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Abstract

This thesis deals with numerical simulation of turbulent flows in geometrically
simple cases. Both plane and cylindrical geometries are used. The simplicity
of the geometry allows the use of spectral methods which yield a very high
accuracy using relatively few grid points. A spectral method for plane geome-
tries is implemented on a parallel computer. The transitional Reynolds number
for plane Couette flow is verified to be about 360, in accordance with earlier
findings. Turbulent Couette flow at twice the transitional Reynolds number is
studied and the findings of large scale structures in earlier studies of Couette
flow are substantiated. These large structures are shown to be of limited ex-
tent and give an integral length scale of six half channel heights, or about eight
times larger than in pressure-driven channel flow. Despite this, they contain
only about 10 % of the turbulent energy. This is demonstrated by applying
a very small stabilising rotation, which almost eliminates the large structures.
A comparison of the Reynolds stress budget is made with a boundary layer
flow, and it is shown that the near-wall values in Couette flow are comparable
with high-Reynolds number boundary layer flow. A new spectrally accurate
algorithm is developed and implemented for cylindrical geometries and verified
by studying the evolution of eigenmodes for both pipe flow and annular pipe
flow. This algorithm is a generalisation of the algorithm used in the plane chan-
nel geometry. It uses Fourier transforms in two homogeneous directions and
Chebyshev polynomials in the third, wall-normal, direction. The Navier–Stokes
equations are solved with a velocity-vorticity formulation, thereby avoiding the
difficulty of solving for the pressure. The time advancement scheme used is
a mixed implicit/explicit second order scheme. The coupling between two ve-
locity components, arising from the cylindrical coordinates, is treated by in-
troducing two new components and solving for them, instead of the original
velocity components. The Chebyshev integration method and the Chebyshev
tau method is both implemented and compared for the pipe flow case.

Descriptors: Turbulence, plane Couette flow, pipe flow, laminar-turbulent
transition, direct numerical simulation, spectral methods.
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Preface

This thesis considers development, implementation and use of spectrally accu-
rate algorithms for direct numerical simulation of geometrically simple flows.
It is based on the following papers:

Paper 1 Komminaho, J., Lundbladh, A. & Johansson A. V. 1996 Very
large structures in plane turbulent Couette flow. J. Fluid Mech. 320, 259–285.

Paper 2 Komminaho, J. & Skote, M. 2000 Reynolds stress budgets in
Couette and boundary layer flows.

Paper 3 Komminaho, J., Lundbladh, A. & Johansson A. V. 1997 De-
termination of the transitional Reynolds number in plane Couette flow through
study of relaminarization. In First AFOSR Int. Conf. on DNS/LES. pp 233–
240.

Paper 4 Komminaho, J. 1995 Numerical simulation of the Navier–Stokes
equations on massively parallel computers. TRITA-MEK 1995:13.

Paper 5 Komminaho, J. & Johansson A. V. 2000 Development of a spec-
trally accurate DNS code for cylindrical geometries.

The papers are here re-set in the present thesis-format. Some of them are
published as indicated above.

vi
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CHAPTER 1

Introduction

Turbulence is all around us, virtually all the flows of interest are turbulent.
Turbulence is the rule, not the exception, in fluid dynamics. Turbulent flows
range from scales of a few µm in high-speed aircrafts up to astrophysical flows
and interstellar turbulence where the scales are measured in parsec.

A turbulent flow differs from laminar flows, in that the mean motion of
the turbulent flow does not satisfy the Navier–Stokes equations. It is a flow
disordered in space and time, without the steady motion of laminar flow.

Although fluid turbulence is deterministic (the governing equations are
deterministic) the evolution in time is very complicated, due to the nonlinear
interactions. Thus, without precise knowledge of every fluid particle’s position
and velocity, it cannot be predicted accurately for any length of time into the
future. It seems impossible to consider theoretically for arbitrary times the
deterministic evolution of a given turbulent field, starting with a given field
of initial conditions. One has to resort to numerical methods to study the
evolution of a turbulent field, in a ’brute force’ attempt to gain insight into
the properties of the turbulent flows. This approach has, in the last decades,
started to gain popularity due to the significant progress in the speed and
capacity of the computers, and also the development of efficient and accurate
algorithms.

The development of the theory in fluid mechanics is closely coupled to
experiments. It was not until the nineteenth century that mathematicians
developed the fundamental equations that govern viscous flow, the Navier–
Stokes equations, after the French and English researchers Claude Louis Marie
Navier, (1785–1836) and Sir George Gabriel Stokes, (1819–1903).

Flows in cylindrical geometries were studied experimentally and analyti-
cally very early. Turbulence and transition in pipe flow was studied early, see
Reynolds (1883). In this pioneering experiment he defined the non-dimensional
parameter that is now called Reynolds number. He visualised the flow in the
pipe with a streak of coloured water, and could thus see when the flow became
turbulent. The coloured streak would break down and mix with the water some
distance downstream the inlet of the pipe. He noted that the Reynolds number
at which the breakdown occured is sensitive to the disturbance levels.

In 1890 the French scientist M. Couette studied the flow between two ro-
tating cylinders, now referred to as Taylor–Couette flow, in order to determine

1
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the viscosity of fluids. He rotated the outer cylinder and for low rotation rates
the torque is proportional to the product of the viscosity of the fluid and the
rotation rate, νΩ. For high enough rotation the flow becomes turbulent and the
torque increases faster than linearly. A few years later Mallock (1896) designed
a similar apparatus, but with a rotating inner cylinder. The observed flow was
laminar only for rotation rates much lower than those used by Couette.

In 1923 Taylor performed experiments on the stability of Taylor–Couette
flow. He developed a theory for calculating the stability of this flow, and also
did a few numerical calculations based on that theory. The calculations, involv-
ing Bessel functions, were tedious and determining the numerical values was a
major challenge. The agreement between his experiments and calculations is
remarkable, and is the first example where a stability calculation matches an
experiment.

Earlier attempts to calculate the stability of the flow between two moving
parallel infinite planes, plane Couette flow, had been unsuccessful. The re-
sults indicated that the flow would be linearly stable for all Reynolds numbers.
Romanov (1973) showed that plane Couette flow lack growing eigenmodes for
all Reynolds numbers.

When the digital computer was developed in the 1930:ies and 1940:ies
people began to think about simulating turbulent flows with them. Already
Neumann and Emmons proposed numerical simulations of turbulence as early
as 1949, but it was not until 1964 that the first simulations of turbulence were
performed. This study was made by R. W. Bray at Cambridge and is described
in Batchelor (1969). They used a spectral method with expansion in Fourier
space, and the nonlinear terms were evaluated as convolutions. All calculations
were performed on the EDSAC 2 computer with 10 × 10 Fourier coefficients.
In this study they developed a theory of the kinetic energy spectrum in two-
dimensional turbulence and tried to verify it with numerical experiments. The
resolution however was too low to draw any conclusions. In a recent study by
Lindborg & Alvelius (2000) support for this theory was found, with a simula-
tion using 40962 points.

Also Lilly (1969) made a simulation of two-dimensional turbulence, using
finite differences on a 64 × 64 grid. The computations was carried out on a
CDC6600.

It is natural that the first simulations of turbulence concerned two-dimen-
sional flow. The introduction of a third dimension complicates the calculations
in two ways. For a two-dimensional flow one only needs one flow variable, the
vorticity. In (incompressible) three-dimensional flow one needs to solve for at
least two variables, with the third calculated from the continuity condition.
If using primitive variables, the velocities and the pressure, one also needs to
solve for the pressure, via the continuity equation. This adds to the complexity
of the code. Furthermore one needs to resolve the third dimension, which
dramatically increases the number of grid points needed for the calculation.
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Figure 1.1. The amount of computer power (measured in
additions per second) one can buy for a dollar as a function of
time (•) (from Kurtzweil 1999), and number of thousand grid
points in some simulations (�), from table 1.1.

Thus, it is not surprising that the first simulations used large-eddy simulations
(LES) to reduce the number of grid points (by modelling the small scales).

Among the first simulations of three-dimensional turbulence was made by
Deardorff (1970) who used a CDC6600, and the simulation code was a finite
difference method with 6720 grid points. He did not fully resolve the turbulence
but used a sub-grid scale model to describe the behaviour of the smallest scales.
This use of sub-grid scale models made it possible to simulate turbulent channel
flow at very high Reynolds number, despite the low resolution.

Schumann (1975) used LES in simulations of plane and annular flows, using
65536 grid points. In these calculations the mean-velocity profile, and second
order statistics are in fair agreement with experimental data. Moin & Kim
(1982) calculated the channel flow at Reynolds number 13800, using 516096
grid points, with an LES code, but unlike Schumann they did not model the
wall-layer dynamics. Instead they extended the calculations down to the wall.

Thus the first simulations on three-dimensional turbulence used LES to
avoid the very high demands put on computer resources needed to do a direct
numerical simulation. In 1972, Orszag & Patterson (1972) performed the first
direct numerical simulation of homogeneous isotropic turbulence on a 323 grid
using a spectral Galerkin method.

Rogallo (1981) used spectral methods to calculate homogeneous three-
dimensional turbulence subject to mean strain, examining effects of mean shear,
irrotational strain and rotation on homogenous turbulence. This type of flows
was also studied by Hallbäck (1993) who used DNS to obtain data for devel-
oping and testing of turbulence models.
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Author year grid points
Bray1 1964 100
Lilly 1969 4096
Deardorff 1970 6720
Orszag & Patterson 1972 32768
Schumann 1975 65536
Moin & Kim 1982 516000
Kim et al. 1986 3962880
Jiménez et al. 1993 134217728

Table 1.1. Number of grid point in some simulations versus
the year.

The computational capacity required for a direct numerical simulation of
wall-bounded flows is so high that the first such simulation was done as late as
1987. These were studies of curved channel (Moser & Moin 1987) and plane
channel (Kim et al. 1987). The computations of Moser & Moin (1987) were
done on a CRAY-XMP, and used 1282 × 65 grid points. The simulation of
Kim et al. (1987) used 192 × 160 × 129 grid points.

It is evident that the use of direct numerical simulations as a research tool
has developed rapidly. In only three decades the number of grid points have
increased by a factor of 134 × 106/100 = 1.34 × 106. This development is of
course closely related to the development of the computers. In figure 1.1 we
have plotted the number of flops (floating point operations per second) one
can buy for one USD, as a function of time. Included is also the number of
grid points, measured in thousands, for various simulations. As we can see,
from that figure and table 1.1 the development of simulations closely follows
the development of computer power.

One may note also that the rapid development of computers has had a
major impact also on experimental investigations of turbulence. This is re-
flected in terms of fast data aquisition and analysis, and the handling of very
large data sets obtained from local time-series measurements with e.g. hot-wire
anemometry or laser doppler velocimetry, and whole field measurements with
e.g. particle image velocimetry.

1Simulation performed by Bray in 1964 and reported in Batchelor (1969).
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CHAPTER 2

Simulations of turbulent flows

There are many different methods of solving partial differential equations nu-
merically, such as finite elements, finite differences or spectral methods. In
the finite element technique the domain is divided into small elements and a
trial function is specified in each element. Finite elements have traditionally
been used in structural mechanics and are, because of the localised trial func-
tion, well suited for use in complicated geometries. Finite difference methods
approximate derivatives of a function by local expansion (see e.g. Strikwerda
1989). This approach is reasonable since the derivative is a local property.
Spectral methods are based on global functions, and the function is expanded
in a sum of basis functions, (see e.g. Boyd 1989)

u(x) ≈
N∑

n=0

anψn(x). (2.1)

This series is substituted into the equation

Lu = f(x),

where L is an operator describing the differential equation. A residual function
may be defined as

R(x, a0, a1, . . . , aN ) = LuN − f.

The goal is to minimise the residual function by choosing suitable base functions
ψn and expansion coefficients an.

2.1. Spectral methods

There are a number of requirements on the base functions in a spectral method.
They should

• be complete, meaning that any solution1 can be described to arbitrary
precision almost everywhere2,

• have rapid convergence3,
• be easy (fast) to compute.

1The solution does not have to be continous, as long as it is continous almost everywhere.
2Almost everywhere implies that the sequence does not have to convergence pointwise.
3For rapid convergence the solution should belong to C∞(a, b).

5



“main”
2000/11/15
page 6

✐

✐

✐

✐

✐

✐

✐

✐

A more mathematical definition of completeness is given below.
Consider the space L2(a, b), i.e. the space of Lebesgue measurable functions

on the interval [a, b]
v : (a, b) → C

which are square integrable ∫ b

a

|v(x)|2dx < ∞,

with pointwise operations and an inner product

(vi, vj) =
∫ b

a

vi(x)v∗j (x)dx.

L2(a, b) is a Hilbert space (see e.g. Young 1990, for an introduction to Hilbert
space). A Hilbert space is an inner product space which is a complete metric
space with respect to the metric ||v|| = (v, v)1/2, induced by its inner product.

To be able to expand arbitrary functions u ∈ L2(a, b) as in (2.1) we need
to find a basis in L2(a, b).

Define a weighted inner product

(vi, vj)w =
∫ b

a

vi(x)v∗j (x)w(x)dx,

with associated norm

||vi||w =
(∫

|vi(x)|2w(x)dx
)1/2

where w(x) is a weight function.
A sequence (vi)i∈Z in L2(a, b) is called an orthogonal sequence, with respect

to w, if (vi, vj)w = 0, for i = j. Normalise the sequence such that

(ψi, ψj)w = δij , ψi =
1

||vi||vi.

The orthonormal sequence ψn is complete if the only member in L2(a, b) which
is orthogonal to every ψn is the zero vector. We can now write the expansion
of an arbitrary function

u(x) =
∞∑

n=0

(u, ψn)wψn.

Example of an orthonormal sequence in L2(0, 2π) is the Fourier series

ψn(x) =
1√
2π

einx, 0 < x < 2π.

The sequence (ψn)∞−∞ form a complete sequence, and thus we can expand in
Fourier series. The expansion coefficients an in (2.1) can be calculated from
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the inner product of the function and the orthonormal basis functions

an = (u, ψn) =
1√
2π

∫ 2π

0

u(x)e−inxdx.

