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Abstract

This thesis deals with numerical simulations of turbulence in simple 
ow cases.

Both homogeneous turbulence and turbulent plane channel 
ow are computed,

either through direct numerical simulations (DNS) or through large eddy simu-

lations (LES) where the e�ect of the smallest scales, the subgrid-scales (SGS),

are modelled. The simple 
ow cases allow the use of pseudo spectral methods

which yield a very accurate discretization and allow the focus to be put on the

turbulence dynamics rather than the details of the numerical methods. The

DNS methodology is a cornerstone in turbulence research and allows for de-

tailed studies of turbulence dynamics and structures. DNS has been performed

for the rotating channel 
ow, where many complicated features of turbulence

have been explored. New insights into the generation of large elongated struc-

tures in this 
ow were gained through these computations. DNS was also used

for statistical stationary homogeneous turbulence, where a forcing method was

developed which extends the range of useful DNS. The DNS results from the

rotating channel 
ow have also been used in the development of SGS models for

LES. In the homogeneous turbulence case LES is used with simple SGS models

to investigate the features of high Reynolds number turbulence dynamics, and to

determine weather accurate high Reynolds number calibrations of standard sta-

tistical turbulence models can be obtained. The stochastic approach is adopted

to describe the random behaviour of the subgrid-scales in the plane channel 
ow.

This strongly increases the variance and reduces the length scale of the model,

while the mean behaviour is unchanged. A large e�ort has been put in the op-

timization of the numerical codes on various super computers to increase the

e�ective Reynolds number in the simulations.

Descriptors: Turbulence, Direct numerical simulation, Large eddy simulation,

Homogeneous 
ow, Plane channel 
ow, subgrid-scales, parallel computers



Preface

This thesis considers Large eddy simulation and direct numerical simulation of

simple 
ows. The thesis is based on the following papers.

Paper 1. Alvelius, K. and Johansson, A. V. and Hallb�ack, M. 1999 `An LES

study of the Smagorinsky model and calibration of slow-pressure strain rate

models'

submitted to European Journal of Mechanics/B Fluids

Paper 2. Alvelius, K. 1999 `Random Forcing of three-dimensional homogeneous

turbulence'

in Physics of Fluids A, 11 (7), 1880{1889

Paper 3. Alvelius, K. and Johansson, A. V. 1999 `LES computations and

comparison with Kolmogorov theory for two-point pressure-velocity correlations

and structure functions for globally anisotropic turbulence'

accepted for publication in Journal of Fluid Mechanics

Paper 4. Alvelius, K. 1999 `A pseudo spectral method for LES of homogeneous

turbulence'

Paper 5. Alvelius, K. and Johansson, A. V. 1999 `Stochastic Modelling in LES

of a turbulent channel 
ow with and without system rotation'

Paper 6. Alvelius, K. and Johansson, A. V. 1999 `DNS of rotating turbulent

channel 
ow at various Reynolds numbers and Rotation numbers'

submitted to Journal of Fluid Mechanics

Paper 7. Alvelius, K. and Skote, M. 1999 `The performance of a spectral sim-

ulation code for turbulence on parallel computers with distributed memory'

submitted to SIAM Journal on Statistical and Scienti�c Computing

The papers are here re-set in the present thesis format. Some of them are based

on publications in conference proceedings [3], [2], [4], [7].
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CHAPTER 1

Introduction

Turbulence is characterized by 
uctuating motions with a large range of

scales. Most 
ow states in nature are turbulent, e.g. the atmospheric 
ow and the

wind blowing air close to the earth surface. In the 
ow around a moving object,

turbulence is usually triggered. With the development of modern transportation

vehicles, such as cars and aeroplanes, the need to �nd optimal body shapes with

good aerodynamic properties, e.g. low air resistance, arose. Since those 
ows

usually are turbulent, tools for predicting turbulence are needed. Already in the

classical experiments of the 
ow in a long tube by Reynolds [56] in the 1880:s

the irregular motion of turbulence was observed. This kind of chaotic behaviour

yields a vigorous mixing of the 
uid which is very important in many engineering

applications such as the turbulent mixing of air and gasoline in a combustion

engine. Indeed, the turbulent di�usion is usually much larger than the molecular

one.

For Newtonian 
uids the 
ow motion is described by the Navier-Stokes equa-

tions together with suitable boundary conditions. In three-dimensional 
ows the

non-linear term in the Navier-Stokes equations transfers energy from the large,

energy producing scales, to the small dissipative scales. The largest scale in the


ow is typically determined by the characteristic size of the 
ow domain, and the

smallest dissipative scales are determined by the kinematic viscosity and the dis-

sipation rate (the rate of energy transfer into heat, which in `equilibrium' equal

the transfer from large to small scales). The large and small scales can formally

be de�ned as the integral length scale � and the Kolmogorov micro length scale

� = (�=�3)1=4 (see e.g. Tennekes and Lumley [64]). The Reynolds number

Re =

�
�

�

�4=3
; (1)

is hence a measure of the range scales in the 
ow. The large and small length

scales are also associated with the corresponding large and small time scales

respectively.

The Navier-Stokes equations need to be discretized, both in time and space,

in order to yield a solution. The discretization gives algebraic equations with

many degrees of freedom that need to be solved at each discrete time in a di-

rect numerical simulation (DNS). The range of spatial scales, in all three spatial

directions, needs to be resolved by the collocation of the discretization points

1



which from (1) is related to the Reynolds number as N � Re
9=4. Even for mod-

erate Reynolds number this yields a very large number of degrees of freedom,

challenging for even the fastest super-computers available today. The time step

in the numerical integration is determined by the stability condition of the nu-

merical method, the CFL condition �t � min (�xi=ui) (see e.g. Fletcher [20]),

where �xi is the grid size, ui the velocity component and the minimum is taken

over the whole computational domain and in all spatial directions. This yields

a time step which usually is signi�cantly smaller than the smallest dissipative

scale. The time integration has to be performed over time scales larger than the

largest time scale in the 
ow T � �=U , where U is a characteristic large velocity

scale, in order to signi�cantly reduce (or preferably eliminate) the in
uence of

the non-physical initial conditions. Hence, the number of iterations needed for a

DNS scales as T=�t � Re
3=4 (where it has been assumed that �xi � � and that

the largest values ui � U). Altogether, the large number of degrees of freedom

and the large number of discrete integration steps gives that not many prob-

lems of engineering interest can be solved by direct integration of the discrete

Navier-Stokes equations.

To this day the statistical approach, where the ensemble averaged �eld is

considered, is the most dominating. The mean velocity �eld is governed by the

Reynolds averaged Navier-Stokes (RANS) equations. In the RANS equations a

large part of the information about the 
ow is averaged out, and put into the

Reynolds stress tensor, which is unknown and needs to be modeled in terms

of averaged quantities. The solution is often stationary and relatively smooth

allowing for much fewer collocation points resulting in a signi�cant reduction

of the computational e�ort. In addition, statistical quantities are constant in

homogeneous directions and in which cases fewer dimensions can be considered.

However, the model for the Reynolds stress tensor adds an uncertainty to whether

the solution appropriately describes the 
ow. The models have to be calibrated

in many di�erent 
ow con�gurations, and sometimes model parameters are tuned

for the speci�c problem type considered.

In another approach, which has become wide spread with the development

of modern computers, only the smallest scales are modeled in so called large

eddy simulations (LES). This is formally done by �ltering the 
ow �eld with a

low pass �lter in order to damp out the small scale 
uctuations. The LES �eld

is then smoother than the corresponding DNS �eld with the �lter width as the

characteristic length scale to be resolved by the collocation points. This reduces

the computational e�ort, allowing for higher Reynolds number simulations. The

�ltered velocity �eld is governed by the �ltered Navier-Stokes equations, and the

e�ect from the so called subgrid-scales enters through the subgrid scale (SGS)

stress tensor. Since a major part of the 
ow is resolved by the �ltered �eld

the importance of the SGS stress tensor is much smaller than the Reynolds

stress tensor in the RANS approach. Also, since the subgrid scales are much



smaller than the energy producing large scales they are expected to be relatively

universal, allowing for simpler models to be used. The information of the 
ow

con�guration enters directly through the dynamic response of the �ltered �eld.

