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Abstract

Electrochemical mass transfer in turbulent 
ows and binary electrolytes is inves-

tigated. The primary objective is to provide information about mass transfer in

the near-wall region between a solid boundary and a turbulent 
uid 
ow at high

Schmidt number. Natural and forced convections are investigated with two di�er-

ent methods; the turbulence model k� � and large-eddy simulations (LES). The

k�� method does not solve the 
uctuating part of the 
ow and assumes isotropic

turbulence. LES solve only the large scales of the 
uctuations. The computa-

tions made with natural convection reveal that the standard wall-functions give

acceptable results for the velocity �eld, but not for the concentration. The

Boussinesq approximation for the Reynolds-
ux in the mass-transport equation

and the wall-function for concentration in the logarithmic layer are shown to

fail in the prediction of the turbulent mass transfer. A method for large-eddy

simulations is developed to study the Reynolds-
ux and mass-transfer in the

near-electrode region. In order to make numerical integration of governing equa-

tions at high Schmidt number economic, a numerical scheme is developed in

which two di�erent meshes are used for hydrodynamic variables and the con-

centration �eld. With the help of a fringe technique the �nest mesh used for

the computation of mass transfer is reduced to the near-wall region only. A

study of the electrical distribution along the electrode reveals that the intensity

of the current in
uences the 
uctuations of the concentration �eld but not the

mean values in time. Some models for the Reynolds- 
ux validated for Sc=1 are

succesfully tested for Sc=3000. At high Schmidt number, a new model for the

Reynolds-
ux and a new wall-function for concentration are found.

Descriptors: electrolyte, mass transfer, turbulent channel 
ow, forced convec-

tion, natural convection, wall-functions, explicit algebraic modelling, large-eddy

simulations.
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CHAPTER 1

Introduction

Electrochemistry is involved to a signi�cant extent in the today's industrial econ-

omy. Examples are found in batteries, fuel cells or capacitors, for electric vehi-

cles, portable devices or industrial productions of chemicals; in the production of

chlorine, caustic soda, aluminium; in electroplating, electromachining, and elec-

trore�ning; and in corrosion. There are three signi�cant types of power sources

which produce electricity by reaction within electrochemical cells. The two types

which use reactants stored within them are called primary cells and secondary

cells. Groups of primary or secondary cells are called batteries, although the

term battery has been extended to include also a single cell used as a power

source. Secondary cells, unlike primary cells, can be driven in reverse or charged

by external electrical power. The third type, fuel cells, employ reactants which

are continuously supplied to the cell; products are also continuously removed.

In primary and secondary cells, the reactants and products are contained within

the cell.

The �rst steps in electrochemistry were made by Luigi Galvani who attrib-

uted in 1791 twiching of detached frog legs to animal electricity. The same year,

Alessandro Volta asserted that the frog legs twitched because di�erent metals

brought into contact via a liquid produced electricity. In 1800, Volta built his �rst

Voltaic pile. Thirty years later, Faraday established that the amount of chemical

change is proportional to the quantity of electricity passed, and that for the same

quantity of electricity the amounts of di�erent substances deposited or dissolved

are proportional to their chemical weights. He introduced the terms cathode,

anode, electrode, ion, cation, anion, and electrolyte. Later in 1901, Thomas A.

Edison and Waldemar Jungner invented the �rst alkaline rechargeable batteries.

Finally, in 1977, Alan MacDiarmid and Alan Heeger discovered the electrical

conductance of polyacetylene, leading to the construction with David MacInnes

in 1981 of the �rst battery with no metallic constituents [1].

An important aspect of electrochemistry is the mass transfer taking place

in the electrolyte and at the electrodes of electrochemical cells. The e�ciency

of the cell is highly dependent on the distribution of chemical reactants in the

vicinity of these electrodes. One di�culty is to predict correctly the distributions

of concentrations, that are, in most of the 
ows present in electrolytes, turbulent.

Turbulence can be regarded as a particular state of a 
uid in movement in which

the 
ow 
uctuates rapidly in time and space [2]. These 
uctuations have already
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been statistically studied, but many unknowns remain. In particular, it is today

not well understood how the 
uctuations vary in time and space at the electrodes

or in the near-electrode region. In this region, not even the mean concentration

�eld in time is well-known [3].

Some properties of the mass 
uxes near the electrodes constitute an obstacle

for their study. Here, it is important to introduce the concept of boundary layer

for mass transport. The thickness of the boundary layer for temperature along a


at heating plate, also called the conductive boundary layer, is de�ned by Bejan

[4] as the length-scale of a slender region adjacent to the wall, where the heat-

conduction phenomenon is at least as important as convection in the equation of

transport. Since this equation is identical for mass transport, the same de�nition

can used, where conductivity is replaced by di�usivity. In a channel 
ow, this

de�nition is not relevant any longer because di�usion plays an important role

everywhere. It remains neverthess a useful concept, because it is used to deter-

mine the relative thickness of the di�usive boundary layer, �c, compared to the

hydrodynamical, �h. Levich [5], based on the analogy with laminar boundary

layer, proposed that in a turbulent boundary layer the thickness of the di�usive

layer would be of the order of magnitude of �h � Sc�1=3. It has been veri�ed

experimentally in di�erent studies, for example by Lin et al. [6]. Sc is here the

Schmidt number, or the ratio between the di�usivity coe�cient for mass and the

viscosity of the 
uid. Using this relation, it is consequently possible even in the

near-wall region of a channel to give an approximation in viscous units of the

di�usive, 5 � Sc�1=3, and the logarithmic, (30 � 100) � Sc�1=3, sublayers in the

di�usive boundary layer.

The high value of Schmidt number appearing in most of the practical electro-

chemical applications is one of the important factors resulting in thin di�usive

boundary layers, and making experimental investigations of 
ows with mass

transfer problematic. Unfortunately, although electrochemical systems seem to

be suitable for experimental investigations, see e.g. [7], the measured data are

usually in the form of integrated quantities rather than detailed information on

the structure of the 
ow and its 
uctuations in time and space. As examples,

Fouad et al. [8] and Newman [9] studied mass transfer in electrochemical systems

and reported global information on the process such as the total cell potential

drop, the electrical current and the global density variation of ionic species. As

a result, other tools must be used in order to provide detailed data on the struc-

ture of the 
ow. With improvement of digital computers and computational

methods during the past years, computational simulations can today be used as

an alternative to physical experiments.

This thesis is a study of mass transport in turbulent 
ows of electrochemical

cells. The investigation is performed through numerical simulations. The mathe-

matical models account both for turbulence and the properties of electrochemical

mass transfer. Di�erent models are tested for the electrochemical process at the



electrodes. Natural and forced convection are investigated. The electrolyte con-

sidered is binary. The transport equations for mass are consequently reduced to

one equation only, and is identical to the transport equation for a passive scalar,

or temperature. No volume reaction is considered. The major contribution of

this work is the validation of a numerical method to compute turbulent mass

transfer in near-electrode regions. A class of turbulence models with a fairly

simple formulation is validated for electrochemical processes.



CHAPTER 2

Electrochemical mass transfer

The Swedish chemist Svante Arrhenius was the �rst to use the term electrolyte

to describe a salt which in solution dissociates into ions. An ion is an atom or

molecule which has acquired an electrical charge. An ion which carries a posi-

tive charge is called a cation and an ion which carries a negative charge is called

an anion. Compounds, molecules, and atoms which are uncharged are referred

to as neutral species. A solution which contains ions is called an electrolyte

solution (sometimes simply an electrolyte). Electrolyte solutions conduct elec-

tricity because the charged ions can move through them. Electrolyte solutions

are ionic conductors as distinguished from the electronic conductors, such as

metallic wires, in which charge is carried by movement of electrons. An elec-

trolyte solution may be used for this purpose alone. An example of this is the

salt bridge, which electrochemists use to permit the 
ow of ionic charge between

di�erent electrolyte solutions. A salt bridge is a tube containing a relatively

high concentration of an ionic salt such as potassium chloride. The electrolyte

solution of the salt bridge may be held as a semisolid agar gel to make it easier

to use.

Electrochemical cells are used in several industrial applications, such as cop-

per re�ning cells and lead-acid batteries. In a copper re�ning cell, the anode is

made up of raw copper, with small amounts of impurities while the cathode is

made of highly puri�ed copper. The electrolyte is an aqueous solution of cop-

per sulphate with some added sulfuric acid, in order to reduce the ohmic losses

of the process. During the puri�cation process, the passage of electric current

causes the copper ions to be dissolved at the anode and deposited onto the cath-

ode, to form highly puri�ed mass of copper. In lead-acid batteries, the positive

electrode, PbO2, and the negative electrode, Pb, are separated by a solution of

sulfuric acid. During discharge, sulfuric acid is consumed and water is produced.

Dilute acid close to the electrodes rises and the heavy acid in the bulk sinks.

During recharge the process is reversed. Current conduction from the electrodes

to the electrolyte in electrochemical cells takes place, due to chemical reactions,

usually limited to a very thin sheath at the surface of the electrodes, and there-

after due to transport of ions in the bulk of the electrolyte. Positive ions are

produced in the anodic sheath and, after transport through the electrolyte, are

neutralized in the cathodic sheath. Di�usion, migration and convection are the

main transport mechanisms through the electrolyte.

4
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Figure 2.1 The geometry of the cell and the chosen coordinate system.

It turns out that between the di�erent transport mechanisms mentioned

above, the convection process is the most e�cient in most applications. In

this section, the mathematical formulation of electrochemical mass transfer is

presented for a binary electrolyte in an electrochemical cell. More complex ge-

ometries are present among the industrial applications, but a simple geometry

is enough to describe the basic concepts of electrochemical mechanisms.

Two electrodes made from the same metal are immersed in a dilute solution

of a salt of the electrode metal providing a binary electrolyte in a rectangular

cell. The cell, which is assumed to have its sides parallel to the direction of

gravity, is shown in �gure 2.1. If the cell is closed, as it is shown in �gure 2.1,

the convection in the cell is purely natural. If the cell is open at its bottom

and its top, it can be seen as part of a vertical channel 
ow, and convection

can be forced. The dissolution of metallic ions generally increases the density of

the 
uid near to the anode. Near the cathode, the reverse reaction takes place

resulting in a lower density. Inhomogeneities in the density �eld set the 
uid in

motion with a convection pattern downwards near the anode and upwards near

the cathode. Natural convection, which is driven by the chemical reactions at the

electrodes, contributes to transport of ions and thereby in
uences the chemistry

of the cell. In a case of strongly forced convection, the phenomenon of density

variations can be usually neglected.



2.1. Governing equations

Since the considered electrolyte is binary, the mathematical description concerns

the transport of a metallic cation and its corresponding anion. All the equa-

tions presented below describe the behaviour of instantaneous variables. In a

two-dimensional con�guration, the hydrodynamic problem must be solved for 6

dependent variables: the concentrations c1 and c2, where subscript 1 denotes the

anion, and subscript 2, the corresponding cation, the velocity �eld, u = (u; v; 0),

the pressure �eld, p and the electrical potential, �. Apart from the very thin

sheaths, called double layers, and adjacent to the electrodes, the electrolyte can

be assumed to be electrically neutral, that is

z1c1 + z2c2 = 0, (1)

where z denotes the charge number of the species and the indices 1 and 2, the

metallic and the non metallic ionic species, respectively. If the double layer is

not to be explicitly accounted for, the mathematical problem can be formulated

using a single variable for the concentration �elds by de�ning

c = z1c1 = �z2c2, (2)

which satis�es the neutrality condition (1). The governing equation for c will

then be read

@c

@t
+ u � rc = D�c, (3)

where the positive quantity D is the salt di�usivity for the electrolyte and is

related to mass di�usivity coe�cients for species 1 and 2, according to

D =
(z1 � z2)D1D2

z1D1 � z2D2
. (4)

Here attention is restricted to systems where z1 = �z2 = 2, resulting in a salt

di�usivity coe�cient of

D =
2D1D2

D1 +D2
. (5)

For an incompressible electrolyte, the velocity �eld satis�es

r � u = 0. (6)

Using equation (2), the equation of Navier-Stokes for an incompressible 
uid in

a gravitational �eld under Boussinesq approximation, is

�
@u

@t
+ �u � ru = �rp+ ��u� �

0

�g(c� co)ey, (7)

where � and co denote the density of the electrolyte and the reference concen-

tration, respectively. �
0

is the total volume expansion factor. � is the dynamic

viscosity of the electrolyte, g the gravitational acceleration and ey is the unit

vector in the vertical direction.



A conservation equation for the electric potential must then be added to

the conservation equations for momentum and mass, in order to have a set of

well-posed equations. As mentioned above, the electrolyte is assumed to be elec-

trically neutral resulting in a divergence-free current density everywhere in the

cell. This can be used to obtain the governing equation for the electric potential,

�. The total electric current density, which is the sum of the contributions from

each species, can be written according to Faraday's law

i = F

2X
i=1

ziNi, (8)

where F is Faraday's constant, Ni denotes the mass 
ux of the species i, and is

equal to a sum with contributions from migration of charged species in the elec-

tric �eld, di�usive 
uxes and convective 
uxes related to di�erent �eld variables,

according to

Ni = �ziFDi

RT
cir��Dirci + ciu. (9)

In the above formula, R and T denote the gas constant and the temperature �eld,

respectively. After substitution of Ni by (9) in (8), and setting the divergence

of (8) to zero, one �nds

F�

RT
r � (cr�) +r2c = 0, (10)

where � =
2(D1+D2)
D1�D2

.

Boundary conditions must be speci�ed for velocity, pressure, concentration

and the electric potential. They form with the set of equations (3), (6), (7) and

(10), a well-posed system that can be solved. Figure 2.2 shows the numerical

prediction of the electric potential �eld in a closed cell and a laminar case.

For the velocity �eld the no-slip condition is to be applied on all four walls,

if the cell is closed

u = 0 at x = �h and y = �H . (11)

If convection is forced, a gradient can be prescribed for the mean pressure

in the channel.

All chemical reactions take place in close vicinity to the surface of electrodes,

that is in the double layers. Inside the double layers, which have a thickness of

the order of 1 nm, electroneutrality is not valid but regions with free charges

can be expected. The existence of free charges results in a fast variation of

the electric potential over the thickness of the layers, see �gure 2.3. �Am and �Cs
correspond to the electric potential before and after the double layer, respectively.

The variation of the potential di�erence E can be seen as the driving force for

electron transfer across the double layer. This variation is responsible for the

current intensity at the electrode. As Bark and Alavyoon [10] did, the present



Figure 2.2 The iso-contours of the electric potential in an enclosed

electrochemical cell. Calculations performed with CFX of a laminar

case. �7:0 � 10�2 V � � � +7:0 � 10�2 V .

study uses a semi-empirical Butler-Volmer law to model this driving force and

the concentration gradient at the electrodes

ex � i
2FD1

=

8>><
>>:

i0

2FD1

h
e
n�aF (V+��)

RT � c

co
e�

n�cF (V+��)

RT

i
at x = �h (anode)

i0

2FD1

h
c

co
e
n�cF (��V�)

RT � e�
n�aF (��V�)

RT

i
at x = +h (cathode)

(12)

where n = kz1k and ex is the unit vector in the horizontal direction. io is the

exchange current density, V� the electrode potentials, and �a;c = 0:5 the transfer

coe�cients.

A a simpler condition, which was proposed by Ziegler et al. [11], has also been

used

ex � i
2FD1

= � @c
@x

= constant. (13)

If the cell is closed, no transfer of mass occurs at the horizontal walls, resulting

in vanishing normal derivatives of the concentration �eld

@c

@y
= 0 at y = �H . (14)
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Figure 2.3 The double layer and variation of electric potential at

the interface electrode-electrolyte.

Otherwise, the gradient for the equivalent concentration in many cases, can be

set proportional to the concentration.

@c

@y
= Ko (c� co) at y = �H . (15)

For the electric potential, because N2 � ex = 0 at x = �h, one �nds
@�

@x
=
RT

2Fc

@c

@x
at x = �h, (16)

At the horizontal walls, since no chemical reaction takes place, one �nds

@�

@y
= 0 at y = �H . (17)

2.2. Mass 
uctuations near the electrodes

As mentioned above, major interest is shown for 
uctuations of mass transfer

at the electrodes of an electrochemical cell, because they in
uence the current

distribution in the cell. Fluctuations in the concentration �eld are induced by

the velocity �eld. In a previous study, Robinson et al. [12] concluded that the

majority of the turbulence production in the entire hydrodynamical boundary

layer occurs in the bu�er region during outward ejections of low-speed 
uid and

during inrushes of high-speed 
uid [12]. Sweeps (v < 0) and ejections (v > 0) are

de�ned there by a negative local product of streamwise and wall-normal velocity


uctuations. The present study adopts here the same de�nitions.



An important characteristic of turbulent mass transfer at high Schmidt num-

ber is the in
uence of turbulence on the local mass transfer at the wall. So far,

no clear direction or pattern has been identi�ed for the 
uctuating part of the

mass 
ux in the di�usive sublayer. It is therefore necessary to �nd a detection

criterion to discuss the in
uence of turbulence on electrode-mass-transfer. The

present study considers here a case of forced convection in a electrochemical cell

working as a three-dimensional channel 
ow, as it has been studied in all the

papers except in paper 1. The reader is referred to one of these for the geometry.

The walls of the channel are in�nite (x-z) planes, periodic in the streamwise (x)

and the spanwise (z) direction, and are the electrodes of the cell.

Sweeps and ejections in the bu�er region of the hydrodynamical boundary

layer are used here to detect the location of turbulence production. They can

be characterized by a high level of wall-normal velocity 
uctuations in absolute

value. The present study uses a conditional sampling technique to determine

the location of these events. Once these locations have been recorded, their po-

sitions in a (x-z) section are compared with the (x-z) positions of the detected

large electrode-mass-transfer 
uctuations. The two detections are made in the

instantaneous �eld, at the same time, and at two di�erent constant-y-surfaces.

Figure 2.4 shows the averaged variance in space of the wall-normal velocity 
uc-

tuations, at y+ = 12:74 in the bu�er region of the hydrodynamical boundary

layer. This variance can be seen as the contribution of the wall-normal velocity

to the instantaneous kinetic energy. The variance signal is calculated with a spa-

tial counterpart (VISA technique) to the VITA technique used by Blackwelder

et al. [13], that was validated by Johansson et al. [14]. The spatial averag-

ing lies over a surface with a streamwise length of L+ = 212 and a spanwise

length of L
0+ = 35:3, in viscous units. The VISA variance signal is then non-

dimensionalized by the square RMS intensity of the wall-normal velocity. The

detection criterion is completed by using a threshold k equal to 1. Detection

is triggered when the VISA variance signal exceeds k. Figure 2.4 shows also

the 
uctuating part of the wall-mass-transfer at the same (x-z) positions. The

turbulent wall-mass-transfer is non-dimensionalized by the dimensionless mass

transfer coe�cient predicted at Schmidt number equal to 100 by Papavassiliou

et al. [15]. A threshold k
0

is also used and is taken equal to 0:2.

At Sc = 100, there seems to be a certain spatial correlation between high lev-

els of VISA detected wall-normal velocity variance, and large wall-mass-transfer


uctuations, as shown in �gure 2.4. This suggests that the 
uctuations of the

current density at the electrodes, which are proportional to the 
uctuations of

the concentration gradient [16], is correlated to the turbulence production events

lying in the bu�er region of the hydrodynamical boundary layer. Still, this result

remains unsettled and should be investigated more intensively.
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Figure 2.4 Sc = 100 and in a (x-z) plane at y+ = 12:74. Solid

lines: The snapshot contour plots of the VISA-detected wall-normal

velocity variance (detected with L
+ = 212, L

0
+ = 35:3 and k = 1:0).

The increment in variance signal is 2. Dashed lines: The snapshot

contour plots of the dimensionless concentration-gradient 
uctuations

at the wall, detected with k

0

= 0:2. The increment in concentration

gradient is 0:01.

In paper 4, the study of frequencies of the electrode-mass-transfer con�rmed

the result of a previous study [17], showing that only low frequency velocity 
uc-

tuations were e�ective in causing concentration 
uctuations. The spectra mass

transfer was there shown to be proportional to the spectra for wall-normal veloc-

ity at the lowest frequencies. This result is not in contradiction with the typical

timescale of turbulent production reported by McComb [18], and approximately

equal to 0:3 �Re� in viscous units, which is shown experimentally to correspond

to the the lowest frequencies.



CHAPTER 3

Turbulent mass transfer

Although numerous analytical and empirical methods have been developed for

predicting rates of mass transfer in turbulent 
ows, a thorough understanding

of the fundamental transfer mechanism is still very necessary for the design of

various kinds of industrial processes [19], especially for electrochemical processes.

As shown by Colburn [20] and Sherwood [21], the processes of mass transfer

and heat transfer are similar, and hence several theoretical principles treated

previously for heat transfer may be regarded as applicable to mass transfer. The

analogy between momentum and mass transfer was �rst deduced by Reynolds

[22], postulating similarity between momentum exchange and material exchange.

Unfortunately, it is only correct when Schmidt number is around one. Prandtl

[23] and Taylor [24] later extended the analogy to include a laminar layer near the

wall for mass transfer at all values of Schmidt number. For turbulent 
ows, von

K�arm�an [25], Boelter et al. [26], and Reichardt [27] analyzed the problem more

extensively on the basis of velocity distribution measurements in straight tubes.

They found that the 
uid is divided into three layers; namely, the very thin

viscous sublayer adjacent to the wall, the turbulent core, and the bu�er region

between the core and the viscous sublayer. In the viscous sublayer, in which

turbulence or the eddy di�usivity is small, material is transferred mainly by

molecular motion. The velocity distribution and mass transfer in the turbulent

core are controlled by eddy di�usivities of momentum and mass. In the bu�er

region, the combined action of molecular and eddy di�usivity determines velocity

and mass transfer. The mathematical formulation of the bu�er region in the

di�usive boundary layer is necessary for predictions of mass transfer and of

the distribution of chemical species near the electrodes. Unfortunately, at high

Schmidt number the di�usive boundary layer is so thin that no data has so far

been derived from experiments.

An aspect of turbulent mass transfer in electrochemistry, is the 
uid 
ow

conditions within an electrolyte. The 
uid 
ow controls the magnitude and uni-

formity of mass transport of reactant species at the electrodes. It also promotes

exchange of species between the bulk solution and the surface layers. Fluid mo-

tion is driven by the in
uence of a pressure gradient and di�usion. Two cases

may be distinguished. Natural or free convection occurs when local variations

in 
uid density produce acceleration [28]. Forced convection is driven by the

application of mechanical energy (as in the case of electrode movement), or by

12



the consumption of energy in a system (as in the case of a pressure drop through

a pipe). Buoyancy-induced 
ows are complex because of the essential coupling

between the 
ow and transport. The problems can be classi�ed as either exter-

nal or internal. It was pointed out by Ostrach [29] that internal problems are

considerably more complex than external. The interactions between the bound-

ary layer and the core constitute a central problem that has remained unsolved

and is inherent to all con�ned convection con�gurations. In fact, the situation

is even more intricate because it often appears that more than one global core


ow is possible and 
ow subregions, such as cells and layers, may be imbedded

in the core. This matter, which has been discussed more fully by Ostrach [30],

is not merely a sublety for analysis, but has equal signi�cance for numerical and

experimental studies.

When there is the possibility of free convection superimposed on forced con-

vection, the situation becomes essentially more complicated. Fortunately, it

appears that one e�ect or the other predominates in the mass-transfer process,

depending on the values of the Reynolds number, Re, and Rayleigh number,

Ra. Ra is the non-dimensional ratio between forces of buoyancy and of viscos-

ity. At horizontal electrodes, Tobias and Hickman [31] �nd that free convection

predominates. Otherwise, forced convection does. Acrivos [32] has analyzed the

combined e�ect of free and forced convection for surfaces that are not horizontal

and found that the transition region between predominance of free and forced

convection is usually narrow.

3.1. Sherwood number in forced convection

Turbulent 
ow is characterized by rapid 
uctuations of velocity, pressure, and

concentration about their average values. Electrochemists usually are interested

in these 
uctuations only in a statistical sense. Forced convection in electrochem-

ical systems has been extensively studied through experimental data in order to

draw some generalization about the behaviour of the turbulent mass-transfer

at the wall. It is dependent on the 
uctuations in the near-wall-region and its

importance can be justi�ed by the fact that, as shown earlier in equation (13),

the current distribution along the electrodes is directly proportional to the wall-

mass-transfer. At Schmidt numbers greater than 0:5, Bejan [4] and Walsh [28]

agree to consider the averaged non-dimensional wall-mass-transfer, the Sherwood

number, as a function of the Reynolds number, Re, and Sc

Sh = 0:037Re4=5Sc1=3. (18)

Walsh found the coe�cient of propotionality equal to 0:023. This di�erence can

be due to the fact that Bejan considered a single plate along which a boundary

layer had developed, when Walsh considered two parallel plates of an electro-

chemical cell working as a channel 
ow.
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Figure 3.1 Schematic sketch of 
ow regions in an electrochemical cell.

3.2. Sherwood number in natural convection

Natural convection in a two-dimensional cavity is one of many examples of tur-

bulent 
ows whose geometrical simplicity conceals the full complexity of the real


ow pattern. In spite of signi�cant practical importance in many engineering

applications and numerous research reports in literature, the problem has not

been fully understood yet. There are still no reliable models or correlations

which can be used with certainty for the prediction of mass transfer in cavities,

in particular if the conditions are non-standard. A common practice to establish

experimentally the wall-mass-transfer in form Sh = f(Ra; Sc) has so far not

produced a consensus even for simple cases. Walsh [28] found Sh proportional

to Ra0:28, but Kitamura et al. [33] de�ned di�erent zones in the hydrodynamic

boundary along the electrodes of the cell where the turbulence intensities are

not the same. As shown in �gure 3.1, the 
ow is turbulent only in a small part

of the vertical boundary layers. In the present cell, the electrodes are vertical,

and generate in their vicinities density variations that create a circulation. In

the turbulent 
ow, Kitamura found for the Sherwood number the following law

Sh = Ra1=4 + 37. (19)



The exponent was found to be equal to 1=5 in the transitional zone near the

turbulent zone. These results are in good agreement with the law of dependency

in the Rayleigh number for the Sherwood number, found in paper 2, where the

exponent Ra was predicted equal to 1=5 in the transitional zone.



