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Abstract

Electrochemical mass transfer in turbulent flows and binary electrolytes is inves-
tigated. The primary objective is to provide information about mass transfer in
the near-wall region between a solid boundary and a turbulent fluid flow at high
Schmidt number. Natural and forced convections are investigated with two differ-
ent methods; the turbulence model k — € and large-eddy simulations (LES). The
k —e method does not solve the fluctuating part of the flow and assumes isotropic
turbulence. LES solve only the large scales of the fluctuations. The computa-
tions made with natural convection reveal that the standard wall-functions give
acceptable results for the velocity field, but not for the concentration. The
Boussinesq approximation for the Reynolds-flux in the mass-transport equation
and the wall-function for concentration in the logarithmic layer are shown to
fail in the prediction of the turbulent mass transfer. A method for large-eddy
simulations is developed to study the Reynolds-flux and mass-transfer in the
near-electrode region. In order to make numerical integration of governing equa-
tions at high Schmidt number economic, a numerical scheme is developed in
which two different meshes are used for hydrodynamic variables and the con-
centration field. With the help of a fringe technique the finest mesh used for
the computation of mass transfer is reduced to the near-wall region only. A
study of the electrical distribution along the electrode reveals that the intensity
of the current influences the fluctuations of the concentration field but not the
mean values in time. Some models for the Reynolds- flux validated for Sc=1 are
succesfully tested for Sc=3000. At high Schmidt number, a new model for the
Reynolds-flux and a new wall-function for concentration are found.

Descriptors: electrolyte, mass transfer, turbulent channel flow, forced convec-
tion, natural convection, wall-functions, explicit algebraic modelling, large-eddy
simulations.
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CHAPTER 1

Introduction

Electrochemistry is involved to a significant extent in the today’s industrial econ-
omy. Examples are found in batteries, fuel cells or capacitors, for electric vehi-
cles, portable devices or industrial productions of chemicals; in the production of
chlorine, caustic soda, aluminium; in electroplating, electromachining, and elec-
trorefining; and in corrosion. There are three significant types of power sources
which produce electricity by reaction within electrochemical cells. The two types
which use reactants stored within them are called primary cells and secondary
cells. Groups of primary or secondary cells are called batteries, although the
term battery has been extended to include also a single cell used as a power
source. Secondary cells, unlike primary cells, can be driven in reverse or charged
by external electrical power. The third type, fuel cells, employ reactants which
are continuously supplied to the cell; products are also continuously removed.
In primary and secondary cells, the reactants and products are contained within
the cell.

The first steps in electrochemistry were made by Luigi Galvani who attrib-
uted in 1791 twiching of detached frog legs to animal electricity. The same year,
Alessandro Volta asserted that the frog legs twitched because different metals
brought into contact via a liquid produced electricity. In 1800, Volta built his first
Voltaic pile. Thirty years later, Faraday established that the amount of chemical
change is proportional to the quantity of electricity passed, and that for the same
quantity of electricity the amounts of different substances deposited or dissolved
are proportional to their chemical weights. He introduced the terms cathode,
anode, electrode, ion, cation, anion, and electrolyte. Later in 1901, Thomas A.
Edison and Waldemar Jungner invented the first alkaline rechargeable batteries.
Finally, in 1977, Alan MacDiarmid and Alan Heeger discovered the electrical
conductance of polyacetylene, leading to the construction with David MacInnes
in 1981 of the first battery with no metallic constituents [1].

An important aspect of electrochemistry is the mass transfer taking place
in the electrolyte and at the electrodes of electrochemical cells. The efficiency
of the cell is highly dependent on the distribution of chemical reactants in the
vicinity of these electrodes. One difficulty is to predict correctly the distributions
of concentrations, that are, in most of the flows present in electrolytes, turbulent.
Turbulence can be regarded as a particular state of a fluid in movement in which
the flow fluctuates rapidly in time and space [2]. These fluctuations have already
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been statistically studied, but many unknowns remain. In particular, it is today
not well understood how the fluctuations vary in time and space at the electrodes
or in the near-electrode region. In this region, not even the mean concentration
field in time is well-known [3].

Some properties of the mass fluxes near the electrodes constitute an obstacle
for their study. Here, it is important to introduce the concept of boundary layer
for mass transport. The thickness of the boundary layer for temperature along a
flat heating plate, also called the conductive boundary layer, is defined by Bejan
[4] as the length-scale of a slender region adjacent to the wall, where the heat-
conduction phenomenon is at least as important as convection in the equation of
transport. Since this equation is identical for mass transport, the same definition
can used, where conductivity is replaced by diffusivity. In a channel flow, this
definition is not relevant any longer because diffusion plays an important role
everywhere. It remains neverthess a useful concept, because it is used to deter-
mine the relative thickness of the diffusive boundary layer, é., compared to the
hydrodynamical, d,. Levich [5], based on the analogy with laminar boundary
layer, proposed that in a turbulent boundary layer the thickness of the diffusive
layer would be of the order of magnitude of §; - Sc='/3. It has been verified
experimentally in different studies, for example by Lin et al. [6]. Sc is here the
Schmidt number, or the ratio between the diffusivity coefficient for mass and the
viscosity of the fluid. Using this relation, it is consequently possible even in the
near-wall region of a channel to give an approximation in viscous units of the
diffusive, 5- Sc¢~ /3, and the logarithmic, (30 — 100) - S¢—'/3, sublayers in the
diffusive boundary layer.

The high value of Schmidt number appearing in most of the practical electro-
chemical applications is one of the important factors resulting in thin diffusive
boundary layers, and making experimental investigations of flows with mass
transfer problematic. Unfortunately, although electrochemical systems seem to
be suitable for experimental investigations, see e.g. [7], the measured data are
usually in the form of integrated quantities rather than detailed information on
the structure of the flow and its fluctuations in time and space. As examples,
Fouad et al. [8] and Newman [9] studied mass transfer in electrochemical systems
and reported global information on the process such as the total cell potential
drop, the electrical current and the global density variation of ionic species. As
a result, other tools must be used in order to provide detailed data on the struc-
ture of the flow. With improvement of digital computers and computational
methods during the past years, computational simulations can today be used as
an alternative to physical experiments.

This thesis is a study of mass transport in turbulent flows of electrochemical
cells. The investigation is performed through numerical simulations. The mathe-
matical models account both for turbulence and the properties of electrochemical
mass transfer. Different models are tested for the electrochemical process at the



electrodes. Natural and forced convection are investigated. The electrolyte con-
sidered is binary. The transport equations for mass are consequently reduced to
one equation only, and is identical to the transport equation for a passive scalar,
or temperature. No volume reaction is considered. The major contribution of
this work is the validation of a numerical method to compute turbulent mass
transfer in near-electrode regions. A class of turbulence models with a fairly
simple formulation is validated for electrochemical processes.



CHAPTER 2

Electrochemical mass transfer

The Swedish chemist Svante Arrhenius was the first to use the term electrolyte
to describe a salt which in solution dissociates into ions. An ion is an atom or
molecule which has acquired an electrical charge. An ion which carries a posi-
tive charge is called a cation and an ion which carries a negative charge is called
an anion. Compounds, molecules, and atoms which are uncharged are referred
to as neutral species. A solution which contains ions is called an electrolyte
solution (sometimes simply an electrolyte). Electrolyte solutions conduct elec-
tricity because the charged ions can move through them. Electrolyte solutions
are ionic conductors as distinguished from the electronic conductors, such as
metallic wires, in which charge is carried by movement of electrons. An elec-
trolyte solution may be used for this purpose alone. An example of this is the
salt bridge, which electrochemists use to permit the flow of ionic charge between
different electrolyte solutions. A salt bridge is a tube containing a relatively
high concentration of an ionic salt such as potassium chloride. The electrolyte
solution of the salt bridge may be held as a semisolid agar gel to make it easier
to use.

Electrochemical cells are used in several industrial applications, such as cop-
per refining cells and lead-acid batteries. In a copper refining cell, the anode is
made up of raw copper, with small amounts of impurities while the cathode is
made of highly purified copper. The electrolyte is an aqueous solution of cop-
per sulphate with some added sulfuric acid, in order to reduce the ohmic losses
of the process. During the purification process, the passage of electric current
causes the copper ions to be dissolved at the anode and deposited onto the cath-
ode, to form highly purified mass of copper. In lead-acid batteries, the positive
electrode, PbO-, and the negative electrode, Pb, are separated by a solution of
sulfuric acid. During discharge, sulfuric acid is consumed and water is produced.
Dilute acid close to the electrodes rises and the heavy acid in the bulk sinks.
During recharge the process is reversed. Current conduction from the electrodes
to the electrolyte in electrochemical cells takes place, due to chemical reactions,
usually limited to a very thin sheath at the surface of the electrodes, and there-
after due to transport of ions in the bulk of the electrolyte. Positive ions are
produced in the anodic sheath and, after transport through the electrolyte, are
neutralized in the cathodic sheath. Diffusion, migration and convection are the
main transport mechanisms through the electrolyte.
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FIGURE 2.1 The geometry of the cell and the chosen coordinate system.

It turns out that between the different transport mechanisms mentioned
above, the convection process is the most efficient in most applications. In
this section, the mathematical formulation of electrochemical mass transfer is
presented for a binary electrolyte in an electrochemical cell. More complex ge-
ometries are present among the industrial applications, but a simple geometry
is enough to describe the basic concepts of electrochemical mechanisms.

Two electrodes made from the same metal are immersed in a dilute solution
of a salt of the electrode metal providing a binary electrolyte in a rectangular
cell. The cell, which is assumed to have its sides parallel to the direction of
gravity, is shown in figure 2.1. If the cell is closed, as it is shown in figure 2.1,
the convection in the cell is purely natural. If the cell is open at its bottom
and its top, it can be seen as part of a vertical channel flow, and convection
can be forced. The dissolution of metallic ions generally increases the density of
the fluid near to the anode. Near the cathode, the reverse reaction takes place
resulting in a lower density. Inhomogeneities in the density field set the fluid in
motion with a convection pattern downwards near the anode and upwards near
the cathode. Natural convection, which is driven by the chemical reactions at the
electrodes, contributes to transport of ions and thereby influences the chemistry
of the cell. In a case of strongly forced convection, the phenomenon of density
variations can be usually neglected.



2.1. Governing equations

Since the considered electrolyte is binary, the mathematical description concerns
the transport of a metallic cation and its corresponding anion. All the equa-
tions presented below describe the behaviour of instantaneous variables. In a
two-dimensional configuration, the hydrodynamic problem must be solved for 6
dependent variables: the concentrations ¢; and ¢, where subscript 1 denotes the
anion, and subscript 2, the corresponding cation, the velocity field, u = (u,v,0),
the pressure field, p and the electrical potential, ¢. Apart from the very thin
sheaths, called double layers, and adjacent to the electrodes, the electrolyte can
be assumed to be electrically neutral, that is

zZ1C1 + zZ9Cy = 0, (1)

where z denotes the charge number of the species and the indices 1 and 2, the
metallic and the non metallic ionic species, respectively. If the double layer is
not to be explicitly accounted for, the mathematical problem can be formulated
using a single variable for the concentration fields by defining

€= 2101 = —2Z2Ca, (2)

which satisfies the neutrality condition (1). The governing equation for ¢ will
then be read

0
a—i+u-Vc:DAc, (3)
where the positive quantity D is the salt diffusivity for the electrolyte and is

related to mass diffusivity coefficients for species 1 and 2, according to
(21 — 22)D1 Dy

D= . 4
ZlDl — 22D2 ( )
Here attention is restricted to systems where z; = —z = 2, resulting in a salt
diffusivity coefficient of
2D,D
D=2 (5)
Dy + Ds
For an incompressible electrolyte, the velocity field satisfies
V-u=0. (6)

Using equation (2), the equation of Navier-Stokes for an incompressible fluid in
a gravitational field under Boussinesq approximation, is

ou

ot

where p and ¢, denote the density of the electrolyte and the reference concen-

tration, respectively. ﬂ’ is the total volume expansion factor. p is the dynamic

viscosity of the electrolyte, g the gravitational acceleration and e, is the unit

+pu-Vu=—Vp+pAu - pglc — co)ey, (7)

vector in the vertical direction.



A conservation equation for the electric potential must then be added to
the conservation equations for momentum and mass, in order to have a set of
well-posed equations. As mentioned above, the electrolyte is assumed to be elec-
trically neutral resulting in a divergence-free current density everywhere in the
cell. This can be used to obtain the governing equation for the electric potential,
¢. The total electric current density, which is the sum of the contributions from
each species, can be written according to Faraday’s law

2
i=FY zN; (8)
i=1

where F' is Faraday’s constant, N; denotes the mass flux of the species i, and is
equal to a sum with contributions from migration of charged species in the elec-
tric field, diffusive fluxes and convective fluxes related to different field variables,
according to

ZZ'FDi

RT

In the above formula, R and 7" denote the gas constant and the temperature field,
respectively. After substitution of Nj by (9) in (8), and setting the divergence
of (8) to zero, one finds

N; = —

CZV¢ — Dchi + c;u. (9)

FT 2, _

2(D1 JrDz)

where I' = =5-—F7-

Boundary conditions must be specified for velocity, pressure, concentration
and the electric potential. They form with the set of equations (3), (6), (7) and
(10), a well-posed system that can be solved. Figure 2.2 shows the numerical
prediction of the electric potential field in a closed cell and a laminar case.

For the velocity field the no-slip condition is to be applied on all four walls,
if the cell is closed

u=0atz==xhandy=+H. (11)

If convection is forced, a gradient can be prescribed for the mean pressure
in the channel.

All chemical reactions take place in close vicinity to the surface of electrodes,
that is in the double layers. Inside the double layers, which have a thickness of
the order of 1 nm, electroneutrality is not valid but regions with free charges
can be expected. The existence of free charges results in a fast variation of
the electric potential over the thickness of the layers, see figure 2.3. ¢4 and ¢¢
correspond to the electric potential before and after the double layer, respectively.
The variation of the potential difference £ can be seen as the driving force for
electron transfer across the double layer. This variation is responsible for the
current intensity at the electrode. As Bark and Alavyoon [10] did, the present
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FIGURE 2.2 The iso-contours of the electric potential in an enclosed

electrochemical cell. Calculations performed with CFX of a laminar
case. —=7.0-102V <P < 47.0-10 2 V.

study uses a semi-empirical Butler-Volmer law to model this driving force and
the concentration gradient at the electrodes

. nagF(Vy —é) nacF(Vy—d)
. FD [e RT — fe AT ] at £ = —h (anode)
e, 1 °
2FD1 . nacF(¢—V_) nagF(¢—V_)
5P D, [ci RT —e ~ RT ] at © = +h (cathode)
(12)
where n = ||z1]| and e, is the unit vector in the horizontal direction. i, is the

exchange current density, Vi the electrode potentials, and ag, . = 0.5 the transfer
coefficients.
A a simpler condition, which was proposed by Ziegler et al. [11], has also been
used

Qe;—lDll = _8_305 = constant. (13)
If the cell is closed, no transfer of mass occurs at the horizontal walls, resulting
in vanishing normal derivatives of the concentration field

Oc
== = +H. 14
oy 0aty (14)
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FIGURE 2.3 The double layer and variation of electric potential at
the interface electrode-electrolyte.

Otherwise, the gradient for the equivalent concentration in many cases, can be
set proportional to the concentration.

oc
8_y: o(c—co) aty =+H. (15)
For the electric potential, because Ny - e, = 0 at £ = th, one finds
d0¢  RT Oc
= T gt xr=+h 16
or  2Fcor " ’ (16)
At the horizontal walls, since no chemical reaction takes place, one finds
¢
— =0aty=+H. 17
oy — MY (17)

2.2. Mass fluctuations near the electrodes

As mentioned above, major interest is shown for fluctuations of mass transfer
at the electrodes of an electrochemical cell, because they influence the current
distribution in the cell. Fluctuations in the concentration field are induced by
the velocity field. In a previous study, Robinson et al. [12] concluded that the
majority of the turbulence production in the entire hydrodynamical boundary
layer occurs in the buffer region during outward ejections of low-speed fluid and
during inrushes of high-speed fluid [12]. Sweeps (v < 0) and ejections (v > 0) are
defined there by a negative local product of streamwise and wall-normal velocity
fluctuations. The present study adopts here the same definitions.



An important characteristic of turbulent mass transfer at high Schmidt num-
ber is the influence of turbulence on the local mass transfer at the wall. So far,
no clear direction or pattern has been identified for the fluctuating part of the
mass flux in the diffusive sublayer. It is therefore necessary to find a detection
criterion to discuss the influence of turbulence on electrode-mass-transfer. The
present study considers here a case of forced convection in a electrochemical cell
working as a three-dimensional channel flow, as it has been studied in all the
papers except in paper 1. The reader is referred to one of these for the geometry.
The walls of the channel are infinite (x-z) planes, periodic in the streamwise (x)
and the spanwise (z) direction, and are the electrodes of the cell.

Sweeps and ejections in the buffer region of the hydrodynamical boundary
layer are used here to detect the location of turbulence production. They can
be characterized by a high level of wall-normal velocity fluctuations in absolute
value. The present study uses a conditional sampling technique to determine
the location of these events. Once these locations have been recorded, their po-
sitions in a (x-z) section are compared with the (x-z) positions of the detected
large electrode-mass-transfer fluctuations. The two detections are made in the
instantaneous field, at the same time, and at two different constant-y-surfaces.
Figure 2.4 shows the averaged variance in space of the wall-normal velocity fluc-
tuations, at y* = 12.74 in the buffer region of the hydrodynamical boundary
layer. This variance can be seen as the contribution of the wall-normal velocity
to the instantaneous kinetic energy. The variance signal is calculated with a spa-
tial counterpart (VISA technique) to the VITA technique used by Blackwelder
et al. [13], that was validated by Johansson et al. [14]. The spatial averag-
ing lies over a surface with a streamwise length of L™ = 212 and a spanwise
length of L't = 35.3, in viscous units. The VISA variance signal is then non-
dimensionalized by the square RMS intensity of the wall-normal velocity. The
detection criterion is completed by using a threshold k equal to 1. Detection
is triggered when the VISA variance signal exceeds k. Figure 2.4 shows also
the fluctuating part of the wall-mass-transfer at the same (x-z) positions. The
turbulent wall-mass-transfer is non-dimensionalized by the dimensionless mass
transfer coefficient predicted at Schmidt number equal to 100 by Papavassiliou
et al. [15]. A threshold & is also used and is taken equal to 0.2.

At Sc = 100, there seems to be a certain spatial correlation between high lev-
els of VISA detected wall-normal velocity variance, and large wall-mass-transfer
fluctuations, as shown in figure 2.4. This suggests that the fluctuations of the
current density at the electrodes, which are proportional to the fluctuations of
the concentration gradient [16], is correlated to the turbulence production events
lying in the buffer region of the hydrodynamical boundary layer. Still, this result
remains unsettled and should be investigated more intensively.
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FIGURE 2.4 Sc = 100 and in a (z-z) plane at y* = 12.74. Solid
lines: The snapshot contour plots of the VISA-detected wall-normal
velocity variance (detected with LT = 212, L't =353 and k = 1.0).
The increment in variance signal is 2. Dashed lines: The snapshot
contour plots of the dimensionless concentration-gradient fluctuations
at the wall, detected with k' = 0.2. The increment in concentration
gradient s 0.01.

In paper 4, the study of frequencies of the electrode-mass-transfer confirmed
the result of a previous study [17], showing that only low frequency velocity fluc-
tuations were effective in causing concentration fluctuations. The spectra mass
transfer was there shown to be proportional to the spectra for wall-normal veloc-
ity at the lowest frequencies. This result is not in contradiction with the typical
timescale of turbulent production reported by McComb [18], and approximately
equal to 0.3 - Re, in viscous units, which is shown experimentally to correspond
to the the lowest frequencies.



CHAPTER 3

Turbulent mass transfer

Although numerous analytical and empirical methods have been developed for
predicting rates of mass transfer in turbulent flows, a thorough understanding
of the fundamental transfer mechanism is still very necessary for the design of
various kinds of industrial processes [19], especially for electrochemical processes.

As shown by Colburn [20] and Sherwood [21], the processes of mass transfer
and heat transfer are similar, and hence several theoretical principles treated
previously for heat transfer may be regarded as applicable to mass transfer. The
analogy between momentum and mass transfer was first deduced by Reynolds
[22], postulating similarity between momentum exchange and material exchange.
Unfortunately, it is only correct when Schmidt number is around one. Prandtl
[23] and Taylor [24] later extended the analogy to include a laminar layer near the
wall for mass transfer at all values of Schmidt number. For turbulent flows, von
Kérmén [25], Boelter et al. [26], and Reichardt [27] analyzed the problem more
extensively on the basis of velocity distribution measurements in straight tubes.
They found that the fluid is divided into three layers; namely, the very thin
viscous sublayer adjacent to the wall, the turbulent core, and the buffer region
between the core and the viscous sublayer. In the viscous sublayer, in which
turbulence or the eddy diffusivity is small, material is transferred mainly by
molecular motion. The velocity distribution and mass transfer in the turbulent
core are controlled by eddy diffusivities of momentum and mass. In the buffer
region, the combined action of molecular and eddy diffusivity determines velocity
and mass transfer. The mathematical formulation of the buffer region in the
diffusive boundary layer is necessary for predictions of mass transfer and of
the distribution of chemical species near the electrodes. Unfortunately, at high
Schmidt number the diffusive boundary layer is so thin that no data has so far
been derived from experiments.

An aspect of turbulent mass transfer in electrochemistry, is the fluid flow
conditions within an electrolyte. The fluid flow controls the magnitude and uni-
formity of mass transport of reactant species at the electrodes. It also promotes
exchange of species between the bulk solution and the surface layers. Fluid mo-
tion is driven by the influence of a pressure gradient and diffusion. Two cases
may be distinguished. Natural or free convection occurs when local variations
in fluid density produce acceleration [28]. Forced convection is driven by the
application of mechanical energy (as in the case of electrode movement), or by
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the consumption of energy in a system (as in the case of a pressure drop through
a pipe). Buoyancy-induced flows are complex because of the essential coupling
between the flow and transport. The problems can be classified as either exter-
nal or internal. It was pointed out by Ostrach [29] that internal problems are
considerably more complex than external. The interactions between the bound-
ary layer and the core constitute a central problem that has remained unsolved
and is inherent to all confined convection configurations. In fact, the situation
is even more intricate because it often appears that more than one global core
flow is possible and flow subregions, such as cells and layers, may be imbedded
in the core. This matter, which has been discussed more fully by Ostrach [30],
is not merely a sublety for analysis, but has equal significance for numerical and
experimental studies.

When there is the possibility of free convection superimposed on forced con-
vection, the situation becomes essentially more complicated. Fortunately, it
appears that one effect or the other predominates in the mass-transfer process,
depending on the values of the Reynolds number, Re, and Rayleigh number,
Ra. Ra is the non-dimensional ratio between forces of buoyancy and of viscos-
ity. At horizontal electrodes, Tobias and Hickman [31] find that free convection
predominates. Otherwise, forced convection does. Acrivos [32] has analyzed the
combined effect of free and forced convection for surfaces that are not horizontal
and found that the transition region between predominance of free and forced
convection is usually narrow.

3.1. Sherwood number in forced convection

Turbulent flow is characterized by rapid fluctuations of velocity, pressure, and
concentration about their average values. Electrochemists usually are interested
in these fluctuations only in a statistical sense. Forced convection in electrochem-
ical systems has been extensively studied through experimental data in order to
draw some generalization about the behaviour of the turbulent mass-transfer
at the wall. It is dependent on the fluctuations in the near-wall-region and its
importance can be justified by the fact that, as shown earlier in equation (13),
the current distribution along the electrodes is directly proportional to the wall-
mass-transfer. At Schmidt numbers greater than 0.5, Bejan [4] and Walsh [28]
agree to consider the averaged non-dimensional wall-mass-transfer, the Sherwood
number, as a function of the Reynolds number, Re, and S¢

Sh = 0.037Re/55c' /3. (18)

Walsh found the coefficient of propotionality equal to 0.023. This difference can
be due to the fact that Bejan considered a single plate along which a boundary
layer had developed, when Walsh considered two parallel plates of an electro-
chemical cell working as a channel flow.
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3.2. Sherwood number in natural convection

Natural convection in a two-dimensional cavity is one of many examples of tur-
bulent flows whose geometrical simplicity conceals the full complexity of the real
flow pattern. In spite of significant practical importance in many engineering
applications and numerous research reports in literature, the problem has not
been fully understood yet. There are still no reliable models or correlations
which can be used with certainty for the prediction of mass transfer in cavities,
in particular if the conditions are non-standard. A common practice to establish
experimentally the wall-mass-transfer in form Sh = f(Ra,Sc) has so far not
produced a consensus even for simple cases. Walsh [28] found Sh proportional
to Ra®?%, but Kitamura et al. [33] defined different zones in the hydrodynamic
boundary along the electrodes of the cell where the turbulence intensities are
not the same. As shown in figure 3.1, the flow is turbulent only in a small part
of the vertical boundary layers. In the present cell, the electrodes are vertical,
and generate in their vicinities density variations that create a circulation. In
the turbulent flow, Kitamura found for the Sherwood number the following law

Sh = Ra'/* + 37. (19)



The exponent was found to be equal to 1/5 in the transitional zone near the
turbulent zone. These results are in good agreement with the law of dependency
in the Rayleigh number for the Sherwood number, found in paper 2, where the
exponent Ra was predicted equal to 1/5 in the transitional zone.