Weierstrass approximation theorem implies that any sequence of orthog-
onal polynomials, (Pn)∞n=0 (orthogonal with respect to a weighted norm), are
complete in L2(−1, 1).

Thus, Chebyshev polynomials, Ti, on the interval [−1, 1], with weight func-
tion 1/

√
1 − x2 form a complete sequence, since∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx = cij
π

2
(2.2)

where cij = 2 for i = j = 0, cij = 1 for i = j = 0 and cij = 0 for i = j.
It can be shown that the k-th Fourier coefficient of a function which is

infinitely differentiable and periodic with all its derivatives on [0, 2π] decays
faster than any negative power of k. Thus Fourier expansion satisfies the two
first requirements. By using a fast Fourier transform when evaluating the
coefficients we also fulfil the third requirement.

Since Chebyshev polynomials Tn can be written as Fourier cosine expansion
by the change of variable Tn(cos θ) ≡ cos(nθ), we satisfy all above requirements
also with Chebyshev polynomials.

2.1.1. Accuracy of spectral methods

One great advantage with spectral methods as compared with finite difference
or finite volume is their minimal phase error. Let us analyse the differentiation
error of finite difference schemes. Consider a single Fourier mode, f(x) = eikx,
in one dimension. Discretize f on a domain of length 2π, using a uniform mesh
of N points. The mesh spacing is then h = 2π/N . The exact first derivative
of f at node j is simply f ′

j = ikf(xj) = ikeikxj . Consider the second order
accurate scheme

∂f

∂x
=

fj+1 − fj−1
2h

. (2.3)

For the Fourier mode this scheme yields f ′
j = ik̃f(xj) where

k̃ =
1
h

sin(kh),

is the modified wave number. The difference between k̃ and k is the differenti-
ation error as a function of the resolution of the wave. For higher order finite
difference schemes this error becomes smaller (see e.g. Kreiss & Oliger 1972;
Fornberg 1996; Mansour et al. 1979). In figure 2.1 the modified wave number
is plotted for the above second order scheme, and for the fourth order schemes
from Mansour et al. (1979) and compared with spectral method.

As we can see, a spectral method requires fewer grid points than a finite
difference method. To resolve a wave with spectral methods we only need two
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Figure 2.1. Comparison of modified wave numbers k̃ vs k
on a 64 grid. (a) Second order, (b) fourth order, (c) compact
fourth order, (d) spectral.

points per wave length for a Fourier expansion (Kreiss & Oliger 1972), and π
points per wave length for Chebyshev polynomials (Gottlieb & Orszag 1977).
With second order finite difference methods we would need many more points
per wave length to obtain acceptable accuracy, (see also e.g. Kreiss & Oliger
1972; Fornberg 1996; Canuto et al. 1988). Already fourth order FD schemes are
much better in that respect. If we want a phase error, (k− k̃)/k, to be smaller
than 0.05 the second order FD would require about 12 points per wavelength,
and the fourth order FD about 6. For a phase error of 0.01 the corresponding
values would be 26 and 8 respectively.

The high phase accuracy is especially important in simulations of transition
to turbulence because such simulations must follow the evolution of the flow
and the nonlinear interactions between different waves for several characteristic
periods. The breakdown of localized disturbances to turbulence was studied in
Henningson et al. (1993). The disturbance energy initially grows algebraically
in time and when it is strong enough for strong nonlinear effects to take place,
the disturbance undergoes a rapid growth and breakdown to form a turbulent
spot. Thus, to accurately follow the growth of the disturbance one needs to
follow it for long times before it breaks down into a turbulent spot, and any
numerical dispersion of the wave package that constitutes the initial disturbance
could change the scenario.

We may illustrate the accuracy of spectral methods with an example. Solve
the equation

d2u
dx2

− λ2u = −x, u(1) = 1 +
1
λ2
, (2.4)

on the interval [−1, 1]. This type of equation is solved in the spectral DNS
code used in this thesis. It arises when we Fourier transform the Navier–
Stokes equations in two directions, and apply time discretization. The only
remaining derivative is in the wall-normal direction, which may be evaluated
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with a suitable method, e.g. finite differences or a spectral method. Typical
values of the parameter λ is in the range 10–100.

The analytical solution may be written as

u(x) = e−λeλx +
1
λ2
x.

If we now proceed to solve the equation numerically and compare it with the
analytical solution, we may define an error

e =

(
1
N

N∑
i=0

(u(xi)num − u(xi)analyt)2
)

and compare this for different numerical methods. In figure 2.2 we compare
two second order and two fourth order (central and compact) finite difference
methods (FD) with two Chebyshev collocation methods.

The Chebyshev integration method (Lundbladh et al. 1992) and Cheby-
shev tau method (see e.g. Canuto et al. 1988) are two slightly different meth-
ods of solving the above equation. In the integration method one solves for
the second derivative and integrates twice to obtain the solution. In the tau
method one solves directly for the unknown function.

The integration method was originally proposed by Greengard (1988) as nu-
merically more well-posed than the tau method. Both methods have now been
implemented in the spectrally accurate boundary layer DNS code Lundbladh et al.
(1999). Stellan Berlin (private communication) made some comparisons regard-
ing the numerical stability of the boundary layer flow code, and showed that
the tau method is more stable in most cases. This might be connected to the
condition number of the resulting system matrices, which in the integration
method is more ill-conditioned than in the tau method. This is discussed in
section 4 of paper 5 in this thesis, where we have compared the condition num-
bers of the system matrices for both methods in both the pipe and channel
flow codes.

In figure 2.2 the integration method seems to have a small advantage over
the tau methods for low resolutions and large values of the parameter λ, but
both Chebyshev methods show the expected spectral accuracy. For high resolu-
tions the numerical errors in solving the system matrix is the dominant source
of errors, and since the integration method matrix has a higher condition num-
ber it is also marginally less accurate compared to the tau method.

For low values of the parameter λ the Chebyshev methods are clearly su-
perior to the second order FD methods for any resolution showed in the graph.
For stiffer problems the Chebyshev methods are superior once the resolution is
high enough.

Stretching the grid in the FD case to resolve the thin ’boundary layer’ is
only marginally effective to lower the error, mostly for λ = 100. The stretched
grid is the same as in the Chebyshev methods, i.e. a cosine-distribution. The
amount of stretching is not optimised to yield lowest possible errors.
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Figure 2.2. Comparison of error obtained with different nu-
merical methods for (a) λ = 1, (b) λ = 10 and (c) λ = 100. The
symbols represent different numerical methods. (+) Cheby-
shev integration, (◦) Chebyshev tau, (�) 2nd order central FD,
(∗) 4th order central FD, (�) 4th order compact FD scheme on
an equidistant grid (Arnim Brüger, private communication),
(�) 2nd order central FD scheme on the same grid as the
Chebyshev methods.
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The fourth order central FD scheme uses a stencile which is 5 points wide.
Thus it is straight-forward to implement in the interior, but near the boundaries
we cannot use this stencile. Instead of using a asymmetric scheme we have here
simply used the analytical value outside the boundary. In a real case it would
be necessary to use at least a third order approximation at the boundary to
retain the fourth order accuracy of the scheme. Thus, our implementation of
the fourth order central scheme has the big advantage of being prescribed in
four points at the boundaries and this becomes important for high values of
λ and low resolutions. The fourth order central FD schemes are much more
accurate than the second order scheme. For all values of λ it shows the expected
fourth order accuracy. For a reasonable resolution the fourth order FD is an
order of magnitude more accurate than the second order FD.

The fourth order compact scheme (Arnim Brüger, private communication)
uses a stencile of 3 points, and can be used in all interior points. It shows the
expected fourth order accuracy, and is in fact roughly a factor of two more
accurate than the fourth order central scheme. The fact that the compact
scheme has larger errors than the central scheme for low resolutions is related
to the above mentioned treatment of the boundaries for the central scheme.

Thus, for this model problem the Chebyshev methods yield superior ac-
curacy. For more ’real-life’ problems this difference between spectral and FD
may be smaller, and a higher order FD methods may be comparable to spec-
tral methods for use in DNS of turbulence. Rai & Moin (1991) investigated
the accuracy of different FD schemes, and concluded that higher order upwind
schemes are good candidates for direct numerical simulation of complex flows.
Low order statistics were reasonably described even for second order schemes
with resolution similar to spectral methods, but to obtain higher order statis-
tics (skewness and flatness), they showed that schemes with higher (fourth or
higher) order accuracy are needed.

It may be illustrative in this context to compare the statistics obtained
from computations with a spectral and a second order FD scheme, by compar-
ing the statistics from simulations using spectral methods and simulations using
FD methods. Komminaho et al. (1996) and Bech et al. (1995) both simulated
plane Couette flow, with spectral and FD methods respectively. The second
order statistics are very similar despite a difference in Reynolds number. The
third order statistics show some differences, especially near the wall. Experi-
ments show a positive value of Sv near the wall, as should be expected. The
wall-normal skewness, Sv in the spectral simulation is positive near the wall.
This has also been observed in the channel flow simulation by Kim et al. (1987),
whereas for the FD simulation the skewness is negative, and approaching zero
at the wall. This difference between spectral and FD simulations using second
order central difference schemes was also observed in Rai & Moin (1991).



“main”
2000/11/15
page 12

✐

✐

✐

✐

✐

✐

✐

✐

2.1.2. Applicability of spectral methods

Spectral methods are not suitable for every problem/geometry. In fact they
are suitable only to a small set of geometries. It is possible to formulate spec-
tral methods with two inhomogenous directions, but it results in much more
complexity than for one inhomogenous direction. Restricting ourselves to flows
with only one inhomogenous direction, there are still a number of interesting
flows that are possible to solve with spectral methods.

Perhaps the most obvious flow case is homogenous turbulence, for both
two- and three-dimensional cases. Indeed, the first simulation of turbulence was
made for two-dimensional turbulence with a spectral method (by Bray, reported
in Batchelor 1969). Other simulations of homogenous two-dimensional turbu-
lence include Brachet et al. (1988); Lindborg & Alvelius (2000). Orszag & Patterson
(1972) performed the first three-dimensional simulation of homogenous turbu-
lence, and since then it has been a popular case, (Shumann & Patterson 1978;
Hallbäck 1993; Jiménez et al. 1993, among others)

Flows with two homogenous directions that are possible to calculate with
spectral methods include pressure driven plane channel (Kim et al. 1987; Moser et al.
1999) and plane Couette flow (Lee & Kim 1991; Komminaho et al. 1996).

Developing boundary layer flows are possible to compute, with and without
pressure gradient, using a fringe region technique (see Lundbladh et al. 1999,
for a description of the fringe technique). The use of a fringe region is necessary
due to the periodic boundary condition in the developing direction.

With a cylindrical coordinate system one can simulate pipe flow (Zhang et al.
1994), Taylor–Couette flow, curved channel flow (Moser & Moin 1987) and an-
nular pipe flow.

2.2. Algorithm used in the spectral code

The incompressible Navier–Stokes equations can be formulated in several differ-
ent ways. The one chosen here is a velocity-vorticity formulation. This appears
to have been used for the first time for simulation of Navier–Stokes equations
in Dennis et al. (1979). They used a second order finite difference method for
a calculation of the unsteady flow in a cubical box with one moving wall.

The reason behind using velocity-vorticity formulation rather than the
more usual (velocity and pressure) is that it is thereby possible to avoid the
difficulty of solving for the pressure. Unlike the velocity, there is no evolution
equation for the pressure and it is indirectly determined from the continuity
equation. In incompressible flow the pressure adjusts itself to the velocity field
instantaneously, implying infinite wave speed. This often causes problems, see
Canuto et al. (1988) and e.g. Gresho & Sani (1987) for discussion on solution
strategies for the pressure and pressure boundary condition for incompressible
flow.



“main”
2000/11/15
page 13

✐

✐

✐

✐

✐

✐

✐

✐

The incompressible Navier–Stokes equations can, in conservative form, in
a rotating reference system in general coordinates, be written as

∂u
∂t

= −∇p+ u × (∇ × u + 2Ω)︸ ︷︷ ︸
=H

−∇(
1
2
u · u) +

1
Re

∇2u, (2.5a)

and the continuity equation for incompressible flow is given by

∇ · u = 0, (2.5b)

where u is the velocity vector, Ω is the system angular rotation rate vector and
Re is the Reynolds number.

We may take the divergence of the momentum equation and use the con-
tinuity equation to obtain a Poisson equation for the pressure. We apply the
Laplace operator on the momentum equation, use the above equation for the
pressure, to obtain a fourth order equation for the velocities with the pressure
eliminated,

∂∇2u
∂t

= −∇(∇ · H) + ∇2H +
1
Re

∇4u. (2.6)

The next step is to rewrite (2.6) into a system of second order equations by
introducing an auxiliary vector φ,

∇2u = φ (2.7a)
∂φ

∂t
= −∇(∇ · H) + ∇2H︸ ︷︷ ︸

=−∇×(∇×H)

+
1
Re

∇2φ. (2.7b)

By taking the curl of the momentum equation we obtain a second order equation
for the vorticities

∂ω

∂t
= ∇ × H +

1
Re

(∇ × φ) . (2.8)

Note that ∇ ×φ ≡ ∇2ω. We now have our velocity-vorticity formulation in a
general coordinate system.

To obtain the algorithm used in the channel code we use Cartesian coordi-
nates, and take the wall-normal components of equation (2.7a,b) and (2.8). The
other velocities and vorticities are then obtained from the continuity equation
and vorticity definition.

