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large eddy- and direct numerical simulation

Krister Alvelius
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SE-100 44 Stockholm, Sweden

Abstract

This thesis deals with numerical simulations of turbulence in simple flow cases.
Both homogeneous turbulence and turbulent plane channel flow are computed,
either through direct numerical simulations (DNS) or through large eddy simu-
lations (LES) where the effect of the smallest scales, the subgrid-scales (SGS),
are modelled. The simple flow cases allow the use of pseudo spectral methods
which yield a very accurate discretization and allow the focus to be put on the
turbulence dynamics rather than the details of the numerical methods. The
DNS methodology is a cornerstone in turbulence research and allows for de-
tailed studies of turbulence dynamics and structures. DNS has been performed
for the rotating channel flow, where many complicated features of turbulence
have been explored. New insights into the generation of large elongated struc-
tures in this flow were gained through these computations. DNS was also used
for statistical stationary homogeneous turbulence, where a forcing method was
developed which extends the range of useful DNS. The DNS results from the
rotating channel flow have also been used in the development of SGS models for
LES. In the homogeneous turbulence case LES is used with simple SGS models
to investigate the features of high Reynolds number turbulence dynamics, and to
determine weather accurate high Reynolds number calibrations of standard sta-
tistical turbulence models can be obtained. The stochastic approach is adopted
to describe the random behaviour of the subgrid-scales in the plane channel flow.
This strongly increases the variance and reduces the length scale of the model,
while the mean behaviour is unchanged. A large effort has been put in the op-
timization of the numerical codes on various super computers to increase the
effective Reynolds number in the simulations.

Descriptors: Turbulence, Direct numerical simulation, Large eddy simulation,
Homogeneous flow, Plane channel flow, subgrid-scales, parallel computers



Preface

This thesis considers Large eddy simulation and direct numerical simulation of
simple flows. The thesis is based on the following papers.

Paper 1. Alvelius, K. and Johansson, A. V. and Hallbiack, M. 1999 ‘An LES
study of the Smagorinsky model and calibration of slow-pressure strain rate
models’

submitted to European Journal of Mechanics/B Fluids

Paper 2. Alvelius, K. 1999 ‘Random Forcing of three-dimensional homogeneous
turbulence’
in Physics of Fluids A, 11 (7), 1880-1889

Paper 3. Alvelius, K. and Johansson, A. V. 1999 ‘LES computations and
comparison with Kolmogorov theory for two-point pressure-velocity correlations
and structure functions for globally anisotropic turbulence’

accepted for publication in Journal of Fluid Mechanics

Paper 4. Alvelius, K. 1999 ‘A pseudo spectral method for LES of homogeneous
turbulence’

Paper 5. Alvelius, K. and Johansson, A. V. 1999 ‘Stochastic Modelling in LES
of a turbulent channel flow with and without system rotation’

Paper 6. Alvelius, K. and Johansson, A. V. 1999 ‘DNS of rotating turbulent
channel flow at various Reynolds numbers and Rotation numbers’
submitted to Journal of Fluid Mechanics

Paper 7. Alvelius, K. and Skote, M. 1999 ‘The performance of a spectral sim-
ulation code for turbulence on parallel computers with distributed memory’
submitted to STAM Journal on Statistical and Scientific Computing

The papers are here re-set in the present thesis format. Some of them are based
on publications in conference proceedings [3], [2], [4], [7]-
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CHAPTER 1

Introduction

Turbulence is characterized by fluctuating motions with a large range of
scales. Most flow states in nature are turbulent, e.g. the atmospheric flow and the
wind blowing air close to the earth surface. In the flow around a moving object,
turbulence is usually triggered. With the development of modern transportation
vehicles, such as cars and aeroplanes, the need to find optimal body shapes with
good aerodynamic properties, e.g. low air resistance, arose. Since those flows
usually are turbulent, tools for predicting turbulence are needed. Already in the
classical experiments of the flow in a long tube by Reynolds [56] in the 1880:s
the irregular motion of turbulence was observed. This kind of chaotic behaviour
yields a vigorous mixing of the fluid which is very important in many engineering
applications such as the turbulent mixing of air and gasoline in a combustion
engine. Indeed, the turbulent diffusion is usually much larger than the molecular
one.

For Newtonian fluids the flow motion is described by the Navier-Stokes equa-
tions together with suitable boundary conditions. In three-dimensional flows the
non-linear term in the Navier-Stokes equations transfers energy from the large,
energy producing scales, to the small dissipative scales. The largest scale in the
flow is typically determined by the characteristic size of the flow domain, and the
smallest dissipative scales are determined by the kinematic viscosity and the dis-
sipation rate (the rate of energy transfer into heat, which in ‘equilibrium’ equal
the transfer from large to small scales). The large and small scales can formally
be defined as the integral length scale A and the Kolmogorov micro length scale
n = (v/e®)'/* (see e.g. Tennekes and Lumley [64]). The Reynolds number

Re = <%>/ | 1)

is hence a measure of the range scales in the flow. The large and small length
scales are also associated with the corresponding large and small time scales
respectively.

The Navier-Stokes equations need to be discretized, both in time and space,
in order to yield a solution. The discretization gives algebraic equations with
many degrees of freedom that need to be solved at each discrete time in a di-
rect numerical simulation (DNS). The range of spatial scales, in all three spatial
directions, needs to be resolved by the collocation of the discretization points
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which from (1) is related to the Reynolds number as N ~ Re/*. Even for mod-
erate Reynolds number this yields a very large number of degrees of freedom,
challenging for even the fastest super-computers available today. The time step
in the numerical integration is determined by the stability condition of the nu-
merical method, the CFL condition At < min (Axz;/u;) (see e.g. Fletcher [20]),
where Az; is the grid size, u; the velocity component and the minimum is taken
over the whole computational domain and in all spatial directions. This yields
a time step which usually is significantly smaller than the smallest dissipative
scale. The time integration has to be performed over time scales larger than the
largest time scale in the flow T ~ A /U, where U is a characteristic large velocity
scale, in order to significantly reduce (or preferably eliminate) the influence of
the non-physical initial conditions. Hence, the number of iterations needed for a
DNS scales as T//At ~ Re®/* (where it has been assumed that Az; ~ n and that
the largest values u; ~ U). Altogether, the large number of degrees of freedom
and the large number of discrete integration steps gives that not many prob-
lems of engineering interest can be solved by direct integration of the discrete
Navier-Stokes equations.

To this day the statistical approach, where the ensemble averaged field is
considered, is the most dominating. The mean velocity field is governed by the
Reynolds averaged Navier-Stokes (RANS) equations. In the RANS equations a
large part of the information about the flow is averaged out, and put into the
Reynolds stress tensor, which is unknown and needs to be modeled in terms
of averaged quantities. The solution is often stationary and relatively smooth
allowing for much fewer collocation points resulting in a significant reduction
of the computational effort. In addition, statistical quantities are constant in
homogeneous directions and in which cases fewer dimensions can be considered.
However, the model for the Reynolds stress tensor adds an uncertainty to whether
the solution appropriately describes the flow. The models have to be calibrated
in many different flow configurations, and sometimes model parameters are tuned
for the specific problem type considered.

In another approach, which has become wide spread with the development
of modern computers, only the smallest scales are modeled in so called large
eddy simulations (LES). This is formally done by filtering the flow field with a
low pass filter in order to damp out the small scale fluctuations. The LES field
is then smoother than the corresponding DNS field with the filter width as the
characteristic length scale to be resolved by the collocation points. This reduces
the computational effort, allowing for higher Reynolds number simulations. The
filtered velocity field is governed by the filtered Navier-Stokes equations, and the
effect from the so called subgrid-scales enters through the subgrid scale (SGS)
stress tensor. Since a major part of the flow is resolved by the filtered field
the importance of the SGS stress tensor is much smaller than the Reynolds
stress tensor in the RANS approach. Also, since the subgrid scales are much



smaller than the energy producing large scales they are expected to be relatively
universal, allowing for simpler models to be used. The information of the flow
configuration enters directly through the dynamic response of the filtered field.
Although the models may be simpler in the sense that they are expected to
have the same behaviour in different flow cases, they should also capture the
fluctuating behaviour of the real SGS stresses, with e.g. the correct variance,
length and time scales. They should mimic the somewhat chaotic behaviour
inherent in the smallest scales of turbulence. This suggests that the area of
stochastic processes, and stochastic differential equations is a useful tool in the
development of good SGS models.