CHAPTER 4

Turbulence models

4.1. Governing equations

The governing equations for an incompressible turbulent flow of a viscous fluid
are the Navier-Stokes equations and the continuity equations (equations (6) and
(7) in chapter 2.1)

gd; | dai _ 19p O

ot + Uja—l’j = ;61’1 +v 61’? - ﬂ g(C - Co)éiy (203‘)
di;
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where ;, ¢ and p are the instantaneous velocity, concentration and pressure
fields. The y-direction is considered here as the direction of gravitation. The
Reynolds decomposition is defined as following; u; = U; + u;, ¢ = C' + ¢ and
p = P+ p, where U; and u; are the mean and the fluctuating part of the velocity
field, C' and ¢ are the mean and the fluctuating part of the concentration field,
and P and p are the mean and the fluctuating part of the pressure. The mean
variables are here time-averaged. Note that U; can also be written w;, C = ¢, and
P =7p. The Reynolds averaged Navier-Stokes equations are formed by taking
the mean of the Navier-Stokes equations using the decomposition defined above

DU, 18P 9 :

Dt~ poux; * dx; (2vSij —wguz) — B (C = o)y (21a)
ou;
o0, (21b)

where the mean strain rate tensor S;; = (U;; + Uj,;)/2. The notation D/Dt =
0/0t + U;0/0z; is used to denote the rate of change following the mean flow.
The term —pu;u; is known as the Reynolds stress tensor and originates from
the non-linear term of (20a). This tensor is responsible for the so called closure
problem, because it creates extra unknowns that cannot be computed. If one
considers the transport equations for these unkowns, new unknowns will appear
as higher correlation terms for velocity components, so that it is not possible to
obtain a closed set of equations.
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The transport equations for the Reynolds stresses may be derived from the
Navier-Stokes equations

DW _8U] : oU; p [ Ou; 8’(1,]' Ou; 8uj
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The first two terms on the right hand side are production due to mean field gradi-
ents. They are explicit in w;u;, whereas the other terms need to be modelled. The
next two terms are the pressure-strain correlation and viscous destruction. The
next term is a diffusion term containing both turbulent and molecular diffusion.
The first two terms inside the parenthesis of the diffusion term is the turbulent
transport flux. The divergence of this flux is the rate of spatial redistribution
among the different Reynolds stress components due to inhomogeneities in the
flow field [2]. The last term is the contribution of free advection to turbulence.
In turbulent flows with mass transport, a velocity-concentration correlation
u;c appears in the governing Reynolds averaged equation. Using the Reynolds
decompositions for the velocity and the concentration, equation (3) becomes

oC oC 0 ( oC )

E—FUja_:nj_a_wj (23)

The mass flux term u;¢, or Reynolds-flux term in analogy with the Reynolds
stress, is due to the non-linear advection term in equation (3) and leaves (23)
unclosed. The transport equation for the turbulent mass-flux is given by
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The right hand side of the transport equation (24) contains two production terms
due to mean field gradients, a pressure scalar-gradient correlation term, viscous
and diffusive destruction, a transport term consisting of turbulent and molecular
diffusion and a free convection contribution.

4.2, The Boussinesq approximation

The analogy between the viscous stress generation caused by fluctuations on the
molecular level and the generation of turbulent stresses caused by macroscopic
velocity fluctuations leads to an eddy-viscosity formulation for the Reynolds
stresses. The first attempt in that direction was made by Boussinesq [34] who



introduced an eddy viscosity, v, in complete analogy with the molecular vis-
cosity for a Newtonian fluid. The Reynolds stress tensor is related to the mean
flow as following

2
Uiu; = —QVTSij + gk . 6;’]’, (25)

where k is the turbulent kinetic energy and is equal to w;u;/2. The last term
is often included in the pressure term. Then, introducing the dissipation per

Ou; Ou;
8.tj BCEJ'

to k% /e. This relation is developed only on the basis of dimensional arguments,
and provided that k& and e are strictly functions of the turbulence independent
of natural fluid properties such as molecular viscosity [35].
In analogy with the eddy-viscosity concept the Reynolds-mass-flux may be
obtained by a simple gradient diffusion model
vr 80
 Ser 9z

In a zero equation model an assumption of a constant turbulent Schmidt number,

unit mass, € = v , the eddy viscosity can be estimated as proportional

(26)

U;C =

Scr, is made, but for many engineering applications this is not enough accurate.
The turbulent Schmidt number is then modelled as a function of the ratio, r,
between the mass, k./€., and dynamic, k/e, time-scales, where k. denotes the
mass variance and is equal to 0_2/2. €. is the mass dissipation rate and is equal to

D% %Cj. Information about the time-scale ratio may be particularly important
in situations when it differs significantly from one. As Kawamura et al. showed
it [36], r tends to Sc when the electrode is approached. This result was also
found in the numerical study made in paper 6.

As Wikstrom et al. note it in [2], it is quite well known today that the
Boussinesq assumption is unable to always predict realistic values of Reynolds
flux, since it assumes that the mass flux is aligned with the mean concentration
gradient. In particular, in a fully developed channel flow, the streamwise gradient

of the mean concentration is zero, but not ue.

4.3. The wall-function problem

Understanding and prediction of mass transfer between a solid boundary and
a turbulent fluid flow is of great interest in many engineering problems. Many
studies have been devoted to numerical and experimental investigations of this
problem at various Reynolds and Schmidt numbers. The major issue of most of
these studies is the prediction of average mass transfer coefficients and of mass
profiles in the buffer region.

In this context, mass transfer at high Schmidt number is of particular impor-
tance for industrial concerns in the field of electrochemistry. Compared to the
case of mass transfer at low or moderate Schmidt number, its study appears to
be much more difficult: the diffusive layer lies entirely into the viscous sublayer,
meaning that mass transfer efficiency is controlled by turbulent motions present



very close to the wall. Many previous scientific and industrial investigations have
been carried out on that region close to the wall, as Kader [37] and Calmet [38]
did. But by now, none of them considered non linear boundary conditions as
Butler-Volmer laws.

In the case of natural convection, another crucial issue is to determine the
importance and the nature of the buoyancy influence on the buffer region and
possibly even in the viscous sublayer. However, recent calculations [16] showed
that the wall functions proposed by Launder et al. [39] for the computation
of uncoupled and fully turbulent flows, gave a good estimation of the viscous
boundary layer even in the near-wall region. As a first step of comprehension, it
is consequently reasonable to produce a series of results concerning the diffusive
boundary layer in the near-wall region for a situation of forced convection.

Wall-functions are used to fill the gap between the wall and the region far
enough from the wall, where the turbulence model is valid. In other words,
wall-functions have the function of boundary conditions situated at a certain
distance from the wall. The most used model among the turbulence models is
the £ — € model, which belongs to the class of the two-equation-models. These
models provide not only for computation of k, but also for a turbulence length
scale or equivalent. In the case of the & — ¢ model, two transport equations are
considered; one for the computation of the turbulent kinetic energy and one for
the dissipation rate, €

k
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The model is closed by using the Boussinesq approximation for both the velocity
and the concentration field.

A series of numerical simulations, carried out for the turbulent case of Ziegler
et al. [11], proved that G does not influence the prediction of the mean velocity,
and can be neglected in the transport equation for k. The constants are chosen!
as Ch =144, C>, =1.92,C, =0.09, o7 = 0.9, 0, =1 and o, = 1.2174.

The following two chapters expose the concept of wall-functions in details
and explain the shortcomings of its standard form for mass transfer at very high

ISee [40] for more details about the k — e model



Schmidt number. The third chapter gives an alternative wall-function for mass
in electrochemical applications.

4.3.1. Limitation of the standard assumption. In this chapter and in
the next two others, all variables are dimensionalized in viscous units. This
choice has been made in order to determine more easily the positions of the
different regions in the boundary layers. For any scalar ¢ with a diffusivity Dy,
the standard assumption for the non-dimensional profile of the mean value in
the inner region, is formulated in [40] as following

Sc y* yt <yh
ot = (29)
e In(Byy™) yt >y
where y+ = apr - Sc='/?, k is Kdrman constant, Sc is Schmidt number B, - and
o4 the turbulent Schmidt number for scalar ¢~), D‘;TT = 0.9. This last value is
assumed constant in equation (29). It is worth noting that the actual turbulent
Schmidt number varies in the fluid and is equal to %. At Schmidt number
equal to one, ajs is taken in previous studies [19, 37] equal to 11.25. The constant

E; is defined as

Se\ ™ —0.007 5=
Ey=FE-exp |96 | | — -1 (1 +0.28¢ %) ; (30)
¢

where E is the “loglayer” constant and is equal to 9.793 [40].

When Schmidt number is very large, E4 is approximately equal to

<E - exp [ %’}4 503/4]> . As aresult, ® becomes extremely large in the log-layer.
%

For instance, at Sc¢ = 900, E,; = 9.3 - 10?5, The standard log-law as shown in
equation (29) is thus not usable already at Schmidt number higher than a few
hundreds.

In theory, the computational domain could be chosen refined enough near
the wall in order to use the linear region of the wall-function (29) at the nearest
node P of the grid from the wall. But in practice, for mass transfer in an
electrochemical cell, this situation will require a huge computational domain, as
it is demonstrated below, and the nowadays computational capacities impede
the choice of a linear wall-function for mass transfer.

In a running cell with only one chemical reaction at the electrodes and a
binary electrolyte, the maximum local excess of concentration is limited by the
uniform concentration in the cell ®, when there is no current set at the electrodes.
This is verified because the present study considers cells at the equilibrium state
only, and there is no variation of the total amount of mass in the cell. This
inequality in viscous wall-units can be written ®5 < &}, where ®} is of the

0
order of unity. Using the linear-law of equation (29), one obtains the condition
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FIGURE 4.1 The difference (32) of the linear and the logarithmic law
for the mean concentration in the inner region at yi, as a function
of Schmidt number. m = 3.

+
y; < g"c . This last condition requires an extremely refined grid, when Schmidt
number is of the order of several thousands.

Hence, it seems necessary to formulate a new wall-function in the diffusive

log-layer at high Schmidt numbers.
4.3.2. Limitation of the Kader assumption. Kader et al. [41] proposed
a modified logarithmic law for mass transfer when Sc¢ > 0.5

Sc yt yt <yl
ot =

o In(y™) + Tatlan/mSem=U/m o In(Se) - 5.3yt >y,
(31)

where y;7 = (agSc)~'/™. ag, m, and a are supposed constant, and are equal
to 0.001, 3, and 2.12, respectively. There is no complete agreement about the
value of m in previous studies; as an example Calmet et al. [38] found m = 3.38.
The log-layer of equation (31) was developed considering the eddy viscosity and
diffusivity different from zero, even in the viscous sublayer. It was also assumed
a three-layer model for the diffusive boundary layer, proposed by Levich [5], sim-
ilar to the one found for the inner region of the viscous layer.

Figure 4.1 shows the difference (32) of the linear and the logarithmic law
for the mean concentration in the inner region at y;" (Sc) when Schmidt number
varies

Cm m241 i/m
<0Hl/ - :2t1> Sclm=D/m _ o n a, /™ SemD/M 453, (32)
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FIGURE 4.2 am as a function of Schmidt number. amx s computed
in order to get the difference (82) equal to zero.

The difference is already greater than one when Schmidt number is equal to 10.
If one wants to obtain a small value for the difference (32), it is then necessary
to consider ay as a function of Schmidt number. For simplicity, m is supposed
here independent of Schmidt number. The order of variation of ay with Schmidt
number is evaluated below.

ag and m are defined by the first term of a Taylor expansion of the eddy
diffusivity Dy 7 [41]. In the diffusive sublayer Dy 7 can be approximated by

vag(yt)™. (33)

am, shown in figure 4.2, varies over six orders of magnitude when Schmidt number
varies between 1 and 1000. As a result, the eddy diffusivity Dy r varies in
magnitude of several orders in the near-wall region, when Schmidt number varies.
For instance, at Schmidt number equal to 1000 and at y* = 1, Dy 7 = 4.624-10°.

In forced convection, the hydrodynamical boundary layer is decoupled from
mass transport, and the eddy viscosity is consequently not a function of Schmidt
number. The turbulent Schmidt number D”TT predicted with the previous as-

sumptions is then highly dependent of Schmidt number and tends to zero in the
near-wall region when Schmidt number increases. This result is not in agree-
ment with previous studies. Abe et al. [42] and Kawamura et al. [36] found that
the turbulent Schmidt number tends to be independent of Schmidt number in
the near-wall region when Schmidt number increases. The two last mentioned
studies considered Schmidt number only between 0.025 and 5.0. They found
almost the same turbulent Schmidt number of 1.1, in the near-wall region and
at Schmidt number equal to 0.71 and 5.0. If one accepts their result at larger
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FIGURE 4.3 At Sc = 3000, the mean concentration profile along the
electrode-normal direction. Solid line: k — € model. Circles: large-
eddy simulation (LES). a) Predicted with a linear wall-function. b)
Predicted with a logarithmic wall-function.

Schmidt numbers, and since the eddy viscosity is not dependent of Schmidt num-
ber, the eddy diffusivity should not vary appreciably with Schmidt number in
the near-wall region.

In Brief, supplementary information about the scaling of the diffusive bound-

ary layer are required in order to validate the wall-function proposed by Kader
et al. [41].

4.3.3. An alternative wall-function for mass. In this chapter, the wall-
function proposed in paper 6 is tested with success with the & — € model. The
concentration corresponds to an ionic species of a binary electrolyte, and convec-
tion is forced in an channel flow working as an electrochemical cell. The platform
for the k — € is the commercial CFD code CFX developed by AEA Technology.
The considered geometry is a 3D-channel flow made of two infinite plates in the
streamwise, z, and the spanwise, z, direction. The computational domain is
periodic in these two directions with periodicity lengths chosen long enough to
respect the largest turbulent length-scales, see paper 2 for the dimensions and the
geometry. Sc¢ = 3000 and the turbulent Reynolds number, based on the channel
half-width, is equal to 180. The boundary condition for the concentration at
the electrodes is a constant value, corresponding to the idealized electrochemical
situation of a cell working at the limiting current.

Figures 4.3a and 4.3b show the concentration profile C'(y*)/Cyau predicted
with the k£ — € model when using a linear and a log-law, according to equation
(29). The predictions are compared with large-eddy simulations made in paper
4, 5 and 6, at the same Schmidt number. Figure 4.3b shows that the logarithmic
profile does not improve the crude model of a pure diffusive profile shown in 4.3a.



If one considers the mass-conservation equation (3) for a fully developed
flow, one obtains for a channel flow

1 0C*
§ 8y+ - /U+C+ = To, (34)
where 7, = —1. A simple model for the wall-normal component of the Reynolds-

. . . —— +
flux vector is considered in Paper 6, where vtct = a, - kT -7 - %, where 71

[

is a mixed time-scale between the two time-scales of chapter 4.2, 7+ = 1/m
Using this model, equation (34) becomes
oct L _LoCct
ag}—+:—Sc—aC-k T 8y—+ y
(35)

where a. is a positive constant, possibly dependent on Schmidt number. One
can then derive an integral function for the mean passive scalar as a function of
the wall-normal distance

4 n Yo dy‘i’
) = Ol =50+ [ e

(36)

This equation can be integrated in the near-wall region if one considers the
Taylor series of the turbulent kinetic energy and the time-scale 71. It can easily
be shown that a.-k* -7+ = A.(Sc) -y*t* + O(y*5) when the wall is approached.
This result is obtained when one considers the limiting behaviour near the wall,
of the velocity components and the concentration fluctuations [36]. Equation
(36) can then be integrated with the help of this approximation, and C* is
found as a function of yT as follows

Ct(y)=C} Se [%ln <Z2 tev2d 1> + arctan ( 2v2 )] , (37)

wall = A9 2 22— 2241 1—22

where z = y*Ai/ *. This equation was shown to give good results in the near-wall
region, and surprisingly, even in the logarithmic region of the diffusive boundary
layer, provided that another value for A. is chosen, see figure 4.4. This result
tends to prove that the asymptotic behaviour of kT - 7+ as y* is valid even
outside the diffusive sublayer. This wall-function was then implemented in CFX
and tested with the same geometry, and the same parameters. Figure 4.5 shows
good agreement between the predictions of the present study with a large-eddy
simulation (LES) and the k—e model. With y* between 0 and 5/Sc'/?, the profile
is linear. The nearest node from the electrode in the numerical domain for the
k — e computation lies in the log-region of the diffusive layer (y* ~ 45/Sc'/?).



FIGURE 4.4 At Sc = 3000, the mean profile of the passive scalar
along the wall-normal distance. Solid line: CLES 44 44, gmodel
a) In the near-wall region. Ac = 3/2. b) Outside In the ’logarithmic’
region of the diffusive boundary layer. Ac = 0.12.
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FIGURE 4.5 At Sc = 3000, the mean concentration profile along the
electrode-normal direction. Solid line: predicted with CFX and the
new wall-function. Circles: predicted with LES.

4.4. Algebraic Reynolds stress models

Nowadays, there is a renewed interest in algebraic models which are obtained
from the transport equations using some equilibrium assumption. This interest
can in a large extent be explained by the simplicty of the produced models. As
Wallin et al. [43] notice it, they require a computational effort comparable to
the one required for the k — e model, but are more reliable for flows in near-wall
regions.

The classical algebraic Reynolds stress model was developed from the mod-
elled Reynolds stress transport equation by assuming that advection minus the



diffusion of the individual Reynolds stresses can be expressed as the product of
the correponding quantity for the kinetic energy, k, and the individual Reynolds
stresses normalized by k [43]. This results in an implicit relation between the
stress components and the mean velocity gradient that replaces the Boussinesq
hypothesis. The general form looks like as following

uu; = Fyj (Ukul,Skz,le,kaﬁ,u—kC, 0_2) ) (38)

where Q;; = (U;; — Uj;)/2. In the case of forced convection, Wallin et al. [43]
developed an explicit version of an algebraic Reynolds stress model where the
Reynolds stresses were explicitly related to the mean flow field.

The most common approach for the mass flux is the so called weak equi-
librium assumption, where the advection and diffusion terms of the transport
equation for the normalized mass flux is neglected [44]. A similar equation to
(38) can then be produced for the Reynold-flux vector

u;c = Gz (u_kcyukulyaa—[if)g_g>kykcaeyec> (39)

Provided some extra assumption, this relation can also become explicit, see [44].
In a case of forced convection, F;; does not depend on the last two terms in
equation (38), see [2, 44].

In paper 6 of this work, a new explicit algebraic model has been developed
for the Reynolds-flux in a case of forced convection in a channel flow working
as an electrochemical cell. This model was validated for a very high Schmidt
number only, and was developed on the basis of an assumption found in paper
5 for the transport equation of the Reynolds flux at equilibrium. Equilibrium
refers here to the state of the flow when all the statistics do not depend on time.



CHAPTER 5

Large-eddy simulation

As widely known, the computation of turbulence in averaged sense involves reso-
lution of extra terms of correlations between the fluctuating parts of the variables.
The most popular method to model those unknown quantities is the k£ — e model,
which is based on the mixing-length theory. In k — e model, the extra terms,
called Reynolds stresses, are assumed to be proportional to the local gradient
of the average velocity and to the turbulent viscosity. This viscosity has a local
quantity, proportional to k?/e, where k is the turbulent kinetic energy and e
the dissipation rate. These two new unknowns are computed by introducing a
transport equation for each, where the time-derivative and the convective terms
balance at any time production and dissipation terms. Although the k£ —e model
has the advantage to be numerically robust, it has the big inconvenience of not
accounting for anisotropic effects, as the presence of a wall for instance. This
neglect is of importance especially in the near-wall region.

An alternative strategy is the direct numerical solution (DNS), and con-
sists in computing the turbulent flow by solving the discretized equations with
a mesh fine enough to resolve even the smallest scales of motion expressed by
the terms of fluctuations introduced above. This method does not rely on any
model to compute turbulence, but the size of cells appears to be imposed by
the smallest turbulence scales, the Kolmogorov scales, and consequently pro-
portional to L/Re3/4, where L is the size of the computational domain. In a
three-dimensional computation, the number of nodes of the mesh will be pro-
portional to Re?/*. Thus, this approach is restricted to low Reynolds numbers
due to memory limitations imposed by todays computers. An important issue
with respect to the computational needs of a time accurate numerical simulation
is that a high spatial resolution necessitates a high temporal resolution. Conse-
quently, a larger number of time steps has to be computed for a given physical
span of time when the discretization is very fine.

Large-eddy simulation (LES) is an intermediate technique between the direct
simulation and modelling the Reynolds stresses. In LES the contribution of the
large energy-carrying structures is computed exactly, and only the effect of the
smallest scales of turbulence is modelled using subgrid scale models. Since the
small scales turbulence tends to be more isotropic than the large, the use of
isotropic models seems reasonable, and allow to solve the average Navier-Stokes
equation on coarser meshes than those used in DNS.
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The concept of LES mainly rests on two presumptions which appear plau-
sible in view of both practical experience and theoretical considerations. The
first of these is that small scales tend to depend only on viscosity, and may be
somewhat universal. The large ones are affected very strongly by the boundary
conditions, and in return, most global features of turbulent flows, like average
mixing rates or averaged losses, are governed by the dynamics of the large scales
and depend only little on the small-scale turbulence. Thus, in LES the con-
tribution of large energy-carrying structures to momentum and energy transfer
is computed exactly, and only the effect of the smallest scales of turbulence is
modeled, by so-called subgrid-scale models.

Turbulence generation occurs mainly at the large scales of a flow and viscous
dissipation occurs mainly at the small scales. The most important feature of a
subgrid-scale model is then to provide adequate dissipation. Here, dissipation
means transport of energy from the resolved grid scales to the unresolved subgrid
scales, and the rate of dissipation € in this context represents the flux of energy
from the large to the small scales. To illustrate the role of the subgrid-scale
models it is useful to consider possible consequences if turbulence simulations are
performed with insufficient resolution. An obvious implication of a too coarse
resolution is that the viscous dissipation in the flow cannot properly be accounted
for. This deficiency will typically result in an accumulation of energy at the high-
wavenumber end of the resolved spectrum, which reflects a distorted equilibrium
state between the production and dissipation of turbulent kinetic energy. For
sufficiently high Reynolds numbers (or conversely sufficiently coarse grids) the
discrete representation of the flow even becomes essentially inviscid and the non-
linear transfer of energy can lead to an abnormal growth of turbulence intensities
and eventually to numerical instability of the computation.

5.1. Subgrid-scale model

In this work, except in paper 1, a large-eddy simulation approach is used to
study the diffusive boundary layer in a turbulent channel flow. The numerical
code is the continuation of the code used to produce the results reported in
[45]. Model equations are formulated for the filtered velocity, mass and pressure
fields. The filter function determines the size and structure of the smallest scales
resolved without modelling. The most commonly-used filter functions are the
sharp Fourier cutoff filter, the Gaussian filter and the tophat filter [46]. In the
present work, the filter consists in averaging f in a cubic volume whose center is
xM . M stands for the center of a given cell in a three-dimensional grid system,
xM denotes the coordinates of M, and AzM, Az} and Az} the side lengths
of the cell, where 1, 2 and 3 stand for the indices of the three spatial directions.
If a continuous function f(x) is considered, 7M stands for the filtered version of
f on space, at the center of cell M, whose volume is Az Az Azt Note that



?M is an instantaneous variable. If 7™ stands for the filtering operator, 7M =
T™ ( fixM ) .

Similarly, SM ( f; x) stands for the average of f over a plane surface element
As}, which is centered at x, normal to e;, and whose size is Az} Az}, where
j and k are different from i.