Although the models may be simpler in the sense that they are expected to

have the same behaviour in di�erent 
ow cases, they should also capture the


uctuating behaviour of the real SGS stresses, with e.g. the correct variance,

length and time scales. They should mimic the somewhat chaotic behaviour

inherent in the smallest scales of turbulence. This suggests that the area of

stochastic processes, and stochastic di�erential equations is a useful tool in the

development of good SGS models.

LES is under development to become an engineering tool for complex 
ows.

The early e�orts in LES (in the early 1970:s) where focused on the atmospheric

boundary layer applications although the simple case of channel 
ow was used as

a test case, see e.g. Deardor� [17] and the early model work by Smagorinsky [61].

Examples of cases where LES has been successful are the simple channel 
ow

[50], the backwards facing step [9], the 
ow past a cube attached to a channel

wall [37] and developing jets [53]. The channel 
ow work of Moin and Kim [50]

became a landmark in LES and also triggered much of the following DNS work

in e.g. turbulent channel 
ow (see Kim et al. [30]). LES can also be used as a

tool for the study of turbulence dynamics [12], [6] and be used for calibration

of RANS models [5]. Although LES is believed to yield good predictions of the


ow behaviour, there is always, as in the Reynolds averaged case, an uncertainty

of the SGS model which only can be eliminated in DNS. The various models are

usually tested with the aid of DNS data from simple 
ow cases. Hence, the DNS

tool is still very important, and is to be considered as a cornerstone in the area

of turbulence research.

In research both DNS and LES are usually performed in simple 
ow domains

in order to simplify the numerical implementation, and also reduce the associated

numerical errors that always follow from the numerical discretization. Simple

domains allow for higher Reynolds numbers in the simulations as compared to

more complex 
ows. They also allows isolation of certain speci�c e�ects that

are of interest, simplifying the procedure of interpreting the results and drawing

correct conclusions. Two of the most simple 
ow cases are isotropic or anisotropic

homogeneous 
ow and the plane channel 
ow. They can be discretized through

spectral methods which are very accurate, and most of the results in the literature

are from these test cases.

In the early LES of plane channel 
ow by Deardor� [17] the number of grid

points was 6720. Moin and Kim [50] used 5� 105 grid points in their LES, and

later Kim et al. [30] used 4 � 106 grid points to perform well resolved DNS.

More recent DNS [51] at higher Reynolds numbers were performed with up to

38� 106 grid points. In the present thesis LES of homogeneous turbulence have

been performed with up to 17 � 106 spectral modes (see paper 3), and DNS



of plane channel 
ow have been performed with up to 24� 106 spectral modes

(see paper 6). The 3=2-dealiasing method which is used gives the corresponding

physical space representation on 58 � 106 and 53� 106 grid points for the two

cases respectively.



CHAPTER 2

Filtering the turbulence �eld

2.1. Governing equations

The 
ow state is, in the incompressible case, described completely by the

velocity, u, and pressure, p, �elds, which time development are governed by the

Navier-Stokes equations and the continuity equation

@ui

@t
+ uj

@ui

@xj
= �

1

�

@p

@xi
+ �

@
2
ui

@xj@xj
; (2)

@uj

@xj
= 0; (3)

where � is the 
uid density and � is the kinematic viscosity. LES solves for a

�ltered velocity �eld. A �lter may be either temporal or spatial. The latter is the

most commonly considered, and the spatial �ltering of a quantity f is denoted

by an overbar � and is de�ned in physical space as

�f(x) =

Z 1

�1

f(x0)G(x;x0)d3x0; (4)

where G is a �lter function that satis�es the conditionZ
1

�1

G(x;x0)d3x0 = 1: (5)

The �lter should reduce the small scale 
uctuations, giving a smoother �eld that

can be represented on a coarser numerical grid than the un�ltered �eld. The

�lter operator is characterized by a �lter width �, which is representative of

the smallest length scale that can be retained in the �ltered �eld. Since the

�ltered �eld should be resolved by the numerical mesh the �lter width is often

associated with the grid scale. The scales that are not included in the �ltered

�eld are therefore referred to as subgrid scales (SGS). The SGS part is de�ned

as

f
0 = f � �f; (6)

so that the sum of the resolved (�ltered) �eld and the SGS �eld equals the

original un�ltered �eld. For a general �lter function we have

f
0

= �f � f 6= 0: (7)

Hence, the �lter operator also alters scales that are within the �lter width. If

the �lter function can be written as G(x�x0) it is said to be homogeneous. For

5



Filter Filter function G(x� x0) Fourier transform Ĝ(k)

Spectral cut-o� �3
i=1

sin (kc(xi�x
0

i
))

�(xi�x0

i
)

�
1 if jkij � kc

0 otherwise

Gaussian
�

6
��2

�3=2
exp

�
�6jx�x0

j

�2

�
exp

�
��2k2

24

�
Top-hat

�
1=�3 if jxi � x

0

ij �
1
2
�

0 otherwise
�3
i=1

sin ( 1
2
�ki)

1
2
�ki

Table 1 The �lter function.

homogeneous �lters the �lter operator and the spatial derivative commute. The

�ltering can also (for homogeneous �lters) be performed in Fourier space where

each Fourier component of �f isb�f(k) = Ĝ(k)f̂(k); (8)

where the hat^denotes the Fourier transform and k is the wavenumber vector.

The condition (5) translates in spectral space to Ĝ(0) = 1, and a reduction of

the small scale 
uctuation is obtained if Ĝ(k) < 1 for large wavenumbers k.

The most commonly considered �lters are the spectral cut-o� �lter, the

Gaussian �lter and the top-hat �lter (table 1). The spectral cut-o� �lter in

table 1 is referred to as `cubic'. It is also common to consider `spherical' spectral

cut-o� �lters with the Fourier transformed �lter function

Ĝ(k) =

�
1 if jkj � kc

0 otherwise
: (9)

Filtering the Navier-Stokes equations and the continuity equation using a homo-

geneous �lter one obtains the LES equations for the �ltered velocity and pressure

�elds

@�ui

@t
+ �uj

@�ui

@xj
= �

1

�

@�p

@xi
+ �

@
2�ui

@xj@xj
�
@�ij

@xj
; (10)

@�uk

@xk
= 0; (11)

where �ij = uiuj � �ui�uj is the SGS stress tensor which contains the informa-

tion about the e�ect of the small subgrid scales on the �ltered �eld. The LES

equations are similar to the NS equations, and may be solved with similar nu-

merical methods together with a model for �ij . The SGS stress tensor can be

modeled at di�erent levels of complexity, just as the Reynolds stresses in the

Reynolds averaged approach. However, the �ltered �eld contains more informa-

tion about the 
ow than the corresponding averaged �eld which can be used in

the modeling. One example is the Germano identity (see (17) below), which has

no counterpart in the Reynolds averaged approach. The Germano identity gives

an algebraic relation between the SGS stresses at di�erent �lter levels, which is

used to determine model constants in the SGS stress models.



In order to solve the equations for the �ltered �eld boundary conditions for

�ui and �p are needed. Since the �eld at the wall is averaged over some domain

close to the wall it is not obvious what the boundary conditions for �ui and �p

should be.