LES is under development to become an engineering tool for complex flows.
The early efforts in LES (in the early 1970:s) where focused on the atmospheric
boundary layer applications although the simple case of channel flow was used as
a test case, see e.g. Deardorff [17] and the early model work by Smagorinsky [61].
Examples of cases where LES has been successful are the simple channel flow
[50], the backwards facing step [9], the flow past a cube attached to a channel
wall [37] and developing jets [53]. The channel flow work of Moin and Kim [50]
became a landmark in LES and also triggered much of the following DNS work
in e.g. turbulent channel flow (see Kim et al. [30]). LES can also be used as a
tool for the study of turbulence dynamics [12], [6] and be used for calibration
of RANS models [5]. Although LES is believed to yield good predictions of the
flow behaviour, there is always, as in the Reynolds averaged case, an uncertainty
of the SGS model which only can be eliminated in DNS. The various models are
usually tested with the aid of DNS data from simple flow cases. Hence, the DNS
tool is still very important, and is to be considered as a cornerstone in the area
of turbulence research.

In research both DNS and LES are usually performed in simple flow domains
in order to simplify the numerical implementation, and also reduce the associated
numerical errors that always follow from the numerical discretization. Simple
domains allow for higher Reynolds numbers in the simulations as compared to
more complex flows. They also allows isolation of certain specific effects that
are of interest, simplifying the procedure of interpreting the results and drawing
correct conclusions. Two of the most simple flow cases are isotropic or anisotropic
homogeneous flow and the plane channel flow. They can be discretized through
spectral methods which are very accurate, and most of the results in the literature
are from these test cases.

In the early LES of plane channel flow by Deardorff [17] the number of grid
points was 6720. Moin and Kim [50] used 5 x 105 grid points in their LES, and
later Kim et al. [30] used 4 x 10% grid points to perform well resolved DNS.
More recent DNS [51] at higher Reynolds numbers were performed with up to
38 x 108 grid points. In the present thesis LES of homogeneous turbulence have
been performed with up to 17 x 10° spectral modes (see paper 3), and DNS



of plane channel flow have been performed with up to 24 x 10% spectral modes
(see paper 6). The 3/2-dealiasing method which is used gives the corresponding
physical space representation on 58 x 10% and 53 x 10% grid points for the two
cases respectively.



CHAPTER 2

Filtering the turbulence field

2.1. Governing equations

The flow state is, in the incompressible case, described completely by the
velocity, u, and pressure, p, fields, which time development are governed by the
Navier-Stokes equations and the continuity equation

%Jru% _ _lop v 0%u; (2)
ot Tox;  pouxy dz;ox;’
8uj _

where p is the fluid density and v is the kinematic viscosity. LES solves for a
filtered velocity field. A filter may be either temporal or spatial. The latter is the
most commonly considered, and the spatial filtering of a quantity f is denoted
by an overbar ~ and is defined in physical space as

foo= [ 160K, (4)
where G is a filter function that satisfies the condition
o0
/ G(x,x")d%z' = 1. (5)
— 00

The filter should reduce the small scale fluctuations, giving a smoother field that
can be represented on a coarser numerical grid than the unfiltered field. The
filter operator is characterized by a filter width A, which is representative of
the smallest length scale that can be retained in the filtered field. Since the
filtered field should be resolved by the numerical mesh the filter width is often
associated with the grid scale. The scales that are not included in the filtered
field are therefore referred to as subgrid scales (SGS). The SGS part is defined
as

f'=r-1 (6)
so that the sum of the resolved (filtered) field and the SGS field equals the
original unfiltered field. For a general filter function we have

f=f-7#o. (7)

Hence, the filter operator also alters scales that are within the filter width. If
the filter function can be written as G(x — x') it is said to be homogeneous. For
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Filter Filter function G(x — x') Fourier transform G (k)

e sin (ke (2 —2%)) 1 1f|k1|§kc
= w(ei—ai) 0 otherwise

Spectral cut-off

- 372 — G _A252
Gaussian (ng) / exp (%) exp( A24]c )
/A3 if |z, — 2} < LA sin (3 Ak;)
Top-hat SR R vV
op-ha { 0 otherwise =h s Ak

TABLE 1 The filter function.

homogeneous filters the filter operator and the spatial derivative commute. The
filtering can also (for homogeneous filters) be performed in Fourier space where
each Fourier component of f is

fk) =G(k)f(k), (8)
where the hat ~ denotes the Fourier transform and k is the wavenumber vector.
The condition (5) translates in spectral space to G (0) = 1, and a reduction of
the small scale fluctuation is obtained if G(k) < 1 for large wavenumbers k.

The most commonly considered filters are the spectral cut-off filter, the
Gaussian filter and the top-hat filter (table 1). The spectral cut-off filter in
table 1 is referred to as ‘cubic’. It is also common to consider ‘spherical’ spectral
cut-off filters with the Fourier transformed filter function

. {1 if |k| < ke

Gk) = 9)

0 otherwise

Filtering the Navier-Stokes equations and the continuity equation using a homo-
geneous filter one obtains the LES equations for the filtered velocity and pressure
fields

ou; _ Ou; 10p 62ﬂ,i 873-]'
] - - — 1
ot +u]6:13]~ pamz +V8mj6:n]~ 8mj ’ ( 0)
ouy, .
e 0, (11)

where 7;; = W;u; — 4;4; is the SGS stress tensor which contains the informa-
tion about the effect of the small subgrid scales on the filtered field. The LES
equations are similar to the NS equations, and may be solved with similar nu-
merical methods together with a model for 7;;. The SGS stress tensor can be
modeled at different levels of complexity, just as the Reynolds stresses in the
Reynolds averaged approach. However, the filtered field contains more informa-
tion about the flow than the corresponding averaged field which can be used in
the modeling. One example is the Germano identity (see (17) below), which has
no counterpart in the Reynolds averaged approach. The Germano identity gives
an algebraic relation between the SGS stresses at different filter levels, which is
used to determine model constants in the SGS stress models.



In order to solve the equations for the filtered field boundary conditions for
u; and p are needed. Since the field at the wall is averaged over some domain
close to the wall it is not obvious what the boundary conditions for u; and p
should be.