Finally, the volume average of the Navier-Stokes equation in cell M, assuming
the fluid density p =1, is

A 0uM ° M oM Lo . w1
Av ot = Z Asj Sj {_Uiuj - p5ij + Tij},x + §ijej
j=1
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j=1

where 7;; is the viscous stress tensor, and d;; the Kronecker delta.

As far as the linear terms are concerned (namely —pd;; and 73;), the filtering
of the momentum equation poses, in principle, no difficulties. On the contrary,
the advective term of the last equation, i.e. + E§:1 AsySM (wiy; xM + $Axje)),

needs to be modelled in terms of the resolved velocity field @}’ .
For that purpose, ugij M i¢ introduced as the unresolved part of the velocity
field, evaluated on the cell surface whose centre is the vector x™ + %Aa:j e;, and

whose normal direction is ej, i.e.

; 1
uEiJ)M =q; — S]JV[ <di§ xM + §A£Uje]'> . (41)

Then, according to the definition of S;, the total convective transport of
momentum ;u; across the cell surface centered in xM + %Amj e; and parallel to
e;, can be written

1 1 1
S]M <u~iu~j;xM + §ijej> = SJM (di;xM + iije]) SJM (dj;xM + §Amjej>

+S]]~V" (ugij)Mugij)M;xM + %Aa:je]) (42)
The first term, the product of the surface averages of the total non-dimensional
momentum ;ud; is approximated by the mean of the volume averages in the cells
on both sides of the surface. For the second term, on the other hand, which can be
thought of as a Reynolds stress associated with the unresolved motion, a model
has to be formulated. For notation convenience, this term is noted Fj (i) EFDM
and denotes the subgrid flux of momentum in the e;-direction through the sur-
face centered at x™ + LAz;e; and whose normal direction is e;. Following the
classical Boussinesq eddy viscosity model, one may assume that the subgrid mo-
mentum flux through surfaces of computational cells is proportional to the eddy
diffusion of momentum. However, as Zahrai [45] suggested, the eddy diffusivity



is assumed to depend on mesh sizes in different, through which the subgrid flux
of momentum is to be estimated. For a computational mesh with significantly
different spatial step sizes, the present subgrid model prescribes different mag-
nitudes of subgrid transport in different directions. In order to account for this
grid anisotropy, one may assume an expression of the following form

Fj (dl)(:t])M — _Vt(ij)MSZ(;tj)M, (43)

where SZ(]i DM i the filtered quantity E% evaluated on the cell surface under
consideration, and §;; is twice the instantaneous strain rate tensor. Its numerical
computation involves the average of Ef]/-[ between the two cells containing the
surface. l/t(ij)M is interpreted as a grid-dependent anisotropic eddy viscosity.
Following Deardoff [47], Zahrai et al. assumed that the local eddy viscosity

depends on the filtered dissipation € and a cut-off length scale l,(ﬁij)M. For
dimensional reasons, one may then write Vt(:t])M = (eM)1/3(EFDIMY4/3 - Again,

following Deardorff for the estimation of € and IS )M, Zahrai showed that the
original formulation of the Smagorinsky model for € could be easily adapted
to the present situation of a highly anisotropic grid. The cut-off length scale for
subgrid eddy diffusion, l£ij )M, is approximately Awﬁ” , since the smallest resolved
length scale in the j-direction is Aa:;-‘/[ . Finally, collecting the assumptions done
above, one arrives to the following expression

. 1 ; ,
(i) DM = — 22 [5M DM g (44)

/2 5ij i

where [5[]| = (Jm ) and £2 = (Azd Azl Aadl)2/°(Az)1/3,

C is taken equal to the Smagorinsky constant, 0.08, as suggested in [45].

Equation (40) becomes

A,UM% =0 AsM (- u—i(+j)Mﬂ§+J’)M _ ﬂg—j)Mﬂ§—j)M)]

- A [ ) 5]

+ 300 AsM |+ (?EJ.”)M - ?EJT")M)]

+ 5 Astt ke (s | - RO s
and similarly, the filtered continuity equation gives

3 3
S5 ask [agmM - agﬂ')M} —0. (45)

i=1 j=1

()M
Note that the superscript (- - -)( 7 denotes the filtered quantity evaluated on

the cell surface whose center is the vector x™ + %Amé‘"ej and whose normal



direction is e;. The Navier-Stokes equations can be manipulated to get a Pois-
son equation for the pressure correction. The SIMPLE algorithm is used here.
The pressure correction technique is basically an iterative approach and the pro-
cess is as follows. The iterative process is started by guessing the pressure field
p*. The Navier-Stokes equations are then solved with p*. It results of a velocity
field (u*,v*,w*). Since the velocity field is obtained with the guessed pressure, it
does not satisfy the continuity equation. From the continuity equation an elliptic
equation for the pressure correction p’ is derived. The physical interpretation of
the elliptic pressure equation is that a disturbance in the pressure at some point
is instantaneously experienced everywhere. The corrected pressure, p = p* + p’,
is then used to calculate the corresponding corrected velocity (u’,v’,wl). The
velocity field is then updated. Note that the flow is driven by a body force, or
by a pressure gradient constant in space and time. In other words, the pressure
term is decomposed into a mean pressure gradient in the streamwise direction
and equal to 1 in viscous units, and a fluctuating part which is to be solved
together with the velocity field.

The governing equation for the concentration transport can also be filtered
at each cell M, which can differ from those used for the velocity field

Mac ZASk [ (-Hc)M —(+k)M _ <—’“>Mn§;’“>M)]

+23:ASM i+ﬁc2£i (|SM(+k) = | —k)M —.(7k)M) (46)
P k Se Se K Tk ’

where ji is the concentration gradient in the k-direction. The turbulent Schmidt
number, Sc;, was set to 0.25, which may be a reasonable value, since the turbu-
lent Prandtl number, Pr; in the cases of large eddy simulation with heat transfer

is usually proposed to be between 1/2 and 1/3, see e.g. [48].

5.2. Discretization and mesh systems

Throughout the remainder of this section, all the variables are considered fil-
tered. The discretization of the momentum equations are not described, since
the present work has contributed to the numerical development of the mass
transport equation only. A detailed description of the discretization of the con-
servation equation for mass is presented.

The Navier-Stokes equations can be written the following form

1
. Ci= —Vi
ur + Cu Re u,



where C'ti contains the convection part and V@ the pressure and viscous parts
of the NS equations. An explicit time discretization is then introduced

un+1 —uh

=TIu" 4
o=, (47)

where It = —Cu + V.

The velocity field is then interpolated with a fourth order scheme, from the
grid where it has been calculated, to a finer grid, notated (---)¢ in the rest of
this chapter, where the concentration field is calculated. In each direction, the
integer I PC; represents the ratio between the number of nodes of the fine and
the coarse mesh. In the present study, the grid associated to the concentration
field is finer only in the normal direction of the walls. TPC5 and IPCj3 are then
equal to one, and the interpolation is only required in the normal direction of
the walls.

Since the velocity is staggered in the three directions, the interpolation is
performed with the vortices coordinates x; for %, and with the coordinates of
the cell-centers a:{ for @, and 43. Here, the interpolation formula is defined
indifferently for the three components, provided that the coordinates z; and zf
in equation (48), represent the vortices ;1 and z§ when ¢ = 1, and the cell-centers
a:{ and z7’ ! when i = 2 and 3. The interpolated velocity @ f is defined at the
cell-centers of the fine grid as following

2

N S(ICy) —z1 (I - j)
(101, 1C2,1C3) = il =k, 1G5, IC: ) o (48
a;? (ICy, 10y, 1Cs) k;1U( 2 3)g$1(1—k)—$1(1_j) 8

where T is the rounded I'Cy/IPC} to the nearest integer towards zero, for ul’f ,

and the rounded ((IPCy — 1)/2 + ICy)/IPC, for @S and aff. IC; are the
indices in the computational domain and in the three directions of the cell M.
They vary between 0 and M C; + 1, where M C; + 1 is an integer and the maxi-
mum value of the index IC;.

Similarly, the anisotropic eddy viscosity, l/t(ij)M = \/LECQE | iJ)M
interpolated as

2yl (1Cy) = 2{(I - j)

2
v EM (10, 1Cy, ICs) = v EM(T _ | 1Cy, ICs)
9 9 t 9 2y 3 N
kgl j#k x{([—k)—x{(I—])

(49)

If one considers a Taylor expansion at the second order in time of the first
derivative of the concentration field at a fixed position, one gets

0¢ 0¢ At 93¢ At? 03¢

8t(t +At) = o (t) + 555 () + - 8t3( o) + O(AF?). (50)



Now, considering the right-hand-side term rhs[é] in the mass transport equation
(46) at a fixed cell, and at a given time ¢,, 2£(t,) can be written as

gc ~ AskM —(+R)M—(+k)M _ (k)M —(—k)M
i te) =il = ) i - (c( MM M) |
3 122
AsM (1 HCL M CHOM S M (RN Sk
— M 1
+; AvM [(Sc + Scy (|S” | | ) » (51)
AsM (ER)M _ CICy+1)=C(IC,
where T4 = z;(ICkH%*z;(ICk)’ i = x;'fEIC:+1§—x;('f(;()/‘k)’ and where all

the variables are considered at t = t,.

As shown in equation (51), at a given cell M and at a given time ¢,, the time

derivative of & can be seen as a linear function of é, rhs = rhs|[c], and gtg (to)

can be written

o%¢ 9 [oc dc ~
ﬁ(to) =% {6 (t )] =rhs {a( o)} = rhs[rhs[d]]. (52)
Similarly, replacing ¢ by 2Z(t,) in equation (52), one obtains
e o [0%¢ _
@(to) =5 [W(to)} =rhs[rhs[rhs[¢]]. (53)

Using equations (51), (52) and (53), equation (50) is then discretized in time at
the second order. One obtains the time-advancement for the concentration at
any cell of the grid
cn—i—l —ch
At
where the index n is the time-label. Equation (54) can be seen as a Runge-
Kutta-like time discretization.

=rhs[c"] + %rhs [rhs[c"]] + A?trhs [rhs[rhs [c"]]], (54)

The concentration field is defined at the cell-centers of the fine grid. The con-
vection term ¢(F)M ﬂEil)M

QUICK, and is equal to

is calculated with a method of third order in space,

o u; >0
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where dz¢(IC;) = (2¢(IC; + 1) — 2¢(IC;)), and dzf (1C;) = (297 (IC; + 1) —
a:f’f (IC;)). The capital letter C'(IC;) stands for the instantaneous concentration
at the centre of the cell whose co-ordinates in the computational domain are
(IC;,ICy,IC}). Since the grid is only stretched in the normal direction of the
walls, ¢(F)M _Eii)M for i = 2 and 3, become simpler
—uS (10, IC,, 103)
[ -C(IC;+1)+2-C(IC;) — - C(IC; —1)] for u; >0
uSl (10, 102, IC3) %
[ CICy)+32-C(IC;+1) =% -C(IC; +2)] foru; <0

Finally, (s M (+k )

Z| R T (e e P B )

is equal to

| |(+ M are calculated by a simple second order finite difference, when the

three last terms are determined with a second-order scheme as following

Ui (Ie+1,0)+U; (L +1,0;—1) Ui (Le—1,0)4+U; (Te—1,1;—1)
2 2

Sik =
! ol (I +1) — 2l (I — 1)

Uy (I;41,1;)+ U (I; 41,1}, —1) _ Uy (I; —1,I;)+ Uy (I; —1,1;; —1)

n 2 2 . (56)
ol (L + 1) — 2l (1; - 1)

Here, the capital letter U;(I)) stands for the instantaneous velocity component
in the i-direction at the centre of the cell whose co-ordinates are (I, I, I,). I
are the indexes of the cells in the coarse grid.

5.3. The fringe region technique

In many numerical simulations the required computational domains are huge.
This is typically the situation of the computation of turbulent mass transfer
in a diffusive boundary layer at high Schmidt number along a plane surface.
The boundary condition for mass must be set far enough from the wall for not
disturbing turbulence in the near-wall region. This computational domain can
nevertheless be reduced by an artificial boundary condition [49]. One can then
consider a computational domain that contains the diffusive boundary layer only,
and that is not extended to the farfield. The fringe region technique was origi-
nally introduced by Spalart [50], and has been later used in direct simulations of
transitional and turbulent boundary layers, see Bertolotti et al. [51], Spalart et
al. [52], Lundbladh et al. [53] and Berlin et al. [54]. The computational domain
is divided into one useful region and one fringe region. An extra forcing function
was added to the momentum equations in the fringe region to create a periodic



Y,V

Mean flow 2
Re, = 180
(5 xX,u
Fluid ¢
Z,W
zone 2
zone 1 /V/ A,

Az

FIGURE 5.1 The geometry of the channel flow, the three regions of
computation, and the chosen coordinate system.

problem. The fringe region technique has also been used to suppress the vortic-
ity disturbances close to the outflow boundary in a transitional boundary layer
by means of a weighting function [55]. Later, Gurniki et al. [56] used the same
kind of weighting functions to suppress the concentration disturbances far from
the large gradients of mass transfer in the vicinity of an electrode. Henningson
et al. [49] applied this technique with DNS of a turbulent and viscous boundary
layer. The fringe technique was used in combination with the Fourier method,
and accurate numerical solutions were obtained. They concluded that the fringe
region technique was a useful method for the DNS of a viscous boundary layer.

In an electrochemical cell, Schmidt number is very high, and the diffusive
boundary layer is located very close to the electrodes. Outside this layer, the
distribution of the mean concentration C' is almost uniform. It is therefore of
less interest to compute the concentrations everywhere in the cell. For that
reason, the fringe region technique can be used to reduce the mathematical and
the numerical domain of investigation to the near-wall region. This method is
exemplified below with the treatment of a diffusive layer near the electrodes of
a cell working as a channel flow. For details, the reader is referred to [56, 54].
The computational domain for mass, as shown in figure 5.1, lies between the
electrode and an imaginary plane surface in the fluid, parallel to the wall and
at a distance of é. from it. . is sufficiently larger than the diffusive and the
logarithmic sublayer for mass, and can be estimated as 6;,/Sc'/? [19], where &},
is the thickness of the hydrodynamic boundary layer. Here, since the flow is
fully developed, 67{ can be approximated as 67{ = Re,, and 67 = 12.5, since
Sc = 3000. Re; is here equal to the channel half-width in viscous units. Note
that it is actually not possible to determine a diffusive boundary layer because
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FIGURE 5.2 The X function versus the wall-normal direction.

the flow is fully developed. This approximation is however useful to determine
where in the near-wall region the gradients of the passive scalar are strongest.
The domain is divided into the conservative zone 1 where | Vé™ |# 0, and zone
2 where a source term is added to the scalar conservation-equation to force é*
to approach a given value. This can be done as follows

g% + (at-vh)et = %V*’zﬁ Aty - (" =), (57)
where ut and ¢t denote the instantaneous velocity and concentration fields,
respectively. ¢} is a constant. Equation (57) can be used for both zones by
choosing properly the function AT, as shown in figure 5.2. The slope of the ramp
function AT is here taken equal to 0.13 in viscous units. The source term works
as a forcing function, imposing to the intantaneous concentration the fixed value
of ¢} in zone 2. The height of zone 1 is around the two thirds of 4.

The fringe technique is here used in order to formulate a tractable boundary
condition for the instantaneous concentration at the edge of the diffusive bound-
ary layer. At this boundary, the turbulent velocity field induces fluctuations
to the concentration. The fluctuating part of the concentration must then be
modelled. In order to simplify this fastidious and hazardous task, a very crude
model is chosen. The fringe region technique annihilates the fluctuating part of
the concentration in the vicinity of the boundary of the reduced domain. It is
bluntly assumed that the non-physical phenomena occuring in the fringe region
do not invalidate the solution in the remaining part of the computational do-
main [49] (zone 1 in figures 5.1 and 5.2). This assumption has been verified by
numerical experiments in [56].



CHAPTER 6

Summary of papers

In this chapter, all the dimensions are given in viscous units. The superscript
"+’ has been dropped for convenience.

Paper 1: Turbulent free convection in large electrochemical cells with a binary
electrolyte.

In this paper, the laminar version of the mathematical model proposed by Bark
et al. [10] for stable stratification in electrochemical enclosures, is extended
and tested to two natural turbulent cases. The standard k& — € model is used
for modelling the influence of turbulent fluctuations on the average fields. The
commercial code CFX F3D shows good convergence properties for these simula-
tions, and good agreement with previous simulations [11, 57] is obtained. Such
simulations include, in addition to the flow variables, velocity components and
pressure field for an incompressible fluid, an additional scalar concentration and
an elliptic equation for the electrical potential. The electrical potential and the
concentration field are directly connected to each other at the electrodes by the
boundary condition for mass transfer, and everywhere in the cell by the migra-
tion term in the local electroneutrality equation. The non-linear kinetics of the
electrochemical reactions at the electrodes are simulated using a formula derived
from a Butler-Volmer law. The formula is so far not modified to account for
turbulent fluctuations.

For a turbulent case where Schmidt number is equal to 1280 [11], the model
predicts a current density at the electrodes varying almost linearly with the
vertical direction. In this simulation, the predicted Sherwood number is found
to be approximately proportional to the Rayleigh number to the power 0.2.

A flow in a square cavity driven by a temperature difference between vertical
walls is also considered. The flow is predicted in good agreement with available
data from other investigations [58], which have already been used for benchmark-
ing turbulence models and numerical schemes. Some difficulties for obtaining
convergence are observed when the flow is simulated assuming a steady-state.
The ’false time stepping’ option can be used in order to accelerate the conver-
gence.
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Paper 2: LES of turbulent channel flow of a binary electrolyte.

The paper focuses on large-eddy simulations of the turbulent diffusive boundary
layer in a binary electrolyte. Predictions are performed at Schmidt number equal
to 1, 10 and 100. The flow is driven by a pressure gradient, and convection is
consequently forced. The code uses an adjusted mesh for the mass conservation
equation when Schmidt number varies, and is successfully validated by compar-
isons with available results found in literature. The Butler-Volmer-like boundary
condition is shown to be mathematically equivalent to a constant flux set for
concentration when the exchange current density is lower than 1074 m~2, and
to a fixed value when the exchange current density is higher than 10724 m~=2.
For this reason, the calculations do not need to predict the electrical potential
in the cell, or at the electrodes. This simplification is valid when considering
electrolytes with small electrical potential gradients only.

At Schmidt number equal to one, the exchange current is shown to have no
influence on the structure of the mean concentration, neither on the eddy diffu-
sivity, and on the wall-normal turbulent heat flux. However, the RMS intensi-
ties, the streamwise turbulent heat flux, and the lateral dimensions of turbulence
structures in the near-wall region are influenced.

Paper 3: Validation of the fringe region technique in LES of turbulent mass
transfer at high Schmidt number.

Large-eddy simulations of mass transfer in a turbulent channel flow working as
an electrochemical cell, are considered. The cell runs in the mass transport
controlled region, and the electrolyte is binary. Schmidt number is equal to 100
and the turbulent Reynolds number based on the half-width channel to 180. The
fringe region technique is tested and validated to reduce the numerical domain
of computation to the diffusive boundary layer.

Two different numerical techniques are used for computation of the con-
centration field in the near-wall region. First, a refined mesh is used for the
concentration field and the transport equation is integrated in the whole channel
as in [59]. Secondly, in order to make the simulation more efficient, only the
near-wall region is considered and the concentration field is damped in the outer
region using the fringe technique and thereby the size of the grid is reduced.
It turns out that simulations made with the reduced grid and the fringe region
technique run approximately 5 times faster than with the complete grid between
the two walls.

The mean concentration profile in the direction normal to the walls is com-
puted. Good agreement is found with results from direct numerical simulations
by Papavassiliou et al. [15].



The concentration profile in the logarithmic region was found to fit well with
the logarithmic law of € = 3.0 - In(y) + 285.0 after y = 10.

The mean eddy diffusivity is computed and good agreement is found between
the predictions of the present study, the DNS results, and the empirical profile
found by Papavassiliou et al. [15]. The predictions of the present study with
and without the fringe method technique are also in very good agreement.

Streamwise and wall-normal turbulent mass fluxes computed in this study
are found in good agreement is found with the computations made by Kawamura
et al. [36]

The two-point spanwise correlation coefficient of the concentration fluctua-
tions is computed at y = 1.17. The concentration streak spacing can be estimated
to 100. This value is in good agreement with that obtained by Calmet et al. [38].

Paper 4: Large-eddy simulation of electrochemical mass transfer.

Large-eddy simulations of mass transfer in a channel flow working as an electro-
chemical cell are considered. Schmidt number is equal to 3000 and the turbulent
Reynolds number, based on the half-width channel, to 180.

The mean concentration profile in the direction normal to the walls is com-
puted. The profile is compared with direct numerical simulations by Papavas-
siliou et al. [15] at Sc = 2400, and experiments done at Sc = 900 by Lin et
al. [19]. The concentration profile fits well in the logarithmic region with the
law ¢ = 3.0 - In(y) + 4485.0. At Schmidt number equal to 3000 the logarithmic
law lies between y = 2 and 10. As found by Kader et al. [41], at very high
Schmidt number, the logarithmic law is damped by the constant value of the
concentration in the core of the channel.

The mean eddy diffusivity is calculated and good agreement is found between
the predictions of the present study, the DNS results of Papavassiliou et al. [15],
and the empirical profile proposed by Shaw et al. [60], stating that E.(y) =
0.000463 - y3 in the near-wall region.

The average mass transfer coefficient is calculated. The result of the present
study at Schmidt number equal to 3000 is found to be in good agreement with
the DNS of Papavassiliou et al. [15], and the theoretical profile found by Shaw

et al. [60] for Schmidt numbers between 600 and 32000. The present study finds
_\1/2
the intensity of the fluctuations for the wall mass-tranfer coefficient (kz) /K

equal to 0.197. This result is in good agreement with Campbell et al. [17] at the

same Schmidt number, where (%2 2 /K is found equal to 0.23.

Streamwise and wall-normal turbulent mass fluxes are computed. The stream-
wise mass-flux is found 30 times larger than in the wall-normal direction. Good
agreement is found with the asymptotic laws found by Kawamura et al. [36] for
Schmidt number between 0.05 and 5.



The presence of well-known streaky structures elongated in the streamwise
direction are clearly observed in (x-z) planes at the interface between the viscous
and the buffer region of the diffusive boundary layer.

The spectral function of the mass transfer coefficient is computed at the
anode. Among the large frequencies, the present study finds a dependency of
the spectra proportional to the frequency to the power —3. This result is in
very good agreement with an analytical result of Campbell et al. [17] based on
a linear assumption for the mass-conservation equation.

Paper 5: On near-wall turbulent passive-scalar transfer at high Schmidt num-
ber.

Large-eddy simulations for turbulent transport of a passive scalar were made
at Schmidt numbers equal to 1, 100 and 3000. The purpose of this work was
to provide knowledge about the physics of the transport process as input to
simplified models for the Reynolds-flux vector at high Schmidt number. The
flow Reynolds number was 180. The accuracy of the present computations in
the near-wall region was validated by comparisons with analytic expressions in
the near-wall-region.

At Schmidt number equal to one, good agreement was found between previ-
ous studies and the predictions of the present study. At Schmidt number equal
to 3000, the balance in the transport equations of the Reynolds-flux vector is
dominated by v; (the difference between the pressure scalar-gradient term and
the diffusive destruction rate) and the transport term D;. v, and ¢, are dom-
inated by the diffusive destruction rate and 1, by the pressure scalar-gradient
term.

The transport equation for half the scalar variance and the corresponding
dissipation were studied. At high Schmidt number the budget is dominated
by the molecular and the turbulent diffusion term, and the production term.
For transport equation of the scalar dissipation, no qualitative changes in the
structure of the budget were found when Schmidt number varies. The dissipation
rate and the turbulent production term dominate the budget, except in the near-
wall region.

The numerical experiments made in this study showed that several use-
ful simplifications can be made in the near-wall region for the budgets of the
Reynolds-flux, the variance and the dissipation rate. They can be summarized
as shown below
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Paper 6: On modelling of Reynolds-flux vector at high Schmidt number.

Large-eddy simulations for turbulent transport of a passive scalar are made at
Schmidt numbers equal to 1, 100 and 3000. The flow Reynolds number is 180.
The purpose of this work is to provide explicit algebraic models for the Reynolds-
flux vector at high Schmidt number.

