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Abstract

Passive scalar transport in turbulent 
ows is considered. The investigation is

made both through physical and numerical experiments. Velocity and tempera-

ture measurements have been performed in the self-preserving region of a heated

cylinder wake, for which the Reynolds number is higher than in earlier reported

studies. The numerical experiments consist of a direct numerical simulation of

a turbulent channel 
ow with an imposed mean scalar gradient. Also here the

present Reynolds number is higher than those of earlier reported studies where

spectral methods have been used. The present 
ow cases are used to extract and

analyze features of importance for the mathematical modelling of scalar trans-

port. The primary objective is to develop and analyze explicit algebraic models

for the passive scalar 
ux.

An algebraic relation for the scalar 
ux, in terms of mean 
ow quantities, is

formed by applying an equilibrium condition in the transport equations for the

normalized scalar 
ux. This modelling approach is analogous to explicit alge-

braic Reynolds-stress modelling (EARSM) for the Reynolds-stress anisotropies.

The assumption of negligible advection and di�usion of the normalized scalar 
ux

gives in general an implicit, non-linear set of algebraic equations. A method for

solving this implicit relation in a fully explicit form is proposed, where the term

causing the non-linearity, i:e: the scalar production to dissipation ratio, is con-

sidered and solved for separately. The non-linearity, in the algebraic equations

for the normalized scalar 
uxes, may be eliminated directly by incorporating

a non-linear term in the model of the pressure scalar-gradient correlation and

the destruction and thus results in a much simpler model for both two- and

three-dimensional mean 
ows. The proposed model of this type involves only

one model parameter. The performance of this model is investigated in three

di�erent 
ow situations. These are homogeneous shear 
ow with an imposed

mean scalar gradient, for which earlier published data are used, the turbulent

channel 
ow with an imposed mean scalar gradient and the 
ow �eld downstream

a heated cylinder. It is found to be possible to adjust the model parameter so

that good agreement is achieved for the scalar 
uxes in all these cases.

Descriptors: passive scalar, heated cylinder wake, turbulent channel 
ow, pres-

sure scalar-gradient correlation, explicit algebraic modelling, shear 
ows, equi-

librium, hot-wire anemometry, direct numerical simulations.



Preface

This thesis considers passive scalar transport in turbulent 
ows. The thesis is

based on the following papers.
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ux transport modelling in a heated cylinder wake' In-

ternational Journal of Heat and Fluid Flow 19, 556-562.

Paper 2. WIKSTR�OM, P. M. & JOHANSSON, A. V. 1998 `DNS and scalar-


ux transport modelling in a turbulent channel 
ow' In Proc. of Turbulent Heat

Transfer II, pp. 6-46{6-51, May 31-June 5, Manchester, UK.

Paper 3. WIKSTR�OM, P. M., WALLIN, S. & JOHANSSON, A. V. 1998

`Derivation and investigation of a new explicit algebraic model for the passive

scalar 
ux'. Submitted for publication.

Paper 4. WIKSTR�OM, P. M. & JOHANSSON, A. V. 1998 `On the modelling

of the transport equation for the passive scalar dissipation rate' 4th International

Symposium on Engineering Turbulence Modelling and Measurements, May 24-26

1999, Corsica, France.

Paper 5. WIKSTR�OM, P. M. 1998 `Velocity and temperature measurements

in the self-preserving region of a heated cylinder wake' TRITA-MEK, Technical

Report 1998:9, Dept. of Mechanics, KTH, Stockholm, Sweden.

The papers are here re-set in the present thesis format, and some minor correc-

tions have been made as compared to published versions.
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CHAPTER 1

Introduction

The word turbulence has lately become a fashionable expression to characterize

disorder and chaos in areas like politics and economy. A turbulent 
ow is also

characterized by disorder in the sense that it contains eddies of many di�erent

sizes, giving a 
ow �eld that 
uctuates rapidly in time and space. Due to its

great wealth of complexity, turbulence is one of the most challenging problems in

the �eld of classical physics. Some examples of turbulent 
ows are atmospheric


ows, predicted in a weather forecast, the 
ow around an aircraft and the wake

behind a submarine. In fact most 
ows in nature and engineering applications

are turbulent. Consequently there is a large demand for improved understanding

of turbulence and further development of di�erent tools to predict turbulent 
ow.

The nature of turbulence is clearly demonstrated by the smoke from a

cigarette which �rst moves straight upwards and then suddenly switches to a

more swirling turbulent motion. This phenomenon provides a visualization of

not only turbulence but also of the spreading of a passive scalar in a turbulent


ow. The characteristic feature of a passive scalar is that its concentration is

in
uenced by the turbulent motion, but does not itself in
uence the turbulent

motion. In contrast an active scalar, like temperature in the combustion 
ow of

your car engine, in
uences the turbulent velocity �eld quite strongly. In this case

the 
uid density is strongly a�ected by the temperature, whereas in the limit of

passive scalar behaviour the induced density variations are negligible. Examples

of passive scalar quantities are small amounts of heat, and pollutants in the at-

mospheric or ocean 
ows. The understanding and prediction of the transport of

passive scalars in turbulent 
ows is not only important for the �eld of passive

scalars itself, but may also be important in studies of cases with two-way in-

teraction, such as buoyancy-driven 
ows. The modelling approaches often used

for scalars in engineering applications like temperature in heat exchangers and

species concentration in combustion 
ows are very similar to those of a passive

scalar.

Another example of a visualization of a turbulent 
ow is the famous experi-

ment of Osborne Reynolds in 1880. He studied the 
ow of water in a glass tube

using ink as a passive marker. For low 
ow rates a steady streak of ink was

seen throughout the tube, but for higher 
ow rates, \the colour band would all

at once mix up with the surrounding water, and �ll the rest of the tube with a

mass of coloured water". In 1883 he published a paper presenting the discovery

1



of the important dimensionless number, the Reynolds number, quantifying the

onset of turbulence. This was a major breakthrough in the �eld of 
uid me-

chanics. Another important feature demonstrated, was that the mixing driven

by turbulence is far more powerful than that due to 
uctuations on a molecular

level in a laminar 
ow.