The SGS stress tensor can be modeled either directly, in terms of the filtered
field, or through a transport equation where, due to the closure problem of tur-
bulence, new unknown terms will appear that needs to be modelled. A common
approach to develop RANS models at different levels is to study the transport
equation for the unknown quantity. This may also be used in SGS modelling. It
is common to consider the following decomposition of the SGS stress tensor

— 3701 . — ]3] . TR TU U 1o,
Tij = Wity — Uity + Guj + Gjug + ujug, (12)

where the first two terms are referred to as the Leonard stresses, the second two
are the cross stresses and the last is the Reynolds stresses. It should be noted
that the Leonard stresses and cross stresses are not Galilean invariant under
system translatation, only the sum of them are [63], [28]. In this expression the
difference between 1;; and W clearly reflects the property of the filtering in
(7). Although the different parts in (12) can be modelled separately they are
usually treated and modelled together. In order to obtain a general approach,

transport equations are formed for the generalized central moments defined by

T(U,i, Uj) = ujuj — ﬂ,iﬂj, (13)
T(wi, uj, ug) = Wuiuy, — T (uj, ug) — U7 (ur, ui) — GpT (Ui, uj) — Uiy, (14)

T(us, wj, Uk, W) = ... (15)
For homogeneous filters Germano [21] derived

T(us, wj) e + UrT(Us, Uj) &
= —(7(us, uj, ug) + 7(p, wi)j + 7(P, u;)0ik, — VT (Uis Uj) k) k
+ 27(p, 8i5) — 20T (Ui k, Uj k)
— (i, )Tk — T(Uj, Uk) Tk, (16)

where the notation 0/0t =; and 9/0z), =, has been introduced. The left hand
side is the material derivative. The first term on the right hand side is a transport
term, the second is a pressure-strain rate term, the third is a viscous destruction
term and the fourth is a production term. Transport equations for the unknown
central moments in this equation may be derived in an analogous way. If the
filter has the property f' = 0, we get 7(u;,u;) = W and 7(u;, uj, ug) = ujuluy
and equation (16) reduces to the transport equation for the Reynolds stresses
in the RANS approach. This is true for e.g. the spectral cut-off filters and the
standard ensemble average, where the main difference between those two cases
is that the spectral cut-off filters yields rapidly fluctuating solutions compared
to the slowly varying statistical solution.



There is an algebraic relation between the SGS stresses at different filter
levels. Denote a new filter operator by a tilde 7, and define the sub-test scale
(STS) stress tensor at the ~ filter level as Ty; = Wu; — w;iij. The following
relation, the Germano identity [22], is readily obtained

Tij —Tij = TU] — Ujuj; — TU,] + UU; = UjUj — Ui

L;;. (17)

L;; can be calculated exactly in LES since @; is known and the ~ filter may be
applied explicitly. The relation can be used to determine SGS model parameters
by substituting the model expressions into (17). Usually a similarity assumption,
where the model parameter value is the same on both filter levels, is made.

2.1.1. Complex flows. The typical use of LES is in complex flows, where
the geometrical effects enters directly through the resolved field. These cases
requires the use of non-homogeneous filters which introduces extra unknowns
[25], which have to be put into an extra term in (10). Close to solid walls the large
energy carrying scales become relatively small, which implies that the filter scale
needs to be reduced compared to that for the outer flow. This generates strained
and strongly distorted grids (filters). At high Reynolds number flows the extra
grid refinement that is needed in LES close to the walls gives a significant increase
in computational effort, and special near wall treatment may be required.

2.1.2. The filtering problem. The solution of the LES equations gives
the filtered fields, @ and p, and for appropriate interpretation of the results the
filter function G should be known. Some statistics of the velocity field u; can be
obtained exactly by defiltering @; if G is known, e.g. the kinetic energy spectrum
can be computed through

E(k) = |G(k)| 7 E7 (k), (18)

where Ef is the energy spectrum computed of the filtered field. It is, how-
ever, impossible to recover the complete unfiltered velocity field, since there are
infinitely many different fields u which give the same filtered quantity a.

Ideally, the information which is lost in the filter should be recovered in the
model of 7;;. In practice, however, it is difficult to determine the correspondence
between the filter and SGS stresses. The only way to know how the filter affects
the SGS stress tensor seems to be to explicitly filter an unfiltered velocity field,
either from an experiment or from a DNS.

Although all the information about the filtering is put into the SGS stress
tensor, commonly used SGS models do not damp the velocity fluctuations suffi-
ciently at the filter level, which implies the need of an extra explicit filtering not
connected to the model. The explicit filtering could be applied at each time step
in the LES by integrating the filter kernel over the whole velocity field. This is
referred to as explicit filtering in the literature [44]. It can also be performed
by the numerical method, where e.g. a second order central difference scheme
corresponds to a top hat filter. This is referred to as implicit filtering [52]. The



numerical grid in the finite difference scheme will not allow scales in the flow
smaller than the grid-size and will therefore act as a filter. For spectral cut-off
filters the relation f = f holds and the truncation of the Fourier series at each
time step guarantees a spectral cut-off filter.

The explicit filtering suggests that one may have some control over the choice
of filter. However, since the LES velocity field does not equal the unfiltered field
it is difficult to interpret what you get after the explicit filtering has been applied.

2.1.3. The nature of the SGS stresses. The SGS stresses act on the
smallest resolved scales in the flow. When these are locally much smaller than
the largest scales, their behaviour can be expected to be relatively universal
allowing simple SGS stress models to be used. The SGS stresses do, however,
fluctuate in time and space with certain characteristic time and length scales.
Besides the mean behaviour, these fluctuating characteristics are expected to
have an important effect on the flow.

The non-linear terms, in the three dimensional Navier-Stokes equations,
transfer, on average, energy from the large scale motions to the small scales.
This average transfer, which is the most important feature to capture in LES
with an SGS model, is the outcome of two large, but partially cancelling effects:
a forward energy transfer and a somewhat smaller backward transfer. A physi-
cal backscatter from unresolved to resolved scales would correspond to a locally
negative dissipation by the SGS stress tensor.

The local value of 7;; at a spatial point is the result of two large terms which
are averaged with some weight function (the filter function) around that point.
The behaviour of 7;; will thus depend on the filter function. The SGS stress
tensor is positive semidefinite if and only if the filter function, G(x,x’), is non-
negative for all values of x and x' [65]. For a positive semidefinite tensor 7;; the
following relations are valid

Tii > 0, |Tl‘j| < (TiiTjj)1/2, det (Tl‘j) > 0 ’L,] € {1,2,3} (19)

(no summation over repeated indices ‘¢’ and ‘5’ here). The relations in (19) can
be used to give constraints for the SGS model when non-negative filters are used.
The Gaussian and the top-hat filters are non-negative for all values of x and x’
while the spectral cut-off filters are not.

2.1.4. The physical and numerical resolution. A large part of the in-
ertial sub-range needs to be resolved for the LES to be relatively independent of
the SGS stress model. In flows with complicated geometries, e.g. around a car
or an aeroplane, it is not possible to ensure sufficient resolution everywhere in
the flow due to limitations in computer power. In these cases a relatively large
part of the velocity field is put into the sub-grid scale and it is important to have
a good model which captures the main physical features of the flow.

The errors in an LES come both from the physical resolution determined by
the filter width, through the SGS stress model, and from the numerical resolution



of the smallest LES scale. It is desirable to have a numerical method of such
accuracy that the numerical errors are much smaller than the SGS stress term.
If one uses a lower order method the filter width should be larger than the
numerical grid [44]. However, for a given problem to be solved with a specific
computer, LES can be considered as a method of resolving the field as well as
possible and trying to compensate for the errors coming from the unresolved field
through the SGS stresses. In order to make the numerical errors small the filter
scale should be resolved. For a given computer and a given size of the numerical
grid the only way of resolving the filter scale better is to make it larger, since
the smallest grid size is fixed. This will, however, make the errors from the SGS
model larger.

In LES research it is important to be able to separate different effects from
each other and the numerical errors have to be controlled. In an industrial
application however, the best possible prediction of a certain quantity is required.
This implies that there is a matter of balancing the numerical grid size compared
to the filter width to minimize the total error.

2.2. Subgrid-scale stress models

In LES the resolved velocity field contains more information as compared to
the mean velocity field in the RANS approach. This information can be used in
the SGS models. Zero equation models, e.g. the Smagorinsky model [61], the
spectral model [13], the mixed model [8], the stress similarity model [43] and the
velocity estimation model [18] are the most commonly used so far in LES. In
homogeneous turbulence the main task of the SGS model is to dissipate energy
from the filtered field in a proper way, and simple models that predict a correct
energy transfer to the sub-grid scales are normally sufficient. Close to solid walls
special treatment, e.g. with damping of model parameters, is usually needed.