CHAPTER 4

Turbulence models

4.1. Governing equations

The governing equations for an incompressible turbulent 
ow of a viscous 
uid

are the Navier-Stokes equations and the continuity equations (equations (6) and

(7) in chapter 2.1)

@ ~ui

@t
+ ~uj

@ ~ui

@xj
= �1

�

@~p

@xi
+ �

@2 ~ui

@x2
j

� �
0

g(~c� co)�iy (20a)

@ ~ui

@xi
= 0 (20b)

where ~ui, ~c and ~p are the instantaneous velocity, concentration and pressure

�elds. The y-direction is considered here as the direction of gravitation. The

Reynolds decomposition is de�ned as following; ~ui = Ui + ui, ~c = C + c and

~p = P +p, where Ui and ui are the mean and the 
uctuating part of the velocity

�eld, C and c are the mean and the 
uctuating part of the concentration �eld,

and P and p are the mean and the 
uctuating part of the pressure. The mean

variables are here time-averaged. Note that Ui can also be written ui, C = c, and

P = p. The Reynolds averaged Navier-Stokes equations are formed by taking

the mean of the Navier-Stokes equations using the decomposition de�ned above

DUi

Dt
= �1

�

@P

@xi
+

@

@xj
(2�Sij � uiuj)� �

0

(C � co)�iy (21a)

@Ui

@xi
= 0, (21b)

where the mean strain rate tensor Sij = (Ui;j + Uj;i)=2. The notation D=Dt =

@=@t + Uj@=@xj is used to denote the rate of change following the mean 
ow.

The term ��uiuj is known as the Reynolds stress tensor and originates from

the non-linear term of (20a). This tensor is responsible for the so called closure

problem, because it creates extra unknowns that cannot be computed. If one

considers the transport equations for these unkowns, new unknowns will appear

as higher correlation terms for velocity components, so that it is not possible to

obtain a closed set of equations.
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The transport equations for the Reynolds stresses may be derived from the

Navier-Stokes equations

Duiuj

Dt
=� uiul

@Uj

@xl
� ujul

@Ui

@xl
+
p

�

�
@ui

@xj
+
@uj

@xi

�
� 2�
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@xl

@uj

@xl

� @

@xl

�
uiujul +

p

�
(ui�jl + uj�il)� �

@

@xl
(uiuj)

�

� �
0

gc(ui�jy + uj�iy). (22)

The �rst two terms on the right hand side are production due to mean �eld gradi-

ents. They are explicit in uiuj , whereas the other terms need to be modelled. The

next two terms are the pressure-strain correlation and viscous destruction. The

next term is a di�usion term containing both turbulent and molecular di�usion.

The �rst two terms inside the parenthesis of the di�usion term is the turbulent

transport 
ux. The divergence of this 
ux is the rate of spatial redistribution

among the di�erent Reynolds stress components due to inhomogeneities in the


ow �eld [2]. The last term is the contribution of free advection to turbulence.

In turbulent 
ows with mass transport, a velocity-concentration correlation

uic appears in the governing Reynolds averaged equation. Using the Reynolds

decompositions for the velocity and the concentration, equation (3) becomes

@C

@t
+ Uj

@C

@xj
=

@

@xj

�
D
@C

@xj
� uic

�
. (23)

The mass 
ux term uic, or Reynolds-
ux term in analogy with the Reynolds

stress, is due to the non-linear advection term in equation (3) and leaves (23)

unclosed. The transport equation for the turbulent mass-
ux is given by

Duic

Dt
=� uiul
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@xl
� ulc

@Ui

@xl
+
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�
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@xi
� (D + �)
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@xl
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)

� �
0

gc2�iy. (24)

The right hand side of the transport equation (24) contains two production terms

due to mean �eld gradients, a pressure scalar-gradient correlation term, viscous

and di�usive destruction, a transport term consisting of turbulent and molecular

di�usion and a free convection contribution.

4.2. The Boussinesq approximation

The analogy between the viscous stress generation caused by 
uctuations on the

molecular level and the generation of turbulent stresses caused by macroscopic

velocity 
uctuations leads to an eddy-viscosity formulation for the Reynolds

stresses. The �rst attempt in that direction was made by Boussinesq [34] who



introduced an eddy viscosity, �T , in complete analogy with the molecular vis-

cosity for a Newtonian 
uid. The Reynolds stress tensor is related to the mean


ow as following

uiuj = �2�TSij + 2

3
k � �ij , (25)

where k is the turbulent kinetic energy and is equal to uiui=2. The last term

is often included in the pressure term. Then, introducing the dissipation per

unit mass, � = � @ui
@xj

@ui

@xj
, the eddy viscosity can be estimated as proportional

to k2=�. This relation is developed only on the basis of dimensional arguments,

and provided that k and � are strictly functions of the turbulence independent

of natural 
uid properties such as molecular viscosity [35].

In analogy with the eddy-viscosity concept the Reynolds-mass-
ux may be

obtained by a simple gradient di�usion model

uic = � �T

ScT

@C

@xi
. (26)

In a zero equation model an assumption of a constant turbulent Schmidt number,

ScT , is made, but for many engineering applications this is not enough accurate.

The turbulent Schmidt number is then modelled as a function of the ratio, r,

between the mass, kc=�c, and dynamic, k=�, time-scales, where kc denotes the

mass variance and is equal to c2=2. �c is the mass dissipation rate and is equal to

D @c

@xj

@c

@xj
. Information about the time-scale ratio may be particularly important

in situations when it di�ers signi�cantly from one. As Kawamura et al. showed

it [36], r tends to Sc when the electrode is approached. This result was also

found in the numerical study made in paper 6.

As Wikstr�om et al. note it in [2], it is quite well known today that the

Boussinesq assumption is unable to always predict realistic values of Reynolds


ux, since it assumes that the mass 
ux is aligned with the mean concentration

gradient. In particular, in a fully developed channel 
ow, the streamwise gradient

of the mean concentration is zero, but not uc.

4.3. The wall-function problem

Understanding and prediction of mass transfer between a solid boundary and

a turbulent 
uid 
ow is of great interest in many engineering problems. Many

studies have been devoted to numerical and experimental investigations of this

problem at various Reynolds and Schmidt numbers. The major issue of most of

these studies is the prediction of average mass transfer coe�cients and of mass

pro�les in the bu�er region.

In this context, mass transfer at high Schmidt number is of particular impor-

tance for industrial concerns in the �eld of electrochemistry. Compared to the

case of mass transfer at low or moderate Schmidt number, its study appears to

be much more di�cult: the di�usive layer lies entirely into the viscous sublayer,

meaning that mass transfer e�ciency is controlled by turbulent motions present



very close to the wall. Many previous scienti�c and industrial investigations have

been carried out on that region close to the wall, as Kader [37] and Calmet [38]

did. But by now, none of them considered non linear boundary conditions as

Butler-Volmer laws.

In the case of natural convection, another crucial issue is to determine the

importance and the nature of the buoyancy in
uence on the bu�er region and

possibly even in the viscous sublayer. However, recent calculations [16] showed

that the wall functions proposed by Launder et al. [39] for the computation

of uncoupled and fully turbulent 
ows, gave a good estimation of the viscous

boundary layer even in the near-wall region. As a �rst step of comprehension, it

is consequently reasonable to produce a series of results concerning the di�usive

boundary layer in the near-wall region for a situation of forced convection.

Wall-functions are used to �ll the gap between the wall and the region far

enough from the wall, where the turbulence model is valid. In other words,

wall-functions have the function of boundary conditions situated at a certain

distance from the wall. The most used model among the turbulence models is

the k � � model, which belongs to the class of the two-equation-models. These

models provide not only for computation of k, but also for a turbulence length

scale or equivalent. In the case of the k � � model, two transport equations are

considered; one for the computation of the turbulent kinetic energy and one for

the dissipation rate, �

�
@k

@t
+ �r � (kU)�r �

��
�+

�T

�k

�
rk
�
= P +G� ��, (27)
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where,

�T = C��
k
2

�
,

�eff = �+ �T ,

P = �effrU �
�
U+ (U)

T
�
,

G =
��eff
���T

g � r�.
The model is closed by using the Boussinesq approximation for both the velocity

and the concentration �eld.

A series of numerical simulations, carried out for the turbulent case of Ziegler

et al. [11], proved that G does not in
uence the prediction of the mean velocity,

and can be neglected in the transport equation for k. The constants are chosen1

as C1 = 1:44, C2 = 1:92, C� = 0:09, �T = 0:9, �k = 1 and �� = 1:2174.

The following two chapters expose the concept of wall-functions in details

and explain the shortcomings of its standard form for mass transfer at very high

1See [40] for more details about the k � � model



Schmidt number. The third chapter gives an alternative wall-function for mass

in electrochemical applications.

4.3.1. Limitation of the standard assumption. In this chapter and in

the next two others, all variables are dimensionalized in viscous units. This

choice has been made in order to determine more easily the positions of the

di�erent regions in the boundary layers. For any scalar ~� with a di�usivity D�,

the standard assumption for the non-dimensional pro�le of the mean value in

the inner region, is formulated in [40] as following

�+ =

8<
:

Sc y+ y+ � y+
o

��

�
ln(E�y

+) y+ � y+o

(29)

where y+
o
= aM � Sc�1=3, � is K�arman constant, Sc is Schmidt number �

D�

, and

�� the turbulent Schmidt number for scalar ~�, �T

D�;T

= 0:9. This last value is

assumed constant in equation (29). It is worth noting that the actual turbulent

Schmidt number varies in the 
uid and is equal to
uv(@�=@y)

v�(@U=@y)
. At Schmidt number

equal to one, aM is taken in previous studies [19, 37] equal to 11:25. The constant

E� is de�ned as

E� = E � exp
"
9�

 �
Sc

��

�0:75
� 1

!�
1 + 0:28e

�0:007 Sc
�
�

�#
, (30)

where E is the \loglayer" constant and is equal to 9:793 [40].

When Schmidt number is very large, E� is approximately equal to�
E � exp

�
9�

�
3=4

�

Sc3=4
��

. As a result, �+ becomes extremely large in the log-layer.

For instance, at Sc = 900, E� = 9:3 � 10285. The standard log-law as shown in

equation (29) is thus not usable already at Schmidt number higher than a few

hundreds.

In theory, the computational domain could be chosen re�ned enough near

the wall in order to use the linear region of the wall-function (29) at the nearest

node P of the grid from the wall. But in practice, for mass transfer in an

electrochemical cell, this situation will require a huge computational domain, as

it is demonstrated below, and the nowadays computational capacities impede

the choice of a linear wall-function for mass transfer.

In a running cell with only one chemical reaction at the electrodes and a

binary electrolyte, the maximum local excess of concentration is limited by the

uniform concentration in the cell �o when there is no current set at the electrodes.

This is veri�ed because the present study considers cells at the equilibrium state

only, and there is no variation of the total amount of mass in the cell. This

inequality in viscous wall-units can be written �+
P
� �+o , where �+o is of the

order of unity. Using the linear-law of equation (29), one obtains the condition



Figure 4.1 The di�erence (32) of the linear and the logarithmic law

for the mean concentration in the inner region at y+1 , as a function

of Schmidt number. m = 3.

y+
P
� �+

o

Sc
. This last condition requires an extremely re�ned grid, when Schmidt

number is of the order of several thousands.

Hence, it seems necessary to formulate a new wall-function in the di�usive

log-layer at high Schmidt numbers.

4.3.2. Limitation of the Kader assumption. Kader et al. [41] proposed

a modi�ed logarithmic law for mass transfer when Sc � 0:5

�+ =

8><
>:

Sc y+ y+ � y+1

� ln(y+) + m
2+1

m2�1a
�1=m
H

Sc(m�1)=m + � ln(Sc)� 5:3 y+ � y+1 ,

(31)

where y+1 = (aHSc)
�1=m. aH , m, and � are supposed constant, and are equal

to 0:001, 3, and 2:12, respectively. There is no complete agreement about the

value of m in previous studies; as an example Calmet et al. [38] found m = 3:38.

The log-layer of equation (31) was developed considering the eddy viscosity and

di�usivity di�erent from zero, even in the viscous sublayer. It was also assumed

a three-layer model for the di�usive boundary layer, proposed by Levich [5], sim-

ilar to the one found for the inner region of the viscous layer.

Figure 4.1 shows the di�erence (32) of the linear and the logarithmic law

for the mean concentration in the inner region at y+1 (Sc) when Schmidt number

varies�
a
�1=m
H

� m2 + 1

m2 � 1

�
Sc(m�1)=m � � ln

h
a
�1=m
H

Sc(m�1)=m
i
+ 5:3. (32)



Figure 4.2 aH as a function of Schmidt number. aH is computed

in order to get the di�erence (32) equal to zero.

The di�erence is already greater than one when Schmidt number is equal to 10.

If one wants to obtain a small value for the di�erence (32), it is then necessary

to consider aH as a function of Schmidt number. For simplicity, m is supposed

here independent of Schmidt number. The order of variation of aH with Schmidt

number is evaluated below.

aH and m are de�ned by the �rst term of a Taylor expansion of the eddy

di�usivity D�;T [41]. In the di�usive sublayer D�;T can be approximated by

�aH (y
+)m. (33)

aH , shown in �gure 4.2, varies over six orders of magnitude when Schmidt number

varies between 1 and 1000. As a result, the eddy di�usivity D�;T varies in

magnitude of several orders in the near-wall region, when Schmidt number varies.

For instance, at Schmidt number equal to 1000 and at y+ = 1, D�;T = 4:624�103.
In forced convection, the hydrodynamical boundary layer is decoupled from

mass transport, and the eddy viscosity is consequently not a function of Schmidt

number. The turbulent Schmidt number �T

D�;T

predicted with the previous as-

sumptions is then highly dependent of Schmidt number and tends to zero in the

near-wall region when Schmidt number increases. This result is not in agree-

ment with previous studies. Abe et al. [42] and Kawamura et al. [36] found that

the turbulent Schmidt number tends to be independent of Schmidt number in

the near-wall region when Schmidt number increases. The two last mentioned

studies considered Schmidt number only between 0:025 and 5:0. They found

almost the same turbulent Schmidt number of 1:1, in the near-wall region and

at Schmidt number equal to 0:71 and 5:0. If one accepts their result at larger
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Figure 4.3 At Sc = 3000, the mean concentration pro�le along the

electrode-normal direction. Solid line: k � � model. Circles: large-

eddy simulation (LES). a) Predicted with a linear wall-function. b)

Predicted with a logarithmic wall-function.

Schmidt numbers, and since the eddy viscosity is not dependent of Schmidt num-

ber, the eddy di�usivity should not vary appreciably with Schmidt number in

the near-wall region.

In Brief, supplementary information about the scaling of the di�usive bound-

ary layer are required in order to validate the wall-function proposed by Kader

et al. [41].

4.3.3. An alternative wall-function for mass. In this chapter, the wall-

function proposed in paper 6 is tested with success with the k � � model. The

concentration corresponds to an ionic species of a binary electrolyte, and convec-

tion is forced in an channel 
ow working as an electrochemical cell. The platform

for the k � � is the commercial CFD code CFX developed by AEA Technology.

The considered geometry is a 3D-channel 
ow made of two in�nite plates in the

streamwise, x, and the spanwise, z, direction. The computational domain is

periodic in these two directions with periodicity lengths chosen long enough to

respect the largest turbulent length-scales, see paper 2 for the dimensions and the

geometry. Sc = 3000 and the turbulent Reynolds number, based on the channel

half-width, is equal to 180. The boundary condition for the concentration at

the electrodes is a constant value, corresponding to the idealized electrochemical

situation of a cell working at the limiting current.

Figures 4.3a and 4.3b show the concentration pro�le C(y+)=Cwall predicted

with the k � � model when using a linear and a log-law, according to equation

(29). The predictions are compared with large-eddy simulations made in paper

4, 5 and 6, at the same Schmidt number. Figure 4.3b shows that the logarithmic

pro�le does not improve the crude model of a pure di�usive pro�le shown in 4.3a.



If one considers the mass-conservation equation (3) for a fully developed


ow, one obtains for a channel 
ow

1

Sc

@C+

@y+
� v+c+ = �o, (34)

where �o = �1. A simple model for the wall-normal component of the Reynolds-


ux vector is considered in Paper 6, where v+c+ = av � k+ � �+ � @C
+

@y+
, where �+

is a mixed time-scale between the two time-scales of chapter 4.2, �+ =
q

kkc

��c
.

Using this model, equation (34) becomes

@C+

@y+
= �Sc� ac � k+ � �+ @C

+

@y+
,

(35)

where ac is a positive constant, possibly dependent on Schmidt number. One

can then derive an integral function for the mean passive scalar as a function of

the wall-normal distance

C+(yo) = C+
wall

� Sc �
Z

yo

0

dy+

1 + ack+�+
.

(36)

This equation can be integrated in the near-wall region if one considers the

Taylor series of the turbulent kinetic energy and the time-scale �+. It can easily

be shown that ac � k+ � �+ = Ac(Sc) � y+4+O(y+5) when the wall is approached.

This result is obtained when one considers the limiting behaviour near the wall,

of the velocity components and the concentration 
uctuations [36]. Equation

(36) can then be integrated with the help of this approximation, and C+ is

found as a function of y+ as follows

C+(y) = C+
wall
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+ arctan

 
z
p
2

1� z2

!#
, (37)

where z = y+A
1=4
c . This equation was shown to give good results in the near-wall

region, and surprisingly, even in the logarithmic region of the di�usive boundary

layer, provided that another value for Ac is chosen, see �gure 4.4. This result

tends to prove that the asymptotic behaviour of k+ � �+ as y+4 is valid even

outside the di�usive sublayer. This wall-function was then implemented in CFX

and tested with the same geometry, and the same parameters. Figure 4.5 shows

good agreement between the predictions of the present study with a large-eddy

simulation (LES) and the k��model. With y+ between 0 and 5=Sc1=3, the pro�le

is linear. The nearest node from the electrode in the numerical domain for the

k � � computation lies in the log-region of the di�usive layer (y+ � 45=Sc1=3).
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Figure 4.5 At Sc = 3000, the mean concentration pro�le along the

electrode-normal direction. Solid line: predicted with CFX and the

new wall-function. Circles: predicted with LES.

4.4. Algebraic Reynolds stress models

Nowadays, there is a renewed interest in algebraic models which are obtained

from the transport equations using some equilibrium assumption. This interest

can in a large extent be explained by the simplicty of the produced models. As

Wallin et al. [43] notice it, they require a computational e�ort comparable to

the one required for the k� � model, but are more reliable for 
ows in near-wall

regions.

The classical algebraic Reynolds stress model was developed from the mod-

elled Reynolds stress transport equation by assuming that advection minus the



di�usion of the individual Reynolds stresses can be expressed as the product of

the correponding quantity for the kinetic energy, k, and the individual Reynolds

stresses normalized by k [43]. This results in an implicit relation between the

stress components and the mean velocity gradient that replaces the Boussinesq

hypothesis. The general form looks like as following

uiuj = Fij

�
ukul; Skl;
kl; k; �; ukc; c2

�
, (38)

where 
ij = (Ui;j � Uj;i)=2. In the case of forced convection, Wallin et al. [43]

developed an explicit version of an algebraic Reynolds stress model where the

Reynolds stresses were explicitly related to the mean 
ow �eld.

The most common approach for the mass 
ux is the so called weak equi-

librium assumption, where the advection and di�usion terms of the transport

equation for the normalized mass 
ux is neglected [44]. A similar equation to

(38) can then be produced for the Reynold-
ux vector

uic = Gi

�
ukc; ukul;

@Uk

@xl
;
@C

@xl
; k; kc; �; �c

�
(39)

Provided some extra assumption, this relation can also become explicit, see [44].

In a case of forced convection, Fij does not depend on the last two terms in

equation (38), see [2, 44].

In paper 6 of this work, a new explicit algebraic model has been developed

for the Reynolds-
ux in a case of forced convection in a channel 
ow working

as an electrochemical cell. This model was validated for a very high Schmidt

number only, and was developed on the basis of an assumption found in paper

5 for the transport equation of the Reynolds 
ux at equilibrium. Equilibrium

refers here to the state of the 
ow when all the statistics do not depend on time.



CHAPTER 5

Large-eddy simulation

As widely known, the computation of turbulence in averaged sense involves reso-

lution of extra terms of correlations between the 
uctuating parts of the variables.

The most popular method to model those unknown quantities is the k�� model,
which is based on the mixing-length theory. In k � � model, the extra terms,

called Reynolds stresses, are assumed to be proportional to the local gradient

of the average velocity and to the turbulent viscosity. This viscosity has a local

quantity, proportional to k2=�, where k is the turbulent kinetic energy and �

the dissipation rate. These two new unknowns are computed by introducing a

transport equation for each, where the time-derivative and the convective terms

balance at any time production and dissipation terms. Although the k�� model
has the advantage to be numerically robust, it has the big inconvenience of not

accounting for anisotropic e�ects, as the presence of a wall for instance. This

neglect is of importance especially in the near-wall region.

An alternative strategy is the direct numerical solution (DNS), and con-

sists in computing the turbulent 
ow by solving the discretized equations with

a mesh �ne enough to resolve even the smallest scales of motion expressed by

the terms of 
uctuations introduced above. This method does not rely on any

model to compute turbulence, but the size of cells appears to be imposed by

the smallest turbulence scales, the Kolmogorov scales, and consequently pro-

portional to L=Re3=4, where L is the size of the computational domain. In a

three-dimensional computation, the number of nodes of the mesh will be pro-

portional to Re9=4. Thus, this approach is restricted to low Reynolds numbers

due to memory limitations imposed by todays computers. An important issue

with respect to the computational needs of a time accurate numerical simulation

is that a high spatial resolution necessitates a high temporal resolution. Conse-

quently, a larger number of time steps has to be computed for a given physical

span of time when the discretization is very �ne.

Large-eddy simulation (LES) is an intermediate technique between the direct

simulation and modelling the Reynolds stresses. In LES the contribution of the

large energy-carrying structures is computed exactly, and only the e�ect of the

smallest scales of turbulence is modelled using subgrid scale models. Since the

small scales turbulence tends to be more isotropic than the large, the use of

isotropic models seems reasonable, and allow to solve the average Navier-Stokes

equation on coarser meshes than those used in DNS.

27



The concept of LES mainly rests on two presumptions which appear plau-

sible in view of both practical experience and theoretical considerations. The

�rst of these is that small scales tend to depend only on viscosity, and may be

somewhat universal. The large ones are a�ected very strongly by the boundary

conditions, and in return, most global features of turbulent 
ows, like average

mixing rates or averaged losses, are governed by the dynamics of the large scales

and depend only little on the small-scale turbulence. Thus, in LES the con-

tribution of large energy-carrying structures to momentum and energy transfer

is computed exactly, and only the e�ect of the smallest scales of turbulence is

modeled, by so-called subgrid-scale models.

Turbulence generation occurs mainly at the large scales of a 
ow and viscous

dissipation occurs mainly at the small scales. The most important feature of a

subgrid-scale model is then to provide adequate dissipation. Here, dissipation

means transport of energy from the resolved grid scales to the unresolved subgrid

scales, and the rate of dissipation � in this context represents the 
ux of energy

from the large to the small scales. To illustrate the role of the subgrid-scale

models it is useful to consider possible consequences if turbulence simulations are

performed with insu�cient resolution. An obvious implication of a too coarse

resolution is that the viscous dissipation in the 
ow cannot properly be accounted

for. This de�ciency will typically result in an accumulation of energy at the high-

wavenumber end of the resolved spectrum, which re
ects a distorted equilibrium

state between the production and dissipation of turbulent kinetic energy. For

su�ciently high Reynolds numbers (or conversely su�ciently coarse grids) the

discrete representation of the 
ow even becomes essentially inviscid and the non-

linear transfer of energy can lead to an abnormal growth of turbulence intensities

and eventually to numerical instability of the computation.

5.1. Subgrid-scale model

In this work, except in paper 1, a large-eddy simulation approach is used to

study the di�usive boundary layer in a turbulent channel 
ow. The numerical

code is the continuation of the code used to produce the results reported in

[45]. Model equations are formulated for the �ltered velocity, mass and pressure

�elds. The �lter function determines the size and structure of the smallest scales

resolved without modelling. The most commonly-used �lter functions are the

sharp Fourier cuto� �lter, the Gaussian �lter and the tophat �lter [46]. In the

present work, the �lter consists in averaging ~f in a cubic volume whose center is

xM . M stands for the center of a given cell in a three-dimensional grid system,

xM denotes the coordinates of M, and �xM1 , �xM2 and �xM3 the side lengths

of the cell, where 1, 2 and 3 stand for the indices of the three spatial directions.

If a continuous function ~f(x) is considered, f
M

stands for the �ltered version of
~f on space, at the center of cell M, whose volume is �xM1 �xM2 �xM3 . Note that



f
M

is an instantaneous variable. If T M stands for the �ltering operator, f
M

=

T M

�
~f ;xM

�
.

Similarly, SM
i

( ~f ;x) stands for the average of ~f over a plane surface element

�sM
i
, which is centered at x, normal to ei, and whose size is �xM

j
�xM

k
, where

j and k are di�erent from i.

Finally, the volume average of the Navier-Stokes equation in cell M, assuming

the 
uid density � = 1, is

�vM
@uMi
@t

=

3X
j=1

�sMj SMj
�
f� ~ui ~uj � ~p�ij + ~�ijg;xM +

1

2
�xjej

�

�
3X

j=1

�sMj SMj
�
f� ~ui ~uj � ~p�ij + ~�ijg;xM � 1

2
�xjej

�
(40)

where �ij is the viscous stress tensor, and �ij the Kronecker delta.

As far as the linear terms are concerned (namely �~p�ij and ~�ij), the �ltering

of the momentum equation poses, in principle, no di�culties. On the contrary,

the advective term of the last equation, i.e. �P3
j=1�s

M
j
SM
j

�
~ui ~uj ;x

M � 1
2�xjej

�
,

needs to be modelled in terms of the resolved velocity �eld uMi .

For that purpose, u
(�j)M
i

is introduced as the unresolved part of the velocity

�eld, evaluated on the cell surface whose centre is the vector xM � 1
2
�xjej , and

whose normal direction is ej , i.e.

u
(�j)M
i

= ~ui � SMj
�
~ui;x

M � 1

2
�xjej

�
. (41)

Then, according to the de�nition of Sj , the total convective transport of

momentum ~ui ~uj across the cell surface centered in x
M � 1

2
�xjej and parallel to

ej , can be written

SM
j

�
~ui ~uj ;x

M � 1

2
�xjej

�
= SM

j

�
~ui;x

M � 1

2
�xjej

�
SM
j

�
~uj ;x

M � 1

2
�xjej

�

+SM
j

�
u
(�j)M
i

u
(�j)M
j

;xM � 1

2
�xjej

�
(42)

The �rst term, the product of the surface averages of the total non-dimensional

momentum ~ui ~uj is approximated by the mean of the volume averages in the cells

on both sides of the surface. For the second term, on the other hand, which can be

thought of as a Reynolds stress associated with the unresolved motion, a model

has to be formulated. For notation convenience, this term is noted Fj( ~ui)
(�j)M ,

and denotes the subgrid 
ux of momentum in the ei-direction through the sur-

face centered at xM � 1
2
�xjej and whose normal direction is ej . Following the

classical Boussinesq eddy viscosity model, one may assume that the subgrid mo-

mentum 
ux through surfaces of computational cells is proportional to the eddy

di�usion of momentum. However, as Zahrai [45] suggested, the eddy di�usivity



is assumed to depend on mesh sizes in di�erent, through which the subgrid 
ux

of momentum is to be estimated. For a computational mesh with signi�cantly

di�erent spatial step sizes, the present subgrid model prescribes di�erent mag-

nitudes of subgrid transport in di�erent directions. In order to account for this

grid anisotropy, one may assume an expression of the following form

Fj( ~ui)
(�j)M = ��(�j)Mt S

(�j)M
ij

, (43)

where S
(�j)M
ij

is the �ltered quantity sM
ij

evaluated on the cell surface under

consideration, and ~sij is twice the instantaneous strain rate tensor. Its numerical

computation involves the average of sMij between the two cells containing the

surface. �
(�j)M
t

is interpreted as a grid-dependent anisotropic eddy viscosity.