During the �rst half of the nineteenth century Stokes, and Navier, worked

with the equations describing the motion of the 
ow of a Newtonian 
uid. It was

in 1845 that these equations took the form that we today call the Navier-Stokes

equations. These equations are non-linear and can not be solved analytically for

turbulent 
ows. Today the Navier-Stokes equations may be solved numerically,

using direct numerical simulations (DNS), for fully turbulent 
ows of moderate

Reynolds numbers in simple geometries. See e:g: the land-mark paper of Kim

et al: (1987). Due to the non-linearity there is a transfer of turbulent kinetic

energy from larger scales to smaller scales, and this range of scales increases with

increasing Reynolds number. The resulting computational workload increases

approximately as the cube of the (macro-scale) Reynolds number. Despite the

rapid development of computers, this still leads to rather severe restrictions on

the range of Reynolds numbers tractable for this type of study. In many 
ow

situations experiments are still the only alternative to resolve the large range of

scales at high Reynolds numbers.

Historically, knowledge of the spreading of passive scalars in turbulent 
ows

was gained experimentally in wind-tunnel measurements. Heat transfer in grid-

generated isotropic and homogeneous turbulence was studied by Corrsin (1952),

Warhaft & Lumley (1978), Tavoularis & Corrsin (1981), and Sirivat & Warhaft

(1983). Among other things, the ratio of the thermal and dynamical timescales

was investigated. The signi�cance of this ratio in second-order modelling was

discussed by Newman et al: (1981). Early studies of turbulent heat transfer in

more complex geometries like the heated cylinder wake were made experimentally

by e:g: Townsend (1949), Freymuth & Uberoi (1971) and LaRue & Libby (1974).

On the request of Taylor (1932), pioneering measurements in the turbulent 
ow

of a heated cylinder wake were made by Fage & Falkner, where mean velocity

and mean temperature pro�les were determined (see appendix of Taylor, (1932)).

Recently direct numerical simulation has become a more and more e�cient

tool in turbulence research. Pioneering direct numerical simulations of turbulent


ows with imposed mean scalar gradients were performed by Rogers et al: (1986)

in a homogeneous shear 
ow, and by Kim & Moin (1989) in a turbulent channel


ow.

Statistical modelling of the Navier-Stokes equations, as well as of the conser-

vation equation of a passive scalar, is a very e�cient tool for prediction of high

Reynolds number 
ows. Here variances and other single-point correlations are

the quantities describing the turbulent �eld. The �rst scalar-
ux models were

much less sophisticated than many of those proposed today. The eddy-di�usivity



hypothesis, i:e: gradient-di�usion model, for the mean turbulent scalar 
uxes was

used by Prandtl (1910). He assumed a constant turbulent Prandtl number, i:e:

the ratio of the eddy viscosity and the eddy di�usivity. This constant was taken

to be unity, which implies equal turbulent di�usivities of heat and momentum.

The existence of an analogy between heat and momentum transfer in a 
uid was

�rst proposed by Reynolds (1874) as discussed by von K�arm�an (1939).

In later studies the two-equation model approach for passive scalars has been

developed, thus allowing variations of the turbulent Prandtl number. A tensor

eddy di�usivity proportional to the Reynolds stresses was introduced by Daly &

Harlow (1970). Using a tensor eddy di�usivity the scalar 
uxes are in general

not assumed to be aligned with the mean scalar gradient. In the seventies a large

e�ort began to be put into the development of transport-equation models for the

scalar 
uxes. This level of modelling, which is much more sophisticated than the

eddy-di�usivity approach, includes modelling the pressure scalar-gradient corre-

lation appearing in the transport equation for the scalar 
uxes. The modelling

of this term was studied early on by e:g: Launder (1975) who also introduced

the inclusion of rapid terms in this modelling. Recently there has been a large

interest in developing algebraic scalar-
ux models obtained from the transport

equations using some equilibrium assumption equivalent to that introduced by

Rodi (1972) and (1976). The explicit forms of these models are particularly at-

tractive since they lead to fewer numerical problems and reduced computational

e�orts compared to transport-equation modelling.

This thesis is a study of passive scalar transport in turbulent 
ows. The

investigation is performed both through experiments and direct numerical sim-

ulations. The measurements are made in a heated cylinder wake at a Reynolds

number higher than in previously reported experimental studies of this 
ow. The

direct numerical simulation is a study of turbulent channel 
ow with an imposed

mean scalar gradient. It has been carried out using spectral methods at the

highest reported Reynolds number to date in its category.

The investigated 
ow cases are used for analysis and development of statis-

tical modelling of passive scalar 
ux. A new explicit algebraic scalar-
ux model,

with a fairly simple formulation, is proposed together with a thorough analysis

of the modelling of the pressure scalar-gradient correlation.



CHAPTER 2

Basic equations

2.1. The velocity �eld

The governing equations for an incompressible turbulent 
ow of a viscous 
uid

are the Navier-Stokes equations and the continuity equation given by

@U 0

i

@t
+ U 0

l

@U 0

i

@xl
= �1

�

@P 0

@xi
+ �

@2U 0

i

@xl@xl
(1a)

@U 0

i

@xi
= 0 (1b)

where U 0

i is the total velocity �eld, P
0 is the total modi�ed pressure (which may

contain a gravitational potential), and � and � are the density and kinematic

viscosity of the 
uid respectively. The Reynolds decomposition U 0

i = Ui + ui,

P 0

i = P + p, where Ui and ui are the mean and 
uctuating parts of the veloc-

ity �eld and P and p are the mean and 
uctuating parts of the pressure �eld,

is applied here. In statistically stationary turbulence the mean value of a 
ow

variable can be taken as the time average. Generally an averaged quantity is the

ensemble average over an in�nite number of realizations. By inserting these de-

compositions into the Navier-Stokes equations and taking the ensemble average,

the Reynolds averaged Navier-Stokes equations (RANS) are obtained

@Ui

@t
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@Ui

@xl
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�

@P

@xi
+

@

@xl

�
�
@Ui

@xl
� uiul

�
(2a)

@Ui

@xi
= 0 (2b)

The quantity ��uiul is known as the Reynolds stress tensor and originates from

the non-linear advective term of (1a). It is due to this term that the so called

closure problem arises. This means that it is not possible to obtain a closed set

of equations, since every new introduced transport equation will contain higher-

order moments of the turbulent �eld.

The transport equations for the Reynolds stresses are given by

Duiuj
Dt

=� uiul
@Uj

@xl
� ujul

@Ui

@xl
+

p

�

�
@ui
@xj

+
@uj
@xi

�
� 2�
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@uj
@xl

� @

@xl

�
uiujul +

p

�
(ui�jl + uj�il)� �

@

@xl
(uiuj)

�
; (3)
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where the operator

D

Dt
=

@

@t
+ Ul

@

@xl
(4)

denotes the rate of change in a coordinate system following the mean velocity

�eld. The �rst two terms on the right hand side of (3) are production due

to mean �eld gradients. The next two terms are the traceless pressure-strain

correlation and viscous destruction (or the `homogeneous' dissipation rate). The

last term is a di�usion term containing both turbulent and molecular di�usion.