The SGS stress tensor can be modeled either directly, in terms of the �ltered

�eld, or through a transport equation where, due to the closure problem of tur-

bulence, new unknown terms will appear that needs to be modelled. A common

approach to develop RANS models at di�erent levels is to study the transport

equation for the unknown quantity. This may also be used in SGS modelling. It

is common to consider the following decomposition of the SGS stress tensor

�ij = �ui�uj � �ui�uj + �uiu
0
j + �uju

0
i + u0ju

0
i; (12)

where the �rst two terms are referred to as the Leonard stresses, the second two

are the cross stresses and the last is the Reynolds stresses. It should be noted

that the Leonard stresses and cross stresses are not Galilean invariant under

system translatation, only the sum of them are [63], [28]. In this expression the

di�erence between �ij and u0iu
0

j clearly re
ects the property of the �ltering in

(7). Although the di�erent parts in (12) can be modelled separately they are

usually treated and modelled together. In order to obtain a general approach,

transport equations are formed for the generalized central moments de�ned by

�(ui; uj) � uiuj � �ui�uj ; (13)

�(ui; uj ; uk) � uiujuk � �ui�(uj ; uk)� �uj�(uk; ui)� �uk�(ui; uj)� �ui�uj�uk; (14)

�(ui; uj ; uk; ul) � ::: (15)

For homogeneous �lters Germano [21] derived

�(ui; uj);t + �uk�(ui; uj);k

= �(�(ui; uj ; uk) + �(p; ui)�jk + �(p; uj)�ik � ��(ui; uj);k);k

+ 2�(p; sij)� 2��(ui;k ; uj;k)

� �(ui; uk)�uj;k � �(uj ; uk)�ui;k; (16)

where the notation @=@t =;t and @=@xk =;k has been introduced. The left hand

side is the material derivative. The �rst term on the right hand side is a transport

term, the second is a pressure-strain rate term, the third is a viscous destruction

term and the fourth is a production term. Transport equations for the unknown

central moments in this equation may be derived in an analogous way. If the

�lter has the property f 0 = 0, we get �(ui; uj) = u0iu
0
j and �(ui; uj ; uk) = u0iu

0
ju
0

k

and equation (16) reduces to the transport equation for the Reynolds stresses

in the RANS approach. This is true for e.g. the spectral cut-o� �lters and the

standard ensemble average, where the main di�erence between those two cases

is that the spectral cut-o� �lters yields rapidly 
uctuating solutions compared

to the slowly varying statistical solution.



There is an algebraic relation between the SGS stresses at di�erent �lter

levels. Denote a new �lter operator by a tilde ~, and de�ne the sub-test scale

(STS) stress tensor at the ~� �lter level as Tij = guiuj � ~�ui~�uj . The following

relation, the Germano identity [22], is readily obtained

Tij � ~�ij = guiuj � ~�ui~�uj � guiuj + g�ui�uj = g�ui�uj � ~�ui~�uj � Lij : (17)

Lij can be calculated exactly in LES since �ui is known and the ~ �lter may be

applied explicitly. The relation can be used to determine SGS model parameters

by substituting the model expressions into (17). Usually a similarity assumption,

where the model parameter value is the same on both �lter levels, is made.

2.1.1. Complex 
ows. The typical use of LES is in complex 
ows, where

the geometrical e�ects enters directly through the resolved �eld. These cases

requires the use of non-homogeneous �lters which introduces extra unknowns

[25], which have to be put into an extra term in (10). Close to solid walls the large

energy carrying scales become relatively small, which implies that the �lter scale

needs to be reduced compared to that for the outer 
ow. This generates strained

and strongly distorted grids (�lters). At high Reynolds number 
ows the extra

grid re�nement that is needed in LES close to the walls gives a signi�cant increase

in computational e�ort, and special near wall treatment may be required.

2.1.2. The �ltering problem. The solution of the LES equations gives

the �ltered �elds, �u and �p, and for appropriate interpretation of the results the

�lter function G should be known. Some statistics of the velocity �eld ui can be

obtained exactly by de�ltering �ui if G is known, e.g. the kinetic energy spectrum

can be computed through

E(k) = jĜ(k)j�2Ef (k); (18)

where E
f is the energy spectrum computed of the �ltered �eld. It is, how-

ever, impossible to recover the complete un�ltered velocity �eld, since there are

in�nitely many di�erent �elds u which give the same �ltered quantity �u.

Ideally, the information which is lost in the �lter should be recovered in the

model of �ij . In practice, however, it is di�cult to determine the correspondence

between the �lter and SGS stresses. The only way to know how the �lter a�ects

the SGS stress tensor seems to be to explicitly �lter an un�ltered velocity �eld,

either from an experiment or from a DNS.

Although all the information about the �ltering is put into the SGS stress

tensor, commonly used SGS models do not damp the velocity 
uctuations su�-

ciently at the �lter level, which implies the need of an extra explicit �ltering not

connected to the model. The explicit �ltering could be applied at each time step

in the LES by integrating the �lter kernel over the whole velocity �eld. This is

referred to as explicit �ltering in the literature [44]. It can also be performed

by the numerical method, where e.g. a second order central di�erence scheme

corresponds to a top hat �lter. This is referred to as implicit �ltering [52]. The



numerical grid in the �nite di�erence scheme will not allow scales in the 
ow

smaller than the grid-size and will therefore act as a �lter. For spectral cut-o�

�lters the relation f = f holds and the truncation of the Fourier series at each

time step guarantees a spectral cut-o� �lter.

The explicit �ltering suggests that one may have some control over the choice

of �lter. However, since the LES velocity �eld does not equal the un�ltered �eld

it is di�cult to interpret what you get after the explicit �ltering has been applied.

2.1.3. The nature of the SGS stresses. The SGS stresses act on the

smallest resolved scales in the 
ow. When these are locally much smaller than

the largest scales, their behaviour can be expected to be relatively universal

allowing simple SGS stress models to be used. The SGS stresses do, however,


uctuate in time and space with certain characteristic time and length scales.

Besides the mean behaviour, these 
uctuating characteristics are expected to

have an important e�ect on the 
ow.

The non-linear terms, in the three dimensional Navier-Stokes equations,

transfer, on average, energy from the large scale motions to the small scales.

This average transfer, which is the most important feature to capture in LES

with an SGS model, is the outcome of two large, but partially cancelling e�ects:

a forward energy transfer and a somewhat smaller backward transfer. A physi-

cal backscatter from unresolved to resolved scales would correspond to a locally

negative dissipation by the SGS stress tensor.

The local value of �ij at a spatial point is the result of two large terms which

are averaged with some weight function (the �lter function) around that point.

The behaviour of �ij will thus depend on the �lter function. The SGS stress

tensor is positive semide�nite if and only if the �lter function, G(x;x0), is non-

negative for all values of x and x0 [65]. For a positive semide�nite tensor �ij the

following relations are valid

�ii � 0; j�ij j � (�ii�jj)
1=2

; det (�ij) � 0 i; j 2 f1; 2; 3g (19)

(no summation over repeated indices `i' and `j' here). The relations in (19) can

be used to give constraints for the SGS model when non-negative �lters are used.

The Gaussian and the top-hat �lters are non-negative for all values of x and x0

while the spectral cut-o� �lters are not.

2.1.4. The physical and numerical resolution. A large part of the in-

ertial sub-range needs to be resolved for the LES to be relatively independent of

the SGS stress model. In 
ows with complicated geometries, e.g. around a car

or an aeroplane, it is not possible to ensure su�cient resolution everywhere in

the 
ow due to limitations in computer power. In these cases a relatively large

part of the velocity �eld is put into the sub-grid scale and it is important to have

a good model which captures the main physical features of the 
ow.

The errors in an LES come both from the physical resolution determined by

the �lter width, through the SGS stress model, and from the numerical resolution



of the smallest LES scale. It is desirable to have a numerical method of such

accuracy that the numerical errors are much smaller than the SGS stress term.

If one uses a lower order method the �lter width should be larger than the

numerical grid [44]. However, for a given problem to be solved with a speci�c

computer, LES can be considered as a method of resolving the �eld as well as

possible and trying to compensate for the errors coming from the unresolved �eld

through the SGS stresses. In order to make the numerical errors small the �lter

scale should be resolved. For a given computer and a given size of the numerical

grid the only way of resolving the �lter scale better is to make it larger, since

the smallest grid size is �xed. This will, however, make the errors from the SGS

model larger.

In LES research it is important to be able to separate di�erent e�ects from

each other and the numerical errors have to be controlled. In an industrial

application however, the best possible prediction of a certain quantity is required.

This implies that there is a matter of balancing the numerical grid size compared

to the �lter width to minimize the total error.

2.2. Subgrid-scale stress models

In LES the resolved velocity �eld contains more information as compared to

the mean velocity �eld in the RANS approach. This information can be used in

the SGS models. Zero equation models, e.g. the Smagorinsky model [61], the

spectral model [13], the mixed model [8], the stress similarity model [43] and the

velocity estimation model [18] are the most commonly used so far in LES. In

homogeneous turbulence the main task of the SGS model is to dissipate energy

from the �ltered �eld in a proper way, and simple models that predict a correct

energy transfer to the sub-grid scales are normally su�cient. Close to solid walls

special treatment, e.g. with damping of model parameters, is usually needed.

