the ribbon as for the stationary force, i.e.,
c′ = 1/

√
2 and d = 0.02. The resulting flow for Au′ = −0.07 and Aw′ = −0.04 is

given in Figure 4. Although there are significant discrepancies close to the ribbon
when compared to Figure 2, the far field is remarkably similar. The extension
to a finite length ribbon is now made in the same way as for the non-stationary
force given by equation (1). Note that Au′ and Aw′ are given in the ribbon
oriented coordinate system, when rotated to the streamwise coordinate system
they correspond to Au = −0.0778 and Aw = 0.0212 for the lower ribbon with the
spanwise component negative for the upper ribbon.
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Figure 4. Flow around infinite stationary ribbon. Ribbon mod-
eled by a volume force. (top) streamwise disturbance velocity,
contour spacing 0.01; (bottom) spanwise velocity, contour spac-
ing 0.005. Negative contours are dashed.

4 Numerical results

It is now possible to use the models developed above to compute the flow result-
ing from two oblique ribbons. We are especially interested in the time averaged
velocity resulting from the oscillating ribbons which in the experiments showed a
broken spanwise symmetry.

4.1 Stationary ribbons. The flow around the stationary ribbons was computed
as a baseline case to be compared to simulations of time dependent flow. In
Figure 5 (top) the streamwise velocity defect in the lower part of the channel
can be seen. Near the ribbon at the lower wall (increasing x increasing z) the
velocity defect is a few percent, near the upper ribbon there is a small velocity
surplus in this half of the channel. The wake at the central part of the ribbons
is quite weak except around z = 0 where the ribbons cross. At the ends of the
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Figure 5. Flow around two stationary ribbons. (top) streamwise
disturbance velocity at y = −0.75, contour spacing 0.02; (bottom)
spanwise velocity at x = 20, contour spacing 0.001. The vertical
scale has been stretched. Negative contours are dashed.

ribbons streamwise vortices are generated which leave an imprint on the streamwise
velocity in the form of high and low speed streaks. The bottom part of Figure 5
gives the spanwise velocity in a cross stream plane downstream of the ribbons.
There is a weak clockwise swirl which deflects the mean flow by about 0.5◦ near
each wall at the spanwise centreline, with increasing spanwise flow near the surface
and side where each ribbon is pointing downstream.

4.2 Low amplitude forcing. The stationary part of the disturbance field is a
non-linear effect of the oscillation and hence quadratic in the forcing for small
amplitudes. According to previous studies this part of the disturbance contains
most of the disturbance energy before transition for moderate amplitude forcing.
To avoid influence of higher order terms in the amplitude expansion the forcing is
set to A = 0.0001. In this first case we study the flow with time-dependent forcing
only, i.e. no stationary forcing is applied.
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Figure 6. Flow around two oscillating ribbons. Streamwise dis-
turbance velocity at y = −0.75. (left) instantaneous flow, contour
spacing 0.0005; (right) time averaged flow, contour spacing 0.0001.

Figure 6 (left) shows the streamwise disturbance velocity near the lower wall.
The waves coming from each ribbon cross and create a checkerboard pattern down-
stream. Note that the waves coming from the ribbon at the lower wall are visible
earlier than the waves from the upper wall. The right part of the figure gives the
time averaged streamwise disturbance velocity near the lower wall. A number of
alternating high and low speed streaks are observed downstream of the ribbons,
increasing in amplitude downstream.

Figure 7 shows a cross stream cut of a time averaged flow field downstream of
the ribbons. Like in previous simulations and experiments we find in each channel
side a series of high and low speed streaks which are associated with counter-
rotating streamwise vortices. The vorticity changes sign at about y = ±0.8. This
is most likely an effect of the no-slip condition at the wall which requires the
spanwise velocity in the vortex to go to zero more rapidly than for an irrotational
motion. The sign change is observed also for wall bounded streamwise vortices in
the buffer layer of a turbulent boundary layer.

The spanwise symmetry is broken in two respects. First, the high speed streaks
in the lower and upper channel are not aligned with each other and the streaks
are close to antisymmetric around the plane z = 0; and secondly, the disturbance
is stronger in the second and fourth quadrant. The latter observation together
with the previous figure gives a clue to the reason for the symmetry breaking. The
vortices are forced by a term which is proportional to the product of the left and
right going waves’ amplitudes. Since the wave does not spread immediately from a
ribbon to the opposite wall the interaction between the waves occurs some distance
downstream of the downstream pointing ribbon in quadrant one and three. As the
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Figure 7. Time averaged flow from two oscillating ribbons at
x = 30. (top) streamwise disturbance velocity, contour spacing
0.00002; (bottom) streamwise vorticity, contour spacing 0.00001.
The vertical scale has been stretched. Negative contours are
dashed.

waves are damped at this Reynolds number the wave interaction is much weaker
than in the quadrants where the interaction occurs closer to the ribbons.

4.3 Stationary and time dependent forcing. As found in the previous sec-
tion the spanwise symmetry is broken even when no account is taken for the
stationary flow blockage of the ribbon. When the stationary and low amplitude
time dependent forcing is combined, the stationary forcing dominates due to its
higher forcing amplitude. If, however, we are interested in the effect of the time
dependent forcing on the mean flow we can subtract the mean flow calculated
for stationary ribbons above. This part of the mean flow, although small at the
present amplitude A = 0.0001, grows quadratically with the forcing amplitude and
will become important for stronger forcing.

Figure 8 shows a cross stream cut through the time averaged flow field, where
the disturbance field of the stationary forcing is subtracted. Compared to Figure 7
without stationary forcing the amplitude has increased and the spanwise spacing
between streaks and vortices have decreased somewhat.

However, the changes in the spanwise positions of the streaks and vortices
near z = 0 are small. If they followed the mean flow which is deflected α = 0.5◦

by the stationary ribbons, they would move about 0.25h to the right in the upper
half and to the left in the lower part. The observed motion is in both directions in
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Figure 8. Time averaged flow from two oscillating ribbons less
the flow for stationary ribbons at x=30. (top) streamwise dis-
turbance velocity, contour spacing 0.0001; (bottom) streamwise
vorticity, contour spacing 0.00005. The vertical scale has been
stretched. Negative contours are dashed.

each channel half and thus does not seem to be a result of the spanwise deflection
by the ribbons.

The increase in amplitude is most likely an effect of that the stationary forcing
slows down the fluid at the ribbon position, thus the time dependent force becomes
more effective in moving the fluid. The increased amplitude is observed also for
the time dependent part of the solution (figure not shown). However, the increased
amplitude of the wave is of no consequence for the model as the amplitude must
be adjusted to that of the experiment a small distance downstream of the forcing.
Thus it appears most straightforward to neglect the stationary force altogether in
the following simulations.

4.3.1 Both ribbons at the lower wall

To demonstrate clearly that the spanwise symmetry is broken due to the placement
of the ribbons at either wall a calculation with both ribbons on the lower wall was
performed.

Figure 9 shows the resulting time averaged flow, the spanwise symmetry of the
solution is of course trivial since the forcing as well as the equations are spanwise
symmetric. Compared to Figure 7 the strength of the streaks has increased in the
lower half and decreased in the upper half. This is consistent with the result above
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Figure 9. Time averaged flow from two oscillating ribbons at the
lower wall. Streamwise disturbance velocity at x = 30, contour
spacing 0.00002.

that the spanwise symmetry is broken due to the delay of the wave to reach full
amplitude in the half-channel opposite to the ribbon.

4.4 High amplitude forcing. To be able to compare with experimental data
obtained for the case with a large initial disturbance we need to increase the am-
plitude of the forcing. In accordance with what is said above the high amplitude
simulation is performed without stationary forcing. The experimental data indi-
cated a level of urms = 0.04 at (x, y, z) = (15,−0.75, 0). This level was achieved
by adjustment of the A to 0.04 (the numerical agreement with urms is fortuitous).

