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Abstract

Passive scalar transport in turbulent flows is considered. The investigation is
made both through physical and numerical experiments. Velocity and tempera-
ture measurements have been performed in the self-preserving region of a heated
cylinder wake, for which the Reynolds number is higher than in earlier reported
studies. The numerical experiments consist of a direct numerical simulation of
a turbulent channel flow with an imposed mean scalar gradient. Also here the
present Reynolds number is higher than those of earlier reported studies where
spectral methods have been used. The present flow cases are used to extract and
analyze features of importance for the mathematical modelling of scalar trans-
port. The primary objective is to develop and analyze explicit algebraic models
for the passive scalar flux.

An algebraic relation for the scalar flux, in terms of mean flow quantities, is
formed by applying an equilibrium condition in the transport equations for the
normalized scalar flux. This modelling approach is analogous to explicit alge-
braic Reynolds-stress modelling (EARSM) for the Reynolds-stress anisotropies.
The assumption of negligible advection and diffusion of the normalized scalar flux
gives in general an implicit, non-linear set of algebraic equations. A method for
solving this implicit relation in a fully explicit form is proposed, where the term
causing the non-linearity, i.e. the scalar production to dissipation ratio, is con-
sidered and solved for separately. The non-linearity, in the algebraic equations
for the normalized scalar fluxes, may be eliminated directly by incorporating
a non-linear term in the model of the pressure scalar-gradient correlation and
the destruction and thus results in a much simpler model for both two- and
three-dimensional mean flows. The proposed model of this type involves only
one model parameter. The performance of this model is investigated in three
different flow situations. These are homogeneous shear flow with an imposed
mean scalar gradient, for which earlier published data are used, the turbulent
channel flow with an imposed mean scalar gradient and the flow field downstream
a heated cylinder. It is found to be possible to adjust the model parameter so
that good agreement is achieved for the scalar fluxes in all these cases.

Descriptors: passive scalar, heated cylinder wake, turbulent channel flow, pres-
sure scalar-gradient correlation, explicit algebraic modelling, shear flows, equi-
librium, hot-wire anemometry, direct numerical simulations.
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This thesis considers passive scalar transport in turbulent flows. The thesis is
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tions have been made as compared to published versions.
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CHAPTER 1

Introduction

The word turbulence has lately become a fashionable expression to characterize
disorder and chaos in areas like politics and economy. A turbulent flow is also
characterized by disorder in the sense that it contains eddies of many different
sizes, giving a flow field that fluctuates rapidly in time and space. Due to its
great wealth of complexity, turbulence is one of the most challenging problems in
the field of classical physics. Some examples of turbulent flows are atmospheric
flows, predicted in a weather forecast, the flow around an aircraft and the wake
behind a submarine. In fact most flows in nature and engineering applications
are turbulent. Consequently there is a large demand for improved understanding
of turbulence and further development of different tools to predict turbulent flow.

The nature of turbulence is clearly demonstrated by the smoke from a
cigarette which first moves straight upwards and then suddenly switches to a
more swirling turbulent motion. This phenomenon provides a visualization of
not only turbulence but also of the spreading of a passive scalar in a turbulent
flow. The characteristic feature of a passive scalar is that its concentration is
influenced by the turbulent motion, but does not itself influence the turbulent
motion. In contrast an active scalar, like temperature in the combustion flow of
your car engine, influences the turbulent velocity field quite strongly. In this case
the fluid density is strongly affected by the temperature, whereas in the limit of
passive scalar behaviour the induced density variations are negligible. Examples
of passive scalar quantities are small amounts of heat, and pollutants in the at-
mospheric or ocean flows. The understanding and prediction of the transport of
passive scalars in turbulent flows is not only important for the field of passive
scalars itself, but may also be important in studies of cases with two-way in-
teraction, such as buoyancy-driven flows. The modelling approaches often used
for scalars in engineering applications like temperature in heat exchangers and
species concentration in combustion flows are very similar to those of a passive
scalar.

Another example of a visualization of a turbulent flow is the famous experi-
ment of Osborne Reynolds in 1880. He studied the flow of water in a glass tube
using ink as a passive marker. For low flow rates a steady streak of ink was
seen throughout the tube, but for higher flow rates, “the colour band would all
at once mix up with the surrounding water, and fill the rest of the tube with a
mass of coloured water”. In 1883 he published a paper presenting the discovery
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of the important dimensionless number, the Reynolds number, quantifying the
onset of turbulence. This was a major breakthrough in the field of fluid me-
chanics. Another important feature demonstrated, was that the mixing driven
by turbulence is far more powerful than that due to fluctuations on a molecular
level in a laminar flow.

During the first half of the nineteenth century Stokes, and Navier, worked
with the equations describing the motion of the flow of a Newtonian fluid. It was
in 1845 that these equations took the form that we today call the Navier-Stokes
equations. These equations are non-linear and can not be solved analytically for
turbulent flows. Today the Navier-Stokes equations may be solved numerically,
using direct numerical simulations (DNS), for fully turbulent flows of moderate
Reynolds numbers in simple geometries. See e.g. the land-mark paper of Kim
et al. (1987). Due to the non-linearity there is a transfer of turbulent kinetic
energy from larger scales to smaller scales, and this range of scales increases with
increasing Reynolds number. The resulting computational workload increases
approximately as the cube of the (macro-scale) Reynolds number. Despite the
rapid development of computers, this still leads to rather severe restrictions on
the range of Reynolds numbers tractable for this type of study. In many flow
situations experiments are still the only alternative to resolve the large range of
scales at high Reynolds numbers.

