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S-100 44 Stockholm, Sweden

Abstract

A scenario for bypass transition to turbulence likely to occur in natural transition
in a flat plate boundary layer flow has been studied. The exponential growth
or decay of two-dimensional wave disturbances, known as Tollmien—Schlichting
waves, has long been the classical starting point for theoretical investigations
of transition from laminar to turbulent flow. Its failure to explain experimen-
tally observed transition for many flows has attracted intense interest to the
recently revealed existence of non-modal growth mechanisms. This thesis fo-
cus mainly on transition emanating from the non-modal transient growth of
streamwise streaks. Streamwise streaks are ubiquitous in transitional bound-
ary layers, particularly when subjected to high levels of free-stream turbulence.
The upstream disturbances experiencing maximum spatial energy growth have
been calculated numerically using techniques commonly employed when solv-
ing optimal-control problems for distributed parameter systems. The calculated
optimal disturbances consist of streamwise aligned vortices developing down-
stream into streamwise streaks which are in good agreement with experimental
measurements. The maximum spatial energy growth was found to scale lin-
early with the distance from the leading edge. Based on these results, a simple
model for prediction of transition location is proposed. However, the non-modal
growth of streamwise streaks only represent the initial phase of transition. If
the disturbance energy of the streaks becomes sufficiently large, secondary in-
stabilities can take place and provoke early breakdown and transition, overruling
the theoretically predicted modal decay. Using linear Floquet theory the tem-
poral, inviscid secondary instability of these streaks were studied to determine
the characteristic features of their breakdown. The critical streak amplitude
beyond which streamwise travelling waves are excited is typically of order 26%
of the free-stream velocity. The sinuous secondary instability mode was found
to represent the most dangerous symmetry for travelling disturbances. Also
the numerical-stability consequences of the remaining ellipticity in the Parabolic
Stability Equations (PSE) are studied. The equations are found to constitute an
ill-posed Cauchy problem. Suggestions of how to make the equations well-posed
and to remove the methods otherwise intrinsic step-size restriction are given.

Descriptors: laminar-turbulent transition, boundary layer flow, non-parallel
effects, adjoint equations, transient growth, optimal disturbances, streamwise
streaks, streak instability, secondary instability, transition modelling, free-stream
turbulence, parabolic stability equations, ill-posed equations.



Preface

This thesis considers the stability of boundary layer flows and modelling aspects.
The thesis is based on and contains the following papers.

Paper 1. ANDERSSON, P., HENNINGSON, D. S. & Hanir1, A. 1998 On a
stabilization procedure for the parabolic stability equations. J. Eng. Math. 33,
311-332.

Paper 2. ANDERSSON, P., BERGGREN, M. & HENNINGSON, D. S. 1999 Op-

timal disturbances and bypass transition in boundary layers. Phys. Fluids 11,
134-150.

Paper 3. ANDERSSON, P., BRANDT, L., BOTTARO, A. & HENNINGSON, D. S.
1999 On the breakdown of boundary layer streaks. submitted to J. Fluid Mech.

Paper 4. ANDERSSON, P., BOTTARO, A., HENNINGSON, D. S. & LUcCHINI, P.
1999 Secondary instability of boundary layer streaks based on the shape as-
sumption. TRITA-MEK, Technical Report 1999:13, Dept. of Mechanics, KTH,
Stockholm, Sweden.

Paper 5. ANDERSSON, P. 1999 On the modelling of streamwise streaks in the
Blasius boundary layer. TRITA-MEK, Technical Report 1999:14, Dept. of Me-
chanics, KTH, Stockholm, Sweden.

The papers are here re-set in the present thesis format, and some minor cor-
rections have been made as compared to published versions. The first part of
the thesis is both a short introduction to the field and a summary of the most
important results presented in the papers given above.
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CHAPTER 1

Introduction

Sleepless for over 24 hours and awaiting my transfer flight to take me home
to Stockholm from San Francisco, I saw a five-year-old boy reaching out and
trying to grip a miniature cyclone on display at Frankfurt airport. While we
both watched as the water aerosol smoke slipped away between his fingers I
experienced a moment of basic understanding from where the fascination for
fluid mechanics arises. It appears as a ghost from nowhere and makes leaves
move in strange patterns. The fog rolls in at night, seemingly from nowhere.
Much like modern times fascination for black holes we often do not notice the
actual fluid but only its effect on other matter. And as I realized that evening,
most important; “It slips through your fingers impossible to grasp”.

The child, the engineer, the applied mathematician, and even the not—so—
applied mathematician can all share the feeling of being unable to grasp the
phenomena occurring in a fluid flow. Even though the governing equations have
been around for almost two hundred years only a handful of solutions to practical
problems are known to man. From a theoretical point of view the uniqueness
and regularity of solutions in three space dimensions is still an open question
and from a practical standpoint the methods of finding approximate solutions
are still not satisfactory enough for many applications.

This situation creates a need for simplified models based on careful approx-
imations of the Navier—Stokes equations together with a deep physical insight,
often gained from experimental observations of a related flow configuration. This
thesis is concerned with a number of such models, all describing different aspects
of the fluid mechanics phenomenon denoted transition.

The term transition refers to the passage between two states of fluid flows:
the ordered, regular, and predictable laminar flow as opposed to the swirly, fluc-
tuating, and chaotic turbulent flow. The transition process itself is usually further
divided into three different stages. The receptivity stage, where the disturbance
is introduced and established into the flow. The stability phase concerns the de-
velopment of the established disturbance in time (temporal) or in space (spatial).
Of course the aspect of major interest is whether the disturbance is growing or
decaying depending on its characteristics. The last phase is the subsequent non-
linear breakdown of the growing disturbances which is characterised by nonlinear
generation of a multitude of scales which represent the typical characteristic of
a turbulent flow.



FiGure 1.1 Flat plate boundary layer flow with free-stream velocity
Us. The coordinate system has directions x, y and z with corre-
sponding velocity components u, v and w.

The present thesis deals with the stability and breakdown stages of transition
inside a boundary layer which forms over a flat plate when subjected to a uniform
oncoming flow field (see figure 1.1). The boundary layer is established due to
viscosity. This internal friction forces the velocity from its free-stream value a
distance above the wall to zero immediately at the surface.

At vehicles travelling through air the typical thickness of a boundary layer
is quite small. A typical value of the boundary layer thickness one meter in on
a motor-hood of a car travelling at 100 km/h is about one millimeter, unless,
of course, your Mercedes star has provoked early transition; in which case the
value would be slightly larger.