In cylindrical geometries (2.7a,b) constitutes a coupled system of equations
and we need to use two components of each of these equations (the radial and
azimuthal ones). By a substitution of the φ-components into

φA =φ1 + iφ2

φB =φ1 − iφ2

and similarly for the velocities and vorticities we can obtain an uncoupled set of
equations. The treatment of the boundary conditions is here somewhat complex
and requires the use also of the axial component of the vorticity equation (2.8).
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It is possible to obtain essentially the same algorithm as for the cylindrical
geometry in general coordinates (Arne Johansson, private communication).
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CHAPTER 3

Plane Couette flow

Plane Couette flow is the flow between two infinitely large parallel planes, see
figure 3.1. This can be seen as a limiting case of cylindrical Couette flow,
where the parameter γ = 1 − ro/ri → 0. It is one of the canonical flow cases.
It has a monotonic velocity profile (see figure 3.1), both in the laminar and
turbulent cases. This monotonic velocity profile means that when applying a
system rotation (with the rotation vector aligned with the z-axis) to a plane
Couette flow, both sides are stabilised or destabilised, depending on the sign
of the rotation. This is in contrast to the pressure driven channel flow, where
one side is stabilised and the other side is destabilised.

We write the Navier–Stokes equation (2.5a) in Cartesian coordinates in a
rotating reference frame as,

∂u′i
∂t

+
∂

∂xj
(u′iu

′
j) = −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

+ 2εijku
′
jΩk (3.1a)

∂u′i
∂xi

= 0. (3.1b)

z

x

y

Uw

−Uw

2h

Ω

Figure 3.1. The flow geometry in plane Couette flow: (−−),
turbulent mean velocity profile, (· · · ), laminar mean velocity
profile.

15
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Figure 3.2. The mean velocity profile (a) in outer, and (b)
in inner variables; (◦) are from the experiments by Bech et al.
(1995). Dashed curve: U+ = y+. Dotted line: U+ =
(1/0.4) lny+ + 4.6.

The effect of the system rotation can be seen as a volume force in the fluid,
also known as the Coriolis force and the centrifugal force. The Coriolis force is
the last term in the momentum equation, (3.1a) and the centrifugal force has
been included in the pressure.

Divide the flow into a mean and a fluctuating part, u′ = U + u, where the
mean part is defined as an ensemble average over N different times, and also
an average over the homogeneous directions (x and z in the Couette flow and
z in the boundary layer)

u′ ≡ U(y, t) =
1

NLxLz

N∑
i=1

∫ Lx

0

∫ Lz

0

u′(x, y, z, t)dxdz. (3.2)

The Reynolds equation for the mean flow is now obtained as

∂Ui

∂t
+

∂

∂xj
(UiUj) = −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
− ∂

∂xj
Rij + εijkUjΩk (3.3)

where Rij = uiuj is the velocity correlation tensor, and will here be referred
to as the ’Reynolds stress tensor’.

A fully developed plane Couette flow has a constant total shear stress across
the entire channel (see figure 3.3). This is easily obtained by integrating the
streamwise component of (3.3)

ν
dU
dy

−Rij = ν
dU
dy

|wall +
1
ρ

dP
dx

(y − ywall). (3.4)

In Couette flow the pressure gradient dP/dx is zero. Now use the wall friction
velocity,

uτ =

√
ν

∣∣∣∣dUdy
∣∣∣∣
wall

, (3.5)
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Figure 3.3. Total shear stress (−−), viscous shear stress, dU
dy

(− · −), turbulent shear stress, −R12 (−−), all normalised by
u2τ .

to define the non-dimensional velocity, u+i = ui/uτ , and length x+i = xi/l∗
where l∗ = ν/uτ . The above total shear stress (3.4) can be expressed in nor-
malised form as

dU+

dy+
−R+

12 = 1. (3.6)

The existence of a non-zero mean shear rate, and associated turbulence
production at the centre of the channel, gives a significantly different character
to the flow in this region, as compared to pressure-driven channel flow.

In comparison with zero-pressure-gradient boundary layers and pressure-
driven channel flow, plane Couette flow has the unique feature of combining
the parallel flow property with a zero pressure gradient. This suggests that
one would expect similarities with boundary layer flow, but with a significantly
simpler mean flow equation.

3.1. Transitional Couette flow

Analysing flow stability is difficult because of the non-linear nature of the
Navier–Stokes equations. A standard approach is to analyse the stability of
linearised Navier–Stokes equations subject to infinitesimal disturbances. The
linear equation has limited validity, but as long as the disturbance is small
compared to the base flow, the non-linear effects are negligible. By assuming
disturbances of the form u(x, y, z, t) = û(y)ei(αx+βz−ωt) one may derive (see
e.g. Hallbäck et al. 1996) the Orr–Sommerfeld equation[

(U − c)(D2 − k2) − U ′′ − 1
iαR

(D2 − k2)2
]
û = 0,

where ω = αc is the frequency of the disturbance, D denotes derivative in the
wall normal direction, k2 = α2 + β2, α denotes the streamwise wave number,
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and β is the spanwise wave number. If there exist wavenumbers for which
Im(ω) > 0 the flow is linearly unstable.

The critical Reynolds number, Rec, is defined as the lowest value of Re at
which there is any solution of the Orr-Sommerfeld equation with Im(ω) = 0.
For Re > Rec linearly unstable solutions of the Orr-Sommerfeld equation may
exist.

According to linear stability theory the plane Couette flow is stable (Drazin & Reid
1981) for all Reynolds numbers, i.e. Rec = ∞. But from experiments we know
that the flow becomes turbulent for sufficiently high Reynolds numbers.

The first experimental investigations of plane Couette flow was made by
Reichardt (1956) in a running belt apparatus with both belts moving. In this
study he used oil and water as fluids, and reported measurements of mean
velocity profiles. He also tried to determine the transitional Reynolds number,
i.e. the lowest Reynolds number for which turbulence is sustained. He arrived
at a value of 750.

Numerical results by Orszag & Kells (1980) demonstrated that three-dimensional
disturbances can drive the transition to turbulence. Nagata (1990) found three-
dimensional finite-amplitude solutions in plane Couette flow.

Later studies of transition include Leutheusser & Chu (1971). They carried
out the transition experiments in a facility where a free surface water flow was
used as the moving wall. The other wall was a stationary flat plate located
above and parallel with the water surface, and air was drawn into the channel
formed between the water surface and the stationary plate. The spanwise
aspect ratio was 12 and the water surface probably rough, as they state that the
water flow was turbulent. They determined the transitional Reynolds number
to 280, but is probably to low, since it is most possibly affected by the roughness
of the water surface.

One way to determine the transitional Reynolds number is to introduce
some kind of disturbance in the laminar flow and study the evolution of the
disturbance. If it grows in time and develops into a turbulent spot, then the
Reynolds number is higher than the transitional Re, otherwise it is lower.

In the direct numerical simulation by Lundbladh & Johansson (1991) of
turbulent spot formation in plane Couette flow it was shown that if a localized
disturbance with high enough amplitude was introduced it grew if the Reynolds
number was 375 or higher. For a Reynolds number of 350 the disturbance
eventually died out and no turbulent spot was formed, and therefore they
concluded that the transitional Reynolds number is between 350 and 375. This
is in agreement with the experimental study of turbulent spots in plane Couette
flow by Tillmark & Alfredsson (1992) where they found the transitional Re to
be 360 ± 10.

One could perhaps raise the question whether there exists other more ’op-
timal’ disturbances for which transition occurs at lower Reynolds number. In
order to avoid this difficulty one can start with a turbulent state which contains
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Figure 3.4. The instantaneous streamwise velocity field in
an x–z plane at y = 0, and at different times. in the large box.
(a) T = 673.8, (b) T = 681.1, (c) T = 687.4, (d) T = 694.8,
(e) T = 700.9, (f) T = 758.7, (g) T =829.2, (h) T = 913.3,
(i) T = 1075.1, and (j) T = 1259.9. In (a)–(e) the Reynolds
number is 375 and in (f)–(j) 350.

many possible disturbances and then successively lower the Reynolds num-
ber until the flow relaminarizes. Both this and the above approach has been
adapted by Tillmark & Alfredsson (1992) and both yielded the same transi-
tional Re.

In the study by Dauchot & Daviaud (1995) they studied the transitional
Reynolds number in plane Couette flow by studying the growth of turbulent
spots. They introduced strong disturbances and investigated the dependence
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of the growth on the amplitude of the disturbance. Their disturbance was
in the form of a jet, with 1mm in diameter, introduced perpendicularly from
one wall into the channel and out through the other wall. They introduced
a critical amplitude, Ac = f(Re) = v/Uwall (v is the velocity of the jet),
that was a function of the Reynolds number. Disturbances with amplitudes
below Ac did not develop into turbulent spots, whereas disturbances with am-
plitude above Ac did. They found that for high enough disturbances they
could produce turbulent spots for a Reynolds number of 335. In the same
experimental apparatus Daviaud et al. (1992) found the transitional Reynolds
number to be 370 ± 10. This is in agreement with the Ac curve reported in
Dauchot & Daviaud the authors claim, since Daviaud et al. used a Ac = 8.5,
and they also find Retrans = 370 for Ac = 8.5.

Another approach to determine the transitional Reynolds number was
taken in Komminaho et al. (1997). The idea was to begin with a turbulent state
and then successively lower the Reynolds number (by increasing the viscosity)
until the flow relamenarized. In a sufficiently large computational domain the
turbulence would be in ’a natural’ state, and would therefore contain the least
stable modes. This regardless of the way the turbulence started. Thereby it
was hoped that the somewhat contradictory results of Lundbladh & Johansson
(1991); Tillmark & Alfredsson (1992) and Dauchot & Daviaud (1995) would
be clarified. The findings supported the Retrans of about 360 reported by
Lundbladh & Johansson (1991); Tillmark & Alfredsson (1992). The simula-
tion started with a Reynolds number of 500, and was lowered in steps down
to 375, where the turbulence was sustained for long times. When lowering the
Re further to 350, the turbulence vanished rather quickly, see figure 3.4 where
the process is depicted. The streamwise velocity at the centreplane is shown
for different times, (a)–(e) for Re = 375 and (f)–(j) for Re = 350.

3.2. Turbulent Couette flow

Fully developed turbulent plane Couette flow is difficult to study experimen-
tally. If one uses a one-moving-wall setup, the channel needs to be very long
to produce a fully developed flow, and one also needs to apply some pressure
gradient to obtain the correct mass flux. For a two-moving-wall setup one has
difficulty of measuring, since disturbances introduced by the measuring devices
are not convected out from the measuring volume.

The first experiments on turbulent Couette flow appears to be made by
Reichardt (1956, 1959), in his measurements of the mean velocity profile. He
confirmed experimentally that the mean velocity profile has an S-shaped profile,
and that it is quite linear in the central region. Later Robertson & Johnson
(1970) measured both mean velocity and turbulent statistics using hot-wire
anemometry. They also measured two-point velocity correlations.

More recent experimental studies include Aydin & Leutheusser (1991) and
Tillmark & Alfredsson (1992, 1994).
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In later years direct numerical simulations of plane Couette flow have been
successfully carried out, and several investigations have been carried out.

3.2.1. Large structures in Couette flow

Large scale structures in the core region of the flow have been observed in
plane Couette flow in several studies. It appears that the first to note the large
scale structures as a peculiarity in plane Couette flow, were Lee & Kim (1991),
although Miyake et al. (1987) made a brief comment on them. Since then
these large structures have been observed in several direct numerical simula-
tions, Kristoffersen et al. (1993); Bech & Andersson (1994); Komminaho et al.
(1996), and experimentally in Tillmark & Alfredsson (1994); Tillmark (1995).
For the different parameters of the simulations, see table 3.1. Ongoing activi-
ties with DNS of plane Couette flow are found also at Science Univ. of Tokyo
(Kawamura, private communication) and Univ. of Southampton (Hu, private
communication).

Authors Re Reτ Lx Lz ∆x+ ∆z+

Miyake et al. (1987) 1250 62 64 16 61.6 15.4
Lee & Kim (1991) 3000 170 4π 8

3π 11.1 4.95
Papavassiliou & Hanratty (1997) 2660 157 4π 2π 15.4 7.7
Kristoffersen et al. (1993) 1300 83.2 10π 4π 10.9 8.2

1300 83.2 4π 2π 10.9 8.2
Bech & Andersson (1994) 1300 82.6 16π 2π 10.8 8.1

1300 82.2 10π 4π 10.1 4.0
750 52.9 8 4 8.8 4.4

Komminaho et al. (1996) 750 51.9 10π 4π 9.0 5.1
750 52.0 28π 8π 8.9 5.1

Table 3.1. Some details for different Couette flow simula-
tions. The Reynolds numbers are based on half channel height
and half the relative wall velocity. Lx and Lz are the dimen-
sions of the computational domain, measured in half channel
height h, in x and z directions. The resolution (expressed in
wall units) have been evaluated in physical space for all sim-
ulations, to make it possible to compare finite difference and
spectral methods (when using dealiazing in spectral methods,
the number of points are different in physical and Fourier
space).

These very large structures in Couette flow appear to have no counterpart
in other flows. Figure 3.5, which is taken from the simulations by Komminaho et al.
(1996), shows the streamwise velocity in the centre plane of the channel. The
large structures can clearly be seen as the long elongated streaks.
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Figure 3.5. Instantaneous velocity fields at T = 2020 in an
(x,z) plane at y = 0. Streamwise velocity range −0.5 to 0.5.

Define the twopoint correlation as

Ruu(x) =
u(x′)u(x′ + x)

u(x′)2

where only a streamwise separation x is considered, and an overbar denotes
averaging over the x–z plane in question, as well as over a period of time, T.

The correlation Ruu reveals the existence of the large structures, and is
substantialy larger than in channel flow and pipe flow. In figure 3.6 we show
the two-point correlation from several different simulations of Couette flow as
well as some experiments. Define the integral length scale as

Λuux =
∫ Lx/2

0

Ruu(x)dx. (3.7)

In the channel flow simulation by Kim et al. (1987) it is about 0.8h, and in the
square duct flow by Gavrilakis (1992) it is about 1.6h. In the present Couette
flow it is 6.1h.

