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Abstract

A scenario for bypass transition to turbulence likely to occur in natural transition

in a 
at plate boundary layer 
ow has been studied. The exponential growth

or decay of two-dimensional wave disturbances, known as Tollmien{Schlichting

waves, has long been the classical starting point for theoretical investigations

of transition from laminar to turbulent 
ow. Its failure to explain experimen-

tally observed transition for many 
ows has attracted intense interest to the

recently revealed existence of non-modal growth mechanisms. This thesis fo-

cus mainly on transition emanating from the non-modal transient growth of

streamwise streaks. Streamwise streaks are ubiquitous in transitional bound-

ary layers, particularly when subjected to high levels of free-stream turbulence.

The upstream disturbances experiencing maximum spatial energy growth have

been calculated numerically using techniques commonly employed when solv-

ing optimal-control problems for distributed parameter systems. The calculated

optimal disturbances consist of streamwise aligned vortices developing down-

stream into streamwise streaks which are in good agreement with experimental

measurements. The maximum spatial energy growth was found to scale lin-

early with the distance from the leading edge. Based on these results, a simple

model for prediction of transition location is proposed. However, the non-modal

growth of streamwise streaks only represent the initial phase of transition. If

the disturbance energy of the streaks becomes su�ciently large, secondary in-

stabilities can take place and provoke early breakdown and transition, overruling

the theoretically predicted modal decay. Using linear Floquet theory the tem-

poral, inviscid secondary instability of these streaks were studied to determine

the characteristic features of their breakdown. The critical streak amplitude

beyond which streamwise travelling waves are excited is typically of order 26%

of the free-stream velocity. The sinuous secondary instability mode was found

to represent the most dangerous symmetry for travelling disturbances. Also

the numerical-stability consequences of the remaining ellipticity in the Parabolic

Stability Equations (PSE) are studied. The equations are found to constitute an

ill-posed Cauchy problem. Suggestions of how to make the equations well-posed

and to remove the methods otherwise intrinsic step-size restriction are given.

Descriptors: laminar-turbulent transition, boundary layer 
ow, non-parallel

e�ects, adjoint equations, transient growth, optimal disturbances, streamwise

streaks, streak instability, secondary instability, transition modelling, free-stream

turbulence, parabolic stability equations, ill-posed equations.



Preface

This thesis considers the stability of boundary layer 
ows and modelling aspects.

The thesis is based on and contains the following papers.

Paper 1. Andersson, P., Henningson, D. S. & Hanifi, A. 1998 On a

stabilization procedure for the parabolic stability equations. J. Eng. Math. 33,

311{332.

Paper 2. Andersson, P., Berggren, M. & Henningson, D. S. 1999 Op-

timal disturbances and bypass transition in boundary layers. Phys. Fluids 11,

134{150.

Paper 3. Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S.

1999 On the breakdown of boundary layer streaks. submitted to J. Fluid Mech.

Paper 4. Andersson, P., Bottaro, A., Henningson, D. S. & Luchini, P.

1999 Secondary instability of boundary layer streaks based on the shape as-

sumption. TRITA-MEK, Technical Report 1999:13, Dept. of Mechanics, KTH,

Stockholm, Sweden.

Paper 5. Andersson, P. 1999 On the modelling of streamwise streaks in the

Blasius boundary layer. TRITA-MEK, Technical Report 1999:14, Dept. of Me-

chanics, KTH, Stockholm, Sweden.

The papers are here re-set in the present thesis format, and some minor cor-

rections have been made as compared to published versions. The �rst part of

the thesis is both a short introduction to the �eld and a summary of the most

important results presented in the papers given above.
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CHAPTER 1

Introduction

Sleepless for over 24 hours and awaiting my transfer 
ight to take me home

to Stockholm from San Francisco, I saw a �ve-year-old boy reaching out and

trying to grip a miniature cyclone on display at Frankfurt airport. While we

both watched as the water aerosol smoke slipped away between his �ngers I

experienced a moment of basic understanding from where the fascination for


uid mechanics arises. It appears as a ghost from nowhere and makes leaves

move in strange patterns. The fog rolls in at night, seemingly from nowhere.

Much like modern times fascination for black holes we often do not notice the

actual 
uid but only its e�ect on other matter. And as I realized that evening,

most important; \It slips through your �ngers impossible to grasp".

The child, the engineer, the applied mathematician, and even the not{so{

applied mathematician can all share the feeling of being unable to grasp the

phenomena occurring in a 
uid 
ow. Even though the governing equations have

been around for almost two hundred years only a handful of solutions to practical

problems are known to man. From a theoretical point of view the uniqueness

and regularity of solutions in three space dimensions is still an open question

and from a practical standpoint the methods of �nding approximate solutions

are still not satisfactory enough for many applications.

This situation creates a need for simpli�ed models based on careful approx-

imations of the Navier{Stokes equations together with a deep physical insight,

often gained from experimental observations of a related 
ow con�guration. This

thesis is concerned with a number of such models, all describing di�erent aspects

of the 
uid mechanics phenomenon denoted transition.

The term transition refers to the passage between two states of 
uid 
ows:

the ordered, regular, and predictable laminar 
ow as opposed to the swirly, 
uc-

tuating, and chaotic turbulent 
ow. The transition process itself is usually further

divided into three di�erent stages. The receptivity stage, where the disturbance

is introduced and established into the 
ow. The stability phase concerns the de-

velopment of the established disturbance in time (temporal) or in space (spatial).

Of course the aspect of major interest is whether the disturbance is growing or

decaying depending on its characteristics. The last phase is the subsequent non-

linear breakdown of the growing disturbances which is characterised by nonlinear

generation of a multitude of scales which represent the typical characteristic of

a turbulent 
ow.
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Figure 1.1 Flat plate boundary layer 
ow with free-stream velocity

U1. The coordinate system has directions x, y and z with corre-

sponding velocity components u, v and w.

The present thesis deals with the stability and breakdown stages of transition

inside a boundary layer which forms over a 
at plate when subjected to a uniform

oncoming 
ow �eld (see �gure 1.1). The boundary layer is established due to

viscosity. This internal friction forces the velocity from its free-stream value a

distance above the wall to zero immediately at the surface.

At vehicles travelling through air the typical thickness of a boundary layer

is quite small. A typical value of the boundary layer thickness one meter in on

a motor-hood of a car travelling at 100 km/h is about one millimeter, unless,

of course, your Mercedes star has provoked early transition; in which case the

value would be slightly larger.