CHAPTER 2

Overview of transition history

2.1. Reynolds classical experiment

In the classical pioneering work of Osborne Reynolds [58](1883), he studies
the transition process in the shear flow inside a glass tube. By injecting colour
at the centreline in the inlet of the pipe he could visualise the shift from the
ordered laminar motion to the irregular turbulent motion. He writes: “When
the velocities were sufficiently low the colour extended in a beautiful straight
line through the tube”. However, at higher velocities the straight line became
irregular and was mixed with the surrounding fluid in a violent way. Increasing
the velocity further shortened the distance between the inlet and the point where
the transition to turbulence started. By varying a number of different flow
parameters, including the pipe radius, r, the kinematic viscosity of the fluid, v,
and the bulk velocity, U, he found that when the non-dimensional quantity that
later became known as the Reynolds number, Re = Ur /v, exceeded a threshold
value the flow became unstable. Moreover, he found the “the critical velocity
was very sensitive to disturbances in the water before entering the tubes”. For
large disturbances at the pipe inlet, the flow became unstable at lower critical
velocities and at the critical velocity he noted that disturbances could appear
intermittently for short distances, like “flashes”, along the pipe. These “flashes”
are today called turbulent spots or turbulent bursts.

2.2. Classical linear stability theory

Lord Rayleigh [56](1880) started his theoretical investigations of the stability
of parallel flow of an inviscid fluid at about the same time as Reynolds carried
out his experiments with pipe flows. He explored the stability of disturbances
linearised around the mean velocity profile U = U(y)e,, where x denotes the
mean flow direction and y the direction normal to to the mean flow. By rewriting
the linearised equations as an equation for the normal velocity component, v,
and applying the following normal-mode assumption

v(z,y,t) = Real{f;(y)eia(zfct)},
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where a is the wave number, ¢ is the complex wave velocity and ¢ denotes time,
he obtains the following stability equation
d2 2\~ "

(U—c)(d—y2—a)v—UU:0, (1)
governing the complex amplitude function, ¢, of the normal velocity component.
From this equation Rayleigh proved his inflection point theorem, stating that
a necessary requirement for inviscid instability is that the mean velocity profile
has an inflection point. Later Fjgrtoft [20](1950) sharpened the requirement by
proving it necessary for instability that

U"(U - U,) <0,

somewhere in the flow, where Us,=U (y;) is the mean velocity at the inflexion
point, that is U" (ys)=0. Note that both these theorems constitute necessary but
not sufficient requirements for the inviscid flow to become unstable. Furthermore,
it should be noted that the transition observed in pipe flow can not be explained
by Rayleigh’s inflection point theorem as the mean profile is not inflectional.
Rayleigh’s work was followed by Orr [54](1907) and Sommerfeld [68](1908)
who independently derived an equation in which effects of viscosity was included
d? 1 d?
d_yg _ az)ﬁ _ U"’ﬁ — iaRe(d_yQ _ CM2)2
Heisenberg [27](1924) was the first to show that an inviscidly stable flow could
become unstable for finite Reynolds numbers. He considered a plane Poiseuille

U =)

o. 2)

flow using, asymptotic theory for large Reynolds numbers and small streamwise
wave numbers, and became the first to find a solution to the Orr—-Sommerfeld
equations. From his rough calculations he estimated the critical Reynolds num-
ber to be around 1000.

The first useful solutions were worked out by members of Prandtl’s group
in Gottingen, by Tietjens [70](1925) and later Tollmien [71](1929) and Schlicht-
ing [61, 62](1933,1935). The last two developed a comprehensive theory for
solving the Orr—Sommerfeld equations; hence today two-dimensional exponen-
tially growing waves are named Tollmien—Schlichting (TS) waves. Lin [47](1944)
developed the asymptotic theory further, and solved the Orr—Sommerfeld equa-
tions for plane Poiseuille flow estimating the critical Reynolds number to 5300.
Today, computers allow for accurate numerical solutions to the Orr—Sommerfeld
equations and Orszag [55](1971) showed that the critical Reynolds number for
plane Poiseuille flow is 5772.

The existence of Tollmien—Schlichting waves was long questioned and it was
not until the forties that the linear stability theory could be experimentally
verified in all its essential details. During the second world war Schubauer &
Skramstad [64](1947) (published later due to the war) conducted experiments
on a flat plate using a vibrating ribbon to trigger the Tollmien—Schlichting waves
and a hot-wire anemometry to measure the fluctuating streamwise velocity.



Tollmien—Schlichting waves in a plane Poiseuille flow proved even harder to
verify experimentally. However, Nishioka et al. [53](1975) used similar methods
as used in the flat plate boundary layer case and confirmed the theoretical results
obtained by Orszag.

2.3. Squire’s theorem and the role of three-dimensionality

Squire [69](1933) made an important contribution to linear stability theory
when he discovered that two-dimensional waves are the first to become unstable,
and that an oblique wave always can be transformed into a two-dimensional wave
associated with a lower critical Reynolds number, using the today well-known
“Squire’s theorem”.

This threw a smoke-screen over the important role of three-dimensionality,
and had the rather counter-productive effect that most of the early work on
stability concerned only two-dimensional waves.

However, a decade later after Schubauer and Skramstad’s verification of the
Tollmien—Schlichting waves, when Emmons [18](1951) accidently noticed spo-
radic turbulent spots on shallow running water, two-dimensionality was nearly
abandoned and soon, “everybody was seeing spots” as Morkovin [52](1969) wryly
notes.

Today its common knowledge that three-dimensionality deserves attention
for two main reasons. First, the later stages of transition caused by two-dimensional
TS waves are highly three-dimensional. Second, there is strong evidence that
subcritical disturbance growth is caused by three-dimensional disturbances.



CHAPTER 3

Spatially evolving disturbances and non-parallel
effects

3.1. Spatial stability and non-parallel effects

In section 2.2 the linear stability equations were discussed in terms of a
temporal problem. The assumption of a real streamwise wave number, a, but a
complex wave velocity, ¢, implies a growth (or decay) of the wave disturbances
with time. However, if instead the streamwise wavenumber is assumed complex
while the frequency, w, is taken as a real number, these equations also governs the
evolution of disturbances in space. Especially the physical situation for boundary
layer flows often requires the modelling of disturbance quantities utilising the
spatial approach. For example, the downstream development of an upstream-
introduced disturbance in a flat plate boundary layer flow is most appropriately
modelled using the spatial framework. Since the spatial stability problem is
given by an eigenvalue problem where the eigenvalue appears nonlinearly (up
to the power of four), it is mathematically slightly more complicated than the
temporal linear eigenproblem.

A further complication for boundary layer flows is caused by their non-
parallel character. In contrast to the parallel channel and pipe flows the boundary
layer base flows are dependent on the streamwise coordinate. Different pertur-
bation approaches have been tried to incorporate non-parallel effects mathemat-
ically, but their validity is restricted to cases where the base flow divergence is
slow compared to the spatial change of the disturbance quantities.