Figure 10 shows the mean streamwise disturbance velocity in the lower part of
the channel. Low and high velocity regions are formed downstream of the ribbons
and in agreement with the previous section the streaks are weaker and appear
further downstream for negative z. The spacing between the streaks is equal for
the experiment and the simulation and also the amplitude evolution shows close
correspondence.

The rms of the streamwise velocity shown in Figure 11 indicates a fair agree-
ment between the experiment and the simulation. Regions of high rms appear at
the same spanwise position but the maximum levels are different in the two cases.

Figure 12 shows contours of the time averaged streamwise disturbance velocity
from a cross stream plane at x=16. As can be seen from the top part of the figure
the experimental flow field is almost symmetric under rotation, except for the low
velocity regions near z=0 which have a different amplitude in the lower and the
upper channel half.
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Figure 10. Mean streamwise disturbance velocity at y = −0.75.
(top) experiment; (bottom) simulation. Contour spacing 0.05.
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Figure 11. Streamwise velocity rms at y = −0.75. (top) exper-
iment; (bottom) simulation.Contour spacing 0.04.
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Figure 12. Time averaged flow from two oscillating ribbons at
x = 16. (top) experiment; (bottom) simulation. Contour spacing
0.01. Negative contours are dashed.

5 Conclusions

Numerical simulations of oblique transition have been carried out using a numerical
model which closely reflects the geometry of the experimental apparatus used in the
experiments of Elofsson & Alfredsson (1995). The effect of the vibrating ribbons
used in the experiments was simulated by adding a time dependent volume force
to the Navier-Stokes equations at the position of the ribbons. Different numerical
models were employed to investigate the stationary blockage effect of the ribbons
and the flow field resulting from the vibrating ribbons.

The symmetry break observed in the experiments was found to result from the
placement of the ribbons at opposite walls, which caused the nonlinear interaction
to occur at different distances downstream of the ribbons for different cross stream
positions. Also, the stationary blockage effect of the ribbons was shown to have
negligible influence on the flow field some distance downstream of the ribbons.

When comparing the present simulation result and the experimentally ob-
tained data they were found to be in close agreement with each other.
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Abstract

The development and stability of streamwise streaks are studied in an air-flow
channel experiment at sub-critical Reynolds numbers. The streaks were generated
by continuous suction through small slits at the wall. The streak amplitude first
grows algebraically, and if the amplitude exceeds a certain threshold secondary
instability in the form of travelling waves are observed. These waves give rise to
high urms values in the region of large spanwise mean flow gradient. Measurements
with two hot-wire probes indicate that velocity fluctuations are 180◦ out of phase
at two neighbouring peaks at each side of a low velocity region and implies the
existence of a sinuous type instability.

Measurements were also made with controlled disturbances where earphones
were used to force the secondary instability. Phase averaged data clearly shows the
oscillation of the low velocity region and also provides the growth rate, phase speed
as well as amplitude and phase distributions of the secondary instability. Several
of these features suggest that the instability is of inflectional origin. Finally the
disturbance breaks down and the flow undergoes transition to turbulence. It is
hypothesized that this scenario resembles certain types of bypass transition.

1 Introduction

1.1 Instabilities through transient growth. Non-modal amplification of three-
dimensional disturbances has recently attracted several researchers to investigate
the possibility that such disturbances may be part of subcritical transition known
to occur in many wall bounded shear flows. Ellingsen & Palm 1975 and Landahl
1980 showed for the inviscid case that three-dimensional disturbances could grow
linearly in time, and Gustavsson 1991 extended their analysis to viscous plane
Poiseuille flow. He found that three-dimensional streamwise oriented structures
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could be amplified also at subcritical Reynolds numbers, i.e. the disturbance en-
ergy would at first grow linearly in time, but that the disturbance ultimately would
decay due to viscosity. The streaky structures will not lead to transition by them-
selves even though their growth can be substantial. A possible route to transition
would be that the streaks, after growing to some threshold amplitude (which de-
pends on for instance the Reynolds number and the spanwise wavelength of the
streaks) become unstable and develop a time dependent wave instability. This
type of instability will in the following be referred to as a secondary instability.

Many theoretical papers on transient growth have appeared in addition to
the paper by Gustavsson 1991 (see for instance Boberg & Brosa 1988, Butler &
Farrell 1992, Henningson 1995, Trefethen et al. 1993). Most papers deals with
the temporal amplification of disturbances although in a physical experiment the
growth is rather spatial than temporal. One exception is the theoretical work
of Luchini 1996 who was able to find a similarity solution for a three-dimensional
disturbance in boundary layer flow, which was found to amplify in the downstream
direction as x0.213. In this case the growth is not followed by viscous decay since
the Reynolds number is increasing in the downstream direction.

Several numerical as well as physical experiments show that transient growth
also occur for spatially developing channel flows. One example is the experiment by
Klingmann 1992 who investigated growing three-dimensional disturbances in plane
Poiseuille flow at subcritical Reynolds numbers. She used a point-like disturbance
which developed into streaky structures. The energy of the structure first increased
linearly, whereupon, depending on the strength of the initial disturbance, it either
decayed or gave rise to a turbulent spot. This scenario seems to be close to what
is described by the temporal analysis. Henningson, Lundbladh & Johansson 1993
made direct numerical simulations of the same flow with a localized disturbance
which further corroborated the transient growth mechanism. It is noteworthy
that one old transition experiment has recently been re-evaluated and evidence
for the existence of transiently growing disturbances was found (see Mayer &
Reshotko 1997). In the analysis the temporal development was converted to a
spatial development by using the propagation velocity of the disturbance.

Another interesting scenario where transient growth is one of the major com-
ponents is the so called oblique transition which was first suggested by Schmid
& Henningson 1992. The starting point is the introduction of two oblique waves
of small but finite amplitude. The wave-pair can be characterized by (ω0,±β0),
where ω0 is their angular frequency and ±β0 their spanwise wave numbers. They
may interact non-linearly and the first generation interaction will, among others,
give rise to a (0,±2β0) mode, which corresponds to a stationary, spanwise peri-
odic disturbance. It was found by Schmid & Henningson that the (0,±2β0) mode
initially reach high amplitudes through transient growth. Experimentally this has
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been verified in plane Poiseuille flow by Elofsson & Alfredsson 1995,1998, whereas
Berlin, Lundbladh & Henningson 1994 carried out direct numerical simulations of
oblique transition in a Blasius boundary layer flow (i.e. the initial disturbance was
two oblique waves) and found that after an initial growth of the streaky structures
a rapid growth of modes with nonzero ω followed.

The secondary instability of transiently growing streaks has recently been in-
vestigated by Reddy et al. 1998 through direct numerical simulations and stability
calculations. Their results indicate that the secondary instability mainly is due
to spanwise inflectional profiles which occur through the transient growth of the
streaky structures. A similar analysis were made by Hamilton, Kim & Waleffe
1995 and Waleffe 1995 who investigated streak breakdown in Couette flow. In
these studies streak breakdown was one part of a process describing self-sustained
turbulence near walls.

1.2 Instabilities associated with streamwise vortices. Wall bounded flows
which are affected by body forces normal to the wall, such as flow over curved
surfaces or curved channels, flows undergoing system rotation or flows affected by
buoyancy may develop streamwise oriented vortices (see for instance the review on
Görtler vortices by Saric 1994). These vortices will at first grow exponentially and
this development can be well predicted through linear stability theory assuming
the principle of exchange of stability to be valid. However, the vortices will give rise
to streamwise streaks of high and low velocity which are susceptible to secondary
instability in the form of travelling wave disturbances. This may be quite similar
to the transition scenario developing after transiently growing streaks have been
established.