CHAPTER 2

Overview of transition history

2.1. Reynolds classical experiment

In the classical pioneering work of Osborne Reynolds [58](1883), he studies

the transition process in the shear 
ow inside a glass tube. By injecting colour

at the centreline in the inlet of the pipe he could visualise the shift from the

ordered laminar motion to the irregular turbulent motion. He writes: \When

the velocities were su�ciently low the colour extended in a beautiful straight

line through the tube". However, at higher velocities the straight line became

irregular and was mixed with the surrounding 
uid in a violent way. Increasing

the velocity further shortened the distance between the inlet and the point where

the transition to turbulence started. By varying a number of di�erent 
ow

parameters, including the pipe radius, r, the kinematic viscosity of the 
uid, �,

and the bulk velocity, U , he found that when the non-dimensional quantity that

later became known as the Reynolds number, Re = Ur=�, exceeded a threshold

value the 
ow became unstable. Moreover, he found the \the critical velocity

was very sensitive to disturbances in the water before entering the tubes". For

large disturbances at the pipe inlet, the 
ow became unstable at lower critical

velocities and at the critical velocity he noted that disturbances could appear

intermittently for short distances, like \
ashes", along the pipe. These \
ashes"

are today called turbulent spots or turbulent bursts.

2.2. Classical linear stability theory

Lord Rayleigh [56](1880) started his theoretical investigations of the stability

of parallel 
ow of an inviscid 
uid at about the same time as Reynolds carried

out his experiments with pipe 
ows. He explored the stability of disturbances

linearised around the mean velocity pro�le U = U(y)ex, where x denotes the

mean 
ow direction and y the direction normal to to the mean 
ow. By rewriting

the linearised equations as an equation for the normal velocity component, v,

and applying the following normal-mode assumption

v(x; y; t) = Realfv̂(y)ei�(x�ct)g;

3



where � is the wave number, c is the complex wave velocity and t denotes time,

he obtains the following stability equation

(U � c)(
d
2

dy2
� �

2)v̂ � U
00
v̂ = 0; (1)

governing the complex amplitude function, v̂, of the normal velocity component.

From this equation Rayleigh proved his in
ection point theorem, stating that

a necessary requirement for inviscid instability is that the mean velocity pro�le

has an in
ection point. Later Fj�rtoft [20](1950) sharpened the requirement by

proving it necessary for instability that

U
00(U � Us) < 0;

somewhere in the 
ow, where Us=U(ys) is the mean velocity at the in
exion

point, that is U 00(ys)=0. Note that both these theorems constitute necessary but

not su�cient requirements for the inviscid 
ow to become unstable. Furthermore,

it should be noted that the transition observed in pipe 
ow can not be explained

by Rayleigh's in
ection point theorem as the mean pro�le is not in
ectional.

Rayleigh's work was followed by Orr [54](1907) and Sommerfeld [68](1908)

who independently derived an equation in which e�ects of viscosity was included

(U � c)(
d
2

dy2
� �

2)v̂ � U
00
v̂ =

1

i�Re
(
d
2

dy2
� �

2)2v̂: (2)

Heisenberg [27](1924) was the �rst to show that an inviscidly stable 
ow could

become unstable for �nite Reynolds numbers. He considered a plane Poiseuille


ow using, asymptotic theory for large Reynolds numbers and small streamwise

wave numbers, and became the �rst to �nd a solution to the Orr{Sommerfeld

equations. From his rough calculations he estimated the critical Reynolds num-

ber to be around 1000.

The �rst useful solutions were worked out by members of Prandtl's group

in G�ottingen, by Tietjens [70](1925) and later Tollmien [71](1929) and Schlicht-

ing [61, 62](1933,1935). The last two developed a comprehensive theory for

solving the Orr{Sommerfeld equations; hence today two-dimensional exponen-

tially growing waves are named Tollmien{Schlichting (TS) waves. Lin [47](1944)

developed the asymptotic theory further, and solved the Orr{Sommerfeld equa-

tions for plane Poiseuille 
ow estimating the critical Reynolds number to 5300.

Today, computers allow for accurate numerical solutions to the Orr{Sommerfeld

equations and Orszag [55](1971) showed that the critical Reynolds number for

plane Poiseuille 
ow is 5772.

The existence of Tollmien{Schlichting waves was long questioned and it was

not until the forties that the linear stability theory could be experimentally

veri�ed in all its essential details. During the second world war Schubauer &

Skramstad [64](1947) (published later due to the war) conducted experiments

on a 
at plate using a vibrating ribbon to trigger the Tollmien{Schlichting waves

and a hot-wire anemometry to measure the 
uctuating streamwise velocity.



Tollmien{Schlichting waves in a plane Poiseuille 
ow proved even harder to

verify experimentally. However, Nishioka et al. [53](1975) used similar methods

as used in the 
at plate boundary layer case and con�rmed the theoretical results

obtained by Orszag.

2.3. Squire's theorem and the role of three-dimensionality

Squire [69](1933) made an important contribution to linear stability theory

when he discovered that two-dimensional waves are the �rst to become unstable,

and that an oblique wave always can be transformed into a two-dimensional wave

associated with a lower critical Reynolds number, using the today well-known

\Squire's theorem".

This threw a smoke-screen over the important role of three-dimensionality,

and had the rather counter-productive e�ect that most of the early work on

stability concerned only two-dimensional waves.

However, a decade later after Schubauer and Skramstad's veri�cation of the

Tollmien{Schlichting waves, when Emmons [18](1951) accidently noticed spo-

radic turbulent spots on shallow running water, two-dimensionality was nearly

abandoned and soon, \everybody was seeing spots" as Morkovin [52](1969) wryly

notes.

Today its common knowledge that three-dimensionality deserves attention

for two main reasons. First, the later stages of transition caused by two-dimensional

TS waves are highly three-dimensional. Second, there is strong evidence that

subcritical disturbance growth is caused by three-dimensional disturbances.



CHAPTER 3

Spatially evolving disturbances and non-parallel

e�ects

3.1. Spatial stability and non-parallel e�ects

In section 2.2 the linear stability equations were discussed in terms of a

temporal problem. The assumption of a real streamwise wave number, �, but a

complex wave velocity, c, implies a growth (or decay) of the wave disturbances

with time. However, if instead the streamwise wavenumber is assumed complex

while the frequency, !, is taken as a real number, these equations also governs the

evolution of disturbances in space. Especially the physical situation for boundary

layer 
ows often requires the modelling of disturbance quantities utilising the

spatial approach. For example, the downstream development of an upstream-

introduced disturbance in a 
at plate boundary layer 
ow is most appropriately

modelled using the spatial framework. Since the spatial stability problem is

given by an eigenvalue problem where the eigenvalue appears nonlinearly (up

to the power of four), it is mathematically slightly more complicated than the

temporal linear eigenproblem.

A further complication for boundary layer 
ows is caused by their non-

parallel character. In contrast to the parallel channel and pipe 
ows the boundary

layer base 
ows are dependent on the streamwise coordinate. Di�erent pertur-

bation approaches have been tried to incorporate non-parallel e�ects mathemat-

ically, but their validity is restricted to cases where the base 
ow divergence is

slow compared to the spatial change of the disturbance quantities.