The effects of growing boundary layers have been introduced into the stabil-
ity theory by several authors, e.g. Gaster [22], Saric & Nayfeh [60], Gaponov [21]
and El-Hady [15].

3.2. The Parabolised Stability Equations

Recently, a non-parallel stability theory based on parabolised stability equa-
tions (PSE) has been developed. The first to solve parabolic evolution equations
for disturbances in the boundary layer was Hall [25], who considered steady
Gortler vortices. Itoh [35] used a parabolic equation to study the evolution of
small-amplitude Tollmien—Schlichting waves. The method was further devel-
oped by Herbert and Bertolotti [11, 32, 10, 12], who also derived the nonlinear
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parabolised stability equations. Simen and Dallmann [65, 66] independently de-
veloped a similar theory. A review of the PSE-method and its potential for
applications to a wide series of different flow-cases is given by Herbert [33].

The use of parabolised stability equations can be justified if the properties
of the flow are slowly changing in the streamwise direction compared to the
wall-normal direction. The first step in the derivation of the parabolised stabil-
ity equations is separating the disturbances (q = (u,v,p)”) into an amplitude
function and an exponential function

a(z,y, 1) = @z, y)e' Joo AL (3)

where « is the complex streamwise wavenumber (with the real and imaginary
parts denoted «, and «;, respectively) and w the angular frequency. Introduc-
ing the above ansatz into the Navier—Stokes equations and making use of the
assumption of slowly streamwise varying flow quantities, the amplitude func-
tions, @, 0 and p, and the wavenumber, «, are all assumed to be slowly varying
functions of x. Thus

0

%7
while the sizes of other quantities are assumed to be of O(1). Neglecting all
terms of order O(Re2) and higher, we arrive at a system of equations of the
form

V ~O(Re™),

q. = Lq, (4)

where £ contains wall-normal but no streamwise derivatives and where therefore
no second-order z-derivatives are left in the now parabolised equations.

Since (4) represent a system of three equations governing four unknown
quantities, a forth relation is needed for closure. The ambiguity stems from ex-
pression (3), where both the amplitude functions and the streamwise wavenum-
ber are assumed to be functions of z, and no specification of there relationship is
provided. The PSE provides this information via an additional equation, called
the normalisation condition

Ymax
[ 0t 4 R = (5)
Ymin
where * denotes complex conjugate. Other types of normalisation conditions
can also be used. These relations all share the common characteristic to ensure
that most of the disturbances z-variation will find its way into the exponential
function. Thereby the streamwise variation of the amplitude function, q, remains
small, in accordance with the original assumption. Equations (4) are solved
by marching downstream, starting with an appropriate initial condition, and
ensuring that (5) is satisfied at each streamwise position.

The measurement of the streamwise change of @,y is an often used quantity
in experiments as indicator for the growth of the disturbance. The chain rule



yields the expression

(6)

for the corresponding growth rate extracted from the PSE-solution. Here Gimax
denotes the maximum of @ over the wall-normal coordinate, y.

An analysis of the parabolic stability equations reveal that there is still a
weak ellipticity left in the equations, see Haj-Hariri [24]. As a consequence the

1 Olimax
—ai+Real{~ Yma },

Umax O

use of an explicit scheme in the streamwise direction will produce numerical
instabilities, and a crucial part of the PSE method is to use an implicit scheme
with a large enough step-size in the streamwise direction. This critical step size
was quantified by Li & Malik [44, 45] as

Ar>——, (7)

| ar |

and has proven correct for most of the PSE applications. More detailed infor-
mation of the PSE approximation can be obtained by comparing fundamental
solutions of the spatially formulated linearised two-dimensional Navier—Stokes
equations and the PSEs with constant coefficients. Such a comparison shows
that the parabolising procedure eliminates the most dangerous upstream prop-
agating eigenmode and the remaining ellipticity makes the PSEs ill-posed as an
initial-value problem in z, see Kreiss & Lorenz [41].

As presented in paper 1 in this thesis Andersson, Henningson & Hanifi [7]

suggested a modification of the PSEs which make the equations well-posed and
eliminate the step size restriction. This is done by approximating the streamwise
derivative by a first order implicit (backward Euler) scheme and including a term
proportional to a part of the leading truncation error,
Here, the term £, q has been neglected for simplicity. The assumption of small z-
derivative terms implies that the added truncation error is of the order O(R?).
Since terms of this order were neglected in the original approximation, the addi-
tion of 7 does not introduce any extra error at this order of approximation, and
we can introduce the new set of equations

Qe = £+ 5Lqe, (9)

where s is a positive real number. Based on the discussion given above, the
differences between the solution of equations (4) and (9) are of order O(R™2).
Note that, although s take the place of Az in the added truncation error term,
this term is small, even if s = O(1), since £q, is of order O(R~?).

Andersson, Henningson & Hanifi [7] found the critical step size, for solving
equation (9), with the first order backward Euler scheme, to be

— 2s. (10)
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FIGURE 3.1 Growth rate vs streamwise position, for boundary-layer
flow, obtained from the PSE method without (a) with (b) stabilising
terms for the three smallest step sizes. The value of the stabilising
parameter was set to s = 4.

Equation (10) implies that the value of s giving marginal stability approaches
0-5/|a,| when Az — 0. Consequently, this procedure makes it possible to stably
march the PSEs downstream for any arbitrarily small step size by using a suitable
s.

The stabilising procedure has been successfully applied to a number of flows,
for example non-parallel boundary-layer flows. The equations were linearised
around the two-dimensional Blasius boundary-layer flow. The calculations where
performed with a disturbance frequency F = 70 x 10~%, where

21y
F= @f ;
with f being the physical frequency. The calculations were started at R =
Usd/v = 500, where § = \/vL /Uy and L the distance from the leading edge
of the flat plate. The real part of the streamwise wavenumber was «, = 0.106,
which gave a critical step size of approximately Az = 9.5 based on the length
scale at R = 500.

Calculations of the growth rate were performed for four different step sizes
Az = 11,9, 5 and 2.5. The growth rate was based on the maximum of @& and
evaluated using expression (6). In figure 3.1(a) the results for the original PSEs
are presented. As can be seen a smooth solution were only obtained for the stable
step size, Az = 11. All attempts to march with step sizes under the critical value
became numerically unstable at some point in the calculation domain.

The results from the modified PSEs with s = 4 are given in figure 3.1(b).
The disturbance growth rate calculated from the original PSEs for Az = 11 is
also given for reference purposes. As is shown there, numerical instability was
absent in these calculations and results for all step sizes collapsed to the same
curve.