The common eddy viscosity models are absolutely dissipative and do not

yield backscatter. Other standard models have been found to yield backscatter

in the sense of locally negative dissipation. I has been argued that standard

deterministic models cannot capture the random 
uctuating behaviour of the

SGS stresses, and do not give physically correct backscatter [10], [58]. Instead

a stochastic term which models the random behaviour of backscatter should

be added to the model for the SGS stress tensor. Stochastic processes have

successfully been used by several authors [11], [46], [58] to improve the SGS

stress model. In particular, the backscatter seems to be an important factor

close to solid walls [46], [55] and models that take it into account have been

found to work well [46].

2.2.1. The Smagorinsky model. The Smagorinsky model [61] is based

on an eddy viscosity formulation, and reads

�ij =
1

3
�kk�ij � 2�T �sij ; (20)



where �sij = (�ui;j + �uj;i)=2 is the �ltered strain rate tensor. The eddy viscosity

can from dimensional arguments be estimated by �T � u(kc)=kc, where u(kc)

stands for a velocity scale at the �lter level, indicated by the wavenumber kc.

The velocity scale is estimated through the kinetic energy spectrum, E, as

u(kc) �
p
E(kc)kc; (21)

and if kc lies in an inertial sub-range we get

�T � �
1=3

k
�4=3
c : (22)

The dissipation by the subgrid scales in the LES is given by � = 2�T �spq�spq and

kc � ��1, where � is the �lter width. This gives an expression for the eddy

viscosity based on a local estimation of the dissipation

�T = (Cs�)
2(2�spq�spq)

1=2
; (23)

where Cs is the Smagorinsky constant. The trace �kk in the model is treated

together with the pressure according to �q � �p=�+�kk=3 and remains an unknown

quantity.

The value of the Smagorinsky constant has been a frequent issue of investi-

gation. Lilly [38] derived a high Reynolds number expression

Cs =
1

�

�
2

3�

�3=4
; (24)

where � is the Kolmogorov constant. It has, however been found that if the

value of � obtained from an LES with the Smagorinsky model is inserted in the

Lilly formula then the computed value of Cs becomes inconsistent with the one

used in the simulation. In paper 1 a more thorough analysis were performed to

get the expression

Cs =
1

f�

�
2

3�

�3=4
; (25)

where f is a correction function which depends on the low wave number en-

ergy spectrum shape, the ratio between third and second order moments and

the actual shape of the �lter function. Through this expression the previous

inconsistencies of the Lilly formula were resolved.

The value of the �lter width � in the Smagorinsky model is for isotropic

grids naturally chosen proportional to the grid spacing. For anisotropic meshes

Deardor� [17] suggested the choice �eq = (�x�y�z)
1=3, which is reasonable for

moderately strained meshes. Scotti et al. [59] derived, from integration of energy

spectra over the spectral �lter domain, corrections to �eq for strongly strained

meshes. In the dynamic approach Cs and � are essentially treated together, and

determined locally in the 
ow by the �ltered �eld.



2.2.2. The spectral model. The spectral model is formulated in spectral

space, and is closely related to the Fourier transformed �ltered Navier-Stokes

equations

d�̂ui

dt
+ i kkd�ui�uj = �

i

�
ki �̂p� � k

2 �̂ui � i kk�̂ik : (26)

The spectral model [13] reads

i kk�̂ik = �T (k)k
2 �̂ui; (27)

�T (k) = Ko�3=2
�
0:441+ 15:2 exp

�
�3:03kc

k

��s
E(kc; t)

kc
; (28)

and it is derived for a `spherical' spectral cut-o� �lter with a cut-o� wavenumber

kc and should therefore be used only together with a spectral method, where the

spectral cut-o� gives a truncation of the Fourier series for the velocity and the

pressure �elds. In this formulation the divergence of the complete SGS stress

tensor is modeled, not only the deviatoric part. The contribution from SGS

stresses to the pressure in the Poisson equation enters as kikj �̂ij . This term is

zero for the spectral model and it does not in
uence the pressure directly, which,

however, the true SGS stress tensor does.

In the derivation of (28) it has been assumed that kc lies in a region with a

k
�5=3 slope of the energy spectrum. For the more general case where kc lies in

a region with a k�m slope, where m < 3, M�etais and Lesieur [49] derived

�T = 0:31
5�m

m+ 1
Ko�3=2

�
1 + 34:5 exp

�
�3:03kc

k

��s
E(kc; t)

kc
: (29)

This expression becomes equivalent to (28) when m = 5=3.

2.2.3. The structure function model. The spectral model has been ex-

tended to a physical space implementation in the structure function model [49],

where again the divergence of the SGS stresses is modelled as

@

@xj
�ij = 2

@

@xj
[�SFt �sij ] + �

(2)
t

@
2

@x2j

3

�ui; (30)

where �SFT and �
(n)
T are expressed in terms of e.g. the local structure function

�F2 averaged for separations smaller than the �lter width

�F2(x;�x; t) = hjj�u(x; t)� �u(x + r; t)jj2ir=�x: (31)

Compte et al. [15] introduced the selective and �ltered structure function model

in order to reduce the sensitivity to large scale 
uctuations in the original ap-

proach.



2.2.4. The mixed model and the stress similarity model. It has been

observed in experiments and DNS calculations that there seems to be a rather

high correlation between the SGS stresses, �ij , and

�ui�uj � �ui�uj : (32)

It could therefore be a good idea to model the SGS stresses in terms of this

expression. However, despite the high correlation with �ij the expression (32) is

not dissipative enough, and a combination of (32) and the Smagorinsky model

is often used in the mixed model of Bardina et al. [8]

�ij = �2�T �sij + Cb(�ui�uj � �ui�uj): (33)

This model depends directly on the type of �lter used, and for the spectral cut-

o� �lters the term �ui�uj � �ui�uj is identically zero. Another model, the stress

similarity model, based on the same type of ideas, has been proposed by Liu et

al. [43]

�ij = �2�t�sij + Cl(g�ui�uj � ~�ui~�uj): (34)

In this form both models (33) and (34) give explicit expressions for the trace of

the SGS stress tensor and they also allow backscatter, i.e. energy transfer from

the sub-grid scales to the resolved scales. Recently the performance of di�erent

scale similarity models was investigated in di�erent 
ows by Sarghini et al. [57].

2.2.5. The velocity estimation model. In the velocity estimation model

by Domaradzki [18] the de�nition of �ij is used together with a model vi for the

complete velocity �eld

�ij = vivj � �vi�vj : (35)

It was concluded that the main energy transfer between the resolved and subgrid

scales is performed by scales that are only twice as small as the �lter width [18].

The estimated �eld v is hence represented on a mesh that is twice as �ne as for

the �ltered �eld �u, and is determined by requiring that

�vi = �ui; ~vi = ~�ui (36)

at each spatial point of the �ltered �eld, where the �lter ~ is wider than the

original. The coe�cients for the wavenumbers k greater than kc are corrected

by giving them the same phase as the computed non-linear term uiuj , while the

amplitude is kept unchanged. This yields a model that has a high correlation

with the true stresses, as was the case also for the mixed model, and also provides

su�cient net dissipation.

A similar approach in which the de�nition of �ij is used with a modelled

complete velocity �eld was proposed by Geurts [23] in the so called inverse mod-

eling. He emphasized that the �lter should appear explicitly in the model, and

for a given �lter the complete velocity �eld can be realized accurately from the



�ltered velocity �eld down to scales of the �lter width. An approximate inver-

sion method for a top-hat �lter was considered, and the resulting model showed

a better performance than the mixed model by Bardina [8].