Swearingen & Blackwelder 1987 investigated the detailed breakdown process of
counter-rotating streamwise vortices generated on a concave wall via the centrifu-
gal or Görtler instability mechanism. Their study was focused on the travelling
wave type instability which takes place on the streaks just prior to the vortex
breakdown. Flow visualization showed two types of secondary instability, one sin-
uous and one varicose. Their hot-wire measurement studied the sinuous instability
which was manifested by the presence of a two-peak structure in the urms distri-
bution. These peaks are located on the sides of low-speed regions. Both naturally
occurring and forced disturbances were measured. They concluded that the maxi-
mum disturbance amplitude was found in regions of high spanwise shear and that
the spanwise inflectional profiles were responsible for the secondary instability.

Masuda, Hori & Matsubara 1995 showed for a boundary layer developing on
a flat plate subjected to system rotation (in this case the Coriolis force takes the
role of the centrifugal force) that the mode selection (sinuous or varicose) depends
on the initial spanwise wavelength of the vortex structure, a small wavelength is
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more susceptible to the sinuous mode whereas a large wavelength gives rise to the
varicose mode. Theoretical analysis by Bottaro & Klingmann 1996 for Görtler
flow has shown that it is the sinuous mode that becomes unstable first. They
also gave an expression for the most unstable frequency of the sinuous instability,
which correlated well with some of the experimental findings by Swearingen &
Blackwelder. Other theoretical/numerical investigations can be found in Yu &
Liu 1991 and Liu & Domaradzki 1993.

In curved channel flow Matsson & Alfredsson 1994 investigated naturally oc-
curing travelling waves which formed on top of the primary Dean vortex structure.
The same flow was also investigated through numerical simulations by Finlay,
Keller & Ferziger 1988. An experiment in a rotating plane channel was made by
Matsubara & Alfredsson 1997 where both the primary vortex structure as well as
the secondary instability was triggered in a controlled way (see also the numeri-
cal study of Finlay 1990). In the experiments both sinuous and varicose modes
were forced but only the sinuous were found to have a positive growth rate. In
this study the wave properties were accurately mapped, both the shape, growth
and phase speed. Also here the inflectional spanwise profiles were found to be
associated with the instability.

An experiment where the vortex structure was generated on a flat plate inside
the boundary layer by means of longitudinal roughness elements was reported
by Bakchinov et al. 1995 In that case wave disturbances were introduced into the
boundary layer with a vibrating ribbon and the observed high-frequency instability
was found to be similar to the sinuous mode observed in Görtler flow.

1.3 Tollmien-Schlichting wave transition.

1.3.1 Boundary layer flows

Traditionally the linear stability of two-dimensional wave-disturbances, known as
Tollmien-Schlichting waves (hereafter, T-S wave) has been the starting point to
investigate transition in boundary layer flows. Schubauer & Skramstad 1947 ex-
perimentally verified the existence of such waves whereas extensive investigations
were conducted by Klebanoff & Tidstrom 1959 and Klebanoff, Tidstrom & Sar-
gent 1962. It was then realized that before transition occurred the wave became
three-dimensional and another instability developed. In their experiment primary
disturbances were introduced using the vibrating ribbon technique and single strips
of tape placed apart beneath the ribbon controlled the three-dimensionality of the
flow. Measurements of the spanwise component detected an existence of longitu-
dinal vortices, which were coupled to the peak-valley structure.

The peak-valley structure intensifies downstream and forms a local shear layer
at the position corresponding to the peak. This breaks down into, so called, hairpin
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eddies just prior to the transition, where time traces of the streamwise velocity
exhibit spikes and subsequent high-frequency wave packets. This type of the break-
down process is called K-type after Klebanoff and is expected under reasonably
large two-dimensional input intensities (order of 1 % u′/U∞), while for smaller am-
plitude of the T-S wave another type of the regime is detected. This interaction,
which results in the staggered Λ-vortices visualized by Saric & Thomas 1984, has
been observed experimentally in a transitional boundary layer by Kachanov et al.
1977 and Kachanov & Levchenko 1984. Later Corke & Mangano 1989 established
the sub-harmonic interaction by simultaneous generation of controlled two- and
three dimensional disturbances.

1.3.2 Plane Poiseuille flow

In plane Poiseuille flow transition to turbulence usually is observed at much lower
Reynolds numbers than the linearly critical Re of 5772. In the flow visualizations
by Carlson, Widnall & Peeters 1982 turbulent spots were observed for Re down to
1000. This subcritical transition belongs to the class of transition scenarios denoted
bypass. However, Nishioka, Iida & Ichikawa 1975 showed a few characteristics of
wave disturbances in plane Poiseuille flow which indicated that the waves develop
according to linear stability theory, and later that work was extended by Elofsson
& Alfredsson 1998 to also include results for oblique waves. Since the study of
Nishioka et al. numerical simulations have shown that transition follows the same
steps as in boundary layers, although sub-harmonic breakdown is unlikely under
unforced conditions.

1.4 Present work. The present study deals both with the transient growth of
streaky structures, and their instability characteristics which lead to streak break-
down. The experiment has been conducted at sub-critical conditions in plane
Poiseuille flow where the streamwise streaks have been forced. Both natural and
forced secondary instabilities on the streaks have been studied, and instability
characteristics such as growth rate, phase speed and amplitude distributions have
been mapped. In §2 we describe the experimental setup and procedure. Section 3
contains experimental results and consists of three parts. The first part treats the
development of the streaky structure, whereas the second and third parts deals
with natural and forced secondary instability, respectively. Further discussion and
concluding remarks are given in §4.
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2 Experimental apparatus and procedure

2.1 Channel and traversing system. The experiments were conducted in an
air-flow channel at the Department of Mechanics at the Royal Institute of Tech-
nology (KTH). The channel was originally used by Klingmann 1992 and later
modified in part by Elofsson & Alfredsson 1998. The air was supplied by a cen-
trifugal fan, running at constant speed via a silencer to two damping chambers.
The flow rate was adjusted by a valve open to the atmosphere connected to the first
of the damping chambers. The air coming to the channel is distributed through
a perforated pipe and a high flow-resistance screen to the stagnation chamber via
guide vanes and a package of three turbulence damping screens. Downstream the
screen package a carefully polished 40:1 ratio contraction part leads the air to the
1.9 m long channel. The channel consists of two 10 mm thick parallel glass plates
separated by 8.2 mm thick distance bars of aluminium. They are positioned to
give a channel width of 830 mm, yielding an aspect ratio of 101 (see Figure 1).

The channel is equipped with static pressure taps and a total pressure probe
for calibration and monitoring purposes. The total pressure probe can be inserted
into the channel from its downstream end. It has a conical shape with its largest
diameter equal to the channel width which automatically makes the pressure sens-
ing opening to be located at the channel centreline.

2.2 Hot-wire measurements. The streamwise velocity component was mea-
sured with a constant temperature anemometer (AA-systems model 1003) using
platinum single wire probes with a wire diameter and length of 2.5 µm and 0.5 mm,
respectively.

The traversing system for the hot-wire probe is automatic through the use
of stepping motors in two directions, namely in the normal (y) direction with
a step of 0.015 mm and in the spanwise (z) direction with a step of 0.05 mm.
In the streamwise (x) direction it can be moved manually. In the spanwise and
streamwise directions the probe is moved with two perpendicular guide systems.
In the y-direction it is moved via a wedge-mechanism which makes the hot wire
move along a circular arc. In this way it is possible to come close to both sides of
the channel. Since the distance from the wire to the axis of rotation is 11.7 cm
the variation in streamwise location of the wire is less than 0.1 mm when moved
from the centre to the wall.

A Macintosh computer and a National Instruments plug-in board were used
to control the stepping motors and the data acquisition.