The �rst two terms inside the parenthesis of the di�usion term is the turbulent

transport 
ux and the divergence of this 
ux is the rate of spatial redistribution

among the di�erent Reynolds stress components due to inhomogeneities in the


ow �eld.

The transport equation for the kinetic energy, K � 1
2uiui, is

DK

Dt
= PK � "+D(K); (5)

where

PK = �uiul @Ui

@xl
; and " = �� @ui

@xl

@ui
@xl

: (6)

The quantity PK is the turbulent energy production, which describes the en-

ergy transfer between the mean and the 
uctuating velocity �elds, and " is the

`homogeneous' dissipation rate of K. The quantity D(K), given by

D(K) =
@

@xl

�
�
@K

@xl
� 1

2
uiuiul � p

�
ul

�
; (7)

is the sum of molecular and turbulent di�usion of K. The transport equation for

the dissipation rate " is given by

D"

Dt
=

@

@xj
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�
@"
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@uj
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@xj@xk
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@xj@xk

; (8)

where "0 = � @ui
@xl

@ui
@xl

. The �rst term on the right hand side of (8) consists of

molecular and turbulent di�usion. The second term is a turbulent production

term which represents stretching of the velocity �eld through the 
uctuating ve-

locity gradients (vortex stretching). The three following terms are mean gradient

production terms and the last term is a viscous destruction term.

2.2. The scalar �eld

The governing equations for a passive scalar have many similarities to those of

the velocity �eld of an incompressible 
ow of a viscous 
uid. The conservation



equation of a passive scalar is given by

@�0

@t
+ U 0

l

@�0

@xl
= �

@2�0

@xl@xl
; (9)

where � is the molecular di�usivity. It is very similar to (1a) except for the

pressure term. There is thus no direct coupling between the scalar �eld and the

pressure �eld. For the passive scalar the coupling to the pressure �eld comes

through the velocity �eld.

In analogy with the Reynolds decomposition of the velocity �eld the instan-

taneous scalar �eld may be divided into a mean part and a 
uctuating part,

�0 = �+ �. The transport equation of the mean scalar is obtained by inserting

this decomposition into (9) and taking the ensemble average, which then gives

@�

@t
+ Ul

@�

@xl
=

@

@xl

�
�
@�

@xl
� ul�

�
: (10)

The scalar-
ux term, ui�, or Reynolds-
ux term in analogy with the Reynolds

stress, is due to the non-linear advection term in (9) and leaves (10) unclosed.

The transport equation for the scalar 
ux is given by

Dui�

Dt
=� uiul
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@xl
� ul�
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@xl
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); (11)

which is similar to that for the Reynolds stresses. The right hand side of the

transport equation (11) contains two production terms due to mean �eld gradi-

ents, a pressure scalar-gradient correlation term, viscous and di�usive destruction

and a transport term consisting of turbulent and molecular di�usion.

The transport equation for half the scalar variance, K� � 1
2�

2, a quantity

corresponding to the turbulent kinetic energy, is obtained by multiplying (9) with

the 
uctuating scalar � and then taking the ensemble average of the resulting

equation. This yields

DK�

Dt
= P� � "� +D(K�); (12)

where

P� = �ui� @�
@xi

; and "� = �
@�

@xk

@�

@xk
(13)

are the production, which is due to the mean scalar gradient, and the dissipation

rate of K�. The quantity D(K�), which is the sum of molecular and turbulent

di�usion of K�, is given by

D(K�) =
@

@xj

�
�
@K�

@xj
� 1

2
uj�2

�
(14)



As in the previous equations for the scalar �eld the transport equation for the

scalar dissipation rate "� contains terms which are quite similar to those in the

corresponding transport equation for the velocity �eld. It reads

D"�
Dt

=
@

@xj
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�
@"�
@xj

� uj"0�
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� 2�

@uj
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where "0� = � @�
@xk

@�
@xk

. The �rst term on the right hand side of (15) consists of

molecular and turbulent di�usion. The second term is a turbulent production

term which represents stretching of the scalar �eld through the 
uctuating ve-

locity gradients. The three following terms are mean gradient production terms

and the last term is a di�usive destruction term.

2.3. Di�erent levels of modelling

The objective of scalar-
ux modelling is to close equation (10). This closure may

for example be a simple eddy-di�usivity hypothesis, in analogy with the eddy-

viscosity hypothesis for the Reynolds stresses, or may consist of several additional

transport equations. The modelling level for the Reynolds 
uxes should not be

higher than that of the Reynolds stresses, since the scalar transport predictions

rely heavily on the velocity �eld description (including its turbulence statistics,

see So et al. [44]). In the following di�erent levels in the hierarchy of modelling

of passive scalar 
ux are discussed.

2.3.1. Transport equation modelling. In transport-equation modelling,

of the passive scalar 
ux, the transport equations for K�, its destruction rate, "�,

and the passive scalar 
ux, ui�, are modelled. The model for the scalar 
uxes is

then of the form

Dui�

Dt
= F

(TRANS)
i

�
umun;

@Um

@xn
; um�;

@�

@xm
;K;K�; "; "�

�
(16)

The �rst two, K�, "�, are needed to estimate the decay-timescale ratio, r �
K�"=K"�, for the passive scalar. Information about the scalar timescale, K�="�,

may be particularly important in situations where it di�ers signi�cantly from the

dynamical timescale K=". The set of transport equations is solved together with

modelled transport equations for the Reynolds stresses, or uiuj , and the dissi-

pation rate of the turbulent kinetic energy, ". This level of modelling captures a

large part of the relevant phenomena involved in engineering 
ows, but leads in

complicated geometries with three-dimensional mean 
ows to sixteen transport

equations. Of these equations six are from the scalar �eld; (10), (11) (i:e: three

equations), (12) and (15).