Historically, knowledge of the spreading of passive scalars in turbulent flows
was gained experimentally in wind-tunnel measurements. Heat transfer in grid-
generated isotropic and homogeneous turbulence was studied by Corrsin (1952),
Warhaft & Lumley (1978), Tavoularis & Corrsin (1981), and Sirivat & Warhaft
(1983). Among other things, the ratio of the thermal and dynamical timescales
was investigated. The significance of this ratio in second-order modelling was
discussed by Newman et al. (1981). Early studies of turbulent heat transfer in
more complex geometries like the heated cylinder wake were made experimentally
by e.g. Townsend (1949), Freymuth & Uberoi (1971) and LaRue & Libby (1974).
On the request of Taylor (1932), pioneering measurements in the turbulent flow
of a heated cylinder wake were made by Fage & Falkner, where mean velocity
and mean temperature profiles were determined (see appendix of Taylor, (1932)).

Recently direct numerical simulation has become a more and more efficient
tool in turbulence research. Pioneering direct numerical simulations of turbulent
flows with imposed mean scalar gradients were performed by Rogers et al. (1986)
in a homogeneous shear flow, and by Kim & Moin (1989) in a turbulent channel
flow.

Statistical modelling of the Navier-Stokes equations, as well as of the conser-
vation equation of a passive scalar, is a very efficient tool for prediction of high
Reynolds number flows. Here variances and other single-point correlations are
the quantities describing the turbulent field. The first scalar-flux models were
much less sophisticated than many of those proposed today. The eddy-diffusivity



hypothesis, i.e. gradient-diffusion model, for the mean turbulent scalar fluxes was
used by Prandtl (1910). He assumed a constant turbulent Prandtl number, i.e.
the ratio of the eddy viscosity and the eddy diffusivity. This constant was taken
to be unity, which implies equal turbulent diffusivities of heat and momentum.
The existence of an analogy between heat and momentum transfer in a fluid was
first proposed by Reynolds (1874) as discussed by von Kérman (1939).

In later studies the two-equation model approach for passive scalars has been
developed, thus allowing variations of the turbulent Prandtl number. A tensor
eddy diffusivity proportional to the Reynolds stresses was introduced by Daly &
Harlow (1970). Using a tensor eddy diffusivity the scalar fluxes are in general
not assumed to be aligned with the mean scalar gradient. In the seventies a large
effort began to be put into the development of transport-equation models for the
scalar fluxes. This level of modelling, which is much more sophisticated than the
eddy-diffusivity approach, includes modelling the pressure scalar-gradient corre-
lation appearing in the transport equation for the scalar fluxes. The modelling
of this term was studied early on by e.g. Launder (1975) who also introduced
the inclusion of rapid terms in this modelling. Recently there has been a large
interest in developing algebraic scalar-flux models obtained from the transport
equations using some equilibrium assumption equivalent to that introduced by
Rodi (1972) and (1976). The explicit forms of these models are particularly at-
tractive since they lead to fewer numerical problems and reduced computational
efforts compared to transport-equation modelling.

This thesis is a study of passive scalar transport in turbulent flows. The
investigation is performed both through experiments and direct numerical sim-
ulations. The measurements are made in a heated cylinder wake at a Reynolds
number higher than in previously reported experimental studies of this flow. The
direct numerical simulation is a study of turbulent channel flow with an imposed
mean scalar gradient. It has been carried out using spectral methods at the
highest reported Reynolds number to date in its category.

The investigated flow cases are used for analysis and development of statis-
tical modelling of passive scalar flux. A new explicit algebraic scalar-flux model,
with a fairly simple formulation, is proposed together with a thorough analysis
of the modelling of the pressure scalar-gradient correlation.



CHAPTER 2

Basic equations

2.1. The velocity field

The governing equations for an incompressible turbulent flow of a viscous fluid
are the Navier-Stokes equations and the continuity equation given by

ouj  .,0Ul _ 18P Ul
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ot + Ul 8:1:1 P 61‘, + V&rlc‘)xl ( a)
! _
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where U] is the total velocity field, P’ is the total modified pressure (which may
contain a gravitational potential), and p and v are the density and kinematic
viscosity of the fluid respectively. The Reynolds decomposition U] = U; + u;,
P! = P + p, where U; and u; are the mean and fluctuating parts of the veloc-
ity field and P and p are the mean and fluctuating parts of the pressure field,
is applied here. In statistically stationary turbulence the mean value of a flow
variable can be taken as the time average. Generally an averaged quantity is the
ensemble average over an infinite number of realizations. By inserting these de-
compositions into the Navier-Stokes equations and taking the ensemble average,
the Reynolds averaged Navier-Stokes equations (RANS) are obtained
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The quantity —pu;u; is known as the Reynolds stress tensor and originates from
the non-linear advective term of (1a). It is due to this term that the so called
closure problem arises. This means that it is not possible to obtain a closed set
of equations, since every new introduced transport equation will contain higher-
order moments of the turbulent field.

The transport equations for the Reynolds stresses are given by
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where the operator
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denotes the rate of change in a coordinate system following the mean velocity
field. The first two terms on the right hand side of (3) are production due
to mean field gradients. The next two terms are the traceless pressure-strain
correlation and viscous destruction (or the ‘homogeneous’ dissipation rate). The
last term is a diffusion term containing both turbulent and molecular diffusion.
The first two terms inside the parenthesis of the diffusion term is the turbulent
transport flux and the divergence of this flux is the rate of spatial redistribution
among the different Reynolds stress components due to inhomogeneities in the
flow field.

The transport equation for the kinetic energy, K = %uiui, is
DK
= _ DE)
Dr Px —e+ ) (5)
where
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The quantity Pg is the turbulent energy production, which describes the en-
ergy transfer between the mean and the fluctuating velocity fields, and ¢ is the
‘homogeneous’ dissipation rate of K. The quantity D), given by

0 oK 1 2

is the sum of molecular and turbulent diffusion of K. The transport equation for
the dissipation rate € is given by
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where ¢/ = Vg—‘;;'g—z;'. The first term on the right hand side of (8) consists of
molecular and turbulent diffusion. The second term is a turbulent production
term which represents stretching of the velocity field through the fluctuating ve-
locity gradients (vortex stretching). The three following terms are mean gradient

production terms and the last term is a viscous destruction term.