The experiments by Tillmark & Alfredsson (1994) were carried out with a
high degree of control of all experimental conditions. They used LDV measure-
ments in their Couette flow apparatus with two moving walls for a Reynolds
number of 1260. Robertson & Johnson (1970) used one moving wall and one
stationary, and measured with hot-wires. Their meassurements were carried
out at Re = 11800 and show much lower value of Ruu. This difference may be
an effect of the difference of the experimental setup. In the two-moving wall the
flow is stationary in the middle between the walls, whereas in the one-moving
wall setup the flow in the middle of the channel is convected with half the wall
speed. This means the one-moving wall apparatus must be sufficiently long to
achieve fully developed flow.

In the simulations by Lee & Kim (1991) they reported that the very large
scale structures contributed to about 30% of the turbulent kinetic energy, and
that they are persistent counter-rotating streamwise vortices, with a spanwise
spacing of about 2h. They tried several different computational domains, the
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Figure 3.6. The two-point correlation for the streamwise
velocity, Ruu at y = 0 vs streamwise separation, from different
experiments and simulations Komminaho et al. (1996) (−−)
(three different box sizes), Bech & Andersson (1994) (−−)
(three different box sizes), Papavassiliou & Hanratty
(1997) (−·−), Symbols are from measurements by Bech et al.
(1995) (◦) and Robertson & Johnson (1970) (�).

largest being 1024π in the streamwise direction and the large scales appeared
to still be longer than the box used. They drew the conclusion that these
structures are essentially infinitely long. However, the spatial resolution was
very low for the large box sizes. In the simulations by Kristoffersen et al. (1993)
they found similar structures, but much weaker and not stationary, as in the
Lee & Kim simulation, neither in location nor in shape.

It seems quite possible that the differences in the large scales between the
two simulations are connected to the size of the computational domain (and
resolution, etc). In Lee & Kim the spanwise width (8/3π) allows two pairs of
the vortices and in Kristoffersen et al. the spanwise width (2π) allows only one
and a half pair, i.e. three vortices.

In Bech & Andersson (1994) they tried three different sizes of the compu-
tational domain, and found the large structures in only one of the domains,
16π × 2π, whereas in the other two the flow showed much lower correlations.

Papavassiliou & Hanratty (1997) used a pseudospectral code in their sim-
ulation of plane Couette flow. Their computational domain was 4π × 2π and
the Reynolds number 2660. The resolution of their simulation is probably too
low in the wall-normal direction with only 65 Chebyshev modes. They present
the total shear, normalised with uτ , which should be constant and equal to
one, but has a small bump in the near-wall region. They also fail to capture
the right value of the peak of the turbulent energy production, P+, which in
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Figure 3.7. Velocity field, averaged over the x-axis, viewed
in a (y,z)-plane. The solid contours denote u ≥ 0, and dashed
contours denote u < 0. The contour increment is 0.05. The v
and w velocities are superimposed as vectors. For clarity every
second point in the y-direction has been omitted, T = 2020.
Note that the scales are not the same in y and z direction

Couette flow should be 0.25, (Komminaho et al. 1996). Their correlation curve
is comparable to the 16π × 2π simulation by Bech & Andersson (1994).

In Komminaho et al. (1996) we used three different sizes of the computa-
tional domain, to investigate the influence of the size of the domain on the
flow field. As can be seen in figure 3.6 there is a large influence on the large
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Figure 3.8. The urms/uτ values for the different box sizes
as a function of y: 28π× 2× 8π (−−), 10π× 2× 4π (−−), and
8 × 2 × 4 (· · · ), (◦) experiments by Bech et al. (1995)

structures, which is reflected in the correlation curve. In a narrow box one can
get an artificial enhancement of the large structures, because of the periodic
boundary condition. In the smallest box there was room for one pair of the
structures and they became very strong. In the largest box there was room
for about six pairs of the vortical structures. It is evident that the correla-
tions are overestimated in the smaller boxes. In the largest box the correlation
curve agrees well with the experimentally measured correlation by Tillmark
from Bech et al. (1995) and it was concluded that the length was sufficient to
contain the largest scales.

It is interesting to note that the second largest box, which is as large as in
the simulations of Bech reported in Bech et al. (1995), does show strong large
structures, whereas Bech report only weak structures, see also Andersson et al.
(1998) where they discuss these large structures.

The structures, which fill the gap between the planes, are not stationary
neither in time nor space. This is apparent from figure 3.7 which shows an
instantaneous velocity field in a y-z-plane averaged in the streamwise direction.
A rather strong pair of eddies can be seen at A, whereas at B the eddies
are weaker. This indicates that the structures may meander in space and be
intermittent in time. It was also observed that when the integral length scale,
Λuux, was large the x-averaged field showed stronger eddies than when the
integral length scale was smaller.

The velocity statistics (Komminaho et al. 1996) are affected by the com-
putational domain. In figure 3.8 the urms-value, averaged in x and z direction
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Figure 3.9. The two-point correlation for the streamwise ve-
locity and different rotation rates at y = 0: Ω = 0 (−−) and
Ω = −0.005 (−−): (a) for streamwise separation, (b) for span-
wise separation.

as well as in time, is shown for three different sizes of the computational do-
main. The smallest box shows considerably higher values than the other two,
indicating that this box is totally inadequate for obtaining accurate quantita-
tive data. It is evident that the smallest box gives this artificially high value of
urms because of the very strong large structures caused by the strong (resonant)
coupling.

The difference between the simulations in the two larger boxes is much
smaller, and the values for the largest box compare well with the values obtained
from measurements by Tillmark, for the near-wall points. Further out there
is a considerable difference in the turbulence intensities, at least partly due to
the difference in Reynolds number.

The structures were found to be very sensitive to system rotation. We
applied a weak spanwise rotation with a sign so as to stabilise the flow. In con-
trast to channel flow, both sides in Couette flow are stabilised, or destabilised
if the sign of the rotation is switched.

For a rotation rate of Ω = −0.005 the correlation showed a drastic re-
duction, and the integral length scale dropped from 6.1h to 2.0h. Larger
rotation rates, Ω = −0.03, eventually caused a relaminarization of the flow.
This relaminarization with high enough rotation rate has also been studied by
Tillmark & Alfredsson (1996). They also found that for a Reynolds number of
750 the flow relaminarizes for a rotation rate of −0.03.

3.2.2. Turbulent statistics and Reynolds stress budgets

The maximum streamwise velocity fluctuation is urms,max = 2.76 for the non-
rotating case, a value which is slightly higher than what found in the survey by
Mochizuki & Nieuwstadt (1996), where they report a value of 2.71 for a wide
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Case Reδ∗ u+rms/y
+ v+rms/y

+2 w+
rms/y

+ −〈uv〉+/y+3 ε+

ZPG 539 0.385 0.0112 0.232 0.00099 0.203
ZPG 920 0.398 0.0119 0.252 0.00102 0.223
Couette 0.414 0.0135 0.268 0.00121 0.246

Table 3.2. Limiting values for y+ → 0. Boundary layer data
from Skote et al. (1998). Couette data from paper 1.

range of Reynolds numbers, for both boundary layer flows as well as pressure-
driven channel and pipe flow. The boundary layer experiments by Österlund
(1999) show an increasing urms,max with Reynolds number, with an estimated
limiting value of at least 2.9.

The peak in the streamwise velocity fluctuation is at y+ = 14.1, a location
which is well reproduced in both boundary layer flows as well as pressure-
driven channel and pipe flow. In Mochizuki & Nieuwstadt (1996) they found
the location to be about y+ = 15 for all these flow cases, possibly with a very
weak Reynolds number effect. The experiments by Österlund (1999) also show
a maximum at about y+ = 15.

An interesting quantity is the limiting value of urms/uτ at the wall. In sim-
ulations of channel and boundary layer flows one has found that it increases
with increasing Reynolds number. The Couette flow should represent an ap-
proximation of the high Reynolds number limit for the near-wall region, since it
has a perfectly constant total shear stress. It is interesting to note in table 3.2
that the Couette value is indeed higher than the boundary layer DNS results.
Also, the value of 0.41 agrees closely with the recent high-Reynolds number re-
sults of Österlund (1999) for measurements in zero-pressure-gradient turbulent
boundary layers. Österlund (1999) obtained about 0.41 for a Reθ = 10000 and
estimated an asymptotic value of about 0.43 for high Re.

The transport equations for the Reynolds stress tensor are obtained by
multiplying (3.1a) (after subtracting the mean equation 3.3) with uj , adding
the corresponding equation with switched indices i, j and ensemble averaging.
The resulting equations read

DRij

Dt
≡
(
∂

∂t
+ Uj

∂

∂xj

)
Rij = Pij − εij + Πij +Gij +Dij + Tij + Cij (3.8)

where

Pij ≡ −uiuk
∂Uj

∂xk
− ujuk

∂Ui

∂xk
, (3.9a)

εij ≡ 2νui,kuj,k, (3.9b)

Dij ≡ ∂

∂xk
(νRij,k) , (3.9c)
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ette and zero pressure gradient boundary layer case. The dif-
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(—) T11, and the ZPG are marked with (+).

Πij ≡ 1
ρ

(
p
∂ui

∂xj
+ p

∂uj

∂xi

)
, (3.9d)

Gij ≡ − ∂

∂xk

(
1
ρ
ujpδik +

1
ρ
uipδjk

)
, (3.9e)

Tij ≡ − ∂

∂xk
uiujuk (3.9f)

Cij ≡ −2Ωk (Rijεikl +Rilεjkl) . (3.9g)

Here Pij is the production due to mean field gradients, whose trace (Pii) rep-
resents twice the production of turbulent energy, the transfer of energy from
the mean flow to the turbulent fluctuations.

εij is the dissipation rate tensor, and Dij is the diffusion tensor. They
both represent viscous effects, but whereas Dij is a molecular diffusion term
acting to even out the turbulent stresses by spatial redistribution, εij acts as a
destruction term of turbulent energy (and stresses).

Πij is the pressure-strain rate correlation tensor, which is traceless and
represents inter-component transfer between Reynolds stress terms. Gij is the
divergence of the pressure-velocity correlation, and represents transport driven
by pressure fluctuations.

Tij is the divergence of the triple correlation tensor, acting as a spatial
redistribution term. Cij is the traceless Coriolis tensor, which acts as a redis-
tributive term among the stress components.

The different terms in R11 budget are shown in figure 3.10 for both Couette
flow and zero pressure-gradient (ZPG) boundary layer flow. It is evident that
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the different terms are very similar in both cases. The only differences exist
near the wall.

In the near-wall region there is a balance between dissipation and diffusion.
The limiting values of the dissipation rate anisotropies, eij = εij/ε− 2

3δij (along
with the stress anisotropies aij = Rij/K − 2

3δij) were calculated in paper 2
and compared with the predictions obtained by the algebraic dissipation rate
anisotropy models of Hallbäck et al. (1990) and Sjögren & Johansson (2000).
The agreement is quite satisfactory for both models in the Couette case, while
the Hallbäck et al. model is in better agreement with DNS data for the ZPG
boundary layer.

The Sjögren & Johansson model gives eij = aij as limiting value in the
two-component limit, such as on a solid wall. This describes the situation very
accurately in the Couette case.
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CHAPTER 4

Flows in cylindrical geometries

Turbulence in pipe flow was studied already by Reynolds (1883). Later experi-
ments of fully developed turbulent pipe flow include, among many others, those
by Laufer (1954); Towens et al. (1972); Lawn (1971); Perry & Abell (1975).
More recent experiments include those by Reich & Beer (1989); Westerweel et al.
(1992); Fontaine & Deutch (1995); Schwartz-van Manen & Nieuwstadt (1996);
den Toonder & Nieuwstadt (1997); Zagarola & Smits (1998).

Experiments on annular pipe flow are scarce. One with a moving inner
wall is the experiment by Shands et al. (1980). Another is that of Nouri et al.
(1993) where they study Newtonian and non-Newtoninan fluids in annular pipe
flow.

The Taylor–Couette flow case has attracted many researchers. There are
many articles on that subject, see e.g. Chossat & Iooss (1994) and references
therein for a wealth of information. As examples of experimental studies see
Andereck et al. (1986) for pure Taylor–Couette flow, and Takeuchi & Jankowski
(1981) for Taylor–Couette flow with a pressure gradient in the axial direction.
The latter case was also studied by Leuptow et al. (1992) and Wereley & Leuptow
(1999).

There are today a few reported studies of turbulent pipe flow using numeri-
cal simulations. The early work concerned stability and transition. Fully devel-
oped laminar pipe flow shares with Couette flow the property that it is linearly
stable over all Reynolds numbers, Salwen & Grosch (1972); Garg & Rouleau
(1972).

This seemingly simple flow configuration hides two difficulties when solving
Navier–Stokes equations in cylindrical coordinates. The first is purely mathe-
matical and is related to the treatment of the coordinate singularity at the axis
r = 0. The second comes from the numerical treatment of the time derivatives,
and is related to the fact that when using cylindrical coordinates the azimuthal
grid resolution is proportional to the radial distance from the centreline. Of
these two difficulties, the former is most important. The only consequence of
not taking the latter into consideration is a decrease in the size of the time-step.
One possibility to remedy the time step problem is to filter the solution near
the origin (Umsheid & Sankar-Rao 1971) and thereby reducing the resolution.

Another approach is taken by Akselvoll & Moin (1995). They decompose
the computational domain into two regions. Within each region the derivatives
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Figure 4.1. Velocity vectors in an r–ϕ–plane, with the
streamwise velocity as contours, showing the (1, 1) eigenmode
for pipe flow, at Re = 2000.

in one direction, radial for the outer, and azimuthal for the inner region, is
treated implicitly, thereby avoiding the time-step problem.

When excluding the origin from the computational domain, i.e. in annular
pipe or Taylor–Couette flow the time-step problem is less of a concern.

Shapiro et al. (1999) recently investigated linear and nonlinear stability of
annular pipe flow. The linear stability analysis was performed with Chebyshev
collocation method. The nonlinear analysis was made with the same code
used by Eggels et al. (1994), adapted to the annular domain. They obtained
good agreement between the linear theory and their DNS simulation of the
growth of the eigenfunctions with small initial amplitude. However, some of
the eigenvalues in their eigenvalue map seem to be erroneous, see further section
5.2 in paper 5 where we present eigenvalue maps for the same case.