The transport equation (11) for the scalar 
ux may be written in symbolic

form as

Dui�

Dt
= P�i +��i � "�i +Di; (17)

where P�i, ��i, "�i, and Di are the production, pressure scalar-gradient correla-

tion, destruction and di�usion terms respectively. Here it is seen that the con-

struction of the relation (16) involves modelling of the pressure scalar-gradient

correlation and the molecular destruction terms, as well as the the turbulent dif-

fusion terms. Several models for the pressure scalar-gradient correlation (often

also including the destruction term) have been reported in the literature. Since

the pressure itself may be divided into a slow and a rapid part this is also the

case for ��i. From the Poisson equation for the pressure it may be seen that

the rapid terms involve the mean velocity gradients linearly, see e:g: Shih [41]

and Launder [25]. The model of Launder [24], which contains both a rapid and

a slow term, is

��i = �c�1 1
�
ui� + c�2uj�

@Ui

@xj
; (18)

where the timescale � was taken as the dynamical timescale (in Launder [25] it

was suggested that both the dynamical and thermal timescales are important)

and the model parameters c�1 and c�2 were assigned constant values of 3.2 and

0.5 respectively. In the model of Rogers et al: [38] only the slow part, i:e:

the c�1 term, was included, whereas a Reynolds number and a Prandtl number

dependence was included in the c�1 parameter. Several additional terms for both

the slow and rapid parts are included in the models of Craft & Launder [8] (14

terms) and [9] (12 terms). A model commonly adopted for the di�usion term is

the gradient-di�usion model proposed by Daly & Harlow [10], which is given by

Di =
@

@xk

�
c�
k

"
ukul

@ui�

@xl

�
: (19)

The modelling of the pressure scalar-gradient correlation and the molecular de-

struction terms is investigated in Paper 1 [54], Paper 2 [55] and Paper 3 [56],

and modelling of the turbulent di�usion terms, is brie
y investigated in Paper 1.

2.3.2. Explicit algebraic scalar-
ux modelling. Through approxima-

tion of the modelled transport equation of the scalar 
ux an algebraic scalar-
ux

model, that still contains a considerable part of the underlying physics, may

be obtained. There is a great interest in algebraic scalar-
ux models which are

obtained from the transport equations using some equilibrium assumption equiv-

alent to that used to formulate algebraic Reynolds-stress models (ARSM), see

e:g. Adumitroaie et al. [3], Girimaji & Balachandar [14], Abe et al. [2], Shabany

& Durbin [40], Shih & Lumley [42] and Shih [41]. The scalar-
ux model is then



of the form

ui� = F
(ARFM)
i

�
umun;

@Um

@xn
; um�;

@�

@xm
;K;K�; "; "�

�
: (20)

The equilibrium assumption excludes the di�usion terms, whereas models of

the pressure scalar-gradient correlation and molecular destruction terms are still

needed, just as in transport-equation modelling. The explicit forms of these

algebraic models are attractive since they lead to fewer numerical problems and

reduced computational e�orts compared to full second-order closures. To be able

to construct explicit forms, the model for the pressure scalar-gradient correlation

and the destruction, ��i�"�i, has to be linear in the scalar-
ux except for a non-
linearity identical to that appearing when applying the equilibrium assumption

to the transport equation for the normalized scalar 
uxes, see Chapter 5 and

Paper 3. An EARFM can be written in the following symbolic form

ui� = F
(EARFM)
i

�
umun;

@Um

@xn
;
@�

@xm
;K;K�; "; "�

�
: (21)

In Paper 3 a new explicit algebraic Reynolds-
ux model is presented. The

modelling approach for the Reynolds 
uxes, ui�, is analogous to that of an

EARSM (explicit algebraic Reynolds-stress model) for the Reynolds stresses, see

e:g:Wallin & Johansson, [50] and [51], Gatski & Speziale [13] or Taulbee [46]. In

Chapter 5 explicit algebraic modelling is discussed in more detail together with

a presentation of the EARFM of Paper 3.

2.3.3. Eddy-di�usivity models. In an eddy-di�usivity model for the pas-

sive scalar �eld the the scalar 
uxes are approximated by

ui� = ��t @�
@xi

; (22)

where �t is the eddy di�usivity. This is analogous to the classical Boussinesq

approximation or eddy-viscosity hypothesis for the Reynolds stresses,

uiuj = ��t
�
@Ui

@xj
+
@Uj

@xi

�
+
2

3
K�ij ; (23)

where �t is the eddy viscosity. In a two-equation level of modelling the eddy

di�usivity is obtained from

�t =
�t

Prt(r)
; (24)

where the turbulent Prandtl number (or Schmidt number) can be modelled as

a function of the timescale ratio, r. At this level of modelling it is therefore

necessary to solve for the equations for K� and "�. Signi�cant progress in this

type of modelling has been made by e:g:, Nagano & Kim [28], Nagano et al: [29],

Yossef et al: [59] and Abe et al: [1].

At a zero-equation level of modelling the turbulent Prandtl number, or equiv-

alently the timescale ratio, r, is assumed to be constant and no further equations

are needed. A computation of 
ow and heat transfer through rotating ribbed



passages was recently made by Iacovides [15] using a zero-equation model for the

heat 
uxes combined with a two-equation eddy-viscosity model and a transport-

equation model for the Reynolds stresses.

Whether it is a two-equation model or a zero-equation model, the eddy

di�usivity approach, using a scalar eddy di�usivity, is unable to always predict

realistic values of all components of ui�, since it assumes that the scalar 
ux is

aligned with the mean scalar gradient. See for example Wikstr�om et: al [53] and

Paper 5 [58], where the streamwise heat 
ux, u�, in the heated cylinder wake

then is predicted to be zero. In reality, u�, and the cross-stream heat 
ux, v�,

are both non-zero and of the same magnitude.



CHAPTER 3

Measurements in a heated cylinder wake

In this study the 
ow behind an electrically heated circular cylinder, placed hor-

izontally in a wind tunnel, is considered. The cylinder length to diameter ratio is

high enough for the 
ow to be considered two-dimensional. Also, the velocity is

high enough and the heating is low enough for buoyancy e�ects to be negligible.

A sketch of the resulting 
ow situation is presented in Fig. 3.1. The velocity

de�cit, Us, and the temperature excess, �s, at the centerline, decrease in the

streamwise direction, whereas the mean velocity-defect half width, l, increases.

The wake pro�les thus spread out in the cross-stream direction with increasing

distance from the cylinder. The temperature 
uctuations are convected down-

stream along a mean stream line. These 
uctuations are produced due to 
ow

instabilities, decay due to thermal dissipation and redistributed by di�usion.

The 
ow behind a heated circular cylinder has been studied experimentally

by several investigators previously. The pioneering work of Townsend (1949)

included measurements of transport of heat at di�erent downstream positions.