2.2. The scalar field

The governing equations for a passive scalar have many similarities to those of
the velocity field of an incompressible flow of a viscous fluid. The conservation



equation of a passive scalar is given by
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where « is the molecular diffusivity. It is very similar to (1a) except for the
pressure term. There is thus no direct coupling between the scalar field and the
pressure field. For the passive scalar the coupling to the pressure field comes
through the velocity field.

In analogy with the Reynolds decomposition of the velocity field the instan-
taneous scalar field may be divided into a mean part and a fluctuating part,
©’ = © + 0. The transport equation of the mean scalar is obtained by inserting
this decomposition into (9) and taking the ensemble average, which then gives
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The scalar-flux term, u;0, or Reynolds-flux term in analogy with the Reynolds
stress, is due to the non-linear advection term in (9) and leaves (10) unclosed.
The transport equation for the scalar flux is given by
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which is similar to that for the Reynolds stresses. The right hand side of the
transport equation (11) contains two production terms due to mean field gradi-
ents, a pressure scalar-gradient correlation term, viscous and diffusive destruction
and a transport term consisting of turbulent and molecular diffusion.

The transport equation for half the scalar variance, Ky = %9_2, a quantity
corresponding to the turbulent kinetic energy, is obtained by multiplying (9) with
the fluctuating scalar # and then taking the ensemble average of the resulting
equation. This yields
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are the production, which is due to the mean scalar gradient, and the dissipation
rate of Ky. The quantity DY) which is the sum of molecular and turbulent
diffusion of Ky, is given by
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As in the previous equations for the scalar field the transport equation for the
scalar dissipation rate £¢ contains terms which are quite similar to those in the
corresponding transport equation for the velocity field. It reads
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molecular and turbulent diffusion. The second term is a turbulent production
term which represents stretching of the scalar field through the fluctuating ve-
locity gradients. The three following terms are mean gradient production terms
and the last term is a diffusive destruction term.

2.3. Different levels of modelling

The objective of scalar-flux modelling is to close equation (10). This closure may
for example be a simple eddy-diffusivity hypothesis, in analogy with the eddy-
viscosity hypothesis for the Reynolds stresses, or may consist of several additional
transport equations. The modelling level for the Reynolds fluxes should not be
higher than that of the Reynolds stresses, since the scalar transport predictions
rely heavily on the velocity field description (including its turbulence statistics,
see So et al. [44]). In the following different levels in the hierarchy of modelling
of passive scalar flux are discussed.

2.3.1. Transport equation modelling. In transport-equation modelling,
of the passive scalar flux, the transport equations for Ky, its destruction rate, €y,
and the passive scalar flux, u;#, are modelled. The model for the scalar fluxes is
then of the form
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The first two, Ky, €9, are needed to estimate the decay-timescale ratio, r =
Kye/Key, for the passive scalar. Information about the scalar timescale, Ky /ey,
may be particularly important in situations where it differs significantly from the
dynamical timescale K/e. The set of transport equations is solved together with
modelled transport equations for the Reynolds stresses, or w;u;, and the dissi-
pation rate of the turbulent kinetic energy, . This level of modelling captures a
large part of the relevant phenomena involved in engineering flows, but leads in
complicated geometries with three-dimensional mean flows to sixteen transport
equations. Of these equations six are from the scalar field; (10), (11) (i.e. three
equations), (12) and (15).



The transport equation (11) for the scalar flux may be written in symbolic
form as

= Po; + ;s — €9; + Dy, (17)

where Py;, Ilp;, €9;, and D; are the production, pressure scalar-gradient correla-
tion, destruction and diffusion terms respectively. Here it is seen that the con-
struction of the relation (16) involves modelling of the pressure scalar-gradient
correlation and the molecular destruction terms, as well as the the turbulent dif-
fusion terms. Several models for the pressure scalar-gradient correlation (often
also including the destruction term) have been reported in the literature. Since
the pressure itself may be divided into a slow and a rapid part this is also the
case for Ilp;. From the Poisson equation for the pressure it may be seen that
the rapid terms involve the mean velocity gradients linearly, see e.g. Shih [41]
and Launder [25]. The model of Launder [24], which contains both a rapid and
a slow term, is

IIp; = _691%U_i0 + cezmg—g;, (18)
where the timescale 7 was taken as the dynamical timescale (in Launder [25] it
was suggested that both the dynamical and thermal timescales are important)
and the model parameters cyp; and cpz were assigned constant values of 3.2 and
0.5 respectively. In the model of Rogers et al. [38] only the slow part, i.e.
the cg; term, was included, whereas a Reynolds number and a Prandtl number
dependence was included in the cg; parameter. Several additional terms for both
the slow and rapid parts are included in the models of Craft & Launder [8] (14
terms) and [9] (12 terms). A model commonly adopted for the diffusion term is
the gradient-diffusion model proposed by Daly & Harlow [10], which is given by

0 k Ouf

The modelling of the pressure scalar-gradient correlation and the molecular de-
struction terms is investigated in Paper 1 [54], Paper 2 [55] and Paper 3 [56],
and modelling of the turbulent diffusion terms, is briefly investigated in Paper 1.