Following Deardo� [47], Zahrai et al. assumed that the local eddy viscosity

depends on the �ltered dissipation �M and a cut-o� length scale l
(�j)M
� . For

dimensional reasons, one may then write �
(�j)M
t = (�M )1=3(l

(�j)M
� )4=3. Again,

following Deardor� for the estimation of �M and l
(�j)M
� , Zahrai showed that the

original formulation of the Smagorinsky model for �M could be easily adapted

to the present situation of a highly anisotropic grid. The cut-o� length scale for

subgrid eddy di�usion, l
(�j)M
� , is approximately �xM

j
, since the smallest resolved

length scale in the j-direction is �xM
j
. Finally, collecting the assumptions done

above, one arrives to the following expression

Fj( ~ui)
(�j)M = � 1p

2
C2L2j

��sMij ��(�j)M S
(�j)M
ij

, (44)

where
��sM
ij

�� = �qP3
i=1

P3
j=1 s

M

ij

2
�

and L2
j
= (�xM1 �xM2 �xM3 )2=9(�xM

j
)4=3.

C is taken equal to the Smagorinsky constant, 0:08, as suggested in [45].

Equation (40) becomes

�vM
@u

M

i

@t
=
P3

j=1�s
M
j

h
�
�
ui
(+j)Mu

(+j)M
j

� u
(�j)M
i

u
(�j)M
j

�i
�P3

j=1�s
M

j

��
p(+j)M � p(�j)M

�
�ij
�

+
P3

j=1�s
M
j

h
+
�
�
(+j)M
ij

� �
(�j)M
ij

�i
+
P3

j=1�s
M

j

h
+ 1p

2
C2L2

j

���sM
ij

��(+j)M � s(+j)M
ij

� ��sM
ij

��(�j)M � s(�j)M
ij

�i
,

and similarly, the �ltered continuity equation gives

3X
i=1

3X
j=1

�sM
j

h
u
(+j)M
i

� u
(�j)M
i

i
= 0. (45)

Note that the superscript (� � �)(�j)M denotes the �ltered quantity evaluated on

the cell surface whose center is the vector xM � 1
2
�xM

j
ej and whose normal



direction is ej . The Navier-Stokes equations can be manipulated to get a Pois-

son equation for the pressure correction. The SIMPLE algorithm is used here.

The pressure correction technique is basically an iterative approach and the pro-

cess is as follows. The iterative process is started by guessing the pressure �eld

p�. The Navier-Stokes equations are then solved with p�. It results of a velocity

�eld (u�; v�; w�). Since the velocity �eld is obtained with the guessed pressure, it

does not satisfy the continuity equation. From the continuity equation an elliptic

equation for the pressure correction p
0

is derived. The physical interpretation of

the elliptic pressure equation is that a disturbance in the pressure at some point

is instantaneously experienced everywhere. The corrected pressure, p = p� + p
0

,

is then used to calculate the corresponding corrected velocity (u
0

; v
0

; w
0

). The

velocity �eld is then updated. Note that the 
ow is driven by a body force, or

by a pressure gradient constant in space and time. In other words, the pressure

term is decomposed into a mean pressure gradient in the streamwise direction

and equal to 1 in viscous units, and a 
uctuating part which is to be solved

together with the velocity �eld.

The governing equation for the concentration transport can also be �ltered

at each cell M , which can di�er from those used for the velocity �eld

�vM
@cM

@t
=

3X
k=1

�sMk

h
�
�
c(+k)Mu

(+k)M
k

� c(�k)Mu
(�k)M
k

�i

+

3X
k=1

�sM
k

" 
1

Sc
+

1p
2
C2L2

k

Sct

!���sM
ij

��(+k)M � j(+k)M
k

� ��sM
ij

��(�k)M � j(�k)M
k

�#
, (46)

where jk is the concentration gradient in the k-direction. The turbulent Schmidt

number, Sct, was set to 0:25, which may be a reasonable value, since the turbu-

lent Prandtl number, Prt in the cases of large eddy simulation with heat transfer

is usually proposed to be between 1=2 and 1=3, see e.g. [48].

5.2. Discretization and mesh systems

Throughout the remainder of this section, all the variables are considered �l-

tered. The discretization of the momentum equations are not described, since

the present work has contributed to the numerical development of the mass

transport equation only. A detailed description of the discretization of the con-

servation equation for mass is presented.

The Navier-Stokes equations can be written the following form

~ut + C~u =
1

Re
V ~u,



where C~u contains the convection part and V ~u the pressure and viscous parts

of the NS equations. An explicit time discretization is then introduced

un+1 � un

�t
= Iun, (47)

where I~u = �C~u+ V ~u.

The velocity �eld is then interpolated with a fourth order scheme, from the

grid where it has been calculated, to a �ner grid, notated (� � � )c in the rest of

this chapter, where the concentration �eld is calculated. In each direction, the

integer IPCi represents the ratio between the number of nodes of the �ne and

the coarse mesh. In the present study, the grid associated to the concentration

�eld is �ner only in the normal direction of the walls. IPC2 and IPC3 are then

equal to one, and the interpolation is only required in the normal direction of

the walls.

Since the velocity is staggered in the three directions, the interpolation is

performed with the vortices coordinates x1 for ~u1, and with the coordinates of

the cell-centers x
f

1 for ~u2 and ~u3. Here, the interpolation formula is de�ned

indi�erently for the three components, provided that the coordinates x1 and x
c
1

in equation (48), represent the vortices x1 and x
c
1 when i = 1, and the cell-centers

x
f

1 and x
c;f

1 when i = 2 and 3. The interpolated velocity ~u
c;f

i
is de�ned at the

cell-centers of the �ne grid as following

~u
c;f

i
(IC1; IC2; IC3) =

2X
k=�1

ui(I � k; IC2; IC3)
Y
j 6=k

xc1(IC1)� x1(I � j)

x1(I � k)� x1(I � j)
, (48)

where I is the rounded IC1=IPC1 to the nearest integer towards zero, for ~u
c;f

1 ,

and the rounded ((IPC1 � 1)=2 + IC1)=IPC1 for ~u
c;f

2 and ~u
c;f

3 . ICi are the

indices in the computational domain and in the three directions of the cell M .

They vary between 0 and MCi + 1, where MCi + 1 is an integer and the maxi-

mum value of the index ICi.

Similarly, the anisotropic eddy viscosity, �
(�j)M
t = 1p

2
C2L2

k

��sM
ij

��(�j)M , is

interpolated as

�
(�j)M
t

(IC1; IC2; IC3) =

2X
k=�1

�
(�j)M
t

(I � k; IC2; IC3)
Y
j 6=k

x
c;f

1 (IC1)� x
f

1 (I � j)

x
f

1 (I � k)� x
f

1 (I � j)
.

(49)

If one considers a Taylor expansion at the second order in time of the �rst

derivative of the concentration �eld at a �xed position, one gets

@~c

@t
(to +�t) =

@~c

@t
(to) +

�t

2

@2~c

@t2
(to) +

�t2

6

@3~c

@t3
(to) +O(�t2). (50)



Now, considering the right-hand-side term rhs[~c] in the mass transport equation

(46) at a �xed cell, and at a given time to,
@~c
@t
(to) can be written as

@~c

@t
(to) = rhs[~c] =

3X
k=1

�sM
k

�vM

h
�
�
c(+k)Mu

(+k)M
k

� c(�k)Mu
(�k)M
k

�i

+

3X
k=1

�sM
k

�vM

" 
1

Sc
+

1p
2
C2L2

k

Sct

!���sM
ij

��(+k)M � j(+k)M
k

� ��sM
ij

��(�k)M � j(�k)M
k

�#
, (51)

where
�sM

k

�vM
= 1

xc
k
(ICk+1)�xck(ICk)

, j
(�k)M
k

=
C(ICk+1)�C(ICk)

x
c;f

k
(ICk+1)�x

c;f

k
(ICk)

, and where all

the variables are considered at t = to.

As shown in equation (51), at a given cellM and at a given time to, the time

derivative of ~c can be seen as a linear function of ~c, rhs � rhs [~c], and @
2~c

@t2
(to)

can be written

@2~c

@t2
(to) =

@

@t

�
@~c

@t
(to)

�
= rhs

�
@c

@t
(to)

�
= rhs [rhs [~c]] . (52)

Similarly, replacing ~c by @~c
@t
(to) in equation (52), one obtains

@3~c

@t3
(to) =

@

@t

�
@2~c

@t2
(to)

�
= rhs [rhs [rhs [~c]]] . (53)

Using equations (51), (52) and (53), equation (50) is then discretized in time at

the second order. One obtains the time-advancement for the concentration at

any cell of the grid

cn+1 � cn

�t
= rhs [cn] +

�t

2
rhs [rhs [cn]] +

�t2

6
rhs [rhs [rhs [cn]]] , (54)

where the index n is the time-label. Equation (54) can be seen as a Runge-

Kutta-like time discretization.

The concentration �eld is de�ned at the cell-centers of the �ne grid. The con-

vection term c(�i)Mu
(�i)M
i

is calculated with a method of third order in space,

QUICK, and is equal to

� ui > 0

2 � c(�i)Mu(�i)M
i

= �uc;f
i
(IC1; IC2; IC3)�

h
dx

c

i
(ICi)�C(ICi)+dxci (ICi�1)�C(ICi+1)

dx
c;f

i
(ICi)

i
+

u
c;f

i
(IC1; IC2; IC3)�h

1
4

h
C(ICi + 1)� C(ICi)� (C(ICi)� C(ICi � 1))

dx
c;f

i
(ICi)

dx
c;f

i
(ICi�1)

ii
� ui � 0

2 � c(�i)Mu(�i)M
i

= �uc;f
i
(IC1; IC2; IC3)�

h
dx

c

i
(ICi)�C(ICi)+dxci (ICi�1)�C(ICi+1)

dx
c;f

i
(ICi)

i
+

u
c;f

i
(IC1; IC2; IC3)�h

1
4

h
�(C(ICi + 1)� C(ICi)) + (C(ICi + 2)� C(ICi + 1))

dx
c;f

i
(ICi)

dx
c;f

i
(ICi+1)

ii
,



where dxc
i
(ICi) = (xc

i
(ICi + 1) � xc

i
(ICi)), and dx

c;f

i
(ICi) = (x

c;f

i
(ICi + 1) �

x
c;f

i
(ICi)). The capital letter C(ICi) stands for the instantaneous concentration

at the centre of the cell whose co-ordinates in the computational domain are

(ICi; ICk; ICl). Since the grid is only stretched in the normal direction of the

walls, c(�i)Mu
(�i)M
i

for i = 2 and 3, become simpler

�uc;f
i
(IC1; IC2; IC3)��

3
8 � C(ICi + 1) + 3

4 � C(ICi)� 1
8 � C(ICi � 1)

�
for ui > 0

�uc;f
i
(IC1; IC2; IC3)��

3
8
� C(ICi) + 3

4
� C(ICi + 1)� 1

8
� C(ICi + 2)

�
for ui � 0

Finally,
��sM
ij

��(+k)M is equal to

3X
i=1

��sM
ii

��(+k)M + 2�
���sM12��(+k)M +

��sM23��(+k)M +
��sM13��(+k)M� . (55)

��sM
ii

��(+k)M are calculated by a simple second order �nite di�erence, when the

three last terms are determined with a second-order scheme as following

sjk =

Uj(Ik+1;Ij)+Uj(Ik+1;Ij�1)
2 � Uj(Ik�1;Ij)+Uj(Ik�1;Ij�1)

2

x
f

k
(Ik + 1)� x

f

k
(Ik � 1)

+

Uk(Ij+1;Ik)+Uk(Ij+1;Ik�1)
2

� Uk(Ij�1;Ik)+Uk(Ij�1;Ik�1)
2

x
f

j
(Ij + 1)� x

f

j
(Ij � 1)

. (56)

Here, the capital letter Ui(Ik) stands for the instantaneous velocity component

in the i-direction at the centre of the cell whose co-ordinates are (Ik ; Il; Ip). Ik
are the indexes of the cells in the coarse grid.

5.3. The fringe region technique

In many numerical simulations the required computational domains are huge.

This is typically the situation of the computation of turbulent mass transfer

in a di�usive boundary layer at high Schmidt number along a plane surface.

The boundary condition for mass must be set far enough from the wall for not

disturbing turbulence in the near-wall region. This computational domain can

nevertheless be reduced by an arti�cial boundary condition [49]. One can then

consider a computational domain that contains the di�usive boundary layer only,

and that is not extended to the far�eld. The fringe region technique was origi-

nally introduced by Spalart [50], and has been later used in direct simulations of

transitional and turbulent boundary layers, see Bertolotti et al. [51], Spalart et

al. [52], Lundbladh et al. [53] and Berlin et al. [54]. The computational domain

is divided into one useful region and one fringe region. An extra forcing function

was added to the momentum equations in the fringe region to create a periodic
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Figure 5.1 The geometry of the channel 
ow, the three regions of

computation, and the chosen coordinate system.

problem. The fringe region technique has also been used to suppress the vortic-

ity disturbances close to the out
ow boundary in a transitional boundary layer

by means of a weighting function [55]. Later, Gurniki et al. [56] used the same

kind of weighting functions to suppress the concentration disturbances far from

the large gradients of mass transfer in the vicinity of an electrode. Henningson

et al. [49] applied this technique with DNS of a turbulent and viscous boundary

layer. The fringe technique was used in combination with the Fourier method,

and accurate numerical solutions were obtained. They concluded that the fringe

region technique was a useful method for the DNS of a viscous boundary layer.

In an electrochemical cell, Schmidt number is very high, and the di�usive

boundary layer is located very close to the electrodes. Outside this layer, the

distribution of the mean concentration C is almost uniform. It is therefore of

less interest to compute the concentrations everywhere in the cell. For that

reason, the fringe region technique can be used to reduce the mathematical and

the numerical domain of investigation to the near-wall region. This method is

exempli�ed below with the treatment of a di�usive layer near the electrodes of

a cell working as a channel 
ow. For details, the reader is referred to [56, 54].

The computational domain for mass, as shown in �gure 5.1, lies between the

electrode and an imaginary plane surface in the 
uid, parallel to the wall and

at a distance of �c from it. �c is su�ciently larger than the di�usive and the

logarithmic sublayer for mass, and can be estimated as �h=Sc
1=3 [19], where �h

is the thickness of the hydrodynamic boundary layer. Here, since the 
ow is

fully developed, �+
h
can be approximated as �+

h
= Re� , and �+c = 12:5, since

Sc = 3000. Re� is here equal to the channel half-width in viscous units. Note

that it is actually not possible to determine a di�usive boundary layer because
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the 
ow is fully developed. This approximation is however useful to determine

where in the near-wall region the gradients of the passive scalar are strongest.

The domain is divided into the conservative zone 1 where j r~c+ j6= 0, and zone

2 where a source term is added to the scalar conservation-equation to force ~c+

to approach a given value. This can be done as follows

@~c+

@t+
+
�
~u+ � r+

�
~c+ =

1

Sc
r+;2~c+ � �+(y+) � (~c+ � c+

o
), (57)

where u+ and c+ denote the instantaneous velocity and concentration �elds,

respectively. c+o is a constant. Equation (57) can be used for both zones by

choosing properly the function �+, as shown in �gure 5.2. The slope of the ramp

function �+ is here taken equal to 0:13 in viscous units. The source term works

as a forcing function, imposing to the intantaneous concentration the �xed value

of c+
o
in zone 2. The height of zone 1 is around the two thirds of �+

c
.

The fringe technique is here used in order to formulate a tractable boundary

condition for the instantaneous concentration at the edge of the di�usive bound-

ary layer. At this boundary, the turbulent velocity �eld induces 
uctuations

to the concentration. The 
uctuating part of the concentration must then be

modelled. In order to simplify this fastidious and hazardous task, a very crude

model is chosen. The fringe region technique annihilates the 
uctuating part of

the concentration in the vicinity of the boundary of the reduced domain. It is

bluntly assumed that the non-physical phenomena occuring in the fringe region

do not invalidate the solution in the remaining part of the computational do-

main [49] (zone 1 in �gures 5.1 and 5.2). This assumption has been veri�ed by

numerical experiments in [56].



CHAPTER 6

Summary of papers

In this chapter, all the dimensions are given in viscous units. The superscript

'+' has been dropped for convenience.

Paper 1: Turbulent free convection in large electrochemical cells with a binary

electrolyte.

In this paper, the laminar version of the mathematical model proposed by Bark

et al. [10] for stable strati�cation in electrochemical enclosures, is extended

and tested to two natural turbulent cases. The standard k � � model is used

for modelling the in
uence of turbulent 
uctuations on the average �elds. The

commercial code CFX F3D shows good convergence properties for these simula-

tions, and good agreement with previous simulations [11, 57] is obtained. Such

simulations include, in addition to the 
ow variables, velocity components and

pressure �eld for an incompressible 
uid, an additional scalar concentration and

an elliptic equation for the electrical potential. The electrical potential and the

concentration �eld are directly connected to each other at the electrodes by the

boundary condition for mass transfer, and everywhere in the cell by the migra-

tion term in the local electroneutrality equation. The non-linear kinetics of the

electrochemical reactions at the electrodes are simulated using a formula derived

from a Butler-Volmer law. The formula is so far not modi�ed to account for

turbulent 
uctuations.

For a turbulent case where Schmidt number is equal to 1280 [11], the model

predicts a current density at the electrodes varying almost linearly with the

vertical direction. In this simulation, the predicted Sherwood number is found

to be approximately proportional to the Rayleigh number to the power 0.2.

A 
ow in a square cavity driven by a temperature di�erence between vertical

walls is also considered. The 
ow is predicted in good agreement with available

data from other investigations [58], which have already been used for benchmark-

ing turbulence models and numerical schemes. Some di�culties for obtaining

convergence are observed when the 
ow is simulated assuming a steady-state.

The 'false time stepping' option can be used in order to accelerate the conver-

gence.
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Paper 2: LES of turbulent channel 
ow of a binary electrolyte.

The paper focuses on large-eddy simulations of the turbulent di�usive boundary

layer in a binary electrolyte. Predictions are performed at Schmidt number equal

to 1, 10 and 100. The 
ow is driven by a pressure gradient, and convection is

consequently forced. The code uses an adjusted mesh for the mass conservation

equation when Schmidt number varies, and is successfully validated by compar-

isons with available results found in literature. The Butler-Volmer-like boundary

condition is shown to be mathematically equivalent to a constant 
ux set for

concentration when the exchange current density is lower than 10�4A m�2, and

to a �xed value when the exchange current density is higher than 10�2A m�2.

For this reason, the calculations do not need to predict the electrical potential

in the cell, or at the electrodes. This simpli�cation is valid when considering

electrolytes with small electrical potential gradients only.

At Schmidt number equal to one, the exchange current is shown to have no

in
uence on the structure of the mean concentration, neither on the eddy di�u-

sivity, and on the wall-normal turbulent heat 
ux. However, the RMS intensi-

ties, the streamwise turbulent heat 
ux, and the lateral dimensions of turbulence

structures in the near-wall region are in
uenced.

Paper 3: Validation of the fringe region technique in LES of turbulent mass

transfer at high Schmidt number.

Large-eddy simulations of mass transfer in a turbulent channel 
ow working as

an electrochemical cell, are considered. The cell runs in the mass transport

controlled region, and the electrolyte is binary. Schmidt number is equal to 100

and the turbulent Reynolds number based on the half-width channel to 180. The

fringe region technique is tested and validated to reduce the numerical domain

of computation to the di�usive boundary layer.

Two di�erent numerical techniques are used for computation of the con-

centration �eld in the near-wall region. First, a re�ned mesh is used for the

concentration �eld and the transport equation is integrated in the whole channel

as in [59]. Secondly, in order to make the simulation more e�cient, only the

near-wall region is considered and the concentration �eld is damped in the outer

region using the fringe technique and thereby the size of the grid is reduced.

It turns out that simulations made with the reduced grid and the fringe region

technique run approximately 5 times faster than with the complete grid between

the two walls.

The mean concentration pro�le in the direction normal to the walls is com-

puted. Good agreement is found with results from direct numerical simulations

by Papavassiliou et al. [15].



The concentration pro�le in the logarithmic region was found to �t well with

the logarithmic law of c = 3:0 � ln(y) + 285:0 after y = 10.

The mean eddy di�usivity is computed and good agreement is found between

the predictions of the present study, the DNS results, and the empirical pro�le

found by Papavassiliou et al. [15]. The predictions of the present study with

and without the fringe method technique are also in very good agreement.

Streamwise and wall-normal turbulent mass 
uxes computed in this study

are found in good agreement is found with the computations made by Kawamura

et al. [36]

The two-point spanwise correlation coe�cient of the concentration 
uctua-

tions is computed at y = 1:17. The concentration streak spacing can be estimated

to 100. This value is in good agreement with that obtained by Calmet et al. [38].

Paper 4: Large-eddy simulation of electrochemical mass transfer.

Large-eddy simulations of mass transfer in a channel 
ow working as an electro-

chemical cell are considered. Schmidt number is equal to 3000 and the turbulent

Reynolds number, based on the half-width channel, to 180.

The mean concentration pro�le in the direction normal to the walls is com-

puted. The pro�le is compared with direct numerical simulations by Papavas-

siliou et al. [15] at Sc = 2400, and experiments done at Sc = 900 by Lin et

al. [19]. The concentration pro�le �ts well in the logarithmic region with the

law c = 3:0 � ln(y) + 4485:0. At Schmidt number equal to 3000 the logarithmic

law lies between y = 2 and 10. As found by Kader et al. [41], at very high

Schmidt number, the logarithmic law is damped by the constant value of the

concentration in the core of the channel.

The mean eddy di�usivity is calculated and good agreement is found between

the predictions of the present study, the DNS results of Papavassiliou et al. [15],

and the empirical pro�le proposed by Shaw et al. [60], stating that Ec(y) =

0:000463 � y3 in the near-wall region.

The average mass transfer coe�cient is calculated. The result of the present

study at Schmidt number equal to 3000 is found to be in good agreement with

the DNS of Papavassiliou et al. [15], and the theoretical pro�le found by Shaw

et al. [60] for Schmidt numbers between 600 and 32000. The present study �nds

the intensity of the 
uctuations for the wall mass-tranfer coe�cient
�
k2
�1=2

=K

equal to 0:197. This result is in good agreement with Campbell et al. [17] at the

same Schmidt number, where
�
k2
�1=2

=K is found equal to 0:23.

Streamwise and wall-normal turbulent mass 
uxes are computed. The stream-

wise mass-
ux is found 30 times larger than in the wall-normal direction. Good

agreement is found with the asymptotic laws found by Kawamura et al. [36] for

Schmidt number between 0:05 and 5.



The presence of well-known streaky structures elongated in the streamwise

direction are clearly observed in (x-z) planes at the interface between the viscous

and the bu�er region of the di�usive boundary layer.

The spectral function of the mass transfer coe�cient is computed at the

anode. Among the large frequencies, the present study �nds a dependency of

the spectra proportional to the frequency to the power �3. This result is in

very good agreement with an analytical result of Campbell et al. [17] based on

a linear assumption for the mass-conservation equation.

Paper 5: On near-wall turbulent passive-scalar transfer at high Schmidt num-

ber.

Large-eddy simulations for turbulent transport of a passive scalar were made

at Schmidt numbers equal to 1, 100 and 3000. The purpose of this work was

to provide knowledge about the physics of the transport process as input to

simpli�ed models for the Reynolds-
ux vector at high Schmidt number. The


ow Reynolds number was 180. The accuracy of the present computations in

the near-wall region was validated by comparisons with analytic expressions in

the near-wall-region.

At Schmidt number equal to one, good agreement was found between previ-

ous studies and the predictions of the present study. At Schmidt number equal

to 3000, the balance in the transport equations of the Reynolds-
ux vector is

dominated by  i (the di�erence between the pressure scalar-gradient term and

the di�usive destruction rate) and the transport term Di.  x and  z are dom-

inated by the di�usive destruction rate and  y by the pressure scalar-gradient

term.

The transport equation for half the scalar variance and the corresponding

dissipation were studied. At high Schmidt number the budget is dominated

by the molecular and the turbulent di�usion term, and the production term.

For transport equation of the scalar dissipation, no qualitative changes in the

structure of the budget were found when Schmidt number varies. The dissipation

rate and the turbulent production term dominate the budget, except in the near-

wall region.

The numerical experiments made in this study showed that several use-

ful simpli�cations can be made in the near-wall region for the budgets of the

Reynolds-
ux, the variance and the dissipation rate. They can be summarized

as shown below



Du1�

Dt
= ���1 +D1, when y � 2.

Du2�

Dt
= ��2 +D2.

Du3�

Dt
= ���3 +D3.

Dk�

Dt
= P� +Dk�

.

D��

Dt
= D��

+ P1
��
+ P2

��
+ P3

��
� Y , no simpli�cation.

Paper 6: On modelling of Reynolds-
ux vector at high Schmidt number.

Large-eddy simulations for turbulent transport of a passive scalar are made at

Schmidt numbers equal to 1, 100 and 3000. The 
ow Reynolds number is 180.

The purpose of this work is to provide explicit algebraic models for the Reynolds-


ux vector at high Schmidt number.

Two models from previous studies [62, 44] are tested, and one is developed

on the basis of a previous work [56] for the budget of the scalar 
ux. The �rst

model was developed by So et al. [62] and is described in tensor form as follows

�ui� = �t
@�

@xi
� �

cT1
�

f[2�t + (1� cT2)�t]Sik + (1� cT2)�t
ikg @�
@xk

,

�t = cT3
k2

�

�
1 +

3:45p
Ret

�
tanh

�y
9

�
, (58)

�t = c� � k � �
"�

1�
�
1� e�

y

A

�2� c�1

Re
1=4
t

+
�
1� e�

y

A

�2#
,

where Sik is the mean strain rate and 
ik the mean rotation rate.

The second model was developed by Wikstr�om et al. [44] and is described

as follows

ui�p
kk�

= �(1� c�4)A
�1
ij

ujul

k
�;l, (59)

where the inverse of the matrix A is given by

A�1 =
(G2 � 1

2
Q1)I�G(cSS+ c

) + (cSS+ c

)

2

G3 � 1
2
GQ1 +

1
2
Q2

, (60)

and cS = 1� c�2 � c�3, c
 = 1� c�2 + c�3.