The e�ects of growing boundary layers have been introduced into the stabil-

ity theory by several authors, e.g. Gaster [22], Saric & Nayfeh [60], Gaponov [21]

and El-Hady [15].

3.2. The Parabolised Stability Equations

Recently, a non-parallel stability theory based on parabolised stability equa-

tions (PSE) has been developed. The �rst to solve parabolic evolution equations

for disturbances in the boundary layer was Hall [25], who considered steady

G�ortler vortices. Itoh [35] used a parabolic equation to study the evolution of

small-amplitude Tollmien{Schlichting waves. The method was further devel-

oped by Herbert and Bertolotti [11, 32, 10, 12], who also derived the nonlinear

6



parabolised stability equations. Simen and Dallmann [65, 66] independently de-

veloped a similar theory. A review of the PSE-method and its potential for

applications to a wide series of di�erent 
ow-cases is given by Herbert [33].

The use of parabolised stability equations can be justi�ed if the properties

of the 
ow are slowly changing in the streamwise direction compared to the

wall-normal direction. The �rst step in the derivation of the parabolised stabil-

ity equations is separating the disturbances (q = (u; v; p)T ) into an amplitude

function and an exponential function

q(x; y; t) = ~q(x; y)e
i
R
x

x0
�(�)d��i!t

; (3)

where � is the complex streamwise wavenumber (with the real and imaginary

parts denoted �r and �i, respectively) and ! the angular frequency. Introduc-

ing the above ansatz into the Navier{Stokes equations and making use of the

assumption of slowly streamwise varying 
ow quantities, the amplitude func-

tions, ~u; ~v and ~p, and the wavenumber, �, are all assumed to be slowly varying

functions of x. Thus

@

@x
; V � O(Re�1);

while the sizes of other quantities are assumed to be of O(1). Neglecting all

terms of order O(Re�2) and higher, we arrive at a system of equations of the

form

~qx = L~q; (4)

where L contains wall-normal but no streamwise derivatives and where therefore

no second-order x-derivatives are left in the now parabolised equations.

Since (4) represent a system of three equations governing four unknown

quantities, a forth relation is needed for closure. The ambiguity stems from ex-

pression (3), where both the amplitude functions and the streamwise wavenum-

ber are assumed to be functions of x, and no speci�cation of there relationship is

provided. The PSE provides this information via an additional equation, called

the normalisation conditionZ ymax

ymin

(~u�~ux + ~v�~vx + ~p�~px)dy = 0; (5)

where � denotes complex conjugate. Other types of normalisation conditions

can also be used. These relations all share the common characteristic to ensure

that most of the disturbances x-variation will �nd its way into the exponential

function. Thereby the streamwise variation of the amplitude function, ~q, remains

small, in accordance with the original assumption. Equations (4) are solved

by marching downstream, starting with an appropriate initial condition, and

ensuring that (5) is satis�ed at each streamwise position.

The measurement of the streamwise change of ~umax is an often used quantity

in experiments as indicator for the growth of the disturbance. The chain rule



yields the expression

��i +Real

�
1

~umax

@~umax

@x

�
; (6)

for the corresponding growth rate extracted from the PSE-solution. Here ~umax
denotes the maximum of ~u over the wall-normal coordinate, y.

An analysis of the parabolic stability equations reveal that there is still a

weak ellipticity left in the equations, see Haj-Hariri [24]. As a consequence the

use of an explicit scheme in the streamwise direction will produce numerical

instabilities, and a crucial part of the PSE method is to use an implicit scheme

with a large enough step-size in the streamwise direction. This critical step size

was quanti�ed by Li & Malik [44, 45] as

�x >
1

j �r j
; (7)

and has proven correct for most of the PSE applications. More detailed infor-

mation of the PSE approximation can be obtained by comparing fundamental

solutions of the spatially formulated linearised two-dimensional Navier{Stokes

equations and the PSEs with constant coe�cients. Such a comparison shows

that the parabolising procedure eliminates the most dangerous upstream prop-

agating eigenmode and the remaining ellipticity makes the PSEs ill-posed as an

initial-value problem in x, see Kreiss & Lorenz [41].

As presented in paper 1 in this thesis Andersson, Henningson & Hani� [7]

suggested a modi�cation of the PSEs which make the equations well-posed and

eliminate the step size restriction. This is done by approximating the streamwise

derivative by a �rst order implicit (backward Euler) scheme and including a term

proportional to a part of the leading truncation error,

� =
�x

2
~qxx =

�x

2
(Lx~q+ L~qx) �

�x

2
L~qx: (8)

Here, the term Lx~q has been neglected for simplicity. The assumption of small x-

derivative terms implies that the added truncation error is of the order O(R�2).

Since terms of this order were neglected in the original approximation, the addi-

tion of � does not introduce any extra error at this order of approximation, and

we can introduce the new set of equations

~qx = L~q+ sL~qx; (9)

where s is a positive real number. Based on the discussion given above, the

di�erences between the solution of equations (4) and (9) are of order O(R�2).

Note that, although s take the place of �x in the added truncation error term,

this term is small, even if s = O(1), since L~qx is of order O(R�2).

Andersson, Henningson & Hani� [7] found the critical step size, for solving

equation (9), with the �rst order backward Euler scheme, to be

�x >
1

j�rj
� 2s: (10)
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Figure 3.1 Growth rate vs streamwise position, for boundary-layer


ow, obtained from the PSE method without (a) with (b) stabilising

terms for the three smallest step sizes. The value of the stabilising

parameter was set to s = 4.

Equation (10) implies that the value of s giving marginal stability approaches

0�5=j�rj when �x! 0. Consequently, this procedure makes it possible to stably

march the PSEs downstream for any arbitrarily small step size by using a suitable

s.

The stabilising procedure has been successfully applied to a number of 
ows,

for example non-parallel boundary-layer 
ows. The equations were linearised

around the two-dimensional Blasius boundary-layer 
ow. The calculations where

performed with a disturbance frequency F = 70� 10�6, where

F =
2��

U2
1

f;

with f being the physical frequency. The calculations were started at R =

U1�=� = 500, where � =
p
�L=U1 and L the distance from the leading edge

of the 
at plate. The real part of the streamwise wavenumber was �r � 0.106,

which gave a critical step size of approximately �x = 9.5 based on the length

scale at R = 500.

Calculations of the growth rate were performed for four di�erent step sizes

�x = 11, 9, 5 and 2.5. The growth rate was based on the maximum of ~u and

evaluated using expression (6). In �gure 3.1(a) the results for the original PSEs

are presented. As can be seen a smooth solution were only obtained for the stable

step size, �x = 11. All attempts to march with step sizes under the critical value

became numerically unstable at some point in the calculation domain.

The results from the modi�ed PSEs with s = 4 are given in �gure 3.1(b).

The disturbance growth rate calculated from the original PSEs for �x = 11 is

also given for reference purposes. As is shown there, numerical instability was

absent in these calculations and results for all step sizes collapsed to the same

curve.