2.3.2. Explicit algebraic scalar-flux modelling. Through approxima-
tion of the modelled transport equation of the scalar flux an algebraic scalar-flux
model, that still contains a considerable part of the underlying physics, may
be obtained. There is a great interest in algebraic scalar-flux models which are
obtained from the transport equations using some equilibrium assumption equiv-
alent to that used to formulate algebraic Reynolds-stress models (ARSM), see
e.g. Adumitroaie et al. [3], Girimaji & Balachandar [14], Abe et al. [2], Shabany
& Durbin [40], Shih & Lumley [42] and Shih [41]. The scalar-flux model is then



of the form
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The equilibrium assumption excludes the diffusion terms, whereas models of
the pressure scalar-gradient correlation and molecular destruction terms are still
needed, just as in transport-equation modelling. The explicit forms of these
algebraic models are attractive since they lead to fewer numerical problems and
reduced computational efforts compared to full second-order closures. To be able
to construct explicit forms, the model for the pressure scalar-gradient correlation
and the destruction, ITy; —ey;, has to be linear in the scalar-flux except for a non-
linearity identical to that appearing when applying the equilibrium assumption
to the transport equation for the normalized scalar fluxes, see Chapter 5 and
Paper 3. An EARFM can be written in the following symbolic form

— oUu,, 00
uiezFi(EARFM) ’U,m’u,n,—m,—,K,Kg,E,Eg .
0x,, Orn,

In Paper 3 a new explicit algebraic Reynolds-flux model is presented. The
modelling approach for the Reynolds fluxes, u;f, is analogous to that of an
EARSM (explicit algebraic Reynolds-stress model) for the Reynolds stresses, see
e.g. Wallin & Johansson, [50] and [51], Gatski & Speziale [13] or Taulbee [46]. In
Chapter 5 explicit algebraic modelling is discussed in more detail together with
a presentation of the EARFM of Paper 3.

(21)

2.3.3. Eddy-diffusivity models. In an eddy-diffusivity model for the pas-
sive scalar field the the scalar fluxes are approximated by

Wl = —a, 00
ox;’
where «; is the eddy diffusivity. This is analogous to the classical Boussinesq
approximation or eddy-viscosity hypothesis for the Reynolds stresses,
oUu;  0U; 2
uu; = 1 (c’krj + &ri) + §K6ij, (23)
where v; is the eddy viscosity. In a two-equation level of modelling the eddy
diffusivity is obtained from

(22)
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where the turbulent Prandtl number (or Schmidt number) can be modelled as
a function of the timescale ratio, r. At this level of modelling it is therefore
necessary to solve for the equations for Ky and gy. Significant progress in this
type of modelling has been made by e.g., Nagano & Kim [28], Nagano et al. [29],

Yossef et al. [59] and Abe et al. [1].
At a zero-equation level of modelling the turbulent Prandtl number, or equiv-
alently the timescale ratio, r, is assumed to be constant and no further equations
are needed. A computation of flow and heat transfer through rotating ribbed



passages was recently made by Iacovides [15] using a zero-equation model for the
heat fluxes combined with a two-equation eddy-viscosity model and a transport-
equation model for the Reynolds stresses.

Whether it is a two-equation model or a zero-equation model, the eddy
diffusivity approach, using a scalar eddy diffusivity, is unable to always predict
realistic values of all components of u;f, since it assumes that the scalar flux is
aligned with the mean scalar gradient. See for example Wikstrém et. al [53] and
Paper 5 [58], where the streamwise heat flux, uf, in the heated cylinder wake
then is predicted to be zero. In reality, uf, and the cross-stream heat flux, v6,
are both non-zero and of the same magnitude.




CHAPTER 3

Measurements in a heated cylinder wake

In this study the flow behind an electrically heated circular cylinder, placed hor-
izontally in a wind tunnel, is considered. The cylinder length to diameter ratio is
high enough for the flow to be considered two-dimensional. Also, the velocity is
high enough and the heating is low enough for buoyancy effects to be negligible.
A sketch of the resulting flow situation is presented in Fig. 3.1. The velocity
deficit, Us, and the temperature excess, O, at the centerline, decrease in the
streamwise direction, whereas the mean velocity-defect half width, [, increases.
The wake profiles thus spread out in the cross-stream direction with increasing
distance from the cylinder. The temperature fluctuations are convected down-
stream along a mean stream line. These fluctuations are produced due to flow
instabilities, decay due to thermal dissipation and redistributed by diffusion.

The flow behind a heated circular cylinder has been studied experimentally
by several investigators previously. The pioneering work of Townsend (1949)
included measurements of transport of heat at different downstream positions.
With the evolution of digital computers in the seventies, as well as the improve-
ment of experimental techniques, experiments became a more efficient tool to
analyze turbulent flows. Thorough investigations of the heated cylinder wake
were made experimentally by Freymuth & Uberoi [12], Fabris [11] and Browne
& Antonia [6] and Antonia & Browne [4]. The Reynolds number based on
the freestream velocity and the cylinder diameter, and the downstream posi-
tion, (Re, z/d), were (960,1140) in the measurements of Freymuth & Uberoi,
(2700,400) in those of Fabris, and (1170,420) in the experiments by Browne &
Antonia and Antonia & Browne, respectively.

The concept of self-similarity is very useful when analyzing turbulent shear
flows like wakes, jets and mixing layers. This means that the evolution of the
flow may be determined using only local scales of length and velocity. In the
experiments by Townsend [49] the normal stresses and the shear stresses were
found to reach a self-similar state for x/d of approximately 500 and larger. In
later work self-similarity has been found to prevail at somewhat smaller distances
from the cylinder. Freymuth & Uberoi [12] found the distributions of mean and
fluctuating temperatures to be self-similar for z/d larger than approximately
100, and in the experiments by Aronson and Loéfdahl [5] the distributions of the
mean velocity and Reynolds stresses were self-similar for z/d of about 200 and
more.
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FIGURE 3.1 The mean velocity and mean temperature profiles in
a wake behind a heated circular cylinder, where U; = Uy — Unmin,
Os = Omax — Op and [ is the mean velocity-deficit half width.

3.1. Experimental procedure

The MTL wind tunnel, at KTH, Stockholm, with a 7.0 m long test section of
1.2x0.8 m? cross section and a free stream turbulence level less than 0.05% was
used in the experiments. A picture of the MTL wind tunnel is given in Fig. 3.2.
The diameter of the horizontal wake-generating cylinder was 6.4 mm and all
the measurements were made at a velocity, Up, of 10.1 m/s giving a maximum
mean velocity deficit of 0.5 m/s at z/d = 400. The present Reynolds number,
Uod/v = 4300, is about three times higher than that of Browne & Antonia [6].
The cylinder was electrically heated giving a maximum mean temperature excess,
O, of 0.8 °C above the ambient air temperature at 2/d = 400. Measurements
were made at the following four different downstream positions: x/d = 200, 400,
600 and 800.