CHAPTER 4

Non-modal amplification

4.1. Lift-up and transient growth

Linear stability theory calculations of circular pipe flow reveal that all eigen-
values are stable and thus the flow is predicted to be stable. Even so, Reynolds
reported transition to occur for high enough Reynolds numbers. Furthermore,
both in plane Poiseuille flow and boundary flow, transition occur below the criti-
cal Reynolds number (subcritical transition) if the initial disturbance amplitudes
are large enough. Clearly, another alternative growth mechanism to the one of-
fered by classical linear stability theory is needed. Such a mechanism emerged
during the 1980s and 1990s under the names of lift-up and transient or algebraic
growth.

Landahl [42, 43] offered the physical explanation that a wall-normal displace-
ment of a fluid element in a shear layer yields a large perturbation in streamwise
velocity component, if the fluid element initially retains its horizontal momen-
tum. An energy-efficient wall-normal redistributor of streamwise momentum
consist of streamwise aligned vortices. It was therefore soon realised that a lon-
gitudinal externally generated vortex would “lift-up” low-velocity fluid on one
side and push down high-velocity fluid on the other, creating the streak-like
spanwise non-uniformity oriented in the streamwise direction that was observed
in the flow visualisations.

Also Ellingsen & Palm [16] studied the lift-up effect and showed, within the
inviscid approximation and provided a flow field without streamwise variation,
that the streamwise velocity component could grow linearly with time. How-
ever, as explained by Hultgren & Gustavsson [34] in the presence of viscosity an
initially inviscid “transient growth” will be followed by a viscous decay.

The development of an arbitrary linear three-dimensional disturbance super-
imposed on a laminar parallel base flow is governed by two equations. Besides
the equation for the wall-normal velocity, v, an equation for wall-normal vorticity
(n = 0u/0z — Ow/dx) is needed

9 .0 9 1

- -~ 2 _ g2 il v —

[(8t +Uax)v U 5 Te Jv=0, (11)
0 0 Ly 00

[(8t+U(93:) Rev In = U(’?z' (12)
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Here V denote the nabla operator. If the normal-mode ansatz is introduced in
the equations (11) and (12), the Orr—Sommerfeld equation (2) together with an
equation denoted the Squire equation are obtained.

In classical linear stability theory only the least stable mode to the Orr—
Sommerfeld equation (11) (TS wave) is considered. If this mode is damped, the
flow is considered stable. However, the transient growth originates from the fact
that the linear operator representing the coupled Orr—Sommerfeld and Squire
equations (i.e. representing the evolution of an arbitrary three-dimensional dis-
turbance) is non-normal and consequently have non-orthogonal eigenfunctions.
This implicates that the total sum of modes, which individually are stable and
consequently each will have amplitudes that decrease with time, can experience
a strong transient growth phase before a viscous decay forces the disturbances
to approach zero.

It is a well-established fact that the differential equations (11) and (12)
governing an arbitrary three-dimensional disturbance are non-normal. Even so,
the common notion in the transition community seems to have been that they
should behave nearly as if they were. The non-coincidence of left and right eigen-
functions was for long viewed as a mere technicality. However, in recent years,
governed by the idea of the lift-up phenomenon, researches such as Henningson,
Lundbladh & Johansson [29] have gathered evidence to point upon a transient
phase of algebraic growth that can sometimes be strong enough to bypass the
exponential phase totally, making it unobservable in practice.

L. N. Trefethen introduced the notion of pseudospectra to quantify the non-
normality of operators. This notion has been used by Trefethen et al. [72] to
show that the departure from normality is indeed large in many flows.

4.2, Optimal disturbances

4.2.1. Temporal setting. As we have seen and also as the title “non-
modal amplification” suggests, the the instability caused by an arbitrary three-
dimensional disturbance is not described by a single eigenmode (as is the case
using the least stable TS wave to determine the stability), but rather by a sum
of eigenmodes to equations (11) and (12). This results in a disturbance that
changes its shape as each individual mode grow or decay with time, opposed to
the expontially growing instability modes of constant form.

When considering disturbances of different shape, the natural question arises;
which initial shape (given say unit energy) causes the maximum energy growth
within a specified time period? Such disturbances are denoted optimal per-
turbations and were first studied in parallel shear flows by Farrell [19], Butler &
Farrell [13] and Reddy & Henningson [57]. These studies found that disturbances
which resemble streamwise vortices exhibit the strongest transient growth.

Gustavsson [23] studied transient growth in a Poiseuille flow before any opti-
mal perturbations had been calculated. He used various Orr—-Sommerfeld modes



together with zero normal vorticity as initial conditions and studied the response
in the normal vorticity as a function of time. When triggering modes with zero
streamwise wave number he obtained a maximum energy growth only slightly
smaller than the one calculated for the optimal perturbation. A number of later
studies have shown that weak streamwise vortices can trigger large streamwise
velocity perturbations due to lift-up, and that in fact this mechanism can give
rise to a transient growth phase strong enough to lead to transition.

4.2.2. Spatial setting. Recently, optimal disturbances and transient growth
inside flat plate boundary layers have been studied using spatial settings. An-
dersson, Berggren & Henningson [4] and Luchini [49] used two slightly different
formulations to study the linear stability of a high-Reynolds-number flow of a
viscous, incompressible fluid over a flat plate (the geometry of the problem is
shown in figure 1.1).

The objective for paper 2 in this thesis was to model disturbances that
occur at moderate and high levels of free-stream turbulence. These disturbances
are known to be elongated in the streamwise direction, to appear with a fairly
spanwise periodic regularity and to vary on a slow timescale [75]. This motivates
the use of boundary-layer approximations to the steady, incompressible Navier—
Stokes equations, that is the Gortler equations, with the Gortler number set
to zero. These equations are linearised around a two-dimensional Blasius base
flow in order to obtain equations for the spatial evolution of three-dimensional
disturbances. Due to the experimentally observed spanwise regularity the z-
dependence is taken to be periodic, with the spanwise wavenumber denoted [3.

The obtained stability equations are parabolic in = for the three velocity
components, so that, given an initial velocity disturbance, as initial condition at
a given o > 0, we may solve the initial-boundary-value problem for z > zg to
obtain the downstream development of the given initial disturbance.