With the evolution of digital computers in the seventies, as well as the improve-

ment of experimental techniques, experiments became a more e�cient tool to

analyze turbulent 
ows. Thorough investigations of the heated cylinder wake

were made experimentally by Freymuth & Uberoi [12], Fabris [11] and Browne

& Antonia [6] and Antonia & Browne [4]. The Reynolds number based on

the freestream velocity and the cylinder diameter, and the downstream posi-

tion, (Re, x=d), were (960,1140) in the measurements of Freymuth & Uberoi,

(2700,400) in those of Fabris, and (1170,420) in the experiments by Browne &

Antonia and Antonia & Browne, respectively.

The concept of self-similarity is very useful when analyzing turbulent shear


ows like wakes, jets and mixing layers. This means that the evolution of the


ow may be determined using only local scales of length and velocity. In the

experiments by Townsend [49] the normal stresses and the shear stresses were

found to reach a self-similar state for x=d of approximately 500 and larger. In

later work self-similarity has been found to prevail at somewhat smaller distances

from the cylinder. Freymuth & Uberoi [12] found the distributions of mean and


uctuating temperatures to be self-similar for x=d larger than approximately

100, and in the experiments by Aronson and L�ofdahl [5] the distributions of the

mean velocity and Reynolds stresses were self-similar for x=d of about 200 and

more.

11



U0

U0

U

x

y

u

v

l
���0

g

Figure 3.1 The mean velocity and mean temperature pro�les in

a wake behind a heated circular cylinder, where Us = U0 � Umin,

�s = �max ��0 and l is the mean velocity-de�cit half width.

3.1. Experimental procedure

The MTL wind tunnel, at KTH, Stockholm, with a 7.0 m long test section of

1.2�0.8 m2 cross section and a free stream turbulence level less than 0.05% was

used in the experiments. A picture of the MTL wind tunnel is given in Fig. 3.2.

The diameter of the horizontal wake-generating cylinder was 6.4 mm and all

the measurements were made at a velocity, U0, of 10.1 m/s giving a maximum

mean velocity de�cit of 0.5 m/s at x=d = 400. The present Reynolds number,

U0d=� = 4300, is about three times higher than that of Browne & Antonia [6].

The cylinder was electrically heated giving a maximummean temperature excess,

�s, of 0.8
�C above the ambient air temperature at x=d = 400. Measurements

were made at the following four di�erent downstream positions: x=d = 200, 400,

600 and 800.

Simultaneous measurements of velocity and temperature statistics were made

using a three-wire probe con�guration (in-house construction) consisting of an

X-probe, with platinum wire sensors, for velocity measurements and a single

cold platinum wire for temperature measurements, located 0.5 mm in front of

the X-wire mid point. The hot wires had a length of 0.5 mm and a diameter of



Figure 3.2 The MTL wind tunnel circuit.

2.5 �m and were operated with an overheat ratio of about 50%. The correspond-

ing dimensions for the cold wire were 1.0 mm and 0.63 �m and it was operated

at a constant current of 0.3 mA. This current is low enough to ensure negligible

overheating of the wire thereby ensuring negligible sensitivity to velocity 
uctu-

ations. As analyzed in Paper 5, the length to diameter ratio of cold wires needs

to be several times larger than typical values used for hot-wires. These ratios

are here chosen to be about 1600 and 200, respectively.

An angular calibration procedure, using a Pitot tube, was carried out for the

X-probe. Third order polynomials were �tted to the calibration data, covering

the range of velocities and 
ow angles occurring during measurements in the

wake. The cold wire was calibrated against an NTC-resistor (a thermistor) using

4 di�erent heatings of the cylinder, giving a temperature span of about 1 �C.

During measurements the probe was traversed by an automated procedure

controlling the traversing system. At each point 3�1024�200 samples of voltages
from the constant temperature and constant current circuits were �ltered at

5 kHz and sampled at 10 kHz. The data were then saved on a CD-Recordable

disc for later postprocessing.

Cross-stream derivatives of measured quantities were obtained by using cubic-

spline smoothing of the data. Derivatives in the streamwise direction, needed to

determine advective terms, were obtained by assuming self-similarity.

3.2. Results

The streamwise variations of the maximum velocity defect, Us, the maximum

temperature excess, �s, and the velocity-defect half-width, l, are in good agree-

ment with those of Browne & Antonia [6], (Wikstr�om et al. [53] and Paper 5).

The distributions of mean velocity and mean temperature reach self-similarity

at about x=d = 200, while second-order moments, like uv and v�, reach self-

similarity at an x=d of approximately 400.



In Paper 1 budgets for the scalar 
uxes are presented. Here it is found

that the pressure scalar-gradient correlation is as large as the production terms.

Estimates of the destruction terms indicate that these are quite small compared

to the pressure scalar-gradient correlation. This is in agreement with the DNS

data of Overholt & Pope [31], for which the destruction terms in the scalar-


ux budget are shown to be negligible at high enough Reynolds numbers. The

turbulent di�usion terms are signi�cant in the present wake 
ow, whereas the

molecular di�usion terms are negligible.

In Paper 1 and Paper 3 the modelling of the sum of the pressure scalar-

gradient correlation and the destruction terms is analyzed using the present

experimental data. It is found that it is important to include a mixture of

both the thermal timescale, K�="�, and the dynamical timescale, K=", in the

modelling of the slow part. The timescale ratio, r, shows a quite large variation

through the wake. An assumption of a constant r or a turbulent Prandtl number,

Prt, is thus not appropriate here.

The in
uence of rapid terms is studied in Paper 1, where a clear in
uence

of these terms is found. In a more general context it is found di�cult to obtain

a modelling of the rapid part that can give an improvement in a wide class of


ows. By using the test cases of homogeneous turbulent shear 
ow, channel 
ow

and the heated cylinder wake it can be concluded that a more primary in
uence

is that of the timescale ratio, and to some extent the mean temperature gradient

on the coe�cient of the `slow' term (see Paper 3).

In Paper 1 modelling of the triple correlations uiuj� is also investigated.

These are needed to determine the turbulent di�usion term in the transport

equation of the scalar 
uxes. Here it is found that when using the truncated Shih

[41] model, only two of the terms may give approximately as good predictions

as those of a model including all nine terms. When only using a Daly & Harlow

type gradient-di�usion model, the w2� component may not be captured in the

present 
ow case.

The scalar 
uxes are presented in Chapter 5 and the heated cylinder wake

is one of the test cases for the explicit algebraic Reynolds-
ux model presented

in Paper 3 and (more brie
y) in Chapter 5.



CHAPTER 4

DNS of a turbulent channel 
ow

Direct numerical simulations of plane turbulent channel 
ows with imposed mean

scalar gradients have been performed by several investigators previously. In the

simulations of Kim & Moin [22] the Reynolds number, Re� , based on the friction

velocity, u� , and the channel half width, �, is 180 and the Prandtl numbers used

are 0.1, 0.71 and 2. Two di�erent types of boundary conditions are studied.