The common eddy viscosity models are absolutely dissipative and do not
yield backscatter. Other standard models have been found to yield backscatter
in the sense of locally negative dissipation. I has been argued that standard
deterministic models cannot capture the random fluctuating behaviour of the
SGS stresses, and do not give physically correct backscatter [10], [58]. Instead
a stochastic term which models the random behaviour of backscatter should
be added to the model for the SGS stress tensor. Stochastic processes have
successfully been used by several authors [11], [46], [58] to improve the SGS
stress model. In particular, the backscatter seems to be an important factor
close to solid walls [46], [55] and models that take it into account have been
found to work well [46].

2.2.1. The Smagorinsky model. The Smagorinsky model [61] is based
on an eddy viscosity formulation, and reads

1
Tij = ngk(sij - 2VT§ij; (20)



where 5;; = (@;; + Gj,;)/2 is the filtered strain rate tensor. The eddy viscosity
can from dimensional arguments be estimated by vy ~ u(k.)/k., where u(k.)
stands for a velocity scale at the filter level, indicated by the wavenumber k..
The velocity scale is estimated through the kinetic energy spectrum, E, as

u(ke) ~ / E(ke)ke, (21)
and if k. lies in an inertial sub-range we get
vr ~ e BB, (22)

The dissipation by the subgrid scales in the LES is given by € = 2v75,,5,, and
k. ~ A7! where A is the filter width. This gives an expression for the eddy
viscosity based on a local estimation of the dissipation

vr = (CSA)2(2§pq§pq)1/2: (23)

where (s is the Smagorinsky constant. The trace 7 in the model is treated
together with the pressure according to § = p/p+ 7k /3 and remains an unknown
quantity.

The value of the Smagorinsky constant has been a frequent issue of investi-
gation. Lilly [38] derived a high Reynolds number expression

1 D) 3/4
C.=+ (5) , (24)

where « is the Kolmogorov constant. It has, however been found that if the
value of « obtained from an LES with the Smagorinsky model is inserted in the
Lilly formula then the computed value of C; becomes inconsistent with the one
used in the simulation. In paper 1 a more thorough analysis were performed to

get the expression
1 2 3/4
Cs = F <3_a> ’ (25)

where f is a correction function which depends on the low wave number en-
ergy spectrum shape, the ratio between third and second order moments and
the actual shape of the filter function. Through this expression the previous
inconsistencies of the Lilly formula were resolved.

The value of the filter width A in the Smagorinsky model is for isotropic
grids naturally chosen proportional to the grid spacing. For anisotropic meshes
Deardorff [17] suggested the choice A,, = (A;A,A,)'/?, which is reasonable for
moderately strained meshes. Scotti et al. [59] derived, from integration of energy
spectra over the spectral filter domain, corrections to A, for strongly strained
meshes. In the dynamic approach Cs and A are essentially treated together, and
determined locally in the flow by the filtered field.



2.2.2. The spectral model. The spectral model is formulated in spectral
space, and is closely related to the Fourier transformed filtered Navier-Stokes
equations

;+ikk7fi\w :—ikiﬁ—llklﬁi—ik‘k’fik. (26)
p
The spectral model [13] reads

Zkk‘lﬁzk = VT(k)k2’fLi, (27)

—3.03k, E(ke,t)
k ke

ve(k) = Ko 3/%[0.441 + 15.2exp ( (28)
and it is derived for a ‘spherical’ spectral cut-off filter with a cut-off wavenumber
k. and should therefore be used only together with a spectral method, where the
spectral cut-off gives a truncation of the Fourier series for the velocity and the
pressure fields. In this formulation the divergence of the complete SGS stress
tensor is modeled, not only the deviatoric part. The contribution from SGS
stresses to the pressure in the Poisson equation enters as k;k;7;;. This term is
zero for the spectral model and it does not influence the pressure directly, which,
however, the true SGS stress tensor does.

In the derivation of (28) it has been assumed that k. lies in a region with a
k=5/3 slope of the energy spectrum. For the more general case where k. lies in
a region with a k=™ slope, where m < 3, Métais and Lesieur [49] derived

5—m

vr = 0.31 . (29)

k ke

A {1 + 34.5exp (_3'03’%)] E(ke,t)
m+1

This expression becomes equivalent to (28) when m = 5/3.

2.2.3. The structure function model. The spectral model has been ex-
tended to a physical space implementation in the structure function model [49],
where again the divergence of the SGS stresses is modelled as

3
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6:@7—” 6:1:j[ P il + v a2 " (30)
where v and I/gvn) are expressed in terms of e.g. the local structure function

Fy averaged for separations smaller than the filter width
Fy(x,Ax,t) = (||a(x,t) — a(x +r,8)|]*)r=nz- (31)

Compte et al. [15] introduced the selective and filtered structure function model
in order to reduce the sensitivity to large scale fluctuations in the original ap-
proach.



2.2.4. The mixed model and the stress similarity model. It has been
observed in experiments and DNS calculations that there seems to be a rather
high correlation between the SGS stresses, 7;;, and

Ui — ﬁﬁj. (32)
It could therefore be a good idea to model the SGS stresses in terms of this
expression. However, despite the high correlation with 7;; the expression (32) is
not dissipative enough, and a combination of (32) and the Smagorinsky model
is often used in the mixed model of Bardina et al. [§]

Tij = _2VT§ij + Cb(’aiﬂ,j — ﬁﬁj) (33)

This model depends directly on the type of filter used, and for the spectral cut-
off filters the term w;u; — usu; is identically zero. Another model, the stress
similarity model, based on the same type of ideas, has been proposed by Liu et
al. [43]

Tij = _2Vt§ij + (1172] — ’aﬂ:j,]) (34)
In this form both models (33) and (34) give explicit expressions for the trace of
the SGS stress tensor and they also allow backscatter, i.e. energy transfer from
the sub-grid scales to the resolved scales. Recently the performance of different
scale similarity models was investigated in different flows by Sarghini et al. [57].

2.2.5. The velocity estimation model. In the velocity estimation model
by Domaradzki [18] the definition of 7;; is used together with a model v; for the
complete velocity field

Tij = V05 — V;Vj. (35)

It was concluded that the main energy transfer between the resolved and subgrid
scales is performed by scales that are only twice as small as the filter width [18].
The estimated field v is hence represented on a mesh that is twice as fine as for
the filtered field u, and is determined by requiring that

S

i (36)

Vi = Ui, Ui =

at each spatial point of the filtered field, where the filter ~ is wider than the
original. The coefficients for the wavenumbers k greater than k. are corrected
by giving them the same phase as the computed non-linear term w;u;, while the
amplitude is kept unchanged. This yields a model that has a high correlation
with the true stresses, as was the case also for the mixed model, and also provides
sufficient net dissipation.

A similar approach in which the definition of 7;; is used with a modelled
complete velocity field was proposed by Geurts [23] in the so called inverse mod-
eling. He emphasized that the filter should appear explicitly in the model, and
for a given filter the complete velocity field can be realized accurately from the



filtered velocity field down to scales of the filter width. An approximate inver-
sion method for a top-hat filter was considered, and the resulting model showed
a better performance than the mixed model by Bardina [8].