Luchini [48] simplified these equations further by considering the limit of
small spanwise wavenumbers. In this limit the three-dimensional boundary
layer equations were found to contain similarity solutions—consisting of eigen-
solutions—corresponding to a three-dimensional extension of the two-dimensional
solutions studied by Libby & Fox [46]. The approximation becomes invalid when
the spanwise wave length is of the order of the boundary layer thickness. How-
ever, within the approximation, a least stable mode is found that allows for an
algebraic growth of the streamwise velocity in the streamwise direction according
to u ~ 2021,

The mathematical problem of finding the optimal disturbances, can be for-
mulated using a notation in abstract operators. We adopt an input-output point
of view and consider the ’output’

Uout = (U(.T,y), U(xvy)a w(way))T (13)



at x > xg as given by the solution of the parabolic initial-boundary-value problem
discussed above with the ’input’ data

i = (uo(y), vo(y), wo(y))”. (14)
Since the problem is linear and homogeneous, we may write this
Uoyt = Auip (15)

where A is a linear operator.

The downstream development of disturbances is studied by observing how
the output uy, changes with the input u;,. To quantify the ‘size’ of these dis-
turbances we define a measure of the disturbance energy at a specific streamwise
location =,

E(u(z) = / T (Relul? + 0P + oP)dy = [l = (wuw),  (16)

where |-| denotes the absolute value and where Re is the Reynolds number based
on the streamwise distance to the leading edge of the flat plate. The appearance
of Re in the norm is a result of the boundary-layer scaling and ensures that the
physical velocity components have equal weight. Note that the square root of
the disturbance energy is a morm, given by an inner product, on the space of
disturbances at a fixed streamwise location.

To calculate the optimal disturbance, we pick two streamwise locations 0 <
zg < xy and maximise the output disturbance energy at x = z; among all
suitable constrained inputs at & = xo with fixed (unit) energy. The maximised
quantity is denoted the mazimum spatial transient growth,

G(ry) = max E(uow(zs)) = max [|ue(zs)|> = max ||Awl®. (17)
E(uin)= flainll=1 llainll=1

Expression (17) can be reformulated as

G(z;) = max A * max (Autin, Auin) max M, (18)
wn 0 [|[win|>  wa#0 (Ui, W) win#0  (Uin, W)

where the operator A4* in equation (18) denote the adjoint operator to .4 with

respect to the chosen inner product. Recalling some basic facts from operator

theory it can be noted that if the maximum of (Awy,, Awiy,)/ (i, wiy,) is attained

for some vector w,, this vector is an eigenvector corresponding to the largest

eigenvalue of the eigenproblem
.A*.Auin = )\uin, (19)
and G(z¢) is the maximum eigenvalue, necessarily real and nonnegative.

The eigenvector corresponding to the largest eigenvalue of (19) can be cal-
culated using power iterations,

utt = prA* Aul (20)

in - in>

where p, is an arbitrary scaling parameter, used to scale the iterates to unit
norm, for instance. If the largest eigenvalue, A, is separated from the rest of the



251 / N il

GIRe

151

I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
beta

FIGURE 4.1 Maximum spatial transient growth divided by the
Reynolds number versus spanwise wave number. Here 2o = 0 and
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spectrum, the power iterations converge so that lim,_,., ul} /||ul%|| = Wn. From
W, it is then possible to calculate uoy(zf) = Auin and the maximum energy
growth, G(zy).

Starting from the leading edge (zo = 0), the Gortler equations, with the
Gortler number set to zero, are integrated a unit distance (zy = 1) downstream,
and G are calculated for several values of 3. The calculations are repeated for
five different Reynolds numbers Re = 103, 10*, 10°, 10% and 10°, and once with
a Reynolds-number-independent formulation used by Luchini [49]. Figure 4.1
depicts G(x)/Re versus 8 and shows that the maximum spatial transient growth
scales linearly with the distance from the leading edge for large Reynolds numbers.

The v and w components of the optimal perturbation, for the spanwise wave
number 8 = 0.45 and optimised with respect to downstream position x = 1, are
given in figure 4.2(a) at the high-Reynolds-number limit. The corresponding u
component of the response at the downstream position £ = 1 caused by this
optimal perturbation is given in figure 4.2(b). For high Reynolds numbers, the
u component almost completely vanishes in the optimal perturbation compared
with the v and w components. Likewise, the v and w components vanish in com-
parison with the # component in the downstream response. This is a consequence
of the appearance of the Reynolds number Re in the disturbance energy (16).
Note that, because of the periodicity property in the spanwise direction, the
upstream disturbance in figure 4.2(a) corresponds to streamwise vortices and
the downstream response in figure 4.2(b) to streamwise streaks. Also plotted in
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FIGURE 4.2 (a) The optimal perturbations at the leading edge max-
imised with respect to the downstream position z = 1. Here 8 = 0.45.
The u component is zero. (b) Downstream response at x = 1 cor-
responding to the optimal perturbations in the left figure, that is
B = 0.45. The v and w components are zero. Also a comparison
with experimental data [75] measured in a flat-plate boundary layer
at different downstream locations.

figure 4.2(b) are the experimental data from Westin et al. [75]. All the stream-
wise velocity components have been normalised to unit maximum value. The
presence of free-stream turbulence in the experiments prevents the root-mean-
square streamwise velocity perturbations to vanish at infinity. The remarkably
good agreement between the measured and calculated velocity profiles, and the
fact that the calculations contained an optimisation procedure while the experi-
ments did not, indicate that the shown profile corresponds to some dominating,
fundamental mode triggered in the flat plate boundary layer when subjected to
high enough levels of free-stream turbulence. The fact that the power iterations
converges quickly, also indicates the existence of a well-separated, dominating
mode. The main conclusion is that almost any steady initial disturbance will
develop into a streamuwise streak given a large enough Reynolds number. A more
complete version of the above material is given in Andersson et al. [4].

Figures 4.3 further visualise the upstream disturbance and the corresponding
downstream response, as given in figures 4.2(a) and 4.2(b). In figure 4.3(a) we
give the upstream disturbance plotted as velocity vectors in the z-y plane. The
corresponding downstream response is shown as contours of constant streamwise
velocity in the z-y plane in figure 4.3(b). Note how the low velocity streaks
are produced by the [ift-up of low velocity fluid elements near the wall and
correspondingly how the high velocity streaks are produced by the introduction
of high velocity fluid elements pulled down from the free-stream.