Calibration of the hot wire was carried out against the parabolic velocity
profile by means of traversing the probe in the wall-normal direction at a position
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Figure 1. Experimental set-up. All measurements in mm.

296h downstream of the channel inlet. The calibration curve used was,

U = k1(E2 −E2
0)1/n + k2(E −E0)1/2, (1)

where E is the anemometer voltage at the velocity U , E0 the voltage at zero
velocity and the coefficients k1, k2 and n are determined from a best fit of the
data to the calibration function. Typically the calibration procedure resulted in
an error less than 1% for all calibration points.

2.3 Flow visualization technique. For flow visualization, a smoke sheet was
introduced through a transversely oriented slit at the upper channel wall (see
Figure 1). Smoke was generated with a portable fog-generator and a small fan
mounted to the smoke chamber made it possible to adjust the thickness of the



8

smoke layer. Photographs were taken from the lower side of the channel, using a
flash mounted downstream of the channel exit. The flow visualization was made
at unforced conditions for a fixed Reynolds number and streak amplitude.

2.4 Disturbance sources. In this study two types of disturbances are intro-
duced through two 90 mm diameter aluminium plugs which can be rotated. The
centres of the plugs are located at 296h and 323h downstream of the channel
inlet. The upstream plug is used to generate a stationary disturbance and the
downstream plug for a time-periodic secondary disturbance. The origin of the xyz
coordinate system is at the centre of the upstream plug and half-way between the
lower and the upper plate.

2.4.1 Primary disturbance

The primary disturbance, consisting of regularly spaced high and low velocity
streaks, is generated by applying suction through five slits (1 mm wide and 10
mm long) in the upstream plug, which allows the streak amplitude as well as its
wave length to be controlled. The slits are made in circular plugs with a diameter
of 10 mm, and these plugs are mounted in the large plug with diameter 90 mm.
Since both the large plug as well as the small slit-plugs can be rotated the streak
spacing can be varied in the range from 0 mm to 15 mm, and still have the slits
aligned in the streamwise direction. The slits are connected to plastic tubes which
go together into a low-pressure tank connected to the inlet of a centrifugal fan.
The suction rates at the five slits can be adjusted by clamps mounted around the
tubes and are individually regulated to give a homogeneous sinusoidal spanwise
profile for each streak amplitude case. Since the suction is applied at the upper
channel wall the generated streaks are mainly confined to the upper half-channel.
High velocity regions are centred at the slit positions and low velocity regions in
between.

Experiments were made for different suction rates giving different streak am-
plitudes. Most of the measurements were conducted with a streak wave length of
15mm (≈ 3.6h). The flow field where only suction is employed is hereafter called
the ‘natural case’ in contrast with the ‘forced case’ which will be described in the
next section.

2.4.2 Secondary disturbance

The main aim of this experiment was to study the development of a time-dependent
secondary instability on the primary streaky disturbance. Phase controlled dis-
turbances were introduced downstream the slits at the second large plug through
two small holes (diameter 0.5 mm) 6 mm apart. As for the slit disturbances a
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combination of two circular plugs made it possible to position the outlet holes
at various spanwise positions without changing the spacing between them. The
outlets were made in a 30 mm diameter Plexiglass plug and two earphones were
glued in cavities made in the plug with the same diameter as the earphones. This
gave an area contraction of 64:1 between the earphone chamber and the outlet
hole.

The earphones were driven by a sinusoidal signal from a function generator and
were either driven out-of-phase or in-phase according to the desired forcing mode.
The movement of the earphone membranes gives rise to an alternate injection and
suction through the holes at the wall. For the input voltages used the measured
rms of the streamwise velocity filtered at the forcing frequency was less than 0.6
% of the laminar centreline velocity close to the forcing. The response of the
disturbance generator in a frequency band ranging from 10 Hz to 500 Hz showed
a monotone decrease of the energy output to the flow, i.e. there is no resonance
for the forcing system within this frequency range.

Since the hot-wire signal and the output from the function generator are sam-
pled simultaneously, phase information for the signals were obtained.

2.5 Data presentation. In the presentation of data all lengths and velocities are
scaled by the channel half-height (h) and the laminar centreline velocity (UCL),
respectively. The Reynolds number is defined as Re = UCLh/ν , where ν is
the kinematic viscosity. The experiment is conducted at sub-critical Reynolds
numbers in the range of Re = 2000 to Re = 2900. For those Reynolds numbers
measurements of the laminar centreline velocity UCL across the channel show a
deviation of less than ±0.5% in the spanwise direction (−16 ≤ z ≤ 16) and ±0.4%
in the streamwise direction (0 ≤ x ≤ 120). The maximum background disturbance
level was found to be 0.3% of UCL.

To describe the measurement results we decompose the velocity field U(x, y, z, t)
in a time averaged part U and a fluctuating part u,

U(x, y, z, t) = U(x, y, z) + u(x, y, z, t). (2)

For the stationary disturbance field we use Ud defined as

Ud(x, y, z) = U(x, y, z)− 1
z1 − z0

∫ z1

z0

U(x, y, z) dz, (3)

where z0 and z1 are the spanwise limits of the measurement region. However, as a
direct measure for the streak amplitude we will rather use ∆U(x), which is defined
as the peak-to-peak value of U in the spanwise direction. The reason for the use
of two measures is that the initial sine-shape of the spanwise profiles of U will
change at large amplitudes or large x, and the narrower shape of the low velocity
regions will result in a non-symmetric distribution of Ud.
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Figure 2. Contours of Ud in an xz-plane at y = 0.6 for Re=2000
and ∆Umax = 0.40. The figure is based on measurements in a
plane spanned by 10 streamwise and 57 spanwise positions. Con-
tours are ±6%,±12%, . . . Negative contours are dashed.

To characterize time dependent disturbances rms measures will be used, either
the total rms, urms, or a value filtered in a narrow band around the frequency fi,
urms,fi . The forcing frequency will be denoted the fundamental or first harmonic
frequency and represented by f1.

3 Experimental results

3.1 Induced streaky structure. The streaky structure is triggered by suction
at the upper channel wall through five slits which are oriented in the streamwise
direction. The streak spacing (λz) and the Reynolds number are in the following,
if not otherwise stated, fixed at 3.6h and 2000, respectively. This corresponds
to a spanwise wavenumber β = 2πh/λz=1.75. In the upper half of the channel
suction draws high momentum fluid toward the wall, resulting in a stationary
streaky structure which consists of alternating high and low velocity regions in the
spanwise direction. Figure 2 shows a contourplot of Ud in an xz-plane at y = 0.6
obtained with a relatively low suction flow rate for a Reynolds number of 2000.
At the given conditions ∆U reach a maximum value of about 0.4 after which the
streak amplitude decays. In this case breakdown does not occur. The development
of the streaky structures in this figure (i.e. first a rapid growth followed by a slow
decay) is similar to what is to be expected for a transiently growing disturbance.

The streamwise elongated structure gives rise to two types of inflectional ve-
locity profiles, one in the wall-normal direction at the centre of the low velocity



3 EXPERIMENTAL RESULTS 11

0 0.5 1
-1

-0.5

0

0.5

1

U

y
(a)

0 0.5 1
-1

-0.5

0

0.5

1

u
rms

 (%)

(b)

-6 -4 -2 0 2 4 6
0

0.5

1

U

(c)

-6 -4 -2 0 2 4 6
0

0.5

1

z
u rm

s (
%

)

(d)

Figure 3. Wall-normal profiles of (a) U and (b) urms at x = 45
for three different spanwise positions: ◦, z = 0; ×, z = −0.75; +,
z = −1.7. Solid line in (a) shows the parabolic profile. Spanwise
profiles at y = 0.63 of (c) U and (d) urms.

region and the other in the spanwise direction. This is illustrated in Figure 3
which shows velocity profiles obtained at the same Reynolds number as in the
previous figure but for a larger streak amplitude. Figure 3(a) and (b) shows wall-
normal profiles of U and urms respectively for three different spanwise positions.
The profiles with urms look similar at the different spanwise stations whereas the
U -profiles show a changing behaviour, which is clearly seen in the spanwise profile
displayed in Figure 3(c). One can further note that despite the fairly large ampli-
tude of the stationary disturbance structure (∆U ≈ 0.6), urms is only about 0.5%
[Figure 3(d)].