Two models from previous studies [62, 44] are tested, and one is developed
on the basis of a previous work [56] for the budget of the scalar flux. The first
model was developed by So et al. [62] and is described in tensor form as follows
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C!tZCA'k'Tl<1—(1—e_Z)2>ﬁ%—(l—e_z)ﬂ ,
e

t
where S;;, is the mean strain rate and 2;; the mean rotation rate.
The second model was developed by Wikstrom et al. [44] and is described
as follows
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where the inverse of the matrix A is given by
(G2 — %Ql)I — G(Css + CQQ) + (Css + CQQ)2
G® — 3GQ1 + 5Q> ’
and cg = 1 — cg2 — cp3, co = 1 — cgo + cp3.
The third model is developed in paper 6 and can be described as following
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The superscript ’ is equivalent to the first derivative in the wall-normal direction.
This last model is based on a simplification of the conservation equation for the
Reynolds flux, stating that, at Sc¢ = 3000, the transport terms balance the
pressure and the dissipation terms.

At Se = 3000 and 100, the model developed in paper 6 is shown to give
better results than the two other models.

At Schmidt number equal to 3000, the wall-function of equation (37) in
chapter 4.3.3 of this thesis, for the mean passive-scalar, is developed on the basis
of a simple algebraic model examined in [61]. Very good agreement is found
with the LES computations. This wall-function can be used with a model for

the Reynolds-flux vector and a low Reynolds k£ — e model, in order to model mass
transport at high Schmidt number.



CHAPTER 7

Outlook and critical review

In this work, three main aspects of mass transfer in electrochemical cells have
been investigated. The effect of the electrical potential, the effect of natural con-
vection on turbulence and its modelling, and finally the problem of analytically
and numerically predicting a turbulent and diffusive boundary layer at very high
Schmidt numbers. This last point has been widely studied when the two first
were only briefly considered.

The implementation of the electrical potential in the equation system mod-
elling mass transfer in a closed cell was made in paper 1. The turbulent fluc-
tuations of the potential were assumed to be zero. This assumption should be
considered in more details, although the methods of investigation to study the
field of the electrical potential in an electrolyte are very difficult to carry out.

The study of the potential-fluctuations influence on the potential field require
the development of a model for the correlation term between concentration and
current fluctuations present in the conservation equation for electrical charges. A
model can easily be achieved provided that the fluctuations of the total current
(8) can be neglected. This assertion should also be investigated.

Some algebraic Reynolds-flux models have been tested in paper 6 for a flow
characterized by forced convection. A similar investigation should be done with
natural convection. In this context, the development of LES for buoyancy driven
flows would be of great help.

A remaining issue is the modelling of the wall-mass-transfer fluctuations.
This topic of importance for many industrial applications, like electroplating,
where the uniformity of the metal layers is a condition for the quality of the
products. The correlation between bursts events in the buffer layer and the
mass-transfer fluctuations mentioned in chapter 2.2 of this study, should be more
investigated in the future. In particular, the process by which fluctuations of the
velocity field are induced to chemical species in the diffusive sublayer and at the
electrodes surface, could be a field of research for a future work.

A new wall-function for mass has been examined in paper 6. Good agreement
was found with a large-eddy simulation. In the future, this function should also
be tested for a flow induced by natural convection.
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TURBULENT FREE CONVECTION IN LARGE
ELECTROCHEMICAL CELLS WITH A BINARY
ELECTROLYTE

Frangois Gurniki!, Said Zahrai’? and Fritz H. Bark!
I Faxén Laboratory, KTH, Stockholm, S-10044 Sweden
2 ABB, Corporate Research, S-72178 Visteras, Sweden

Abstract. A mathematical model proposed by Bark and Alavyoon [1] for
modelling laminar natural convection in electrochemical cells, with binary
electrolytes, is extended to simulation of two-dimensional turbulent flows.
The turbulence was modeled by a standard k£ — € model. The constants
used in the model are the same as those used by Henkes and Hoogendoorn
[3]. Steady state calculations were carried out in a square, differentially
heated enclosure for Gr = 7 x 10'° and Pr = 0.71. The turbulence model
used could not predict the transition effect on the Nusselt number along the
hot wall. Transient calculations performed in an enclosure with an aspect
ratio of 35, for Gr = 6.4 x 101! and Sc = 2763, revealed large scale fluctua-
tions in the boundary layers near the vertical walls. The model was able to
predict qualitatively the velocity field for transitional flow for air induced
by buoyancy at Grp = 8100 and Gry, = 22500. The correlation between
the Sherwood and Rayleigh numbers was studied by modelling the mass
transfer at the electrodes using a Butler-Volmer Law. The computed Sher-
wood number was found to be approximately proportional to the Rayleigh
number to the power of 0.2 in the range of Raj, between 5 x 108 and 1010,
and with an order of magnitude of 10°.

1. Introduction

Electrochemical cells appear in several industrial applications, such as copper
refining cells and lead-acid batteries. It turns out that between the different
transport mechanisms, convection, migration and diffusion, convection controls
in most applications. The fact that the liquid moves due to buoyancy influences
the process considerably. The efficiency of the transport mechanisms in turn
directly influences the process of interest in the cell. Therefore, during the past
few years, hydrodynamics of electrochemical cells have been subject to many
scientific and industrial investigations.

Eklund et al. [2] studied the flow in a copper refining cell both numerically
and experimentally. The concentration field was measured by Holographic Laser
Interferometry and the velocity profiles using Laser-Doppler Velocimetry. The
theoretical model was based on hydrodynamic conservation laws. Electrodes ki-
netics were modeled with a constant concentration flux for copper ions at the
electrodes. Very good agreement between theoretical predictions and experimen-
tal measurements was found.
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In a theoretical investigation, Bark and Alavyoon, [1], considered free convec-
tion in an electrochemical system with nonlinear reaction kinetics and a binary
electrolyte. Unsteady electrolysis was investigated for large values of Rayleigh
and Schmidt numbers. The charge transfer at the electrodes was mathemati-
cally quantified by a Butler-Volmer law. Using perturbation theory, the authors
derived a simplified model for the evolution of the system. They found good
agreement with results from numerical solutions of the full problem.
Computation of turbulent flow set up by inhomogeneities in the density field ,
in a closed cavity, is not free from difficulties. The case of flow in a differentially
heated square cavity has recently been used as a test for turbulence models and
numerical procedures. Henkes and Hoogendoorn [3] reported results of compu-
tation of turbulent natural convection in enclosures. The comparison, between
different models and solution schemes, aimed at diminishing numerical inaccura-
cies and at obtaining a numerical reference solution for the differentially heated
squared enclosures. To investigate numerical accuracy, a well-defined configu-
ration was prescribed, and the standard k& — € model was used as the reference
model. Although results close to experimental data were presented, distinct in-
consistencies were observed. Computational difficulties such as slow convergence
were noted.

In the present work, attention has been paid to flows where turbulent transport
has to be taken into account. The commercially available code, CFX F3D, is
used for a more detailed investigation of the case studied by Ziegler and Evans
[4]. Their work is extended by, first more accurate simulations and models.
Secondly, a more sophisticated, non-linear Butler-Volmer law as the boundary
condition at the electrodes, is used for the description of the electrodes kinetics.
Detailed comparisons are made between predicted results and the literature, for
two flow cases.

2. Problem formulation

Two electrodes made from same metal are immersed in a dilute solution of a
salt of the electrode metal providing a binary electrolyte in a rectangular cell.
The two-dimensional cell, which is assumed to have its sides parallel to the di-
rection of gravity, is shown in figure 1. The dissolution of metallic ions generally
increases the density of the fluid near the anode. Near the cathode, the reverse
reaction takes place resulting in a lower density. Inhomogeneities in the den-
sity field set the fluid in motion with a convection pattern downwards near the
anode and upwards near the cathode. Convection contributes to transport of
ions and thereby influences the chemistry of the cell. The mathematical model
considered by Bark and Alavyoon [1] is reviewed and extended to investigate
the case of turbulent flows. The standard turbulence k — € model is used. The
present study performed also numerical predictions for the case of Ziegler et al.
[4] with the low-Reynolds number model. As reported by Jones and Launder [5]
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FIGURE 1. The geometry of the cell and the chosen coordinate system.

for a two-dimensional flow and natural convection, the low-Reynolds version was
found to produce a numerically unstable solution. For that reason, the results
with the low-Reynolds version are not shown in the present study. The hydro-
dynamic problem must be solved for 6 dependent variables in a two-dimensional
configuration: the concentration fields, ¢; and ¢y, where subscript 1 denotes the
anion, and subscript 2, the corresponding cation, the velocity field @ = (u,v,0),
the pressure field p and the electric potential ¢. Apart from the double layers,
the electrolyte can be assumed to be electrically neutral, that is zy¢; + z2¢0 = 0,
where z denotes the charge number of the species and the indices 1 and 2, the
metallic and the non-metallic ionic species respectively. If the double layer is
not to be explicitly accounted for, the mathematical problem can be formulated
using a single variable for the concentration fields by defining ¢ = z1¢1 = —2z3¢9,
which satisfies the neutrality condition. The governing equations for the above
5 independent variables assume however, for simulation of turbulent flows, addi-
tional terms and equations to take into account the effects of random temporal
and spatial fluctuations. Introducing f as the time-average value of any variable,
and f "its fluctuating part, and introducing the turbulent kinetic energy k = %u?
(m? s72), and a rate of turbulent kinetic energy dissipation € ( m? s—3), the
following system of equations is obtained for z; = —zo = 2

od H o L. 1 S _,
o + Rayii - Vi = Sc (—Vp + V% — c€;)) + BV . (I/T (Vu + (VU)T)) , (1)

V.id=0, 2)



dc 1

JR— i - — 2 - -
5 + Rap - Ve =Vic+ O'TDV (vrVe), (3)
IV - (1+¢)Vé+Vie=0, (4)
k s ur _
p=—+pV- (k@) =V | p+— ) VEk|=P+G —pe, (5)
ot Ok
O o (i) = (1LY ve) = 1P = Cups (6)
Pat p € N ) €] = 17 2Pka
where,
pr = Cups, Peff = o+ pir,
P=pe;vi-(i+@7"), ¢=—"LLg.vp
Hheff ( (@) ) or 9 VP

Rap, Sc, D and T' are defined as

Pngh3(C“1 + ap) H
Ray, = , Sc= , 7
h 21D poD ™
2D, D, 2(D; + Ds)
D=2 =212 8
D + D> Dy — D» )

C is defined as min [I{%}l x sinh [%(‘Q - V)] ,co] [1], or min [21?—151’ co] when
ac

S is set constant at the electrodes [4]. The above system is set for the non-
dimensional variables &*, @*, t*, ¢*, i* and ¢*, where * superscripts are dropped.
The non-dimensional variables can be defined as

Cgh? h?
g=gh, gz fedenta) o M. (9)
2u D
Vi+V_ RT > L C—Co
— * — * * — X 1
¢+ 2 F ) 2 20t c C ( 0)

A series of numerical calculations, calculated for the turbulent case of Ziegler et
al. [4], proved that G does not influence the prediction of the mean velocity, and
can be neglected in the transport equation for k.

Ozoe [6] performed a sensitivity analysis for the constants of the k — e turbulent
model and determined different values for C; and o7 rather than those listed
below. However, since the applicability of these values for different geometric and
boundary conditions is not known, they were not employed here. The turbulent
constants are therefore chosen as Henkes [3], except for C, in the buoyant term of
the € equation, which was shown to have no significant influence on the solutions:
Ci=144,0,=192,C.=0,C, =0.09, o7 =0.9, 5, =1 and o, = 1.3.

A turbulent contribution should also be taken into account for the calculation
of the electrical potential. Here, it is assumed that the turbulent contribution is
negligible.



Bark and Alavyoon [1] used a semi-empirical Butler-Volmer law and formulated
the following non-dimensional boundary conditions at the anode and cathode

o QFhIi)glc [eV=9) — (14 ¢)elo")] at x=-1, | y |< H (anode)
Ox _2Fh5010 [(1 + C)€(¢+V) — 6_(¢+V)] at X:+1, | Y |§ H (cathode)

(11)

where V = M%(‘Q —V.),and H = % Here the formula was not modified
to account for turbulent fluctuations. Ziegler and Evans [4], used a simpler

condition

0
6—; = constant. (12)

For the electrical potential, because Ng Ey=0atz= +1,

d¢ 10c

A =+ <
(1+¢) %~ 39 at 1,|y |< H (anode, cathode) (13)

No transfer of mass occurs at the horizontal walls, resulting in vanishing normal
derivatives of the concentration and potential fields
dc 09

—=—=0aty=+xH <1 14

For the velocity field, no slip conditions are applied on all four walls, that is

#=0at z=+1andy=+H. (15)

3. Methodology

The set of equations is solved numerically using the commercial code CFX F3D
[7]. The solution methodology is based on the finite volume discretization of the
transport equations and the continuity equation for an incompressible fluid. The
numerical scheme is based on the pressure correction method. The pressure-
correction equation is obtained by applying the SIMPLE algorithm [8] to the
momentum equations. The Rhie and Chow [9] interpolation scheme is used
to prevent chequerboard oscillations of pressure on the co-located grid. In the
present computations, full field Stone’s method was used to solve the velocity
variables, concentration and the preconditioned conjugate gradients for pressure.
The advection term was discretized using an upwind method for steady compu-
tation. During simulation of unsteady flow, in addition to the finer mesh, CCCT
[10], which is a more stable formulation of the QUICK scheme, was used. The use
of CCCT decreases numerical diffusions and makes a study of small fluctuations
possible.



4. Results

In this section, results from numerical investigations of the two-dimensional flow
in an electrochemical cell are presented. The Rayleigh and Grashof number are
based on the half-width of the cell. The same parameters used by Ziegler and
Evans [4], are first chosen so that the results can be compared with their theo-
retical and experimental investigations. The flow is then studied in more detail.
The flow is assumed to take place in a cell with a width of 2.4 ¢m and a height
of 85 em. The Rayleigh number is 5 x 10° and the Schmidt number 2763. The
vertical walls of the cell form the anode and cathode, where mass flux is set
constant. The horizontal walls are electrically isolated. A detailed set of the
parameters involved in the simulation is given in table 1.

| Quantity Value |
Tonic metal Cadmium, Cdt+
Average salt diffusivity 5.76 x 10719 m?2s1!
Average viscosity 1.91 x 10 3kg (m.s) !
Average density 1200 kgm =3
Relative variation in density
with solute fraction 1.97
Reference concentration 0.0937 (mass fraction)
Anode-cathode spacing 0.024 m
Cell height 0.85m
Current density 100 Am™2

TABLE 1: Physical parameters of the flow studied by Ziegler and Evans [4].

The simulation was started with a mesh similar to that used by Ziegler and
Evans, 32 x 22 mesh points in the vertical and horizontal directions, respec-
tively. As in that work, the equations were solved assuming a steady state and
the standard form of the k—e turbulence model. Figure 2 shows the mean vertical
velocity at the mid-height of the cell. The predicted velocity profile agrees qual-
itatively well with the experimental data. The same calculation was repeated
with a finer mesh using 200 x 50 mesh points in the vertical and horizontal di-
rections, respectively. In order to study the possible oscillations, after the initial
transients are dampened out, the flow was first simulated under assumption of
steady-state. Thereafter, the simulation was continued as a time dependent flow.
Figure 3 shows a comparison between the predicted vertical velocity profile, as
a function of time, and the measurements of Ziegler and Evans. The agreement
with experimental data, compared to that of figure 2, is clearly improved. The
thickness of the boundary layer on the wall is nicely predicted. Figure 4 shows
the present simulation of the maximum velocity inside the boundary layer at the
mid-height of the cell as a function of time. After about 20 s, regular fluctuations
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FIGURE 2. The vertical mean velocity at the mid-height of the cell.
The result from the present computation, the solid line, is compared
with theoretical, dashed line, and experimental data, dots, obtained
by Ziegler and Evans. Ra, =5 x 10°, Sc = 2763.

FIGURE 3. The vertical mean velocity at the mid-height of the
cell, at different moments of time, for the first 20 seconds, at each

5 seconds. The dots represent the experimental data by Ziegler and
Evans. Raj, =5 x 10, Sc = 2763.
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FIGURE 4. The maximal vertical mean velocity in the boundary
layer near the anode, in an horizontal cross-section of the cell at its
mid-height, as a function of time. Ras = 5 x 10, Sc = 2763.

with a period of about 35 s, is observed. The magnitude of the fluctuations is
less than 10% of the mean value.

The maximum mean velocity at the mid-height of the cell is —6.75x10~* m s~ *.
By comparing this vertical velocity, with the period of fluctuations and the width
of the cell, fluctuations in the velocity field can be attributed to advection of
wave-like eddies whose size is of the same order of magnitude as the width of the
cell. Figure 5 shows that a wavy structure can be found in the boundary layer,
with a wavelength comparable to the width of the cell. The waves travel at a
speed close to that of the maximum velocity in the wall-layer.

For the same geometry, with two heated vertical walls, a Prandtl number of
7 and Rayleigh numbers based on the half-width of the cell around 7.234 x 105,
Elder [11] observed a similar wavy boundary layer structure and similar trend
in the wavelength. Elder stated that the wall waves appeared when the flow
was close to transition to turbulence and could be seen as instabilities in the
boundary layer. The wave train lost its regularity as the turbulent state was
approached.

At higher current densities, the flow becomes, loosely speaking, more like con-
ventional turbulence, where small scale turbulent fluctuations become dominant,
in comparison with large structures of sizes comparable to the width of the cell.
Figure 6 shows the increase in mean velocity with current density. The calcu-
lations were run using a coarse grid, which, as previously shown, predicted the
flows qualitatively well.



FIGURE 5.

Iso-lines of vertical velocity. The horizontal dimension

is expanded by a factor 10. Distances equal to the width of the cell
are marked at two different vertical positions. Raj, = 5 x 10°, Sc =

2763.
Ar
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FIGURE 6. The influence of the current density on the velocity field

for constant values of current density on the electrodes. Sc = 2763.
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FiGure 7. The predicted current density distribution using the
Butler-Volmer law at two different exchange current densities. The
current density is normalized by the maximal predicted value. The
solid line corresponds to the lower value of the exchange current den-
sity, 1 A m~? and the dashed line to the case, 10 times higher.

It was found empirically on the basis of the computational effort of the present
study, that the maximal mean velocity is approximately given by the relation

Umaz = A X i0-517 (16)

where v, and ¢ are given in m s~ and A m™2, respectively, and

A =1.23x10"*m?92 571 A=0-51 This relation is in relative agreement with the
one found out by Ziegler and Evans, who found A = 2.33x 10~4 m?2:02 =1 4=0-51,
In accordance with Ziegler and Evans, a constant current density was imposed
at the electrodes. An alternative way, of modelling the charge transfer at the
electrodes, is use a Butler-Volmer law. It allows a study of the influence of
current density distribution on flow. However, as discussed by Bark et al. [1],
the use of it, due to numerical complexities, limits the computations to very
low cell potential drops. Figure 7 shows the current density distribution along
the cathode for two different exchange current densities. The computed current
densities are normalized by dividing by their maximum value, which, according
to figure 7, was found, as expected, at the bottom of the cell. The exchange
current density was varied by a factor of 10, between the two cases, resulting
in a maximal computed current density of about 3 times larger for the highest
value. The current density varied linearly in the vertical direction apart from the
close neighbourhood to the vertical boundaries. The imposed potential difference
between anode and cathode was 0.014 V in the above simulation.
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FIGURE 8. The variation of Sherwood number for different Rayleigh
numbers. Diamonds show the predicted Sherwood numbers, while
the solid line presents the empirical correlation curve Sh = Ra22.

The Sherwood number is the non-dimensional mass flux at the electrodes, and
CWL—COC [%]wa” [12]. Here attention is paid to the qualitative
dependence of the Sherwood number on the Rayleigh number, and therefore,
the details in the scaling procedure are of minor importance. Figure 8 shows the
computed Sherwood number. This number is calculated at the cathode, at the
mid-height of the cell which, due to the almost linear variation of the current
density, equals the mean Sherwood number. The numerical predicted Sherwood
number is found to be related to the Rayleigh number according to Sh ~ Raj-2.
The Rayleigh number, in the above formula, is based on the width of the cell.
The reader is referred to Elder [11] for details on the choice of the relevant scales.

Henkes [3] observed that the wall functions, used in the standard k& — e model
formulation, have been established for forced convection. This means that they
are not adapted for natural convection and thus he proposed to impose a fixed
and large value for € at the first mesh points. An imposed value for €, corresponds
to a non-dimensional distance y.’ ,, = C,,/(0.41vk?¢) from the wall to the first
mesh point. Henkes showed (see appendix A) that setting a high value of € gave
good results and that the computed variables were found to be independent of
the value, as soon as it is large enough. In other words, the results are not very
sensitive to the non-dimensional distance between the first mesh point and the
wall. Unfortunately, this is not the case for flows where the flux is given for the
walls, for example in electrochemical systems. Figure 9 shows the sensitivity of
the flow, to the imposed value y:;a” at the first mesh points. Fortunately, as

is defined as
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FIGURE 9. Vipas versus y*. Rap, =5 x 10°, Sc = 2763.

shown above, the traditional wall functions predict results in good agreement
with the experimental data.

5. Conclusions

The study of the turbulent case considered by Ziegler and Evans [4] revealed
the presence of large scale turbulent fluctuations, estimated close to the width
of the cell, and indicating local sites of weak turbulence near the transitional
state. The standard k — € model was used for the prediction of a transitional
flow induced by natural convection, and good agreement was also obtained with
previous direct simulations [13]. Results are shown in Appendix B. The non-
linear kinetics were simulated using a formula derived from a Butler-Volmer law.
The predicted Sherwood number was found to be approximately proportional to
the Rayleigh number to the power 0.2.

6. Appendices: Validation of the code

6.1. Appendix A: Turbulent free convection in a closed cavity. Turbulent free
convection in a closed cavity has been a test case for turbulence models and
numerical methods, see [3]. The flow to be computed takes place in a square
cavity and can be assumed to be two-dimensional. The cavity contains air,
resulting in a Prandtl number of 0.7. The flow is driven by a temperature
difference between vertical walls, while the horizontal walls are assumed to be
isolated. The Rayleigh number, based on the temperature difference and the
width, or height, of the cavity, is set to Ra = 5x10'°. The turbulence model used
here is the standard &k — e model without any modifications. As recommended by
Henkes et al. [3], the value of € in the first cell near the vertical wall was set to
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a large value. The simulation was run using 90 x 90 mesh points, with a higher
concentration of grid points near the wall, than in the center of the cavity.

In figures 10 and 11, the non-dimensional vertical velocity and the turbulent
kinetic energy, along a horizontal cross-section at the mid-height of the cell, are
presented. In those figures, results from the present study are compared with
those from numerical simulations reported by Henkes et al. and experimental
data. The temperature variation, on a vertical cross-section in the midplane of
the cell, is presented in figure 12.

Figure 13 shows a comparison between the computed non-dimensional heat
flux, the Nusselt number, along the hot wall from the present simulation. It
also shows the same prediction by Henkes et al. and experimental data. Fig-
ure 14 presents a similar comparison, for the non-dimensional shear stress along
the hot wall. Fluxes at the wall are quantities, related to gradients of the field
variables, and therefore less accuracy can be expected in their prediction. Sim-
ilar deviations from experimental data have been observed in earlier numerical
predictions, see [3].

The boundary conditions for the € equation has been discussed in different
contributions. The numerical solution found by Henkes et al. for the Nusselt
at the hot wall, as shown in figure 13, reveals a local and abrupt decay of the
Nusselt on the lower part of the wall. This decay is identified [3] as the transition
point of the boundary layer to the turbulent regime. Such a transition point has
not been observed here with the conventional £ — € model.
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6.2. Appendiz B: Turbulent unstratified natural convection in a vertical slot for
Pr=0.71. The computed flow takes place in an infinite vertical canal, so that
it is imposed periodic boundary conditions in the vertical direction. A fixed
difference of normalized temperature is set to 1 between the two vertical walls.
The Grashof number is set consecutively to 8100 and 22500, see figures 15 and
16. The Prandtl number is 0.71. Calculations performed by the present study
were two-dimensional and used the k& — ¢ model in its standard version. The
results are compared with the direct simulations performed by Phillips [13]. As
Phillips reported, “at a Prandtl number of 0.7, the critical Grashof number is
8041”. Figure 15 is then typically a case of transitional flow. The k& — ¢ model
is nevertheless able to predict the velocity profile qualitatively well. For higher
Grashof number, the prediction performed with the k£ — € model is still valid as
the turbulent state is approached, see figure 16.
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Abstract. The turbulent diffusive boundary layer in a binary electrolyte
was considered at Schmidt numbers of 1, 10 and 100 and exchange current
densities between 10744 m~2 and 10724 m~2. A numerical scheme was
developed for efficient investigation of the dynamics by means of large eddy
simulations. The methodology was examined by detailed comparisons with
documented data from earlier large eddy and direct numerical simulations
and good agreement was found. Application of the methodology to electro-
chemical mass transfer indicated that the exchange current density seems
to have negligible effect on the mean concentration profile but it influences
the structure of the fluctuating field in a visible manner.