The third model is developed in paper 6 and can be described as following
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�1

�
h
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dy
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0
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where

�ui;y� = �
0

t

@�
@xi

� �
0

cT1
f[2�t + (1� cT2)�t]Sik + (1� cT2)�t
ikg @�

@xk

� �

cT1
f[2�t + (1� cT2)�t]Sik + (1� cT2)�t
ikg

0

@�
@xk

. (61)

The superscript ' is equivalent to the �rst derivative in the wall-normal direction.

This last model is based on a simpli�cation of the conservation equation for the

Reynolds 
ux, stating that, at Sc = 3000, the transport terms balance the

pressure and the dissipation terms.

At Sc = 3000 and 100, the model developed in paper 6 is shown to give

better results than the two other models.

At Schmidt number equal to 3000, the wall-function of equation (37) in

chapter 4.3.3 of this thesis, for the mean passive-scalar, is developed on the basis

of a simple algebraic model examined in [61]. Very good agreement is found

with the LES computations. This wall-function can be used with a model for

the Reynolds-
ux vector and a low Reynolds k�� model, in order to model mass
transport at high Schmidt number.



CHAPTER 7

Outlook and critical review

In this work, three main aspects of mass transfer in electrochemical cells have

been investigated. The e�ect of the electrical potential, the e�ect of natural con-

vection on turbulence and its modelling, and �nally the problem of analytically

and numerically predicting a turbulent and di�usive boundary layer at very high

Schmidt numbers. This last point has been widely studied when the two �rst

were only brie
y considered.

The implementation of the electrical potential in the equation system mod-

elling mass transfer in a closed cell was made in paper 1. The turbulent 
uc-

tuations of the potential were assumed to be zero. This assumption should be

considered in more details, although the methods of investigation to study the

�eld of the electrical potential in an electrolyte are very di�cult to carry out.

The study of the potential-
uctuations in
uence on the potential �eld require

the development of a model for the correlation term between concentration and

current 
uctuations present in the conservation equation for electrical charges. A

model can easily be achieved provided that the 
uctuations of the total current

(8) can be neglected. This assertion should also be investigated.

Some algebraic Reynolds-
ux models have been tested in paper 6 for a 
ow

characterized by forced convection. A similar investigation should be done with

natural convection. In this context, the development of LES for buoyancy driven


ows would be of great help.

A remaining issue is the modelling of the wall-mass-transfer 
uctuations.

This topic of importance for many industrial applications, like electroplating,

where the uniformity of the metal layers is a condition for the quality of the

products. The correlation between bursts events in the bu�er layer and the

mass-transfer 
uctuations mentioned in chapter 2.2 of this study, should be more

investigated in the future. In particular, the process by which 
uctuations of the

velocity �eld are induced to chemical species in the di�usive sublayer and at the

electrodes surface, could be a �eld of research for a future work.

A new wall-function for mass has been examined in paper 6. Good agreement

was found with a large-eddy simulation. In the future, this function should also

be tested for a 
ow induced by natural convection.
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TURBULENT FREE CONVECTION IN LARGE
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ELECTROLYTE
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Abstract. A mathematical model proposed by Bark and Alavyoon [1] for

modelling laminar natural convection in electrochemical cells, with binary

electrolytes, is extended to simulation of two-dimensional turbulent 
ows.

The turbulence was modeled by a standard k � � model. The constants

used in the model are the same as those used by Henkes and Hoogendoorn

[3]. Steady state calculations were carried out in a square, di�erentially

heated enclosure for Gr = 7� 1010 and Pr = 0:71. The turbulence model

used could not predict the transition e�ect on the Nusselt number along the

hot wall. Transient calculations performed in an enclosure with an aspect

ratio of 35, for Gr = 6:4�1011 and Sc = 2763, revealed large scale 
uctua-

tions in the boundary layers near the vertical walls. The model was able to

predict qualitatively the velocity �eld for transitional 
ow for air induced

by buoyancy at Grh = 8100 and Grh = 22500. The correlation between

the Sherwood and Rayleigh numbers was studied by modelling the mass

transfer at the electrodes using a Butler-Volmer Law. The computed Sher-

wood number was found to be approximately proportional to the Rayleigh

number to the power of 0.2 in the range of Rah between 5� 108 and 1010 ,

and with an order of magnitude of 105.

1. Introduction

Electrochemical cells appear in several industrial applications, such as copper

re�ning cells and lead-acid batteries. It turns out that between the di�erent

transport mechanisms, convection, migration and di�usion, convection controls

in most applications. The fact that the liquid moves due to buoyancy in
uences

the process considerably. The e�ciency of the transport mechanisms in turn

directly in
uences the process of interest in the cell. Therefore, during the past

few years, hydrodynamics of electrochemical cells have been subject to many

scienti�c and industrial investigations.

Eklund et al. [2] studied the 
ow in a copper re�ning cell both numerically

and experimentally. The concentration �eld was measured by Holographic Laser

Interferometry and the velocity pro�les using Laser-Doppler Velocimetry. The

theoretical model was based on hydrodynamic conservation laws. Electrodes ki-

netics were modeled with a constant concentration 
ux for copper ions at the

electrodes. Very good agreement between theoretical predictions and experimen-

tal measurements was found.
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In a theoretical investigation, Bark and Alavyoon, [1], considered free convec-

tion in an electrochemical system with nonlinear reaction kinetics and a binary

electrolyte. Unsteady electrolysis was investigated for large values of Rayleigh

and Schmidt numbers. The charge transfer at the electrodes was mathemati-

cally quanti�ed by a Butler-Volmer law. Using perturbation theory, the authors

derived a simpli�ed model for the evolution of the system. They found good

agreement with results from numerical solutions of the full problem.

Computation of turbulent 
ow set up by inhomogeneities in the density �eld ,

in a closed cavity, is not free from di�culties. The case of 
ow in a di�erentially

heated square cavity has recently been used as a test for turbulence models and

numerical procedures. Henkes and Hoogendoorn [3] reported results of compu-

tation of turbulent natural convection in enclosures. The comparison, between

di�erent models and solution schemes, aimed at diminishing numerical inaccura-

cies and at obtaining a numerical reference solution for the di�erentially heated

squared enclosures. To investigate numerical accuracy, a well-de�ned con�gu-

ration was prescribed, and the standard k � � model was used as the reference

model. Although results close to experimental data were presented, distinct in-

consistencies were observed. Computational di�culties such as slow convergence

were noted.

In the present work, attention has been paid to 
ows where turbulent transport

has to be taken into account. The commercially available code, CFX F3D, is

used for a more detailed investigation of the case studied by Ziegler and Evans

[4]. Their work is extended by, �rst more accurate simulations and models.

Secondly, a more sophisticated, non-linear Butler-Volmer law as the boundary

condition at the electrodes, is used for the description of the electrodes kinetics.

Detailed comparisons are made between predicted results and the literature, for

two 
ow cases.

2. Problem formulation

Two electrodes made from same metal are immersed in a dilute solution of a

salt of the electrode metal providing a binary electrolyte in a rectangular cell.

The two-dimensional cell, which is assumed to have its sides parallel to the di-

rection of gravity, is shown in �gure 1. The dissolution of metallic ions generally

increases the density of the 
uid near the anode. Near the cathode, the reverse

reaction takes place resulting in a lower density. Inhomogeneities in the den-

sity �eld set the 
uid in motion with a convection pattern downwards near the

anode and upwards near the cathode. Convection contributes to transport of

ions and thereby in
uences the chemistry of the cell. The mathematical model

considered by Bark and Alavyoon [1] is reviewed and extended to investigate

the case of turbulent 
ows. The standard turbulence k � � model is used. The

present study performed also numerical predictions for the case of Ziegler et al.

[4] with the low-Reynolds number model. As reported by Jones and Launder [5]
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Figure 1. The geometry of the cell and the chosen coordinate system.

for a two-dimensional 
ow and natural convection, the low-Reynolds version was

found to produce a numerically unstable solution. For that reason, the results

with the low-Reynolds version are not shown in the present study. The hydro-

dynamic problem must be solved for 6 dependent variables in a two-dimensional

con�guration: the concentration �elds, c1 and c2, where subscript 1 denotes the

anion, and subscript 2, the corresponding cation, the velocity �eld ~u = (u; v; 0),

the pressure �eld p and the electric potential �. Apart from the double layers,

the electrolyte can be assumed to be electrically neutral, that is z1c1+ z2c2 = 0,

where z denotes the charge number of the species and the indices 1 and 2, the

metallic and the non-metallic ionic species respectively. If the double layer is

not to be explicitly accounted for, the mathematical problem can be formulated

using a single variable for the concentration �elds by de�ning c = z1c1 = �z2c2,

which satis�es the neutrality condition. The governing equations for the above

5 independent variables assume however, for simulation of turbulent 
ows, addi-

tional terms and equations to take into account the e�ects of random temporal

and spatial 
uctuations. Introducing f as the time-average value of any variable,

and f
0

its 
uctuating part, and introducing the turbulent kinetic energy k = 1
2
u
02
i

( m2 s�2), and a rate of turbulent kinetic energy dissipation � ( m2 s�3), the

following system of equations is obtained for z1 = �z2 = 2

@~u

@t
+Rah~u � r~u = Sc

�
�rp+r

2~u� c ~ey
�
+

1

D
r �

�
�T

�
r~u+ (r~u)

T
��

, (1)

r � ~u = 0, (2)
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�TD
r � (�Trc) , (3)

�r � (1 + c)r�+r
2c = 0, (4)

�
@k

@t
+ �r � (k~u)�r �

��
�+

�T

�k

�
rk

�
= P +G� ��, (5)

�
@�

@t
+ �r � (�~u)�r �

��
�+

�T

��

�
r�

�
= C1

�

k
P � C2�

�2

k
, (6)

where,

�T = C��
k
2

�
, �eff = �+ �T ,

P = �effr~u �
�
~u+ (~u)

T
�
, G =

��eff

� � �T
~g � r�.

Rah, Sc, D and � are de�ned as

Rah =
�oCgh

3(�1 + �2)

2�D
, Sc =

�

�oD
, (7)

D =
2D1D2

D1 +D2

, � =
2(D1 +D2)

D1 �D2

. (8)

C is de�ned as min
h
hi0
FD1

� sinh
�
F
RT

(V+ � V+)
�
; co

i
[1], or min

h
hi

2FD1

; co

i
when

@C
@n

is set constant at the electrodes [4]. The above system is set for the non-

dimensional variables ~x�, ~v�, t�, ��,~i� and c�, where * superscripts are dropped.

The non-dimensional variables can be de�ned as

~x = ~x�h, ~v =
�oCgh

2(�1 + �2)

2�
~v�, t =

h2

D
t�, (9)

�+
V+ + V�

2
=

RT

F
��, ~i = i0~i

�, c� =
c� co

C
. (10)

A series of numerical calculations, calculated for the turbulent case of Ziegler et

al. [4], proved that G does not in
uence the prediction of the mean velocity, and

can be neglected in the transport equation for k.

Ozoe [6] performed a sensitivity analysis for the constants of the k� � turbulent

model and determined di�erent values for C1 and �T rather than those listed

below. However, since the applicability of these values for di�erent geometric and

boundary conditions is not known, they were not employed here. The turbulent

constants are therefore chosen as Henkes [3], except for C� in the buoyant term of

the � equation, which was shown to have no signi�cant in
uence on the solutions:

C1 = 1:44, C2 = 1:92, C� = 0, C� = 0:09, �T = 0:9, �k = 1 and �� = 1:3.

A turbulent contribution should also be taken into account for the calculation

of the electrical potential. Here, it is assumed that the turbulent contribution is

negligible.



Bark and Alavyoon [1] used a semi-empirical Butler-Volmer law and formulated

the following non-dimensional boundary conditions at the anode and cathode

@c

@x
=

8><
>:

hi0
2FD1C

�
e(V��) � (1 + c)e(��V )

�
at x=-1, j y j� H (anode)

�
hi0

2FD1C

�
(1 + c)e(�+V ) � e�(�+V )

�
at x=+1, j y j� H (cathode)

(11)

where V = F
2RT

(V+ � V�), and H = H
h
. Here the formula was not modi�ed

to account for turbulent 
uctuations. Ziegler and Evans [4], used a simpler

condition

@c

@x
= constant. (12)

For the electrical potential, because ~N2 � ~ex = ~0 at x = �1,

(1 + c)
@�

@x
=

1

2

@c

@x
at x = �1; j y j� H (anode, cathode) (13)

No transfer of mass occurs at the horizontal walls, resulting in vanishing normal

derivatives of the concentration and potential �elds

@c

@y
=

@�

@y
= 0 at y = �H; j x j� 1. (14)

For the velocity �eld, no slip conditions are applied on all four walls, that is

~u = ~0 at x = �1 and y = �H . (15)

3. Methodology

The set of equations is solved numerically using the commercial code CFX F3D

[7]. The solution methodology is based on the �nite volume discretization of the

transport equations and the continuity equation for an incompressible 
uid. The

numerical scheme is based on the pressure correction method. The pressure-

correction equation is obtained by applying the SIMPLE algorithm [8] to the

momentum equations. The Rhie and Chow [9] interpolation scheme is used

to prevent chequerboard oscillations of pressure on the co-located grid. In the

present computations, full �eld Stone's method was used to solve the velocity

variables, concentration and the preconditioned conjugate gradients for pressure.

The advection term was discretized using an upwind method for steady compu-

tation. During simulation of unsteady 
ow, in addition to the �ner mesh, CCCT

[10], which is a more stable formulation of the QUICK scheme, was used. The use

of CCCT decreases numerical di�usions and makes a study of small 
uctuations

possible.



4. Results

In this section, results from numerical investigations of the two-dimensional 
ow

in an electrochemical cell are presented. The Rayleigh and Grashof number are

based on the half-width of the cell. The same parameters used by Ziegler and

Evans [4], are �rst chosen so that the results can be compared with their theo-

retical and experimental investigations. The 
ow is then studied in more detail.

The 
ow is assumed to take place in a cell with a width of 2.4 cm and a height

of 85 cm. The Rayleigh number is 5� 109 and the Schmidt number 2763. The

vertical walls of the cell form the anode and cathode, where mass 
ux is set

constant. The horizontal walls are electrically isolated. A detailed set of the

parameters involved in the simulation is given in table 1.

Quantity Value

Ionic metal Cadmium, Cd++

Average salt di�usivity 5:76� 10�10 m2s�1

Average viscosity 1:91� 10�3kg (m:s)�1

Average density 1200 kgm�3

Relative variation in density

with solute fraction 1.97

Reference concentration 0.0937 (mass fraction)

Anode-cathode spacing 0:024m

Cell height 0:85m

Current density 100 Am�2

TABLE 1: Physical parameters of the 
ow studied by Ziegler and Evans [4].

The simulation was started with a mesh similar to that used by Ziegler and

Evans, 32 � 22 mesh points in the vertical and horizontal directions, respec-

tively. As in that work, the equations were solved assuming a steady state and

the standard form of the k�� turbulence model. Figure 2 shows the mean vertical

velocity at the mid-height of the cell. The predicted velocity pro�le agrees qual-

itatively well with the experimental data. The same calculation was repeated

with a �ner mesh using 200� 50 mesh points in the vertical and horizontal di-

rections, respectively. In order to study the possible oscillations, after the initial

transients are dampened out, the 
ow was �rst simulated under assumption of

steady-state. Thereafter, the simulation was continued as a time dependent 
ow.

Figure 3 shows a comparison between the predicted vertical velocity pro�le, as

a function of time, and the measurements of Ziegler and Evans. The agreement

with experimental data, compared to that of �gure 2, is clearly improved. The

thickness of the boundary layer on the wall is nicely predicted. Figure 4 shows

the present simulation of the maximum velocity inside the boundary layer at the

mid-height of the cell as a function of time. After about 20 s, regular 
uctuations
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Figure 2. The vertical mean velocity at the mid-height of the cell.

The result from the present computation, the solid line, is compared

with theoretical, dashed line, and experimental data, dots, obtained

by Ziegler and Evans. Rah = 5� 109; Sc = 2763.
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Figure 3. The vertical mean velocity at the mid-height of the

cell, at di�erent moments of time, for the �rst 20 seconds, at each

5 seconds. The dots represent the experimental data by Ziegler and

Evans. Rah = 5� 109; Sc = 2763.
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Figure 4. The maximal vertical mean velocity in the boundary

layer near the anode, in an horizontal cross-section of the cell at its

mid-height, as a function of time. Rah = 5� 109; Sc = 2763.

with a period of about 35 s, is observed. The magnitude of the 
uctuations is

less than 10% of the mean value.

The maximummean velocity at the mid-height of the cell is�6:75�10�4 ms�1.

By comparing this vertical velocity, with the period of 
uctuations and the width

of the cell, 
uctuations in the velocity �eld can be attributed to advection of

wave-like eddies whose size is of the same order of magnitude as the width of the

cell. Figure 5 shows that a wavy structure can be found in the boundary layer,

with a wavelength comparable to the width of the cell. The waves travel at a

speed close to that of the maximum velocity in the wall-layer.

For the same geometry, with two heated vertical walls, a Prandtl number of

7 and Rayleigh numbers based on the half-width of the cell around 7:234� 105,

Elder [11] observed a similar wavy boundary layer structure and similar trend

in the wavelength. Elder stated that the wall waves appeared when the 
ow

was close to transition to turbulence and could be seen as instabilities in the

boundary layer. The wave train lost its regularity as the turbulent state was

approached.

At higher current densities, the 
ow becomes, loosely speaking, more like con-

ventional turbulence, where small scale turbulent 
uctuations become dominant,

in comparison with large structures of sizes comparable to the width of the cell.

Figure 6 shows the increase in mean velocity with current density. The calcu-

lations were run using a coarse grid, which, as previously shown, predicted the


ows qualitatively well.



Figure 5. Iso-lines of vertical velocity. The horizontal dimension

is expanded by a factor 10. Distances equal to the width of the cell

are marked at two di�erent vertical positions. Rah = 5 � 109; Sc =

2763.
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I=100 Am�2, Rah = 5� 109

I=200 Am�2, Rah = 1� 1010

I=300 Am�2, Rah = 1:5� 1010

I=400 Am�2, Rah = 2� 1010

Figure 6. The in
uence of the current density on the velocity �eld

for constant values of current density on the electrodes. Sc = 2763.
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Figure 7. The predicted current density distribution using the

Butler-Volmer law at two di�erent exchange current densities. The

current density is normalized by the maximal predicted value. The

solid line corresponds to the lower value of the exchange current den-

sity, 1 A m�2 and the dashed line to the case, 10 times higher.

It was found empirically on the basis of the computational e�ort of the present

study, that the maximal mean velocity is approximately given by the relation

vmax = �� i0:51, (16)

where vmax and i are given in m s�1 and A m�2, respectively, and

� = 1:23�10�4 m2:02 s�1A�0:51. This relation is in relative agreement with the

one found out by Ziegler and Evans, who found � = 2:33�10�4 m2:02 s�1A�0:51.

In accordance with Ziegler and Evans, a constant current density was imposed

at the electrodes. An alternative way, of modelling the charge transfer at the

electrodes, is use a Butler-Volmer law. It allows a study of the in
uence of

current density distribution on 
ow. However, as discussed by Bark et al. [1],

the use of it, due to numerical complexities, limits the computations to very

low cell potential drops. Figure 7 shows the current density distribution along

the cathode for two di�erent exchange current densities. The computed current

densities are normalized by dividing by their maximum value, which, according

to �gure 7, was found, as expected, at the bottom of the cell. The exchange

current density was varied by a factor of 10, between the two cases, resulting

in a maximal computed current density of about 3 times larger for the highest

value. The current density varied linearly in the vertical direction apart from the

close neighbourhood to the vertical boundaries. The imposed potential di�erence

between anode and cathode was 0.014 V in the above simulation.
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Figure 8. The variation of Sherwood number for di�erent Rayleigh

numbers. Diamonds show the predicted Sherwood numbers, while

the solid line presents the empirical correlation curve Sh = Ra0:2h .

The Sherwood number is the non-dimensional mass 
ux at the electrodes, and

is de�ned as H
Cwall�C1

�
@C
@n

�
wall

[12]. Here attention is paid to the qualitative

dependence of the Sherwood number on the Rayleigh number, and therefore,

the details in the scaling procedure are of minor importance. Figure 8 shows the

computed Sherwood number. This number is calculated at the cathode, at the

mid-height of the cell which, due to the almost linear variation of the current

density, equals the mean Sherwood number. The numerical predicted Sherwood

number is found to be related to the Rayleigh number according to Sh � Ra0:2h .

The Rayleigh number, in the above formula, is based on the width of the cell.

The reader is referred to Elder [11] for details on the choice of the relevant scales.

Henkes [3] observed that the wall functions, used in the standard k� � model

formulation, have been established for forced convection. This means that they

are not adapted for natural convection and thus he proposed to impose a �xed

and large value for � at the �rst mesh points. An imposed value for �, corresponds

to a non-dimensional distance y+wall = C�=(0:41�k
2�) from the wall to the �rst

mesh point. Henkes showed (see appendix A) that setting a high value of � gave

good results and that the computed variables were found to be independent of

the value, as soon as it is large enough. In other words, the results are not very

sensitive to the non-dimensional distance between the �rst mesh point and the

wall. Unfortunately, this is not the case for 
ows where the 
ux is given for the

walls, for example in electrochemical systems. Figure 9 shows the sensitivity of

the 
ow, to the imposed value y+wall at the �rst mesh points. Fortunately, as
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Figure 9. Vmax versus y+. Rah = 5� 109, Sc = 2763.

shown above, the traditional wall functions predict results in good agreement

with the experimental data.

5. Conclusions

The study of the turbulent case considered by Ziegler and Evans [4] revealed

the presence of large scale turbulent 
uctuations, estimated close to the width

of the cell, and indicating local sites of weak turbulence near the transitional

state. The standard k � � model was used for the prediction of a transitional


ow induced by natural convection, and good agreement was also obtained with

previous direct simulations [13]. Results are shown in Appendix B. The non-

linear kinetics were simulated using a formula derived from a Butler-Volmer law.

The predicted Sherwood number was found to be approximately proportional to

the Rayleigh number to the power 0.2.

6. Appendices: Validation of the code

6.1. Appendix A: Turbulent free convection in a closed cavity. Turbulent free

convection in a closed cavity has been a test case for turbulence models and

numerical methods, see [3]. The 
ow to be computed takes place in a square

cavity and can be assumed to be two-dimensional. The cavity contains air,

resulting in a Prandtl number of 0.7. The 
ow is driven by a temperature

di�erence between vertical walls, while the horizontal walls are assumed to be

isolated. The Rayleigh number, based on the temperature di�erence and the

width, or height, of the cavity, is set to Ra = 5�1010. The turbulence model used

here is the standard k�� model without any modi�cations. As recommended by

Henkes et al. [3], the value of � in the �rst cell near the vertical wall was set to
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Figure 10. The mean non-dimensional vertical velocity pro�le at

the mid-height of the cell.

a large value. The simulation was run using 90� 90 mesh points, with a higher

concentration of grid points near the wall, than in the center of the cavity.

In �gures 10 and 11, the non-dimensional vertical velocity and the turbulent

kinetic energy, along a horizontal cross-section at the mid-height of the cell, are

presented. In those �gures, results from the present study are compared with

those from numerical simulations reported by Henkes et al. and experimental

data. The temperature variation, on a vertical cross-section in the midplane of

the cell, is presented in �gure 12.

Figure 13 shows a comparison between the computed non-dimensional heat


ux, the Nusselt number, along the hot wall from the present simulation. It

also shows the same prediction by Henkes et al. and experimental data. Fig-

ure 14 presents a similar comparison, for the non-dimensional shear stress along

the hot wall. Fluxes at the wall are quantities, related to gradients of the �eld

variables, and therefore less accuracy can be expected in their prediction. Sim-

ilar deviations from experimental data have been observed in earlier numerical

predictions, see [3].

The boundary conditions for the � equation has been discussed in di�erent

contributions. The numerical solution found by Henkes et al. for the Nusselt

at the hot wall, as shown in �gure 13, reveals a local and abrupt decay of the

Nusselt on the lower part of the wall. This decay is identi�ed [3] as the transition

point of the boundary layer to the turbulent regime. Such a transition point has

not been observed here with the conventional k � � model.
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Figure 11. The mean turbulent kinetic energy near the wall, on a

cross section at y = 0. Ra = 5� 1010, Pr = 0:71.
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Figure 12. The non-dimensional temperature pro�le in the

medium vertical cross-section of the cell. Ra = 5� 1010, Pr = 0:71.



-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20
Present study

Henkes et al.

Nu

Ra1=3

experimental,

� King (1989) [16]

x
h

Figure 13. The non-dimensional wall heat transfer along the hot

wall. Ra = 5� 1010, Pr = 0:71.
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Figure 14. The non-dimensional wall shear stress along the hot

wall. Ra = 5� 1010, Pr = 0:71.
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Figure 15. The non-dimensional velocity pro�le in an horizontal

cross-section of the cell. Grh = 8100, Pr = 0:71.

6.2. Appendix B: Turbulent unstrati�ed natural convection in a vertical slot for

Pr=0.71. The computed 
ow takes place in an in�nite vertical canal, so that

it is imposed periodic boundary conditions in the vertical direction. A �xed

di�erence of normalized temperature is set to 1 between the two vertical walls.

The Grashof number is set consecutively to 8100 and 22500, see �gures 15 and

16. The Prandtl number is 0.71. Calculations performed by the present study

were two-dimensional and used the k � � model in its standard version. The

results are compared with the direct simulations performed by Phillips [13]. As

Phillips reported, \at a Prandtl number of 0.7, the critical Grashof number is

8041". Figure 15 is then typically a case of transitional 
ow. The k � � model

is nevertheless able to predict the velocity pro�le qualitatively well. For higher

Grashof number, the prediction performed with the k � � model is still valid as

the turbulent state is approached, see �gure 16.
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Abstract. The turbulent di�usive boundary layer in a binary electrolyte

was considered at Schmidt numbers of 1, 10 and 100 and exchange current

densities between 10�4A m�2 and 10�2A m�2. A numerical scheme was

developed for e�cient investigation of the dynamics by means of large eddy

simulations. The methodology was examined by detailed comparisons with

documented data from earlier large eddy and direct numerical simulations

and good agreement was found. Application of the methodology to electro-

chemical mass transfer indicated that the exchange current density seems

to have negligible e�ect on the mean concentration pro�le but it in
uences

the structure of the 
uctuating �eld in a visible manner.

1. Introduction

Numerical simulations of turbulent 
ows for industrial use are usually made by

considering average �elds. In such simulations, in
uence of turbulent 
uctuations

on the transport of di�erent quantities must be modelled. Models are usually

constructed based on information on the statistical structure of the 
ow. Making

use of experimental data is a usual approach for development and veri�cation of

models.

Levich [1], based on the analogy with laminar boundary layer, proposed that

in a turbulent boundary layer the thickness of the di�usive layer, �c, would be

of the order of magnitude of �h � Sc
�1=3. It has been veri�ed experimentally in

di�erent studies, for example by Lin et al. [2]. The high value of Schmidt number

appearing in most of the practical applications is one of the important factors

resulting in thin di�usive boundary layer, and making experimental investigation

of 
ows with mass transfer problematic.