2.2.6. The dynamic Smagorinsky model. In the dynamical approach
the Germano identity (17) is used to determine the Smagorinsky model constant
locally in time and space. If a scale similarity assumption is made the model for
the STS stress tensor T;; may be written as

1 -
Tl’j = ngk(Sij - 2VT§ij; (37)
vy = (CSA)2 (2§pq§pq)l/2: (38)

where A is the filter width corresponding to the = filter. The ratio between the
two filter widths A/A is usually set to two. Now we put C? = C which is allowed
to be negative. Insert the models for 7;; and T;; into equation (17) to obtain
22]

1
Mij = (A)?Bij — (&), (40)
where
5@']’ = (2§pq§pq)l/2§ija Qij = (2§pq§pq)1/2§ij- (41)

Here it has been assumed that C' is varying slowly enough in space so that it is
possible to exclude it from the filtering. This is an over-determined system with
five equations and one unknown, C'. The least square method suggested by Lilly
[39] may be applied to yield a solution

_ 1 leMlm

C= )
2 MP‘IMP‘I

(42)
which fluctuates in time and space, and may be both positive and negative. A
negative value of C' gives a negative dissipation which causes numerical prob-
lems, and therefore both the numerator and denominator in the expression (42)
are usually averaged in homogeneous directions to increase the numerical stabil-
ity. In lack of homogeneous directions temporal averaging may be applied [48].
Another approach to achieve numerical stability is to restrict the value of C' to
a certain interval [52]. If the constant is not assumed to be slowly varying it has
to be kept inside the filtering [24]. This results in an equation which involves
calculation of a Fredholm integral of the second kind

Cz) = / k(e y)C()dy + £(z) (43)
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The value C can be calculated iteratively [54] by substituting the value of C' from
the previous time step into the integral to get a new value of C. This process
can be repeated with the new value of C' until the iteration converges.

The performance of the dynamical model depends on the filter that is used.
It has been found that the spectral cut-off filters do not work as well in combi-
nation with the dynamical model as the Gaussian and top-hat filters [43]. This
is due to the lack of coupling between the resolved field and the SGS field caused
by the spectral cut-off.

2.2.7. Transport equation models. Analogous to the Reynolds averaged
approach one may derive transport equations either for the SGS stresses directly
or for the quantities in the SGS stress models. Yoshizawa [68] used a trans-
port equation for m to define a velocity scale for the eddy viscosity in the
Smagorinsky model. To define an eddy viscosity one needs a velocity and a
length scale. In LES the characteristic length scale of the largest subgrid scales
is given explicitly by the filter width, A. There are two natural quantities from
which it is possible to form a velocity scale, the generalized SGS kinetic energy
Ks = Thi/2 and the ‘SGS turbulent kinetic energy’ M/Z The first condition
in (19) suggests that Kz is a suitable quantity to solve for with a transport
equation, which is readily obtained by taking the trace of equation (16), only
in the case of positive filters. For non-positive filters, e.g. the spectral cut-off
filters, Kz may be negative locally in the flow which makes the modeling of
the unknowns in the equation more difficult, and it might be preferable to use
a transport equation for m in that case. The transport equation can be com-
bined with more complicated algebraic relations than the ordinary eddy viscosity
hypothesis to give the SGS stress tensor.

A transport equation for 7, may effectively be used together with a dynamic
SGS model [10]. Since the value of 7y is known from the transport equation
there is a limit, when using positive filters, on how much backscatter that can
be allowed. A locally negative value of C corresponds to backscatter, which will
reduce T, and if the negative value is persistent 75, will approach zero which
will eliminate the backscatter. It is also possible to use the dynamical approach
to determine model constants in the transport equation analogous as for the
Smagorinsky model [10]. This approach was adopted by Sohankar et al. [62]
in the LES of flow around a square cylinder, using the dynamic Smagorinsky
model, with the velocity scale in the eddy viscosity determined by Kgg. The



modelled equation for Ky, was solved with a dynamic determination, not only
for the Smagorinsky model parameter but also for the included model parameter
for the dissipation of Kz which was determined locally without averaging.

2.2.8. Stochastic models. The main motivation to use stochastic mod-
els has been to increase the chaotic behaviour and to obtain physically correct
backscatter [58].

Leith [36] proposed to model the backscatter through the divergence (accel-
eration) of 7;; as the curl of a random vector potential ¢;

_87-,-]- quj

B By (40
J
where, from dimensional arguments
A2
o = Cy|5A¢t*/2 <Kt> gi (47)

and g; are unit Gaussian random numbers, generated independently at each time
and grid point. To this model the Standard Smagorinsky model is added, which
yields a positive net dissipation, and through this formulation the correct k*
energy spectrum shape of the backscatter is obtained. The zero time correlation
gives the explicit time step At dependence in the expression for ¢;. This yields a
non-zero net contribution to the backscatter from the acceleration-acceleration
correlation, which is C?|5]*A* " Var|g;], where Var[g;] is the variance of g;.

The same approach, to express the divergence of 7;; as the curl of a vector
potential, was used by Mason and Thomson [46], but a finite time correlation
was considered. However, in the simulations, the temporal correlation was from
simplicity chosen to be zero. The results of their simulation was significantly
improved close to the solid wall when the stochastic model was included.

Schumann [58] stressed the importance of a finite model timescale to obtain
correct influence on particularly higher order statistics. The random part of the
model was formulated as

2
Ri]’ =7 <’Ui’Uj - nggs(Sij> ) (48)

where 7 is a model parameter in the range 0 and 1. The random velocity com-
ponents v; are given by

1/2
o= (22) " x, (49)

where X; is a stochastic process with unit variance. Schumann chose the time
scale of the stochastic process to

To = CroA /K12 (50)

sgs



where Kz is determined through a modelled transport equation and ¢, is of
order unity. When the timescale of the stochastic model is finite it is important
that it is considered in the Lagrangian sense.

2.2.9. Evaluation of SGS stress models. When developing SGS stress
models there is a continuous need to evaluate the performance. This can either be
done in so called a priori tests, where a resolved velocity field is used to compute
various SGS quantities through the definition, or in actual LES with the model.
In the a priori tests the resolved velocity field is usually obtained from DNS [47],
[14], although experimentally measured fields have also been used [43]. The a
priori test offers a fast method to statistically evaluate the prediction of different
quantities, with the reservation that the modelled quantities are evaluated from
a field slightly different from the supposed LES field. In addition, only the
statistical predictions of the model is captured, not the dynamic interaction
with the filtered field in the solution process. In order to know how the model
really performs, actual LES have to be carried out, and compared with either
DNS or experiments.

2.3. Stochastic differential equations

Stochastic processes have to be considered when stochastic modelling is used.
Many stochastic processes can be generated through stochastic differential equa-
tions (SDE) on the form

/ X (s) = / (s + / o ()W (s), (51)

where W is a Wiener process, and p and o are two stochastic processes adapted
to the sigma algebra generated by {W;}s<¢. For a more detailed description see
e.g. Oksendal [34]. The SDE (51) is usually written on a simper form as

AX () = p(t)dt + o (H)dW (2). (52)

The Wiener process was originally developed to model the irregular behaviour of
Brownian motion. In recent years the theory of stochastic differential equations
have gained large interest with the appearance of different derivatives on the
financial market, such as the pricing of call options for the stock market with
the famous Black-Scholes formula. Stochastic analysis can also be used to prove
various features of some partial differential equations through the Feynman-Kac
representation. In turbulence research it has been used to derive realizability
conditions for second-moment closures in the RANS approach [19].

Due to the irregularity of the Wiener process, the ordinary Riemann integral
cannot, be used. Instead the It6 integral is defined, from which the It6 calculus
follows. The Itd formula gives a rule for differentiating stochastic processes
Z(t) = f(t,X(t)) where X(t) is given on the form (52), which due to the large
irregularities of W becomes different than the ordinary rules for deterministic
functions. The differential of a stochastic process Z can formally be obtained



by standard Taylor expansion up to second order terms together with the basic
computational rules

(AW)? =dt, (dt)> =0, dedW =0. (53)
The statistical properties, given by the expectation value E, of a stochastic

process X, which differential can be written on the form (52), can easily be
obtained by using the fact that

E { /0 tX(s)dW(s)} ~0. (54)

The properties of X is determined by p and o. When stochastic processes are
used in SGS stress modelling, they have to be considered in a Lagrangian sense,
with extra transport terms added to the SDE.