Moser et al. (1983) developed and implemented an algorithm for solving
Navier–Stokes equations in a cylindrical geometry, i.e. for Taylor–Couette flow
as well as curved channel flow. It is a spectral algorithm, based on Fourier
transforms in axial and azimuthal directions and Chebyshev polynomials in the
radial direction. The algorithm was evaluated for plane channel and Taylor–
Couette flow with both axisymmetric and wavy vortices, with good agree-
ment with theoretical and experimental results. This code was further used in
Moser & Moin (1987) in a study of curved channel flow.

4.1. Verification of pipe and annular pipe flow code

Initially the convergence of the Chebyshev expansion in the radial direction
was studied, with good results, by solving Laplace equation on a circular disc
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Figure 4.2. Velocity vectors in an r–ϕ–plane, with the
streamwise velocity as contours, showing the (1, 1) eigenmode
for annular pipe flow at Re = 10000, with δ = 0.3.

. We used two different boundary conditions, one with a discontinous second
derivative and one smooth function, and obtained the expected convergence
with increasing number of modes.

A much more demanding test is to study the evolution of developing eigen-
modes. Especially three-dimensional eigenmodes with flow through the origin
was studied to verify that the code could correctly handle flow through the
origin.

The verification of the pipe flow code was done by studying the evolution of
eigenmodes, the Orr–Sommerfeld–Squire modes. The solver for the eigenmodes
was graciously provided by Peter Schmid at University of Washington, and
has been used in a study of pipe flow and growth of optimal disturbances by
Schmid & Henningson (1993).

The streamwise base flow is of the formW = W (r). Following Schmid & Henningson
the eigenvalue problem can be written in radial velocity, radial vorticity form
as:

(−iω + iβW )TΦ − iβ

r

(
W ′

k2r

)′
Φ =

1
Re

T (k2r2T )Φ +
2α2β
Re

TΩ (4.1)

k2r2(−iω + iβW )Ω +
iW ′

r
Φ =

1
Re

SΩ +
2β
Re

TΦ (4.2)
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where

k2 =
α2

r2
+ β2 (4.3)

T =
1
r2

− 1
r

d
dr

(
1
k2r

d
dr

)
(4.4)

S =k4r2 − 1
r

d
dr

(
k2r3

d
dr

)
(4.5)

Φ ≡− irû (4.6)

Ω ≡βrv̂ − αŵ

αk2r2
. (4.7)

The velocities can now easily be calculated from the eigenmodes corresponding
to the eigenvalue

û =
iΦ
r

(4.8)

v̂ = − α

k2r2
∂Φ
∂r

+ αβrΩ (4.9)

ŵ = − β

k2r

∂Φ
∂r

− α2Ω. (4.10)

In figures 4.1 and 4.2 we show the eigenmodes used in the verification of
the pipe and annular pipe flow codes. The eigenvalues in the pipe flow case was
(cr, ci) = (0.4064055,−0.06988367) and the Reynolds number based on radius
and centre line velocity 2000. For the annular pipe flow case the eigenvalue
was (cr, ci) = (0.23794, 0.0017622), and the Reynolds number based on half
the gap with between the cylinders and the centre line velocity was 10000.
The evolution in time was studied and excellent agreement with linear theory
was obtained. The time advancement scheme was also verified to be of second
order.

4.2. Future work

There are some remaining issues with the algorithm, for the case of pipe flow.
When including the origin in the computational domain one has to be careful
with the behaviour of the velocities when approaching the origin, i.e. when
r → 0. There are some constraints that the velocities have to obey to get a
regular, well behaved velocity field near the origin.

Implementing these constraints for the velocities near the origin remains
to be done. One complication is that the expansion is from r = −1 to r = 1,
and we can not impose any boundary conditions at r = 0.

This is not an issue in the annular pipe flow case, since the origin is excluded
from the computational domain.
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Hallbäck, M., Groth, J. & Johansson, A. V. 1990 An algebraic model for non-
isotropic turbulent dissipation rate term in Reynolds stress closures. Phys. Flu-
ids A 2 (10), 1859–1866.
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Very large structures in plane turbulent
Couette flow

By Jukka Komminaho, Anders Lundbladh
and

Arne V. Johansson

Royal Institute of Technology, Dept of Mechanics, Stockholm, Sweden
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A direct numerical simulation was carried out of plane turbulent Couette
flow at a Reynolds number of 750, based on half the velocity difference between
the walls and half the channel width. Particular attention was paid to choos-
ing a computational box that is large enough to accommodate even the largest
scales of the turbulence. In the central region of the channel very large elon-
gated structures were observed, in accordance with earlier findings. The study
is focused on the properties of these structures, but is also aimed at obtaining
accurate turbulence statistics. Terms in the energy budget were evaluated and
discussed. Also, the limiting values of various quantities were determined and
their relevance in high Reynolds number flows discussed. The large structures
were shown to be very sensitive to an imposed system rotation. They could be
essentially eliminated with a stabilizing system rotation (around the spanwise
axis) small enough for only a minor damping of the rest of the scales. Despite
the fact that the large structures dominate the appearance of the flow field
their energy content was shown to be relatively small, on the order of 10% of
the total turbulent kinetic energy.

Jukka Komminaho
Due to copyright restrictions, the following article has been deleted.  See Journal of Fluid Mechanics, vol. 320, pp. 259–285 for the original article.
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Reynolds stress budgets in Couette and
boundary layer flows

By Jukka Komminaho and Martin Skote

Dept. of Mechanics, KTH, SE-100 44, Stockholm, Sweden

Reynolds stress budgets for both Couette and boundary layer flows are eval-
uated and presented. Data are taken from direct numerical simulations of
rotating and non-rotating plane turbulent Couette flow and turbulent bound-
ary layer with and without adverse pressure gradient. Comparison of the total
shear stress for the two flows suggests that the Couette case may be regarded
as the high Reynolds number limit for the boundary layer flow close to the wall.
The direction of rotation is chosen so that it has a stabilizing effect, whereas
the adverse pressure gradient is destabilizing. The pressure strain-rate tensor
is in the Couette flow case presented for a split into slow, rapid and Stokes
terms.

1. Introduction

The development of cheap, powerful, computers has lead to wide use of CFD
codes for the prediction of turbulent flows. These codes almost always use
turbulence models to try to capture the characteristics of the turbulent flow,
and the prediction is no better than the weakest link in computational chain.
Often the weakest link is the turbulence model. But to develop better turbu-
lence models one must have data to compare them against. In the early days
of turbulence modelling one had to rely on indirect methods to test the various
closure models. Experimental difficulties in measuring pressure and velocity
with sufficient resolution did not make direct comparisons possible.

With the development of high-speed supercomputers, and new algorithms,
Orszag (1969, 1970); Kreiss & Oliger (1972); Basdevant (1983), it became pos-
sible to simulate turbulent flows directly without resorting to large eddy simu-
lations or turbulence models. Now it became possible to evaluate any desirable
quantity and use them to test turbulence models. The channel flow simulation
by Kim et al. (1987) was the first fully resolved simulation of a pressure-driven
channel flow, and the database from the simulation has been used extensively
to evaluate various turbulence models, Mansour et al. (1988).

There are few experimental studies of Couette flow with reports of turbu-
lence statistics. In the study of Couette flow at a Reynolds number of 1300,
Bech et al. (1995), report both second and higher order statistics from both
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experiments and simulations. The agreement between the experiments and the
simulation is good for the statistics, but their simulations do not fully capture
the very large scale structures of the experiments. This is e.g. seen from the
two-point correlations which are lower in the simulation than in the experiment.
In Bech & Andersson (1994) they used three different sizes of computatinal do-
main and observed large structures in one box, but not in the other two. The
reason behind this is unclear.

In Bech (1995) they present Reynolds stress budgets from the simulation
in Bech et al. (1995), and they look very similar to the ones presented here,
despite the higher Reynolds number in their simulation.

In the present paper the budget data for the Reynolds stresses in the Cou-
ette flow case are evaluated from the flow fields of the plane Couette flow
simulation by Komminaho et al. (1996).

Data are also presented from three different turbulent boundary layers.
One is a zero pressure gradient (ZPG) boundary layer, and two are boundary
layers subject to an adverse pressure gradient (APG). Data from the ZPG
boundary layer have not previously been presented. The simulation with a
moderate APG (APG1) has been analyzed in Skote et al. (1998), while the
strong APG case (APG2) has been presented in Skote & Henningson (2000).

The ZPG turbulent boundary layer flow has been studied in a large number
of investigations, see e.g. the assessment of data by Fernholz & Finley (1996).
Turbulent statistics close to the wall were obtained through DNS by Spalart
(1988), and were confirmed later in the experiment of a low Reynolds number
ZPG turbulent boundary layer by Ching et al. (1995). Various Reynolds stress
budgets from DNS of both ZPG and APG boundary layers were presented by
Na & Moin (1996). Near-wall limit values of an APG boundary layer were also
investigated in the DNS of Spalart & Watmuff (1993) and in the experiment of
Nagano et al. (1992).

The results from the simulations of Komminaho et al. (1996), Skote et al.
(1998) and Skote & Henningson (2000) are documented here for future use
in turbulence model development, in particular for near-wall modelling. The
present plane Couette flow data are well suited for this purpose since the con-
dition of a constant total shear is, unlike the situation in the boundary layer,
fulfilled for all Reynolds numbers. The boundary layer data can be used for
the development of low Reynolds number turbulence models.

2. Data analysis

One can write the Navier–Stokes and continuity equations in a rotating refer-
ence frame as,

∂u′i
∂t

+
∂

∂xj
(u′iu

′
j) = −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

+ 2εijku
′
jΩk (1a)

∂u′i
∂xi

= 0. (1b)
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The effect of the system rotation can be seen as a volume force in the fluid,
also known as the Coriolis force and the centrifugal force. The Coriolis force
is the last term in the momentum equation, and the centrifugal force has been
included in the pressure.

Divide the flow into a mean and a fluctuating part, u′ = U + u, where the
mean part is defined as an ensemble average over N different times, and also
an average over the homogeneous directions (x and z in the Couette flow and
z in the boundary layer)

u′ ≡ U(y, t) =
1

NLxLz

N∑
i=1

∫ Lx

0

∫ Lz

0

u′(x, y, z, t)dxdz. (2)

The Reynolds equation for the mean flow is now obtained as

∂Ui

∂t
+

∂

∂xj
(UiUj) = −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
− ∂

∂xj
Rij + εijkUjΩk (3)

where Rij = uiuj is the velocity correlation tensor, and will here be referred
to as the ’Reynolds stress tensor’.

2.1. Couette data

Plane Couette flow is the flow between two parallel planes, moving in opposite
directions with velocity ±Uw in the x-direction, at a distance 2h. The wall-
normal direction is denoted y. The system rotation Ω applied in the present
work is around the z axis.

The various statistical quantities have been evaluated and averaged from
12 different velocity fields, and the average was taken in both x and z direction.
The time between the samples was T = 40, and they are statistically indepen-
dent for all but the very largest scales, see Komminaho et al. (1996) where the
time scale for the integral length scale (Λuux defined as

∫
Ruu(∆x)dx, Ruu

being the two-point velocity correlation) was found to be more than 50.

2.2. Boundary layer data

The statistics have been produced in the same manner as in the Couette case,
except for the important difference that the flow is not homogeneous in the
streamwise (x) direction. The boundary layer is growing and developing in the
x−direction due to the increasing Reynolds number. Thus, the statistics are
unique for each streamwise position. However, here we are only dealing with
the near-wall statistics, which in the viscous scaling should be invariant under
the Reynolds number. But in the low Reynolds number flows simulated with
DNS, there is a small influence of the increasing Reynolds number. This effect
is confined to the part very close to the wall (y+ < 3). In the ZPG simulation
e.g., the boundary layer undergoes a doubling of the Reynolds number, but the
budgets fall on top of each other for different streamwise positions, except for
the small increase of the values at the wall. The statistics are therefore shown
for one streamwise position in all three cases.
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Figure 1. Total shear stress. Couette (· · · ). Boundary layer:
(- -) Reδ∗ = 539, (—) Reδ∗ = 920.

The simulations APG1 and APG2 were performed with a pressure distri-
bution leading to a self-similar boundary layer at high Reynolds numbers. The
pressure gradient parameter β,

β ≡ δ∗
τw

dP
dx

, (4)

defines the APG in these two simulations.
The Reynolds number at the position where the budgets have been evalu-

ated is shown in table 1, together with the local value of the friction velocity,
freestream velocity and pressure gradient parameter.

Case Reδ∗ ReΘ uτ U β

ZPG 920 606 0.048 1.0 0.0
APG1 1064 655 0.036 0.76 0.65
APG2 2573 1309 0.020 0.60 5.0

Table 1. Reynolds number, friction velocity, freestream ve-
locity and pressure gradient at the streamwise position where
the Reynolds stress budgets have been evaluated.

Another effect of the Reynolds number is the increasing length of the region
with constant shear stress (τ+). This is illustrated in figure 1, which shows
the total shear stress at two Reynolds numbers for the ZPG case, as well as
for Couette flow. From figure 1 it is clear that the total shear stress for the
boundary layer becomes more constant when the Reynolds number is increased.
Since τ+ is constant for the Couette flow, it might be argued that this flow
approximates a high Reynolds number boundary layer close to the wall.
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2.3. Reynolds stress budget

The transport equations for the Reynolds stress tensor are obtained by multi-
plying (1a) (after subtracting the mean equation 3) with uj , adding the cor-
responding equation with switched indices i, j and ensemble averaging. The
resulting equations read

DRij

Dt
≡
(
∂

∂t
+ Uj

∂

∂xj

)
Rij = Pij − εij + Πij +Gij +Dij + Tij + Cij (5)

where

Pij ≡ −uiuk
∂Uj

∂xk
− ujuk

∂Ui

∂xk
, (6a)

εij ≡ 2νui,kuj,k, (6b)

Dij ≡ ∂

∂xk
(νRij,k) , (6c)

Πij ≡ 1
ρ

(
p
∂ui

∂xj
+ p

∂uj

∂xi

)
, (6d)

Gij ≡ − ∂

∂xk

(
1
ρ
ujpδik +

1
ρ
uipδjk

)
, (6e)

Tij ≡ − ∂

∂xk
uiujuk, (6f)

Cij ≡ −2Ωk (Rijεikl +Rilεjkl) . (6g)

Here Pij is the production due to mean field gradients, whose trace (Pii) rep-
resents twice the production of turbulent energy, the transfer of energy from
the mean flow to the turbulent fluctuations.