Unfortunately, although electrochemical systems seem to be suitable for ex-

perimental investigations, see e.g. [3], the measured data are usually in the form

of integrated quantities rather than detailed information on the structure of the


ow. As examples, Fouad et al. [4] and Newman [5] studied mass transfer in

electrochemical systems and reported global information on the process such as

the total cell potential drop, electrical current and global density variation of

ionic species. As a result, other tools must be used in order to provide detailed

data on the structure of the 
ow.
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With improvement of digital computers and computational methods during

the past years, simulations could be used as an alternative to physical experi-

ments. Study of turbulent channel 
ow, for example, has played an important

role in modelling turbulence, in particular in the vicinity of a rigid wall. A pure

numerical solution of the mathematical equations without a model is usually ref-

ered to as direct numerical simulation. Clearly, the advantage is that no models

are involved at the cost of being limited to low Reynolds numbers. An alterna-

tive route is to use large eddy simulations, where only small eddies which have

a more universal behaviour are modelled. Using large eddy simulations, higher

Reynolds number can be studied.

In the earlier studies, boundary conditions for the passive scalar were such

that direct use of presented data for modelling of mass transfer at the electrode

in an electrochemical system were not possible. The goal of the present study

is to provide detailed information about the statistical structure of a turbulent

boundary layer with mass transfer using boundary conditions of interest for elec-

trochemical systems. Statistical data presenting the structure of the boundary

layer are to be obtained by performing large eddy simulations. The hydrody-

namic part of the computation performed by Zahrai et al. [6] is completed in

the present study to treat the mass conservation equation.

2. Formulation of the problem

In this study turbulent 
ow of a binary electrolyte outside the double layers in an

in�nitely large cell is considered. The electrodes are assumed to be at a distance

of 2� and the 
ow is driven by a constant pressure gradient, strong enough to

make gravitational e�ects negligible. The coordinate system is chosen so that

the electrodes are located at y = ��. The electrical neutrality of the electrolyte

can be expressed as z1c1 + z2c2 = 0, where ci and zi denote the concentration

and the charge number of species i, respectively. The transport equations for

the mass in a binary electrolyte can be reduced to one single di�usion-convection

equation for a concentration �eld de�ned by c = z1c1 = �z2c2. It can easily be

shown that the charge neutrality will then be identically satis�ed.

Under the above conditions, the 
ow can be described by the Navier-Stokes

equations for an incompressible 
uid, the law of conservation of mass for a 
uid

at constant density and a transport equation for the reduced concentration �eld.

Using u� , the friction velocity, as the characteristic velocity scale, l� = �=u� ,

the typical length scale in wall units, the continuity and Navier-Stokes equations

can be written for the instantaneous velocity vector as

r
+
� u+ = 0 (1)

and

@u+

@t+
+
�
u+ � r+

�
u+ = �r

+p+ +�+u+, (2)



where u denotes the instantaneous velocity �eld and p is the instantaneous pres-

sure �eld and is nondimensionalized by �u2
�
. The transport equation for the

reduced instantaneous concentration �eld, using the above scales, can be writ-

ten as

@c+

@t+
+
�
u+ � r+

�
c+ =

1

Sc
�+c+, (3)

where Sc is the Schmidt number. The concentration �eld can be made dimen-

sionless by using the mass 
ux at the wall, i.e. C� = �
D

u�

�
@c

@y

�
wall

, where c

corresponds to the averaged value of the instantaneous concentration. All quan-

tities are thus scaled in wall units; therefore the superscript '+' will be dropped

throughout the remainder of this paper. Nevertheless, for more clarity, the su-

perscript can be maintained in the captions of the �gures. For the hydrodynamic

equations, the no-slip condition is used at the electrodes. Note that the non-

dimensional half-channel width will be equal to Re� in the wall units. For the

concentration �eld di�erent boundary conditions are considered. As a �rst step,

in order to make comparisons with earlier numerical and experimental investi-

gations, the case of mass transfer when the concentration is set to a given value

at the wall is considered, i.e.

c(x;�Re� ; z; t) = �cwall. (4)

For electrochemical systems, other boundary conditions are also of interest. Here,

two simpli�ed conditions are used for modelling the mass 
ux from the electrodes:

@c

@y
(x;�Re� ; z; t) = �Jwall, (5)

i.e. the 
ux is given at the electrodes, and �nally a boundary condition which

allows 
uctuations of the 
ux with the value of the concentration at the elec-

trodes,

@c

@y
(x;�Re� ; z; t) = �Ko [c(x;�Re� ; z; t)� Co] . (6)

In the above relations, Co, Ko and Jwall are given constants. The form of

the boundary condition in (6) comes directly from the �rst term in a Taylor

expansion of the Butler-Volmer mass transfer law, see e.g. [7]. Ko is proportional

to the exchange current density of the chemical reaction at the wall and is equal

to

Ko =
io

2FD1CoRe�
, (7)

where io is the exchange current density, F is the Faraday constant, D1 is the salt

di�usivity constant for the metallic ionic species of the binary electrolyte, and

Co a reference value for the reduced concentration at equilibrium, which is the

same as in the core of the channel. If an electrolyte with low electrical potential

gradients is considered, the boundary condition (6) is a good approximation of

the electrochemical mass transfer law at the electrodes. Experimentally, such



a con�guration can be obtained with an additional ion that does not take part

of the chemical reactions and reduces the electrical resistance of the electrolyte

considerably [5]. Equation (6) can also be written as

@c

@y
(x;�Re� ; z; t) = � [Ko � c(x;�Re� ; z; t)� Jo] , (8)

where Jo = io

2FD1Re�
. In this form, it is clear that for low values of Ko, this

boundary condition approaches equation (5). It is worth noting that the exposed

boundary conditions above are linear and remain the same when considering the

time-averaged values.

3. Numerical procedure

The methodology used for the 
uid velocity �eld is taken from the earlier work

on the simulation of turbulent channel 
ows by Zahrai et al. [6]. In this large

eddy simulation, averaging over the volume of the computational cells is used

as the �ltering function. The subgrid model is an anisotropic version of the

Smagorinsky eddy viscosity model. A rectangular computational cell, numbered

M , has the width in the i-direction, �xM
i
, the area of surface normal to i-

direction , �sM
i

= �xM
j
�xM

k
, and a volume size, �vM = �xM1 �xM2 �xM3 . The

modelled Navier-Stokes equation (2) averaged over the volume using the cell M ,

which gives the dynamics of large eddies resolved on the given mesh, can be

expressed as

�vM
@u

M

i

@t
=P3

j=1�s
M

j

h
�

�
u
(+j)M

i
u
(+j)M

j
� u

(�j)M
i

u
(�j)M
j

�
�

�
p(+j)M � p(�j)M

�
�ij

i
+
P3

j=1�s
M
j

h�
�
(+j)M
ij

� �
(�j)M
ij

�i
+
P3

j=1�s
M

j

h
1p
2
C2L2

j

���sM
ij

��(+j)M
� s

(+j)M
ij

�

��sM
ij

��(�j)M
� s

(�j)M
ij

�i
,

where �ij is the resolved stress tensor, and sij the deformation tensor,
��sM
ij

�� =�qP3

i=1

P3

j=1 s
M

ij

2
�
, and L2

j
= (�xM1 �xM2 �xM3 )2=9(�xM

j
)4=3. Considering

an instantaneous function f(x), f
M

stands for the �ltered version of f at the

center of cell M, whose volume is �vM . The superscript (�j)M denotes that

the considered �ltered quantity is evaluated on the cell surface whose center is

the vector xM �
1
2
�xM

j
ej and whose normal direction is ej .

It is worth mentioning that the above equation is not di�erenced but only

�ltered by integrating the Navier-Stokes equations on a cell volume. The trans-

port through the cell surfaces due to 
uctuations of smaller sizes than the size

of the cell are modelled by a Smagorinsky-like subgrid viscosity. The modi�ed

Smagorinsky model has the property of vanishing in the regions where the reso-

lution is good enough in an anisotropic manner. As a result, in the wall-region

where the mesh size is chosen so that the details of the 
ow can be studied, the
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Figure 1. The geometry of the cell and the chosen coordinate system.

Table 1. Mesh speci�cation.

Nx Ny Nz �x �z �ymin �ymax

Mesh 1� 1� 1 32 42 96 70.6858 11.781 1.4062 18.92

Mesh 1� 2� 1 32 84 96 70.6858 11.781 0.7031 9.46

Mesh 1� 6� 1 32 252 96 70.6858 11.781 0.2344 3.16

in
uence of the model becomes weak without explicit damping. The �ne resolu-

tion of the 
ow near the wall eliminates the need of wall functions. The model

constant C was set to 0:08, as suggested in [6]. The 
ow is driven by a body

force, or by a pressure gradient constant in space and time. In other words, the

pressure term is decomposed into a mean pressure gradient, i.e. a given constant

equal to 1 in wall units, and a 
uctuating part which is to be solved together

with the velocity �eld.

Similarly, the mass transport equation can be �ltered at each cell M , which

can di�er from ones used for the velocity �eld. The turbulent Schmidt number,

Sct, was set to 0:25, which may be a reasonable value, since the turbulent Prandtl

number Prt, in the cases of large eddy simulation with heat transfer, is usually

proposed to be between 1=2 and 1=3, see e.g. [8].

The computational domain is periodic in the streamwise and the spanwise

directions with corresponding periodicity lengths, �x and �z. The distance be-

tween the channel walls is 2Re� . �x and �z are respectively 4 � � � Re� and

2���Re� , see �gure 1. Periodic boundary conditions are applied for the pres-

sure 
uctuations, the instantaneous velocity, and concentration in the streamwise

and spanwise direction.

As a unique feature of this study, the use of di�erent mesh systems for the


uid velocity �eld and the concentration �eld should be pointed out. Table 1

shows the characteristics of three meshes. The one denoted as Mesh 1 � 1 � 1

is used for the 
uid velocity �eld. The meshes used for the concentration �eld



are Mesh 1� 2� 1, and Mesh 1� 6� 1. The �nest mesh, Mesh 1� 6� 1, was

used for the the calculations performed at Sc = 100 only. The grids are uniform

in the mean 
ow direction. They are stretched in the direction normal to the

wall, with the �nest spacing at the walls. According to Calmet et al. [9], at least

three mesh points in the wall-normal direction are required within the di�usive

sublayer, y <
5

Sc1=3
, to resolve the unlinear behavior near the wall. The mesh

systems used in the study ful�ll this requirement.

The initial pro�le in a cross section for the velocity was set parabolic. The

mass transfer calculation was not added until the hydrodynamic simulation had

reached statistically equilibrium state. The initial pro�le in a cross section for

the reduced concentration was linear for the �rst calculation, at Sc = 1 and

with a �xed value as the boundary condition at the walls. The calculations

with other boundary conditions or higher Sc were initialized with the calculated

concentration �eld obtained with the highest available Schmidt number. The

calculated variables were considered to be at equilibrium when variation of the

statistical properties in time were small.

4. Results

The 
ow is assumed to take place at Reynolds number of 180 based on the wall

friction velocity and the channel half width. The conditions of computation of

the velocity �eld are exactly the same as those reported in [6]. The present study

focuses on the mean concentration �eld, RMS intensities, the eddy di�usivity,

and the structure of the instantaneous concentration �eld. Transport equations

are solved for the concentration �eld at Schmidt number 1,10 and 100.

In �gure 2, the mean concentration pro�le in the direction normal to the

walls is presented for 
ow at Schmidt number equal to one. Good agreement is

found with results from direct numerical simulations by Lyons et al. [10] and

Papavassiliou et al. [11]. The methodology and subgrid-scale model used in

the present study are consequently found to be accurate enough to model the

turbulence mass transport on small scales. Figure 3 indicates similar variation

of the mean concentration pro�le in the logarithmic diagram. With increasing

y+, the concentration pro�le exhibits a bu�er layer character, followed by a

logarithmic region. As shown on �gure 3, the concentration pro�le in the outer

region �ts well with the logarithmic law of c+ = 3:6 � ln(y+) + 1:7 after y+ = 30.

The constants of the logarithmic law found in the present study agree well with

the mean pro�les predicted by Lyons et al. [10] and Papavassiliou et al. [11].

Figures 2 and 3 present also the average concentration calculated with the

Butler-Volmer-like boundary condition (6) and the three di�erent values of Ko.

No in
uence of Ko, or the exchange current density, can be observed on the

mean concentration pro�les.

The RMS levels for the concentration �eld are calculated at Schmidt numbers

and Ko mentioned above, and presented in �gure 4. Very good agreement is
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Figure 2. a) The mean concentration at Sc = 1 in the normal

direction to the walls. . : Present study, LES, Re� = 180, cwall =
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wall

= �Jwall. Diamonds : Present

study, Ko = 1=Re� . : Present study, Ko = 10=Re� . � � �: Present

study, Ko = 100=Re� . � � � �: Lyons [10], DNS, Re� = 150. + + +

+: Papavassiliou [11], DNS, Re� = 150. b) Same as in a) zoomed on

the near-wall region.
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Figure 3. The mean concentration at Sc = 1 in the normal direc-

tion to the walls and in the near-wall region. . : Present study,

cwall = �1=C�. : Present study,
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wall

= �Jwall. Diamonds :

Present study, Ko = 1=Re� . : Present study, Ko = 10=Re� . � � �:

Present study, Ko = 100=Re� . / / /: c+ = 3:6 � ln(y+) + 1:7. � � �

�: Lyons [10], DNS, Re� = 150. + + + +: Papavassiliou [11], DNS,

Re� = 150.
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Figure 4. RMS levels of the concentration �eld at Sc = 1 in the

normal direction of the walls. � � � �: Present study, cwall = �1=C�.

� � � �: Present study,
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wall

= �Jwall. Diamonds : Present

study, Ko = 1=Re� . : Present study, Ko = 10=Re� . � � �: Present

study, Ko = 100=Re� . � � � �:Lyons [10].

obtained with the results presented by Lyons et al. [10], performed with a �xed

value of concentration set at the walls. Moreover, RMS levels computed with the

boundary condition (6) and Ko = 10=Re� , have intermediary values between the

two results obtained with Ko = 1=Re� (io = 10�4A m�2) and Ko = 100=Re�
(io = 10�2A m�2). Therefore, at Schmidt number equal to one, RMS levels

close to the wall are likely to be a monotone function of Ko, or io, and seem to

decrease when the exchange current density increases.

An issue of interest could be the assymptotic behavior of the Butler-Volmer-

like, equation (6), with respect to variations of Ko, de�ned in (7). At high

values of Ko, or at high exchange current densities, the right hand side of (6)

becomes dominant. The system becomes sensitive to small variations of the

concentration at the wall and tends to balance them fast. In the limiting case

where Ko approaches in�nity, equation (6) becomes equivalent to equation (4),

i.e. the system acts as one with a �xed value set for concentration at the wall.

At low values of Ko, the 
uctuations of the concentration gradient at the wall

are damped and the behaviour of equation (6) becomes similar to a constant 
ux

at the wall. As a result, the di�usive boundary layer simulated with the Butler-

Volmer-like boundary condition (6) at a low exchange current density, is expected

to have similar behavior as that with a constant 
ux for the boundary condition,

and at a high exchange current density, similar to the case with a �xed value at

the walls. A comparison between pro�les found with di�erent values of Ko in

�gure 4, con�rms the proposed behavior. Figures 5 and 6 show RMS intensities

calculated with equation (4) and (5), at Schmidt number equal to 10 and 100,
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Figure 5. RMS levels of the concentration �eld at Sc = 10 in the

normal direction of the walls. : Present study, cwall = �1=C�. � �
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Figure 6. RMS levels of the concentration �eld at Sc = 100 in the

normal direction of the walls. : Present study, cwall = �1=C�. � �

�: Present study,
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wall

= �Jwall.

respectively. As expected, values predicted with a �xed value set at the walls,

are lower than RMS intensities predicted with a constant 
ux. Similar behavior

was predicted at Schmidt number equal to one. Since the above discussion does

not account for values of Schmidt number, it is possible, at any Schmidt number,

to draw conclusions about the e�ect of very low and very high exchange current

densities on RMS intensities, on the basis of calculations made only with a �xed

value and a constant 
ux set at the walls. The mean eddy di�usivity, de�ned as
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Figure 7. The mean eddy di�usivity in the near-wall region at

Sc = 1. -�-�-�-: Ec = 0:000775y3 [11]. : Present study, cwall =
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, is presented for di�erent cases in �gures 7, 8 and 9. Figure 7 shows

good agreement between the prediction of the present study, the prediction of

Papavassiliou et al. [11], and the empirical pro�le proposed by Papavassiliou

et al. [11]. Figures 8 and 9 indicate that the eddy di�usivity is not in
uenced

by the values of Ko, or the exchange current density io. The fact that the

eddy-di�usivity is found to be independent of Ko can be related to the same

observation for the mean concentration pro�le, see �gures 2 and 3.
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Figure 9. The mean eddy di�usivity in the near-wall region at
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Figure 10. At Sc = 1, the streamwise turbulent heat 
ux. Results

computed with the Butler-Volmer-like boundary condition. Solid

line, Ko = 10=Re� . Dashed lines, Ko = 100=Re� . The stars account

for the numerical results of Kawamura et al. [12], with Re� = 180

and Sc = 1:5.

Streamwise and wall-normal turbulent passive mass 
ux are presented in �g-

ures 10 and 11.

Good agreement is found with the direct numerical simulation of Kawamura

et al. [12]. No data from previous results were available for comparison with the

predictions of the present study at Schmidt number higher than 5. The present

study �nds, as the last mentioned study, that the scalar 
uctuations correlate
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Figure 11. At Sc = 1, the wall-normal turbulent heat 
ux. Results

computed with the Butler-Volmer-like boundary condition. Solid

line, Ko = 10=Re� . Dashed lines, Ko = 100=Re� . The stars account

for the numerical results of Kawamura et al. [12], with Re� = 180

and Sc = 1:5.

more strongly with the streamwise velocity than with its normal-wall compo-

nent. Figure 10 shows that the exchange current seems to in
uence the range of

strong correlation between the streamwise velocity and the scalar 
uctuations.

Inversely, no in
uence of the exchange current is noticed on the correlation be-

tween the wall-normal velocity and the scalar 
uctuations, see �gure 11.

Iso-lines of the instantaneous concentration 
uctuations for Schmidt number

equal to one in a (x-z) section at y+ = 6:76 are presented in �gure 12. The

presence of well-known streaky structures elongated in the streamwise direction

is clearly observed. Such structures are typical for turbulent 
ows in the viscous

sublayer [13].

To compute the results in �gure 12, the Butler-Volmer-like law has been used.

The in
uence of the exchange current on the streaks is studied, by comparing

12.a, which presents a �eld computed with Ko = 10=Re� , and 12.b which cor-

responds to Ko = 100=Re� . Even if it is not possible here to give a clear

quantitative approximation of the spacing, it seems that the spanwise spacing

decreases with the increasing exchange current. This result is con�rmed by the

computation of the two-point spanwise correlation coe�cients of the concentra-

tion 
uctuations, see �gure 13. Considering the normal distance from the wall

to the �rst local minimum of the spanwise correlation coe�cient as the mean

streak half-spacing, Calmet et al. found r+z = 100. With the same method,

the present study found at Schmidt number equal to one, r+z around 65 with

an intermediary exchange current, and around 55 with a high exchange current,
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Figure 12. At Sc = 1, snapshot contour plots of the concentration


uctuations in a (x-z) plane at y+ = 6:76. Results computed with

the Butler-Volmer-like boundary condition. The increment in scalar

is 0:02. Solid lines represent 0:0 � c
0

� c
0

max. Dashed lines c
0

min �

c
0

� 0:0. a) Ko = 10=Re� . c
0

min = �0:323, c
0

max = +0:21. b)

Ko = 100=Re� . c
0

min = �0:457, c
0

max = +0:186.
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Figure 13. At Sc = 1, spanwise two-point correlation coe�cients at

y+ = 6:76. Results computed with the Butler-Volmer-like boundary

condition. Solid line, Ko = 10=Re� . Dashed lines, Ko = 100=Re� .

The stars account for the numerical results of Calmet et al. [9] at

y+ = 1:7, Re� = 640, and a Dirichlet boundary condition at the

walls.

see �gure 13. These two last results are in good agreement with the computed

spacing found by Kline et al. [13].
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Figure 14. At Sc = 100, snapshot contour plots of the concentra-

tion 
uctuations in a (x-z) plane at y+ = 1:17. Results computed

with a constant 
ux for concentration at the walls. The increment

in scalar is 0:02. Solid lines represent 0:0 � c
0

� c
0

max. Dashed lines

c
0

min � c
0

� 0:0. c
0

min = �0:687, c
0

max = 0:379.

At Schmidt number equal to 100, the concentration 
uctuations are plotted

in the viscous sublayer in a section (x-z) at y+ = 6:76=Sc1=3 = 1:17, see �gure

14. Again, the streaky structure of 
uctuations are clearly observed.

Figure 15 presents the instantaneous concentration 
uctuations in the loga-

rithmic region at y+ = 54:1. The streaky structures are not visible any more.

Here, Ko is taken equal to 10 and 100 only. At these values, the exchange cur-

rent density has not in
uenced the wall-normal location of the streaky structures.

This was expected, since the streaky structures are traditionally observed in the

di�usive sublayer [9]. But supplementary computations with di�erent values of

exchange current would allow to con�rm this result, and extend it to a bigger

range of exchange currents.

5. Conclusions

A model problem for studying the mechanisms of turbulent mass transfer in an

electrochemical system by means of large eddy simulations is proposed. Firstly, it

was shown that the methodology was able to successfully reproduce documented

literature results. Both mean pro�les and 
uctuations were predicted accurately.

The in
uence of the exchange current density on the turbulent di�usive boundary

layer was investigated at Schmidt numbers of 1, 10 and 100. The studied range of

the exchange current density was between io = 10�4A m�2 and io = 10�2A m�2.

Three di�erent boundary conditions for the concentration �eld were used at

the walls, i.e. a linearized Butler-Volmer-like condition, a given value and a

given 
ux. At Schmidt number equal to one, the exchange current was shown
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Figure 15. At Sc = 1, snapshot contour plots of the concentration


uctuations in a (x-z) plane at y+ = 54:1. Results computed with

the Butler-Volmer-like boundary condition. The increment in scalar

is 0:02. Solid lines represent 0:0 � c
0

� c
0

max. Dashed lines c
0

min �

c
0

� 0:0. a) Ko = 10=Re� . c
0

min = �0:43, c
0

max = +0:262. b)

Ko = 100=Re� . c
0

min = �0:575, c
0

max = +0:325.

to have no in
uence on the structure of the mean concentration, neither on

the eddy di�usivity, nor on the wall-normal turbulent heat 
ux. However, the

RMS intensities, the streamwise turbulent heat 
ux, and the lateral dimensions

of turbulence structures in the near-wall region were in
uenced. The Butler-

Volmer-like boundary condition predicts results close to those obtained with a

given value at the wall if the exchange current density is high, and close to those

obtained with a given 
ux if the exchange current density is low.
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Abstract. Large-eddy simulations of mass transfer in a turbulent chan-

nel 
ow are considered. Schmidt number is equal to 100 and the turbulent

Reynolds number based on the half-width channel to 180. The fringe region

technique is tested and validated to reduce the numerical domain of com-

putation to the di�usive boundary layer. Very good agreement is found for

the mean and the 
uctuating �eld predicted in this study, with data from

earlier numerical simulations. The agreement is also good between compu-

tations of the concentration �eld made in the all channel, and computations

reduced to the near-wall region with the help of the fringe technique.

1. Introduction

The process of mass transfer in a di�usive boundary layer becomes very complex

in a turbulent 
ow �eld. In absence of other e�ects such as buoyancy, the velocity

�eld induces 
uctuations in the mass or concentration �eld and thereby in
uences

the rate of mass transfer. A thorough understanding of the fundamental transfer

mechanisms involved is usually a necessity for the design of various kinds of

industrial processes [1].

Although numerous empirical methods have been developed for predicting of

rates of mass transfer, see e.g. [2], the general understanding of the underlying

physics is still unsatisfactory. To understand the physics of mass transfer in a

turbulent velocity �eld, concentration and velocity 
uctuations must be mea-

sured in the di�usive boundary layer and correlations between them must be

computed. The thickness of the di�usive boundary layer is proportional to the

thickness of the hydrodynamic boundary layer (�h) divided by Schmidt num-

ber to the power one-third [2]. Obviously, for a case of 
ow at high Reynolds

number and high Schmidt number, which is usually of practical interest, the

region of importance will be very thin. That makes experimental investigations

very di�cult, if not impossible. As a result, there is a lack of experimental data

describing physics of mass transfer in a turbulent �eld.

Recent fast advances in computing science and the capacity of computer have

created the possibility of performing numerical experiments instead of physical

ones. Although numerical simulations of turbulent 
ows are not free of di�cul-

ties, they give, where they can be applied, an accurate and detailed insight on

the dynamics of the 
ow.
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A possible approach is to make use of models in order to reduce the number of

turbulence scales involved. In conventional turbulence models, only the largest

scale, comparable to the geometrical size of the region where the 
ow takes

place, are considered. Since a large part of the dynamics is eliminated, elaborate

models are needed to make accurate predictions. In large eddy simulations, on

the other hand, only the smallest scales, comparable with the size of the mesh,

are modeled. These scales are likely to have a more universal dynamics and

therefore allow accurate predictions with relatively simple models.

The fringe technique, originally introduced by Spalart [3] can be used for forc-

ing the solution to approach a given value. Fringe technique has been used as an

arti�cial boundary condition in direct simulations of transitional and turbulent

viscous boundary layers [4, 5]. Henningson et al. [6] also applied this technique

in direct numerical simulation of a turbulent and viscous boundary layer. For the

case of mass transfer from a wall at high Schmidt number the fringe technique

can force the concentration �eld to have a given value at a position su�ciently far

from the wall without destroying the structure of turbulent �eld near the wall.

In that case, only the near-wall region can be considered for the concentration

�eld. Using such a method may make numerical experimentation of turbulent

mass transfer from a reacting wall possible, and provide necessary data for more

accurate modeling.

The main goal of this study is to investigate the possibility of application of

fringe technique for simulation of turbulent channel 
ow at high Schmidt number.

The paper is organized in the following way: the mathematical problem and the

numerical procedure are formulated in section 2. Results from numerical studies

are presented in section 3, and the results and conclusions are summarized in

section 4.

2. Theory

2.1. Governing equations. In this study, turbulent 
ow in an in�nitely large

channel 
ow is considered. The walls are assumed to be at a distance of 2� (see

�gure 1) and the 
ow is driven by a constant pressure gradient, strong enough

to make gravitational e�ects negligible. The coordinate system is chosen so that

the walls will be located at y = ��.