1. Introduction

Numerical simulations of turbulent flows for industrial use are usually made by
considering average fields. In such simulations, influence of turbulent fluctuations
on the transport of different quantities must be modelled. Models are usually
constructed based on information on the statistical structure of the flow. Making
use of experimental data is a usual approach for development and verification of
models.

Levich [1], based on the analogy with laminar boundary layer, proposed that
in a turbulent boundary layer the thickness of the diffusive layer, ., would be
of the order of magnitude of 6, - S¢='/3. Tt has been verified experimentally in
different studies, for example by Lin et al. [2]. The high value of Schmidt number
appearing in most of the practical applications is one of the important factors
resulting in thin diffusive boundary layer, and making experimental investigation
of flows with mass transfer problematic.

Unfortunately, although electrochemical systems seem to be suitable for ex-
perimental investigations, see e.g. [3], the measured data are usually in the form
of integrated quantities rather than detailed information on the structure of the
flow. As examples, Fouad et al. [4] and Newman [5] studied mass transfer in
electrochemical systems and reported global information on the process such as
the total cell potential drop, electrical current and global density variation of
ionic species. As a result, other tools must be used in order to provide detailed
data on the structure of the flow.
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With improvement of digital computers and computational methods during
the past years, simulations could be used as an alternative to physical experi-
ments. Study of turbulent channel flow, for example, has played an important
role in modelling turbulence, in particular in the vicinity of a rigid wall. A pure
numerical solution of the mathematical equations without a model is usually ref-
ered to as direct numerical simulation. Clearly, the advantage is that no models
are involved at the cost of being limited to low Reynolds numbers. An alterna-
tive route is to use large eddy simulations, where only small eddies which have
a more universal behaviour are modelled. Using large eddy simulations, higher
Reynolds number can be studied.

In the earlier studies, boundary conditions for the passive scalar were such
that direct use of presented data for modelling of mass transfer at the electrode
in an electrochemical system were not possible. The goal of the present study
is to provide detailed information about the statistical structure of a turbulent
boundary layer with mass transfer using boundary conditions of interest for elec-
trochemical systems. Statistical data presenting the structure of the boundary
layer are to be obtained by performing large eddy simulations. The hydrody-
namic part of the computation performed by Zahrai et al. [6] is completed in
the present study to treat the mass conservation equation.

2. Formulation of the problem

In this study turbulent flow of a binary electrolyte outside the double layers in an
infinitely large cell is considered. The electrodes are assumed to be at a distance
of 26 and the flow is driven by a constant pressure gradient, strong enough to
make gravitational effects negligible. The coordinate system is chosen so that
the electrodes are located at y = £J. The electrical neutrality of the electrolyte
can be expressed as z;c; + z2¢2 = 0, where ¢; and z; denote the concentration
and the charge number of species 4, respectively. The transport equations for
the mass in a binary electrolyte can be reduced to one single diffusion-convection
equation for a concentration field defined by ¢ = z1¢1 = —z2¢2. It can easily be
shown that the charge neutrality will then be identically satisfied.

Under the above conditions, the flow can be described by the Navier-Stokes
equations for an incompressible fluid, the law of conservation of mass for a fluid
at constant density and a transport equation for the reduced concentration field.
Using u,, the friction velocity, as the characteristic velocity scale, I* = v/u,,
the typical length scale in wall units, the continuity and Navier-Stokes equations
can be written for the instantaneous velocity vector as

Vt.ut =0 (1)

and



where u denotes the instantaneous velocity field and p is the instantaneous pres-
sure field and is nondimensionalized by pu?. The transport equation for the
reduced instantaneous concentration field, using the above scales, can be writ-

ten as
Oc* .Ut ot L
87§—++(u Ve :EAC, (3)
where Sc is the Schmidt number. The concentration field can be made dimen-
sionless by using the mass flux at the wall, i.e. C* = —UQ g—z r where €
T wal

corresponds to the averaged value of the instantaneous concentration. All quan-
tities are thus scaled in wall units; therefore the superscript '+’ will be dropped
throughout the remainder of this paper. Nevertheless, for more clarity, the su-
perscript can be maintained in the captions of the figures. For the hydrodynamic
equations, the no-slip condition is used at the electrodes. Note that the non-
dimensional half-channel width will be equal to Re, in the wall units. For the
concentration field different boundary conditions are considered. As a first step,
in order to make comparisons with earlier numerical and experimental investi-
gations, the case of mass transfer when the concentration is set to a given value
at the wall is considered, i.e.

C(:L’, :*:Rera 2, t) = icwall- (4)

For electrochemical systems, other boundary conditions are also of interest. Here,
two simplified conditions are used for modelling the mass flux from the electrodes:

Oc

a—y(m, tRe;,z2,t) = £Jwau, (5)
i.e. the flux is given at the electrodes, and finally a boundary condition which
allows fluctuations of the flux with the value of the concentration at the elec-

trodes,

g—;(aj, +Re;,z,t) = K, [c(z, £Re,, z,t) — C,] . (6)
In the above relations, C,, K, and J,q; are given constants. The form of
the boundary condition in (6) comes directly from the first term in a Taylor
expansion of the Butler-Volmer mass transfer law, see e.g. [7]. K, is proportional
to the exchange current density of the chemical reaction at the wall and is equal
to

ZO

"~ 2FD,C,Re,’ @
where i, is the exchange current density, F' is the Faraday constant, D, is the salt
diffusivity constant for the metallic ionic species of the binary electrolyte, and
C, a reference value for the reduced concentration at equilibrium, which is the
same as in the core of the channel. If an electrolyte with low electrical potential

K,

gradients is considered, the boundary condition (6) is a good approximation of
the electrochemical mass transfer law at the electrodes. Experimentally, such



a configuration can be obtained with an additional ion that does not take part
of the chemical reactions and reduces the electrical resistance of the electrolyte
considerably [5]. Equation (6) can also be written as

0
8—;(3}, +Re;, z,t) = £ [K, - ¢(z,£Re,, z,t) — J,|, (8)
where J, = M[ﬁﬁ' In this form, it is clear that for low values of K,, this

boundary condition approaches equation (5). It is worth noting that the exposed
boundary conditions above are linear and remain the same when considering the
time-averaged values.

3. Numerical procedure

The methodology used for the fluid velocity field is taken from the earlier work
on the simulation of turbulent channel flows by Zahrai et al. [6]. In this large
eddy simulation, averaging over the volume of the computational cells is used
as the filtering function. The subgrid model is an anisotropic version of the
Smagorinsky eddy viscosity model. A rectangular computational cell, numbered
M, has the width in the ¢-direction, Aa:f” , the area of surface normal to i-
direction , As} = Az} Az}, and a volume size, Av™ = Az}" Az} Az}, The
modelled Navier-Stokes equation (2) averaged over the volume using the cell M,
which gives the dynamics of large eddies resolved on the given mesh, can be
expressed as

AvMBEfW —
5 o (IM, (DM (—)M (—)M : :
Yo Asyh = (w7 U u; )_ (UM — pl=IM) 5ij]

3 M (+5)M (—))M
+ Zj:l Asj [(Tij — Tij
2 M|FDM - ()M M| (DM ()M
L (1 ey )]
where 7;; is the resolved stress tensor, and s;; the deformation tensor, Ef‘f | =

<\/Z?1 Z?Zl §%2>, and L? = (A:rf/[Aa:é”Axé”)wg(Aa:y)‘lm. Considering

=M
an instantaneous function f(x), f stands for the filtered version of f at the

center of cell M, whose volume is Av™. The superscript (£j)M denotes that
the considered filtered quantity is evaluated on the cell surface whose center is
the vector x £ L Az}Me; and whose normal direction is e;.

It is worth mentioning that the above equation is not differenced but only
filtered by integrating the Navier-Stokes equations on a cell volume. The trans-
port through the cell surfaces due to fluctuations of smaller sizes than the size
of the cell are modelled by a Smagorinsky-like subgrid viscosity. The modified
Smagorinsky model has the property of vanishing in the regions where the reso-
lution is good enough in an anisotropic manner. As a result, in the wall-region
where the mesh size is chosen so that the details of the flow can be studied, the
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FIGURE 1. The geometry of the cell and the chosen coordinate system.

TABLE 1. Mesh specification.

Ny, | Ny | N, Az Az AYmin | AYmaz
Mesh 1x1x1| 32| 42 | 96 | 70.6858 | 11.781 | 1.4062 | 18.92
Mesh 1 x2x1| 32| 8 | 96 | 70.6858 | 11.781 | 0.7031 | 9.46
Mesh 1 x6x1| 32 |252| 96 | 70.6858 | 11.781 | 0.2344 | 3.16

influence of the model becomes weak without explicit damping. The fine resolu-
tion of the flow near the wall eliminates the need of wall functions. The model
constant C' was set to 0.08, as suggested in [6]. The flow is driven by a body
force, or by a pressure gradient constant in space and time. In other words, the
pressure term is decomposed into a mean pressure gradient, i.e. a given constant
equal to 1 in wall units, and a fluctuating part which is to be solved together
with the velocity field.

Similarly, the mass transport equation can be filtered at each cell M, which
can differ from ones used for the velocity field. The turbulent Schmidt number,
Sc, was set to 0.25, which may be a reasonable value, since the turbulent Prandtl
number Pr;, in the cases of large eddy simulation with heat transfer, is usually
proposed to be between 1/2 and 1/3, see e.g. [8].

The computational domain is periodic in the streamwise and the spanwise
directions with corresponding periodicity lengths, A, and A,. The distance be-
tween the channel walls is 2Re,. A, and A, are respectively 4 x 7 x Re, and
2 x 7 X Re,, see figure 1. Periodic boundary conditions are applied for the pres-
sure fluctuations, the instantaneous velocity, and concentration in the streamwise
and spanwise direction.

As a unique feature of this study, the use of different mesh systems for the
fluid velocity field and the concentration field should be pointed out. Table 1
shows the characteristics of three meshes. The one denoted as Mesh 1 x 1 x 1
is used for the fluid velocity field. The meshes used for the concentration field



are Mesh 1 x 2 x 1, and Mesh 1 x 6 x 1. The finest mesh, Mesh 1 x 6 x 1, was
used for the the calculations performed at S¢ = 100 only. The grids are uniform
in the mean flow direction. They are stretched in the direction normal to the
wall, with the finest spacing at the walls. According to Calmet et al. [9], at least
three mesh points in the wall-normal direction are required within the diffusive

sublayer, y < %, to resolve the unlinear behavior near the wall. The mesh
systems used in the study fulfill this requirement.

The initial profile in a cross section for the velocity was set parabolic. The
mass transfer calculation was not added until the hydrodynamic simulation had
reached statistically equilibrium state. The initial profile in a cross section for
the reduced concentration was linear for the first calculation, at Sc¢ = 1 and
with a fixed value as the boundary condition at the walls. The calculations
with other boundary conditions or higher Sc were initialized with the calculated
concentration field obtained with the highest available Schmidt number. The
calculated variables were considered to be at equilibrium when variation of the
statistical properties in time were small.

4. Results

The flow is assumed to take place at Reynolds number of 180 based on the wall
friction velocity and the channel half width. The conditions of computation of
the velocity field are exactly the same as those reported in [6]. The present study
focuses on the mean concentration field, RMS intensities, the eddy diffusivity,
and the structure of the instantaneous concentration field. Transport equations
are solved for the concentration field at Schmidt number 1,10 and 100.

In figure 2, the mean concentration profile in the direction normal to the
walls is presented for flow at Schmidt number equal to one. Good agreement is
found with results from direct numerical simulations by Lyons et al. [10] and
Papavassiliou et al. [11]. The methodology and subgrid-scale model used in
the present study are consequently found to be accurate enough to model the
turbulence mass transport on small scales. Figure 3 indicates similar variation
of the mean concentration profile in the logarithmic diagram. With increasing
y*, the concentration profile exhibits a buffer layer character, followed by a
logarithmic region. As shown on figure 3, the concentration profile in the outer
region fits well with the logarithmic law of " = 3.6 - In(y™) + 1.7 after y™ = 30.
The constants of the logarithmic law found in the present study agree well with
the mean profiles predicted by Lyons et al. [10] and Papavassiliou et al. [11].

Figures 2 and 3 present also the average concentration calculated with the
Butler-Volmer-like boundary condition (6) and the three different values of K,.
No influence of K,, or the exchange current density, can be observed on the
mean concentration profiles.

The RMS levels for the concentration field are calculated at Schmidt numbers
and K, mentioned above, and presented in figure 4. Very good agreement is
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FIGURE 3. The mean concentration at Se¢ = 1 in the normal direc-
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C
rms 0000006
L 0© X 5
«
* 3%

=
o

*

10° 10°y

FIGURE 4. RMS levels of the concentration field at Se¢ = 1 in the

normal direction of the walls. % % % x: Present study, cwan = £1/C".
X X X X: Present study, (g—;)wa” = +Juaen. Diamonds : Present
study, K, = 1/Re,. _: Present study, K, = 10/Re.. o o o: Present
study, K, = 100/Re.. — — — —:Lyons [10].

obtained with the results presented by Lyons et al. [10], performed with a fixed
value of concentration set at the walls. Moreover, RMS levels computed with the
boundary condition (6) and K, = 10/ Re,, have intermediary values between the
two results obtained with K, = 1/Re, (i, = 107*A m~?) and K, = 100/Re,
(i, = 10724 m=2). Therefore, at Schmidt number equal to one, RMS levels
close to the wall are likely to be a monotone function of K,, or i,, and seem to
decrease when the exchange current density increases.

An issue of interest could be the assymptotic behavior of the Butler-Volmer-
like, equation (6), with respect to variations of K,, defined in (7). At high
values of K,, or at high exchange current densities, the right hand side of (6)
becomes dominant. The system becomes sensitive to small variations of the
concentration at the wall and tends to balance them fast. In the limiting case
where K, approaches infinity, equation (6) becomes equivalent to equation (4),
i.e. the system acts as one with a fixed value set for concentration at the wall.
At low values of K,, the fluctuations of the concentration gradient at the wall
are damped and the behaviour of equation (6) becomes similar to a constant flux
at the wall. As a result, the diffusive boundary layer simulated with the Butler-
Volmer-like boundary condition (6) at a low exchange current density, is expected
to have similar behavior as that with a constant flux for the boundary condition,
and at a high exchange current density, similar to the case with a fixed value at
the walls. A comparison between profiles found with different values of K, in
figure 4, confirms the proposed behavior. Figures 5 and 6 show RMS intensities
calculated with equation (4) and (5), at Schmidt number equal to 10 and 100,
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respectively. As expected, values predicted with a fixed value set at the walls,
are lower than RMS intensities predicted with a constant flux. Similar behavior
was predicted at Schmidt number equal to one. Since the above discussion does
not account for values of Schmidt number, it is possible, at any Schmidt number,
to draw conclusions about the effect of very low and very high exchange current
densities on RMS intensities, on the basis of calculations made only with a fixed
value and a constant flux set at the walls. The mean eddy diffusivity, defined as
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E. = —%, is presented for different cases in figures 7, 8 and 9. Figure 7 shows
ay

good agreement between the prediction of the present study, the prediction of
Papavassiliou et al. [11], and the empirical profile proposed by Papavassiliou
et al. [11]. Figures 8 and 9 indicate that the eddy diffusivity is not influenced
by the values of K,, or the exchange current density ¢,. The fact that the
eddy-diffusivity is found to be independent of K, can be related to the same
observation for the mean concentration profile, see figures 2 and 3.
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FIGURE 9. The mean eddy diffusivity in the near-wall region at
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FIGURE 10. At Sc =1, the streamwise turbulent heat flux. Results
computed with the Butler-Volmer-like boundary condition. Solid
line, K, = 10/Re-. Dashed lines, K, = 100/Re,. The stars account
for the numerical results of Kawamura et al. [12], with Re, = 180

and Sc = 1.5.

Streamwise and wall-normal turbulent passive mass flux are presented in fig-
ures 10 and 11.

Good agreement is found with the direct numerical simulation of Kawamura
et al. [12]. No data from previous results were available for comparison with the
predictions of the present study at Schmidt number higher than 5. The present
study finds, as the last mentioned study, that the scalar fluctuations correlate
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FI1GUuRrE 11. At Sc =1, the wall-normal turbulent heat flux. Results
computed with the Butler-Volmer-like boundary condition. Solid
line, K, = 10/Re,. Dashed lines, K, = 100/Re,. The stars account
for the numerical results of Kawamura et al. [12], with Re, = 180
and Sc = 1.5.

more strongly with the streamwise velocity than with its normal-wall compo-
nent. Figure 10 shows that the exchange current seems to influence the range of
strong correlation between the streamwise velocity and the scalar fluctuations.
Inversely, no influence of the exchange current is noticed on the correlation be-
tween the wall-normal velocity and the scalar fluctuations, see figure 11.

Iso-lines of the instantaneous concentration fluctuations for Schmidt number
equal to one in a (x-z) section at y* = 6.76 are presented in figure 12. The
presence of well-known streaky structures elongated in the streamwise direction
is clearly observed. Such structures are typical for turbulent flows in the viscous
sublayer [13].

To compute the results in figure 12, the Butler-Volmer-like law has been used.
The influence of the exchange current on the streaks is studied, by comparing
12.a, which presents a field computed with K, = 10/Re,, and 12.b which cor-
responds to K, = 100/Re,. Even if it is not possible here to give a clear
quantitative approximation of the spacing, it seems that the spanwise spacing
decreases with the increasing exchange current. This result is confirmed by the
computation of the two-point spanwise correlation coefficients of the concentra-
tion fluctuations, see figure 13. Considering the normal distance from the wall
to the first local minimum of the spanwise correlation coefficient as the mean
streak half-spacing, Calmet et al. found rf = 100. With the same method,
the present study found at Schmidt number equal to one, r} around 65 with
an intermediary exchange current, and around 55 with a high exchange current,
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FIGURE 12. At Sc = 1, snapshot contour plots of the concentration
fluctuations in a (x-z) plane at y* = 6.76. Results computed with
the Butler-Volmer-like boundary condition. The increment in scalar
is 0.02. Solid lines represent 0.0 < ¢ < c’maz. Dashed lines clmin <
¢ <00. a) K, = 10/Rer. Cpin = —0.323, Crae = +0.21. D)
Ko =100/Re. Cpin = —0.457, Cpaw = +0.186.
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FIGURE 13. At Sc = 1, spanwise two-point correlation coefficients at
yT = 6.76. Results computed with the Butler-Volmer-like boundary
condition. Solid line, K, = 10/Re,. Dashed lines, K, = 100/Re-.
The stars account for the numerical results of Calmet et al. [9] at
yT = 1.7, Re. = 640, and a Dirichlet boundary condition at the

walls.

see figure 13. These two last results are in good agreement with the computed
spacing found by Kline et al. [13].
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At Schmidt number equal to 100, the concentration fluctuations are plotted
in the viscous sublayer in a section (x-z) at y* = 6.76/Sc'/? = 1.17, see figure
14. Again, the streaky structure of fluctuations are clearly observed.

Figure 15 presents the instantaneous concentration fluctuations in the loga-
rithmic region at y™ = 54.1. The streaky structures are not visible any more.
Here, K, is taken equal to 10 and 100 only. At these values, the exchange cur-
rent density has not influenced the wall-normal location of the streaky structures.
This was expected, since the streaky structures are traditionally observed in the
diffusive sublayer [9]. But supplementary computations with different values of
exchange current would allow to confirm this result, and extend it to a bigger
range of exchange currents.

5. Conclusions

A model problem for studying the mechanisms of turbulent mass transfer in an
electrochemical system by means of large eddy simulations is proposed. Firstly, it
was shown that the methodology was able to successfully reproduce documented
literature results. Both mean profiles and fluctuations were predicted accurately.
The influence of the exchange current density on the turbulent diffusive boundary
layer was investigated at Schmidt numbers of 1, 10 and 100. The studied range of
the exchange current density was between i, = 107*A m~2 and i, = 10724 m~2.
Three different boundary conditions for the concentration field were used at
the walls, i.e. a linearized Butler-Volmer-like condition, a given value and a
given flux. At Schmidt number equal to one, the exchange current was shown
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FIGURE 15. At Sc = 1, snapshot contour plots of the concentration
fluctuations in a (x-z) plane at y* = 54.1. Results computed with
the Butler-Volmer-like boundary condition. The increment in scalar
is 0.02. Solid lines represent 0.0 < ¢ < c;nm. Dashed lines cl,m-n <
¢ <00. a) K, = 10/Rer. Cpin = —0.43, Cpow = +0.262. D)
Ko =100/Re,. Cpin = —0.575, Cpaw = +0.325.

to have no influence on the structure of the mean concentration, neither on
the eddy diffusivity, nor on the wall-normal turbulent heat flux. However, the
RMS intensities, the streamwise turbulent heat flux, and the lateral dimensions
of turbulence structures in the near-wall region were influenced. The Butler-
Volmer-like boundary condition predicts results close to those obtained with a
given value at the wall if the exchange current density is high, and close to those
obtained with a given flux if the exchange current density is low.
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VALIDATION OF THE FRINGE REGION TECHNIQUE IN LES
OF TURBULENT MASS TRANSFER AT HIGH SCHMIDT
NUMBER
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Abstract. Large-eddy simulations of mass transfer in a turbulent chan-
nel flow are considered. Schmidt number is equal to 100 and the turbulent
Reynolds number based on the half-width channel to 180. The fringe region
technique is tested and validated to reduce the numerical domain of com-
putation to the diffusive boundary layer. Very good agreement is found for
the mean and the fluctuating field predicted in this study, with data from
earlier numerical simulations. The agreement is also good between compu-
tations of the concentration field made in the all channel, and computations
reduced to the near-wall region with the help of the fringe technique.

1. Introduction

The process of mass transfer in a diffusive boundary layer becomes very complex
in a turbulent flow field. In absence of other effects such as buoyancy, the velocity
field induces fluctuations in the mass or concentration field and thereby influences
the rate of mass transfer. A thorough understanding of the fundamental transfer
mechanisms involved is usually a necessity for the design of various kinds of
industrial processes [1].

Although numerous empirical methods have been developed for predicting of
rates of mass transfer, see e.g. [2], the general understanding of the underlying
physics is still unsatisfactory. To understand the physics of mass transfer in a
turbulent velocity field, concentration and velocity fluctuations must be mea-
sured in the diffusive boundary layer and correlations between them must be
computed. The thickness of the diffusive boundary layer is proportional to the
thickness of the hydrodynamic boundary layer () divided by Schmidt num-
ber to the power one-third [2]. Obviously, for a case of flow at high Reynolds
number and high Schmidt number, which is usually of practical interest, the
region of importance will be very thin. That makes experimental investigations
very difficult, if not impossible. As a result, there is a lack of experimental data
describing physics of mass transfer in a turbulent field.

Recent fast advances in computing science and the capacity of computer have
created the possibility of performing numerical experiments instead of physical
ones. Although numerical simulations of turbulent flows are not free of difficul-
ties, they give, where they can be applied, an accurate and detailed insight on
the dynamics of the flow.
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A possible approach is to make use of models in order to reduce the number of
turbulence scales involved. In conventional turbulence models, only the largest
scale, comparable to the geometrical size of the region where the flow takes
place, are considered. Since a large part of the dynamics is eliminated, elaborate
models are needed to make accurate predictions. In large eddy simulations, on
the other hand, only the smallest scales, comparable with the size of the mesh,
are modeled. These scales are likely to have a more universal dynamics and
therefore allow accurate predictions with relatively simple models.

The fringe technique, originally introduced by Spalart [3] can be used for forc-
ing the solution to approach a given value. Fringe technique has been used as an
artificial boundary condition in direct simulations of transitional and turbulent
viscous boundary layers [4, 5]. Henningson et al. [6] also applied this technique
in direct numerical simulation of a turbulent and viscous boundary layer. For the
case of mass transfer from a wall at high Schmidt number the fringe technique
can force the concentration field to have a given value at a position sufficiently far
from the wall without destroying the structure of turbulent field near the wall.
In that case, only the near-wall region can be considered for the concentration
field. Using such a method may make numerical experimentation of turbulent
mass transfer from a reacting wall possible, and provide necessary data for more
accurate modeling.