Simultaneous measurements of velocity and temperature statistics were made
using a three-wire probe configuration (in-house construction) consisting of an
X-probe, with platinum wire sensors, for velocity measurements and a single
cold platinum wire for temperature measurements, located 0.5 mm in front of
the X-wire mid point. The hot wires had a length of 0.5 mm and a diameter of
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FIGURE 3.2 The MTL wind tunnel circuit.

2.5 um and were operated with an overheat ratio of about 50%. The correspond-
ing dimensions for the cold wire were 1.0 mm and 0.63 pm and it was operated
at a constant current of 0.3 mA. This current is low enough to ensure negligible
overheating of the wire thereby ensuring negligible sensitivity to velocity fluctu-
ations. As analyzed in Paper 5, the length to diameter ratio of cold wires needs
to be several times larger than typical values used for hot-wires. These ratios
are here chosen to be about 1600 and 200, respectively.

An angular calibration procedure, using a Pitot tube, was carried out for the
X-probe. Third order polynomials were fitted to the calibration data, covering
the range of velocities and flow angles occurring during measurements in the
wake. The cold wire was calibrated against an NTC-resistor (a thermistor) using
4 different heatings of the cylinder, giving a temperature span of about 1 °C..

During measurements the probe was traversed by an automated procedure
controlling the traversing system. At each point 3x1024 %200 samples of voltages
from the constant temperature and constant current circuits were filtered at
5 kHz and sampled at 10 kHz. The data were then saved on a CD-Recordable
disc for later postprocessing.

Cross-stream derivatives of measured quantities were obtained by using cubic-
spline smoothing of the data. Derivatives in the streamwise direction, needed to
determine advective terms, were obtained by assuming self-similarity.

3.2. Results

The streamwise variations of the maximum velocity defect, Us, the maximum
temperature excess, O, and the velocity-defect half-width, [, are in good agree-
ment with those of Browne & Antonia [6], (Wikstrom et al. [53] and Paper 5).
The distributions of mean velocity and mean temperature reach self-similarity
at about z/d = 200, while second-order moments, like wo and vl, reach self-
similarity at an z/d of approximately 400.



In Paper 1 budgets for the scalar fluxes are presented. Here it is found
that the pressure scalar-gradient correlation is as large as the production terms.
Estimates of the destruction terms indicate that these are quite small compared
to the pressure scalar-gradient correlation. This is in agreement with the DNS
data of Overholt & Pope [31], for which the destruction terms in the scalar-
flux budget are shown to be negligible at high enough Reynolds numbers. The
turbulent diffusion terms are significant in the present wake flow, whereas the
molecular diffusion terms are negligible.

In Paper 1 and Paper 3 the modelling of the sum of the pressure scalar-
gradient correlation and the destruction terms is analyzed using the present
experimental data. It is found that it is important to include a mixture of
both the thermal timescale, Ky /ey, and the dynamical timescale, K/e, in the
modelling of the slow part. The timescale ratio, r, shows a quite large variation
through the wake. An assumption of a constant r or a turbulent Prandtl number,
Pry, is thus not appropriate here.

The influence of rapid terms is studied in Paper 1, where a clear influence
of these terms is found. In a more general context it is found difficult to obtain
a modelling of the rapid part that can give an improvement in a wide class of
flows. By using the test cases of homogeneous turbulent shear flow, channel flow
and the heated cylinder wake it can be concluded that a more primary influence
is that of the timescale ratio, and to some extent the mean temperature gradient
on the coefficient of the ‘slow’ term (see Paper 3).

In Paper 1 modelling of the triple correlations ulT]H is also investigated.
These are needed to determine the turbulent diffusion term in the transport
equation of the scalar fluxes. Here it is found that when using the truncated Shih
[41] model, only two of the terms may give approximately as good predictions
as those of a model including all nine terms. When only using a Daly & Harlow
type gradient-diffusion model, the w26 component may not be captured in the
present flow case.

The scalar fluxes are presented in Chapter 5 and the heated cylinder wake
is one of the test cases for the explicit algebraic Reynolds-flux model presented
in Paper 3 and (more briefly) in Chapter 5.



CHAPTER 4

DNS of a turbulent channel flow

Direct numerical simulations of plane turbulent channel flows with imposed mean
scalar gradients have been performed by several investigators previously. In the
simulations of Kim & Moin [22] the Reynolds number, Re,, based on the friction
velocity, u,, and the channel half width, ¢, is 180 and the Prandtl numbers used
are 0.1, 0.71 and 2. Two different types of boundary conditions are studied.
In the first case the scalar is generated internally and removed from isothermal
walls with the same temperature (or scalar concentration). For the second case
the isothermal boundary condition is applied with walls of different temperature,
which means that the passive scalar is introduced at one wall and removed from
the other. Profiles of the mean scalar, the scalar variance and the scalar fluxes
are presented for the first case, while for the latter case data is presented through
studies of turbulent structures for the scalar field.

Kasagi et al. [17] and Kasagi & Ohtsubo [18] have performed direct numerical
simulations of turbulent channel flows with Re, = 150 and Prandtl numbers of
0.71 and 0.025, respectively. In these cases the iso-flux boundary condition is
applied on the two walls so that the local mean temperature increases linearly in
the streamwise direction. Detailed budgets for the scalar variance, its dissipation
rate and the scalar fluxes are presented in these cases.