εij is the dissipation rate tensor, and Dij is the diffusion tensor. They
both represent viscous effects, but whereas Dij is a molecular diffusion term
acting to even out the turbulent stresses by spatial redistribution, εij act as a
destruction term of turbulent energy (and stresses).

Πij is the pressure-strain rate correlation tensor, which is traceless and
represents inter-component transfer between Reynolds stress terms. Gij is the
divergence of the pressure-velocity correlation, and represents transport driven
by pressure fluctuations. This split in the above two terms is not unique, there
are several different ways in which one may separate the pressure-velocity term
when deriving the RST equations, but as the investigation in Groth (1991)
shows the above separation seems to make most physical sense.

Tij is the divergence of the triple correlation tensor, acting as a spatial
redistribution term.

Cij is the traceless Coriolis tensor, which acts as a redistributive term
among the stress components.
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The transport equation for the kinetic energy, K ≡ 1
2Pii is

DK
Dt

= P − ε+ D (7)

where P = 1
2Pii is the turbulent energy production, ε = 1

2εii is the viscous dis-
sipation, and D = 1

2 (Tii +Gii +Dii) is the sum of the molecular and turbulent
diffusion of K. This term acts as a spatial redistribution of K.

In a fully developed plane Couette flow, the flow is homogeneous in the
x and z directions, and the relevant non-zero stresses are R11, R12, R22 and
R33. Figures 2–8 show the terms in the budget of these stresses, as func-
tions of the wall-normal distance y+ = yuτ/ν, where uτ =

√
τw/ρ is the

friction velocity. Note that in the non-rotating case the Coriolis term, Cij , is
zero. All quantities are shown in +-units, non-dimensionalized with u4τ/ν. The
simulation flow fields represent a plane Couette flow at a Reynolds number
Reτ = uτh/ν = 52 (Reτ = 48 for the rotating case) based on friction veloc-
ity uτ and channel half-height h. This corresponds to a Reynolds number 750
based on wall-velocity and h. Despite this very low Reynolds number it is twice
that of the transition Reynolds number of 360, Lundbladh & Johansson (1991);
Tillmark & Alfredsson (1992); Komminaho et al. (1997). For the rotating case
the rotation is as low as Ω = −0.005, corresponding to a Rossby number of
200.

The budgets for the Reynolds stresses in the ZPG case are essentially the
same as in Spalart (1988). The moderate APG case, APG1, show very similar
profiles in the Reynolds stress budgets as the APG simulation of Na & Moin
(1996). The effects of the APG will be stronger in the APG2 case, which has
a skin friction approximately 60 % of that in APG1. In this work, in contrast
to the budgets in Spalart (1988) and Na & Moin (1996), the pressure term
is divided into pressure-strain and pressure-velocity diffusion, for comparison
with the Couette data.

In figures 2 to 9 the budgets for the Reynolds stresses are shown. The
figures include both non-rotating and rotating Couette flwo as well as all three
boundary layer cases and the profiles from the ZPG case can be compared with
the Couette case with zero rotation.

2.3.1. Longitudal Reynolds stress

One may note that the maximum of the production term P11 is 0.5. This
is easily obtained by integrating the stream-wise momentum equation once,
and multiplying with dU+

dy+ . The advection term is zero in the Couette flow
case negligible in the near-wall region for boundary layers. By neglecting the
advection term and assuming wall similarity, we obtain the following relation
for the turbulence production:

P11 ≡ −2
uv

u2τ

dU+

dy+
= 2

dU+

dy+

(
1 − dU+

dy+
+

ν

ρu3τ

dP
dx

y+
)
, (8)
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Figure 2. Terms in the Couette flow R11-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (· · · ) P11, (- -) −ε11, (- · -)D11, (- · · -) Π11,
(—) T11, (+) C11.

where the pressure gradient term is non-zero only in the adverse pressure gra-
dient (APG) cases. The last term within the paranthesis can be rewritten
as βy+/δ+∗ . From the above relation it follows that the maximum of P11 is
0.5 occurring at a position where dU+/dy+ = 0.5 for Couette flow and ZPG
boundary layer. This holds irrespective of the value of the Reynolds number
and the system rotation and was shown to accurately describe also the low-
Reynolds number plane Couette flow simulation of Komminaho et al. (1997)
where the Reynolds number was as low as 375.

The overall character of the different terms in the Reynolds stress budget
for Rij is the same as for the channel flow in Mansour et al. (1988). Figure 2
shows that the production term P11 is the dominant positive term in the range
y+ > 5, and has a maximum of 0.5 in the buffer region, at y+ = 11, falling
to 0.10 in the centre of the channel. The location of the peak production can
be found to be y+ ≈ 11 also in channel and pipe flow, Sahay & Sreenivasan
(1999). The non-zero production in the central region is a consequence of the
non-zero mean shear in this region.

Π11 is negative throughout the channel, thereby transferring energy from
R11 to R22 and R33.
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Figure 3. Terms in the R11-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(· · · ) P11, (- -) −ε11, (- · -) D11, (- · · -) Π11, (—) T11.

Despite the very low rotation rate for the Couette flow case the effects on
some terms in the budgets are significant, away from the wall. The production
P11 is about 60% larger in the centre of the channel for the rotating case.
The dissipation ε11 and the pressure-strain-rate Π11 are both 30% larger for
the rotating case, whereas the redistributive term T11 is about 20% smaller.
Near the walls the non-rotating and rotating cases are very similar, as can be
expected since the maximum production is 0.5 in both cases.

In figure 3a the budget for the longitudal Reynolds stress is shown for the
ZPG case. The maximum of the production term P11 is 0.5 as in the Couette
case. The other terms in the budget for R11 corresponds very closely to those in
the Couette case. The adverse pressure gradient increases the production P11
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Figure 4. Terms in the Couette flow R22-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (- -) −ε22, (- · -) D22, (- · · -) Π22,
(- - · ·) G22, (—) T22, (+) C22.

as seen in figures 3b and c. For APG1 it is 0.6 and APG2 0.9. The increase of
the maximum is not explained by the contribution from the streamwise velocity
gradient since that part of the production term is negligible close to the wall.

The increased value of P11 is thus explained from the contribution from
the pressure gradient in equation (8). For the case APG2 we have a δ+∗ of 86 so
that the last term within the paranthesis in equation (8) βy+/δ+∗ is about 0.58
at y+ = 10, i.e. near the maximum in production. It can, hence, be seen to be
of the order one influence. Since βy+/δ+∗ = βy+ U∞

uτ
/Reδ∗ we can see that the

effect of the pressure gradient term decreases with increasing Reynolds number.
The position of the maximum is shifted towards the wall, most notably in

the APG2 case (figure 3c).
Also the rest of terms show more extreme values in the APG cases, even

though the shape of the profiles remain roughly the same. The enhanced values
in the near-wall region are partly due to the decrease in the friction velocity
(which all the terms in the budget are scaled with). The lower value of uτ is a
consequence of the adverse pressure gradient. One might argue that uτ is not
the correct scaling in an APG flow, since the total shear stress is not constant
in this scaling. Alternative scalings, including a velocity scale dependent on
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Figure 5. Terms in the R22-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(- -) −ε22, (- · -) D22, (- · · -) Π22, (- - · ·) G22, (—) T22.

the wall normal distance that produce a constant shear stress, are discussed in
Skote & Henningson (1999) and Skote & Henningson (2000).

2.3.2. Normal Reynolds stress

In figure 4 the budget for R22 in the Couette flow case is shown. Π22 is negative
close to the wall, and positive towards the centre. Thus it transfers energy from
the wall-normal components to the horizontal components near the wall. This
reversal of the sign was attributed to the splatting effect in the LES study
of turbulent channel flow by Moin & Kim (1982) (see also Hunt & Graham
1978). In the turbulence modelling context this effect is normally referred
to as the wall-reflection contribution to the pressure strain. The attempts to
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Figure 6. Terms in the Couette flow R33-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (- -) −ε33, (- · -) D33, (- · · -) Π33, (—) T33,
(+) C33.

model this (see Gibson & Launder 1978) typically assumes a variation on a
length-scale of the order of the macro-scale. The present results and those of
Aronson et al. (1997) and Perot & Moin (1995) however show that the effect
is confined to a thin region near the wall. In some recent model development
(see e.g. Sjögren & Johansson 2000) this effect is only indirectly accounted for
through realizable models.

The same trend regarding the dissipation and the pressure-strain rate can
also be seen in figures 4 and 6 for R22 and R33 budgets.

In figure 5a the budget for R22 in the ZPG case is shown. All the terms
show slightly lower values than in the Couette case, while the shapes of the
profiles are similar. As the pressure gradient increases, all the terms become
larger, as seen from figures 5b and c. A peak in the pressure-strain term has
developed in the APG2 case at the position y+ = 8, and exceeds the maximum
value of the pressure diffusion. The formation of a peak is not observed in the
ZPG and APG1 cases, where a plateau is developed in the pressure-strain, and
the value is lower than the pressure-velocity gradient.
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Figure 7. Terms in the R33-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(- -) −ε33, (- · -) D33, (- · · -) Π33, (—) T33.

2.3.3. Spanwise Reynolds stress

In the ZPG budget for the spanwise Reynolds stress, shown in figure 7a, the
values of the different terms are, as in the R22 budget, lower than in the Couette
flow. The shapes of the profiles are similar to those in the Couette case. The
pressure gradient enhances the values, but nothing else seems to be affected
in the APG1 case. In APG2 however, the turbulent transport is of the same
magnitude as the pressure-strain.
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Figure 8. Terms in the Couette flow R12-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (· · · ) P12, (- -) −ε12, (- · -)D12, (- · · -) Π12,
(- - · ·) G12, (—) T12, (+) C12.

2.3.4. Reynolds shear stress

The budget for the Reynolds shear stress in Couette flow is presented in figure
8. The pressure strain (Π12) and pressure diffusion (G12) balance each other
at the wall. This is also the case in Mansour et al. (1988). The value of Π12

at the wall in Couette flow is more than twice the value found in the channel
flow simulation Mansour et al., and also for ZPG flow it is higher.

The budget for the Reynolds shear stress in boundary layer flow is presented
in figure 9. The profiles are approximately the same as in the Couette case,
except for the pressure-strain and pressure diffusion at the wall which shows
larger values in the Couette case. The outer (y+ > 5) values are however the
same in the two flows.

The outer peak (at y+ = 6) of the pressure-strain equals the value at the
wall in ZPG and APG2 cases. In the weaker APG boundary layer, APG1, the
outer peak has a lower value than at the wall.

2.4. Near-wall behavior

There is a balance between dissipation and viscous diffusion on the wall. From
the data in figures 2–6 we may also compute the dissipation rate anisotropies,
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Figure 9. Terms in the R12-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(· · · ) P12, (- -) −ε12, (- · -) D12, (- · · -) Π12, (- - · ·) G12,
(—) T12.

eij = εij/ε− 2
3δij . The limiting values of these (along with the stress anisotro-

pies aij = Rij/K− 2
3δij) are given in table 2 and compared with the predictions

obtained by the algebraic dissipation rate anisotropy models of Hallbäck et al.
(1990) and Sjögren & Johansson (2000). The agreement is quite satisfactory
for both models in the Couette case, while the Hallbäck et al. model is in better
agreement with DNS data for the ZPG boundary layer. In the Hallbäck et al.
model eij is given by

eij =
[
1 + α(

1
2
IIa − 2

3
)
]
aij − α(aikakj − 1

3
IIaδij), α =

3
4
, (9)
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component 1,1 2,2 3,3

aij 0.72 − 2
3 −0.05

eij 0.73 − 2
3 −0.06

(eij)Hallbäck 0.67 − 2
3 0.00

(eij)Sjögren 0.72 − 2
3 −0.05

Table 2. Couette data: Limiting values for the stress
anisotropies aij and dissipation rate anisotropies eij , and com-
parison with models.

component 1,1 2,2 3,3

aij 0.76 − 2
3 −0.09

eij 0.45 − 2
3 −0.38

(eij)Hallbäck 0.49 − 2
3 0.16

(eij)Sjögren 0.76 − 2
3 −0.09

Table 3. Boundary layer data: Limiting values for the stress
anisotropies aij and dissipation rate anisotropies eij , and com-
parison with models.

whereas in the Sjögren & Johansson model we have

eij = (1 − 1
2
F )aij , F = 1 − 9

8
(IIa − IIIa). (10)

In the above expressions we have introduced the two nonzero invariants of the
anisotropy tensor,

IIa = aijaji, (11)

IIIa = aijajkaki. (12)

The latter model gives eij = aij as limiting value in the two-component limit,
such as on a solid wall. This describes the situation very accurately in the
Couette case. One may note that for this extremely low Reynolds number the
dissipation rate is highly anisotropic also at the centreline.

Some important limiting values at the wall are given in table 4 and 5. The
dependence of the Reynolds number in the boundary layer is strong as seen in
table 4. All the values increase for higher Reynolds number, but they do not
reach the values of the Couette flow. Hence, one might argue that the Couette
data constitute a high Reynolds number limit for the boundary layer.