The main goal of this study is to investigate the possibility of application of
fringe technique for simulation of turbulent channel flow at high Schmidt number.
The paper is organized in the following way: the mathematical problem and the
numerical procedure are formulated in section 2. Results from numerical studies
are presented in section 3, and the results and conclusions are summarized in
section 4.

2. Theory

2.1. Governing equations. In this study, turbulent flow in an infinitely large
channel flow is considered. The walls are assumed to be at a distance of 2§ (see
figure 1) and the flow is driven by a constant pressure gradient, strong enough
to make gravitational effects negligible. The coordinate system is chosen so that
the walls will be located at y = +4.

The flow can be described by the Navier-Stokes equations for an incompress-
ible fluid, the continuity equation, and a mass-transport equation. The equations
are adimensionalized by u,, the friction velocity, I* = v/u,, the typical length
scale in wall units, and {*/u, as the typical time scale.

At very high Schmidt number, the diffusive boundary layer is located very
near the wall. It is therefore useless to compute the concentration everywhere in
the channel flow. For that reason, it is proposed below a method to reduce the
mathematical and the numerical domain of investigation to the near-wall region.
The domain, as shown in figure 1, lies between the wall and an imaginary plane
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FIGURE 1. The geometry of the cell, the chosen coordinate system
and the three regions of computations.

surface in the fluid, parallel to the wall and at a distance of d. from it. . is the
approximated thickness of the diffusive boundary layer, and is equal to 05 /Sc'/?
[2]. The domain is divided into one conservative region (zone 1), and one region
(zone 2) where a source term is added to the mass conservation equation, as
shown below

gtijr_ + (ut- V) eh = év”ﬁ Aty - (¢t =), (1)
where u™ denotes the instantaneous velocity field, ¢ is a constant, and Sc is
the Schmidt number. The concentration field can be made dimensionless by
using the mass flux at the wall, i.e. ¢* = —% (g—g) v where ¢ corresponds to
the averaged value of the instantaneous concentration. All quantities are scaled
in wall units. The superscript '+’ can therefore be dropped throughout the
remainder of this paper. Equation (1) can be used for both regions by choosing
properly the function A, as shown in figure 2. The conservative and the non-
conservative region are named zone 1 and 2, respectively. The source term works
as a forcing function, imposing to the intantaneous concentration the fixed value
of ¢, in zone 2. Throughout the remainder of this paper, the domain containing
only zone 1 and 2 will be called the reduced domain.

This technique is here used in order to resolve the problem of the boundary
condition for the instantaneous concentration where the boundary of the domain
lies in the viscous boundary layer. At this boundary, the velocity field induces
turbulence to concentration. The fluctuating part of concentration must then be
modelled. In order to avoid this fastidious and hazardous task, the fringe region

technique allows to damp to zero the fluctuating part of the passive scalar in
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FIGURE 2. The X function versus the wall-normal direction.

the vicinity of the boundary of the domain lying in the fluid. It is assumed that
the non-physical phenomena occuring in the fringe region do not invalidate the
solution in the remaining part (zone 1 in figures 1 and 2) of the computational
domain [6]. This assumption will be verified experimentally in this study.

For the hydrodynamical equations, a no-slip condition is used at the walls.
The velocity field is always computed in a computational domain that contains
both walls of the turbulent channel, and whose width in non-viscous units is 24,
see figure 1. As a first step, in order to make comparisons with earlier numerical
and experimental investigations, the case of mass transfer when the concentration
is set to a given value at the wall is considered. When the domain is reduced to
the diffusive boundary layer, one boundary condition is the wall-concentration
set to a given value. The other is set in the fluid at the limit of zone 2, with a
mixed condition

Oc

8—y(a:,6¢,z,t):c(a:,(Sc,z,t)—co. (2)

Equation (2) is a non-reflecting boundary condition. It guarantees that error

waves travelling from the wall to the centre of the channel are damped, and are
not reflected towards the wall [7].

2.2. Numerical Procedure. In this large eddy simulation, averaging over the
volume of the computational cells is used as the filtering function. The SGS
model is here an anisotropic version of the Smagorinsky model, and has been
validated in a previous work [8]. A rectangular computational cell, numbered
M, has the width in i-direction, Az}, the area of surface normal to i-direction
, AsM = Aa:j-VIAa:kM, and a volume size, AvM™ = AzM Az} Az} . The modelled



TABLE 1. Specifications of the meshes used without the fringe region technique.

Nz Ny Nz Az Az Aymm Aymamc
Mesh 1 x1x1| 32 | 42 | 96 | 70.6858 | 11.781 | 1.4062 | 18.92
Mesh 1 x 6 x 1| 32 | 252 | 96 | 70.6858 | 11.781 | 0.2344 | 3.16

Navier-Stokes equation averaged over the volume using the cell M, which gives

the dynamics of large eddies resolved on the given mesh, can be expressed as
— M
A’UM ou;” _

23?:1 AsM [_ u5+j)MU§_+J‘)M _ ugfj)Mugfj)M) — (pHDIM — p(=i) M) 5“,]

+ 23- AsM (T~(-+j)M — Ti(j*j)M

Jj=1 J ij
3 M1 er2 (|eM|(FDM - (+HM oM (=DM (=M
+2 51 Asit | 5 C°L; (|5w | sy — |5 *8ij ;
where 7;; is the resolved stress tensor, and s;; twice the instantaneous rate of

. Ou; ~ Ou; M 3 3 M2 2
strain tensor <8—a:j + 9z; ) |Sij = m and Lj =

(Az Az Axl")?/°(Az})*/3. Considering an instantaneous function f(z), f
stands for the filtered version of f at the center of cell M, whose volume is Av™,
The superscript (+5)M denotes that the considered filtered quantity is evaluated
on the cell surface whose center is the vector 2™ + Az} e; and whose normal
direction is e;. The model constant C' was set to 0.08, as suggested in [8]. For

more detailed information the interested reader is referred to Zahrai et al [8].

M

The mass transport equation is similarly filtered at each cell M.

The computational domain is periodic in the streamwise and the spanwise di-
rections with corresponding periodicity lengths, A, and \,. The distance between
the channel walls is 2Re, in wall-units. A, and A, are respectively 4 x 7 x Re,
and 2 X 7 X Re, in wall-units, see figure 1. Periodic boundary conditions are
applied for the velocity, the fluctuations of pressure and the concentration in the
streamwise and spanwise direction. As a feature of this study, the use of different
mesh systems for the fluid velocity field and the concentration field should be
pointed out. Table 1 shows the characteristics of two meshes used without the
fringe region technique, i.e. with a computational domain extended from a wall
to the other and considering the all cross-section of the channel flow. The grid
denoted as Mesh 1 x 1 x 1 is used to compute the fluid velocity field. The mesh
used to compute the concentration is Mesh 1 x 6 x 1. When the fringe region
technique is used with Mesh 1 x 6 x 1, N, = 54. The grid is uniform in the
mean flow direction, and is stretched in the direction normal to the wall, with
the finest spacing at the walls.

The turbulent velocity and the concentration were computed successively in
the following way: First, the volume average Navier-Stokes equation is solved,
and then the fluid velocity field and the eddy diffusivity are interpolated to the
mesh system used for the concentration field. With the known velocity field, the



volume average mass transport equation is solved. This procedure is repeated
by returning to the first step and computation for the next time step.

A fourth order Lagrangian interpolation scheme is used to ensure a sufficient
accuracy in interpolation of turbulent velocity field, see e.g. Wang & Squires
[9]. The filtered mass transport equation is integrated using a three step, third
order tensor viscosity scheme, [10, 11]. The advection term in the right hand
side of the filtered equation was approximated with QUICK scheme [12] to keep
a second order spatial accuracy and a numerical stability at the same time. The
diffusion term was discretized using central differentiation.

The initial profile in a cross section for the velocity was set parabolic. The
mass transfer calculation was not added until the hydrodynamic simulation had
reached statistically equilibrium state. The initial profile in a cross section for
concentration was set proportional to y~!/5 for the calculations made with the
fringe region technique. It was set identical to the profile obtained at Sc = 1
in [13] for the calculations made without the fringe technique. The calculated
variables were considered to be at equilibrium when variation of the statistical
properties in time were small.

3. Results

In this section results from numerical studies of turbulent mass transfer in a
channel are presented. The flow is assumed to take place at Reynolds number
equal to 180 based on the wall-friction velocity and the channel half width and
Schmidt number equal to 100. The conditions of computation of the velocity field
are exactly the same as those reported in [8], and correspond to case 2 presented
in table 1 of that paper. The cell is assumed to be infinite in the streamwise
and the spanwise directions, which are simulated by periodic boundary condi-
tions. The main focus is made on the near-wall region and the dynamics of mass
transfer. Two different numerical techniques are used for computation of the
concentration field in the near-wall region. First, a refined mesh is used for the
concentration field and the transport equation is integrated in the whole channel
as in [13]. Secondly, in order to make the simulation more efficient, only the
near-wall region is considered and the concentration field is damped in the outer
region using the fringe technique and thereby the size of the grid is reduced.
It turns out that simulations made with the reduced grid and the fringe region
technique run approximately 5 times faster than with the complete grid between
the two walls. After an adimensional time-period of 60 - Re, smooth turbulence
statistics were obtained with the two numerical techniques. The statistics were
then produced during an adimensional integration time of 8- Re, with the fringe
region technique, and of 16 - Re, with the technique considering the whole chan-
nel. In this last case, statistics were still time-dependent after an integration
time of 8 - Re,.
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FIGURE 3. The mean concentration at Sc¢ = 100 in the wall-normal
direction. _. _: Papavassiliou [14], DNS, Re. = 150, without fringe
region technique. Solid line: Present study, LES, Re, = 180, with
fringe region technique. Diamonds : Present study, LES, Re, = 180,
without fringe region technique.

FIGURE 4. The mean concentration at Sc = 100 in the wall-normal
direction. _ . _: Papavassiliou [14], DNS, Re. = 150, without fringe
region technique. Solid line: Present study, LES, Re, = 180, with
fringe region technique. Diamonds : Present study, LES, Re, = 180,
without fringe region technique. + + + +: ¢t =3.0-In(y ™) + 285.0

The mean concentration profile in the direction normal to the walls is pre-
sented figure 3. The concentration is made dimensionless by using reference con-
centration, c*, defined by c¢* = —% (g—z) . As can be found in figure 3, good
agreement is found with results from direct numerical simulations by Papavassil-
iou et al. [14]. The slight difference between simulations with and without fringe
technique at y around 30 are likely to be due to the differences in the averaging
time over which the statistics are computed.

Figure 4 shows the mean concentration profile in a logarithmic diagram. With
increasing y, the concentration profile exhibits a buffer layer character, followed
by a logarithmic region. As shown in figure 4, the concentration profile fits
well with the logarithmic law of ¢ = 3.0 - In(y) + 285.0 after y = 10. The
logarithmic profile has been calculated with the same reference concentration as
in Papavassiliou et al. [14].

Lin et al. [2], estimated the ratio between the hydrodynamic and mass trans-
fer boundary layer thicknesses to be proportional to the third root of the Schmidt
number. Thus, the observation made above, i.e. transition to a logarithmic pro-
file at value y = 10 is in good agreement with that estimate since the logarithmic
region for the velocity profile starts around y = 30 [15]. Moreover, the constant



Figure 5: Figure 6:

-2

10

FIGURE 5. The mean eddy diffusivity in the near-wall region at
Sc =100. % * % % : E, = 0.000463 - y* [14]. _: Present study with
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FiGUurRE 6. At Sc = 100, the turbulent mass-fluxes. Solid line:
Present study, with fringe region technique. Dashed lines: Present
study, without fringe region technique.

of proportionality, 3.0, for the logarithmic law found in the present study is
close to the values found by Calmet et al. [16] and Kader et al. [17]. Kader
et al. [17] found a good fit with a logarithmic law as 2.12 - In(y) + 3(Sc), with
B(Sc) = (3.85 - Sc'/? — 1.3)% +2.12 - In(Sc), which gives $(100) = 284.33.

The mean eddy diffusivity, defined as E. = —%(g—z) 1, is presented in figure
5. A good agreement is found between the predictions of the present study, the
DNS results of Papavassiliou et al. [14], and the empirical profile proposed by
Papavassiliou et al. [14]. The predictions of the present study with and without
the fringe method technique are also in very good agreement.

Streamwise and wall-normal turbulent mass fluxes are presented in figures
6. Good agreement is found between the two predictions of the present study.
The present study finds, in agreement with the observation by Kawamura et
al. [18], that the concentration fluctuations correlate more strongly with the
streamwise velocity than with its normal-wall component. The ratio between
the components of the mass-flux vector is of the order of Schmidt number. The
RMS levels for the concentration field are calculated and shown in figure 7. The
predictions of the present study with and without the fringe region technique
are in very good agreement.

The two-point spanwise correlation coefficient of the concentration fluctua-
tions is computed at y = 1.17 and is presented in figure 8. After reaching a
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FiGure 7. RMS levels of the concentration field at S¢ = 100 in the
wall-normal direction. Solid line: Present study, with fringe region
technique. Dashed lines: Present study, without fringe region tech-

nique.

FIGURE 8. At Sc = 100, the spanwise two-point correlation coef-
ficients at y* = 1.17. Solid line: Present study, with fringe region
technique. Dashed lines: Present study, without fringe region tech-

nique.

minimum, the correlation coefficient oscillates slightly about zero. Defining the
distance to the first local minimum as half of the the mean streak spacing, the
concentration streak spacing can be estimated to 100. This value is in good
agreement with that obtained by Calmet et al. [16].

4. Conclusions

In this work, results from large eddy simulations of a model for mass transfer in
a turbulent channel flow are presented. All predictions are computed at Schmidt
number equal to 100. The fringe region technique is used to diminish the numer-
ical domain of computation. Good agreement is obtained between LES made
with and without the fringe region technique. Previous studies are also found
to be in good agreement with the predictions of the present study for the mean
and the instantaneous concentration field.
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LARGE-EDDY SIMULATION OF ELECTROCHEMICAL MASS
TRANSFER

Francois Gurniki', Said Zahrai? and Fritz H. Bark!
IFaxén Laboratory, KTH, S-100 44, Stockholm, Sweden
2ABB Corporate Research, SE-721 78, Visteras, Sweden

Abstract. Large-eddy simulations of mass transfer in a channel flow work-
ing as an electrochemical cell are considered. Schmidt number is equal to
3000 and the turbulent Reynolds number, based on the half-width chan-
nel, to 180. The computational domain is reduced to the diffusive boundary
layer with the help of a numerical technique. Very good agreement is found
with data from previous studies for the mean, the fluctuating field, and the
wall-mass-transfer.

1. Introduction

The turbulent process of mass transfer in the diffusive boundary layer along an
electrode of an electrochemical cell is very complex. In absence of other effects
such as buoyancy, the velocity field induces fluctuations in the concentration
field, and thereby influences also the rate of wall-mass-transfer. The thickness
of the diffusive layer, being inversely proportional to Schmidt number to a cer-
tain fractional power, makes experimental investigations on the fluctuations of
mass transfer very difficult. Recent advances in computing science have created
the possibility of performing numerical experiments instead of physical ones.
Turbulent flows involve different length scales. In large-eddy simulations, one
models only the smallest, that are likely to have a universal dynamics, and can
be modelled with simple models.

The paper is organized in the following way: the mathematical problem and
the numerical procedure are formulated in section 2. Results from numerical
studies are presented in section 3 and summed up in section 4.

2. Theory

In this study, turbulent flow of a binary electrolyte outside the double layers in
an infinitely large channel flow, working as an electrochemical cell, is considered.
The solution is also assumed to contain a support electrolyte so that the varia-
tions of the electrical potential can be neglected. The walls are assumed to be
at a distance of 20 (see figure 1) and the flow is driven by a constant pressure
gradient, strong enough to make gravitational effects negligible. The coordinate
system is chosen so that the walls will be located at y = £4.

The flow can be described by the Navier-Stokes equations for an incompress-
ible fluid, the continuity equation, and a mass-transport equation. The equations
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FIGURE 1. The geometry of the cell, the chosen coordinate system
and the three regions of computations.

are adimensionalized by w,, the friction velocity, I* = v/u,, the typical length
scale in wall units, and I*/u,, the typical time scale. At very high Schmidt num-
ber, the diffusive boundary layer is located very near the wall. It is therefore
useless to compute the concentration everywhere in the channel flow. For that
reason, it is proposed below a method to reduce the mathematical and the nu-
merical domain of investigation to the near-wall region. The domain, as shown
in figure 1, lies between the wall and an imaginary plane surface in the fluid,
parallel to the wall and at a distance of d. from it. J. is the approximated thick-
ness of the diffusive boundary layer, and is equal to 85 /Sc'/? [1]. The domain is
divided into one conservative region (zone 1), and one region (zone 2) where a
source term is added to the mass conservation-equation, as shown below

g% + (u+ -V"') ct = %V*"%*‘ Aty - (et =¢eh), (1)
where ut denotes the instantaneous velocity field, ¢ is a constant, and Sc is
the Schmidt number. The concentration field can be made dimensionless by
using the mass flux at the wall, i.e. ¢* = —% (g—g) v where ¢ corresponds
to the averaged value of the instantaneous concentration. Using the electrical
neutrality and given that the present study considers a binary electrolyte, the
mass transport-equations can be reduced to equation (1) only. All quantities are
scaled in wall units. The superscript '+’ can therefore be dropped throughout the
remainder of this paper. Equation (1) can be used for both regions by choosing
properly the function A. The source term works as a forcing function, imposing
to the intantaneous concentration the fixed value of ¢, in zone 2.

The use of 2 zones as described above is a solution to the problem caused

by the boundary condition for the instantaneous concentration at the domain
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FIGURE 2. The mean concentration in the wall-normal direction. a)
Solid line: Present study, LES, at Sc = 3000 and Re, = 180. —x—x—:
Papavassiliou [3], DNS at Sc¢ = 2400, Re- = 150, Lagrangian method.
—o—o—: Lin et al. [1], experiments at Sc = 900 and Re = 4850. b)
++++: Sc-yT. diamonds : 3.0 - In(y™) + 4485.

boundary that lies in the velocity boundary layer. At this boundary, the velocity
field induces turbulence to concentration. The fluctuating part of concentration
must then be modelled. In order to avoid this fastidious and hazardous task,
the fringe region technique allows to damp to zero the fluctuating part of the
concentration in the vicinity of the boundary of the domain lying in the fluid.
For the hydrodynamical equations, a no-slip condition is used at the walls. The
velocity field is always computed in a computational domain that contains both
walls of the turbulent channel, and whose width in non-viscous units is 24, see
figure 1. As a first step, in order to make comparisons with earlier numerical
and experimental investigations, the case of mass transfer when the concentra-
tion is set to a given value at the wall is considered. This case corresponds
to an electrochemical cell working at the limiting current. In this large eddy
simulation, averaging over the volume of the computational cells is used as the
filtering function. The Sub-Grid Scale model is here an anisotropic version of
the Smagorinsky model, and has been validated in a previous work. For more
detailed information the interested reader is referred to Gurniki et al [2].

3. Results

The mean concentration profile in the direction normal to the walls is presented
in figure 2. Figure 2a) shows also results from direct numerical simulations by
Papavassiliou et al. [3] at Se = 2400, and experiments done at Sc = 900 by Lin
et al. [1]. The viscous units reported in Lin et al. are corrected to correspond to
the same velocity profile used in the present study. Figure 2b) shows the mean



FIGURE 3. At Sc = 3000, the turbulent mass-fluxes. a) Solid line:
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concentration profile in a logarithmic diagram. With increasing y, the concen-
tration profile exhibits a buffer layer character, followed by a logarithmic region.
As shown in figure 2b), the concentration profile fits well with the logarithmic
law ¢ = 3.0 - In(y) + 4485.0. At Schmidt number equal to 3000 the logarithmic
law lies between y* = 2 and 10 (25 <yt < 52%). As found by Kader et al.
[4], at very high Schmidt number, the logarithmic law is damped by the constant
value of the concentration in the core of the channel.

-1
The mean eddy diffusivity, defined as E. = —W(g—;) , is calculated. Good

agreement is found between the predictions of the present study, the DNS results
of Papavassiliou et al. [3], and the empirical profile proposed by Shaw et al. [5],
stating that E.(y) = 0.000463-y>. The eddy diffusivity obtained by Papavassiliou
et al. was computed with a Lagrangian method by tracking particles and deriving
the mean diffusion in time of the particles in the normal-wall direction.

The average mass transfer coefficient is calculated. The result of the present
study at Schmidt number equal to 3000 is found to be in good agreement with the
DNS of Papavassiliou et al. [3], and the theoretical profile found by Shaw et al.
[5] for Schmidt numbers between 600 and 32000 (K*(y) = 0.0889 x S¢0-704),
The present study found the intensity of the fluctuations for the wall mass-

_N\1/2
tranfer coefficient (kQ) /K equal to 0.197. This result is in good agreement

with Campbell et al. [6] at the same Schmidt number, where (F) i /K was
found equal to 0.23.

Streamwise and wall-normal turbulent mass fluxes are presented in figure
3. The streamwise mass-flux is found 30 times larger than in the wall-normal
direction. Between Schmidt number 0.05 and 5, Kawamura et al. [7] predicted
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FIGURE 4. Mass transfer spectra versus the non-dimensional time-
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[6].

also a higher streamwise mass-flux than the wall-normal. Figure 3b) shows the
asymptotic behaviours of the turbulent mass-fluxes. Good agreement is found
with the asymptotic laws found by Kawamura et al. [7] for Schmidt number
between 0.05 and 5.

The presence of well-known streaky structures elongated in the streamwise
direction are clearly observed in (x-z) planes at the interface between the diffusive
and the buffer sublayers. Such “concentration-streaks” were also observed by
Calmet et al. [8].

Figure 4 shows the spectral function of the mass transfer coefficient at the
anode. Among the large frequencies, the present study finds a dependency of
the spectra proportional to the frequency to the power —3. This result is in very
good agreement with an analytical result of Campbell et al. [6] based on a linear
assumption for the mass-conservation equation. (3 is here the first coefficient in
the Taylor expansion of the wall-normal velocity, see [9].

Particle tracking of fluid particles reveal that, in average, no particle from
the outside of the viscous domain travelling towards, enters in it. This result
suggests an important contribution of streamwise vortices in wall-mass-transfer
fluctuations.

4. Conclusions

In this work, results from large-eddy simulations of a model for mass transfer in
an electrochemical cell are presented. All predictions are computed at Schmidt
number equal to 3000. The fringe region technique is successively used to di-
minish the numerical domain of computation. Good agreement is obtained with
previous studies for the mean and the instantaneous concentration field.
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Abstract. Large-eddy simulation (LES) of turbulent passive-scalar trans-
fer at the walls of a three-dimensional channel flow was carried out for vari-
ous Schmidt numbers ranging from 1 to 3000. The turbulent Reynolds num-
ber based on the channel half-width was 180. The budgets for the Reynolds-
flux vector, the scalar variance-rate and the scalar dissipation-rate were
studied. Good agreement was found with previous studies at Schmidt num-
ber around unity. The terms in the budgets for the Reynolds-flux vector
and the scalar variance-rate were shown to be influenced by Schmidt num-
ber, but, somewhat surprisingly, not the budget of the dissipation-rate.
Approximate versions for the budgets are given.

1. Introduction

Turbulent transport of a passive scalar at high Schmidt number plays an impor-
tant role in many engineering applications, like in the field of electrochemistry.
Most of these applications involve turbulent flows at such high Reynolds numbers
that they cannot be directly simulated. One must then face the tricky problem
of modeling the Reynolds fluxes. The eddy-diffusivity approach is unable to give
a correct prediction of u;#, where u; and @ are the fluctuating part of the ve-
locity and the passive-scalar, respectively. As an example, the streamwise mass
flux uf in a fully developed channel flow is in that way predicted equal to zero.
To involve more of the physics, algebraic scalar-flux models in a two-equation
model can be obtained from the transport equations for the Reynolds fluxes.
The formulation of these models are obtained with the help of some equilibrium
assumptions in the budget of the transport equations. In transport-equation
modeling of the passive scalar flux, the scalar variance 62 and the scalar dissi-
pation rate €y are also needed, because algebraic models require the dynamical
and the scalar time-scales [1].