In the channel-flow DNS of Kawamura et al. [19] Re, is 180 and Prandtl
numbers in the range 0.025-5 are studied. In that of Kawamura & Abe [20] Re,
is 180 and 395 and Prandtl numbers of 0.025, 0.2 and 0.71 are used. Also in these
studies the iso-flux boundary condition is applied and detailed budgets for the
scalar variance, its dissipation rate and the scalar fluxes are presented. A Prandtl
number of 5 and a Reynolds number Re, of 395 are the highest values for which
data have been published. The numerical method used by Kawamura et al. and
Kawamura & Abe is a finite-difference method, whereas Kim & Moin [22], Kasagi
et al. [17] and Kasagi & Ohtsubo [18] use spectral methods. Spectral methods
have a higher accuracy than finite-difference methods, whereas the latter have
the advantage of being more easily applied to complex geometries.

4.1. Numerical method

The numerical code used for the direct numerical simulation presented in this
thesis is based on the channel-flow code of Lundbladh et al. [26], which has been
extended to also compute the evolution of a passive scalar field. It is similar to
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that of Kim & Moin [22], Kasagi et al. [17] and Kasagi & Ohtsubo [18]. The
present simulation code uses spectral methods, with Fourier representation in
the streamwise (x) and spanwise (z) directions, and Chebyshev polynomials in
the wall-normal (y) direction. Time integration is carried out using the Crank-
Nicolson scheme for viscous terms and a four-stage Runge-Kutta scheme for the
nonlinear terms.

The equations that are solved for the velocity field are the normal velocity
equation and the normal vorticity equation. It is sufficient to calculate these two
components since the other velocity components may be obtained from the in-
compressibility constraint and from the definition of the normal vorticity. Using
this solution procedure the pressure is eliminated from the equations and the
number of variables to be solved for is reduced from four to two. Including the
passive scalar, the total number of variables that are solved for are thus three.

The equation for the total normal vorticity field is given by

ow 1 Q%w
— =hy+ ——— 25
ot + Re 0x;0x; (25)
and that for the total scalar field is
00’ 1 0%0
— =hy+=— .
ot PrRe 0x;0x;
These equations are identical except for the nonlinear terms h, and hy, and
the molecular Prandtl number (or Schmidt number) appearing in (26). The

(26)

nonlinear term hy is given by

00’

_ 77
ho_ Ul 61‘[

(27)

The solution procedure applied to the conservation equation (26) is identical to
that of the normal vorticity equation, (25), except for the boundary conditions.

4.2. Numerical procedure

The present direct numerical simulation of a turbulent channel flow with a pas-
sive scalar has a friction Reynolds number, Re,, of 265, a Reynolds number
based on the centerline mean velocity and the channel half width of 4800, and a
Prandt]l number (or Schmidt number) of 0.71. The simulations were performed
on a Cray-J932 using a number of processors in parallel, which significantly re-
duced the computation time. The present Reynolds number is the highest for
which data of a turbulent channel flow with an imposed mean scalar gradient,
obtained by using a spectral code, has been reported in the literature. The
computational domain is 12.564, 26, 5.5 in the streamwise, wall-normal and
spanwise directions respectively and the number of grid points is 256 x193x192.
This gives a resolution in the z-, y- and z-directions of 13.0, 2.7(on average) and
7.6 wall units respectively.



-1 -0.5 0 0.5 1 91 -0.5 0 0.5 1
Y Y

FIGURE 4.1 Left: The mean scalar distribution, ©F, in wall units
throughout the channel. Right: The rms of the fluctuating scalar,

6+2, in wall units throughout the channel.

The passive scalar, e.g. temperature, at each wall is kept constant with a
higher temperature on the upper wall. This boundary condition represents a
case in which the passive scalar is introduced at the upper wall and removed
from the lower wall. This type of boundary condition, for which the resulting
mean scalar profile in the channel becomes antisymmetric, has also been used by
e.g. Kim & Moin [22], Na et al. [27] and Kawamura (private communication). In
Fig.4.1 the mean scalar profile and the rms of the fluctuating scalar are given
in wall units throughout the channel. These profiles are quite different from
those obtained using the iso-flux boundary condition or those obtained with an
internal source term and isothermal walls of equal temperature. In these two
latter cases the mean scalar profile is symmetric, giving zero production at the
centerline, and the rms profile has a local minimum in the center of the channel,
i.e. a shape more similar to that of the kinetic energy. The local maximum near
the wall becomes more pronounced with increasing Prandtl number in the cases
studied by e.g. Kawamura et al. [19] and Kawamura & Abe [20].

4.3. The mean passive scalar profile

Fig. 4.2 shows the dimensionless mean scalar distribution, @% — Gj;au,

units. For y* < 5 this is given by Pry* corresponding to the viscous sublayer
profile, UT = yT, for the mean velocity. In Fig.4.3 it is seen that there is a small
region in which the slope of @1 — @jvan is constant in the semi-log plot, i.e

in wall

wall ™

1
ot -0ef = n—elny+ + By, (28)

where k¢ is the von Karman constant. The von Karman constant value, 0.33, is
close to values obtained previously by Kasagi et al. [17] (0.36 with Re, = 150,
Pr =0.71) and Kawamura (private communication, about 0.3 with Re, = 150,
Pr =0.71). Both these previous results were obtained with an iso-flux boundary
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FIGURE 4.2 The dimensionless mean scalar distribution in wall units.
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FIGURE 4.3 The von Kdrman constant kg = 1/%?—1— yT.

condition, whereas the isothermal boundary condition is applied here. The kg
value should be compared to the velocity-profile related von Kédrman constant
which is 0.41. The additive constant By is here 0.95. The Nusselt number, given
by Nu = 2hd/k, where h is the heat transfer coefficient and k is the thermal
conductivity, is 17.4.