The initial growth of the streaky structures can be seen in Figure 4. The figure
shows the development of ∆U for small x at five different suction rates (giving
rise to maximum streak amplitudes in the range between 37% and 71%). For all
cases it seems that the initial growth of the amplitude is linear in x. This further
strenghten the hypothesis that the streaks are undergoing transient growth.

The overall evolution in the streamwise direction of ∆U and urms is plotted in
Figure 5(a,b), respectively. These figures contain the results from several suction
flow rates resulting in streak amplitudes of up to 78% of UCL. The data in the
figures represent the maxima in each cross-stream plane. The streak amplitude
displays a rapid growth followed by a slow decay, and as can be seen in Figure 5(b)
the value of urms remains constant with x for most initial streak amplitudes.
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However, for the two largest streak amplitudes urms shows a significant growth
for the most downstream positions. The threshold in the streak amplitude for a
growth of urms was found to be approximately 70% of UCL.

3.2 Secondary instability at unforced conditions. As observed in Figure 5(b)
the rms level starts to grow if the streak amplitude is high enough. Figure 6 shows
contour plots of Ud (a,c) and urms (b,d) for two Reynolds numbers (Re=2000 and
Re=2500). The contour lines for urms are plotted with logarithmic increments,
which for an exponentially growing disturbance would give rise to equal spacing
between neighbouring contours.

At Re=2000 [Figure 6(a,b)] the suction was set to get ∆Umax = 78%, which is
large enough to give rise to disturbance growth. The negative regions of the streaky
structure is quite persistent in the downstream direction whereas the positive
regions are less so. The rms distribution shows that the disturbances first are
observed in the region between the high and low speed regions. The spacings
of the logarithmic contour lines do show that the disturbance growth is close to
exponential.

Figure 6(c,d) show similar results for Re=2500 where the maximum streak
amplitude was 81% which results in transition to turbulence at the downstream
end of the channel. High values of urms can be observed at both sides of the low
velocity regions and the transition sets in earlier at regions with negative Ud than
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Figure 4. Initial transient growth of streak amplitude ∆U . Dif-
ferent symbols represent the variation in the initial streak ampli-
tude.
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Figure 5. Evolution of (a) streak amplitude ∆U and (b) urms for Re=2000.

for areas of positive Ud. For Re=2500 urms reach values of about 13% before
transition sets in at x ≈ 95.

In Figure 7 contours of various disturbance measures are shown in cross-stream
planes for two streamwise positions, x = 26 and x = 70. The top figures (a,f) shows
contours of the time average of the total velocity (U) whereas Figure 7(b,g) shows
Ud. From the figures it is observed that the effect of the suction applied at the
upper wall is concentrated to the upper channel half (y > 0). The urms (c,h) have
the largest values at regions which correspond to spanwise gradients of Ud, and at
x = 70 there is a clear two-peak structure in urms centred around each low velocity
region. To further investigate the relation between the positions of peaks in urms
and the time-averaged velocity field derivatives of U were calculated. Before the
derivatives were evaluated the measured velocity field was interpolated using cubic
splines. Contours of ∂U/∂z are shown in Figures 7(d,i) and the corresponding
gradients in the wall-normal direction, ∂U/∂y are shown in (e,j). When comparing
the absolute value of the gradients with the urms distributions it seems clear that
large time-dependent disturbances appear mainly at regions with large spanwise
gradients in the time-averaged field. However, one should note that the y-positions
for the maxima in urms and |∂U/∂z| are not identical.

Figure 8 shows a flow visualization picture of the flow in an xz-plane near the
upper wall of the channel. In the figure the flow is from left to right and the grid
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Figure 6. Contours of (a,c) perturbation velocity Ud and (b,d)
urms in an xz-plane at y = 0.63. (a,b) Onset of natural instability
for Re=2000 and (c,d) turbulent transition for Re=2500. Each
figure is based on measurements in a plane spanned by 11 stream-
wise and 61 spanwise positions. Contours are ±10%,±20%, . . .
for Ud, logarithmic 0.6%, 1%, 1.6%, 2.7%, . . . for urms. Negative
contours are dashed.

lines have a spacing of 50 mm in the streamwise direction. The most left-hand
side vertical line corresponds to x = 150 mm (≈ 37h) and the horizontal grid
line represents z = 0. Due to a circular brass-plug mounted in the lower glass
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Figure 7. Contours of (a,f) U , (b,g) Ud, (c,h) urms, (d,i)
spanwise- and (e,j) wall-normal velocity gradients in yz-planes
at (a-e) x = 26 and (f-j) x = 70 for the natural distur-
bance case. Each figure is based on measurements in a plane
spanned by 22 wall-normal and 31 spanwise positions. Con-
tours are 10%, 20%, . . . for U , ±6%,±12%, . . . for Ud, loga-
rithmic 0.6%, 1%, 1.6% for urms, ±0.5,±1, . . . for ∂U/∂z and
±0.15,±0.3, . . . for ∂U/∂y. Negative contours are dashed.

plate (used in a previous experiment), information is lacking in the region near
x = 300 mm.

The homogeneous smoke layer from the spanwise slit becomes concentrated
to four distinct smoke lines just downstream of the smoke slit and each of them
indicates the centre of a low speed region located in between the suction holes.
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Figure 8. Smoke visualization of the flow near the upper wall.
Smoke is accumulated in the low velocity regions. All positions
are expressed in mm.

Initially the streaks are fairly stable and show no distortion up to x ≈ 200 mm.
Around x = 220 mm the streaks start to oscillate in the spanwise direction and
breakdown sets in near x = 320 mm. It is clearly seen from the photograph that the
sinuous mode is the dominating one. An estimated streamwise wave length (λx) for
the streak oscillations is approximately 20 mm, which corresponds to a streamwise
wavenumber α = 2πh/λx ≈ 1.3. However, for the hot-wire measurements streak
breakdown is observed to take place further downstream. One explanation for this
might be that the small momentum inflow associated with the smoke introduction
make the transition to turbulence more rapid.

As discussed in the introduction, there are mainly two different secondary
instability modes: the anti-symmetric (or sinuous) and the symmetric (or varicose).
The flow visualization indicates the dominance of the sinuous mode, and in order
to further investigate which of the modes that will occur at unforced conditions
simultaneous measurements using two hot-wire probes were made. The left part of
Figure 9(a) shows time signals obtained simultaneously from two hot-wire probes,
which were positioned at two neighbouring peaks in urms (i. e. peaks on each side
of a low velocity region) as illustrated on the right hand side of the figure. As can
be seen the two signals are distinctly out of phase, indicating the dominance of
the anti-symmetric mode.