2.2.6. The dynamic Smagorinsky model. In the dynamical approach

the Germano identity (17) is used to determine the Smagorinsky model constant

locally in time and space. If a scale similarity assumption is made the model for

the STS stress tensor Tij may be written as

Tij =
1

3
Tkk�ij � 2�T~�sij ; (37)

�T = (Cs
~�)2(2~�spq~�spq)

1=2
; (38)

where ~� is the �lter width corresponding to the ~� �lter. The ratio between the

two �lter widths ~�=� is usually set to two. Now we put C2
s � C which is allowed

to be negative. Insert the models for �ij and Tij into equation (17) to obtain

[22]

Lij �
1

3
�ijLkk = 2CMij ; (39)

Mij = ( ~�)2�ij � (�)2 ~�ij ; (40)

where

�ij = (2~�spq~�spq)
1=2~�sij ; �ij = (2�spq�spq)

1=2�sij : (41)

Here it has been assumed that C is varying slowly enough in space so that it is

possible to exclude it from the �ltering. This is an over-determined system with

�ve equations and one unknown, C. The least square method suggested by Lilly

[39] may be applied to yield a solution

C =
1

2

LlmMlm

MpqMpq
; (42)

which 
uctuates in time and space, and may be both positive and negative. A

negative value of C gives a negative dissipation which causes numerical prob-

lems, and therefore both the numerator and denominator in the expression (42)

are usually averaged in homogeneous directions to increase the numerical stabil-

ity. In lack of homogeneous directions temporal averaging may be applied [48].

Another approach to achieve numerical stability is to restrict the value of C to

a certain interval [52]. If the constant is not assumed to be slowly varying it has

to be kept inside the �ltering [24]. This results in an equation which involves

calculation of a Fredholm integral of the second kind

C(x) =

Z
�(x; y)C(y)dy + f(x) (43)



where

f(x) =
1

�kl(x)�kl(x)
[�ij(x)Lij(x) � �ij(x)

Z
^G(y; x)Lij(y)dy]; (44)

�(x; y) =
1

�kl(x)�kl(x)
[^G(y; x)�ij(x)�ij (y) +^G(y; x)�ij(y)�ij(x)

� �ij(x)�ij (y)

Z
^G(z; x)^G(z; x)dz]: (45)

The value C can be calculated iteratively [54] by substituting the value of C from

the previous time step into the integral to get a new value of C. This process

can be repeated with the new value of C until the iteration converges.

The performance of the dynamical model depends on the �lter that is used.

It has been found that the spectral cut-o� �lters do not work as well in combi-

nation with the dynamical model as the Gaussian and top-hat �lters [43]. This

is due to the lack of coupling between the resolved �eld and the SGS �eld caused

by the spectral cut-o�.

2.2.7. Transport equation models. Analogous to the Reynolds averaged

approach one may derive transport equations either for the SGS stresses directly

or for the quantities in the SGS stress models. Yoshizawa [68] used a trans-

port equation for u0ku
0

k to de�ne a velocity scale for the eddy viscosity in the

Smagorinsky model. To de�ne an eddy viscosity one needs a velocity and a

length scale. In LES the characteristic length scale of the largest subgrid scales

is given explicitly by the �lter width, �. There are two natural quantities from

which it is possible to form a velocity scale, the generalized SGS kinetic energy

Ksgs = �kk=2 and the `SGS turbulent kinetic energy' u
0

ku
0

k=2. The �rst condition

in (19) suggests that Ksgs is a suitable quantity to solve for with a transport

equation, which is readily obtained by taking the trace of equation (16), only

in the case of positive �lters. For non-positive �lters, e.g. the spectral cut-o�

�lters, Ksgs may be negative locally in the 
ow which makes the modeling of

the unknowns in the equation more di�cult, and it might be preferable to use

a transport equation for u0iu
0

i in that case. The transport equation can be com-

bined with more complicated algebraic relations than the ordinary eddy viscosity

hypothesis to give the SGS stress tensor.

A transport equation for �kk may e�ectively be used together with a dynamic

SGS model [10]. Since the value of �kk is known from the transport equation

there is a limit, when using positive �lters, on how much backscatter that can

be allowed. A locally negative value of C corresponds to backscatter, which will

reduce �kk , and if the negative value is persistent �kk will approach zero which

will eliminate the backscatter. It is also possible to use the dynamical approach

to determine model constants in the transport equation analogous as for the

Smagorinsky model [10]. This approach was adopted by Sohankar et al. [62]

in the LES of 
ow around a square cylinder, using the dynamic Smagorinsky

model, with the velocity scale in the eddy viscosity determined by Ksgs. The



modelled equation for Ksgs was solved with a dynamic determination, not only

for the Smagorinsky model parameter but also for the included model parameter

for the dissipation of Ksgs which was determined locally without averaging.

2.2.8. Stochastic models. The main motivation to use stochastic mod-

els has been to increase the chaotic behaviour and to obtain physically correct

backscatter [58].

Leith [36] proposed to model the backscatter through the divergence (accel-

eration) of �ij as the curl of a random vector potential �i

�
@�ij

@xj
= �ijk

@�j

@xk
; (46)

where, from dimensional arguments

�k = Cbj�s�tj
3=2

�
�

�t

�2
gi (47)

and gi are unit Gaussian random numbers, generated independently at each time

and grid point. To this model the Standard Smagorinsky model is added, which

yields a positive net dissipation, and through this formulation the correct k4

energy spectrum shape of the backscatter is obtained. The zero time correlation

gives the explicit time step �t dependence in the expression for �i. This yields a

non-zero net contribution to the backscatter from the acceleration-acceleration

correlation, which is C2
b j�sj

3�4
P

Var[gi], where Var[gi] is the variance of gi.

The same approach, to express the divergence of �ij as the curl of a vector

potential, was used by Mason and Thomson [46], but a �nite time correlation

was considered. However, in the simulations, the temporal correlation was from

simplicity chosen to be zero. The results of their simulation was signi�cantly

improved close to the solid wall when the stochastic model was included.

Schumann [58] stressed the importance of a �nite model timescale to obtain

correct in
uence on particularly higher order statistics. The random part of the

model was formulated as

Rij = 


�
vivj �

2

3
Ksgs�ij

�
; (48)

where 
 is a model parameter in the range 0 and 1. The random velocity com-

ponents vi are given by

vi =

�
2Ksgs

3

�1=2
Xi; (49)

where Xi is a stochastic process with unit variance. Schumann chose the time

scale of the stochastic process to

�v = c�v�=K
1=2
sgs ; (50)



where Ksgs is determined through a modelled transport equation and c�v is of

order unity. When the timescale of the stochastic model is �nite it is important

that it is considered in the Lagrangian sense.

2.2.9. Evaluation of SGS stress models. When developing SGS stress

models there is a continuous need to evaluate the performance. This can either be

done in so called a priori tests, where a resolved velocity �eld is used to compute

various SGS quantities through the de�nition, or in actual LES with the model.

In the a priori tests the resolved velocity �eld is usually obtained from DNS [47],

[14], although experimentally measured �elds have also been used [43]. The a

priori test o�ers a fast method to statistically evaluate the prediction of di�erent

quantities, with the reservation that the modelled quantities are evaluated from

a �eld slightly di�erent from the supposed LES �eld. In addition, only the

statistical predictions of the model is captured, not the dynamic interaction

with the �ltered �eld in the solution process. In order to know how the model

really performs, actual LES have to be carried out, and compared with either

DNS or experiments.

2.3. Stochastic di�erential equations

Stochastic processes have to be considered when stochastic modelling is used.

Many stochastic processes can be generated through stochastic di�erential equa-

tions (SDE) on the formZ t

0

dX(s) =

Z t

0

�(s)ds+

Z t

0

�(s)dW (s); (51)

where W is a Wiener process, and � and � are two stochastic processes adapted

to the sigma algebra generated by fWsgs�t. For a more detailed description see

e.g. �ksendal [34]. The SDE (51) is usually written on a simper form as

dX(t) = �(t)dt+ �(t)dW (t): (52)

The Wiener process was originally developed to model the irregular behaviour of

Brownian motion. In recent years the theory of stochastic di�erential equations

have gained large interest with the appearance of di�erent derivatives on the

�nancial market, such as the pricing of call options for the stock market with

the famous Black-Scholes formula. Stochastic analysis can also be used to prove

various features of some partial di�erential equations through the Feynman-Kac

representation. In turbulence research it has been used to derive realizability

conditions for second-moment closures in the RANS approach [19].