CHAPTER 4

Non-modal ampli�cation

4.1. Lift-up and transient growth

Linear stability theory calculations of circular pipe 
ow reveal that all eigen-

values are stable and thus the 
ow is predicted to be stable. Even so, Reynolds

reported transition to occur for high enough Reynolds numbers. Furthermore,

both in plane Poiseuille 
ow and boundary 
ow, transition occur below the criti-

cal Reynolds number (subcritical transition) if the initial disturbance amplitudes

are large enough. Clearly, another alternative growth mechanism to the one of-

fered by classical linear stability theory is needed. Such a mechanism emerged

during the 1980s and 1990s under the names of lift-up and transient or algebraic

growth.

Landahl [42, 43] o�ered the physical explanation that a wall-normal displace-

ment of a 
uid element in a shear layer yields a large perturbation in streamwise

velocity component, if the 
uid element initially retains its horizontal momen-

tum. An energy-e�cient wall-normal redistributor of streamwise momentum

consist of streamwise aligned vortices. It was therefore soon realised that a lon-

gitudinal externally generated vortex would \lift-up" low-velocity 
uid on one

side and push down high-velocity 
uid on the other, creating the streak-like

spanwise non-uniformity oriented in the streamwise direction that was observed

in the 
ow visualisations.

Also Ellingsen & Palm [16] studied the lift-up e�ect and showed, within the

inviscid approximation and provided a 
ow �eld without streamwise variation,

that the streamwise velocity component could grow linearly with time. How-

ever, as explained by Hultgren & Gustavsson [34] in the presence of viscosity an

initially inviscid \transient growth" will be followed by a viscous decay.

The development of an arbitrary linear three-dimensional disturbance super-

imposed on a laminar parallel base 
ow is governed by two equations. Besides

the equation for the wall-normal velocity, v, an equation for wall-normal vorticity

(� = @u=@z � @w=@x) is needed

[(
@

@t
+ U

@

@x
)r2 � U

00
@

@x
�

1

Re
r4]v = 0; (11)

[(
@

@t
+ U

@

@x
)�

1

Re
r2]� = �U 0

@v

@z
: (12)
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Here r denote the nabla operator. If the normal-mode ansatz is introduced in

the equations (11) and (12), the Orr{Sommerfeld equation (2) together with an

equation denoted the Squire equation are obtained.

In classical linear stability theory only the least stable mode to the Orr{

Sommerfeld equation (11) (TS wave) is considered. If this mode is damped, the


ow is considered stable. However, the transient growth originates from the fact

that the linear operator representing the coupled Orr{Sommerfeld and Squire

equations (i.e. representing the evolution of an arbitrary three-dimensional dis-

turbance) is non-normal and consequently have non-orthogonal eigenfunctions.

This implicates that the total sum of modes, which individually are stable and

consequently each will have amplitudes that decrease with time, can experience

a strong transient growth phase before a viscous decay forces the disturbances

to approach zero.

It is a well-established fact that the di�erential equations (11) and (12)

governing an arbitrary three-dimensional disturbance are non-normal. Even so,

the common notion in the transition community seems to have been that they

should behave nearly as if they were. The non-coincidence of left and right eigen-

functions was for long viewed as a mere technicality. However, in recent years,

governed by the idea of the lift-up phenomenon, researches such as Henningson,

Lundbladh & Johansson [29] have gathered evidence to point upon a transient

phase of algebraic growth that can sometimes be strong enough to bypass the

exponential phase totally, making it unobservable in practice.

L. N. Trefethen introduced the notion of pseudospectra to quantify the non-

normality of operators. This notion has been used by Trefethen et al. [72] to

show that the departure from normality is indeed large in many 
ows.

4.2. Optimal disturbances

4.2.1. Temporal setting. As we have seen and also as the title \non-

modal ampli�cation" suggests, the the instability caused by an arbitrary three-

dimensional disturbance is not described by a single eigenmode (as is the case

using the least stable TS wave to determine the stability), but rather by a sum

of eigenmodes to equations (11) and (12). This results in a disturbance that

changes its shape as each individual mode grow or decay with time, opposed to

the expontially growing instability modes of constant form.

When considering disturbances of di�erent shape, the natural question arises;

which initial shape (given say unit energy) causes the maximum energy growth

within a speci�ed time period? Such disturbances are denoted optimal per-

turbations and were �rst studied in parallel shear 
ows by Farrell [19], Butler &

Farrell [13] and Reddy & Henningson [57]. These studies found that disturbances

which resemble streamwise vortices exhibit the strongest transient growth.

Gustavsson [23] studied transient growth in a Poiseuille 
ow before any opti-

mal perturbations had been calculated. He used various Orr{Sommerfeld modes



together with zero normal vorticity as initial conditions and studied the response

in the normal vorticity as a function of time. When triggering modes with zero

streamwise wave number he obtained a maximum energy growth only slightly

smaller than the one calculated for the optimal perturbation. A number of later

studies have shown that weak streamwise vortices can trigger large streamwise

velocity perturbations due to lift-up, and that in fact this mechanism can give

rise to a transient growth phase strong enough to lead to transition.

4.2.2. Spatial setting. Recently, optimal disturbances and transient growth

inside 
at plate boundary layers have been studied using spatial settings. An-

dersson, Berggren & Henningson [4] and Luchini [49] used two slightly di�erent

formulations to study the linear stability of a high-Reynolds-number 
ow of a

viscous, incompressible 
uid over a 
at plate (the geometry of the problem is

shown in �gure 1.1).

The objective for paper 2 in this thesis was to model disturbances that

occur at moderate and high levels of free-stream turbulence. These disturbances

are known to be elongated in the streamwise direction, to appear with a fairly

spanwise periodic regularity and to vary on a slow timescale [75]. This motivates

the use of boundary-layer approximations to the steady, incompressible Navier{

Stokes equations, that is the G�ortler equations, with the G�ortler number set

to zero. These equations are linearised around a two-dimensional Blasius base


ow in order to obtain equations for the spatial evolution of three-dimensional

disturbances. Due to the experimentally observed spanwise regularity the z-

dependence is taken to be periodic, with the spanwise wavenumber denoted �.

The obtained stability equations are parabolic in x for the three velocity

components, so that, given an initial velocity disturbance, as initial condition at

a given x0 > 0, we may solve the initial-boundary-value problem for x > x0 to

obtain the downstream development of the given initial disturbance.

Luchini [48] simpli�ed these equations further by considering the limit of

small spanwise wavenumbers. In this limit the three-dimensional boundary

layer equations were found to contain similarity solutions|consisting of eigen-

solutions|corresponding to a three-dimensional extension of the two-dimensional

solutions studied by Libby & Fox [46]. The approximation becomes invalid when

the spanwise wave length is of the order of the boundary layer thickness. How-

ever, within the approximation, a least stable mode is found that allows for an

algebraic growth of the streamwise velocity in the streamwise direction according

to u � x
0:21.