4.4. Results

In Paper 2 the budgets for the scalar fluxes from the present DNS data are
presented. For both flux components there is an approximate balance between
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pressure scalar-gradient correlation and production except in the near-wall re-
gion. In the central parts of the channel the destruction is negligible, which was
also found to be the case in the DNS of isotropic turbulence with an imposed
mean scalar gradient by Overholt & Pope [31], at high enough Reynolds num-
bers. The budget for the streamwise scalar flux, uf, is very similar throughout
the channel to that of Kasagi et al. [17], using Pr = 0.71 and the iso-flux bound-
ary condition. The budget for the wall-normal scalar flux, v8, is however quite
different in the central parts of the channel, since in this region the production,
the turbulent diffusion, the pressure scalar-gradient correlation and the pressure
diffusion are all non-zero in the present case. In Papers 2 and 3 the modelling
of the sum of the pressure scalar-gradient correlation and destruction terms ap-
pearing in the Reynolds-flux transport equation is considered using the present
DNS data. It is concluded that the pressure scalar-gradient correlation, as in the
cylinder wake case, plays an important role in the budget. This data set is also
one of the test cases for the explicit algebraic Reynolds-flux model presented in
Paper 3 and (more briefly) in Chapter 5, where the scalar fluxes are shown.

In Paper 4 [57] the budgets of the scalar variance, 62, and the dissipation
rate of half the scalar variance, g, are presented. For the scalar variance budget
there is an approximate balance between production and dissipation except in
the near-wall region. Both the turbulent diffusion and the molecular diffusion
terms are negligible except near the wall. At the wall there is a balance between



molecular diffusion and dissipation. This budget is similar to that of Kasagi
et al. [17], Kawamura et al. [19] and Kawamura & Abe [20], except in the center
of the channel where the production and dissipation are non-zero for the present
case. The difference, between applying the present boundary condition and the
iso-flux boundary condition, is thus that the production and dissipation terms
do not approach zero as the center of the channel is approached. In Kawamura
& Abe [20] it is seen that the production and dissipation terms in this budget
both increase for increasing Reynolds numbers.

The present €9 budget, presented in Fig.4.4, is also similar to that of Kasagi
et al. [17] in the near wall region. In the central parts there is an approximate
balance between turbulent (vortex stretching) production and diffusive destruc-
tion, whereas the rest of the terms are negligible in comparison with these. For
modelling purposes these two are lumped together into a destruction term, which
means that in this context the leading order contributions in the budget are es-
sentially cancelled out. As in the scalar variance budget, the production and
destruction terms are non zero at the centerline. In Paper 4 the modelling of the
transport equation of the scalar dissipation rate is considered using the present
DNS data and comparisons are made with the models of Sanders & Gdokalp [39]
and Yoshisawa [60].



CHAPTER 5

Explicit algebraic scalar-flux modelling

Explicit algebraic scalar-flux models that are derived from second-order closure
models have been developed by several investigators previously. These models
are attractive since they lead to fewer numerical problems and reduced com-
putational efforts compared to full second-order closures and implicit algebraic
models, while they still contain substantially more of the underlying physics
than standard two-equation models. Several explicit algebraic scalar-flux mod-
els based on the equilibrium assumption for the scalar-flux transport equation,
i.e. neglect of the advection and diffusion of the scalar flux, have been presented
in the literature, see e.g. Launder [25] and So et al. [45]. In Paper 3 a new
explicit algebraic Reynolds-flux model is presented. The modelling approach for
the Reynolds fluxes, u;f, is analogous to that of an EARSM for the Reynolds-
stress anisotropy, see e.g. Wallin & Johansson, [50] and [51], Gatski & Speziale
[13] or Taulbee [46]. The equilibrium hypothesis introduced by Rodi [35] and [36],
which is analogous to neglecting the transport of the Reynolds-stress anisotropy
is here applied to the normalized scalar flux. Note that this approach is qualita-
tively different from that used by e.g. Launder [25] and So et al [45], since here
the advection and diffusion of the normalized scalar flux are neglected instead
of those of the scalar flux itself. This approach for explicit algebraic scalar-flux
modelling has been used earlier by e.g Adumitroaie et al. [3], Abe et al. [2] and
Girimaji et al. [14]. In the model of Rogers et al. [38], where homogeneous shear
is considered the rate of change of the normalized scalar flux is assumed to be
Zero.

5.1. The equilibrium assumption
In analogy with the anisotropy tensor the normalized scalar-flux vector

Ky

=

is introduced. As in explicit algebraic Reynolds-stress modelling, where the
transport equation for the anisotropy tensor is modelled, an algebraic relation
for &; is formed by modelling its transport equation, given by

D¢; G 1&(739—89 PK—E>+7’0i—89i+H0i_

+
Ky K VKK,

Dt i T g

(30)



The quantities Py;, €9; and IIy; are the production, destruction and pressure
scalar-gradient correlations terms, respectively, in the transport equation, (11),
for the scalar fluxes, whereas DEE)
In nearly homogeneous steady flows the advection and diffusion of the normalized

scalar flux may be neglected, see e.g. Adumitroaie et al. [3], Abe et al. [2] and

is the diffusion of the normalized scalar flux.

Girimaji et al. [14]. This is a reasonable approximation in many engineering
flows especially if the driving forces (the velocity and scalar gradients) are large.
In the DNS of homogeneous turbulence with imposed scalar gradients in each of
three orthogonal directions, by Rogers et al. [37], the normalized Reynolds fluxes
reach approximately constant values as time evolves. This is not the case for the
(dimensional) scalar fluxes. Since there is no advection and diffusion this thus
means that the left hand side of (30) is approximately zero in this homogeneous
shear-flow case.

In Figs. 5.1-5.2 the validity of the equilibrium assumption, in the present
channel flow, is illustrated. According to this assumption the sum of all the
terms on the right-hand side of (30), that is % - DEE) should vanish, i.e., be
negligible in comparison with characteristic magnitudes of individual terms on

the right-hand side. Since the advective terms D& “are zero in the channel flow

> Dt ?

the sum of all the terms on the right hand side of (30) is given by _DEE)- For the
& -component the equilibrium assumption is appropriate except near the wall.
This is also the case for the &-component except in the center of the channel
where D;E) may be said to be non-negligible.