The simplified model proposed by Luchini [48] allows for a self-similar solu-
tion consisting of eigenmodes. One can show that the corresponding eigenvalues
are all positive and real, and that the eigenfunctions form a complete set. An
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FIGURE 4.3 (a) Velocity vectors in the z-y plane of the optimal dis-
turbance at £ = xo. Here 2o = 0 and 8 = 0.45. The u component is
zero. (b) Contours of constant streamwise velocity representing the
downstream response at ¢ = xy = 1 corresponding to the optimal
disturbance shown in the above figure. The v and w components
are zero. Here, solid lines represent positive values and dashed lines
represent negative values.



arbitrary disturbance can therefore be expanded in a sum of modes. Schmid [63]
used these modal solutions to optimise the total disturbance energy gain between
two streamwise locations, by superimposing a number of modal solutions. By
using a projection of the flow onto the space spanned by the eigenvectors, the
disturbance energy density is given in a quadratic form. He then formulated
the optimisation problem using a variational form, where a Lagrange multiplier
is used to enforce initial conditions of unit energy. When solving the result-
ing Euler-Lagrange equations, in form of a generalised eigenvalue problem, he
finds that a substantial gain in energy can be achieved before the asymptotic
behaviour (given by the unstable mode) dominates the growth in energy.

This asymptotic behaviour corresponds to the mode with the spatial alge-

0-21 " For distances

braic growth of the streamwise velocity component of u ~ x
sufficiently far downstream of the leading edge, where this mode prevails, the
mode shape shows a similar velocity profile as that corresponding to the optimal
streak displayed in figure 4.2(b), see paper 5 in this thesis (Andersson [3]).
There is, however, a fundamental difference in the prediction of the spatial
growth of the streamwise velocity components between the two models. While
the solution to the eigenproblem grows unboundedly with the streamwise coordi-
nate as £°-2!; the streamwise streaks from the more general model, determined by
the optimisation calculations, will always obtain a maximum at a given stream-
wise position and vanish as & — oco. This difference in behaviour is a result of

having retained the spanwise diffusive term —32u in the more general model.



CHAPTER 5

Secondary instability

5.1. Saturation and general introduction of secondary instability

In the previous chapters the linear amplification of the small-amplitude
disturbances were supplied by either of two different mechanisms; the two-
dimensional waves in chapters 2 and 3 or the growth of streaks in chapter 4.
These type of disturbances will here be denoted primary instabilities. If the
amplification is strong enough the disturbances eventually reach an amplitude
where nonlinear effects become important. A possible but very unusual sce-
nario is that the primary instability transforms the flow directly into a turbulent
state. More likely the disturbances saturate and take the flow into a new steady
or quasi-steady state.

The spatial development of such a quasi-steady state is displayed in fig-
ures 5.1. The nonlinear development of the optimal streaks discussed in sec-
tion 4.2.2 are computed solving the full Navier—Stokes equations in a spatially
evolving boundary layer. Details on the solution procedure, using direct numer-
ical simulations, can be found in Andersson et al. [6] (paper 3 in this thesis).
The complete velocity field from the linear results by Andersson, Berggren &
Henningson [4] is used as input close to the leading edge and the downstream
nonlinear development is monitored for different initial amplitudes of the per-
turbation. This is shown in figure 5.1(a), where all energies are normalised
by their initial values. The dashed line corresponds to an initial energy small
enough for the disturbance to obey the linearised equations. Figure 5.1(b) dis-
plays the downstream amplitude development for the same initial conditions as
figure 5.1(a).

This new saturated flow—that is the base flow plus the primary instability—
may itself become unstable to perturbations different from those which grow
in the presence of the base flow alone; such instabilities are usually denoted
secondary instabilities. The secondary instability stage often occurs on a much
faster timescale than the primary instability, making a steady-state assumption
reasonable even in cases with a quasi-steady flow state.

Here, three different scenarios in a flat plate boundary layer flow are con-
sidered; secondary instability of two-dimensional waves, secondary instability of
streaks and a brief description of oblique transition.

18
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FIGURE 5.1 (a) The energy, as defined in (16), of the primary distur-
bance, E, normalised with its initial value, Ep, versus the streamwise
coordinate, z, for 3=0.45 and Res;=430. Here = has been made non-
dimensional using the distance to the leading edge. The arrow points
in the direction of increasing initial energies. The dashed line rep-
resents the optimal linear growth. (b) The downstream amplitude
development for the same initial conditions as in (a). The amplitude
A is defined by equation (22). (The two lines have been circled for
future reference).

5.2. Secondary instability of two-dimensional waves

If the amplitude of an amplified Tollmien—Schlichting wave grow above a
given threshold it becomes susceptible to secondary instabilities. Experimental
investigators identified two possible three-dimensional stages between the two-
dimensional state and fully developed turbulence. One of these two types of
secondary instabilities was observed by Klebanoff, Tidstrom & Sargent [39] and
was later denoted K-type after Klebanoff but is also called fundamental break-
down since the frequency of the secondary instability is the same as that of the
primary instability. This transition scenario gives rise to a structure consisting
of A-shaped vortices aligned in the streamwise direction and has been observed
in flow visualisation studies. The other transition scenario also shows A-shaped
vortices but in this case the structures are arranged in a staggered pattern which
suggests a secondary instability with half the frequency of the one associated with
the primary wave and is thus often denoted subharmonic breakdown. This type
of secondary instability is also denoted H-type after the theoretical work by Her-
bert [30, 31] or N-type after “Novosibirsk” where the group Kachanov, Kozlov
& Levchenko [38] first observed this scenario in experimental studies. Transition
experiments with controlled two-dimensional Tollmien—Schlichting waves reveal
that the subharmonic secondary instability is the first to appear when small-
amplitude forcing is used, whereas for larger initial amplitudes, the fundamental
secondary instability type is usually observed. Consequently, in low ambient
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FIGURE 5.2 Contour plots in a z-y plane of the primary disturbance
streamwise velocity using the spanwise wavenumber 3=0.45 and the
disturbance amplitude A=0.36 at the streamwise position z=2 for
(a) the shape assumption; (b) the nonlinear mean field correspond-
ing to the circled line in figures 5.1 at =2 (where A=0.36). Here
Res;=430. In both figures the coordinates y and z have been made
non-dimensional using the local Blasius length scale §, at streamwise

position x=2.

disturbance environments the subharmonic secondary instability is more likely
to occur inside boundary layers. For a review over the theoretical aspects and
the physical mechanisms involved to explain the secondary instabilities, see Her-
bert [31] and Kachanov [37]. The investigations of the different types of break-
down scenarios performed using direct numerical simulations have been reviewed
by Kleiser & Zang [40].

5.3. Secondary instability of streaks

If the disturbance energy of the streaks becomes sufficiently large, secondary
instability can take place and provoke early breakdown and transition, overrul-
ing the theoretically predicted modal decay. A possible secondary instability is
caused by inflectional profiles of the base flow velocity, a mechanism which does
not rely on the presence of viscosity. Experiments with flow visualisations by
for example Alfredsson & Matsubara [2] have considered the case of transition
induced by streaks formed by the passage of the fluid through the screens of the
wind-tunnel settling chamber. They report on the presence of a high frequency
"wiggle” of the streak with a subsequent breakdown into a turbulent spot.