Due to the irregularity of the Wiener process, the ordinary Riemann integral

cannot be used. Instead the Itô integral is de�ned, from which the Itô calculus

follows. The Itô formula gives a rule for di�erentiating stochastic processes

Z(t) = f(t;X(t)) where X(t) is given on the form (52), which due to the large

irregularities of W becomes di�erent than the ordinary rules for deterministic

functions. The di�erential of a stochastic process Z can formally be obtained



by standard Taylor expansion up to second order terms together with the basic

computational rules

(dW )
2
= dt; (dt)2 = 0; dtdW = 0: (53)

The statistical properties, given by the expectation value E, of a stochastic

process X , which di�erential can be written on the form (52), can easily be

obtained by using the fact that

E

�Z t

0

X(s)dW (s)

�
= 0: (54)

The properties of X is determined by � and �. When stochastic processes are

used in SGS stress modelling, they have to be considered in a Lagrangian sense,

with extra transport terms added to the SDE.

2.3.1. Example: random forcing. The 
ow driven by a random volume

force f with the property hf(t)f(s)i = Var[f ]�(t� s) is closely related to that of

Brownian motion. Consider the simple di�erential equation

du(t)

dt
= f(t); u(0) = 0; (55)

which captures the main features of the random forcing methodology. Since f(t)

is independent of u(t) the solution is directly given by

u(t) =

Z t

0

f(s)ds: (56)

The mean power input by the random force is

1

2

d

dt
hu(t)u(t)i =

Z t

0

hf(t)f(s)ids = Var[f ]

Z t

0

�(t� s)ds =
1

2
Var[f ]: (57)

The discrete form of (55) reads

un+1 = un + fn�t; (58)

and yields the power input

1

2

u
2
n+1 � u

2
n

�t
=

1

2
f
2
n�t+ unfn: (59)

On average unfn is zero and in order for the discrete equation to approximate

the solution of (55) it is necessary that fn = (�t)�1=2X , where X is a stochastic

variable with Var[X]=Var[f].

The random Brownian motion can in the simplest case be described by the

SDE

dv(t) = dW (t); v(0) = 0; (60)

where v here is the position of a particle. It has the trivial solution

v(t) =

Z t

0

dW (s) =W (t): (61)



De�ne the `kinetic energy' as Kv = v
2
=2. The Itô computational rules gives that

Kv is described by the SDE

dKv(t) = v(t)dv(t) +
1

2
(dv(t))

2
= v(t)dW (t) +

1

2
dt: (62)

This yields the solution

Kv(t) =

Z t

0

v(s)dW (s) +
1

2
t; (63)

and from the computational rules above it follows that the mean power input

is 1=2 since the expectation value of the integral is zero. From (61) v can be

written as

v(tn+1) = v(tn) +

Z tn+1

tn

dW (s) = v(tn) + �Wn; (64)

where �Wn =W (tn+1)�W (tn). By comparing the discrete solution to u with

the expression for v it follows that they are equal if fn�t = �Wn. The process

�Wn has zero mean and variance tn+1�tn = �t. Thus if Var[f ] = 1 the discrete

solution to u `equals' the solution for v.

The method of random forcing, hence, corresponds to a large scale `Brownian

motion' of the velocity �eld, which generates turbulence 
uctuations at smaller

scales through energy cascading action of the nonlinear terms. The `constant'

power input is hence dissipated by the small scales which prevents the energy in

the large scales to grow unlimitedly. If the random force is homogeneous in time

a statistically stationary state will be reached, where the large scale production

is balanced by the small scale dissipation.



CHAPTER 3

Numerical implementation

3.1. Numerical discretization

The LES of a speci�c problem is closely linked to the numerical implemen-

tation. Since the typical mesh spacing is of the same order as the �lter width

discretization errors may be relatively large. For complex 
ows it is important

to have a numerical method that works well together with the LES, and do not

add large undesired numerical errors that may reduce the performance of the

LES. In the present work the focus is put on the LES method, and to investigate

how well an LES can do under the ideal conditions of negligible numerical errors,

and to get a better understanding of the role of the SGS stresses. Therefore, the

simple 
ow cases of homogeneous turbulence and turbulent plane channel 
ow

are used, with geometries that allow for very accurate numerical discretizations.

Fourier series expansion of the 
ow �eld can with advantage be used in the

spatial directions where periodic boundary conditions are imposed. If a quantity

u(x) is Lx-periodic, i.e if u(x + Lx) = u(x) for all x, it can be expanded in a

Fourier series

u(x) =

1X
l=�1

û(l) exp (iklx); (65)

where kl = l2�=Lx, i = (0; 1) and û(l) is the Fourier transform of u(x). For

reasonably smooth functions u(x) the contribution to the sum usually becomes

very small for high values of jlj. In a numerical discretization only a �nite number

of terms jlj � N are included in the summation to yield the approximation

u
N (x) � u(x), where the contribution of the remaining is negligible. In this

formulation the spatial derivative of a function is simply obtained as

d

dx
u
N (x) =

NX
l=�N

iklû(l) exp (iklx); (66)

which is exact for uN . Hence, this procedure does not introduce any additional

errors from the spatial di�erentiating, as compared to �nite di�erence methods

which introduce errors related to the grid size �x = Lx=2N . Typically �nite

di�erence methods may be of second order, which means that the �nite di�erence

errors will be proportional to (�x)2.
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In homogeneous turbulence simulations Fourier series representation is used

in all three spatial directions since they are all periodic. In the plane channel


ow it is not suitable to use Fourier series representation in the non-homogeneous

wall-normal direction. Instead Chebyshev series is used [45], which allows more

rapid 
uctuations of the discretized function close to the walls. The location of

the collocation points in physical space gives that Fourier transforms actually

can be used to obtain the Chebyshev coe�cients.

A velocity-vorticity formulation is used to eliminate the 
uctuating pressure

from the governing equations, and the original four equations are reduced to

two equations for two unknowns. The nonlinear terms from the NS equations

are computed in physical space, where the velocity �eld is represented on a 3=2

�ner mesh, resulting in a 3=2-energy conserving dealiasing method. Fast Fourier

transforms are used when changing between the spectral space and physical space

representations.

The discrete time integration procedures are implicit for the linear parts of

the NS equations and explicit for the nonlinear parts. For the homogeneous case

this gives that the Fourier coe�cients are uncoupled and explicit expressions

may be obtained. In the plane channel 
ow, the spatial derivatives in the wall-

normal direction gives due to the use of Chebyshev series coupled coe�cients.

This results in a tri-diagonal equation systems which have to be solved at each

iteration.

3.2. Computer optimization

The progress made in the area of turbulence simulations is related to the

development of super computers. Modern super computers usually have several

processors on which the program should run in parallel. The large primary

memory of the computer is either shared by all processors or distributed locally

on each processor. Generally a simulation code cannot run on both types of

systems without modi�cations. A processor has either scalar or vector registers.

A scalar processor performs operations on one element at the time with fast

access to memory, whereas a vector processor performs operations on several

elements at the same time.

The homogeneous simulation code has been parallelized to run on both dis-

tributed and shared memory systems (paper 4). The performance on vector

processor machines (e.g. Cray J90 and C90) is very good due to the long loops

associated with the spectral formulation. On scalar processor machines (e.g.

IBM SP2 and Cray T3E) the performance is relatively low due to the intense

memory access of the fast Fourier transforms. The scalar processor machines,

however, often have a large number of processors which gives an overall high

performance.

The plane channel 
ow simulation code was already optimized for shared

memory systems with vector processors. In paper 7 a low storage parallelization



method for distributed memory and scalar processor machines is developed and

tested. The scalability with the number of processors used was found to be ex-

cellent while the intense memory access in the FFT reduces the single processor

performance. However, due to the large number of processors the overall com-

puter speed becomes relatively high, 3.5 G
op/s (
oating point operations per

second) on 64 processors on an IBM SP2.



CHAPTER 4

Probing homogeneous turbulence with LES

4.1. LES of decaying homogeneous turbulence

Homogeneous turbulence is an important simple 
ow case in which turbu-

lence models can be tested and developed. It allows the use of pseudo spectral

methods in all spatial directions which yields a very accurate discretization. A

globally homogeneous 
ow can of course never be realized in an experimental set

up. However, a 
ow can often be considered to be locally homogeneous, where

the quantities vary slowly relative to typical turbulence length scales, e.g. in the

center of a wind-tunnel with zero pressure gradient at su�cient high Reynolds

number.