The mathematical problem of �nding the optimal disturbances, can be for-

mulated using a notation in abstract operators. We adopt an input-output point

of view and consider the 'output'

uout = (u(x; y); v(x; y); w(x; y))T (13)



at x > x0 as given by the solution of the parabolic initial-boundary-value problem

discussed above with the 'input' data

uin = (u0(y); v0(y); w0(y))
T
: (14)

Since the problem is linear and homogeneous, we may write this

uout = Auin (15)

where A is a linear operator.

The downstream development of disturbances is studied by observing how

the output uout changes with the input uin. To quantify the `size' of these dis-

turbances we de�ne a measure of the disturbance energy at a speci�c streamwise

location x,

E(u(x)) =

Z
1

0

(Re juj2 + jvj2 + jwj2) dy � jjujj2 = (u;u); (16)

where j � j denotes the absolute value and where Re is the Reynolds number based

on the streamwise distance to the leading edge of the 
at plate. The appearance

of Re in the norm is a result of the boundary-layer scaling and ensures that the

physical velocity components have equal weight. Note that the square root of

the disturbance energy is a norm, given by an inner product, on the space of

disturbances at a �xed streamwise location.

To calculate the optimal disturbance, we pick two streamwise locations 0 <

x0 < xf and maximise the output disturbance energy at x = xf among all

suitable constrained inputs at x = x0 with �xed (unit) energy. The maximised

quantity is denoted the maximum spatial transient growth,

G(xf ) = max
E(uin)=1

E(uout(xf )) = max
kuink=1

kuout(xf )k
2 = max

kuink=1
kAuink

2
: (17)

Expression (17) can be reformulated as

G(xf ) = max
uin 6=0

kAuink
2

kuink2
= max

uin 6=0

(Auin;Auin)

(uin;uin)
= max

uin 6=0

(uin;A
�Auin)

(uin;uin)
; (18)

where the operator A� in equation (18) denote the adjoint operator to A with

respect to the chosen inner product. Recalling some basic facts from operator

theory it can be noted that if the maximum of (Auin;Auin)=(uin;uin) is attained

for some vector uin, this vector is an eigenvector corresponding to the largest

eigenvalue of the eigenproblem

A�Auin = �uin; (19)

and G(xf ) is the maximum eigenvalue, necessarily real and nonnegative.

The eigenvector corresponding to the largest eigenvalue of (19) can be cal-

culated using power iterations,

un+1in = �
nA�Aunin; (20)

where �n is an arbitrary scaling parameter, used to scale the iterates to unit

norm, for instance. If the largest eigenvalue, �, is separated from the rest of the



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

3
x 10

−3

beta

G
/R

e

Figure 4.1 Maximum spatial transient growth divided by the

Reynolds number versus spanwise wave number. Here x0 = 0 and

xf = 1. (-�-�- Re=103, - - - Re=104, � Re=105, + Re=106, o

Re=109, |{ Re-independent)

spectrum, the power iterations converge so that limn!1 unin=jju
n
injj = uin. From

uin it is then possible to calculate uout(xf ) = Auin and the maximum energy

growth, G(xf ).

Starting from the leading edge (x0 = 0), the G�ortler equations, with the

G�ortler number set to zero, are integrated a unit distance (xf = 1) downstream,

and G are calculated for several values of �. The calculations are repeated for

�ve di�erent Reynolds numbers Re = 103, 104, 105, 106 and 109, and once with

a Reynolds-number-independent formulation used by Luchini [49]. Figure 4.1

depicts G(x)=Re versus � and shows that the maximum spatial transient growth

scales linearly with the distance from the leading edge for large Reynolds numbers.

The v and w components of the optimal perturbation, for the spanwise wave

number � = 0:45 and optimised with respect to downstream position x = 1, are

given in �gure 4.2(a) at the high-Reynolds-number limit. The corresponding u

component of the response at the downstream position x = 1 caused by this

optimal perturbation is given in �gure 4.2(b). For high Reynolds numbers, the

u component almost completely vanishes in the optimal perturbation compared

with the v and w components. Likewise, the v and w components vanish in com-

parison with the u component in the downstream response. This is a consequence

of the appearance of the Reynolds number Re in the disturbance energy (16).

Note that, because of the periodicity property in the spanwise direction, the

upstream disturbance in �gure 4.2(a) corresponds to streamwise vortices and

the downstream response in �gure 4.2(b) to streamwise streaks. Also plotted in
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Figure 4.2 (a) The optimal perturbations at the leading edge max-

imised with respect to the downstream position x = 1. Here � = 0:45.

The u component is zero. (b) Downstream response at x = 1 cor-

responding to the optimal perturbations in the left �gure, that is

� = 0:45. The v and w components are zero. Also a comparison

with experimental data [75] measured in a 
at-plate boundary layer

at di�erent downstream locations.

�gure 4.2(b) are the experimental data from Westin et al. [75]. All the stream-

wise velocity components have been normalised to unit maximum value. The

presence of free-stream turbulence in the experiments prevents the root-mean-

square streamwise velocity perturbations to vanish at in�nity. The remarkably

good agreement between the measured and calculated velocity pro�les, and the

fact that the calculations contained an optimisation procedure while the experi-

ments did not, indicate that the shown pro�le corresponds to some dominating,

fundamental mode triggered in the 
at plate boundary layer when subjected to

high enough levels of free-stream turbulence. The fact that the power iterations

converges quickly, also indicates the existence of a well-separated, dominating

mode. The main conclusion is that almost any steady initial disturbance will

develop into a streamwise streak given a large enough Reynolds number. A more

complete version of the above material is given in Andersson et al. [4].

Figures 4.3 further visualise the upstream disturbance and the corresponding

downstream response, as given in �gures 4.2(a) and 4.2(b). In �gure 4.3(a) we

give the upstream disturbance plotted as velocity vectors in the z-y plane. The

corresponding downstream response is shown as contours of constant streamwise

velocity in the z-y plane in �gure 4.3(b). Note how the low velocity streaks

are produced by the lift-up of low velocity 
uid elements near the wall and

correspondingly how the high velocity streaks are produced by the introduction

of high velocity 
uid elements pulled down from the free-stream.

The simpli�ed model proposed by Luchini [48] allows for a self-similar solu-

tion consisting of eigenmodes. One can show that the corresponding eigenvalues

are all positive and real, and that the eigenfunctions form a complete set. An
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Figure 4.3 (a) Velocity vectors in the z-y plane of the optimal dis-

turbance at x = x0. Here x0 = 0 and � = 0:45. The u component is

zero. (b) Contours of constant streamwise velocity representing the

downstream response at x = xf = 1 corresponding to the optimal

disturbance shown in the above �gure. The v and w components

are zero. Here, solid lines represent positive values and dashed lines

represent negative values.



arbitrary disturbance can therefore be expanded in a sum of modes. Schmid [63]

used these modal solutions to optimise the total disturbance energy gain between

two streamwise locations, by superimposing a number of modal solutions. By

using a projection of the 
ow onto the space spanned by the eigenvectors, the

disturbance energy density is given in a quadratic form. He then formulated

the optimisation problem using a variational form, where a Lagrange multiplier

is used to enforce initial conditions of unit energy. When solving the result-

ing Euler{Lagrange equations, in form of a generalised eigenvalue problem, he

�nds that a substantial gain in energy can be achieved before the asymptotic

behaviour (given by the unstable mode) dominates the growth in energy.