In paper 3 in this thesis this secondary instability is studied using equations
linearised around a mean field consisting of the complete nonlinear development
of the streak. These secondary stability calculations are carried out under the
following two assumptions:



1. Since the base flow is computed on the basis of the boundary layer approx-
imation, the mean field to leading order will consist only of the streamwise
velocity component. Such a mean field varies on a slow streamwise scale.

2. The perturbation is assumed to vary rapidly along the streamwise di-
rection in comparison to the mean field. This is clearly observed in the
experimental visualisations of Alfredsson & Matsubara [2]. Hence, our
leading order stability problem is the parallel flow problem, with pertur-
bation mode shapes dependent only on the cross-stream coordinates.

Under these assumptions the streak velocity field can be written on the form
U = (U(y, 2),0,0). Since the velocity field is periodic in the spanwise direction
it may be expanded in the sum of cosines

U(y,2) = Us(y) + Y Uk(y) cos(kBz), (21)
k=1

where Uy differs from the Blasius solution Ug by the mean flow distortion term.
To be able to quantify the size of the primary disturbance field an amplitude A
is defined as

A= 1 {max(U —Up) —min(U — UB)] . (22)
2 |y Y,z

The effect of the nonlinear interactions on the base flow are shown by the
contour plots in figures 5.2. Figure 5.2(a) displays the primary disturbance ob-
tained using the shape assumption—where the primary disturbance (the linearly
obtained streak) has been superimposed on the laminar mean field (the Blasius
solution)—with A=0.36, while 5.2(b) shows a fully nonlinear mean field, char-
acterised by the same disturbance amplitude. In the latter case, the low speed
region is narrower and displaced further away from the wall.

The equations governing the stability of the streak are obtained by substitut-
ing U+u, where u(z,y, z,t)=(u,v,w) is the perturbation velocity and U is the
streak profile above, into the Navier—Stokes equations and dropping nonlinear
terms in the perturbation. The resulting equations are

1
u+Uu, + U +Uw = —p, + EAU, (23)
1
v+Uv, = —py+ EAU, (24)
1
wg +Uw, = —p,+ EAU}, (25)
Ug+vy+w, = 0. (26)

Here p = p(x,y, z,t) is the perturbation pressure. The above equations can be
reduced to two equations by expressing the perturbation quantities in terms of
the normal velocity v and the normal vorticity n = u, — w,. The manipulations
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FIGURE 5.3 Sketch of streak instability modes in the x — z plane over
four streamwise and two spanwise periods, by contours of the total
streamwise velocity. The low-speed streaks are drawn with solid lines
while dashed lines are used for the high-speed streaks.

are similar to those in the derivation of the Orr—Sommerfeld and Squire equations
showed earlier

1
Ave + UAvy + U, vy +2U 0, — Uyyv, — 2U,wey — 2Uyw, = ﬁAAv,
1
ne+Ung — Uzvy + Uyzv + vaz +U..w= ﬁAn

Also the spanwise velocity w can be eliminated from the above equations using
the identity

Way + Wez = —Ng — Vyz.

Even if viscosity is neglected (Re — oo in equations (23)-(25)) the presence
of both wall-normal and spanwise gradients in the mean field makes it impos-
sible to obtain an uncoupled equation for either of the velocity components. It
is, however, possible to find an uncoupled equation for the pressure by taking
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FIGURE 5.4 Temporal growth rates versus streamwise wavenumber
for the (a) fundamental (b) subharmonic sinuous symmetries of the
secondary instabilities; given for the different amplitudes of the pri-
mary disturbance (—x— A=25.6,—>— A=27.2, - - - A=28.8, -
A=31.7,—<— A=34.5, —+— A=36.4, —+— A=37.3).The arrows
point in the direction of increasing A’s.

the divergence of the momentum equations, introducing continuity and then ap-
plying equations (24) and (25) (Henningson [28]; Hall & Horseman [26]). These
manipulations yield

0 0
(a + U%)Ap — 2Uypay — 2U.ps; = 0. (27)

The pressure is expanded in an infinite sum of Fourier modes and only
perturbation quantities consisting of a single wave component in the streamwise
direction are considered, i.e.

p(mayazat) = Real{eia(x_d) Z ﬁk(y)ei(k+’y)ﬁz},

k=—o0

where « is the real streamwise wavenumber and ¢ = ¢, + ic¢; is the phase speed.
Here (3 is the spanwise wavenumber of the primary disturbance field and -y is the
(real) Floquet exponent. Because of symmetry it is sufficient to study values of y
between zero and one half, with v = 0 corresponding to a fundamental instability
mode, and v = 0.5 corresponding to a subharmonic mode (see Herbert [31] for a
thorough discussion on fundamental and detuned instability modes).

The most commonly used definitions of sinuous or varicose modes of in-
stability are adopted with reference to the visual appearance of the motion of
the low-speed streaks. A sketch of the different fundamental and subharmonic
modes is provided in figure 5.3: it clearly illustrates how the symmetries of the
subharmonic sinuous/varicose fluctuations of the low-speed streaks are always
associated to staggered (in z) varicose/sinuous oscillations of the high-speed
streaks.
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FIGURE 5.5 Neutral curves for streak instability in the A-a plane
for (a) fundamental sinuous mode, (b) subharmonic sinuous mode.
(contour levels: w;=0, 0.0046, 0.0092)

In [6] (paper 3 of this thesis) an extensive parametric study was carried out
for the sinuous fundamental (y = 0), arbitrarily detuned (0 < v < 0.5) and
subharmonic (y = 0.5) symmetries, which were the only ones found to be signif-
icantly unstable. In figures 5.4(a) and 5.4(b) the growth rates of the instability
w; = ac; are plotted against the streamwise wavenumber, for the fundamental
and subharmonic sinuous symmetries, respectively; and for different amplitudes
of the streaks, obtained with the direct numerical simulations. One can note that
when increasing the amplitude, not only do the growth rates increase but their
maxima are also shifted towards larger values of the streamwise wavenumber
«. For amplitudes larger than about 0.30, the subharmonic symmetry produces
lower maximum growth rates than the fundamental symmetry. Note, however,
that for lower amplitudes the sinuous subharmonic symmetry represents the most
unstable mode. The phase speeds for the two sinuous modes were found to be
only weakly dispersive.

A study was also conducted in [6] to identify the neutral stability curves
calculated for a range of a’s. The results are displayed in figures 5.5 for the
two sinuous symmetries, together with contour levels of constant growth rates.
It can immediately be observed that a streak amplitude of about 26% of the
free-stream speed is needed for an instability to occur. One can also notice that
the subharmonic mode is unstable for lower amplitudes than the fundamental
mode and that the growth rates for larger amplitudes are quite close for the two
symmetries.