The 
ow can be described by the Navier-Stokes equations for an incompress-

ible 
uid, the continuity equation, and a mass-transport equation. The equations

are adimensionalized by u� , the friction velocity, l� = �=u� , the typical length

scale in wall units, and l�=u� as the typical time scale.

At very high Schmidt number, the di�usive boundary layer is located very

near the wall. It is therefore useless to compute the concentration everywhere in

the channel 
ow. For that reason, it is proposed below a method to reduce the

mathematical and the numerical domain of investigation to the near-wall region.

The domain, as shown in �gure 1, lies between the wall and an imaginary plane
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Figure 1. The geometry of the cell, the chosen coordinate system

and the three regions of computations.

surface in the 
uid, parallel to the wall and at a distance of �c from it. �c is the

approximated thickness of the di�usive boundary layer, and is equal to �h=Sc
1=3

[2]. The domain is divided into one conservative region (zone 1), and one region

(zone 2) where a source term is added to the mass conservation equation, as

shown below

@c+

@t+
+
�
u+ � r+

�
c+ =

1

Sc
r
+;2c+ � �+(y+) � (c+ � c+o ), (1)

where u+ denotes the instantaneous velocity �eld, c+o is a constant, and Sc is

the Schmidt number. The concentration �eld can be made dimensionless by

using the mass 
ux at the wall, i.e. c� = �
D
u�

�
@c
@y

�
wall

, where c corresponds to

the averaged value of the instantaneous concentration. All quantities are scaled

in wall units. The superscript '+' can therefore be dropped throughout the

remainder of this paper. Equation (1) can be used for both regions by choosing

properly the function �, as shown in �gure 2. The conservative and the non-

conservative region are named zone 1 and 2, respectively. The source term works

as a forcing function, imposing to the intantaneous concentration the �xed value

of co in zone 2. Throughout the remainder of this paper, the domain containing

only zone 1 and 2 will be called the reduced domain.

This technique is here used in order to resolve the problem of the boundary

condition for the instantaneous concentration where the boundary of the domain

lies in the viscous boundary layer. At this boundary, the velocity �eld induces

turbulence to concentration. The 
uctuating part of concentration must then be

modelled. In order to avoid this fastidious and hazardous task, the fringe region

technique allows to damp to zero the 
uctuating part of the passive scalar in
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Figure 2. The � function versus the wall-normal direction.

the vicinity of the boundary of the domain lying in the 
uid. It is assumed that

the non-physical phenomena occuring in the fringe region do not invalidate the

solution in the remaining part (zone 1 in �gures 1 and 2) of the computational

domain [6]. This assumption will be veri�ed experimentally in this study.

For the hydrodynamical equations, a no-slip condition is used at the walls.

The velocity �eld is always computed in a computational domain that contains

both walls of the turbulent channel, and whose width in non-viscous units is 2�,

see �gure 1. As a �rst step, in order to make comparisons with earlier numerical

and experimental investigations, the case of mass transfer when the concentration

is set to a given value at the wall is considered. When the domain is reduced to

the di�usive boundary layer, one boundary condition is the wall-concentration

set to a given value. The other is set in the 
uid at the limit of zone 2, with a

mixed condition

@c

@y
(x; �c; z; t) = c(x; �c; z; t)� co. (2)

Equation (2) is a non-re
ecting boundary condition. It guarantees that error

waves travelling from the wall to the centre of the channel are damped, and are

not re
ected towards the wall [7].

2.2. Numerical Procedure. In this large eddy simulation, averaging over the

volume of the computational cells is used as the �ltering function. The SGS

model is here an anisotropic version of the Smagorinsky model, and has been

validated in a previous work [8]. A rectangular computational cell, numbered

M , has the width in i-direction, �xMi , the area of surface normal to i-direction

, �sMi = �xMj �xMk , and a volume size, �vM = �xM1 �xM2 �xM3 . The modelled



Table 1. Speci�cations of the meshes used without the fringe region technique.

Nx Ny Nz �x �z �ymin �ymax

Mesh 1� 1� 1 32 42 96 70.6858 11.781 1.4062 18.92

Mesh 1� 6� 1 32 252 96 70.6858 11.781 0.2344 3.16

Navier-Stokes equation averaged over the volume using the cell M , which gives

the dynamics of large eddies resolved on the given mesh, can be expressed as

�vM
@uM

i

@t
=P3

j=1�sMj

h
�

�
u
(+j)M
i u

(+j)M
j � u

(�j)M
i u

(�j)M
j

�
�
�
p(+j)M � p(�j)M

�
�ij

i
+
P3

j=1�sMj

h�
�
(+j)M
ij � �

(�j)M
ij

�i
+
P3

j=1�sMj

h
1p
2
C2L2j

���sMij ��(+j)M � s
(+j)M
ij �

��sMij ��(�j)M � s
(�j)M
ij

�i
,

where �ij is the resolved stress tensor, and sij twice the instantaneous rate of

strain tensor

�
@ui
@xj

+
@uj
@xi

�
.
��sMij �� =

�qP3
i=1

P3
j=1 s

M
ij

2
�
and L2j =

(�xM1 �xM2 �xM3 )2=9(�xMj )4=3. Considering an instantaneous function f(x), f
M

stands for the �ltered version of f at the center of cell M, whose volume is �vM .

The superscript (�j)M denotes that the considered �ltered quantity is evaluated

on the cell surface whose center is the vector xM �
1
2
�xMj ej and whose normal

direction is ej . The model constant C was set to 0:08, as suggested in [8]. For

more detailed information the interested reader is referred to Zahrai et al [8].

The mass transport equation is similarly �ltered at each cell M .

The computational domain is periodic in the streamwise and the spanwise di-

rections with corresponding periodicity lengths, �x and �z. The distance between

the channel walls is 2Re� in wall-units. �x and �z are respectively 4� � � Re�
and 2 � � � Re� in wall-units, see �gure 1. Periodic boundary conditions are

applied for the velocity, the 
uctuations of pressure and the concentration in the

streamwise and spanwise direction. As a feature of this study, the use of di�erent

mesh systems for the 
uid velocity �eld and the concentration �eld should be

pointed out. Table 1 shows the characteristics of two meshes used without the

fringe region technique, i.e. with a computational domain extended from a wall

to the other and considering the all cross-section of the channel 
ow. The grid

denoted as Mesh 1� 1� 1 is used to compute the 
uid velocity �eld. The mesh

used to compute the concentration is Mesh 1 � 6 � 1. When the fringe region

technique is used with Mesh 1 � 6 � 1, Ny = 54. The grid is uniform in the

mean 
ow direction, and is stretched in the direction normal to the wall, with

the �nest spacing at the walls.

The turbulent velocity and the concentration were computed successively in

the following way: First, the volume average Navier-Stokes equation is solved,

and then the 
uid velocity �eld and the eddy di�usivity are interpolated to the

mesh system used for the concentration �eld. With the known velocity �eld, the



volume average mass transport equation is solved. This procedure is repeated

by returning to the �rst step and computation for the next time step.

A fourth order Lagrangian interpolation scheme is used to ensure a su�cient

accuracy in interpolation of turbulent velocity �eld, see e.g. Wang & Squires

[9]. The �ltered mass transport equation is integrated using a three step, third

order tensor viscosity scheme, [10, 11]. The advection term in the right hand

side of the �ltered equation was approximated with QUICK scheme [12] to keep

a second order spatial accuracy and a numerical stability at the same time. The

di�usion term was discretized using central di�erentiation.

The initial pro�le in a cross section for the velocity was set parabolic. The

mass transfer calculation was not added until the hydrodynamic simulation had

reached statistically equilibrium state. The initial pro�le in a cross section for

concentration was set proportional to y�1=5 for the calculations made with the

fringe region technique. It was set identical to the pro�le obtained at Sc = 1

in [13] for the calculations made without the fringe technique. The calculated

variables were considered to be at equilibrium when variation of the statistical

properties in time were small.

3. Results

In this section results from numerical studies of turbulent mass transfer in a

channel are presented. The 
ow is assumed to take place at Reynolds number

equal to 180 based on the wall-friction velocity and the channel half width and

Schmidt number equal to 100. The conditions of computation of the velocity �eld

are exactly the same as those reported in [8], and correspond to case 2 presented

in table 1 of that paper. The cell is assumed to be in�nite in the streamwise

and the spanwise directions, which are simulated by periodic boundary condi-

tions. The main focus is made on the near-wall region and the dynamics of mass

transfer. Two di�erent numerical techniques are used for computation of the

concentration �eld in the near-wall region. First, a re�ned mesh is used for the

concentration �eld and the transport equation is integrated in the whole channel

as in [13]. Secondly, in order to make the simulation more e�cient, only the

near-wall region is considered and the concentration �eld is damped in the outer

region using the fringe technique and thereby the size of the grid is reduced.

It turns out that simulations made with the reduced grid and the fringe region

technique run approximately 5 times faster than with the complete grid between

the two walls. After an adimensional time-period of 60 �Re� smooth turbulence

statistics were obtained with the two numerical techniques. The statistics were

then produced during an adimensional integration time of 8 �Re� with the fringe

region technique, and of 16 �Re� with the technique considering the whole chan-

nel. In this last case, statistics were still time-dependent after an integration

time of 8 �Re� .
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direction. . : Papavassiliou [14], DNS, Re� = 150, without fringe

region technique. Solid line: Present study, LES, Re� = 180, with

fringe region technique. Diamonds : Present study, LES, Re� = 180,

without fringe region technique.

Figure 4. The mean concentration at Sc = 100 in the wall-normal

direction. . : Papavassiliou [14], DNS, Re� = 150, without fringe

region technique. Solid line: Present study, LES, Re� = 180, with

fringe region technique. Diamonds : Present study, LES, Re� = 180,

without fringe region technique. + + + +: c+ = 3:0 � ln(y+) + 285:0

The mean concentration pro�le in the direction normal to the walls is pre-

sented �gure 3. The concentration is made dimensionless by using reference con-

centration, c�, de�ned by c� = �
D
u�

�
@c
@y

�
w
. As can be found in �gure 3, good

agreement is found with results from direct numerical simulations by Papavassil-

iou et al. [14]. The slight di�erence between simulations with and without fringe

technique at y around 30 are likely to be due to the di�erences in the averaging

time over which the statistics are computed.

Figure 4 shows the mean concentration pro�le in a logarithmic diagram. With

increasing y, the concentration pro�le exhibits a bu�er layer character, followed

by a logarithmic region. As shown in �gure 4, the concentration pro�le �ts

well with the logarithmic law of c = 3:0 � ln(y) + 285:0 after y = 10. The

logarithmic pro�le has been calculated with the same reference concentration as

in Papavassiliou et al. [14].

Lin et al. [2], estimated the ratio between the hydrodynamic and mass trans-

fer boundary layer thicknesses to be proportional to the third root of the Schmidt

number. Thus, the observation made above, i.e. transition to a logarithmic pro-

�le at value y = 10 is in good agreement with that estimate since the logarithmic

region for the velocity pro�le starts around y = 30 [15]. Moreover, the constant
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Figure 6. At Sc = 100, the turbulent mass-
uxes. Solid line:

Present study, with fringe region technique. Dashed lines: Present

study, without fringe region technique.

of proportionality, 3:0, for the logarithmic law found in the present study is

close to the values found by Calmet et al. [16] and Kader et al. [17]. Kader

et al. [17] found a good �t with a logarithmic law as 2:12 � ln(y) + �(Sc), with

�(Sc) = (3:85 � Sc1=3 � 1:3)2 + 2:12 � ln(Sc), which gives �(100) = 284:33.

The mean eddy di�usivity, de�ned as Ec = �vc
�
dc
dy

��1
, is presented in �gure

5. A good agreement is found between the predictions of the present study, the

DNS results of Papavassiliou et al. [14], and the empirical pro�le proposed by

Papavassiliou et al. [14]. The predictions of the present study with and without

the fringe method technique are also in very good agreement.

Streamwise and wall-normal turbulent mass 
uxes are presented in �gures

6. Good agreement is found between the two predictions of the present study.

The present study �nds, in agreement with the observation by Kawamura et

al. [18], that the concentration 
uctuations correlate more strongly with the

streamwise velocity than with its normal-wall component. The ratio between

the components of the mass-
ux vector is of the order of Schmidt number. The

RMS levels for the concentration �eld are calculated and shown in �gure 7. The

predictions of the present study with and without the fringe region technique

are in very good agreement.

The two-point spanwise correlation coe�cient of the concentration 
uctua-

tions is computed at y = 1:17 and is presented in �gure 8. After reaching a
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Figure 8. At Sc = 100, the spanwise two-point correlation coef-

�cients at y+ = 1:17. Solid line: Present study, with fringe region

technique. Dashed lines: Present study, without fringe region tech-

nique.

minimum, the correlation coe�cient oscillates slightly about zero. De�ning the

distance to the �rst local minimum as half of the the mean streak spacing, the

concentration streak spacing can be estimated to 100. This value is in good

agreement with that obtained by Calmet et al. [16].

4. Conclusions

In this work, results from large eddy simulations of a model for mass transfer in

a turbulent channel 
ow are presented. All predictions are computed at Schmidt

number equal to 100. The fringe region technique is used to diminish the numer-

ical domain of computation. Good agreement is obtained between LES made

with and without the fringe region technique. Previous studies are also found

to be in good agreement with the predictions of the present study for the mean

and the instantaneous concentration �eld.
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LARGE-EDDY SIMULATION OF ELECTROCHEMICAL MASS

TRANSFER

Fran�cois Gurniki1, Said Zahrai2 and Fritz H. Bark1

1Fax�en Laboratory, KTH, S-100 44, Stockholm, Sweden
2ABB Corporate Research, SE-721 78, V�aster�as, Sweden

Abstract. Large-eddy simulations of mass transfer in a channel 
ow work-

ing as an electrochemical cell are considered. Schmidt number is equal to

3000 and the turbulent Reynolds number, based on the half-width chan-

nel, to 180. The computational domain is reduced to the di�usive boundary

layer with the help of a numerical technique. Very good agreement is found

with data from previous studies for the mean, the 
uctuating �eld, and the

wall-mass-transfer.

1. Introduction

The turbulent process of mass transfer in the di�usive boundary layer along an

electrode of an electrochemical cell is very complex. In absence of other e�ects

such as buoyancy, the velocity �eld induces 
uctuations in the concentration

�eld, and thereby in
uences also the rate of wall-mass-transfer. The thickness

of the di�usive layer, being inversely proportional to Schmidt number to a cer-

tain fractional power, makes experimental investigations on the 
uctuations of

mass transfer very di�cult. Recent advances in computing science have created

the possibility of performing numerical experiments instead of physical ones.

Turbulent 
ows involve di�erent length scales. In large-eddy simulations, one

models only the smallest, that are likely to have a universal dynamics, and can

be modelled with simple models.

The paper is organized in the following way: the mathematical problem and

the numerical procedure are formulated in section 2. Results from numerical

studies are presented in section 3 and summed up in section 4.

2. Theory

In this study, turbulent 
ow of a binary electrolyte outside the double layers in

an in�nitely large channel 
ow, working as an electrochemical cell, is considered.

The solution is also assumed to contain a support electrolyte so that the varia-

tions of the electrical potential can be neglected. The walls are assumed to be

at a distance of 2� (see �gure 1) and the 
ow is driven by a constant pressure

gradient, strong enough to make gravitational e�ects negligible. The coordinate

system is chosen so that the walls will be located at y = ��.

The 
ow can be described by the Navier-Stokes equations for an incompress-

ible 
uid, the continuity equation, and a mass-transport equation. The equations
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Figure 1. The geometry of the cell, the chosen coordinate system

and the three regions of computations.

are adimensionalized by u� , the friction velocity, l� = �=u� , the typical length

scale in wall units, and l�=u� , the typical time scale. At very high Schmidt num-

ber, the di�usive boundary layer is located very near the wall. It is therefore

useless to compute the concentration everywhere in the channel 
ow. For that

reason, it is proposed below a method to reduce the mathematical and the nu-

merical domain of investigation to the near-wall region. The domain, as shown

in �gure 1, lies between the wall and an imaginary plane surface in the 
uid,

parallel to the wall and at a distance of �c from it. �c is the approximated thick-

ness of the di�usive boundary layer, and is equal to �h=Sc
1=3 [1]. The domain is

divided into one conservative region (zone 1), and one region (zone 2) where a

source term is added to the mass conservation-equation, as shown below

@c+

@t+
+
�
u+ � r+

�
c+ =

1

Sc
r+;2c+ � �+(y+) � (c+ � c+

o
), (1)

where u+ denotes the instantaneous velocity �eld, c+o is a constant, and Sc is

the Schmidt number. The concentration �eld can be made dimensionless by

using the mass 
ux at the wall, i.e. c� = � D

u�

�
@c

@y

�
wall

, where c corresponds

to the averaged value of the instantaneous concentration. Using the electrical

neutrality and given that the present study considers a binary electrolyte, the

mass transport-equations can be reduced to equation (1) only. All quantities are

scaled in wall units. The superscript '+' can therefore be dropped throughout the

remainder of this paper. Equation (1) can be used for both regions by choosing

properly the function �. The source term works as a forcing function, imposing

to the intantaneous concentration the �xed value of co in zone 2.

The use of 2 zones as described above is a solution to the problem caused

by the boundary condition for the instantaneous concentration at the domain
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Figure 2. The mean concentration in the wall-normal direction. a)

Solid line: Present study, LES, at Sc = 3000 andRe� = 180. �����:

Papavassiliou [3], DNS at Sc = 2400, Re� = 150, Lagrangian method.

�����: Lin et al. [1], experiments at Sc = 900 and Re = 4850. b)

+ + ++: Sc � y+. diamonds : 3:0 � ln(y+) + 4485.

boundary that lies in the velocity boundary layer. At this boundary, the velocity

�eld induces turbulence to concentration. The 
uctuating part of concentration

must then be modelled. In order to avoid this fastidious and hazardous task,

the fringe region technique allows to damp to zero the 
uctuating part of the

concentration in the vicinity of the boundary of the domain lying in the 
uid.

For the hydrodynamical equations, a no-slip condition is used at the walls. The

velocity �eld is always computed in a computational domain that contains both

walls of the turbulent channel, and whose width in non-viscous units is 2�, see

�gure 1. As a �rst step, in order to make comparisons with earlier numerical

and experimental investigations, the case of mass transfer when the concentra-

tion is set to a given value at the wall is considered. This case corresponds

to an electrochemical cell working at the limiting current. In this large eddy

simulation, averaging over the volume of the computational cells is used as the

�ltering function. The Sub-Grid Scale model is here an anisotropic version of

the Smagorinsky model, and has been validated in a previous work. For more

detailed information the interested reader is referred to Gurniki et al [2].

3. Results

The mean concentration pro�le in the direction normal to the walls is presented

in �gure 2. Figure 2a) shows also results from direct numerical simulations by

Papavassiliou et al. [3] at Sc = 2400, and experiments done at Sc = 900 by Lin

et al. [1]. The viscous units reported in Lin et al. are corrected to correspond to

the same velocity pro�le used in the present study. Figure 2b) shows the mean
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concentration pro�le in a logarithmic diagram. With increasing y, the concen-

tration pro�le exhibits a bu�er layer character, followed by a logarithmic region.

As shown in �gure 2b), the concentration pro�le �ts well with the logarithmic

law c = 3:0 � ln(y) + 4485:0. At Schmidt number equal to 3000 the logarithmic

law lies between y+ = 2 and 10 ( 30
Sc1=3

� y+ � 150
Sc1=3

). As found by Kader et al.

[4], at very high Schmidt number, the logarithmic law is damped by the constant

value of the concentration in the core of the channel.

The mean eddy di�usivity, de�ned as Ec = �vc
�
dc

dy

�
�1

, is calculated. Good

agreement is found between the predictions of the present study, the DNS results

of Papavassiliou et al. [3], and the empirical pro�le proposed by Shaw et al. [5],

stating that Ec(y) = 0:000463�y3. The eddy di�usivity obtained by Papavassiliou

et al. was computed with a Lagrangianmethod by tracking particles and deriving

the mean di�usion in time of the particles in the normal-wall direction.

The average mass transfer coe�cient is calculated. The result of the present

study at Schmidt number equal to 3000 is found to be in good agreement with the

DNS of Papavassiliou et al. [3], and the theoretical pro�le found by Shaw et al.

[5] for Schmidt numbers between 600 and 32000 (K+(y) = 0:0889� Sc�0:704).

The present study found the intensity of the 
uctuations for the wall mass-

tranfer coe�cient
�
k2
�1=2

=K equal to 0:197. This result is in good agreement

with Campbell et al. [6] at the same Schmidt number, where
�
k2
�1=2

=K was

found equal to 0:23.

Streamwise and wall-normal turbulent mass 
uxes are presented in �gure

3. The streamwise mass-
ux is found 30 times larger than in the wall-normal

direction. Between Schmidt number 0:05 and 5, Kawamura et al. [7] predicted
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also a higher streamwise mass-
ux than the wall-normal. Figure 3b) shows the

asymptotic behaviours of the turbulent mass-
uxes. Good agreement is found

with the asymptotic laws found by Kawamura et al. [7] for Schmidt number

between 0:05 and 5.

The presence of well-known streaky structures elongated in the streamwise

direction are clearly observed in (x-z) planes at the interface between the di�usive

and the bu�er sublayers. Such \concentration-streaks" were also observed by

Calmet et al. [8].

Figure 4 shows the spectral function of the mass transfer coe�cient at the

anode. Among the large frequencies, the present study �nds a dependency of

the spectra proportional to the frequency to the power �3. This result is in very

good agreement with an analytical result of Campbell et al. [6] based on a linear

assumption for the mass-conservation equation. � is here the �rst coe�cient in

the Taylor expansion of the wall-normal velocity, see [9].

Particle tracking of 
uid particles reveal that, in average, no particle from

the outside of the viscous domain travelling towards, enters in it. This result

suggests an important contribution of streamwise vortices in wall-mass-transfer


uctuations.

4. Conclusions

In this work, results from large-eddy simulations of a model for mass transfer in

an electrochemical cell are presented. All predictions are computed at Schmidt

number equal to 3000. The fringe region technique is successively used to di-

minish the numerical domain of computation. Good agreement is obtained with

previous studies for the mean and the instantaneous concentration �eld.
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AT HIGH SCHMIDT NUMBER

Fran�cois Gurniki1, Said Zahrai2 and Fritz H. Bark1

1Fax�en Laboratory, KTH, S-100 44, Stockholm, Sweden
2ABB Corporate Research, SE-721 78, V�aster�as, Sweden

Abstract. Large-eddy simulation (LES) of turbulent passive-scalar trans-

fer at the walls of a three-dimensional channel 
ow was carried out for vari-

ous Schmidt numbers ranging from 1 to 3000. The turbulent Reynolds num-

ber based on the channel half-width was 180. The budgets for the Reynolds-


ux vector, the scalar variance-rate and the scalar dissipation-rate were

studied. Good agreement was found with previous studies at Schmidt num-

ber around unity. The terms in the budgets for the Reynolds-
ux vector

and the scalar variance-rate were shown to be in
uenced by Schmidt num-

ber, but, somewhat surprisingly, not the budget of the dissipation-rate.

Approximate versions for the budgets are given.

1. Introduction

Turbulent transport of a passive scalar at high Schmidt number plays an impor-

tant role in many engineering applications, like in the �eld of electrochemistry.

Most of these applications involve turbulent 
ows at such high Reynolds numbers

that they cannot be directly simulated. One must then face the tricky problem

of modeling the Reynolds 
uxes. The eddy-di�usivity approach is unable to give

a correct prediction of ui�, where ui and � are the 
uctuating part of the ve-

locity and the passive-scalar, respectively. As an example, the streamwise mass


ux u� in a fully developed channel 
ow is in that way predicted equal to zero.

To involve more of the physics, algebraic scalar-
ux models in a two-equation

model can be obtained from the transport equations for the Reynolds 
uxes.

The formulation of these models are obtained with the help of some equilibrium

assumptions in the budget of the transport equations. In transport-equation

modeling of the passive scalar 
ux, the scalar variance �2 and the scalar dissi-

pation rate �� are also needed, because algebraic models require the dynamical

and the scalar time-scales [1].

In documented literature, budgets of streamwise and wall-normal turbulent

scalar 
ux have been computed for di�erent Schmidt numbers between 0:025

and 5 [2, 3]. At Schmidt number around unity, it was found that the dominating

terms in the budgets for the wall-normal and the streamwise scalar 
uxes were

the production term and the sum,  i, of the scalar pressure-gradient term and

the dissipation. In the near-wall region the transport terms, also called molec-

ular and turbulent di�usion, were balancing  i and the production term was

negligible. For the transport equation of the scalar variance, dissipation was
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balancing production, except in the near-wall region where the transport terms

were balancing dissipation. To the knowledge of the present authors, there are

no published studies of the budget for Reynolds 
ux at Schmidt numbers higher

than 5. With the help of a Lagrangian method, Papavassiliou et al. [20] predicted

the eddy conductivity but did not study the Reynolds 
ux.

In a previous study, Gurniki et al. [5] checked the accuracy of large-eddy

simulations in a channel 
ow with mass transfer at Schmidt number equal to 100.

The simulation used a numerical technique to reduce the computational domain

for the passive-scalar �eld to the di�usive boundary layer. This so called fringe

region technique had been previously used for computations of more di�cult


ows, like an increasing hydrodynamic boundary layer along a 
at plate [6, 7, 8].

At high Schmidt number, the di�usion process is very slow. If the mass 
ux is

due to reactions at the wall, even the convective transport is very slow because

the mass transfer occurs close to the wall. If one used a computational domain

larger than the di�usive boundary layer, it would need a very long computational

time in order to obtain acceptable statistics at equilibrium.

The goal of the present work is to provide a study of the equation for the

Reynolds-
ux vector, the scalar-variance rate and the dissipation-rate, at Schmidt

number (Sc) equal to 100 and 3000. Computations at Sc = 1 and an analytic

study of the near-wall region are also made for validation. The paper is orga-

nized in the following way: the mathematical problem is formulated in section

2 and the numerical procedure is detailed in section 3. Results from numerical

studies are presented in section 4 and conclusions presented in section 5.

2. Theory

In this study, turbulent 
ow in an in�nitely large channel 
ow is considered.

The walls are assumed to be at a distance of 2� (see �gure 1) and the 
ow

is driven by a constant pressure gradient, strong enough to make gravitational

e�ects negligible. The coordinate system is chosen so that the walls are located

at y = ��.

The 
ow can be described by the Navier-Stokes equations for an incompress-

ible 
uid, the continuity equation, and a transport equation for the passive scalar.

The equations are nondimensionalized by u� , the friction velocity, l
� = �=u� , the

length scale in wall units, and l�=u� , the time scale. The scalar �eld � can be

made dimensionless by using the mean scalar 
ux at the wall, i.e. � D
u�

�
@�
@y

�
wall

,

where � is the mean value of the dimensional instantaneous scalar, and D the

scalar di�usivity.