Figure 9(b) shows correlation coefficients obtained from measurements where
one of the hot-wire probes (positioned at y = 0.23 and z = −1.3) was traversed
in the streamwise direction while the other was fixed at x = 95 and z = −2.3.
From the calculated correlation coefficients it is found that the wave disturbance
is travelling with a phase velocity of approximately 67% of the laminar centreline
velocity.
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Figure 9. (a) Time-traces of simultaneous velocity fluctuations
at x = 95, y = 0.23 and: z=−2.3 (top), z=−1.3 (bottom). (b)
Correlation coefficient C between z = −2.3 (x = 95) and z = −1.3
(from top to bottom, x = 95, 97.5, 100, 102.5). Probe positions are
indicated in the contourplots of urms.
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In Figure 10 the results from FFT analysis are shown for two different streak
amplitudes. For each streak amplitude two power spectra are shown, one spectrum
obtained from measurements at the centre of a low velocity region and one from a
region with a large spanwise gradient. For the low streak amplitude [Figure 10(a)]
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Figure 10. Power spectra at streak-amplitudes ∆Umax of (a)
59% and (b) 78% of UCL taken at two z-positions correspond-
ing to spanwise high shear (top) and centre of low velocity region
(bottom) for natural case, x = 95, y = 0.2. (The figures to the
right show spanwise profiles of U in which the measurement po-
sitions are indicated.)

the spectra look similar to each other with most of the energy in low frequencies.
Figure 10(b) displays results for the case with a higher streak amplitude. A power
spectrum obtained in the region of high gradient (top) indicates a broad band
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peak centred at approximately 180 Hz and for the corresponding spectrum in the
low velocity region a second broad band peak is also observed around f=360 Hz.
The appearance of the second harmonic in the region with negative Ud further
indicates that the anti-symmetric mode is the preferred one.

It should be noted that the peak frequency depends not only on the streak
spacing but also on the streamwise position. An increase in x or a decrease in the
streak spacing results in a higher peak frequency. Since the spanwise velocity pro-
file shows a more narrow low velocity region downstream, the increasing frequency
in the two cases can probably be explained by an increase in |∂U/∂z|.

3.3 Secondary instability at forced conditions. In this section the secondary
instability operating on the streaks is triggered by phase-controlled periodic dis-
turbances, which were introduced through orifices downstream the slits producing
the streaky structures. The forcing station x = 27 is close to the streamwise
position where the streak amplitude reaches its maximum. Two different configu-
rations were used, one which utilizes a single earphone and another configuration
in which the use of two earphones allowed the direct forcing of both symmetric
and anti-symmetric modes.

3.3.1 Forcing conditions

At unforced conditions the maximum urms is known to appear in regions with
large spanwise gradients (section 3.2). In the case where the secondary instability
is directly triggered by the disturbance source in the downstream plug we investi-
gated at which spanwise position it was most efficient to apply the forcing. This
was done by rotating the two plugs to move one of the earphones over one spanwise
wavelength of U (from z = 0 to 3.6) while the response was measured with the
hot-wire probe at x=100. The results are displayed in Figure 11(a) which shows
urms obtained at two spanwise positions, one corresponding to a position close to
the position of strongest spanwise gradient and one the centre of a low velocity
region. The maximum urms occurs when the earphone is positioned at z = 1
or z = 2.4. When relating these z-positions to the spanwise U -profile shown in
Figure 11(b) it is clear that the optimum forcing position is where the spanwise
gradient is large. All results in the following with this streak spacing were obtained
with the earphones positioned at z = 1 and 2.4, and for the case when forcing with
a single earphone the one centred at z = 1 was used.

The dependence on the initial amplitude of the secondary disturbance is shown
in Figure 12(a), where the N -factor (ln(u/u0)) is plotted against the streamwise
coordinate for initial amplitudes ranging from urms=0.12% to 0.6%. It can be ob-
served that the growth rate is independent of the forcing for amplitudes displaying
exponential growth.
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Figure 11. (a) The dependence of urms on forcing positions in
the spanwise direction. The values of urms were measured at
x = 100, y = 0.27 and at fixed z-positions : ◦, spanwise high
shear; ×, low velocity region. (b) Spanwise profile of U at x = 26,
y = 0.63 (the x-position where the forcing is applied) is shown for
reference.

Figure 12(b) shows the dependence of the growth-rate, γ = N/(x1−x0), on the
streak amplitude for three different Reynolds numbers. The measurements were
all made using f=250 Hz and the growth rates were found from graphs similar to
Figure 12(a) where a line was fitted to the straight part in the region of exponential
growth between x0 = 36 and x1 = 69. The figure shows several interesting features.
First there exists a threshold in the streak amplitude of approximately 0.7 below
which all time periodic disturbances decay. Secondly it seems to exist a linear
relation between the streak amplitude and growth rate. Thirdly it is found that
the growth rate is independent of the Reynolds number. The implication of the
latter two features is clearly that the instability is of an inviscid, inflectional type.

The growth rate at different angular frequencies ω (=2πfh/UCL) is shown in
Figure 12(c). Also here the growth rate is obtained from measurements of the am-
plitude between x = 36 and 69, except for ω which showed negative growth where
the straight part was shorter. As can be seen a fairly wide range of frequencies
gives rise to a positive growth, however the most amplified frequency differs from
the frequency found to contain most energy in the unforced case (see §3.2). In
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Figure 12. (a) Amplitude growth (N = ln(u/u0), where u0 is
measured at x=36) for different forcing amplitudes. (b) The de-
pendence of γ on ∆Umax for three different Re: ◦, 2000; •, 2500;
∗, 2900. (c) The dependence of γ on forcing frequency ω. Growth
rates were determined between x=36 and x=69.

that case the frequency containing the most energy is a result from the combined
effect of the background spectrum and the streamwise variation of the growth rate
for the individual frequencies.

In the following a forcing amplitude of urms=0.24% was chosen which even-
tually resulted in turbulent transition inside the channel for a forcing frequency of
250 Hz and a streak amplitude ∆U = 78%.



22

3.3.2 Mode

The energy growth in the forcing frequency and its first harmonics is shown in
Figure 13(a-c) for the three types of forcing, i. e. one-earphone forcing and forcing
of the symmetric and the anti-symmetric modes with the use of two earphones.
In the figure, energy in a frequency component is defined as the square of the
normalized Fourier coefficient corresponding to that frequency, i. e. E = |ûf |2.
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Figure 13. Amplitude growth for different forcing modes, (a)
anti-symmetric, (b) symmetric, (c) one-earphone forcing : ◦, f1;
×, 2f1; ∗, 3f1; +, 4f1. Right figures show spanwise phase profiles.
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Measurements were made at the spanwise position where each frequency com-
ponent had its maximum value. The streak amplitude was the same for all cases.
However, one should note that the initial disturbance energy is not the same for the
one earphone forcing as for the forcing with two, since in both cases the earphones
were operated with the same voltage. Although the growth rates of higher har-
monics are relatively larger than that of the fundamental frequency, the amplitude
of the harmonics never exceed the fundamental one in the whole region.

For all three modes of forcing it is found that the anti-symmetric mode will
be detected further downstream and dominate up to the point of transition. This
is seen in the right part of Figure 13, where spanwise profiles of the phase for the
fundamental frequency are shown. The profiles have been measured at streamwise
positions just upstream of the position with the largest energy, and a phase shift
of 180◦ across the low velocity region is observed for all forcing cases.

One should emphasize that even in the case of a symmetric mode forcing
the energy growth is due to the evolution of the anti-symmetric mode. Even
though the total energy of the secondary disturbance is lower in the one earphone
case [Figure 13(c)] than for the symmetric forcing [Figure 13(b)] the forcing with
one earphone will result in earlier transition. This is probably due to an initial
suppression of the growth of the anti-symmetric mode by the symmetric forcing.

In the following only results from the use of a two earphone anti-symmetric
forcing will be described.

3.3.3 Higher harmonics

Contours of Ud and urms in cross-stream planes are plotted in Figure 14(a) and (b),
respectively. The figures show two low velocity streaks of the primary disturbance.
Forcing of the secondary instability is only applied to the streak centred at z = 1.7
whereas no direct forcing is applied to the streak centred at z = −1.9. When
comparing with the natural case as well as the unforced side in the present figures
it can be concluded that although the forcing enhances the growth of the instability
the basic structure has not been changed.