This asymptotic behaviour corresponds to the mode with the spatial alge-

braic growth of the streamwise velocity component of u � x
0:21. For distances

su�ciently far downstream of the leading edge, where this mode prevails, the

mode shape shows a similar velocity pro�le as that corresponding to the optimal

streak displayed in �gure 4.2(b), see paper 5 in this thesis (Andersson [3]).

There is, however, a fundamental di�erence in the prediction of the spatial

growth of the streamwise velocity components between the two models. While

the solution to the eigenproblem grows unboundedly with the streamwise coordi-

nate as x0:21; the streamwise streaks from the more general model, determined by

the optimisation calculations, will always obtain a maximum at a given stream-

wise position and vanish as x ! 1. This di�erence in behaviour is a result of

having retained the spanwise di�usive term ��2u in the more general model.



CHAPTER 5

Secondary instability

5.1. Saturation and general introduction of secondary instability

In the previous chapters the linear ampli�cation of the small-amplitude

disturbances were supplied by either of two di�erent mechanisms; the two-

dimensional waves in chapters 2 and 3 or the growth of streaks in chapter 4.

These type of disturbances will here be denoted primary instabilities. If the

ampli�cation is strong enough the disturbances eventually reach an amplitude

where nonlinear e�ects become important. A possible but very unusual sce-

nario is that the primary instability transforms the 
ow directly into a turbulent

state. More likely the disturbances saturate and take the 
ow into a new steady

or quasi-steady state.

The spatial development of such a quasi-steady state is displayed in �g-

ures 5.1. The nonlinear development of the optimal streaks discussed in sec-

tion 4.2.2 are computed solving the full Navier{Stokes equations in a spatially

evolving boundary layer. Details on the solution procedure, using direct numer-

ical simulations, can be found in Andersson et al. [6] (paper 3 in this thesis).

The complete velocity �eld from the linear results by Andersson, Berggren &

Henningson [4] is used as input close to the leading edge and the downstream

nonlinear development is monitored for di�erent initial amplitudes of the per-

turbation. This is shown in �gure 5.1(a), where all energies are normalised

by their initial values. The dashed line corresponds to an initial energy small

enough for the disturbance to obey the linearised equations. Figure 5.1(b) dis-

plays the downstream amplitude development for the same initial conditions as

�gure 5.1(a).

This new saturated 
ow|that is the base 
ow plus the primary instability|

may itself become unstable to perturbations di�erent from those which grow

in the presence of the base 
ow alone; such instabilities are usually denoted

secondary instabilities. The secondary instability stage often occurs on a much

faster timescale than the primary instability, making a steady-state assumption

reasonable even in cases with a quasi-steady 
ow state.

Here, three di�erent scenarios in a 
at plate boundary layer 
ow are con-

sidered; secondary instability of two-dimensional waves, secondary instability of

streaks and a brief description of oblique transition.

18
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Figure 5.1 (a) The energy, as de�ned in (16), of the primary distur-

bance, E, normalised with its initial value, E0, versus the streamwise

coordinate, x, for �=0.45 and Re�=430. Here x has been made non-

dimensional using the distance to the leading edge. The arrow points

in the direction of increasing initial energies. The dashed line rep-

resents the optimal linear growth. (b) The downstream amplitude

development for the same initial conditions as in (a). The amplitude

A is de�ned by equation (22). (The two lines have been circled for

future reference).

5.2. Secondary instability of two-dimensional waves

If the amplitude of an ampli�ed Tollmien{Schlichting wave grow above a

given threshold it becomes susceptible to secondary instabilities. Experimental

investigators identi�ed two possible three-dimensional stages between the two-

dimensional state and fully developed turbulence. One of these two types of

secondary instabilities was observed by Klebano�, Tidstrom & Sargent [39] and

was later denoted K-type after Klebano� but is also called fundamental break-

down since the frequency of the secondary instability is the same as that of the

primary instability. This transition scenario gives rise to a structure consisting

of �-shaped vortices aligned in the streamwise direction and has been observed

in 
ow visualisation studies. The other transition scenario also shows �-shaped

vortices but in this case the structures are arranged in a staggered pattern which

suggests a secondary instability with half the frequency of the one associated with

the primary wave and is thus often denoted subharmonic breakdown. This type

of secondary instability is also denoted H-type after the theoretical work by Her-

bert [30, 31] or N-type after \Novosibirsk" where the group Kachanov, Kozlov

& Levchenko [38] �rst observed this scenario in experimental studies. Transition

experiments with controlled two-dimensional Tollmien{Schlichting waves reveal

that the subharmonic secondary instability is the �rst to appear when small-

amplitude forcing is used, whereas for larger initial amplitudes, the fundamental

secondary instability type is usually observed. Consequently, in low ambient
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Figure 5.2 Contour plots in a z-y plane of the primary disturbance

streamwise velocity using the spanwise wavenumber �=0.45 and the

disturbance amplitude A=0.36 at the streamwise position x=2 for

(a) the shape assumption; (b) the nonlinear mean �eld correspond-

ing to the circled line in �gures 5.1 at x=2 (where A=0.36). Here

Re�=430. In both �gures the coordinates y and z have been made

non-dimensional using the local Blasius length scale �, at streamwise

position x=2.

disturbance environments the subharmonic secondary instability is more likely

to occur inside boundary layers. For a review over the theoretical aspects and

the physical mechanisms involved to explain the secondary instabilities, see Her-

bert [31] and Kachanov [37]. The investigations of the di�erent types of break-

down scenarios performed using direct numerical simulations have been reviewed

by Kleiser & Zang [40].

5.3. Secondary instability of streaks

If the disturbance energy of the streaks becomes su�ciently large, secondary

instability can take place and provoke early breakdown and transition, overrul-

ing the theoretically predicted modal decay. A possible secondary instability is

caused by in
ectional pro�les of the base 
ow velocity, a mechanism which does

not rely on the presence of viscosity. Experiments with 
ow visualisations by

for example Alfredsson & Matsubara [2] have considered the case of transition

induced by streaks formed by the passage of the 
uid through the screens of the

wind-tunnel settling chamber. They report on the presence of a high frequency

"wiggle" of the streak with a subsequent breakdown into a turbulent spot.