In the �rst case the scalar is generated internally and removed from isothermal

walls with the same temperature (or scalar concentration). For the second case

the isothermal boundary condition is applied with walls of di�erent temperature,

which means that the passive scalar is introduced at one wall and removed from

the other. Pro�les of the mean scalar, the scalar variance and the scalar 
uxes

are presented for the �rst case, while for the latter case data is presented through

studies of turbulent structures for the scalar �eld.

Kasagi et al: [17] and Kasagi & Ohtsubo [18] have performed direct numerical

simulations of turbulent channel 
ows with Re� = 150 and Prandtl numbers of

0.71 and 0.025, respectively. In these cases the iso-
ux boundary condition is

applied on the two walls so that the local mean temperature increases linearly in

the streamwise direction. Detailed budgets for the scalar variance, its dissipation

rate and the scalar 
uxes are presented in these cases.

In the channel-
ow DNS of Kawamura et al: [19] Re� is 180 and Prandtl

numbers in the range 0.025-5 are studied. In that of Kawamura & Abe [20] Re�
is 180 and 395 and Prandtl numbers of 0.025, 0.2 and 0.71 are used. Also in these

studies the iso-
ux boundary condition is applied and detailed budgets for the

scalar variance, its dissipation rate and the scalar 
uxes are presented. A Prandtl

number of 5 and a Reynolds number Re� of 395 are the highest values for which

data have been published. The numerical method used by Kawamura et al: and

Kawamura & Abe is a �nite-di�erence method, whereas Kim &Moin [22], Kasagi

et al: [17] and Kasagi & Ohtsubo [18] use spectral methods. Spectral methods

have a higher accuracy than �nite-di�erence methods, whereas the latter have

the advantage of being more easily applied to complex geometries.

4.1. Numerical method

The numerical code used for the direct numerical simulation presented in this

thesis is based on the channel-
ow code of Lundbladh et al: [26], which has been

extended to also compute the evolution of a passive scalar �eld. It is similar to
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that of Kim & Moin [22], Kasagi et al: [17] and Kasagi & Ohtsubo [18]. The

present simulation code uses spectral methods, with Fourier representation in

the streamwise (x) and spanwise (z) directions, and Chebyshev polynomials in

the wall-normal (y) direction. Time integration is carried out using the Crank-

Nicolson scheme for viscous terms and a four-stage Runge-Kutta scheme for the

nonlinear terms.

The equations that are solved for the velocity �eld are the normal velocity

equation and the normal vorticity equation. It is su�cient to calculate these two

components since the other velocity components may be obtained from the in-

compressibility constraint and from the de�nition of the normal vorticity. Using

this solution procedure the pressure is eliminated from the equations and the

number of variables to be solved for is reduced from four to two. Including the

passive scalar, the total number of variables that are solved for are thus three.

The equation for the total normal vorticity �eld is given by

@!

@t
= h! +

1

Re

@2!

@xl@xl
(25)

and that for the total scalar �eld is

@�0

@t
= h� +

1

PrRe

@2�0

@xl@xl
: (26)

These equations are identical except for the nonlinear terms h! and h�, and

the molecular Prandtl number (or Schmidt number) appearing in (26). The

nonlinear term h� is given by

h� = �U 0

l

@�0

@xl
(27)

The solution procedure applied to the conservation equation (26) is identical to

that of the normal vorticity equation, (25), except for the boundary conditions.

4.2. Numerical procedure

The present direct numerical simulation of a turbulent channel 
ow with a pas-

sive scalar has a friction Reynolds number, Re� , of 265, a Reynolds number

based on the centerline mean velocity and the channel half width of 4800, and a

Prandtl number (or Schmidt number) of 0.71. The simulations were performed

on a Cray-J932 using a number of processors in parallel, which signi�cantly re-

duced the computation time. The present Reynolds number is the highest for

which data of a turbulent channel 
ow with an imposed mean scalar gradient,

obtained by using a spectral code, has been reported in the literature. The

computational domain is 12.56�, 2�, 5.5� in the streamwise, wall-normal and

spanwise directions respectively and the number of grid points is 256�193�192.
This gives a resolution in the x-, y- and z-directions of 13.0, 2.7(on average) and

7.6 wall units respectively.
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Figure 4.1 Left: The mean scalar distribution, �+, in wall units

throughout the channel. Right: The rms of the 
uctuating scalar,p
�+2, in wall units throughout the channel.

The passive scalar, e:g: temperature, at each wall is kept constant with a

higher temperature on the upper wall. This boundary condition represents a

case in which the passive scalar is introduced at the upper wall and removed

from the lower wall. This type of boundary condition, for which the resulting

mean scalar pro�le in the channel becomes antisymmetric, has also been used by

e:g: Kim & Moin [22], Na et al: [27] and Kawamura (private communication). In

Fig. 4.1 the mean scalar pro�le and the rms of the 
uctuating scalar are given

in wall units throughout the channel. These pro�les are quite di�erent from

those obtained using the iso-
ux boundary condition or those obtained with an

internal source term and isothermal walls of equal temperature. In these two

latter cases the mean scalar pro�le is symmetric, giving zero production at the

centerline, and the rms pro�le has a local minimum in the center of the channel,

i:e: a shape more similar to that of the kinetic energy. The local maximum near

the wall becomes more pronounced with increasing Prandtl number in the cases

studied by e:g: Kawamura et al. [19] and Kawamura & Abe [20].

4.3. The mean passive scalar pro�le

Fig. 4.2 shows the dimensionless mean scalar distribution, �+ � �+
wall, in wall

units. For y+ < 5 this is given by Pr y+ corresponding to the viscous sublayer

pro�le, U+ = y+, for the mean velocity. In Fig.4.3 it is seen that there is a small

region in which the slope of �+ ��+
wall is constant in the semi-log plot, i:e

�+ ��+
wall =

1

��
ln y+ +B�; (28)

where �� is the von K�arm�an constant. The von K�arm�an constant value, 0.33, is

close to values obtained previously by Kasagi et al. [17] (0.36 with Re� = 150,

Pr = 0:71) and Kawamura (private communication, about 0.3 with Re� = 150,

Pr = 0:71). Both these previous results were obtained with an iso-
ux boundary
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Figure 4.2 The dimensionless mean scalar distribution in wall units.
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Figure 4.3 The von K�arm�an constant �� = 1= @�
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condition, whereas the isothermal boundary condition is applied here. The ��
value should be compared to the velocity-pro�le related von K�arm�an constant

which is 0.41. The additive constant B� is here 0.95. The Nusselt number, given

by Nu = 2h�=k, where h is the heat transfer coe�cient and k is the thermal

conductivity, is 17.4.