Decaying homogeneous turbulence is perhaps the simplest 
ow case and has

been studied by a large number of authors, both experimentally and numerically

[16], [26], [12], [60]. In this case there are no mean velocity gradients and the

budget equation for the turbulence kinetic energy K reduces to

dK

dt
= �� (67)

where � is the dissipation rate of K. The turbulence can either be isotropic

or anisotropic in which case the pressure-strain rate redistributes the energy

between the di�erent velocity components towards an isotropic state.

Although being a very simple case, good simulations of decaying turbulence

can be di�cult to perform. For small times the 
ow state will strongly depend on

the initial conditions. These are usually not physically correct, which means that

the turbulence need some time to develop in the simulation. During this time

the typical large length scale grows, the Reynolds number decreases, and in the

case of anisotropic turbulence the degree of anisotropy is reduced. Hence, in this

case the e�ective time of a useful simulation is often limited. The time needed

to obtain a physically correct turbulent state will to a large extent depend on

the initial kinetic energy spectrum shape. In decaying homogeneous turbulence

a more or less self-similar decay of the kinetic energy spectrum is observed [12].

This is associated with self-similar decay of K and �, motivated by the form of

the budget equation (67), in which case the ratio

C�2 =
K=

dK
dt

�=
d�
dt

(68)
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Figure 1 The initial behaviour of C�2 for a k4 initial low wavenum-

ber spectrum relaxed with LES using the Smagorinsky model. (a):

A k�5=3 high wavenumber spectrum. (b): A k�1 high wavenumber

spectrum.

is constant. The larger scales have timescales which are much larger compared

to the smaller scales. Hence, the small wavenumber region adjusts it self much

slower to a self similar decay compared to the high wavenumbers. For high

wavenumbers, at high Reynolds numbers, there should be a k�5=3 inertial sub-

range in the LES. A k
2 or k4 low wavenumber spectrum is often considered [27]

as the �nal state of decaying turbulence, where the value of the exponent actu-

ally determines the value of C�2 [27]. In the simulations of Chasnov [12] a k�1

kinetic energy spectrum was observed in the intermediate wavenumber region.

This suggests that if the initial kinetic energy spectrum is constructed with a k�1

slope instead of a k�5=3 slope for the intermediate and high wavenumber region

a self-similar decay will be reached faster in the simulations. In paper 4 di�er-

ent initial conditions are tested for both isotropic and anisotropic high Reynolds

number turbulence simulations. Figures 1a,b show that the k
�1 initial high

wavenumber spectrum indeed relaxes faster to a self similar decay compared to

the k�5=3 initial spectrum.

4.2. Calibration of RANS models using LES

Standard models for the RANS approach need to be calibrated in di�erent


ows against computational or experimental data. In typical engineering 
ows

the Reynolds number is very large. DNS yields very good predictions of various


ow quantities, but can only be used at moderate Reynolds number. LES can

give much higher Reynolds numbers as compared with DNS and is an important

tool in RANS model calibrations.



The governing equations for the mean velocity �eld Ui = huii is the Reynolds

averaged Navier-Stokes equations. These equation contain an additional un-

known term, the `Reynolds stress tensor'

Rij = hu0iu
0

ji; (69)

which carries the information about the 
uctuating velocity �eld u
0

i = ui � Ui.

This term has to be modelled, either directly through the mean velocity �eld or

through additional transport equations for e.g. the turbulence kinetic energy K

and the dissipation rate �. However, these transport equations contain additional

unknown terms which need to be modelled. A common approach is to use the

transport equations for Rij in the modelling�
@

@t
+ Uj

@

@xj

�
Rij = Pij +�ij � �ij �

@

@xm

�
Jijm � �

@Rij

@xm

�
; (70)

where Pij is the production tensor, �ij is the pressure-strain rate tensor, �ij
is the dissipation rate tensor and Jijm is the turbulence transport tensor. Pij

produces turbulence energy through the interaction with the mean velocity �eld

and needs no modelling, �ij redistributes energy between di�erent components

through pressure 
uctuations, Jijm gives spatial redistributions through turbu-

lent transport and �ij dissipates turbulence kinetic energies into heat. For a more

detailed description see e.g. [27]. The equation (70) can either be solved directly,

with models for the new unknown terms, or be used to derive simpler models,

e.g. the explicit algebraic Reynolds stress model by Wallin and Johansson [66].

In many 
ows, e.g. strongly strained 
ows and 
ows subjected to system

rotation, the pressure-strain rate term

�ij =
2

�
hp0s0iji (71)

is very important and determines to a large extent the degree of anisotropy of

Rij . It is hence a key term in turbulence modelling. From the formal solution

of the the pressure, through the Poisson equation, it can be divided into a rapid

part, which responds directly to changes in the mean velocity �eld, and a slow

part, which is related to the 
uctuating �eld. The pressure-strain rate is divided

accordingly. In the absence of mean velocity gradients the rapid part of �ij

vanishes and the slow part equals the total pressure strain rate. Models for the

slow-pressure strain rate may hence be calibrated in LES of decaying anisotropic

homogeneous turbulence.

From LES only the �ltered velocity �eld is available for direct computation

of turbulence statistics. In calibrations of turbulence models it is important that

the contribution from the subgrid-scales is small. In paper 1 it is shown that the

contribution to the pressure-strain rate is dominated by the large scales, and is

well suited for LES to compute, and for simulations with the �lter scale in the

inertial sub-range, which is isotropic, good high Reynolds number predictions can

be obtained. The direct e�ect of the SGS stress model on a statistical quantity



is usually low, except for the dissipation rate, since it represents the action of

the small scales. The indirect e�ect, through the resolved velocity �eld may be

of greater importance, and should when possible be checked e.g. by an increase

in physical resolution.

4.3. Numerical experiments of turbulence inertial range dynamics

Homogeneous 
ows are frequently used to study turbulence theories. The

classical turbulence theory was to a large extent founded by Kolmogorov [32],[31]

who derived the famous inertial range laws for the structure functions Bij:::k(r) =

h�ui�uj � � � �uki, where �ui = ui(x+ r)� ui(x). Denote by ul a velocity compo-

nent parallel to the separation r, and by ut a velocity component orthogonal to

r. For high Reynolds numbers it follows from dimensional arguments that

Bll = C (�r)
2=3

(72)

for inertial range separations r, where C is a constant (no summation over re-

peated indices `l' and `t'). The spectral equivalent to (72) is the well known

k
�5=3 law for the kinetic energy spectrum. For statistically stationary and glob-

ally isotropic turbulence Kolmogorov derived, from the Navier-Stokes equations,

the Kolmogorov equations from which it follows

Blll = �
4

5
�r; (73)

Bltt = �
4

15
�r: (74)

Lindborg [40] used the generalized Kolmogorov equations, which contains ad-

ditional time derivative terms, to show that the theories also are valid in glob-

ally homogeneous and locally isotropic turbulence. Later the conditions were

relaxed even further by Hill [29] and Lindborg [42] to only require locally homo-

geneous and locally isotropic turbulence. The classical theories require both high

Reynolds numbers and that the time derivative terms should be negligible to be

valid [41], [1]. In decaying turbulence at �nite Reynolds numbers the time deriv-

ative term reduces the e�ective range in the simulation where the inertial laws

are valid. Therefore it is preferable to perform turbulence simulations which are

statistically stationary. This requires a production term which can balance the

dissipation term in (67). The turbulence can in homogeneous 
ows be driven by

either mean velocity gradients or a volume force to yield statistically stationary

states. The latter is the most commonly used in the literature since simulations

with mean velocity gradients are associated with the di�cult numerical issue

of re-meshing strongly strained meshes [26]. Forcing methods for homogeneous

turbulence do usually not try to capture any actual turbulence generating mech-

anism that occur in nature. This means that the development of the large scale

structures is of little interest in these cases, and besides generating large scale

turbulence 
uctuations the forcing should have as little e�ect on the 
ow as

possible.
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Figure 3 The Reynolds stress components, R11; R22 (solid lines),

R33 (dotted line), R12; R23 and R31 (dashed dotted lines) for a forced

simulation of anisotropic axisymmetric turbulence at R = 10:7.