The effect of the APG on the boundary layer is quite severe as seen from
table 5. All limit values are increased when the boundary layer is subject to an
APG. The rotation in the Couette case has the opposite effect; all limit values
decreases.
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Case Reδ∗ u+rms/y
+ v+rms/y

+2 w+
rms/y

+ −〈uv〉+/y+3 ε+

ZPG 539 0.385 0.0112 0.232 0.00099 0.203
ZPG 920 0.398 0.0119 0.252 0.00102 0.223
Couette 0.414 0.0135 0.268 0.00121 0.246

Table 4. Limit values for y+ → 0

Case u+rms/y
+ v+rms/y

+2 w+
rms/y

+ −〈uv〉+/y+3 ε+

APG1 β = 0.65 0.476 0.0177 0.344 0.00181 0.346
APG2 β = 5.0 0.728 0.0470 0.764 0.00598 1.35

Couette Ω = −0.005 0.387 0.0124 0.243 0.00093 0.238
Table 5. Limit values for y+ → 0

2.5. Anisotropy tensor

The Reynolds stress anisotropy tensor aij has, as already mentioned above,
two nonzero invariants, IIa and IIIa. All anisotropic states can be represented
in the anisotropy invariant map (Lumley & Newman 1977) which are bounded
by the lines 8/9 + IIIa = IIa and 6III2a = II3a. They represent two-component
and axisymmetric turbulence, respectively.

In figure 10a the AIM paths for both the non-rotating and rotating Couette
cases are shown. Their main characteristics are the same as for the channel
flow simulations of Moser et al. (1999). Close to the wall the turbulence is
very near the two-component limit, approaching the one-component limit near
the edge of the viscous sublayer. At y+ ≈ 8 the AIM path turns towards the
isotropic state. For the present cases the Reτ is so low that there is nearly no
real log-layer in the profiles with corresponding agglomeration of points in the
AIM, as observed in the higher-Re channel flow simulations.

The AIM paths for the boundary layer flows are shown in figure 10b. The
ZPG case is very similar to the Couette flow. There is some agglomeration of
points at the end of the path which is y+ ≈ 150 (for ZPG). The path for APG1
starts at a lower value of IIIa and represents a lower degree of anisotropy
than in the ZPG case. The end of the APG1-path is at y+ ≈ 100. The
differences between ZPG and APG1 are not so large in comparison with the
APG2 case, where the path starts in the lower left corner and represents much
lower degrees of anisotropy than in the other cases. This is explained by the less
structured turbulence in a strong APG boundary layer. The path for APG3
was terminated at y+ ≈ 50, and is similar to the anisotropy states from a
backward-facing step, see Le & Moin (1992).
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Figure 10. The anisotropy invariant map. a) AIM paths for
the nonrotating (+) and rotating (·) case. b) AIM paths for
ZPG (+) ; APG1 (·); APG2 (�).

2.6. Pressure-strain rate split

The results from a split of the pressure-strain rate is here presented for the
Couette flow. The result from taking the divergence of the Navier–Stokes
equation is a Poisson equation for the pressure,

∂2p

∂xi∂xi
= − ∂

∂xi

∂

∂xj
(u′iu

′
j) − 2εijkΩs

j

∂u′k
∂xi

(13)

with the wall boundary condition,

∂p

∂y
=

1
Re

∂2v′

∂y2
− 2UΩs. (14)

By splitting the source term in the Poisson equation into one part con-
taining the mean velocity gradient and one part containing only gradients of
the fluctuating part, we may derive equations for the rapid, slow and Stokes



“main”
2000/11/15
page 94

✐

✐

✐

✐

✐

✐

✐

✐

94 J. Komminaho & M. Skote

0 10 20 30 40 50

−0.1

−0.05

0

0.05

0.1(a)

0 10 20 30 40 50

−0.1

−0.05

0

0.05

0.1(b)

Figure 11. The Π11-split for (a) the non-rotating case and
(b) the rotating case, Ω = −0.005. The different terms are:
(+) Π(tot)

11 , (�) Π(s)
11 , (✷) Π(r)

11 , (�) Π(St)
11 .

0 10 20 30 40 50

−0.06

−0.04

−0.02

0

0.02

0.04

0.06(a)

0 10 20 30 40 50

−0.06

−0.04

−0.02

0

0.02

0.04

0.06(b)

Figure 12. The Π22-split for (a) the non-rotating case and
(b) the rotating case, Ω = −0.005. The different terms are:
(+) Π(tot)

22 , (�) Π(s)
22 , (✷) Π(r)

22 , (�) Π(St)
22 .

pressure, respectively.

∇2p(r) = −2
(
∂Ui

∂xk
+ εijkΩs

j

)
∂uk

∂xi
,

∂p

∂y
= 0 (15)

∇2p(s) = − ∂ui

∂xj

∂uj

∂xi
,

∂p

∂y
= 0 (16)

∇2p(St) = 0,
∂p

∂y
=

1
Re

∂2v

∂y2
− 2UΩs. (17)

The Stokes pressure is solely due to the inhomogeneous boundary condition,
and may be added to either the rapid or the slow pressure. Note that the last
term in the boundary condition for the Stokes pressure is non-zero only for
a moving wall, e.g. Couette flow. Restricting ourself to the present case of a
channel with two homogeneous directions the rapid part simplifies further,

∇2p(r) = −2
dU
dy

∂v

∂x
− 2Ωsω3. (18)
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Figure 13. The Π33-split for (a) the non-rotating case and
(b) the rotating case, Ω = −0.005. The different terms are:
(+) Π(tot)

33 , (�) Π(s)
33 , (✷) Π(r)

33 , (�) Π(St)
33 .
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Figure 14. The Π12-split for (a) the non-rotating case and
(b) the rotating case, Ω = −0.005. The different terms are:
(+) Π(tot)

12 , (�) Π(s)
12 , (✷) Π(r)

12 , (�) Π(St)
12 .

The split into rapid, slow and Stokes pressure strain-rate can be seen in
figure 11–14 for Π11–Π12. The slow part of Π11 is larger than the rapid except
near the wall, y+ < 10, where the mean velocity gradient is large. The rapid
part is more affected by the rotation than the slow part.

Also for the Π22-term the slow part is larger than the rapid part, and
contribute most to the pressure strain-rate. Here the slow part is more affected
by the rotation.

For the Π33-terms the rapid part contributes most, except for y+ < 10,
and is also most affected by the rotation.

The Stokes part for Π22, Π33 and Π12 is significant only in the region
y+ < 10, and for Π11 it is negligible throughout the channel.

The general character and amplitude of the various pressure strain rate
terms are almost identical even for Re = 375, despite the low Reynolds number.

3. Summary

We have used the Couette flow simulation data of Komminaho et al. (1996) and
the boundary layer data of Skote et al. (1998); Skote & Henningson (2000) to
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compute terms in the transport equation for the Reynolds stresses. For the
Couette flow we have also presented data for a split of the pressure strain rate
term in rapid, slow and Stokes. Data was presented for both rotating (slow
stabilizing rotation) and non-rotating Couette flow. One can see a small effect
of the rotation on the limiting values at the wall in the Couette flow, but it is
small as could be expected, since it is a very slow rotation. In the centre of the
channel the budgets were strongly influenced by the rotation.

Boundary layer data were presented for one zero pressure gradient flow and
two adverse pressure gradient flows. Strong influence on the budgets from the
adverse pressure gradient were detected. The near-wall limits of turbulence
statistics were shown to increase with Reynolds number in the zero pressure
gradient boundary layer, but they did not reach the values obtained from the
Couette flow.
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study of relaminarization
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By numerical simulation of relaminarization we have determined the transition
Reynolds number of plane Couette flow in a manner that complements ear-
lier studies. The approach adopted here was to start with a fully developed
turbulent state and then decrease the Reynolds number until the turbulence
vanished. We used a computational domain of two different sizes, and found
that it must be very large in order to avoid artificial effects of the periodic
boundary condition. It was hereby possible to establish, in accordance with
recent transition studies, that the transitional Reynolds number in plane Cou-
ette flow is between 350 and 375, based on half the velocity difference and half
the distance between the two surfaces.

1. Introduction

Plane Couette flow (PCF) represents one of the fundamental, canonical flow
situations. It is linearly stable (see Drazin & Reid (1981)) for all Reynolds
numbers, but from experiments we know that plane Couette flow becomes
turbulent for sufficiently high Reynolds numbers. The transition from lami-
nar flow to turbulence is thus subcritical. With this type of transition there
exists both laminar and turbulent regions in the flow simultaneously, as the
experiments in PCF by Tillmark & Alfredsson (1992, 1994) shows. Further
investigations of turbulent spots in PCF that has recently been performed
in numerical and physical experiments by Lundbladh & Johansson (1991) and
Daviaud et al. (1992). All these investigations reveal that there is a transitional
Reynolds number above which self-sustained turbulent spots can exist.

In the experiments by Tillmark & Alfredsson (1992, 1994) they used an
apparatus with two moving walls, two running belts. They used two different
approaches to disturb the flow, in their study. By introducing a large air bubble
at the bottom of the channel they created a disturbance that developed to a
turbulent spot for Reynolds numbers larger than 360. The other approach was
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to start with a turbulent flow and gradually decrease Re until all turbulence
vanishes. Also this approach gave a transitional Re of 360.

In the numerical experiments by Lundbladh & Johansson (1991) they stud-
ied the development of localized disturbances introduced in laminar Couette
flow. They used several different Reynolds numbers and found that the distur-
bance died out forRe lower than 350, and forRe larger than 375 the disturbance
developed to a turbulent spot.

Also Daviaud et al. (1992) found a transitional Re of about 370 in their
experiment on PCF using a similar apparatus as Tillmark & Alfredsson.

In all the above investigations the authors have found a transitional Re
of about 360–370. Some results by Dauchot & Daviaud (1995a) are somewhat
contradictory to the above. Dauchot & Daviaud found that for very strong
disturbances they could trigger a growing turbulent spot at Re of about 330.
In the report by Dauchot & Daviaud (1995b) they found that by introducing a
wire in the core region of the flow they generated streamwise vorticities at low
Reynolds numbers (about 160). These streamwise vorticities vanished when
they removed the wire. With the wire in the flow they found a transitional
Reynolds number of about 340. This turbulent state did not die when they
removed the wire.

Also, some earlier experiments of transition to turbulence have been carried
out by Reichardt (1956) in an oil channel, and by Leutheusser & Chu (1971)
in an air flow between a stationary wall and a moving water surface. Reichardt
observed turbulence for Reynolds numbers above 750. Leutheusser and Chu
observed turbulence above 280. Their apparatus had a small spanwise aspect
ratio of about 12. This is rather small compared to the apparatus used by
Tillmark & Alfredsson (1992). They reported that the moving water was tur-
bulent and it is possible that roughness on the water surface may have an effect
in lowering the value of the transitional Reynolds number.

Hamilton et al. (1995) made numerical experiments in a study of minimal
channel Couette flow. They reduced the Reynolds number and the size of the
computational domain to barely sustain turbulence. Thereby they could ob-
serve the breakdown and regeneration of the near-wall turbulent structures.
This minimization of the computational domain will probably effect the tran-
sitional Reynolds number, since this minimal domain puts large constraints
on the turbulence. Hamilton et al. (1995) found that for sustained turbulence
they needed a Reynolds number of 400.

In the present study direct numerical simulation of the Navier–Stokes equa-
tions is used to study reverse transition, by successively lowering the Reynolds
number, by increasing the viscosity, in a manner similar to Hamilton et al.,
but with significantly larger channel. The lowest value for which turbulence
can be sustained determines the transitional Reynolds number in a manner
that complements and substantiates the results first obtained numerically by
Lundbladh & Johansson (1991) and experimentally by Tillmark & Alfredsson
(1992).
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Simulation Time Reynolds Number of
number spectral modes

A 0−200 400 85 × 33 × 85
B 200−340 400 170 × 49 × 170
C 340−760 375 170 × 49 × 170
D 760−1300 375 170 × 49 × 170
E 760−1300 350 170 × 49 × 170

Table 1. The various simulations. The computational do-
main measures 60 × 2 × 30 half channel heights.

2. Numerical method

The simulation code in the present study uses spectral methods to solve the
Navier-Stokes equations, with Fourier representation in the streamwise (x) and
spanwise (z) directions, and Chebyshev polynomials in the wall-normal (y) di-
rection. The non-linear terms are treated pseudo-spectrally using FFT’s, in
a manner similar to that of Kim et al. (1987). The program was originally
written in Fortran 77 to run on vector machines by Lundbladh et al. (1992),
but has later been ported to run on a massively parallel machine, the Thinking
Machines CM-200. In the present simulations aliasing errors from the evalua-
tion of the nonlinear term were removed by the 2/3-rule. The time stepping
scheme used is semi-implicit, with a third-order Runge–Kutta for the nonlinear
term and a second order Crank–Nicolson for the linear term. The time step
was dynamically kept at 90 % of the theoretical CFL limit. Periodic boundary
conditions are used in x and z directions, and the no slip condition at the walls.

The initial field was chosen to be the sum of the laminar solution for Cou-
ette flow and random noise. The initially unphysical velocity field was allowed
to relax to a turbulent state, and when the flow reached a statistically steady
state the resolution was increased. The largest simulation used 170× 49× 170
spectral modes, or 256 × 49 × 256 physical grid points.

2.1. Computational domain and resolution

We used two different sizes of the computational domain. The larger computa-
tional domain was 60× 2× 30, measured in half channel heights, in x, y, and z
directions, respectively, and the smaller was 30×2×15. As we will see later the
smaller box is probably too small to make a reliable investigation of the transi-
tional Reynolds number. As a comparison the dimensions of the experimental
apparatus in the study of Tillmark & Alfredsson (1992) was 300 × 2 × 70 half
channel heights.

The periodic boundary conditions in the streamwise and spanwise direction
are only justified, for this case where we want to approximate the turbulent
state between infinitely large plates, if the two-point velocity correlation van-
ishes for the largest separations allowed by the computational domain. In the
study of Hamilton et al. (1995) they used the periodic boundary condition in a
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minimal channel at a low Reynolds number to obtain a less complex turbulent
flow.