4.4. Results

In Paper 2 the budgets for the scalar 
uxes from the present DNS data are

presented. For both 
ux components there is an approximate balance between
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pressure scalar-gradient correlation and production except in the near-wall re-

gion. In the central parts of the channel the destruction is negligible, which was

also found to be the case in the DNS of isotropic turbulence with an imposed

mean scalar gradient by Overholt & Pope [31], at high enough Reynolds num-

bers. The budget for the streamwise scalar 
ux, u�, is very similar throughout

the channel to that of Kasagi et al: [17], using Pr = 0:71 and the iso-
ux bound-

ary condition. The budget for the wall-normal scalar 
ux, v�, is however quite

di�erent in the central parts of the channel, since in this region the production,

the turbulent di�usion, the pressure scalar-gradient correlation and the pressure

di�usion are all non-zero in the present case. In Papers 2 and 3 the modelling

of the sum of the pressure scalar-gradient correlation and destruction terms ap-

pearing in the Reynolds-
ux transport equation is considered using the present

DNS data. It is concluded that the pressure scalar-gradient correlation, as in the

cylinder wake case, plays an important role in the budget. This data set is also

one of the test cases for the explicit algebraic Reynolds-
ux model presented in

Paper 3 and (more brie
y) in Chapter 5, where the scalar 
uxes are shown.

In Paper 4 [57] the budgets of the scalar variance, �2, and the dissipation

rate of half the scalar variance, "�, are presented. For the scalar variance budget

there is an approximate balance between production and dissipation except in

the near-wall region. Both the turbulent di�usion and the molecular di�usion

terms are negligible except near the wall. At the wall there is a balance between



molecular di�usion and dissipation. This budget is similar to that of Kasagi

et al: [17], Kawamura et al: [19] and Kawamura & Abe [20], except in the center

of the channel where the production and dissipation are non-zero for the present

case. The di�erence, between applying the present boundary condition and the

iso-
ux boundary condition, is thus that the production and dissipation terms

do not approach zero as the center of the channel is approached. In Kawamura

& Abe [20] it is seen that the production and dissipation terms in this budget

both increase for increasing Reynolds numbers.

The present "� budget, presented in Fig.4.4, is also similar to that of Kasagi

et al: [17] in the near wall region. In the central parts there is an approximate

balance between turbulent (vortex stretching) production and di�usive destruc-

tion, whereas the rest of the terms are negligible in comparison with these. For

modelling purposes these two are lumped together into a destruction term, which

means that in this context the leading order contributions in the budget are es-

sentially cancelled out. As in the scalar variance budget, the production and

destruction terms are non zero at the centerline. In Paper 4 the modelling of the

transport equation of the scalar dissipation rate is considered using the present

DNS data and comparisons are made with the models of Sanders & G�okalp [39]

and Yoshisawa [60].



CHAPTER 5

Explicit algebraic scalar-
ux modelling

Explicit algebraic scalar-
ux models that are derived from second-order closure

models have been developed by several investigators previously. These models

are attractive since they lead to fewer numerical problems and reduced com-

putational e�orts compared to full second-order closures and implicit algebraic

models, while they still contain substantially more of the underlying physics

than standard two-equation models. Several explicit algebraic scalar-
ux mod-

els based on the equilibrium assumption for the scalar-
ux transport equation,

i:e: neglect of the advection and di�usion of the scalar 
ux, have been presented

in the literature, see e:g: Launder [25] and So et al: [45]. In Paper 3 a new

explicit algebraic Reynolds-
ux model is presented. The modelling approach for

the Reynolds 
uxes, ui�, is analogous to that of an EARSM for the Reynolds-

stress anisotropy, see e:g: Wallin & Johansson, [50] and [51], Gatski & Speziale

[13] or Taulbee [46]. The equilibrium hypothesis introduced by Rodi [35] and [36],

which is analogous to neglecting the transport of the Reynolds-stress anisotropy

is here applied to the normalized scalar 
ux. Note that this approach is qualita-

tively di�erent from that used by e:g: Launder [25] and So et al [45], since here

the advection and di�usion of the normalized scalar 
ux are neglected instead

of those of the scalar 
ux itself. This approach for explicit algebraic scalar-
ux

modelling has been used earlier by e:g Adumitroaie et al. [3], Abe et al. [2] and

Girimaji et al. [14]. In the model of Rogers et al: [38], where homogeneous shear

is considered the rate of change of the normalized scalar 
ux is assumed to be

zero.

5.1. The equilibrium assumption

In analogy with the anisotropy tensor the normalized scalar-
ux vector

�i � ui�p
KK�

(29)

is introduced. As in explicit algebraic Reynolds-stress modelling, where the

transport equation for the anisotropy tensor is modelled, an algebraic relation

for �i is formed by modelling its transport equation, given by

D�i
Dt

�D
(�)
i = �1

2
�i

�P� � "�
K�

+
PK � "

K

�
+
P�i � "�i +��ip

KK�

: (30)
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The quantities P�i, "�i and ��i are the production, destruction and pressure

scalar-gradient correlations terms, respectively, in the transport equation, (11),

for the scalar 
uxes, whereas D
(�)
i is the di�usion of the normalized scalar 
ux.

In nearly homogeneous steady 
ows the advection and di�usion of the normalized

scalar 
ux may be neglected, see e:g. Adumitroaie et al. [3], Abe et al. [2] and

Girimaji et al. [14]. This is a reasonable approximation in many engineering


ows especially if the driving forces (the velocity and scalar gradients) are large.

In the DNS of homogeneous turbulence with imposed scalar gradients in each of

three orthogonal directions, by Rogers et al: [37], the normalized Reynolds 
uxes

reach approximately constant values as time evolves. This is not the case for the

(dimensional) scalar 
uxes. Since there is no advection and di�usion this thus

means that the left hand side of (30) is approximately zero in this homogeneous

shear-
ow case.

In Figs. 5.1{5.2 the validity of the equilibrium assumption, in the present

channel 
ow, is illustrated. According to this assumption the sum of all the

terms on the right-hand side of (30), that is D�i
Dt � D

(�)
i should vanish, i:e:, be

negligible in comparison with characteristic magnitudes of individual terms on

the right-hand side. Since the advective terms, D�iDt , are zero in the channel 
ow

the sum of all the terms on the right hand side of (30) is given by �D(�)
i . For the

�1-component the equilibrium assumption is appropriate except near the wall.