In documented literature, budgets of streamwise and wall-normal turbulent
scalar flux have been computed for different Schmidt numbers between 0.025
and 5 [2, 3]. At Schmidt number around unity, it was found that the dominating
terms in the budgets for the wall-normal and the streamwise scalar fluxes were
the production term and the sum, ¢;, of the scalar pressure-gradient term and
the dissipation. In the near-wall region the transport terms, also called molec-
ular and turbulent diffusion, were balancing ; and the production term was
negligible. For the transport equation of the scalar variance, dissipation was
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balancing production, except in the near-wall region where the transport terms
were balancing dissipation. To the knowledge of the present authors, there are
no published studies of the budget for Reynolds flux at Schmidt numbers higher
than 5. With the help of a Lagrangian method, Papavassiliou et al. [20] predicted
the eddy conductivity but did not study the Reynolds flux.

In a previous study, Gurniki et al. [5] checked the accuracy of large-eddy
simulations in a channel flow with mass transfer at Schmidt number equal to 100.
The simulation used a numerical technique to reduce the computational domain
for the passive-scalar field to the diffusive boundary layer. This so called fringe
region technique had been previously used for computations of more difficult
flows, like an increasing hydrodynamic boundary layer along a flat plate [6, 7, §].
At high Schmidt number, the diffusion process is very slow. If the mass flux is
due to reactions at the wall, even the convective transport is very slow because
the mass transfer occurs close to the wall. If one used a computational domain
larger than the diffusive boundary layer, it would need a very long computational
time in order to obtain acceptable statistics at equilibrium.

The goal of the present work is to provide a study of the equation for the
Reynolds-flux vector, the scalar-variance rate and the dissipation-rate, at Schmidt
number (Sc) equal to 100 and 3000. Computations at Sc = 1 and an analytic
study of the near-wall region are also made for validation. The paper is orga-
nized in the following way: the mathematical problem is formulated in section
2 and the numerical procedure is detailed in section 3. Results from numerical
studies are presented in section 4 and conclusions presented in section 5.

2. Theory

In this study, turbulent flow in an infinitely large channel flow is considered.
The walls are assumed to be at a distance of 20 (see figure 1) and the flow
is driven by a constant pressure gradient, strong enough to make gravitational
effects negligible. The coordinate system is chosen so that the walls are located
at y = +4.

The flow can be described by the Navier-Stokes equations for an incompress-
ible fluid, the continuity equation, and a transport equation for the passive scalar.
The equations are nondimensionalized by u,, the friction velocity, I* = v/u., the

length scale in wall units, and !*/u,, the time scale. The scalar field  can be
made dimensionless by using the mean scalar flux at the wall, i.e. —% (%) ,
where O is the mean value of the dimensional instantaneous scalar, and Dwélllllé
scalar diffusivity.

At very high Schmidt number, the diffusive boundary layer is located very
close to the walls. Outside this layer, the distribution of the mean passive-scalar
0 is almost uniform. It is therefore useless to compute the scalar everywhere
in the channel. For that reason, a method to reduce the mathematical and the

numerical domain of investigation to the near-wall region is outlined below. For
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FIGURE 1. The geometry of the channel flow, the three regions of
computation, and the chosen coordinate system.

details, the reader is referred to [5, 8]. The domain, as shown in figure 1, lies
between the wall and an imaginary plane surface in the fluid, parallel to the wall
and at a distance of §y from it. dy is sufficiently larger than the diffusive and the
logarithmic sublayers for mass, and can be estimated as 05, /Sc/? [9], where 6}, is
the thickness of the hydrodynamic boundary layer. Here, since the flow is fully
developed, d;, can be approximated as 67 = 180, and 6; = 12.5. The domain is
divided into the conservative region 1 where | V61 |# 0, and region 2 where a
source term is added to the scalar conservation-equation to force 6 to approach
a given value. This can be done as follows
0+ 1

g?—k(qu-V*)O*:E
where ut and 1 denote the instantaneous velocity and scalar fields, respectively.
67 is a constant, and Sc is Schmidt number. Equation (1) can be used for both
regions by choosing properly the function A*, as shown in figure 2. The slope
of the ramp function AT is here taken equal to 0.13 in wall-units. The source
term works as a forcing function, imposing to the intantaneous scalar the fixed
value of 6 in region 2. Throughout the remainder of this paper, the domain
containing only regions 1 and 2 will be called the reduced domain. The height
of region 1 is equal to 63% of 53‘.

The fringe technique is here used in order to formulate a boundary condition
for the instantaneous scalar at the edge of the diffusive boundary layer. At this
boundary, the turbulent velocity field induces fluctuations to the scalar. The
fluctuating part of the scalar must then be modelled. In order to simplify this
fastidious and hazardous task, a very crude model is chosen. The fringe region

VT - X (yh) - (67 —61), 1)

o
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FIGURE 2. The X function versus the wall-normal direction.

technique annihilates the fluctuating part of the passive scalar in the vicinity of
the boundary of the reduced domain. It is bluntly assumed that the non-physical
phenomena occuring in the fringe region do not invalidate the solution in the
remaining part of the computational domain [10] (region 1 in figures 1 and 2).
This assumption has been verified by numerical experiments in [5]. Hereforth, all
variables are nondimensionalized in wall-units. The '+’ supersripts are therefore
dropped for notational simplicity. As a first step, in order to make comparisons
with earlier numerical and experimental investigations, the case of a scalar set
constant at the wall is considered. The other boundary is set in the fluid at the
limit of region 2, with a mixed condition

g—i(a:,ég,z,t) =0(z,dp, z,t) — 0,. (2)

Equation (2) is a non-reflecting boundary condition. It guarantees that error
waves travelling from the wall to the centre of the channel are damped, and are
not reflected towards the wall [11].

For the hydrodynamical equations, a no-slip condition is used at the walls.
The velocity field is always computed in a computational domain that contains
both walls of the turbulent channel, and whose width in dimensional units is 24,
see figure 1.

3. Numerical Procedure

In this large-eddy simulation, averaging over the volume of the computational
cells is used as the filtering function. The SGS model is here an anisotropic
version of the Smagorinsky model, and has been validated in a previous work [12].



A rectangular computational cell, numbered M, has the width in i-direction,
Az}, the area of surface normal to i-direction , As) = Az} Az}, and a
volume size, AvM = AzMAzM Az}, The modelled Navier-Stokes equation
averaged over the volume using the cell M, which gives the dynamics of large

eddies resolved on the given mesh, can be expressed as
M out
Av =

ot
E?:l Asé\/l [_ 5 i i j
+300 AsM [( LM _ ri(j*j”‘f |
+ As [ ey (| s O]

(u,+j>Mu(+j>M _ u(—j)MU(—j)M) — (pUHIM _ p(=i)n) 5ij]
-

ij ij ij
where 7;; is the resolved stress tensor, and s;; twice the instantaneous strain rate

Ou;  Ou; . . .
tensor, ( 3  + a—]> |5}/| denotes the magnitude of twice the strain rate ten-
€ €T

sor, (wZ?:l 23:1 Ef\f 2), and L7 is the length-scale related to the mesh sizes

according to (AzM Azd Azd)?/° (Aa:é-\/[)4/3. Considering an instantaneous func-

tion f(z), 7M stands for the filtered version of f at the center of cell M, whose
volume is Av™. The superscript (£j)M denotes that the considered filtered
quantity is evaluated on the cell surface whose center is located at the vector
=M+ %Amj” e; and whose normal direction is e;. The model constant C' was set
to 0.08, as suggested in [12]. The scalar transport equation is similarly filtered
at each cell M. For more detailed information the interested reader is referred
to Gurniki et al. [13].

The computational domain is periodic in the streamwise and the spanwise di-
rections with corresponding periodicity lengths, A, and \,. The distance between
the channel walls is 2Re, in wall-units. A\, and A, are respectively 4 X © X Re,
and 2 X 7 X Re, in wall-units, see figure 1. Periodic boundary conditions are
applied for the velocity, the fluctuations of pressure and the passive scalar, in
the streamwise and spanwise directions. As a feature of this study, the use of
different mesh systems for the fluid velocity field and the scalar field should be
pointed out. Table 1 shows the characteristics of two meshes. The first mesh,
denoted as Mesh 1 x 1 x 1, has a computational domain extended from a wall
to the other and considers the whole cross-section of the channel flow. It is used
to compute the fluid velocity field and the mass transfer at S¢ = 1. The mesh
used to compute the passive scalar at higher Schmidt numbers is denoted as
Mesh 1 x 6 x 1, and is limited to zone 1 and 2 in figures 1 and 2. The grids are
uniform in the mean flow direction, and are stretched in the direction normal
to the wall, with the finest spacing at the walls. The turbulent velocity and the
scalar are computed successively in the following way: the Navier-Stokes equa-
tion is advanced one step in time, and then the fluid velocity field and the eddy
diffusivity are interpolated onto the mesh system used for the scalar field. With
the known velocity field, the volume average scalar transport-equation is solved.



TABLE 1. Specifications of the meshes.

NI Ny Nz Az Az Aymm Aymaz
Mesh 1 x1x1] 32|42 |96 | 70.7|11.8| 141 18.9
Mesh 1 x6x1| 32 | 54| 96 | 70.7| 11.8| 0.03 0.42

This procedure is repeated by returning to the first step and computation for
the next time step.

A fourth order Lagrangian interpolation scheme is used to ensure a sufficient
accuracy in interpolation of turbulent velocity field, see e.g. Wang & Squires [14].
The filtered scalar transport-equation is integrated using a three step, third order
tensor viscosity scheme, [15, 16]. The advection term in the right hand side of the
filtered equation was approximated with QUICK scheme [17] to keep a second
order spatial accuracy and a numerical stability at the same time. The diffusion
term was discretized using a central differentiation.

The initial profile in a cross section for the velocity was set parabolic. The
passive scalar calculation was not added until the hydrodynamic simulation had
reached statistically equilibrium state. The initial profile in a cross section for
the scalar was set linear at Sc¢ = 1, and was set proportional to y~'/® for the
calculations made at Sc = 100. It was set identical to the profile obtained at
Sc = 100 for the calculations made at Sc¢ = 3000. The calculated variables were
considered to be at equilibrium when variation of the statistical properties in
time was small.

4. Results

In this section results from simulations are given at Schmidt numbers equal to
1, 100 and 3000. The flow Reynolds number is 180. The present work checks
first that the asymptotic behaviours of the budgets for the Reynolds-flux vector
are properly predicted by the computations. If the computational method is not
asymptotically correct, it would fail to yield a correct prediction of the flow in
the near-wall region [18].

In a second part, the influence of Schmidt number on the Reynolds-flux bud-
get, the scalar variance-rate budget and the scalar dissipation-rate budget is
studied. The results obtained at Schmidt number equal to one are used to vali-
date the present computations with the help of previous studies.

At Schmidt number equal to 100 and 3000, Gurniki et al. [5, 19] already
validated the present computational method for the prediction of the budget for
the passive-scalar. Figures 3a-b show the mean passive-scalar in the diffusive
and the logarithmic sublayers at these two Schmidt numbers. One can see that
O tends to a logarithmic profile in the logarithmic layer of the boundary layer
for mass transfer.



10
10°
10°
1 2
10 ' ' 10
10" 10’ 10' 10°
Y
FIGURE 3. The mean passive-scalar along the wall-normal direction.
a) At Sc = 100. _ . _: Papavassiliou [20], DNS, Re, = 150, without
fringe region technique. Solid line: Present study, LES, Re, = 180,
with fringe region technique. : Present study, LES, Re, = 180,

without fringe region technique. + + + +: © = 3.0 - In(y) + 285.0.
b) At Sc = 3000. Solid line: Present study, LES, Re, = 180, with
fringe region technique. ++++: Scyt. 000 0: © = 3.0-In(y)+4485.

4.1. Near-wall behaviour of the budgets. In a fully developed channel flow,
the mean velocity (U;) and the passive scalar (©) vary only with the wall-normal
direction y

0 = _8_P + 2 a_U —uv
N 0z Oy | Oy ’
oP 0
- LY 2
0 = ~F i) ®)
where ‘?)—1: =TI, = —ﬁ. Integrating these two equations, one obtains

P=P,—v%(y) + Tou,

ou
a_y_W:Foy+Rola
(4)
where R,; = 1. Similarly as above, the mass-conservation equation can be

simplified when the flow in the channel is fully developed

o100 —
o= 5 {53 )

which gives, i% v =71, =1, (5)



where 7, = é(%)wa”. To analyse the near-wall behaviour of the different
terms in the budget equations, we will expand the instantaneous velocity and
the scalar in Taylor series as follows

u = u; = b1y+cly2+d1y3+...
Vo= uz = 02y2 + d2y3 + ...

w = uz= b3y+03y2+d3y3+...
6 = Sclbyy + coy® + doy® + ...)
p = ap+bpy—|—cpy2 +dpy3 + ..,

where the coeflicients ay, b1, bs,... are functions of z, z and ¢. The indices 1, 2
and 3 correspond to the x-, y- and z-direction, respectively. The coefficient ¢y in
the us expansion is related to the coefficients b; and bs through the continuity
equation

262 = _(bl,l + b3’3). (6)
The following asymptotic behaviours for ©® and U are known
e = ®wall -y Sc+ O(y2)7
U = y+0@u?.

From equations (4) and (5), and the Taylor series of the velocity and the passive
scalar, one obtains

Sc2eqaby
0 = @wa”—y-sc+T”y4+0(y5),
T, bics
U = y+7y2+%y4+0(y5)-

In analogy with the transport equations for the Reynolds stresses, a transport
equation of the scalar-flux vector can be written in symbolic form as
Du;f
Dt
where D/Dt = 0/0t + Uy0/0xy,, and the terms in the right-hand-side of are

= Py; + Ilp; — €9; + Dy, (7)

Py; = — [wur® 1, + upOU; 1] production rate,

Iy; = pf; pressure scalar-gradient term,

1\ -—
€gi = (1 + §> 0 ru; diffusive destruction rate,

1
D, =-— <uiuk0 + pBdi — §ui0,k - Bui,k> transport term.
N

Kawamura et al. [3] consider IIp; equal to —fp;. The two expressions are
equivalent since the flow is fully developed.
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FiGure 4. At Sc = 3000, the production rates in the near-wall
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Using the Taylor series above, Py;, Ily;, €g; and D; can be expanded as follows

P01 = SC(E - %)Zﬁ + O(y4)7
Py =Sc-%-y4+0(y5), (8)
Py3 = Sc-bzes - y® + 0(94)-

Figure 4 compares expressions (8) with the numerical predictions.
The coefficients of proportionality in these expressions, so as in all the following
Taylor series of the budgets, are determined graphically. Good agreement is ob-
tained. The slope of the computed wall-normal production has an order slightly
lower than the theoretical in the region described by the three nodes nearest to
the wall. The linear interpolation of the velocity field between the two mesh
systems is believed to be responsible for this discrepancy. Since the streamwise
and the spanwise component of the velocity vector vary linearly in the near-wall
region, the production terms in these two directions are correctly predicted.
Similarly, from the Taylor series of the velocity components, of pressure and
the passive scalar, one finds for the pressure scalar-gradient terms

IMpr = Sc-apbp g -y + O(y?),
g = Sc [a,bg + (20,85 + bybe)y] + O(y?), (9)
Ips = Sc-apby,. -y + O(y?).

Figure 5 compares the analytic behaviours in the three directions with the nu-
merical predictions of the present study. Good agreement is found.



107

FIGURE 5. At Sc = 3000, the pressure scalar-gradient terms in the
near-wall region. ITg;: _ numerical, —IIp2: _ . _ numerical, —Iy3:

. _numerical, IIp;: ¢ ¢ o0 analytic (4.0 -107% . y), —TIpa: + + ++
analytic (3.86 - 1072), —IIg3: o o oo analytic (2.0-107° - y).

The near-wall limits of the diffusive destruction rates in the three directions
are

eg1 = (Sc+ 1) [bibg + 2(c1by + brce)y] + O(y?),
con = 2(Sc+ 1)eaby - y + O(y2), (10)
ess = (Sc+ 1) [bsby + 2(csby + bsca)y] + O(y?).

Figure 6 shows a good agreement between the large-eddy simulations of the
present study and the Taylor series.
In the streamwise direction, the first order approximation is found to be correct
until y=1, while it is correct only until y = 0.8 in the wall-normal direction. In
the spanwise direction, the zero order approximation is valid only when y is less
than 0.35. Levich [21], and later Lin et al. [9], proposed that the thickness of the
diffusive boundary layer, 8y, would be of the order of magnitude of §, - Se=1/3,
According to this result, y < 0.35 = 5/Sc'/? corresponds to the limit of the
diffusive sublayer.

The Taylor-series of the transport terms in the three directions are presented
below

Dy = (1+ Sc)biby + 6(bico + c1bo)y + O(y*),
Dy = —Sc-aybg + 2 [(1 + Sc)eabs — Se(@yea + bybe)] y + O(y?), (11)
Dy = (14 Sc)bsby + 6(bscs + c3bo)y + O(y*).
Figure 7 shows good agreement between the large-eddy simulations and the

Taylor series. The zero order approximation of the wall-normal and streamwise
transport terms are found to be valid also in the buffer layer of the diffusive



10

1072k | ) -
10° |
BN
10747 ’ i +//t<+‘+ w0
,,,:r,_,At_/f,,_,‘
P
10° | | |
— SRR © oo 0000
_6 ‘
10 |
10 |
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FIGURE 7. At Sc = 3000, the transport terms in the near-wall
region. —D;: _ numerical, Dy: _ . _ numerical, —Ds3: . _ .
numerical, —Di: ¢ ¢ ¢¢ analytic (7.8 - 1073), D;: + + 4+ analytic
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boundary layer. The zero order approximation of the spanwise term is valid
only in the viscous sublayer, as it was found for the diffusive destruction rate. A
close study of the spanwise transport term shows that —(fw ;) , dominates Ds.
Since the Taylor series of €g3 and D3 have the same behaviour, it is reasonable
to conclude that w , can be approximated by a constant only when y < 0.35.



4.2. Reynolds-flux budget. Rogers et al. [22], and later Wikstrom et al. [23],
considered v;, the difference between the pressure scalar-gradient correlation
term and the diffusive destruction rate. At S¢ = 0.71 and Re, = 265, Wikstrom
et al. found that v; and the production term are the dominating terms in the
transport equation for the streamwise flux. Kawamura et al. [3] obtained the
same result at S¢ = 0.6 and Re, = 180. The computations of the present study
at Sc =1 show the same behaviour for y > 50, see figure 8c.

At Se = 0.71 and Re, = 265, for the streamwise component of the flux-
vector, Wikstrom et al. also found an approximate balance between pressure
scalar-gradient correlation and production except in the near-wall region. This
result is in good agreement with the present computations.

When Schmidt number increases, the production term is found to diminuish,
and at Sc = 3000, the budget for the transport equation of the streamwise flux
is dominated mainly by the diffusive destruction rate and the transport term,
see figure 8a.

Figure 8 shows that at a high Schmidt number, the diffusive destruction rate
is the dominant term in 1),. Instead, v, is dominated by the pressure scalar
gradient-term, see figure 9a-b. For both the streamwise and the wall-normal flux,
the production term decreases when Schmidt number increases and is greater
than one. This result is expected because production of turbulence energy is
maximum in the buffer layer of the hydrodynamic layer. Moreover —w;u;© j is
dominant in the production rate. When the diffusive boundary layer lies entirely
in the viscous sublayer, the turbulence energy produced in the buffer layer of the
hydrodynamic boundary layer is only partly transmitted to the passive scalar
in the near-wall region. As Wikstrom et al. report it in [23], the present study
found that 1, and the production term dominate the budget for the wall-normal
flux component. Near the wall, the transport terms and v, are dominant, see
figure 9.

In the spanwise flux budget, the balance is dominated by transport and the
diffusive destruction rates at Schmidt number 3000, see figure 10a. Near the wall
the destruction rate is positive, instead of being negative, as in the budget for
the streamwise flux.

In general, for the three components of the scalar flux-vector, and at Sc =
3000, the transport terms and ; are found to dominate the budget.

4.3. Scalar variance-rate budget. The transport equation for half the scalar
variance, kg = 0_2/ 2, a quantity akin to the turbulent kinetic energy, is obtained
by multiplying the transport equation for the scalar fluctuations with the fluc-
tuating scalar 6, and then taking the ensemble average of the resulting equation.
This yields

Dky

E:PQ—EQ‘FD]@. (12)
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The terms of the right-hand-side are

Py = —u;00 ; production rate,
1
~ Sc

€9 (0 r)? dissipation rate,

2

1 1—
Dy, = (S_ke’i — —ui02> molecular and turbulent diffusion term.
c 13

)

At Sc = 0.71 and Re, = 265, Wikstrom et al. [24], and at Sc = 1 and Re, =
180, Kawamura et al. [2] found that there is an approximate balance between
production and dissipation for the scalar variance budget except in the near-
wall region. Both the turbulent diffusion and the molecular diffusion terms
are negligible except near the wall. At the wall there is a balance between
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molecular diffusion and dissipation. These results are in good agreement with
the predictions of the present study at Sc = 1, see figure 11c. Here, molecular
and turbulent diffusion are compiled in Dy, . In the centre of the channel, Dy, is
not found to be exactly equal to zero. This is due to some lack of convergence of
the present statistics. The same defect was obtained at higher Schmidt numbers,
see figures 11a and 11b. At high Schmidt number the budget is dominated by
the molecular and the diffusion terms, and the production term, see figure 11a.
Figure 11 shows that the relative importance of the dissipation rate decreases,
and of the diffusion rates increase, when Schmidt number increases.
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4.4. Scalar dissipation-rate budget. The transport equation for the scalar

dissipation rate ey = g-(61)? is
D€0
,+PL+ P2 +P Y, (13)

——% =D,

Dt



a) 1 b)
Gain Gain
VT | S T
-05 v | !
-2 o
Loss Loss
! 0 15 2 %
Y
-2 \\//l
Loss
_4 1 1 L
0 50 100 150
Y
FIGURE 11. Terms in the budget of the scalar variance-rate budget.
Py: _, Dyt . _, —€p: -+ --. a) At Sc =3000. b) At Sc = 100. c)
At Sc =

where the terms on the right-hand-side of the above equation are

1 —
DES = <§697k — uk60>

molecular and turbulent diffusion term,

&
2 n 0. T .
P = 35 (601U k + ujibx0;) production rate,
2 __
2 . .
P, —§Uj9,k9,kj gradient production term,
2
3 .
P, = —§Uj,k9,k9,j turbulent production term,
2

YV = @(%‘k)z

dissipation rate,
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where e;, = &= (0.1)%. As shown in figure 12, no qualitative changes in the struc-
ture of the budget for the dissipation-rate are found when Schmidt number varies.
At Schmidt number equal to one, the dissipation rate (Y") and the turbulent pro-
duction term (P2, corresponding to vortex stretching energy [24]) dominate the
budget, except in the near-wall region. This result is in good agreement with the
scalar dissipation-rate budget found by Wikstrom et al. [24] at Schmidt number
equal to 0.71. In the near-wall region, the production rate (PL) is significant.
At high Schmidt number, the scalar gradient and its derivative are very large.
A high order in space is then required for the precision of their derivatives. The
obtained wiggles for the diffusion and the dissipation terms in figure 12a are
consequently expected, since D., and Y contain a second order derivative of the



computed scalar. The present result is nevertheless interesting because it allows
a qualitative analysis of the dissipation-rate budget, but one should keep in mind
that the accuracy of this result remains to be improved.

5. Conclusions

Large-eddy simulations for turbulent transport of a passive scalar were made
at Schmidt numbers equal to 1, 100 and 3000. The purpose of this work was
to provide knowledge about the physics of the transport process as input to
simplified models for the Reynolds-flux vector at high Schmidt number. The
flow Reynolds number was 180. The accuracy of the present computations in
the near-wall region was validated by comparisons with analytic expressions in
the near-wall-region.

At Schmidt number equal to one, good agreement was found between previous
studies and the predictions of the present study. At Schmidt number equal to
3000, the balance in the transport equations of the Reynolds-flux vector is dom-
inated by %; (the difference between the pressure scalar-gradient term and the
diffusive destruction rate) and the transport term D;. 1, and ¢, are dominated
by the diffusive destruction rate and 1, by the pressure scalar-gradient term.

The transport equation for half the scalar variance and the corresponding
dissipation were studied. At high Schmidt number the budget is dominated
by the molecular and the turbulent diffusion term, and the production term.
For transport equation of the scalar dissipation, no qualitative changes in the
structure of the budget were found when Schmidt number varies. The dissipation
rate and the turbulent production term dominate the budget, except in the near-
wall region.