In paper 3 in this thesis this secondary instability is studied using equations

linearised around a mean �eld consisting of the complete nonlinear development

of the streak. These secondary stability calculations are carried out under the

following two assumptions:



1. Since the base 
ow is computed on the basis of the boundary layer approx-

imation, the mean �eld to leading order will consist only of the streamwise

velocity component. Such a mean �eld varies on a slow streamwise scale.

2. The perturbation is assumed to vary rapidly along the streamwise di-

rection in comparison to the mean �eld. This is clearly observed in the

experimental visualisations of Alfredsson & Matsubara [2]. Hence, our

leading order stability problem is the parallel 
ow problem, with pertur-

bation mode shapes dependent only on the cross-stream coordinates.

Under these assumptions the streak velocity �eld can be written on the form

U = (U(y; z); 0; 0). Since the velocity �eld is periodic in the spanwise direction

it may be expanded in the sum of cosines

U(y; z) = U0(y) +

1X
k=1

Uk(y) cos(k�z); (21)

where U0 di�ers from the Blasius solution UB by the mean 
ow distortion term.

To be able to quantify the size of the primary disturbance �eld an amplitude A

is de�ned as

A =
1

2

�
max
y;z

(U � UB)�min
y;z

(U � UB)

�
: (22)

The e�ect of the nonlinear interactions on the base 
ow are shown by the

contour plots in �gures 5.2. Figure 5.2(a) displays the primary disturbance ob-

tained using the shape assumption|where the primary disturbance (the linearly

obtained streak) has been superimposed on the laminar mean �eld (the Blasius

solution)|with A=0.36, while 5.2(b) shows a fully nonlinear mean �eld, char-

acterised by the same disturbance amplitude. In the latter case, the low speed

region is narrower and displaced further away from the wall.

The equations governing the stability of the streak are obtained by substitut-

ing U+u, where u(x; y; z; t)=(u; v; w) is the perturbation velocity and U is the

streak pro�le above, into the Navier{Stokes equations and dropping nonlinear

terms in the perturbation. The resulting equations are

ut + Uux + Uyv + Uzw = �px +
1

Re
�u; (23)

vt + Uvx = �py +
1

Re
�v; (24)

wt + Uwx = �pz +
1

Re
�w; (25)

ux + vy + wz = 0: (26)

Here p = p(x; y; z; t) is the perturbation pressure. The above equations can be

reduced to two equations by expressing the perturbation quantities in terms of

the normal velocity v and the normal vorticity � = uz �wx. The manipulations
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Figure 5.3 Sketch of streak instability modes in the x�z plane over

four streamwise and two spanwise periods, by contours of the total

streamwise velocity. The low-speed streaks are drawn with solid lines

while dashed lines are used for the high-speed streaks.

are similar to those in the derivation of the Orr{Sommerfeld and Squire equations

showed earlier

�vt + U�vx + Uzzvx + 2Uzvxz � Uyyvx � 2Uzwxy � 2Uyzwx =
1

Re
��v;

�t + U�x � Uzvy + Uyzv + Uyvz + Uzzw =
1

Re
��:

Also the spanwise velocity w can be eliminated from the above equations using

the identity

wxx + wzz = ��x � vyz:

Even if viscosity is neglected (Re!1 in equations (23)-(25)) the presence

of both wall-normal and spanwise gradients in the mean �eld makes it impos-

sible to obtain an uncoupled equation for either of the velocity components. It

is, however, possible to �nd an uncoupled equation for the pressure by taking
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Figure 5.4 Temporal growth rates versus streamwise wavenumber

for the (a) fundamental (b) subharmonic sinuous symmetries of the

secondary instabilities; given for the di�erent amplitudes of the pri-

mary disturbance (|�| A=25.6,|.| A=27.2, - - - A=28.8, -�-�-

A=31.7,|/| A=34.5, |+| A=36.4, |�| A=37.3).The arrows

point in the direction of increasing A's.

the divergence of the momentum equations, introducing continuity and then ap-

plying equations (24) and (25) (Henningson [28]; Hall & Horseman [26]). These

manipulations yield

(
@

@t
+ U

@

@x
)�p� 2Uypxy � 2Uzpxz = 0: (27)

The pressure is expanded in an in�nite sum of Fourier modes and only

perturbation quantities consisting of a single wave component in the streamwise

direction are considered, i.e.

p(x; y; z; t) = Realfei�(x�ct)
1X

k=�1

p̂k(y)e
i(k+
)�zg;

where � is the real streamwise wavenumber and c = cr + ici is the phase speed.

Here � is the spanwise wavenumber of the primary disturbance �eld and 
 is the

(real) Floquet exponent. Because of symmetry it is su�cient to study values of 


between zero and one half, with 
 = 0 corresponding to a fundamental instability

mode, and 
 = 0:5 corresponding to a subharmonic mode (see Herbert [31] for a

thorough discussion on fundamental and detuned instability modes).

The most commonly used de�nitions of sinuous or varicose modes of in-

stability are adopted with reference to the visual appearance of the motion of

the low-speed streaks. A sketch of the di�erent fundamental and subharmonic

modes is provided in �gure 5.3: it clearly illustrates how the symmetries of the

subharmonic sinuous/varicose 
uctuations of the low-speed streaks are always

associated to staggered (in x) varicose/sinuous oscillations of the high-speed

streaks.



0.27 0.29 0.31 0.33 0.35 0.37

0.1

0.2

0.3

0.4

0.5

0.6

0.25 0.27 0.29 0.31 0.33 0.35 0.37

0.1

0.2

0.3

0.4

0.5

0.6
(a) (b)

A

�

A

�

Figure 5.5 Neutral curves for streak instability in the A-� plane

for (a) fundamental sinuous mode, (b) subharmonic sinuous mode.

(contour levels: !i=0, 0.0046, 0.0092)

In [6] (paper 3 of this thesis) an extensive parametric study was carried out

for the sinuous fundamental (
 = 0), arbitrarily detuned (0 < 
 < 0:5) and

subharmonic (
 = 0:5) symmetries, which were the only ones found to be signif-

icantly unstable. In �gures 5.4(a) and 5.4(b) the growth rates of the instability

!i = �ci are plotted against the streamwise wavenumber, for the fundamental

and subharmonic sinuous symmetries, respectively; and for di�erent amplitudes

of the streaks, obtained with the direct numerical simulations. One can note that

when increasing the amplitude, not only do the growth rates increase but their

maxima are also shifted towards larger values of the streamwise wavenumber

�. For amplitudes larger than about 0:30, the subharmonic symmetry produces

lower maximum growth rates than the fundamental symmetry. Note, however,

that for lower amplitudes the sinuous subharmonic symmetry represents the most

unstable mode. The phase speeds for the two sinuous modes were found to be

only weakly dispersive.

A study was also conducted in [6] to identify the neutral stability curves

calculated for a range of �'s. The results are displayed in �gures 5.5 for the

two sinuous symmetries, together with contour levels of constant growth rates.