2.3.1. Example: random forcing. The flow driven by a random volume
force f with the property (f(t)f(s)) = Var[f]6(t — s) is closely related to that of
Brownian motion. Consider the simple differential equation

du(t
WO~ s, w0 =0, (55)
which captures the main features of the random forcing methodology. Since f(t)

is independent of u(t) the solution is directly given by

u(t) = /0 F(s)ds. (56)

The mean power input by the random force is
1d ¢ ¢ 1
Safu@u(t)) = [ (f(t)f(s))ds = Var[f] | 6(t —s)ds = SVar[f].  (57)
The discrete form of (55) reads
Upt1 = Up + fnAt, (58)
and yields the power input
EU%H —uj,
2 At
On average u,, f, is zero and in order for the discrete equation to approximate
the solution of (55) it is necessary that f, = (At)~'/2X, where X is a stochastic
variable with Var[X]=Var][f].

The random Brownian motion can in the simplest case be described by the
SDE

1
= SSaAt+unf. (59)

do(t) = dW (1), v(0) =0, (60)

where v here is the position of a particle. It has the trivial solution

v(t):/o AW (s) = W (). (61)



Define the ‘kinetic energy’ as K, = v?/2. The It6 computational rules gives that
K, is described by the SDE

dK,(t) = v(t)dv(t) + % (dv(t))* = v(B)dW (t) + %dt. (62)
This yields the solution
¢ 1
Ko(t) = /0 o(s)AW (s) + 2, (63)

and from the computational rules above it follows that the mean power input
is 1/2 since the expectation value of the integral is zero. From (61) v can be
written as

U(thrl) = v(tn) +/t " dW(s) = U(tn) + AWm (64)

where AW,, = W (t,+1) — W (t,). By comparing the discrete solution to u with
the expression for v it follows that they are equal if f,,At = AW,,. The process
AW,, has zero mean and variance t,,41 —t, = At. Thus if Var[f] = 1 the discrete
solution to u ‘equals’ the solution for v.

The method of random forcing, hence, corresponds to a large scale ‘Brownian
motion’ of the velocity field, which generates turbulence fluctuations at smaller
scales through energy cascading action of the nonlinear terms. The ‘constant’
power input is hence dissipated by the small scales which prevents the energy in
the large scales to grow unlimitedly. If the random force is homogeneous in time
a statistically stationary state will be reached, where the large scale production
is balanced by the small scale dissipation.



CHAPTER 3

Numerical implementation

3.1. Numerical discretization

The LES of a specific problem is closely linked to the numerical implemen-
tation. Since the typical mesh spacing is of the same order as the filter width
discretization errors may be relatively large. For complex flows it is important
to have a numerical method that works well together with the LES, and do not
add large undesired numerical errors that may reduce the performance of the
LES. In the present work the focus is put on the LES method, and to investigate
how well an LES can do under the ideal conditions of negligible numerical errors,
and to get a better understanding of the role of the SGS stresses. Therefore, the
simple flow cases of homogeneous turbulence and turbulent plane channel flow
are used, with geometries that allow for very accurate numerical discretizations.

Fourier series expansion of the flow field can with advantage be used in the
spatial directions where periodic boundary conditions are imposed. If a quantity
u(x) is Ly-periodic, i.e if u(zx + L) = u(z) for all z, it can be expanded in a
Fourier series

o0

u(z) = Z () exp (ikx), (65)

l=—00

where k; = 12n/L,, i = (0,1) and 4(I) is the Fourier transform of u(z). For
reasonably smooth functions u(z) the contribution to the sum usually becomes
very small for high values of |!|. In a numerical discretization only a finite number
of terms || < N are included in the summation to yield the approximation
uN (x) ~ u(x), where the contribution of the remaining is negligible. In this
formulation the spatial derivative of a function is simply obtained as

N

o @) = Y ika(l) exp (iky), (66)
[=—N

which is exact for u”. Hence, this procedure does not introduce any additional
errors from the spatial differentiating, as compared to finite difference methods
which introduce errors related to the grid size Az = L,/2N. Typically finite
difference methods may be of second order, which means that the finite difference
errors will be proportional to (Ax)?2.

20



In homogeneous turbulence simulations Fourier series representation is used
in all three spatial directions since they are all periodic. In the plane channel
flow it is not suitable to use Fourier series representation in the non-homogeneous
wall-normal direction. Instead Chebyshev series is used [45], which allows more
rapid fluctuations of the discretized function close to the walls. The location of
the collocation points in physical space gives that Fourier transforms actually
can be used to obtain the Chebyshev coefficients.

A velocity-vorticity formulation is used to eliminate the fluctuating pressure
from the governing equations, and the original four equations are reduced to
two equations for two unknowns. The nonlinear terms from the NS equations
are computed in physical space, where the velocity field is represented on a 3/2
finer mesh, resulting in a 3/2-energy conserving dealiasing method. Fast Fourier
transforms are used when changing between the spectral space and physical space
representations.

The discrete time integration procedures are implicit for the linear parts of
the NS equations and explicit for the nonlinear parts. For the homogeneous case
this gives that the Fourier coefficients are uncoupled and explicit expressions
may be obtained. In the plane channel flow, the spatial derivatives in the wall-
normal direction gives due to the use of Chebyshev series coupled coefficients.
This results in a tri-diagonal equation systems which have to be solved at each
iteration.

3.2. Computer optimization

The progress made in the area of turbulence simulations is related to the
development of super computers. Modern super computers usually have several
processors on which the program should run in parallel. The large primary
memory of the computer is either shared by all processors or distributed locally
on each processor. Generally a simulation code cannot run on both types of
systems without modifications. A processor has either scalar or vector registers.
A scalar processor performs operations on one element at the time with fast
access to memory, whereas a vector processor performs operations on several
elements at the same time.

The homogeneous simulation code has been parallelized to run on both dis-
tributed and shared memory systems (paper 4). The performance on vector
processor machines (e.g. Cray J90 and C90) is very good due to the long loops
associated with the spectral formulation. On scalar processor machines (e.g.
IBM SP2 and Cray T3E) the performance is relatively low due to the intense
memory access of the fast Fourier transforms. The scalar processor machines,
however, often have a large number of processors which gives an overall high
performance.

The plane channel flow simulation code was already optimized for shared
memory systems with vector processors. In paper 7 a low storage parallelization



method for distributed memory and scalar processor machines is developed and
tested. The scalability with the number of processors used was found to be ex-
cellent while the intense memory access in the FFT reduces the single processor
performance. However, due to the large number of processors the overall com-
puter speed becomes relatively high, 3.5 Gflop/s (floating point operations per
second) on 64 processors on an IBM SP2.



CHAPTER 4

Probing homogeneous turbulence with LES

4.1. LES of decaying homogeneous turbulence

Homogeneous turbulence is an important simple flow case in which turbu-
lence models can be tested and developed. It allows the use of pseudo spectral
methods in all spatial directions which yields a very accurate discretization. A
globally homogeneous flow can of course never be realized in an experimental set
up. However, a flow can often be considered to be locally homogeneous, where
the quantities vary slowly relative to typical turbulence length scales, e.g. in the
center of a wind-tunnel with zero pressure gradient at sufficient high Reynolds
number.

Decaying homogeneous turbulence is perhaps the simplest flow case and has
been studied by a large number of authors, both experimentally and numerically
[16], [26], [12], [60]. In this case there are no mean velocity gradients and the
budget equation for the turbulence kinetic energy K reduces to

dK

where € is the dissipation rate of K. The turbulence can either be isotropic
or anisotropic in which case the pressure-strain rate redistributes the energy
between the different velocity components towards an isotropic state.