In Paper 3 the equilibrium assumption is shown to be approximately valid
also in the major part of the heated cylinder wake. The relative magnitude of
the terms neglected in the equilibrium assumption are somewhat larger in this
case than in the channel case. In the outer part (for n > 2) there is a large
deviation from equilibrium, but since the scalar fluxes approach zero for n > 2
this is actually of minor importance.

By applying the equilibrium assumption the following system of algebraic
equations is obtained

15 (PO — €9 Pr _5> _ Poi — €pi + y; (31)
2" Ky K N VKK,

where Ilp; and £¢; need to be modelled. The modelling of these terms is investi-
gated in Papers 1, 2 and 3. Even for models of IIy; — £4; that are linear in the
scalar flux vector, the resulting algebraic relation (31) will contain a non-linearity
due to the fact that the production term, Py = —u_ﬂg—i, contains the scalar flux.
A method for solving this implicit relation in a fully explicit form is proposed in
Paper 3, where the scalar production to dissipation ratio is considered and solved
for separately. The equation for the scalar production to dissipation ratio is in
the general case, studied in Paper 3, a fourth-order equation in three-dimensional
mean flows and a cubic equation in two-dimensional mean flows.
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The non-linearity, in the algebraic equations for the normalized scalar fluxes,
may be eliminated directly by using a non-linear term in the model of the pressure
scalar-gradient correlation and the destruction. This results in a much simpler
model for both two- and three-dimensional mean flows. The following model,



given by

uiﬁ, (32)

r+1 1P K\ e
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which is proposed in Paper 3, automatically eliminates the non-linear term in
(31). By inserting this into (31) the resulting explicit algebraic model for the
normalized scalar flux is given by

_ 2
gi = —cilAijl (a]‘k + §6Jk> O,

where the second-rank tensor A;;, which is given by (72) in Paper 3, contains
the normalized mean strain- and rotation-rate tensors

1K [(0U;  9U; 1K (0U; OU;
Si' = _— + _
2¢e 6mj 837@

C 5; 837]' 8:61
and the timescale ratio r. The quantity a;; = ngJ — %6”- is the Reynolds-stress
anisotropy and ©;, defined as

(33)

(34)
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is the normalized mean temperature gradient.

0; (35)

5.2. Model prediction

In Paper 3 several different models for IIy; — €y; are studied and invoked in the
relation (31). The timescale-ratio dependence in the linear ¢y;-term is found to
be important in order to get good agreement for all the test cases (in Paper 3)
with the same model-parameter values. The test cases used are the DNS data of
a homogeneous shear flow with imposed mean scalar gradients by Rogers et al.
[37], the DNS data of a turbulent channel flow with a passive scalar, Paper 2, and
the experimental data of a heated cylinder wake, Paper 1. The explicit algebraic
scalar-flux model (31)-(32) gives good predictions in all three test cases using
cp1 = 1.6. Good agreement is also obtained when excluding the non-linear term
in (32) and using cp; = 1.2, but in that case the non-linearity in (31) is not
eliminated and an equation for the scalar production to dissipation ratio has to
be solved. The model (31)-(32) is strongly recommended since it gives both good
predictions and a simple formulation.

TABLE 1 The predictions of the scalar fluxes of the model (31),(32)
compared to the DNS data of Rogers et al. [37], case C128U, Pr=0.71,
at St=12. Casel: Scalar gradient in the streamwise direction, Case2:
Scalar gradient in the cross-stream direction.

uf, Casel | vf, Casel | uf, Case?2 | vf, Case?2
DNS data —2.41 0.45 0.94 —0.36
(31),(32) | —2.05 0.42 1.13 —0.46
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FIGURE 5.3 Model predictions of the scalar flux components in the
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FIGURE 5.4 Model predictions of the scalar flux components in the
cylinder wake. —, model (31),(32); *, uf from experiments; o, vf
from experiments.

In Tablel and Figs. 5.3-5.4 the model predictions of (31)-(32) are shown for
the different test cases. It is seen that good predictions of both components in
all three test cases are obtained using the same value of the one and only model
parameter, cg1. These predictions should be compared to those of an eddy-
diffusivity hypothesis, given by (22), for which the prediction of the scalar-flux
vector is aligned with the mean scalar gradient. In the channel flow, the heated
cylinder wake, and in Case 1 for the homogeneous shear flow, the streamwise
scalar flux component, uf, is then predicted to be zero.



CHAPTER 6

Concluding remarks

In the study of the spreading of passive scalars in turbulent flows we have com-
bined physical (Papers 1,5) and numerical (Papers 2,4) experiments of ‘canonical’
flow cases to extract and analyze features of importance for the mathematical
modelling of passive scalar transport. In the experiments on the heated cylinder
wake and in the direct numerical simulations (using spectral methods) of turbu-
lent channel flow the Reynolds numbers were higher than in previously reported
studies. In both cases budgets for the scalar variance and flux vector could be
analyzed from the data. These results together with earlier published data on
homogeneous shear flow with imposed mean scalar gradients served as a basis in
the development of a new explicit algebraic scalar-flux model (Paper 3) that was
shown to yield attractively simple expressions in both two- and three-dimensional
mean flows. For practical computations the explicit algebraic scalar-flux model
has to be complemented by modelled transport equations for the scalar variance
and its dissipation rate. These modelling aspects are analyzed (Paper 4) and
tested against the DNS data for the present channel flow.

A remaining issue is that of near-wall treatment and the corresponding need
for damping functions in the model. This is left outside the scope of the present
thesis and resembles in nature the corresponding issue for explicit algebraic
Reynolds-stress models (see Wallin & Johansson [50] and [51]).

The eddy-diffusivity models used in most industrial codes could easily be
modified to include the proposed explicit algebraic scalar flux model. This would
introduce much more of the underlying physics into the modelling without in-
volving a significant increase in the computational effort.
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