At very high Schmidt number, the di�usive boundary layer is located very

close to the walls. Outside this layer, the distribution of the mean passive-scalar

� is almost uniform. It is therefore useless to compute the scalar everywhere

in the channel. For that reason, a method to reduce the mathematical and the

numerical domain of investigation to the near-wall region is outlined below. For
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Figure 1. The geometry of the channel 
ow, the three regions of

computation, and the chosen coordinate system.

details, the reader is referred to [5, 8]. The domain, as shown in �gure 1, lies

between the wall and an imaginary plane surface in the 
uid, parallel to the wall

and at a distance of �� from it. �� is su�ciently larger than the di�usive and the

logarithmic sublayers for mass, and can be estimated as �h=Sc
1=3 [9], where �h is

the thickness of the hydrodynamic boundary layer. Here, since the 
ow is fully

developed, �h can be approximated as �+ = 180, and �+� = 12:5. The domain is

divided into the conservative region 1 where j r�+ j6= 0, and region 2 where a

source term is added to the scalar conservation-equation to force � to approach

a given value. This can be done as follows

@�
+

@t+
+
�
u+ � r+

�
�
+ =

1

Sc
r+;2

�
+ � �

+(y+) � (�+ � �
+
o ), (1)

where u+ and �+ denote the instantaneous velocity and scalar �elds, respectively.

�
+
o is a constant, and Sc is Schmidt number. Equation (1) can be used for both

regions by choosing properly the function �+, as shown in �gure 2. The slope

of the ramp function �+ is here taken equal to 0:13 in wall-units. The source

term works as a forcing function, imposing to the intantaneous scalar the �xed

value of �+o in region 2. Throughout the remainder of this paper, the domain

containing only regions 1 and 2 will be called the reduced domain. The height

of region 1 is equal to 63% of �+� .

The fringe technique is here used in order to formulate a boundary condition

for the instantaneous scalar at the edge of the di�usive boundary layer. At this

boundary, the turbulent velocity �eld induces 
uctuations to the scalar. The


uctuating part of the scalar must then be modelled. In order to simplify this

fastidious and hazardous task, a very crude model is chosen. The fringe region
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Figure 2. The � function versus the wall-normal direction.

technique annihilates the 
uctuating part of the passive scalar in the vicinity of

the boundary of the reduced domain. It is bluntly assumed that the non-physical

phenomena occuring in the fringe region do not invalidate the solution in the

remaining part of the computational domain [10] (region 1 in �gures 1 and 2).

This assumption has been veri�ed by numerical experiments in [5]. Hereforth, all

variables are nondimensionalized in wall-units. The '+' supersripts are therefore

dropped for notational simplicity. As a �rst step, in order to make comparisons

with earlier numerical and experimental investigations, the case of a scalar set

constant at the wall is considered. The other boundary is set in the 
uid at the

limit of region 2, with a mixed condition

@�

@y
(x; ��; z; t) = �(x; �� ; z; t)� �o. (2)

Equation (2) is a non-re
ecting boundary condition. It guarantees that error

waves travelling from the wall to the centre of the channel are damped, and are

not re
ected towards the wall [11].

For the hydrodynamical equations, a no-slip condition is used at the walls.

The velocity �eld is always computed in a computational domain that contains

both walls of the turbulent channel, and whose width in dimensional units is 2�,

see �gure 1.

3. Numerical Procedure

In this large-eddy simulation, averaging over the volume of the computational

cells is used as the �ltering function. The SGS model is here an anisotropic

version of the Smagorinsky model, and has been validated in a previous work [12].



A rectangular computational cell, numbered M , has the width in i-direction,

�xMi , the area of surface normal to i-direction , �sMi = �xMj �xMk , and a

volume size, �vM = �xM1 �xM2 �xM3 . The modelled Navier-Stokes equation

averaged over the volume using the cell M , which gives the dynamics of large

eddies resolved on the given mesh, can be expressed as

�vM
@uM

i

@t
=P3

j=1�s
M
j

h
�
�
u
(+j)M
i u

(+j)M
j � u

(�j)M
i u

(�j)M
j

�
�
�
p
(+j)M � p

(�j)M�
�ij

i
+
P3

j=1�s
M
j

h�
�
(+j)M
ij � �

(�j)M
ij

�i
+
P3

j=1�s
M
j

h
1p
2
C
2
L
2
j

���sMij ��(+j)M � s
(+j)M
ij �

��sMij ��(�j)M � s
(�j)M
ij

�i
,

where �ij is the resolved stress tensor, and sij twice the instantaneous strain rate

tensor,

�
@ui

@xj
+
@uj

@xi

�
.
��sMij �� denotes the magnitude of twice the strain rate ten-

sor,

�qP3

i=1

P3

j=1 s
M
ij

2
�
, and L2j is the length-scale related to the mesh sizes

according to (�xM1 �xM2 �xM3 )2=9(�xMj )4=3. Considering an instantaneous func-

tion f(x), f
M

stands for the �ltered version of f at the center of cell M, whose

volume is �vM . The superscript (�j)M denotes that the considered �ltered

quantity is evaluated on the cell surface whose center is located at the vector

x
M � 1

2
�xMj ej and whose normal direction is ej . The model constant C was set

to 0:08, as suggested in [12]. The scalar transport equation is similarly �ltered

at each cell M . For more detailed information the interested reader is referred

to Gurniki et al. [13].

The computational domain is periodic in the streamwise and the spanwise di-

rections with corresponding periodicity lengths, �x and �z. The distance between

the channel walls is 2Re� in wall-units. �x and �z are respectively 4� � � Re�

and 2 � � � Re� in wall-units, see �gure 1. Periodic boundary conditions are

applied for the velocity, the 
uctuations of pressure and the passive scalar, in

the streamwise and spanwise directions. As a feature of this study, the use of

di�erent mesh systems for the 
uid velocity �eld and the scalar �eld should be

pointed out. Table 1 shows the characteristics of two meshes. The �rst mesh,

denoted as Mesh 1 � 1 � 1, has a computational domain extended from a wall

to the other and considers the whole cross-section of the channel 
ow. It is used

to compute the 
uid velocity �eld and the mass transfer at Sc = 1. The mesh

used to compute the passive scalar at higher Schmidt numbers is denoted as

Mesh 1� 6� 1, and is limited to zone 1 and 2 in �gures 1 and 2. The grids are

uniform in the mean 
ow direction, and are stretched in the direction normal

to the wall, with the �nest spacing at the walls. The turbulent velocity and the

scalar are computed successively in the following way: the Navier-Stokes equa-

tion is advanced one step in time, and then the 
uid velocity �eld and the eddy

di�usivity are interpolated onto the mesh system used for the scalar �eld. With

the known velocity �eld, the volume average scalar transport-equation is solved.



Table 1. Speci�cations of the meshes.

Nx Ny Nz �x �z �ymin �ymax

Mesh 1� 1� 1 32 42 96 70.7 11.8 1.41 18.9

Mesh 1� 6� 1 32 54 96 70.7 11.8 0.03 0.42

This procedure is repeated by returning to the �rst step and computation for

the next time step.

A fourth order Lagrangian interpolation scheme is used to ensure a su�cient

accuracy in interpolation of turbulent velocity �eld, see e.g. Wang & Squires [14].

The �ltered scalar transport-equation is integrated using a three step, third order

tensor viscosity scheme, [15, 16]. The advection term in the right hand side of the

�ltered equation was approximated with QUICK scheme [17] to keep a second

order spatial accuracy and a numerical stability at the same time. The di�usion

term was discretized using a central di�erentiation.

The initial pro�le in a cross section for the velocity was set parabolic. The

passive scalar calculation was not added until the hydrodynamic simulation had

reached statistically equilibrium state. The initial pro�le in a cross section for

the scalar was set linear at Sc = 1, and was set proportional to y�1=5 for the

calculations made at Sc = 100. It was set identical to the pro�le obtained at

Sc = 100 for the calculations made at Sc = 3000. The calculated variables were

considered to be at equilibrium when variation of the statistical properties in

time was small.

4. Results

In this section results from simulations are given at Schmidt numbers equal to

1, 100 and 3000. The 
ow Reynolds number is 180. The present work checks

�rst that the asymptotic behaviours of the budgets for the Reynolds-
ux vector

are properly predicted by the computations. If the computational method is not

asymptotically correct, it would fail to yield a correct prediction of the 
ow in

the near-wall region [18].

In a second part, the in
uence of Schmidt number on the Reynolds-
ux bud-

get, the scalar variance-rate budget and the scalar dissipation-rate budget is

studied. The results obtained at Schmidt number equal to one are used to vali-

date the present computations with the help of previous studies.

At Schmidt number equal to 100 and 3000, Gurniki et al. [5, 19] already

validated the present computational method for the prediction of the budget for

the passive-scalar. Figures 3a-b show the mean passive-scalar in the di�usive

and the logarithmic sublayers at these two Schmidt numbers. One can see that

� tends to a logarithmic pro�le in the logarithmic layer of the boundary layer

for mass transfer.
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Figure 3. The mean passive-scalar along the wall-normal direction.

a) At Sc = 100. . : Papavassiliou [20], DNS, Re� = 150, without

fringe region technique. Solid line: Present study, LES, Re� = 180,

with fringe region technique. : Present study, LES, Re� = 180,

without fringe region technique. + + + +: � = 3:0 � ln(y) + 285:0.

b) At Sc = 3000. Solid line: Present study, LES, Re� = 180, with

fringe region technique. ++++: Sc�y+. ��� � : � = 3:0�ln(y)+4485.

4.1. Near-wall behaviour of the budgets. In a fully developed channel 
ow,

the mean velocity (Ui) and the passive scalar (�) vary only with the wall-normal

direction y

0 = �
@P

@x
+

@

@y

�
@U

@y
� uv

�
,

0 = �
@P

@y
+

@

@y

n
�v2

o
, (3)

where @P
@x

= �o = � 1
Re
. Integrating these two equations, one obtains

P = Po � v2(y) + �ox,

@U

@y
� uv = �oy +Ro1,

(4)

where Ro1 = 1. Similarly as above, the mass-conservation equation can be

simpli�ed when the 
ow in the channel is fully developed

0 =
@

@y

�
1

Sc

@�

@y
� v�

�
,

which gives,
1

Sc

@�

@y
� v� = �o = �1, (5)



where �o = 1
Sc
(@�
@y
)wall. To analyse the near-wall behaviour of the di�erent

terms in the budget equations, we will expand the instantaneous velocity and

the scalar in Taylor series as follows

u = u1 = b1y + c1y
2 + d1y

3 + :::

v = u2 = c2y
2 + d2y

3 + :::

w = u3 = b3y + c3y
2 + d3y

3 + :::

� = Sc(b�y + c�y
2 + d�y

3 + :::)

p = ap + bpy + cpy
2 + dpy

3 + :::;

where the coe�cients ap, b1, b2,... are functions of x, z and t. The indices 1, 2

and 3 correspond to the x-, y- and z-direction, respectively. The coe�cient c2 in

the u2 expansion is related to the coe�cients b1 and b2 through the continuity

equation

2c2 = �(b1;1 + b3;3). (6)

The following asymptotic behaviours for � and U are known

� = �wall � y � Sc+O(y2),

U = y +O(y2).

From equations (4) and (5), and the Taylor series of the velocity and the passive

scalar, one obtains

� = �wall � y � Sc+
Sc

2
c2b�

4
y
4 +O(y5),

U = y +
�o

2
y
2 +

b1c2

4
y
4 +O(y5).

In analogy with the transport equations for the Reynolds stresses, a transport

equation of the scalar-
ux vector can be written in symbolic form as

Dui�

Dt
= P�i +��i � ��i +Di, (7)

where D=Dt = @=@t+ Uk@=@xk, and the terms in the right-hand-side of are

P�i = �
�
uiuk�;k + uk�Ui;k

�
production rate,

��i = p�;i pressure scalar-gradient term,

��i =

�
1 +

1

Sc

�
�;kui;k di�usive destruction rate,

Di = �

�
uiuk� + p��ik �

1

Sc
ui�;k � �ui;k

�
;k

transport term.

Kawamura et al. [3] consider ��i equal to ��p;i. The two expressions are

equivalent since the 
ow is fully developed.
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Figure 4. At Sc = 3000, the production rates in the near-wall

region. �P�1: numerical, P�2: . numerical , �P�3:

numerical, �P�1: � � �� analytic (2:8 � 10�4 � y3), P�2: + + ++:

analytic (3:0 � 10�5 � y4), �P�3: � � �� analytic (3:0 � 10�7 � y3).

Using the Taylor series above, P�i, ��i, ��i and Di can be expanded as follows

P�1 = Sc(b1c2 � c2b�)y
3 +O(y4),

P�2 = Sc � c22 � y
4 +O(y5), (8)

P�3 = Sc � b3c2 � y
3 +O(y4).

Figure 4 compares expressions (8) with the numerical predictions.

The coe�cients of proportionality in these expressions, so as in all the following

Taylor series of the budgets, are determined graphically. Good agreement is ob-

tained. The slope of the computed wall-normal production has an order slightly

lower than the theoretical in the region described by the three nodes nearest to

the wall. The linear interpolation of the velocity �eld between the two mesh

systems is believed to be responsible for this discrepancy. Since the streamwise

and the spanwise component of the velocity vector vary linearly in the near-wall

region, the production terms in these two directions are correctly predicted.

Similarly, from the Taylor series of the velocity components, of pressure and

the passive scalar, one �nds for the pressure scalar-gradient terms

��1 = Sc � apb�;x � y +O(y2),

��2 = Sc
�
apb� + (2apc� + bpb�)y

�
+O(y2), (9)

��3 = Sc � apb�;z � y +O(y2).

Figure 5 compares the analytic behaviours in the three directions with the nu-

merical predictions of the present study. Good agreement is found.
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Figure 5. At Sc = 3000, the pressure scalar-gradient terms in the

near-wall region. ��1: numerical, ���2: . numerical, ���3:

numerical, ��1: � � �� analytic (4:0 � 10�4 � y), ���2: + + ++

analytic (3:86 � 10�2), ���3: � � �� analytic (2:0 � 10�6 � y).

The near-wall limits of the di�usive destruction rates in the three directions

are

��1 = (Sc+ 1)
�
b1b� + 2(c1b� + b1c�)y

�
+O(y2),

��2 = 2(Sc+ 1)c2b� � y +O(y2), (10)

��3 = (Sc+ 1)
�
b3b� + 2(c3b� + b3c�)y

�
+O(y2).

Figure 6 shows a good agreement between the large-eddy simulations of the

present study and the Taylor series.

In the streamwise direction, the �rst order approximation is found to be correct

until y=1, while it is correct only until y = 0:8 in the wall-normal direction. In

the spanwise direction, the zero order approximation is valid only when y is less

than 0:35. Levich [21], and later Lin et al. [9], proposed that the thickness of the

di�usive boundary layer, ��, would be of the order of magnitude of �h � Sc
�1=3.

According to this result, y � 0:35 = 5=Sc1=3 corresponds to the limit of the

di�usive sublayer.

The Taylor-series of the transport terms in the three directions are presented

below

D1 = (1 + Sc)b1b� + 6(b1c� + c1b�)y +O(y2),

D2 = �Sc � apb� + 2
�
(1 + Sc)c2b� � Sc(apc� + bpb�)

�
y +O(y2), (11)

D3 = (1 + Sc)b3b� + 6(b3c� + c3b�)y +O(y2).

Figure 7 shows good agreement between the large-eddy simulations and the

Taylor series. The zero order approximation of the wall-normal and streamwise

transport terms are found to be valid also in the bu�er layer of the di�usive
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Figure 6. At Sc = 3000, the di�usive destruction rates in the near-

wall region. ���1: numerical, ��2: . numerical, ���3:

numerical, ���1: � � �� analytic (1:0 � 10�2), ��2: + + ++ analytic

(2:0 � 10�4 � y), ���3: � � �� analytic (4:2 � 10�6).
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Figure 7. At Sc = 3000, the transport terms in the near-wall

region. �D1: numerical, D2: . numerical, �D3:

numerical, �D1: � � �� analytic (7:8 � 10�3), D2: + + ++ analytic

(1:2 � 10�3), �D3: � � �� analytic (6:5 � 10�6).

boundary layer. The zero order approximation of the spanwise term is valid

only in the viscous sublayer, as it was found for the di�usive destruction rate. A

close study of the spanwise transport term shows that �(�w;y);y dominates D3.

Since the Taylor series of ��3 and D3 have the same behaviour, it is reasonable

to conclude that w;y can be approximated by a constant only when y � 0:35.



4.2. Reynolds-
ux budget. Rogers et al. [22], and later Wikstr�om et al. [23],

considered  i, the di�erence between the pressure scalar-gradient correlation

term and the di�usive destruction rate. At Sc = 0:71 and Re� = 265, Wikstr�om

et al. found that  i and the production term are the dominating terms in the

transport equation for the streamwise 
ux. Kawamura et al. [3] obtained the

same result at Sc = 0:6 and Re� = 180. The computations of the present study

at Sc = 1 show the same behaviour for y > 50, see �gure 8c.

At Sc = 0:71 and Re� = 265, for the streamwise component of the 
ux-

vector, Wikstr�om et al. also found an approximate balance between pressure

scalar-gradient correlation and production except in the near-wall region. This

result is in good agreement with the present computations.

When Schmidt number increases, the production term is found to diminuish,

and at Sc = 3000, the budget for the transport equation of the streamwise 
ux

is dominated mainly by the di�usive destruction rate and the transport term,

see �gure 8a.

Figure 8 shows that at a high Schmidt number, the di�usive destruction rate

is the dominant term in  x. Instead,  y is dominated by the pressure scalar

gradient-term, see �gure 9a-b. For both the streamwise and the wall-normal 
ux,

the production term decreases when Schmidt number increases and is greater

than one. This result is expected because production of turbulence energy is

maximum in the bu�er layer of the hydrodynamic layer. Moreover �uiuk�;k is

dominant in the production rate. When the di�usive boundary layer lies entirely

in the viscous sublayer, the turbulence energy produced in the bu�er layer of the

hydrodynamic boundary layer is only partly transmitted to the passive scalar

in the near-wall region. As Wikstr�om et al. report it in [23], the present study

found that  y and the production term dominate the budget for the wall-normal


ux component. Near the wall, the transport terms and  y are dominant, see

�gure 9.

In the spanwise 
ux budget, the balance is dominated by transport and the

di�usive destruction rates at Schmidt number 3000, see �gure 10a. Near the wall

the destruction rate is positive, instead of being negative, as in the budget for

the streamwise 
ux.

In general, for the three components of the scalar 
ux-vector, and at Sc =

3000, the transport terms and  i are found to dominate the budget.

4.3. Scalar variance-rate budget. The transport equation for half the scalar

variance, k� = �2=2, a quantity akin to the turbulent kinetic energy, is obtained

by multiplying the transport equation for the scalar 
uctuations with the 
uc-

tuating scalar �, and then taking the ensemble average of the resulting equation.

This yields

Dk�

Dt
= P� � �� +Dk� . (12)
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Figure 8. Terms in the budget of the streamwise 
ux u�. P�1: ,

D1: . , ��1: , ���1: � � ��. a) At Sc = 3000. b) At Sc = 100.

c) At Sc = 1.

The terms of the right-hand-side are

P� = �ui��;i production rate,

�� =
1

Sc
(�;k)2 dissipation rate,

Dk� =

�
1

Sc
k�;i �

1

2
ui�

2

�
;i

molecular and turbulent di�usion term.

At Sc = 0:71 and Re� = 265, Wikstr�om et al. [24], and at Sc = 1 and Re� =

180, Kawamura et al. [2] found that there is an approximate balance between

production and dissipation for the scalar variance budget except in the near-

wall region. Both the turbulent di�usion and the molecular di�usion terms

are negligible except near the wall. At the wall there is a balance between
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Figure 9. Terms in the budget of the wall-normal 
ux v�. P�2: ,

D2: . , ��2: , ���2: � � ��. a) At Sc = 3000. b) At Sc = 100.

c) At Sc = 1.

molecular di�usion and dissipation. These results are in good agreement with

the predictions of the present study at Sc = 1, see �gure 11c. Here, molecular

and turbulent di�usion are compiled in Dk� . In the centre of the channel, Dk� is

not found to be exactly equal to zero. This is due to some lack of convergence of

the present statistics. The same defect was obtained at higher Schmidt numbers,

see �gures 11a and 11b. At high Schmidt number the budget is dominated by

the molecular and the di�usion terms, and the production term, see �gure 11a.

Figure 11 shows that the relative importance of the dissipation rate decreases,

and of the di�usion rates increase, when Schmidt number increases.
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Figure 10. Terms in the budget of the spanwise 
ux w�. P�3: ,

D3: . , ��3: , ���3: � � ��. a) At Sc = 3000. b) At Sc = 100.

c) At Sc = 1.

4.4. Scalar dissipation-rate budget. The transport equation for the scalar

dissipation rate �� =
1
Sc
(�;k)2 is

D��

Dt
= D�� + P

1
��
+ P

2
��
+ P

3
��
� Y , (13)



0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1
x 10

−4

y

a)

Gain

Loss

b)

Gain

Loss

c)

Gain

Loss

y

0 5 10 15 20 25

−2

−1

0

1

2

3
x 10

−4

y

0 50 100 150
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Figure 11. Terms in the budget of the scalar variance-rate budget.

P�: , Dk
�
: . , ���: � � ��. a) At Sc = 3000. b) At Sc = 100. c)

At Sc = 1.

where the terms on the right-hand-side of the above equation are

D�� =

�
1

Sc
��;k � uk�

0

�

�
;k

molecular and turbulent di�usion term,

P
1
�
�

= �
2

Sc

�
�;j�;kUj;k + uj;k�;k�j

�
production rate,

P
2
��
= �

2

Sc
uj�;k�;kj gradient production term,

P
3
��
= �

2

Sc
uj;k�;k�;j turbulent production term,

Y =
2

Sc2
(�;jk)2 dissipation rate,
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where �
0

� =
1
Sc
(�;k)

2. As shown in �gure 12, no qualitative changes in the struc-

ture of the budget for the dissipation-rate are found when Schmidt number varies.

At Schmidt number equal to one, the dissipation rate (Y ) and the turbulent pro-

duction term (P 3
��
, corresponding to vortex stretching energy [24]) dominate the

budget, except in the near-wall region. This result is in good agreement with the

scalar dissipation-rate budget found by Wikstr�om et al. [24] at Schmidt number

equal to 0:71. In the near-wall region, the production rate (P 1
��
) is signi�cant.

At high Schmidt number, the scalar gradient and its derivative are very large.

A high order in space is then required for the precision of their derivatives. The

obtained wiggles for the di�usion and the dissipation terms in �gure 12a are

consequently expected, since D�� and Y contain a second order derivative of the



computed scalar. The present result is nevertheless interesting because it allows

a qualitative analysis of the dissipation-rate budget, but one should keep in mind

that the accuracy of this result remains to be improved.

5. Conclusions

Large-eddy simulations for turbulent transport of a passive scalar were made

at Schmidt numbers equal to 1, 100 and 3000. The purpose of this work was

to provide knowledge about the physics of the transport process as input to

simpli�ed models for the Reynolds-
ux vector at high Schmidt number. The


ow Reynolds number was 180. The accuracy of the present computations in

the near-wall region was validated by comparisons with analytic expressions in

the near-wall-region.

At Schmidt number equal to one, good agreement was found between previous

studies and the predictions of the present study. At Schmidt number equal to

3000, the balance in the transport equations of the Reynolds-
ux vector is dom-

inated by  i (the di�erence between the pressure scalar-gradient term and the

di�usive destruction rate) and the transport term Di.  x and  z are dominated

by the di�usive destruction rate and  y by the pressure scalar-gradient term.

The transport equation for half the scalar variance and the corresponding

dissipation were studied. At high Schmidt number the budget is dominated

by the molecular and the turbulent di�usion term, and the production term.

For transport equation of the scalar dissipation, no qualitative changes in the

structure of the budget were found when Schmidt number varies. The dissipation

rate and the turbulent production term dominate the budget, except in the near-

wall region.

The numerical experiments made in this study showed that several useful sim-

pli�cations can be made in the near-wall region for the budgets of the Reynolds-


ux, the variance and the dissipation rate. They can be summarized as shown

below

Du1�

Dt
= ���1 +D1, when y � 2.

Du2�

Dt
= ��2 +D2.

Du3�

Dt
= ���3 +D3.

Dk�

Dt
= P� +Dk� .

D��

Dt
= D�� + P

1
��
+ P

2
��
+ P

3
��
� Y , no simpli�cation.
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ON MODELLING THE REYNOLDS-FLUX VECTOR AT HIGH

SCHMIDT NUMBER

Fran�cois Gurniki

Fax�en Laboratory, KTH, S-100 44, Stockholm, Sweden

Abstract. Large-eddy simulation (LES) of turbulent passive-scalar trans-

fer in a three-dimensional channel 
ow was carried out for various Schmidt

numbers ranging from 1 to 3000. The turbulent Reynolds number based

on the channel half-width was 180. Two explicit algebraic models for

the Reynolds-
ux vector, validated in previous studies at Schmidt num-

ber around unity, are examined. At high Schmidt number, good agreement

is found with the predictions of the present study. A wall-function for the

mean passive-scalar is proposed on the basis of the simplest tested alge-

braic model. A new explicit algebraic model for the turbulent 
ux of the

passive scalar is proposed for high Schmidt number. Very good agreement

is obtained with the present LES computations at Schmidt numbers equal

to 100 and 3000.

1. Introduction

Turbulence in wall-bounded 
ows with mass transfer has been widely studied

during the last decades. Early models are based on zero-order models for velocity

�eld and the assumption of a constant turbulent Schmidt number, Sct, to relate

the Reynolds-
uxes, ui�, to the Reynolds stresses, uiuj . At a higher order

closure-level, two-equation models have been used for the velocity �eld, while

the assumption of a constant Sct is still invoked to model the mass 
uxes. Most

of these approaches consist of using wall-functions to bridge the gap between the

region in which the model is valid and the wall [1]. For simple 
ows this method

was shown to give good results [2, 3]. It appears to be much more di�cult

to derive wall-functions and models for the the Reynolds-
ux vector for more

complex 
ows, such as 
ows at very high Schmidt number.

Algebraic models for the Reynolds-
ux vector have been derived by various

reseachers [1, 4, 5, 6]. At Schmidt numbers around unity, the transport equation

for ui� is reduced to an algebraic equation by assuming that the convective and

di�usive transport of the Reynolds-
ux vector are proportional to the transport

of the turbulent kinetic energy, k, and the variance of the passive scalar, �2. If

equilibrium turbulence is assumed, the obtained system of equations for ui� can

be linearized.

In a previous study, Gurniki et al. [7] used large-eddy simulations in a chan-

nel 
ow with mass transfer at Schmidt number equal to 3000, and a numerical

technique to reduce the computational domain for the passive-scalar �eld to

the di�usive boundary layer. This so called fringe region technique had been
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Figure 1. The geometry of the channel 
ow, the three regions of

computation, and the chosen coordinate system.

previously used for computations of more di�cult 
ows, like an increasing hy-

drodynamic boundary layer along a 
at plate [8, 9, 10].