The numerical experiments made in this study showed that several useful sim-
plifications can be made in the near-wall region for the budgets of the Reynolds-
flux, the variance and the dissipation rate. They can be summarized as shown
below

Du,§
"Dt
Dusf
Dt
Dusf
Dt

Dky
— = Py+Dy,.
Dt o+ Do
DE@

Dt

= —€p1 + D1, when y < 2.

= Ilys + D>.

= —€p3+ Ds.

= Dy + Pelg + Pfg + Pfg —Y, no simplification.
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ON MODELLING THE REYNOLDS-FLUX VECTOR AT HIGH
SCHMIDT NUMBER

Frangois Gurniki
Faxén Laboratory, KTH, S-100 44, Stockholm, Sweden

Abstract. Large-eddy simulation (LES) of turbulent passive-scalar trans-
fer in a three-dimensional channel flow was carried out for various Schmidt
numbers ranging from 1 to 3000. The turbulent Reynolds number based
on the channel half-width was 180. Two explicit algebraic models for
the Reynolds-flux vector, validated in previous studies at Schmidt num-
ber around unity, are examined. At high Schmidt number, good agreement
is found with the predictions of the present study. A wall-function for the
mean passive-scalar is proposed on the basis of the simplest tested alge-
braic model. A new explicit algebraic model for the turbulent flux of the
passive scalar is proposed for high Schmidt number. Very good agreement
is obtained with the present LES computations at Schmidt numbers equal
to 100 and 3000.

1. Introduction

Turbulence in wall-bounded flows with mass transfer has been widely studied
during the last decades. Early models are based on zero-order models for velocity
field and the assumption of a constant turbulent Schmidt number, S¢;, to relate
the Reynolds-fluxes, u;f, to the Reynolds stresses, w;w;. At a higher order
closure-level, two-equation models have been used for the velocity field, while
the assumption of a constant Sc¢; is still invoked to model the mass fluxes. Most
of these approaches consist of using wall-functions to bridge the gap between the
region in which the model is valid and the wall [1]. For simple flows this method
was shown to give good results [2, 3]. It appears to be much more difficult
to derive wall-functions and models for the the Reynolds-flux vector for more
complex flows, such as flows at very high Schmidt number.

Algebraic models for the Reynolds-flux vector have been derived by various
reseachers [1, 4, 5, 6]. At Schmidt numbers around unity, the transport equation
for u;6 is reduced to an algebraic equation by assuming that the convective and
diffusive transport of the Reynolds-flux vector are proportional to the transport
of the turbulent kinetic energy, k, and the variance of the passive scalar, §2. If
equilibrium turbulence is assumed, the obtained system of equations for u;f can
be linearized.

In a previous study, Gurniki et al. [7] used large-eddy simulations in a chan-
nel flow with mass transfer at Schmidt number equal to 3000, and a numerical
technique to reduce the computational domain for the passive-scalar field to
the diffusive boundary layer. This so called fringe region technique had been
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FIGURE 1. The geometry of the channel flow, the three regions of
computation, and the chosen coordinate system.

previously used for computations of more difficult flows, like an increasing hy-
drodynamic boundary layer along a flat plate [8, 9, 10].

The goal of the present work is to test and validate explicit algebraic mod-
els for the Reynolds-flux vector at high Schmidt number with the help of LES
computations. The paper is organized in the following way: the mathematical
problem and the numerical procedure are formulated in section 2. Results from
numerical studies are presented in section 3 and conclusions presented in section
4.

2. Theory

In this study, turbulent flow in an infinitely large channel is considered. The
walls are assumed to be at a distance of 2§ (see figure 1) and the flow is driven
by a constant pressure gradient, strong enough to make gravitational effects
negligible. The coordinate system is chosen so that the walls are located at
y = 4.

The flow can be described by the Navier-Stokes equations for an incompress-
ible fluid, the continuity equation, and a transport equation for the passive scalar.
The equations are nondimensionalized by u,, the friction velocity, I* = v/u., the

length scale in wall units, and [*/u,, the time scale. The scalar field 6 can be

made dimensionless by using the mean scalar flux at the wall, i.e. —% (%) v
where © is the mean value of the dimensional instantaneous scalar, and D'the
scalar diffusivity.

At very high Schmidt number, the diffusive boundary layer is located very
close to the walls. Outside this layer, the distribution of the mean passive-scalar

0 is almost uniform. It is therefore useless to compute the scalar everywhere



in the channel. For that reason, a method to reduce the mathematical and the
numerical domain of investigation to the near-wall region is outlined below. For
details, the reader is referred to [10, 11].

The domain, as shown in figure 1, lies between the wall and an imaginary
plane surface in the fluid, parallel to the wall and at a distance of §y from it. dy
is sufficiently larger than the diffusive and the logarithmic sublayers for mass, and
can be estimated as 6y, /Sc'/? [12], where 8, is the thickness of the hydrodynamic
boundary layer. Here, since the flow is fully developed, &5 can be approximated
as 87 = 180, and 6;‘ = 12.5. The domain is divided into the conservative region
1 where | V81 |# 0, and region 2 where a source term is added to the scalar
conservation-equation to force 6 to approach a given value. This can be done as
follows

96+ + ooty gt - L
8t—++(u -V )0 =<

where u™ and % denote the instantaneous velocity and scalar fields, respectively.
6 is a constant, and Se is Schmidt number. Equation (1) can be used for both
regions by choosing properly the function A*, as shown in figure 2. The slope
of the ramp function AT is here taken equal to 0.13 in wall-units. The source

VT - X () - (67— 67), 1)

o

term works as a forcing function, imposing to the intantaneous scalar the fixed
value of 67 in region 2. Throughout the remainder of this paper, the domain
containing only regions 1 and 2 will be called the reduced domain. The height
of region 1 is around the two thirds of 6;.

The fringe technique is here used in order to be able to formulate a boundary
condition in region 2 for the instantaneous scalar at the edge of the diffusive
boundary layer. It annihilates with the help of a source term the fluctuating part
of the passive scalar in the vicinity of the boundary of the reduced domain. It is
bluntly assumed that the non-physical phenomena occuring in the fringe region
do not invalidate the solution in the remaining part of the computational domain
[13] (region 1 in figures 1 and 2). This assumption has been verified by numerical
experiments in [11]. Hereforth, all variables are nondimensionalized in wall-units.
The ’+’ supersripts are therefore dropped for notational simplicity. As a first
step, in order to make comparisons with earlier numerical and experimental
investigations, the case of a scalar set constant at the wall is considered. The
other boundary is set in the fluid at the limit of region 2, with a mixed condition

g—z(a:,ég,z,t) =0(z,dp, z,t) — 0,. (2)

Equation (2) is a non-reflecting boundary condition. It guarantees that error
waves travelling from the wall to the centre of the channel are damped, and are
not reflected towards the wall [14]. Note that the source term in equation (1)
forces 6 to approach 6, in the fringe region.

For the hydrodynamical equations, a no-slip condition is used at the walls.
The velocity field is always computed in a computational domain that contains



TABLE 1. Specifications of the meshes.

NI Ny Nz Az Az Aymm Aymaz
Mesh 1 x1x1] 32|42 |96 | 70.7|11.8| 141 18.9
Mesh 1 x6x1| 32 | 54| 96 | 70.7| 11.8| 0.03 0.42

both walls of the turbulent channel, and whose width in dimensional units is 24,
see figure 1.

In this large-eddy simulation, averaging over the volume of the computational
cells is used as the filtering function. The SGS model is here an anisotropic
version of the Smagorinsky model, and has been validated in a previous work
[15]. The scalar transport equation is filtered at each cell M with the same
methodology as for the velocity. For more detailed information the interested
reader is referred to Gurniki et al. [16].

The computational domain is periodic in the streamwise and the spanwise di-
rections with corresponding periodicity lengths, A, and \,. The distance between
the channel walls is 2Re;, in wall-units. A, and A, are respectively 4 X © X Re,
and 2 X 7 X Re, in wall-units, see figure 1. Periodic boundary conditions are
applied for the velocity, the fluctuations of pressure and the passive scalar, in
the streamwise and spanwise directions. As a feature of this study, the use of
different mesh systems for the fluid velocity field and the scalar field should be
pointed out. Table 1 shows the characteristics of two meshes. The first mesh,
denoted as Mesh 1 x 1 x 1, has a computational domain extended from a wall to
the other and considers the whole cross-section of the channel flow. It is used to
compute the fluid velocity field and the mass transfer at Sc¢ = 1. The mesh used
to compute the passive scalar at higher Schmidt numbers is denoted as Mesh
1 x 6 x 1, and is limited to regions 1 and 2 in figures 1 and 2. The grids are
uniform in the mean flow direction, and are stretched in the direction normal
to the wall, with the finest spacing at the walls. The turbulent velocity and the
scalar are computed successively in the following way: the Navier-Stokes equa-
tion is advanced one step in time, and then the fluid velocity field and the eddy
diffusivity are interpolated onto the mesh system used for the scalar field. With
the known velocity field, the volume average scalar transport-equation is solved.
This procedure is repeated by returning to the first step and computation for
the next time step.

A fourth order Lagrangian interpolation scheme is used to ensure a sufficient
accuracy in interpolation of turbulent velocity field, see e.g. Wang & Squires [17].
The filtered scalar transport-equation is integrated using a three step, third order
tensor viscosity scheme, [18, 19]. The advection term in the right hand side of the
filtered equation was approximated with QUICK scheme [20] to keep a second
order spatial accuracy and a numerical stability at the same time. The diffusion
term was discretized using a central differentiation.
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FIGURE 2. The X function versus the wall-normal direction.

The initial profile in a cross section for the velocity was set parabolic. The
passive scalar calculation was not added until the hydrodynamic simulation had
reached statistically equilibrium state. The initial profile in a cross section for
the scalar was set linear at Sc¢ = 1, and was set proportional to y~'/® for the
calculations made at Sc = 100. It was set identical to the profile obtained at
Sc = 100 for the calculations made at Sc¢ = 3000. The calculated variables were
considered to be at equilibrium when variation of the statistical properties in
time was small.

3. Results

In this section results from large eddy-simulations for turbulent transport of
a passive scalar are presented at Schmidt numbers (Sc¢) equal to 1, 100 and
3000. The flow Reynolds number is 180. At Schmidt number equal to 3000, the
present work examines two explicit algebraic models for the Reynolds-flux vector
validated in previous studies at Se¢ = 0.71 and 1 [21, 22]. A theoretical profile
for the mean passive-scalar is derived on the basis of one of these models. The
present study tests also a new explicit algebraic model derived on the basis of a
simplification in the budget of the Reynolds-flux vector as in [7].

Kawamura et al. [23] studied the asymptotic behaviour of the nondimensional
7

’ 2079) ’ %)

€g is the dissipation term of temperature variance. r is an important parameter,

since it is part of many algebraic models for the Reynolds-flux vector. The study

of its magnitude is also of importance because it gives an estimation of the rel-

ative importance of the two time-scales. Kawamura et al. showed that r tends

ratio 7 of the thermal time-scale and the dynamical time-scale where
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FIGURE 3. At Sc = 3000, the time-scale ratio r along the wall-
normal direction.

exactly to Sc as the wall is approached. The present LES agree with this theo-
retical result, as shown in figure 3, for Schmidt number equal to 1, 100 and 3000.
These three computations of both dynamical and heat fundamental statistical
quantities, indicate that the present code reproduces correctly the physics in the
near-wall region. As shown in figure 3, it is not possible to consider r constant
in this region.

At Se = 0.71 and for a two-dimensional flow around a cylinder, Wikstrém
et al. [6] reported a model for the Reynolds-flux vector. It is a truncation
of the more general expression developed by Shih et al. [24] with the help of
dimensional analysis and invariant theory. The scalar-flux can be described as
following

_ k2
ui0 = Qy k- T@J + ?7‘ (GQUL]' + 0,3Uj7i) @7]', (3)

where 7 is a turbulent time-scale. Wikstrom et al. found that the Reynolds-flux
vector was best captured using a mixed time-scale between the dynamical and

the heat time-scale, 7 = \/E. For the channel flow at Se¢ = 1, 100 and 3000
the present study found that the wall-normal component was correctly predicted
by equation (3), when the streamwise component was not. A modified model,
correcting the above equation with damping functions in the near-wall region,
was developed by So et al. [1] for fully developed channel flows, and Schmidt
number around unity. Fairly good results were obtained at Sc¢ = 3000 with this

model, as shown in figure 4. The Reynolds-flux vector was here modelled as
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where S, is here the mean strain rate, {;; the mean rotation rate, ¢y (Sec =
3000) = 3.28, cr2(Sc = 3000) = 0.4, cr3(Sc = 3000) = —4.5 x 1073, ¢\ (Sec =
3000) = —9.5 x 107?, cx1(Sc = 3000) = 0.3, A(Sc = 3000) = 3 and a,(Sc =
3000) = 0.0017 = —ay. Re; = % Note the simplicity of the model for the
Reynolds flux in equation (3) in the wall-normal direction, which is usually
found to be easier to model than the streamwise component [1].

At lower Schmidt numbers, S¢ = 1 and 100, equation (3) does not give accept-
ably accurate results for the wall-normal component of the Reynolds-flux vector,
because it drastically underpredicts the flux at the center of the channel. Noting
that model (3) was tested for a cylinder wake, this result is expected since only
the wall-normal component of the fluctuating velocity in the near-wall regions
of a channel flow has similar structure with the wall-normal fluctuating velocity
close to the axis of symmetry of a two-dimensional cylinder wake.

Equation (3) is constituted by the first two terms of a constitutive relation
developed by Shih et al. [24]. The present study considered also the complete
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relation for the streamwise component of the Reynolds-flux vector. No improve-
ment was obtained.

At Schmidt number equal to 1 and 100, the model developed by So et al. [1]
gives reasonable results for uf, but quite poor for vé, see figures 5 and 6. So
et al. validated the model by setting a constant passive-scalar-flux at the walls.
With these boundary conditions, the y-component of the Reynolds-flux vector
must be zero at the centre of the channel. The damping function of the thermal



diffusivity a; of equation (4) has been calibrated according to these boundary
conditions.

Wikstrom et al. [22] derived an algebraic relation for the Reynolds-flux vector,
and the performance of the model was investigated in a homogeneous shear flow,
a channel flow and a heated cylinder wake. Very good predictions were found in
all cases. For the channel flow, the considered turbulent Reynolds and Schmidt
numbers were equal to 265 and 0.71, respectively. The model can be described
as following

Vkkg

where the inverse of the matrix A is given by

(G* - —Ql)I - (csS + o) + (csS + coN)?
- %GQI + %Q2 ’

1 “J“l
ij

—(1 —cpa)A;; O, (5)

A—l

(6)

1k oU; oU; _
and cs = 1 —cg2 —cp3, ca = 1 — cp2 + cp3, Sij = 57¢ (8% + B—w’) and Q;; =

Lk (oU; _ 9U;
2 € 8.tj Biti

In the case of a fully developed flow in a channel, equations (5) and (6) become

W = kk00048—®

Jy

W =V k‘k‘chZ—O
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22 G + 462 (U,y) G _ §GQ1 ’
where G =1 (2¢p1 — 1 — % + %), P, = —wwdl 8y, Q= kz S (Uy)? (& —cd), cor =

1.6(1 4+ 1/r) and Q2 = 0. As shown in figures 7 and 9, good agreement is found
between this model and the present computations, at S¢ = 1 and 3000, but
the wall-normal Reynolds-flux is underpredicted in the logarithmic region of the
diffusive boundary layer at S¢ = 100. This result can be explained by the
values chosen for the constants cgo and cgs in the present study, that account
for the effect of the rapid pressure in v; (see equation (10)). The effect is not
well understood and Wikstrom et al. took these constants equal to zero in order
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values for cgo and cp3 produce results in less agreement than in figure 8.
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FIGURE 9. At Sc =1, the mean Reynolds-flux vector along the wall-
normal distance. Model proposed by Wikstrém et al. [22]. Solid line:
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co2 = 0.5, cg3 = 0.5 and cps = 1.5 x 10*. b) i = 2, wall-normal

direction. cg1 = 3.2, cg2 = 0.5, cg3 = 0.5 and cga = 8.5 X 102,

The improvement of prediction for the Reynolds-flux vector is very good com-
pared with the predictions of the previous model. ¢y4 could not be found identical
for the two components of the Reynolds-flux vector.

In analogy with the transport equations for the Reynolds stresses, a transport
equation of the scalar-flux vector can be written in symbolic form as
Du;f
Dt
where D/Dt = 9/0t + U;0/0x;, and the terms on the right-hand-side of the

above equation are identified as follows
Py; = — [wiw©1 + w,0U; ] production rate,

[l = pf; pressure scalar-gradient term,

= Ppi + [Iy; — €0i + Di = Py; + )i + Dy, (7)

1\
€p; = (1 + §> 01w viscous diffusion rate,

1
D;=— <uiu19 + pfoy — guiﬂﬁl — t‘)ui,l) turbulent transport term.
N/

At high Schmidt number in the near-wall region, Gurniki et al. [7] showed
that the budget for the Reynolds-flux vector (7) can by simplified by neglecting
the production rate. Assuming equilibrium for the flow, equation (7) becomes

Y +D; =0 (8)
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This equation will be used below as the basis of an algebraic model for the
Reynolds-flux vector.

Wikstrom et al. [22] validated a model for the difference of the pressure
scalar-gradient term, [],;, and the viscous diffusion rate, €g;

_ 1\
Y = pb ; — <1 + §> O ruin =1y — €os- 9)

A linear model was considered, but a more performant version including a non-
linear term was chosen. For simplicity, only the linear has been used here. The
model term reads as

1 - -
Py = —091;%’9 + coow0U; 1 + cop3wi8U; ;i + coating© g, (10)

where cy; have been considered constants and tested with different values for a
2D and a 3D geometry (a heated cylinder and a channel flow). 7 is the mixed
time-scale used in the previous chapter.

Figure 10 compares the above model with the present LES computations.
The agreement is not excellent, but better than the one reported by Wikstrém
et al. [22]. They explained this discrepancy by the linearity of model (10) for
1;, when the physical phenomena in the near-wall region are non-linear. Before
solving equation (8) for u;f, that states 1; + D; = 0, one must provide a model
for the turbulent transport term D;. As shown in figure 11, — (—W) v is the
dominant term in D; in the streamwise and the wall-normal direction. As the
first step in the development of a new model for the Reynolds-flux vector, a
model for D; based on equation (4) is considered. Deriving this equation in the
wall-normal direction, u;,f can be identified as the terms of (u;f)  that do not
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depend on the second derivative for the mean passive-scalar. Here, it is assumed
- 2 -
that ;0 , are proportional to %. u;,y0 can then be modelled as follows

—u; 0 = a;g—g — —{[2vt + (1 — er2) | Sir + (1 — er2) e Qur } g—fi
_i {[2Vt + (]. - CT2)at]Sik + (]. - CTz)atQik} g—g (11)
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FiGure 13. At Sc = 3000, model proposed by the present study

for u;0. Solid line: mLES. 00 o0: mmodel. a) i =1, co1 = 3.8,

co2 = —3.5, cg3 = —0.65, cpa = 15 and cg5 = 7. b) i = 2, co1 = 3.8,
cp2 = —3.5, cgs = —0.65, cpa = 15 and cgs = 0.21.

The superscript ’ is equivalent to the first derivative in the wall-normal direction.
Good agreement was obtained between the present LES computations and this
model, see figure 12. The wall-normal component was slightly better predicted.
Equations (10) and (11) are then inserted in (8). The obtained equation system
for the Reynolds-flux vector is linear and can be described as following

[W} _ [ ~(uyB) ~ cos - © ] (12)

o ~(0gh) — coi® O

’

7:_91 692 . U
’ —
co3 - U =

The solution of equation (12) is straightforward

( —cos %
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’Ue T2092693(U1)27(:31

flars

[0937'2UI (d%(u—ye) + cpauT - @I) +corT (d%(v—yﬁ) + coav? - @’)] ,

Thé coefficients cy5 and cgg are added to correct the model. Figure 13 com-
pares at Sc = 3000 the above model with the present LES computations. Al-
though some wiggles found in the logarithmic region of the diffusive boundary
layer, it clearly shows an improvment in comparison to model (4) for the stream-
wise component of the Reynolds-flux vector. These wiggles are probably due to
the second derivative of the dissipation rate e contained in equation (12). The
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good behaviour of equation (12) is also the confirmation that assumption (8),
setting that the production rate is negligible at high Schmidt numbers in the
budget for the Reynolds-flux vector, is valid.

Figures 14 and 15 show the predictions of the same model at Sc¢ = 1 and
100. At Sc¢ = 1, its behaviour is worse than the previous model but this is not
surprising, since it has been developed for a flow at S¢ = 3000. Note however, the



relative good result for the streamwise component of the Reynolds-flux vector.
On the other hand, it shows a better agreement with LES at Sc¢ = 100, see
figures 8 and 14. As shown in figures 13, 14 and 15, ¢go and cy4 are found to be
constant, and cg; and cp3 vary linearly with Schmidt number as following

cor(Sc) = 392.93 — 0.1297 - Sc,

cp3(Sc) = —0.0448 — 2.02 x 107* - Se.

The coefficients of correction, cys and cpg, are found almost constant. In conclu-
sion, the model proposed in the present study seems to be more performant at
high Schmidt numbers than the model examined by Wikstrom et al. [22].

In the previous chapter, a simple model for the Reynolds-flux vector has been
developed for channel flows at high Schmidt numbers, and has been successfully
tested at Sc = 100 and 3000. In order to obtain a complete model for the passive-
scalar-transfer, one needs a proper boundary condition for ©. Wall-functions
have the function of boundary conditions situated at a certain distance from the
wall.

At high Schmidt number, although equation (3) does not give a very satisfac-
tory prediction of the streamwise Reynolds-flux, it remains quite useful because
it makes the formulation of a more general wall-function for the mean passive
scalar possible. If one considers the mass-conservation equation for a fully de-
veloped flow, it is obtained

=~ b=, (13)

where 7, = é(%)wa”. Using equation (3), equation (13) becomes

0 _(80) 20
o \0y/)pu = Oy

(14)

where ag is a positive constant, possibly dependent on Schmidt number. One
can then derive an integral function for the mean passive scalar as a function of
the wall-normal distance

90 v gy
C) o) = G)wav . . P
(Yo) Il+<8y>wall /0 1+ aghr

This equation can be integrated in the near-wall region if the Taylor series of
the turbulent kinetic energy and the time scale 7 are considered. It can easily
be shown that ag - k-7 = Ay(Sc) -y* + O(y®) when the wall is approached. This
result is obtained when one considers the limiting behaviour near the wall, of
the velocity components and the temperature fluctuations [23]. Equation (15)

(15)
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FIGURE 16. At Sc = 3000, the mean profile of the passive scalar
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a) In the diffusive and the buffer region. Ae = 3/2. b) In the
'logarithmic’ region of the diffusive boundary layer. Ae = 0.12.

can then be integrated with the help of this approximation, and © is found as a
function of y as follows

_ (00/0y)wan |1 224 2v2+1 22
O(y) = Owau + NG 2ln JERpn +arctan (| 7—— | |4

where z = yA;/ % Using the same methodology, Gersten et al. [25] developed
also an analytic solution for the passive scalar but used a different model for the
wall-normal component of the Reynolds flux, where vf = —I/t% and the turbu-
lent Schmidt number is considered constant. Since it has been shown previously
(see [23]) that Se; is not constant, the present study considers in equation (4)
vl = —at%. Equation (16) gives good results in the near-wall region, and sur-
prisingly, even in the logarithmic region of the diffusive boundary layer, provided
that another value for Ay is chosen, see figure 16. This result tends to prove that

the asymptotic behaviour of k-7 as y* is valid even outside the diffusive sublayer.

4. Conclusions

Large-eddy simulations for turbulent transport of a passive scalar were made
at Schmidt numbers equal to 1, 100 and 3000. The flow Reynolds number was
180. The purpose of this work was to provide explicit algebraic models for the
Reynolds-flux vector at high Schmidt number.

Two models from previous studies [21, 22] were tested, and one was developed
on the basis of a previous work [7] for the budget of the scalar flux. At Sc = 3000



and 100, the model developed in the present study was shown to give better
results than the two other models.

At Schmidt number equal to 3000, a wall-function for the mean passive-scalar
was developed on the basis of the simplest tested algebraic model [21]. Very
good agreement is found with the LES computations. This wall-function can be
used with the present model for the Reynolds-flux vector and a low Reynolds
k — € model, in order to model mass transport at high Schmidt number.
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