No results for the varicose instabilities are presented here. In fact, both
the varicose fundamental and the subharmonic symmetries result in weak insta-
bilities for amplitudes larger than A=0.37 with growth rates smaller than one
fifth of the corresponding sinuous growth rates. Therefore a breakdown scenario
triggered by a varicose instability seems unlikely.



Andersson et al. [6] (paper 3 in this thesis) showed that the linear and non-
linear spatial development of optimal streamwise streaks are both well described
by the boundary layer approximations and as a consequence Reynolds number
independent for large enough Reynolds numbers. This results in a boundary
layer scaling property that couples the streamwise and spanwise scales, imply-
ing that the same solution is valid for every combination of z and 8 such that
the product 32 stays constant. The parameter study of streak’s instability is
therefore representative of a wide range of intermediate values of g for which
saturation occurs at a reasonable z; large enough so that the boundary layer
approximation may still be valid and small enough so that Tollmien—Schlichting
waves may not play a significant role.

The secondary instability of streaks approximated by the shape assumption
was parametrically studied by [5] (see paper 4 in this thesis). Comparison of the
results with those obtained from calculations where the base flow is the nonlin-
early developed streak demonstrate the inapplicability of the shape assumption
for this type of studies. The secondary instability results are found to be very
sensitive to a slight change in the shape of the mean field velocity profile and,
even if the sinuous modes are reasonably well captured by the shape assumption,
the growth rates of varicose modes are widely over-predicted.

5.4. Oblique transition

In the last section the primary disturbance consisted of streamwise streaks
and in chapter 4 it was shown how the initial disturbance optimally suitable for
producing these streaks are streamwise aligned vortices. In the oblique transition
scenario, streamwise aligned vortices are generated by nonlinear interaction be-
tween a pair of oblique waves with wave angles of equal magnitude but opposite
sign. The oblique transition scenario is initiated by the oblique waves generat-
ing streamwise aligned vortices which, in turn, produces streamwise streaks. As
the initial oblique waves start to decay the flow field becomes dominated by the
streaky structures. If the amplitude of these streamwise streaks reaches above a
threshold they become unstable to the same types of secondary instabilities as
discussed in the previous section. The oblique transition scenario in a Blasius
boundary layer has been studied experimentally by Wiegel [76] and Elofsson [17]
and numerically by Joslin, Streett & Chang [36] and Berlin, Lundbladh & Hen-
ningson [8]. A comparison between Wiegels experiment and direct numerical
simulations was presented by Berlin, Wiegel & Henningson [9].



CHAPTER 6

Transition modelling for high free-stream
turbulence levels

6.1. “Classical” empirical correlations

Several empirical correlations for transition criteria involving the combined
effects of the free-stream turbulence level and the streamwise pressure gradient
have been developed. For example, van Driest & Blumer [73] arrives at a semi-
empirical model, by introducing a critical vorticity Reynolds number that cor-
relates the pressure gradient and free-stream turbulence level with the Reynolds
number at transition. In the model of Dunham [14], the value of the Reynolds
number based on momentum-loss thickness at the transition point is given as
a function of the Pohlhausen (pressure gradient) parameter and the free-stream
turbulence level. Abu-Ghannam & Shaw [1] suggest a model that gives the
start and end of the transition region in terms of the Reynolds number based
on momentum-loss thickness. Also here, the free-stream turbulence level and
a pressure-gradient parameter are the only required inputs. For flows similar
to the ones for which these empirical correlations are calibrated they often give
reasonable predictions. However, the large degree of empiricism also implies that
their generality is rather limited.

6.2. Model based on the eN-method

The eV-method assumes that transition occurs when the most amplified
exponentially growing disturbance has grown a factor N = In(A4/Ap), where
Ag is the amplitude at the critical Reynolds number and A is the amplitude
downstream. This growth is governed by linear stability theory. The prediction
given by the e"V-method is that NN is a constant or a function of the turbulence
level in the free-stream. This method was developed independently by Smith
& Gamberoni [67] and van Ingen [74]. Mack [50] used a modified e’¥-method
and suggested the empirical relationship, N = —8.43 — 2.4 In(Tu), between the
free-stream turbulence level Tu and the N-factor at the transition location. This
model gives reasonable transition locations in the range 0.1 < Tu < 2 %.
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TABLE 1 Comparisons of different experimental studies

Tu(%) Rer K

Roach & Brierley [59]

T3AM 0.9 1,600,000 1138

T3A 3.0 144,000 1138

T3B 6.0 63,000 1506

Yang & Voke [77] 5.0 51,200 1131
Matsubara [51]

grid A 2.0 400,000 1265

grid B 1.5 1,000,000 1500

6.3. Transition prediction based on non-modal amplification

Experimental measurements inside flat plate boundary layers indicate that
for free-stream turbulence levels between roughly 1-5 %, transition is associated
with growing streamwise streaks. In paper 2 in this thesis Andersson, Berggren
& Henningson [4] propose a transition prediction model valid in this range based
on the scaling property displayed in figure 4.1 together with three assumptions.

The first assumption is about the receptivity process at the leading edge of
the flat plate. The input energy E(wiy,), as defined in (16), is assumed to be
proportional to the free-stream turbulence energy,

E(uj,) o Tu?. (28)
Second, we assume that the initial disturbance grows with the optimal rate,
E(Wout) = GE(uy,) = G Re E(uy,), (29)

where G is Reynolds-number independent. The last equality was found to hold
for large enough Reynolds numbers (see figure 4.1 in section 4.2.2).

The third assumption is the existence of a threshold in the disturbance en-
ergy over which transition occurs. We assume that transition takes place when
the output energy reaches the specific value, Er,

E(uout) = Er. (30)
Combining assumptions (28)—(30), we obtain

vV ReTTu = K,

where K should be constant for free-stream turbulence levels at 1-5 %. The
experimental data used to verify this model are given in table 1. As can be
seen, K is approximately constant for a variety of free-stream turbulence levels.
A similar model, obtained from different arguments was given by van Driest &
Blumer [73]. They postulated that transition occurs when the maximum vorticity
Reynolds number reaches a critical value to be correlated with the free-stream
turbulence level. A comparison between the two models and the experimental
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FIGURE 6.1 Transitional Reynolds number based on the distance to
the leading edge versus free-stream turbulence level (given in per-
cent), for two transition prediction models and experimental data.
(— The model suggested in this paper with K=1200, * The model
proposed by van Driest & Blumer, o The experimental data from
table 1.)

data given in table 1 is shown in figure 6.1. As can be seen there their model
agrees well with ours for free-stream turbulence levels at 1-6%.
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