Although being a very simple case, good simulations of decaying turbulence
can be difficult to perform. For small times the flow state will strongly depend on
the initial conditions. These are usually not physically correct, which means that
the turbulence need some time to develop in the simulation. During this time
the typical large length scale grows, the Reynolds number decreases, and in the
case of anisotropic turbulence the degree of anisotropy is reduced. Hence, in this
case the effective time of a useful simulation is often limited. The time needed
to obtain a physically correct turbulent state will to a large extent depend on
the initial kinetic energy spectrum shape. In decaying homogeneous turbulence
a more or less self-similar decay of the kinetic energy spectrum is observed [12].
This is associated with self-similar decay of K and e, motivated by the form of
the budget equation (67), in which case the ratio

_ KIS
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FI1GURE 1 The initial behaviour of C.» for a k* initial low wavenum-
ber spectrum relaxed with LES using the Smagorinsky model. (a):
A k%3 high wavenumber spectrum. (b): A k™! high wavenumber
spectrum.

is constant. The larger scales have timescales which are much larger compared
to the smaller scales. Hence, the small wavenumber region adjusts it self much
slower to a self similar decay compared to the high wavenumbers. For high
wavenumbers, at high Reynolds numbers, there should be a k=5/3 inertial sub-
range in the LES. A k? or k* low wavenumber spectrum is often considered [27]
as the final state of decaying turbulence, where the value of the exponent actu-
ally determines the value of Ce2 [27]. In the simulations of Chasnov [12] a k!
kinetic energy spectrum was observed in the intermediate wavenumber region.
This suggests that if the initial kinetic energy spectrum is constructed with a k~!
slope instead of a k~5/3 slope for the intermediate and high wavenumber region
a self-similar decay will be reached faster in the simulations. In paper 4 differ-
ent initial conditions are tested for both isotropic and anisotropic high Reynolds
number turbulence simulations. Figures la,b show that the k~! initial high
wavenumber spectrum indeed relaxes faster to a self similar decay compared to
the k~>/3 initial spectrum.

4.2. Calibration of RANS models using LES

Standard models for the RANS approach need to be calibrated in different
flows against computational or experimental data. In typical engineering flows
the Reynolds number is very large. DNS yields very good predictions of various
flow quantities, but can only be used at moderate Reynolds number. LES can
give much higher Reynolds numbers as compared with DNS and is an important
tool in RANS model calibrations.



The governing equations for the mean velocity field U; = (u;) is the Reynolds
averaged Navier-Stokes equations. These equation contain an additional un-
known term, the ‘Reynolds stress tensor’

Rij = (ujuj), (69)

(]
which carries the information about the fluctuating velocity field u} = u; — Us.
This term has to be modelled, either directly through the mean velocity field or
through additional transport equations for e.g. the turbulence kinetic energy K
and the dissipation rate e. However, these transport equations contain additional
unknown terms which need to be modelled. A common approach is to use the

transport equations for R;; in the modelling
(% + UJ%) Rij = Pi]’ + Hi]’ — €ij — % <Jz]m - ng:i) , (70)
where P;; is the production tensor, II;; is the pressure-strain rate tensor, €;;
is the dissipation rate tensor and .J;j,, is the turbulence transport tensor. P;;
produces turbulence energy through the interaction with the mean velocity field
and needs no modelling, II;; redistributes energy between different components
through pressure fluctuations, J;;,, gives spatial redistributions through turbu-
lent transport and €;; dissipates turbulence kinetic energies into heat. For a more
detailed description see e.g. [27]. The equation (70) can either be solved directly,
with models for the new unknown terms, or be used to derive simpler models,
e.g. the explicit algebraic Reynolds stress model by Wallin and Johansson [66].
In many flows, e.g. strongly strained flows and flows subjected to system

rotation, the pressure-strain rate term

I = = (0'si) ()
is very important and determines to a large extent the degree of anisotropy of
R;j. It is hence a key term in turbulence modelling. From the formal solution
of the the pressure, through the Poisson equation, it can be divided into a rapid
part, which responds directly to changes in the mean velocity field, and a slow
part, which is related to the fluctuating field. The pressure-strain rate is divided
accordingly. In the absence of mean velocity gradients the rapid part of IL;;
vanishes and the slow part equals the total pressure strain rate. Models for the
slow-pressure strain rate may hence be calibrated in LES of decaying anisotropic
homogeneous turbulence.

From LES only the filtered velocity field is available for direct computation
of turbulence statistics. In calibrations of turbulence models it is important that
the contribution from the subgrid-scales is small. In paper 1 it is shown that the
contribution to the pressure-strain rate is dominated by the large scales, and is
well suited for LES to compute, and for simulations with the filter scale in the
inertial sub-range, which is isotropic, good high Reynolds number predictions can
be obtained. The direct effect of the SGS stress model on a statistical quantity



is usually low, except for the dissipation rate, since it represents the action of
the small scales. The indirect effect, through the resolved velocity field may be
of greater importance, and should when possible be checked e.g. by an increase
in physical resolution.

4.3. Numerical experiments of turbulence inertial range dynamics

Homogeneous flows are frequently used to study turbulence theories. The
classical turbulence theory was to a large extent founded by Kolmogorov [32],[31]
who derived the famous inertial range laws for the structure functions B;; _x(r) =
(0u;du; - - - Jug), where du; = u;(x +r) — u;(x). Denote by w; a velocity compo-
nent parallel to the separation r, and by u; a velocity component orthogonal to
r. For high Reynolds numbers it follows from dimensional arguments that

By = C (er)?? (72)

for inertial range separations r, where C' is a constant (no summation over re-
peated indices ‘I’ and ‘¢’). The spectral equivalent to (72) is the well known
k~5/3 law for the kinetic energy spectrum. For statistically stationary and glob-
ally isotropic turbulence Kolmogorov derived, from the Navier-Stokes equations,
the Kolmogorov equations from which it follows

4
Blll = —36’!’, (73)
But = ——er (74)
itt = 156 .

Lindborg [40] used the generalized Kolmogorov equations, which contains ad-
ditional time derivative terms, to show that the theories also are valid in glob-
ally homogeneous and locally isotropic turbulence. Later the conditions were
relaxed even further by Hill [29] and Lindborg [42] to only require locally homo-
geneous and locally isotropic turbulence. The classical theories require both high
Reynolds numbers and that the time derivative terms should be negligible to be
valid [41], [1]. In decaying turbulence at finite Reynolds numbers the time deriv-
ative term reduces the effective range in the simulation where the inertial laws
are valid. Therefore it is preferable to perform turbulence simulations which are
statistically stationary. This requires a production term which can balance the
dissipation term in (67). The turbulence can in homogeneous flows be driven by
either mean velocity gradients or a volume force to yield statistically stationary
states. The latter is the most commonly used in the literature since simulations
with mean velocity gradients are associated with the difficult numerical issue
of re-meshing strongly strained meshes [26]. Forcing methods for homogeneous
turbulence do usually not try to capture any actual turbulence generating mech-
anism that occur in nature. This means that the development of the large scale
structures is of little interest in these cases, and besides generating large scale
turbulence fluctuations the forcing should have as little effect on the flow as
possible.



FIGURE 2 The stationary state of E(k)e 2/°k*/% for forced homo-
geneous simulations at different Reynolds numbers R = P'/®k; /v,
R = 10.7 (dashed line), R = 23.0, 59.0 and R = 101.3 (solid lines),
and the simulation by Yeung and Zhou[67] (circles). This is compared
with the values 2.3 and 1.7 (dotted lines).
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FI1GURE 3 The Reynolds stress components, Ri1, Rao (solid lines),
R33 (dotted line), Ri2, Ros and R3; (dashed dotted lines) for a forced
simulation of anisotropic axisymmetric turbulence at R = 10.7.