This is also the case for the �2-component except in the center of the channel

where D
(�)
2 may be said to be non-negligible.

In Paper 3 the equilibrium assumption is shown to be approximately valid

also in the major part of the heated cylinder wake. The relative magnitude of

the terms neglected in the equilibrium assumption are somewhat larger in this

case than in the channel case. In the outer part (for � > 2) there is a large

deviation from equilibrium, but since the scalar 
uxes approach zero for � > 2

this is actually of minor importance.

By applying the equilibrium assumption the following system of algebraic

equations is obtained

1

2
�i

�P� � "�
K�

+
PK � "

K

�
=
P�i � "�i +��ip

KK�

; (31)

where ��i and "�i need to be modelled. The modelling of these terms is investi-

gated in Papers 1, 2 and 3. Even for models of ��i � "�i that are linear in the

scalar 
ux vector, the resulting algebraic relation (31) will contain a non-linearity

due to the fact that the production term, P� = �ui� @�
@xi

, contains the scalar 
ux.

A method for solving this implicit relation in a fully explicit form is proposed in

Paper 3, where the scalar production to dissipation ratio is considered and solved

for separately. The equation for the scalar production to dissipation ratio is in

the general case, studied in Paper 3, a fourth-order equation in three-dimensional

mean 
ows and a cubic equation in two-dimensional mean 
ows.
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The non-linearity, in the algebraic equations for the normalized scalar 
uxes,

may be eliminated directly by using a non-linear term in the model of the pressure

scalar-gradient correlation and the destruction. This results in a much simpler

model for both two- and three-dimensional mean 
ows. The following model,



given by

��i � "�i = �
�
c�1

r + 1

r
� 1

2

P�
K�

K

"

�
"

K
ui�; (32)

which is proposed in Paper 3, automatically eliminates the non-linear term in

(31). By inserting this into (31) the resulting explicit algebraic model for the

normalized scalar 
ux is given by

�i = �c04A�1
ij

�
ajk +

2

3
�jk

�
�k; (33)

where the second-rank tensor Aij , which is given by (72) in Paper 3, contains

the normalized mean strain- and rotation-rate tensors

Sij � 1

2

K

"

�
@Ui

@xj
+
@Uj

@xi

�

ij � 1

2

K

"

�
@Ui

@xj
� @Uj

@xi

�
(34)

and the timescale ratio r. The quantity aij � uiuj
K
� 2

3�ij is the Reynolds-stress

anisotropy and �i, de�ned as

�i � K

"

r
K

K�

@�

@xi
; (35)

is the normalized mean temperature gradient.

5.2. Model prediction

In Paper 3 several di�erent models for ��i � "�i are studied and invoked in the

relation (31). The timescale-ratio dependence in the linear c�1-term is found to

be important in order to get good agreement for all the test cases (in Paper 3)

with the same model-parameter values. The test cases used are the DNS data of

a homogeneous shear 
ow with imposed mean scalar gradients by Rogers et al:

[37], the DNS data of a turbulent channel 
ow with a passive scalar, Paper 2, and

the experimental data of a heated cylinder wake, Paper 1. The explicit algebraic

scalar-
ux model (31)-(32) gives good predictions in all three test cases using

c�1 = 1:6. Good agreement is also obtained when excluding the non-linear term

in (32) and using c�1 = 1:2, but in that case the non-linearity in (31) is not

eliminated and an equation for the scalar production to dissipation ratio has to

be solved. The model (31)-(32) is strongly recommended since it gives both good

predictions and a simple formulation.

Table 1 The predictions of the scalar 
uxes of the model (31),(32)

compared to the DNS data of Rogers et al. [37], case C128U, Pr=0.71,

at St=12. Case1: Scalar gradient in the streamwise direction, Case2:

Scalar gradient in the cross-stream direction.

u�, Case 1 v�, Case 1 u�, Case 2 v�, Case 2

DNS data �2:41 0:45 0:94 �0:36
(31),(32) �2:05 0:42 1:13 �0:46
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Figure 5.3 Model predictions of the scalar 
ux components in the

channel 
ow. |, model (31),(32); �, �u� from DNS; �, v� from DNS.
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Figure 5.4 Model predictions of the scalar 
ux components in the

cylinder wake. |, model (31),(32); �, u� from experiments; �, v�
from experiments.

In Table 1 and Figs. 5.3-5.4 the model predictions of (31)-(32) are shown for

the di�erent test cases. It is seen that good predictions of both components in

all three test cases are obtained using the same value of the one and only model

parameter, c�1. These predictions should be compared to those of an eddy-

di�usivity hypothesis, given by (22), for which the prediction of the scalar-
ux

vector is aligned with the mean scalar gradient. In the channel 
ow, the heated

cylinder wake, and in Case 1 for the homogeneous shear 
ow, the streamwise

scalar 
ux component, u�, is then predicted to be zero.



CHAPTER 6

Concluding remarks

In the study of the spreading of passive scalars in turbulent 
ows we have com-

bined physical (Papers 1,5) and numerical (Papers 2,4) experiments of `canonical'


ow cases to extract and analyze features of importance for the mathematical

modelling of passive scalar transport. In the experiments on the heated cylinder

wake and in the direct numerical simulations (using spectral methods) of turbu-

lent channel 
ow the Reynolds numbers were higher than in previously reported

studies. In both cases budgets for the scalar variance and 
ux vector could be

analyzed from the data. These results together with earlier published data on

homogeneous shear 
ow with imposed mean scalar gradients served as a basis in

the development of a new explicit algebraic scalar-
ux model (Paper 3) that was

shown to yield attractively simple expressions in both two- and three-dimensional

mean 
ows. For practical computations the explicit algebraic scalar-
ux model

has to be complemented by modelled transport equations for the scalar variance

and its dissipation rate. These modelling aspects are analyzed (Paper 4) and

tested against the DNS data for the present channel 
ow.

A remaining issue is that of near-wall treatment and the corresponding need

for damping functions in the model. This is left outside the scope of the present

thesis and resembles in nature the corresponding issue for explicit algebraic

Reynolds-stress models (see Wallin & Johansson [50] and [51]).

The eddy-di�usivity models used in most industrial codes could easily be

modi�ed to include the proposed explicit algebraic scalar 
ux model. This would

introduce much more of the underlying physics into the modelling without in-

volving a signi�cant increase in the computational e�ort.
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