The maximum value of Ud decays slowly downstream while the maxima in
urms grow and appear at positions where |∂U/∂z| is large. The urms distribution
at x = 87 is characterized by a widened spacing at the centre of the channel
and a narrowed one near the upper channel wall, which seems to follow a similar
development of the unforced flow field.

At x = 106 the low velocity region on the upper side become unstable and
breaks down and it seems that new low velocity regions with corresponding high
values of urms appear near the upper channel wall between the original ones.
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To further illustrate the variation in frequency content with the spanwise po-
sition, Figure 15 shows time traces and spectra both from strong shear and low
velocity regions from measurements at two x-positions. Figures (a,c) show data
from a position with large gradients in the spanwise direction, whereas data in
(b,d) was obtained at the centre of regions with negative Ud. From the figures
the fundamental frequency (f1) is seen to dominate at the spanwise inflectional
point, and in the low velocity region the frequency band around the second har-
monic (2f1) has the largest amplitude. Also, the third harmonic (3f1) reach high
amplitude at the same positions as the fundamental and in the same way, the
distribution of the fourth harmonic is similar to the second harmonic.
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Figure 14. Contours of (a) Ud and (b) urms in yz-planes at x =
36, 58, 75, 87&106 (from top to bottom). Forcing with f1 = 250 Hz
at z = 1 and z = 2.4. Each figure is based on measurements
in a plane spanned by 22 y- and 61 z-positions. Contours are
±6%,±12%, . . . for Ud, logarithmic 0.67%, 1%, 1.5%, 2.2%, . . .
for urms. Negative contours are dashed.
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Further evidence for the relation between the frequency components is pre-
sented in Figure 16, which in addition to contours of Ud and urms shows urms
filtered around the forcing frequency and its higher harmonics. One can clearly
observe that the maxima corresponding to the odd modes (f1 and f3 = 3f1) occur
where the spanwise gradient of the mean velocity is large (g), whereas the maxima
of the even modes (f2 and f4) are connected to the centre of the low velocity region
(h).
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Figure 15. Time-traces and spectra at (a,b) x = 81 and
(c,d) x = 93. Spanwise positions correspond to (a,c) strong span-
wise shear and (b,d) the centre of the low velocity region at y =
0.2.

Figure 17 shows the same frequency decomposition as in the previous figure
but now in a streamwise-spanwise plane at y = 0.2. As in Figure 16 it is seen that
all maxima of the respective modes appear in the same regions (i. e. odd modes
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Figure 16. Contour plots in a yz-plane at x = 75 of: (a) Ud,
levels are ±6%,±12%, . . . ; (b,c) urms and urms,f1 , spacing is 1%;
(d) urms,2f1 , spacing is 0.2%; (e) urms,3f1 , spacing is 0.02%; (f)
urms,4f1 , spacing is 0.01%; (g,h) ∂U/∂z and ∂U/∂y, levels are
±0.3,±0.6, . . . The figures are based on measurements in a plane
spanned by 22 y- and 31 z-positions for a forcing with f1 = 250 Hz
at z = 1 and z = 2.4.

are related to the spanwise gradient and even modes are connected with the low
velocity regions).

Wall-normal profiles of urms at the fundamental frequency (urms,f1) and the
second harmonic (urms,2f1) are shown in Figure 18. These profiles were mea-
sured at spanwise positions corresponding to a region of strong spanwise gradient
(fundamental) and the centre of a low velocity region (second harmonic).

Initially the peak in urms,f1 is located around the position where |∂U/∂z|
is maximum (y ≈ 0.6). However, its amplitude decays downstream [as can also
be seen in Figure 13(c)], while the second maxima at the position close to the
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Figure 17. Contours of (a) Ud and (b) urms in an xz-plane at
y = 0.2, obtained for a forcing with f1 = 250 Hz at z = 1 and z =
2.4. Contours are ±10%,±20%, .. for Ud and 2%, 4%,.. for urms.
Three-dimensional plots of urms for the harmonic components:
(c), f1; (d), 2f1; (e), 3f1 and (f), 4f1. Each figure is based on
measurements in a plane spanned by 21 x- and 31 z-positions.

centreline (y ≈ 0.25) grows continuously. This maximum takes the place of the
largest one between the measuring stations at x = 34 and x = 41, and its y-
position moves closer to the centreline in the downstream direction. There is also
another peak which evolves in the lower channel half and at x = 93, in spite of
a much lower streak amplitude (less than 10%), this peak has reached almost the
same amplitude as the upper maximum.

For urms,2f1 the wall-normal distribution is initially uniform and a peak, lo-
cated near y = 0.1, appears first at x = 51. As for urms,f1 the peak position
moves closer to the centreline with increasing x. However, at x = 93 the largest
peak is observed closer to the channel wall (near y = 0.5, note that the scale is
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Figure 18. Wall-normal profiles of (a), urms,f1 and (b), urms,2f1

measured at z-positions corresponding to strong spanwise shear
and a low velocity region, respectively.

logarithmic). This can be explained with the distortion of the streaky structure
seen at x = 87 in Figure 14(b).

3.3.4 Instantaneous structure

Since controlled secondary disturbances were used, phase-averaged information
was easily obtained with the use of the reference signal from the function generator,
which makes it possible to describe the instantaneous structure.

Figure 19 shows contours of the phase-averaged disturbance velocity in zt-
planes obtained at four different streamwise positions. In the figure the time axes
are reversed so the flow is from left to right. The time-resolved data verifies the
existence of the wavy type instability (anti-symmetric mode). It is noteworthy that
there is a phase discrepancy between the centre and the side of the low velocity
region [seen in Figure 19(b)], which cause a subsequent deformation of the low
speed streak (x = 93) followed by breakdown (x = 112).

Figure 20 displays a time sequence of the total velocity in a yz-plane where
one period of the oscillation is shown at x=87, which is a streamwise position just
upstream of the streak breakdown. As can be seen the area with low velocity is
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Figure 19. Contours of the phase averaged velocity field with
the spanwise average subtracted. The zt-planes are measured at
y = 0.2 and: (a), x = 36; (b), x = 75; (c), x = 93; (d), x = 112
at 31 spanwise positions. The contour levels are ± 5%, ± 10%,..
with positive contours shown as dashed lines.
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Figure 20. Time sequence of the phase averaged velocity (U) in
a yz-plane at x = 87. The phase increases from top to bottom
and left to right by 1

4π. Each figure is based on measurements in
a plane spanned by 22 y- and 31 z-positions.The contour spacing
is 10%.
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confined to a narrow region and its top part oscillates with a larger amplitude
than the bottom part. Also, the oscillation of the top part precedes that of the
bottom part by less than π/2.
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Figure 21. Contours of the phase averaged velocity with U sub-
tracted. Measurements at x = 75 and: (a), z = 1.35; (b), z = 1.6;
(c), z = 1.85; (d), y = 0.03; (e), y = 0.28; (f), y = 0.59. The
contour levels are ± 1%, ± 2%,.. with negative contours shown
as dashed lines.

Figure 21 shows yt and zt-planes measured at x = 75. In these figures the
time averaged velocity have been subtracted, so that the phase relation can be
easily observed. The yt-planes are measured at three spanwise positions, where
(a) and (c) show positions with strong spanwise gradients on each side of the
centre of a low velocity region (b). When comparing the yt-planes from regions
of strong gradients the anti-symmetric mode is clearly recognized. Evidence for
this is also given in (b) where the second harmonic is found to dominate near
y = 0. The inclination of the instantaneous structure in Figure 21(a,c) is due
to the phase delay between the top and the bottom of the streak as discussed
above. Figure 21(d-f) show zt-planes from three y-positions in the upper half of
the channel. The phase difference between the centre and the side of the low
velocity region, that was earlier observed in Figure 19(b), is here seen in the form
of oblique regions in (e,f).
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Figure 22. Variation of the wall-normal phase distribution with
the x-position. ϕ is the change in phase relative to that observed
at y = 0.12 for: ×, x = 58; ◦, x = 75; ∗, x = 87. The measure-
ments were made at z = 1.83.