In paper 2 a new random forcing procedure is developed and tested. By

using a random volume force which is uncorrelated in time the power input

P is determined solely by the force-force correlation, and can be determined

a priori. The forcing is concentrated at wavenumber kf and is neutral in the

sense that it does not correlate with any turbulent structure. Figure 2 shows

that the beginning of an inertial subrange may be perceived in DNS forced at

the largest scales with the present methodology. Also the shape of the kinetic

energy spectrum for wavenumbers greater than the forcing wavenumber seems to

be relatively universal and insensitive of the forcing procedure. With the random
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Figure 4 The two-point correlations �5Blll=(4�L), l = 1; 2; 3 (solid

curves), �15Bltt=(4�L) (small dotted curves) and the curve r=L

(large dots). L is the side length of the computational box. (a):

Decaying turbulence. (b): Forced turbulence.

forcing approach it is also possible to generate globally anisotropic turbulence

states (�gure 3).

In paper 3 the random forcing procedure is used in statistically stationary

anisotropic homogeneous LES, with a large number of spectral modes (2563)

in order to resolve the non-linear dynamics of the turbulence. Corresponding

decaying LES were also carried out. Figure 4 shows the third order structure

functions Blll and Bltt, from the two cases. The decaying simulation clearly fails

to reproduce the well known inertial laws due to the in
uence of the time deriv-

ative term. The forced simulation, however, yields excellent agreement, and the

advantage with the forcing method is clear. This e�ect is also demonstrated for

isotropic turbulence in paper 2. The possibility to generate globally anisotropic

states allows for the study of the inertial range behaviour for the two-point pres-

sure velocity correlation in globally anisotropic 
ows. From the simulations in

Paper 3 the new theories of Lindborg [40] and Hill [29] are for the �rst time

given a numerical veri�cation.



CHAPTER 5

LES and DNS of turbulent channel 
ow

5.1. Turbulent plane channel 
ow

The turbulent plane channel 
ow incorporates the e�ect of mean shear and

solid boundaries, and still allows simple implementation of accurate discretiza-

tions. Standard pseudo-spectral methods may be used in the discretization pro-

cedure. The 
ow is statistically stationary and may hence yield results that are

independent of arti�cial initial conditions. The plane channel is considered to

be in�nitely long and wide, with the characteristic large scale determined by the

distances of the walls. In a numerical simulation periodic boundary conditions

are used in the streamwise and spanwise directions. In order for this numerical

artifact not to a�ect the 
ow the computational domain has to be large enough

so that two-point correlations are small for large separations.

The turbulence in the plane channel 
ow is characterized by the wall friction

Reynolds number Re� = �u�=�, where � is half the channel width and u� =

(�jdU=dyjwall)
1=2

is the wall friction velocity. At high Reynolds numbers there is

believed to exist a so called logarithmic region where the mean velocity exhibits

the logarithmic pro�le U=u� = 1=� log (yu�=�) +C, where � is the von Karman

constant and C is the logarithmic intercept.

The �rst computation of the turbulent plane channel 
ow was actually an

LES, performed by Deardor� [17] who used synthetic boundary conditions in the

log-layer instead of the natural no-slip condition at the wall. Later, in the LES

of Moin & Kim [50], the wall region was explicitly computed to yield detailed

information about the turbulent structures. The �rst well resolved DNS (at

Re� = 180) was presented in the landmark paper by Kim et al. [30]. The

Reynolds number was increased up to Re� = 590 in the recent DNS by Moser

et al. [51].

5.1.1. The e�ect of system rotation. The e�ect of curvature and rota-

tion are important in many 
ows, e.g. in all turbo-machinery. The two e�ects are

somewhat similar in nature. By adding system rotation in the spanwise direction

in the plane channel 
ow, the e�ect of rotation can be studied with simple and

accurate methods. This e�ect enters into the governing equations as a Corio-

lis term, which divides the channel into a stable side, where the turbulence is

suppressed, and an unstable side, where the turbulence is enhanced (�gure 1).

The importance of the Coriolis term is usually measured by the rotation number
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Figure 2 The normalized two-point correlation of 
uctuating

streamwise velocities for separations rx in the x-direction as a func-

tion of y.

Ro = 2�
=Um, where Um is the mean bulk velocity and 
 is the system angu-

lar velocity. The behaviour of the turbulence statistics are rather complicated,

and is a true challenge for a statistical model to capture. The rotating channel


ow has been computed by several authors [33],[35]. However, the e�ect of the

domain size has not been negligible in these computations.

For certain rotation rates the interaction of the turbulence is enforced by

the Coriolis force in such a way that very long elongated structures are formed.

In paper 6 Simulations at the Reynolds numbers Re� = 130; 180; 360 and

various rotation numbers were carried out. For the highest Reynolds number

384�257�240 grid points was used in the streamwise, wall-normal and spanwise

directions on a 4�� � 2� � 4��=3 domain. For the critical rotation numbers

associated with long structures a 8�� � 2� � 3�� domain was used. Figure 2

shows the two-point correlation in the streamwise direction of the streamwise




uctuating velocity plotted for separations up to half the channel length for

both non-rotating and rotating (Ro=0.055) 
ows at Re� = 180. Here, the long

structures in the Ro=0.055 case show up as persistent high values of the two-

point correlation. In a simulation these structures have to be captured by the

computational domain which strongly increases the computational e�ort. Even

though the computational domain is twice as long (8��) in the rotating case

as compared to the non-rotating case (4��) the two-point correlation still has

signi�cant values for the largest separations.

The high Reynolds number simulations are well suited for the development

of SGS stress models in LES. LES quantities can be evaluated directly in a priori

tests, and compared with actual LES results. The data base generated from the

DNS will be used both for the development of SGS models for LES and for

RANS-based turbulence models.

5.2. Stochastic SGS modelling

In paper 5 the stochastic model approach is used to improve the statis-

tical properties of the SGS model. The stochastic models are added to the

standard Smagorinsky model, which both numerically are treated together with

non-linear terms. Since a large part of the total dissipation is treated explic-

itly the Chebyshev-tau method was needed to enhance the numerical stability as

compared to the integration method [45]. Both a stochastic Smagorinsky param-

eter approach and a Schumann like model approach were used and implemented

with a �nite timescale of the stochastic processes. This implies that the SDE

for the stochastic processes have to be solved in a Lagrangian sense and extra

transport equations have been added to the code.

The stochastic terms reduce the length scale and increase the variance of

the SGS dissipation and also give backscatter. The mean velocity pro�le is rel-

atively insensitive to the stochastic term, while the second order moments are

strongly a�ected. The stochastic Smagorinsky parameter approach may yield

locally negative viscosity which is numerically unstable and is controlled by arti-

�cially restricting the allowed values of the negative dissipation. The Schumann

approach, however, yields stable solution without restrictions.



CHAPTER 6

Concluding remarks

LES is supposed to perform well at high Reynolds numbers and for complex

geometries. Complex geometries involves the implementation of more general

(lower-order) methods with signi�cantly strained and anisotropic meshes. The

development of good numerical methods which in an accurate manner allows for

di�erent resolutions in di�erent regions is needed. Also, high Reynolds numbers

yield very small structures close to solid walls. Typically these cannot be resolved

by LES, and the development of new boundary conditions or near wall solution

procedures are essential to make LES the leading engineering tool for turbulent


ows. These issues are, however, not considered in this thesis. Instead focus is

put on `well resolved' LES predictions where the numerical errors are negligible

and the smallest large scale is well with in the �lter scale.

From the present simulations it is seen that accurate high Reynolds number

calibrations of RANS models may be achieved by LES. It is also shown that that

LES can successfully be used to verify high Reynolds number turbulence theo-

ries unattainable for DNS. The developed random forcing method can be used

as a tool to yield relatively high Reynolds number DNS from which SGS models

can be evaluated. However, the homogeneous turbulence case is not su�cient

to completely test the performance of turbulence models. The turbulent plane

channel 
ow includes more physical e�ects, through the presence of the walls,

and can be used to get a good qualitative knowledge about the performance of

various models. A thorough parametric study of the e�ect of system rotation

for various Reynolds numbers through DNS resulted in a large data base which

can be used in the turbulence modelling process. The statistical quantities show

complicated behaviour, due to the combined e�ects of the wall and system ro-

tation, from which good calibrations of RANS models may be obtained. Also

turbulence structures, which a good LES should be able to capture, show a

relatively complicated development for the di�erent rotation rates.
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