In paper 2 a new random forcing procedure is developed and tested. By
using a random volume force which is uncorrelated in time the power input
P is determined solely by the force-force correlation, and can be determined
a priori. The forcing is concentrated at wavenumber k; and is neutral in the
sense that it does not correlate with any turbulent structure. Figure 2 shows
that the beginning of an inertial subrange may be perceived in DNS forced at
the largest scales with the present methodology. Also the shape of the kinetic
energy spectrum for wavenumbers greater than the forcing wavenumber seems to
be relatively universal and insensitive of the forcing procedure. With the random
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FIGURE 4 The two-point correlations —5By;;/(4eL), I = 1,2,3 (solid
curves), —15By;/(4eL) (small dotted curves) and the curve r/L
(large dots). L is the side length of the computational box. (a):
Decaying turbulence. (b): Forced turbulence.

forcing approach it is also possible to generate globally anisotropic turbulence
states (figure 3).

In paper 3 the random forcing procedure is used in statistically stationary
anisotropic homogeneous LES, with a large number of spectral modes (2563)
in order to resolve the non-linear dynamics of the turbulence. Corresponding
decaying LES were also carried out. Figure 4 shows the third order structure
functions By and By, from the two cases. The decaying simulation clearly fails
to reproduce the well known inertial laws due to the influence of the time deriv-
ative term. The forced simulation, however, yields excellent agreement, and the
advantage with the forcing method is clear. This effect is also demonstrated for
isotropic turbulence in paper 2. The possibility to generate globally anisotropic
states allows for the study of the inertial range behaviour for the two-point pres-
sure velocity correlation in globally anisotropic flows. From the simulations in
Paper 3 the new theories of Lindborg [40] and Hill [29] are for the first time
given a numerical verification.



CHAPTER 5

LES and DNS of turbulent channel flow

5.1. Turbulent plane channel flow

The turbulent plane channel flow incorporates the effect of mean shear and
solid boundaries, and still allows simple implementation of accurate discretiza-
tions. Standard pseudo-spectral methods may be used in the discretization pro-
cedure. The flow is statistically stationary and may hence yield results that are
independent of artificial initial conditions. The plane channel is considered to
be infinitely long and wide, with the characteristic large scale determined by the
distances of the walls. In a numerical simulation periodic boundary conditions
are used in the streamwise and spanwise directions. In order for this numerical
artifact not to affect the flow the computational domain has to be large enough
so that two-point correlations are small for large separations.

The turbulence in the plane channel flow is characterized by the wall friction
Reynolds number Re, = du,/v, where ¢ is half the channel width and u, =
(v|dU/dy|wan)*/? is the wall friction velocity. At high Reynolds numbers there is
believed to exist a so called logarithmic region where the mean velocity exhibits
the logarithmic profile U/u, = 1/klog (yu,/v) + C, where & is the von Karman
constant and C' is the logarithmic intercept.

The first computation of the turbulent plane channel flow was actually an
LES, performed by Deardorff [17] who used synthetic boundary conditions in the
log-layer instead of the natural no-slip condition at the wall. Later, in the LES
of Moin & Kim [50], the wall region was explicitly computed to yield detailed
information about the turbulent structures. The first well resolved DNS (at
Re, = 180) was presented in the landmark paper by Kim et al. [30]. The
Reynolds number was increased up to Re, = 590 in the recent DNS by Moser
et al. [51].

5.1.1. The effect of system rotation. The effect of curvature and rota-
tion are important in many flows, e.g. in all turbo-machinery. The two effects are
somewhat similar in nature. By adding system rotation in the spanwise direction
in the plane channel flow, the effect of rotation can be studied with simple and
accurate methods. This effect enters into the governing equations as a Corio-
lis term, which divides the channel into a stable side, where the turbulence is
suppressed, and an unstable side, where the turbulence is enhanced (figure 1).
The importance of the Coriolis term is usually measured by the rotation number
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FIGURE 1 The rotating channel flow
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FIGURE 2 The normalized two-point correlation of fluctuating
streamwise velocities for separations r;, in the x-direction as a func-
tion of y.

Ro = 26Q/Uy,, where Uy, is the mean bulk velocity and  is the system angu-
lar velocity. The behaviour of the turbulence statistics are rather complicated,
and is a true challenge for a statistical model to capture. The rotating channel
flow has been computed by several authors [33],[35]. However, the effect of the
domain size has not been negligible in these computations.

For certain rotation rates the interaction of the turbulence is enforced by
the Coriolis force in such a way that very long elongated structures are formed.
In paper 6 Simulations at the Reynolds numbers Re, = 130, 180, 360 and
various rotation numbers were carried out. For the highest Reynolds number
384 x 257 x 240 grid points was used in the streamwise, wall-normal and spanwise
directions on a 47 x 20 x 4w0/3 domain. For the critical rotation numbers
associated with long structures a 870 x 26 x 37d domain was used. Figure 2
shows the two-point correlation in the streamwise direction of the streamwise



fluctuating velocity plotted for separations up to half the channel length for
both non-rotating and rotating (Ro=0.055) flows at Re, = 180. Here, the long
structures in the Ro=0.055 case show up as persistent high values of the two-
point correlation. In a simulation these structures have to be captured by the
computational domain which strongly increases the computational effort. Even
though the computational domain is twice as long (87d) in the rotating case
as compared to the non-rotating case (47d) the two-point correlation still has
significant values for the largest separations.

The high Reynolds number simulations are well suited for the development
of SGS stress models in LES. LES quantities can be evaluated directly in a priori
tests, and compared with actual LES results. The data base generated from the
DNS will be used both for the development of SGS models for LES and for
RANS-based turbulence models.

5.2. Stochastic SGS modelling

In paper 5 the stochastic model approach is used to improve the statis-
tical properties of the SGS model. The stochastic models are added to the
standard Smagorinsky model, which both numerically are treated together with
non-linear terms. Since a large part of the total dissipation is treated explic-
itly the Chebyshev-tau method was needed to enhance the numerical stability as
compared to the integration method [45]. Both a stochastic Smagorinsky param-
eter approach and a Schumann like model approach were used and implemented
with a finite timescale of the stochastic processes. This implies that the SDE
for the stochastic processes have to be solved in a Lagrangian sense and extra
transport equations have been added to the code.

The stochastic terms reduce the length scale and increase the variance of
the SGS dissipation and also give backscatter. The mean velocity profile is rel-
atively insensitive to the stochastic term, while the second order moments are
strongly affected. The stochastic Smagorinsky parameter approach may yield
locally negative viscosity which is numerically unstable and is controlled by arti-
ficially restricting the allowed values of the negative dissipation. The Schumann
approach, however, yields stable solution without restrictions.



CHAPTER 6

Concluding remarks

LES is supposed to perform well at high Reynolds numbers and for complex
geometries. Complex geometries involves the implementation of more general
(lower-order) methods with significantly strained and anisotropic meshes. The
development of good numerical methods which in an accurate manner allows for
different resolutions in different regions is needed. Also, high Reynolds numbers
yield very small structures close to solid walls. Typically these cannot be resolved
by LES, and the development of new boundary conditions or near wall solution
procedures are essential to make LES the leading engineering tool for turbulent
flows. These issues are, however, not considered in this thesis. Instead focus is
put on ‘well resolved’ LES predictions where the numerical errors are negligible
and the smallest large scale is well with in the filter scale.

From the present simulations it is seen that accurate high Reynolds number
calibrations of RANS models may be achieved by LES. It is also shown that that
LES can successfully be used to verify high Reynolds number turbulence theo-
ries unattainable for DNS. The developed random forcing method can be used
as a tool to yield relatively high Reynolds number DNS from which SGS models
can be evaluated. However, the homogeneous turbulence case is not sufficient
to completely test the performance of turbulence models. The turbulent plane
channel flow includes more physical effects, through the presence of the walls,
and can be used to get a good qualitative knowledge about the performance of
various models. A thorough parametric study of the effect of system rotation
for various Reynolds numbers through DNS resulted in a large data base which
can be used in the turbulence modelling process. The statistical quantities show
complicated behaviour, due to the combined effects of the wall and system ro-
tation, from which good calibrations of RANS models may be obtained. Also
turbulence structures, which a good LES should be able to capture, show a
relatively complicated development for the different rotation rates.
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