3.3.5 Phase velocity and wavenumber

Figure 22 shows that although there exists a phase difference between the top of
a streak and its bottom, that difference will neither increase nor decrease in the
x-direction, which means that the phase velocity is constant in the y-direction. To
determine the phase speed it is therefore sufficient to study the phase evolution
at a constant height. Figure 23(a) displays the results from measurements of the
phase evolution at y = 0.26 for different forcing frequencies, f , in the range from
150Hz to 350Hz. The phase velocity at a given frequency can then be determined
from the slope of the line with the streamwise evolution of the phase as,

c = 2πf
∆x
∆ϕ

. (4)

Figure 23(b) shows that the phase velocity has an almost constant value of 0.69
UCL which is near the values obtained at unforced conditions. As a reference, the
local velocities at peak urms positions are also plotted and they are found to be
in close correspondence with the phase velocity.

In Figure 24 the streamwise wavenumber α of the secondary instability is
plotted against the spanwise wavenumber β based on the streak wave length λz .
The streamwise wavenumber was calculated as

α =
2πfh
c

. (5)
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Figure 23. (a) Phase evolution for various forcing frequencies:
◦, 150 Hz; +, 200 Hz; ×, 250 Hz; ∗, 300 Hz; •, 350 Hz. (b)
Comparison between (◦) the phase velocity obtained from the
measurements of the phase evolution and (×) the local velocity
at positions corresponding to the peaks in the urms distribution.
The line represents c = 0.69.

Here, f is the frequency which yields the maximum growth rate for each λz and
it generally increases with a smaller λz , whereas the phase velocity c is constant.
Different spanwise wavenumbers are obtained by rotating the first plug at the
same time as the individual inserts are rotated to align the suction slits with the
x-axis. As can be seen an increase of β results in larger α, which is interpreted
as narrowing the streak spacing gives rise to a secondary instability of a shorter
wave length.



34

4 Summary and discussion

Growth of streaky structures, i.e. regions of low and high velocity, appear under
many circumstances in wall bounded shear flows, such as flows over concave sur-
faces, flows disturbed by localized roughness elements or free stream turbulence
of moderate amplitude etc. (see e.g. Alfredsson & Matsubara 1996). All these
flows may undergo a secondary instability in the form of travelling waves which
develop on top of the streaky stucture. These could be either varicose or sinuous
depending on the flow parameters. In the present study we have experimentally
investigated the secondary instability operating on streaks in plane Poiseuille flow
at subcritical Reynolds numbers. The streaks are introduced by constant suction
through narrow slits at one wall, making it possible to control both the initial
streak amplitude and their spanwise spacing. The secondary instability is found
to develop both under unforced and forced conditions and its characteristics have
been determined. The use of controlled forcing made it possible to determine the
instantaneous structure of the secondary instability as well as its growth rate and
phase speed.

The primary disturbance was introduced through suction through slits at the
wall and this gives rise to high velocity regions at the slits and low velocity regions
in between. The streaks are confined to the same side of the channel as where the
suction is applied. These regions were found to initially grow linearly in amplitude
whereupon they saturate and decay slowly. This is what is to be expected from
a transiently growing disturbance at subcritical Re which finally decays by the
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Figure 24. Relation between streamwise- and spanwise
wavenumbers. The indicated line is α = 0.70β + 0.087.
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action of viscosity (see e.g. Gustavsson 1991). Although the spanwise distribution
of the disturbance initially is close to sinuous, i.e. the low and high velocity regions
are equally wide, the disturbance deforms as it grows and the low velocity region
narrows. A similar narrowing was observed in curved channel flow by Matsson &
Alfredsson 1992 for the low velocity regions between the counter-rotating vortices
set up through a centrifugal instability.

In the present experiments a secondary instability was found to develop when
the streaks reached a certain (high) threshold amplitude. In case of Re = 2000,
β = 1.75 the threshold amplitude, measured as the velocity difference between
the high and low velocity regions, is approximately 70% of UCL. In the unforced
case the instability was first observed in the regions of strong shear in between
the low and high velocity streaks. The measurements also showed that the initial
growth of the rms level increased exponentially. Two-probe spatial correlations
also revealed that the instability was in the form of the wavy (anti-symmetric)
mode.

From the experiments using controlled forcing of the secondary instability, it
was clear that the sinuous mode was the dominating one. If the varicose mode was
forced it was damped and the sinuous mode started to grow instead. It was also
found that the growth rate of the sinuous mode initially is exponential and that
above the threshold the growth rate increased linearly with the streak amplitude.
The growth rate was also found to be independent of Reynolds number (within
the range 2000-2900). These findings strongly indicate that the instability is of an
inflectional nature.

Contour plots of urms as well as urms,f1 show a two peak structure and those
shapes are quite similar to that of |∂U/∂z|, implying the significance of the span-
wise velocity distribution. The wall-normal position where the largest maximum
of |∂U/∂z| appears is, however, much closer to the channel wall than that of urms.
In addition the phase velocity of the secondary instability (69% of UCL) does not
agree with the local velocity at the position of the maximum |∂U/∂z| (41% of
UCL), which indicates that the secondary instability is not directly driven by the
|∂U/∂z|-maxima. However to expect a direct correspondence between |∂U/∂z|
and the distribution of urms would be an oversimplification, since the basic flow
is strongly three-dimensional. It was also pointed out by Reddy et al. 1998 that a
normal shear in addition to the spanwise shear reduces the growth of this type of
instability. Since the normal shear is strongest close to the wall this may explain
why the disturbance distribution is located further from the wall.

The streak threshold amplitude for growth of secondary instability is around
70% of UCL. Similar amplitudes are found for streaks initiated by a centrifugal
instability in curved channel flow (see e.g. Matsson & Alfredsson 1992) or Coriolis
induced instabilities in rotating channel flow (Matsubara & Alfredsson 1997). Also
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the numerical study by Reddy et al. 1998 gives similar amplitudes for secondary
instability to occur.

A simple model of the instability may be obtained by assuming that the span-
wise velocity profile has a one-dimensional form written as ∆U cosβz. From the
stability analysis of this inviscid flow Waleffe 1995 gives the imaginary part of the
phase speed (∼growth rate) as1

ci = i
|α∆U |√

2

(
β2 − α2

β2 + α2

)1/2

(6)

A positive growth of the disturbance is, hence, obtained for 0 < α < β. In the
experiments it was found that the most amplified α was around 70% of β. It was
also found that for high enough frequency (i.e. α) the growth rate was negative.
If this frequency is converted to a wave number using the phase speed it was just
slightly larger than the spanwise wave number, thus supporting the analysis above.
In the DNS and linear stability analysis by Reddy et al. 1998 the maximum growth
rate occur when α is close to β.

Another streak instability occurs during the so called oblique transition sce-
nario (Schmid & Henningson 1992, Berlin, Lundbladh & Henningson 1994, Elof-
sson & Alfredsson 1995, 1998). During this scenario two oblique waves interact
to form zero frequency streaky structures , which increase in amplitude through
transient growth. Elofsson & Alfredsson 1998 showed that for high enough streak
amplitudes (≈40%) breakdown occurred. The lower threshold amplitude in that
case may be due to a higher noise level. For the oblique transition case this noise
comes in the form of the initial oblique waves (ω0,±β0) and their harmonics. An-
other plausible explanation for the lower threshold might be the fact that in the
oblique transition scenario the streaks are formed in both channel halves.

The numerical study of Berlin et al.1994 was made for a flat plate boundary
layer. In that case the secondary instability occurred in the form of the varicose
mode. If this was due to the spanwise wavelength of the primary disturbance or
because of another type of flow field is still an open question.
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