The goal of the present work is to test and validate explicit algebraic mod-

els for the Reynolds-
ux vector at high Schmidt number with the help of LES

computations. The paper is organized in the following way: the mathematical

problem and the numerical procedure are formulated in section 2. Results from

numerical studies are presented in section 3 and conclusions presented in section

4.

2. Theory

In this study, turbulent 
ow in an in�nitely large channel is considered. The

walls are assumed to be at a distance of 2� (see �gure 1) and the 
ow is driven

by a constant pressure gradient, strong enough to make gravitational e�ects

negligible. The coordinate system is chosen so that the walls are located at

y = ��.
The 
ow can be described by the Navier-Stokes equations for an incompress-

ible 
uid, the continuity equation, and a transport equation for the passive scalar.

The equations are nondimensionalized by u� , the friction velocity, l
� = �=u� , the

length scale in wall units, and l�=u� , the time scale. The scalar �eld � can be

made dimensionless by using the mean scalar 
ux at the wall, i.e. � D
u�

�
@�
@y

�
wall

,

where � is the mean value of the dimensional instantaneous scalar, and D the

scalar di�usivity.

At very high Schmidt number, the di�usive boundary layer is located very

close to the walls. Outside this layer, the distribution of the mean passive-scalar

� is almost uniform. It is therefore useless to compute the scalar everywhere



in the channel. For that reason, a method to reduce the mathematical and the

numerical domain of investigation to the near-wall region is outlined below. For

details, the reader is referred to [10, 11].

The domain, as shown in �gure 1, lies between the wall and an imaginary

plane surface in the 
uid, parallel to the wall and at a distance of �� from it. ��
is su�ciently larger than the di�usive and the logarithmic sublayers for mass, and

can be estimated as �h=Sc
1=3 [12], where �h is the thickness of the hydrodynamic

boundary layer. Here, since the 
ow is fully developed, �h can be approximated

as �+ = 180, and �+� = 12:5. The domain is divided into the conservative region

1 where j r�+ j6= 0, and region 2 where a source term is added to the scalar

conservation-equation to force � to approach a given value. This can be done as

follows

@�+

@t+
+
�
u+ � r+

�
�+ =

1

Sc
r+;2�+ � �+(y+) � (�+ � �+o ), (1)

where u+ and �+ denote the instantaneous velocity and scalar �elds, respectively.

�+o is a constant, and Sc is Schmidt number. Equation (1) can be used for both

regions by choosing properly the function �+, as shown in �gure 2. The slope

of the ramp function �+ is here taken equal to 0:13 in wall-units. The source

term works as a forcing function, imposing to the intantaneous scalar the �xed

value of �+o in region 2. Throughout the remainder of this paper, the domain

containing only regions 1 and 2 will be called the reduced domain. The height

of region 1 is around the two thirds of �+� .

The fringe technique is here used in order to be able to formulate a boundary

condition in region 2 for the instantaneous scalar at the edge of the di�usive

boundary layer. It annihilates with the help of a source term the 
uctuating part

of the passive scalar in the vicinity of the boundary of the reduced domain. It is

bluntly assumed that the non-physical phenomena occuring in the fringe region

do not invalidate the solution in the remaining part of the computational domain

[13] (region 1 in �gures 1 and 2). This assumption has been veri�ed by numerical

experiments in [11]. Hereforth, all variables are nondimensionalized in wall-units.

The '+' supersripts are therefore dropped for notational simplicity. As a �rst

step, in order to make comparisons with earlier numerical and experimental

investigations, the case of a scalar set constant at the wall is considered. The

other boundary is set in the 
uid at the limit of region 2, with a mixed condition

@�

@y
(x; ��; z; t) = �(x; �� ; z; t)� �o. (2)

Equation (2) is a non-re
ecting boundary condition. It guarantees that error

waves travelling from the wall to the centre of the channel are damped, and are

not re
ected towards the wall [14]. Note that the source term in equation (1)

forces � to approach �o in the fringe region.

For the hydrodynamical equations, a no-slip condition is used at the walls.

The velocity �eld is always computed in a computational domain that contains



Table 1. Speci�cations of the meshes.

Nx Ny Nz �x �z �ymin �ymax

Mesh 1� 1� 1 32 42 96 70.7 11.8 1.41 18.9

Mesh 1� 6� 1 32 54 96 70.7 11.8 0.03 0.42

both walls of the turbulent channel, and whose width in dimensional units is 2�,

see �gure 1.

In this large-eddy simulation, averaging over the volume of the computational

cells is used as the �ltering function. The SGS model is here an anisotropic

version of the Smagorinsky model, and has been validated in a previous work

[15]. The scalar transport equation is �ltered at each cell M with the same

methodology as for the velocity. For more detailed information the interested

reader is referred to Gurniki et al. [16].

The computational domain is periodic in the streamwise and the spanwise di-

rections with corresponding periodicity lengths, �x and �z. The distance between

the channel walls is 2Re� in wall-units. �x and �z are respectively 4� � � Re�
and 2 � � � Re� in wall-units, see �gure 1. Periodic boundary conditions are

applied for the velocity, the 
uctuations of pressure and the passive scalar, in

the streamwise and spanwise directions. As a feature of this study, the use of

di�erent mesh systems for the 
uid velocity �eld and the scalar �eld should be

pointed out. Table 1 shows the characteristics of two meshes. The �rst mesh,

denoted as Mesh 1� 1� 1, has a computational domain extended from a wall to

the other and considers the whole cross-section of the channel 
ow. It is used to

compute the 
uid velocity �eld and the mass transfer at Sc = 1. The mesh used

to compute the passive scalar at higher Schmidt numbers is denoted as Mesh

1 � 6 � 1, and is limited to regions 1 and 2 in �gures 1 and 2. The grids are

uniform in the mean 
ow direction, and are stretched in the direction normal

to the wall, with the �nest spacing at the walls. The turbulent velocity and the

scalar are computed successively in the following way: the Navier-Stokes equa-

tion is advanced one step in time, and then the 
uid velocity �eld and the eddy

di�usivity are interpolated onto the mesh system used for the scalar �eld. With

the known velocity �eld, the volume average scalar transport-equation is solved.

This procedure is repeated by returning to the �rst step and computation for

the next time step.

A fourth order Lagrangian interpolation scheme is used to ensure a su�cient

accuracy in interpolation of turbulent velocity �eld, see e.g. Wang & Squires [17].

The �ltered scalar transport-equation is integrated using a three step, third order

tensor viscosity scheme, [18, 19]. The advection term in the right hand side of the

�ltered equation was approximated with QUICK scheme [20] to keep a second

order spatial accuracy and a numerical stability at the same time. The di�usion

term was discretized using a central di�erentiation.
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Figure 2. The � function versus the wall-normal direction.

The initial pro�le in a cross section for the velocity was set parabolic. The

passive scalar calculation was not added until the hydrodynamic simulation had

reached statistically equilibrium state. The initial pro�le in a cross section for

the scalar was set linear at Sc = 1, and was set proportional to y�1=5 for the

calculations made at Sc = 100. It was set identical to the pro�le obtained at

Sc = 100 for the calculations made at Sc = 3000. The calculated variables were

considered to be at equilibrium when variation of the statistical properties in

time was small.

3. Results

In this section results from large eddy-simulations for turbulent transport of

a passive scalar are presented at Schmidt numbers (Sc) equal to 1, 100 and

3000. The 
ow Reynolds number is 180. At Schmidt number equal to 3000, the

present work examines two explicit algebraic models for the Reynolds-
ux vector

validated in previous studies at Sc = 0:71 and 1 [21, 22]. A theoretical pro�le

for the mean passive-scalar is derived on the basis of one of these models. The

present study tests also a new explicit algebraic model derived on the basis of a

simpli�cation in the budget of the Reynolds-
ux vector as in [7].

Kawamura et al. [23] studied the asymptotic behaviour of the nondimensional

ratio r of the thermal time-scale, �2

2��
, and the dynamical time-scale, k

�
, where

�� is the dissipation term of temperature variance. r is an important parameter,

since it is part of many algebraic models for the Reynolds-
ux vector. The study

of its magnitude is also of importance because it gives an estimation of the rel-

ative importance of the two time-scales. Kawamura et al. showed that r tends
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exactly to Sc as the wall is approached. The present LES agree with this theo-

retical result, as shown in �gure 3, for Schmidt number equal to 1, 100 and 3000.

These three computations of both dynamical and heat fundamental statistical

quantities, indicate that the present code reproduces correctly the physics in the

near-wall region. As shown in �gure 3, it is not possible to consider r constant

in this region.

At Sc = 0:71 and for a two-dimensional 
ow around a cylinder, Wikstr�om

et al. [6] reported a model for the Reynolds-
ux vector. It is a truncation

of the more general expression developed by Shih et al. [24] with the help of

dimensional analysis and invariant theory. The scalar-
ux can be described as

following

ui� = av � k � ��;i +
k2

�
� (a2Ui;j + a3Uj;i)�;j , (3)

where � is a turbulent time-scale. Wikstr�om et al. found that the Reynolds-
ux

vector was best captured using a mixed time-scale between the dynamical and

the heat time-scale, � =

q
k�2

2���
. For the channel 
ow at Sc = 1, 100 and 3000

the present study found that the wall-normal component was correctly predicted

by equation (3), when the streamwise component was not. A modi�ed model,

correcting the above equation with damping functions in the near-wall region,

was developed by So et al. [1] for fully developed channel 
ows, and Schmidt

number around unity. Fairly good results were obtained at Sc = 3000 with this

model, as shown in �gure 4. The Reynolds-
ux vector was here modelled as
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follows

�ui� = �t
@�

@xi
� �

cT1
�

f[2�t + (1� cT2)�t]Sik + (1� cT2)�t
ikg
@�

@xk
,

�t = cT3
k2

�

�
1 +

3:45p
Ret

�
tanh

�y
9

�
, (4)

�t = c� � k � �
"�

1�
�
1� e�

y

A

�2� c�1

Re
1=4
t

+
�
1� e�

y

A

�2#
.

where Sik is here the mean strain rate, 
ik the mean rotation rate, cT1(Sc =

3000) = 3:28, cT2(Sc = 3000) = 0:4, cT3(Sc = 3000) = �4:5 � 10�3, c�(Sc =

3000) = �9:5 � 10�5, c�1(Sc = 3000) = 0:3, A(Sc = 3000) = 3 and av(Sc =

3000) = 0:0017 = �a�. Ret =
k2

�
. Note the simplicity of the model for the

Reynolds 
ux in equation (3) in the wall-normal direction, which is usually

found to be easier to model than the streamwise component [1].

At lower Schmidt numbers, Sc = 1 and 100, equation (3) does not give accept-

ably accurate results for the wall-normal component of the Reynolds-
ux vector,

because it drastically underpredicts the 
ux at the center of the channel. Noting

that model (3) was tested for a cylinder wake, this result is expected since only

the wall-normal component of the 
uctuating velocity in the near-wall regions

of a channel 
ow has similar structure with the wall-normal 
uctuating velocity

close to the axis of symmetry of a two-dimensional cylinder wake.

Equation (3) is constituted by the �rst two terms of a constitutive relation

developed by Shih et al. [24]. The present study considered also the complete
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relation for the streamwise component of the Reynolds-
ux vector. No improve-

ment was obtained.

At Schmidt number equal to 1 and 100, the model developed by So et al. [1]

gives reasonable results for u�, but quite poor for v�, see �gures 5 and 6. So

et al. validated the model by setting a constant passive-scalar-
ux at the walls.

With these boundary conditions, the y-component of the Reynolds-
ux vector

must be zero at the centre of the channel. The damping function of the thermal



di�usivity �t of equation (4) has been calibrated according to these boundary

conditions.

Wikstr�om et al. [22] derived an algebraic relation for the Reynolds-
ux vector,

and the performance of the model was investigated in a homogeneous shear 
ow,

a channel 
ow and a heated cylinder wake. Very good predictions were found in

all cases. For the channel 
ow, the considered turbulent Reynolds and Schmidt

numbers were equal to 265 and 0:71, respectively. The model can be described

as following

ui�p
kk�

= �(1� c�4)A
�1
ij

ujul

k
�;l, (5)

where the inverse of the matrix A is given by

A�1 =
(G2 � 1

2
Q1)I�G(cSS+ c

) + (cSS+ c

)

2

G3 � 1
2
GQ1 +

1
2
Q2

, (6)

and cS = 1 � c�2 � c�3, c
 = 1 � c�2 + c�3, Sij =
1
2
k
�

�
@Ui
@xj

+
@Uj
@xi

�
and 
ij =

1
2
k
�

�
@Ui
@xj

� @Uj
@xi

�
.

In the case of a fully developed 
ow in a channel, equations (5) and (6) become

u� =
p
kk�c�4

@�

@y

"
A�111

uv

k
+A�112

v2

k

#
,

v� =
p
kk�c�4

@�

@y

"
A�121

uv

k
+A�122

v2

k

#
,

A�111 =
1

G
+

k2

4�2
(U;y)

2 (c
2
S � c2
 � 2cSc
)

G3 � 1
2
GQ1

,

A�112 = � k

2�
U;y

(cS + c
)

G2 � 1
2
Q1

,

A�121 = � k

2�
U;y

(cS � c
)

G2 � 1
2
Q1

,

A�122 =
1

G
+

k2

4�2
(U;y)

2 (c
2
S � c2
 + 2cSc
)

G3 � 1
2
GQ1

,

where G = 1
2

�
2c�1 � 1� 1

r
+ Pk

�

�
, Pk = �uv @U

@y
, Q1 =

k2

2�2
(U;y)

2(c2S � c2
), c�1 =
1:6(1 + 1=r) and Q2 = 0. As shown in �gures 7 and 9, good agreement is found

between this model and the present computations, at Sc = 1 and 3000, but

the wall-normal Reynolds-
ux is underpredicted in the logarithmic region of the

di�usive boundary layer at Sc = 100. This result can be explained by the

values chosen for the constants c�2 and c�3 in the present study, that account

for the e�ect of the rapid pressure in  i (see equation (10)). The e�ect is not

well understood and Wikstr�om et al. took these constants equal to zero in order
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Figure 7. At Sc = 3000, the mean Reynolds-
ux vector along

the wall-normal distance. Model proposed by Wikstr�om et al. [22].

Solid line: ui�
LES

. � � ��: ui�
model

. a) i = 1, streamwise direction.

c�1 = 3:2, c�2 = 1, c�3 = 0:5 and c�4 = 4:0 � 102. b) i = 2, wall-

normal direction. c�1 = 3:2, c�2 = 1, c�3 = 0:5 and c�4 = 2:0� 101.
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Figure 8. At Sc = 100, the mean Reynolds-
ux vector along the

wall-normal distance. Model proposed by Wikstr�om et al. [22]. Solid

line: ui�
LES

. � � ��: ui�
model

. a) i = 1, streamwise direction.

c�1 = 3:2, c�2 = 0:05, c�3 = 0:05 and c�4 = 4 � 102. b) i = 2, wall-

normal direction. c�1 = 3:2, c�2 = 0:05, c�3 = 0:05 and c�4 =

2:0 � 101.

to eliminate their contribution. At higher Schmidt number than unity, the zero

values for c�2 and c�3 produce results in less agreement than in �gure 8.
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Figure 9. At Sc = 1, the mean Reynolds-
ux vector along the wall-

normal distance. Model proposed by Wikstr�om et al. [22]. Solid line:

ui�
LES

. � � ��: ui�
model

. a) i = 1, streamwise direction. c�1 = 3:2,

c�2 = 0:5, c�3 = 0:5 and c�4 = 1:5 � 104. b) i = 2, wall-normal

direction. c�1 = 3:2, c�2 = 0:5, c�3 = 0:5 and c�4 = 8:5 � 102.

The improvement of prediction for the Reynolds-
ux vector is very good com-

pared with the predictions of the previous model. c�4 could not be found identical

for the two components of the Reynolds-
ux vector.

In analogy with the transport equations for the Reynolds stresses, a transport

equation of the scalar-
ux vector can be written in symbolic form as

Dui�

Dt
= P�i +

Q
�i � ��i +Di = P�i +  i +Di, (7)

where D=Dt = @=@t + Ul@=@xl, and the terms on the right-hand-side of the

above equation are identi�ed as follows

P�i = �
�
uiul�;l + ul�Ui;l

�
production rate,Q

�i = p�;i pressure scalar-gradient term,

��i =

�
1 +

1

Sc

�
�;lui;l viscous di�usion rate,

Di = �
�
uiul� + p��il �

1

Sc
ui�;l � �ui;l

�
;l

turbulent transport term.

At high Schmidt number in the near-wall region, Gurniki et al. [7] showed

that the budget for the Reynolds-
ux vector (7) can by simpli�ed by neglecting

the production rate. Assuming equilibrium for the 
ow, equation (7) becomes

 i +Di = 0 (8)
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Figure 10. At Sc = 3000,  i along the wall-normal distance.

Model proposed by Wikstr�om et al. [22]. c�1 = 3:8, c�2 = �3:5,

c�3 = �0:65, c�4 = 15. a) Solid line:  model
1 . ���:  LES1 . b) Model

prediction of  2. Dashed line:  model
2 . � � �:  LES2 .

This equation will be used below as the basis of an algebraic model for the

Reynolds-
ux vector.

Wikstr�om et al. [22] validated a model for the di�erence of the pressure

scalar-gradient term,
Q

�i, and the viscous di�usion rate, ��i

 i = p�;i �
�
1 +

1

Sc

�
�;kui;k =

Q
�i � ��i. (9)

A linear model was considered, but a more performant version including a non-

linear term was chosen. For simplicity, only the linear has been used here. The

model term reads as

 i = �c�1
1

�
ui� + c�2ul�Ui;l + c�3ul�Ul;i + c�4uiul�;l, (10)

where c�i have been considered constants and tested with di�erent values for a

2D and a 3D geometry (a heated cylinder and a channel 
ow). � is the mixed

time-scale used in the previous chapter.

Figure 10 compares the above model with the present LES computations.

The agreement is not excellent, but better than the one reported by Wikstr�om

et al. [22]. They explained this discrepancy by the linearity of model (10) for

 i, when the physical phenomena in the near-wall region are non-linear. Before

solving equation (8) for ui�, that states  i +Di = 0, one must provide a model

for the turbulent transport term Di. As shown in �gure 11, �
�
�ui;y�

�
;y
is the

dominant term in Di in the streamwise and the wall-normal direction. As the

�rst step in the development of a new model for the Reynolds-
ux vector, a

model for Di based on equation (4) is considered. Deriving this equation in the

wall-normal direction, ui;y� can be identi�ed as the terms of
�
ui�
�
;y
that do not
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Figure 11. At Sc = 3000, The turbulent transport term

Di in the budget. a)For the streamwise 
ux. Dashed line:

�

�
uv� � 1

Sc
u�;y � �u;y

�
;y
. Solid line: �

�
��u;y

�
;y
. b)For the wall-

normal 
ux. Dashed line: �
�
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Sc
v�;y � �v;y

�
;y
. Solid line:

�

�
��v;y

�
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Figure 12. At Sc = 3000, model proposed by the present study

for ui;y�. Solid line: ui;y�
LES

. � � �: ui;y�
model

. a) i = 1. b) i = 2.

depend on the second derivative for the mean passive-scalar. Here, it is assumed

that ui�;y are proportional to d2�
dy2

. ui;y� can then be modelled as follows

�ui;y� = �
0

t
@�
@xi

� �
0

cT1
f[2�t + (1� cT2)�t]Sik + (1� cT2)�t
ikg @�

@xk

� �
cT1

f[2�t + (1� cT2)�t]Sik + (1� cT2)�t
ikg
0

@�
@xk

. (11)
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Figure 13. At Sc = 3000, model proposed by the present study

for ui�. Solid line: ui�
LES

. � � �: ui�
model

. a) i = 1, c�1 = 3:8,

c�2 = �3:5, c�3 = �0:65, c�4 = 15 and c�5 = 7. b) i = 2, c�1 = 3:8,

c�2 = �3:5, c�3 = �0:65, c�4 = 15 and c�6 = 0:21.

The superscript ' is equivalent to the �rst derivative in the wall-normal direction.

Good agreement was obtained between the present LES computations and this

model, see �gure 12. The wall-normal component was slightly better predicted.

Equations (10) and (11) are then inserted in (8). The obtained equation system

for the Reynolds-
ux vector is linear and can be described as following"
�c�1
�

c�2 � U 0

c�3 � U
0

�c�1
�

# �
u�

v�

�
=

"
�(u;y�)0 � c�4uv ��0

�(v;y�)
0 � c�4v2 ��

0

#
(12)

The solution of equation (12) is straightforward

8>>>>>>>>>>>><
>>>>>>>>>>>>:

u� = �c�5
�2c�2c�3(U

0

)2�c2
�1

�

h
c�1�

�
d
dy
(u;y�) + c�4uv ��0

�
+ c�2�

2U
0

�
d
dy
(v;y�) + c�4v2 ��0

�i

v� = �c�6
�2c�2c�3(U

0

)2�c2
�1

�

h
c�3�

2U
0

�
d
dy
(u;y�) + c�4uv ��

0

�
+ c�1�

�
d
dy
(v;y�) + c�4v2 ��

0

�i
,

The coe�cients c�5 and c�6 are added to correct the model. Figure 13 com-

pares at Sc = 3000 the above model with the present LES computations. Al-

though some wiggles found in the logarithmic region of the di�usive boundary

layer, it clearly shows an improvment in comparison to model (4) for the stream-

wise component of the Reynolds-
ux vector. These wiggles are probably due to

the second derivative of the dissipation rate � contained in equation (12). The
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Figure 14. At Sc = 100, model proposed by the present study

for ui�. Solid line: ui�
LES

. � � �: ui�
model

. a) i = 1, c�1 = 380,

c�2 = �3:5, c�3 = �0:065, c�4 = 15 and c�5 = 7. b) i = 2, c�1 = 380,

c�2 = �3:5, c�3 = �0:065, c�4 = 15 and c�6 = 0:68.
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Figure 15. At Sc = 1, model proposed by the present study for

ui�. Solid line: ui�
LES

. ���: ui�
model

. a) i = 1, c�1 = 392:8, c�2 =

�3:5, c�3 = �0:045, c�4 = 15 and c�5 = 8. b) i = 2, c�1 = 392:8,

c�2 = �3:5, c�3 = �0:045, c�4 = 15 and c�6 = 0:5.

good behaviour of equation (12) is also the con�rmation that assumption (8),

setting that the production rate is negligible at high Schmidt numbers in the

budget for the Reynolds-
ux vector, is valid.

Figures 14 and 15 show the predictions of the same model at Sc = 1 and

100. At Sc = 1, its behaviour is worse than the previous model but this is not

surprising, since it has been developed for a 
ow at Sc = 3000. Note however, the



relative good result for the streamwise component of the Reynolds-
ux vector.

On the other hand, it shows a better agreement with LES at Sc = 100, see

�gures 8 and 14. As shown in �gures 13, 14 and 15, c�2 and c�4 are found to be

constant, and c�1 and c�3 vary linearly with Schmidt number as following

c�1(Sc) = 392:93� 0:1297 � Sc,

c�3(Sc) = �0:0448� 2:02� 10�4 � Sc.
The coe�cients of correction, c�5 and c�6, are found almost constant. In conclu-

sion, the model proposed in the present study seems to be more performant at

high Schmidt numbers than the model examined by Wikstr�om et al. [22].

In the previous chapter, a simple model for the Reynolds-
ux vector has been

developed for channel 
ows at high Schmidt numbers, and has been successfully

tested at Sc = 100 and 3000. In order to obtain a complete model for the passive-

scalar-transfer, one needs a proper boundary condition for �. Wall-functions

have the function of boundary conditions situated at a certain distance from the

wall.

At high Schmidt number, although equation (3) does not give a very satisfac-

tory prediction of the streamwise Reynolds-
ux, it remains quite useful because

it makes the formulation of a more general wall-function for the mean passive

scalar possible. If one considers the mass-conservation equation for a fully de-

veloped 
ow, it is obtained

1

Sc

@�

@y
� v� = �o, (13)

where �o =
1
Sc
(@�
@y
)wall. Using equation (3), equation (13) becomes

@�

@y
=

�
@�

@y

�
wall

� a� � k � �
@�

@y
,

(14)

where a� is a positive constant, possibly dependent on Schmidt number. One

can then derive an integral function for the mean passive scalar as a function of

the wall-normal distance

�(yo) = �wall +

�
@�

@y

�
wall

�
Z yo

0

dy

1 + a�k�
.

(15)

This equation can be integrated in the near-wall region if the Taylor series of

the turbulent kinetic energy and the time scale � are considered. It can easily

be shown that a� � k � � = A�(Sc) � y4+O(y5) when the wall is approached. This

result is obtained when one considers the limiting behaviour near the wall, of

the velocity components and the temperature 
uctuations [23]. Equation (15)
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Figure 16. At Sc = 3000, the mean pro�le of the passive scalar

along the wall-normal distance. Solid line: �LES. ++++: �model.

a) In the di�usive and the bu�er region. A� = 3=2. b) In the

'logarithmic' region of the di�usive boundary layer. A� = 0:12.

can then be integrated with the help of this approximation, and � is found as a

function of y as follows

�(y) = �wall +
(@�=@y)wall

A
1=4

� 2
p
2

"
1

2
ln

 
z2 + z

p
2 + 1

z2 � z
p
2 + 1

!
+ arctan

 
z
p
2

1� z2

!#
,

(16)

where z = yA
1=4

� . Using the same methodology, Gersten et al. [25] developed

also an analytic solution for the passive scalar but used a di�erent model for the

wall-normal component of the Reynolds 
ux, where v� = ��t @�@y and the turbu-

lent Schmidt number is considered constant. Since it has been shown previously

(see [23]) that Sct is not constant, the present study considers in equation (4)

v� = ��t @�@y . Equation (16) gives good results in the near-wall region, and sur-

prisingly, even in the logarithmic region of the di�usive boundary layer, provided

that another value for A� is chosen, see �gure 16. This result tends to prove that

the asymptotic behaviour of k �� as y4 is valid even outside the di�usive sublayer.

4. Conclusions

Large-eddy simulations for turbulent transport of a passive scalar were made

at Schmidt numbers equal to 1, 100 and 3000. The 
ow Reynolds number was

180. The purpose of this work was to provide explicit algebraic models for the

Reynolds-
ux vector at high Schmidt number.

Two models from previous studies [21, 22] were tested, and one was developed

on the basis of a previous work [7] for the budget of the scalar 
ux. At Sc = 3000



and 100, the model developed in the present study was shown to give better

results than the two other models.

At Schmidt number equal to 3000, a wall-function for the mean passive-scalar

was developed on the basis of the simplest tested algebraic model [21]. Very

good agreement is found with the LES computations. This wall-function can be

used with the present model for the Reynolds-
ux vector and a low Reynolds

k � � model, in order to model mass transport at high Schmidt number.
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