It can immediately be observed that a streak amplitude of about 26% of the

free-stream speed is needed for an instability to occur. One can also notice that

the subharmonic mode is unstable for lower amplitudes than the fundamental

mode and that the growth rates for larger amplitudes are quite close for the two

symmetries.

No results for the varicose instabilities are presented here. In fact, both

the varicose fundamental and the subharmonic symmetries result in weak insta-

bilities for amplitudes larger than A=0.37 with growth rates smaller than one

�fth of the corresponding sinuous growth rates. Therefore a breakdown scenario

triggered by a varicose instability seems unlikely.



Andersson et al. [6] (paper 3 in this thesis) showed that the linear and non-

linear spatial development of optimal streamwise streaks are both well described

by the boundary layer approximations and as a consequence Reynolds number

independent for large enough Reynolds numbers. This results in a boundary

layer scaling property that couples the streamwise and spanwise scales, imply-

ing that the same solution is valid for every combination of x and � such that

the product x�2 stays constant. The parameter study of streak's instability is

therefore representative of a wide range of intermediate values of � for which

saturation occurs at a reasonable x; large enough so that the boundary layer

approximation may still be valid and small enough so that Tollmien{Schlichting

waves may not play a signi�cant role.

The secondary instability of streaks approximated by the shape assumption

was parametrically studied by [5] (see paper 4 in this thesis). Comparison of the

results with those obtained from calculations where the base 
ow is the nonlin-

early developed streak demonstrate the inapplicability of the shape assumption

for this type of studies. The secondary instability results are found to be very

sensitive to a slight change in the shape of the mean �eld velocity pro�le and,

even if the sinuous modes are reasonably well captured by the shape assumption,

the growth rates of varicose modes are widely over-predicted.

5.4. Oblique transition

In the last section the primary disturbance consisted of streamwise streaks

and in chapter 4 it was shown how the initial disturbance optimally suitable for

producing these streaks are streamwise aligned vortices. In the oblique transition

scenario, streamwise aligned vortices are generated by nonlinear interaction be-

tween a pair of oblique waves with wave angles of equal magnitude but opposite

sign. The oblique transition scenario is initiated by the oblique waves generat-

ing streamwise aligned vortices which, in turn, produces streamwise streaks. As

the initial oblique waves start to decay the 
ow �eld becomes dominated by the

streaky structures. If the amplitude of these streamwise streaks reaches above a

threshold they become unstable to the same types of secondary instabilities as

discussed in the previous section. The oblique transition scenario in a Blasius

boundary layer has been studied experimentally by Wiegel [76] and Elofsson [17]

and numerically by Joslin, Streett & Chang [36] and Berlin, Lundbladh & Hen-

ningson [8]. A comparison between Wiegels experiment and direct numerical

simulations was presented by Berlin, Wiegel & Henningson [9].



CHAPTER 6

Transition modelling for high free-stream

turbulence levels

6.1. \Classical" empirical correlations

Several empirical correlations for transition criteria involving the combined

e�ects of the free-stream turbulence level and the streamwise pressure gradient

have been developed. For example, van Driest & Blumer [73] arrives at a semi-

empirical model, by introducing a critical vorticity Reynolds number that cor-

relates the pressure gradient and free-stream turbulence level with the Reynolds

number at transition. In the model of Dunham [14], the value of the Reynolds

number based on momentum-loss thickness at the transition point is given as

a function of the Pohlhausen (pressure gradient) parameter and the free-stream

turbulence level. Abu-Ghannam & Shaw [1] suggest a model that gives the

start and end of the transition region in terms of the Reynolds number based

on momentum-loss thickness. Also here, the free-stream turbulence level and

a pressure-gradient parameter are the only required inputs. For 
ows similar

to the ones for which these empirical correlations are calibrated they often give

reasonable predictions. However, the large degree of empiricism also implies that

their generality is rather limited.

6.2. Model based on the e
N -method

The e
N -method assumes that transition occurs when the most ampli�ed

exponentially growing disturbance has grown a factor N = ln(A=A0), where

A0 is the amplitude at the critical Reynolds number and A is the amplitude

downstream. This growth is governed by linear stability theory. The prediction

given by the eN -method is that N is a constant or a function of the turbulence

level in the free-stream. This method was developed independently by Smith

& Gamberoni [67] and van Ingen [74]. Mack [50] used a modi�ed e
N -method

and suggested the empirical relationship, N = �8:43� 2:4 ln(Tu), between the

free-stream turbulence level Tu and the N -factor at the transition location. This

model gives reasonable transition locations in the range 0:1 < Tu < 2 %.

26



Table 1 Comparisons of di�erent experimental studies

Tu(%) ReT K

Roach & Brierley [59]

T3AM 0.9 1,600,000 1138

T3A 3.0 144,000 1138

T3B 6.0 63,000 1506

Yang & Voke [77] 5.0 51,200 1131

Matsubara [51]

grid A 2.0 400,000 1265

grid B 1.5 1,000,000 1500

6.3. Transition prediction based on non-modal ampli�cation

Experimental measurements inside 
at plate boundary layers indicate that

for free-stream turbulence levels between roughly 1{5 %, transition is associated

with growing streamwise streaks. In paper 2 in this thesis Andersson, Berggren

& Henningson [4] propose a transition prediction model valid in this range based

on the scaling property displayed in �gure 4.1 together with three assumptions.

The �rst assumption is about the receptivity process at the leading edge of

the 
at plate. The input energy E(uin), as de�ned in (16), is assumed to be

proportional to the free-stream turbulence energy,

E(uin) _ Tu2: (28)

Second, we assume that the initial disturbance grows with the optimal rate,

E(uout) = GE(uin) = GReE(uin); (29)

where G is Reynolds-number independent. The last equality was found to hold

for large enough Reynolds numbers (see �gure 4.1 in section 4.2.2).

The third assumption is the existence of a threshold in the disturbance en-

ergy over which transition occurs. We assume that transition takes place when

the output energy reaches the speci�c value, ET ,

E(uout) = ET : (30)

Combining assumptions (28){(30), we obtainp
ReTTu = K;

where K should be constant for free-stream turbulence levels at 1{5 %. The

experimental data used to verify this model are given in table 1. As can be

seen, K is approximately constant for a variety of free-stream turbulence levels.

A similar model, obtained from di�erent arguments was given by van Driest &

Blumer [73]. They postulated that transition occurs when the maximum vorticity

Reynolds number reaches a critical value to be correlated with the free-stream

turbulence level. A comparison between the two models and the experimental
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Figure 6.1 Transitional Reynolds number based on the distance to

the leading edge versus free-stream turbulence level (given in per-

cent), for two transition prediction models and experimental data.

(| The model suggested in this paper with K=1200, * The model

proposed by van Driest & Blumer, o The experimental data from

table 1.)

data given in table 1 is shown in �gure 6.1. As can be seen there their model

agrees well with ours for free-stream turbulence levels at 1{6%.
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