Because of the periodicity and the symmetry of the Ruu function the largest
separation is half the box-length. The two-point correlation for the streamwise
velocity is given by

Ruu(x) =
u(x′)u(x′ + x)

u(x′)2

where only a streamwise separation x is considered, and an overbar denotes
averaging over the x–z plane in question, as well as over a period of time,
T. If this correlation is significantly non-zero for half box-length separation,
the largest eddies will be affected. For a more thorough discussion of the
effects of a small box on the two-point correlation and turbulence statistics, see
Komminaho et al. (1996).

The grid spacing is the same in both simulations. In wall units, the spacing
in the streamwise and spanwise directions are, ∆x+ ≈ 10, and ∆z+ ≈ 5. In the
wall normal direction the mean spacing is, ∆y+mean ≈ 1.1. This is somewhat
better than the well resolved simulation by Kim, Moin & Moser Kim et al.
(1987). Note, that we use the convention that grid spacing is measured as xl

nx
,

where xl is the length and nx the number of spectral modes in one direction.
The resolution of the computation can be assessed by examining the one-

dimensional velocity spectra. The spectra depicted in figure 1 show no evidence
of energy pile-up at high wave numbers. The energy shows a decay of about 7
decades for the streamwise velocity. This altogether indicates that the resolu-
tion is adequate.

3. Results

The Reynolds number was initially 400 and the resolution 85 × 33 × 85 spec-
tral modes. When the flow had reached a turbulent state, the resolution was
increased to 170× 49× 170 spectral modes. The integration in time proceeded
(tuw/h) 140 time units before the Reynolds number was lowered to 375. At this
Reynolds number the flow remains turbulent, and the simulation of the flow
continued to T = 760 before the Reynolds number was further lowered to 350.
At this Reynolds number the turbulence disappeared within 400 time units, as
illustrated in figure 2(a) where the mean shear rate at the wall (Sw = dU

dy |wall)
is shown as a function of time. In a large enough computational domain the
mean shear rate should be constant for a constant Reynolds number. Because
of the coexistence of relaminarized and turbulent regions the mean shear rate
is not constant over time, even in the larger domain. Here the value varies
between 1.7 and 2.1, or about 20 % for a Reynolds number of 375.

For comparison the laminar value of Sw = 1 is shown in the figure 2. The
value for the turbulent flow approaches the laminar value monotonically after
the change of Reynolds number from 375 to 350. Four hundred time units later
the two curves join and the flow has relaminarized completely.
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Figure 1. The one-dimensional velocity spectra for (a)
streamwise velocity u, (b) wall-normal velocity v and (c) span-
wise velocity w, at T = 1300 and Re = 375. The solid line
is in the streamwise direction, dashed line is the wall-normal
direction and the chain-dashed line is the spanwise direction.
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Figure 2. Mean shear rate, in the large box, at the wall (Sw)
versus time, for the turbulent flow (solid) and for a laminar
flow (dashed). (a) shows relaminarization at Re = 350, and
(b) shows sustained turbulence at Re = 375. Sw is taken from
the simulations A, B, C, and E, respectively A, B, C and D.
As described in table 1.

The relaminarization process is illustrated in figure 3(a)–(j). The vis-
cous damping/dissipation rapidly kills the small scales. We are left at large
times with longitudinal streaks, as we could expect because of the low damp-
ing for Orr–Sommerfeld modes with low streamwise wave-number. Locally we
may also observe a dramatic, almost explosive, instability of the longitudinal
streaks resulting in new small scale turbulence. This instability of the streaks
is essentially identical to that observed in the study of bypass transition from
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 3. The instantaneous streamwise velocity field in an
x–z plane at y = 0, and at different times. in the large box.
(a) T = 673.8, (b) T = 681.1, (c) T = 687.4, (d) T = 694.8,
(e) T = 700.9, (f) T = 758.7, (g) T =829.2, (h) T = 913.3,
(i) T = 1075.1, and (j) T = 1259.9. In (a)–(e) the Reynolds
number is 375 and in (f)–(j) 350.

localized disturbances by Henningson et al. (1993), and by Kreiss et al. (1994).
It is also worth mentioning in this context that Johansson et al. (1991) observed
intense local turbulence production in channel flow turbulence in connection
with streaks that exhibited a development very similar to that seen here.

Also, we continued the simulation from T = 760 with a Reynolds number
of 375 to make sure that the flow remained turbulent at this Reynolds number.
The simulation proceeded for the same amount of time as the simulation with
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Figure 4. The two-point streamwise velocity correlation
(Ruu), in the large box, as a function of point separation ∆x.
The Reynolds number is 375 and the correlation curve is time
averaged from T = 500 to T = 1300

the lower Reynolds number, or to T = 1300 (see figure 2(b). In this figure the
curve is the same as in figure 2(a) until T = 760. The flow remained turbulent
for the time simulated. The fact that the flow relaminarized at Re = 350,
but not at 375 indicates that the transitional Reynolds number lies between
350 and 375, substantiating earlier investigations by Lundbladh & Johansson
(1991), and Tillmark & Alfredsson (1992).

The two-point velocity correlation Ruu(x) is shown in figure 4 for the sim-
ulation in the large domain. The remaining correlation at half the box-length
is sufficiently small for all turbulence statistics to be very well converged. For
instance, based on the observations made by Komminaho et al. the deviations
in urms-values from those of an infinite box can be judged to be less than 1 %.

The two-point velocity correlation for turbulent flow is one for zero separa-
tion and decreases with the separation, ultimately approaching zero as the sepa-
ration goes to infinity. The maximum separation allowed by the computational
domain is half the box length. The integral length scale Λ =

∫∞
0

Ruu(x)dx
should be finite for turbulent flow and is found to be about 8 half channel
heights in the present simulation for Reynolds number 375. Komminaho et al.
reported a value of 6.1 for Reynolds number 750.

The two-point correlation in the small domain was considerably higher
than in the large. At a separation of half the box length the two-point velocity
correlation Ruu(xl

2 = 15) is as high as 0.3 for the small domain at a Reynolds
number of 375. Note that this is considerably higher than the correct value at
a separation of 15 (cf fig 4). Note also that the box needed here to avoid such
effects is many times larger than that needed for a plane turbulent channel flow
(see Kim et al. 1987).
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4. Conclusions

By numerical simulation of relaminarization we have determined the transition
Reynolds number of plane Couette flow to be between 350 and 375 in good
agreement with earlier results obtained by other means, (Lundbladh & Johansson
1991; Tillmark & Alfredsson 1992; Daviaud et al. 1992). The approach adopted
here was to start with a fully developed turbulent state and then decrease the
Reynolds number until the turbulence vanished. We decreased Re by increas-
ing the viscosity, instead of decreasing the wall velocity. We thereby avoided
the problem of the ’rolls’ that would be created at the walls if the wall velocity
is momentarily changed, Tillmark & Alfredsson (1994).

We made simulations in computational domains of two different sizes, viz.
60× 2× 30, and 30× 2 × 15 half channel heights. It was shown that the small
box simulation suffers from substantial artificial effects of the periodic boundary
condition, on the largest scales, giving a high value of the two-point velocity
correlation at a separation of half the box-length. In the larger box this problem
is minimal with a correlation at half box-length of 0.005–0.01. At Reynolds
numbers just above the transitional one viscous damping of small scales is
strong and regeneration of turbulence is seen to be coupled to an instability of
the long streak structures. This instability is ’explosive’ in character.

The observations of the turbulence regeneration process in these simula-
tions are quite similar to those of Hamilton et al. (1995). It may also be noted
that the streak instability is quite similar in character to the process involved in
bypass scenarios and bears resemblance to the turbulence production processes
associated with wall streaks in general.
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Numerical simulation of the Navier–Stokes
equations on massively parallel computers

By Jukka Komminaho

Royal Institute of Technology, Dept of Mechanics, Stockholm, Sweden

TRITA-MEK, Technical Report 1995:13

The efficient use of a parallel computer for the solution of the incompress-
ible Navier–Stokes equation in the channel flow geometry is reported. The
method used Fourier transforms in the two horizontal directions and a Cheby-
shev transform in the wall normal direction. The time stepping scheme is an ex-
plicit low storage third order Runge–Kutta or a second order Adam–Bashforth
for the non-linear term and the implicit second order Crank–Nicolson for the
linear term. Some issues concerning the performance of the code is discussed.
Implementation of the code, as well as the performance on the Connection Ma-
chine model 200 is described in detail. A maximum performance of the code,
on a CM200 with 16k processors, of about 600 Mflops in 64 bit arithmetics,
and about 1 Gflop in 32 bit arithmetic was obtained. Some preliminary results
from the implementation of the code on the SP2 from IBM is also discussed
in some detail. The process of setting up an initial velocity field and the post
processing of the simulation results is explained.

1. Introduction

Numerical simulations of turbulent fluid flow put heavy demands on the speed
and memory of the computers running the simulation, and the requirements
increase dramatically with the Reynolds number. The computational work in-
creases as the Reynolds number to the power of three, which makes simulations
of flows with high Reynolds numbers very time consuming.

In the last twenty years the computational capacity of the fastest available
machines, the supercomputers, has increased roughly three thousand times,
from the 100 Mflops of the one processor computer Cray-1 to the 280 Gflops
of the multi processor computer Intel Paragon XP/S MP (6768 processors)
Dongarra (1995). It is evident that this stunning development of computational
power has, by no means, come to an end. There will in the future be more and
more powerful computers available. The most powerful machines of today are
parallel computers with many processors (> 100) and we believe that this will
be the case also, at least in the near future.

In order to use the computational power of these machines one often has
to rewrite existing programs. In this report we will describe the rewriting of
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a direct numerical simulation program initially running efficiently on vector
computers such as Cray (Lundbladh et al. 1992), to run efficiently on parallel
computers. We wrote the code initially for the Connection Machine 200, from
Thinking Machines, and have recently started to investigate the possibility to
port it to the SP2, from IBM. The code allows direct numerical simulation of
turbulent flows in channel flow geometry, with or without moving walls and
with possibility to superimpose a system rotation.

2. A short history of parallel computers

In the beginning of the 17th century, in 1614, Napier introduced the logarithm,
Shurkin (1984). For the first time it became easy to do multiplication and
division. All one had to do was to add or subtract logarithms, and this was easy
done on instruments such as an abacus. In 1621 William Oughtred produced a
device with two flat pieces of wood fixed so that they could slide against each
other. On each piece there was a scale on which the numbers were arranged at a
distance from the end relative to their logarithm. It was the slide ruler. This is
an example of an analog computer. This also illustrates that people throughout
the history have sought for ways to increase the computing capability of their
minds.

The first to try to build a machine of a more general nature, i.e. one that
could be controlled by a program, was Charles Babbage in 1840’s, with his
Analytical Engine. The design of the Analytical Engine is very much alike the
computers of today. But, for several reasons, he never succeeded in completing
the work. The most prominent being his inability to stop redesigning and begin
manufacturing the machine.

In 1930 an engineer at MIT, Vannevar Bush, built an analog computer,
a differential analyzer. It was a collection of shafts, gears, and wires, and
measured movements and distances and performed computations with these
measurements. He built a larger machine in 1935 with improved design. This
machine weighed 100 tons and included 2000 vacuum tubes, several thousand
relays, 150 motors, and about 200 miles of wires. This machine worked well
and several duplicates of the machine were set up at different laboratories. But
these machines were still analog computers.

IBM built a digital computer, an electro-mechanical machine called Auto-
matic Sequence Controlled Calculator (ASCC), or Mark I, in 1944. It could
multiply two twenty-three digits number in four seconds, by todays standards
a very low speed. People realized that in order to press the performance to
higher levels one must use electronics instead.

2.1. The first electronic computers

In Moore School, Mauchly and Eckert built the first digital electronic com-
puter, ENIAC. It was finished in 1946, and consisted of over 17000 vacuum
tubes, weighed over 30 tons, and consumed 140 kilowatts. It could perform
a multiplication of two eight digit numbers in 2.6 milliseconds. Actually this
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was a highly parallel machine (Burkes & Burkes 1981). It had 25 independent
computing units (20 accumulators, 1 multiplier, 1 divider/square rooter, and
3 table lookup units). These units could each follow their own sequence of
operations and cooperate towards the solution of a single problem. The archi-
tecture of the ENIAC was not fixed as in most modern computers, but could be
rearranged for each problem by rewiring the connections between the different
units. The algorithm was hardwired into the computer. But the programmers
found the programming of the ENIAC in a parallel fashion difficult. In 1948
ENIAC was rewired to to work as a serial computer, to simplify the program-
ming (Burkes & Burkes 1981). The time was clearly not ripe for this parallel
architecture.

The first stored program machine was EDSAC. This machine had an archi-
tecture similar to many modern machines. This architecture is known as the
von Neumann architecture. It consists of a memory unit for storage of data
and instructions, a control unit, and an arithmetic unit. The path between
the memory and the arithmetic and control unit is often referred to as the von
Neumann bottleneck.

2.2. The development of high performance computers

Performance of a computer can be increased in essentially two ways, decrease
the clock period, or increase the amount of work done in each clock period, or
do work in parallel. Parallelism can be introduced in principally four different
ways (Hockney 1985):

• Pipelining, which is the explicit segmentation of an arithmetic unit
into different parts, each of which performs a sub-function on a pair of
operands. For example, if a floating point multiplication is subdivided
into five sections, each of which does one part of the multiplication, then
five pairs of operands can be in the pipeline at a given time. Thereby
increasing the performance fivefold, compared to an arithmetic units
which accepts only one pair of operands and computes the result before
accepting the next pair (Ortega 1989).

• Functional, providing several independent units for performing different
functions, logic, addition, division, or multiplication, and allowing these
to operate simultaneously on different data. Thereby increasing the
performance as many times as there are functional units.

• Arrays, providing an array of identical processing elements under com-
mon control, all performing the same operation simultaneously on dif-
ferent data (this is called SIMD, see section 6.1).

• Multiprocessing, providing several processors, each under the control
of their own instructions, operating on their own data (this is called
MIMD, see section 6.1).

These can be, and have been, combined in the design of a computer. For
instance, most modern high performing RISC processors are using the first two
of the above. They have both pipelining and several functional units. It is
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also possible to build SIMD or MIMD computers with these RISC processors,
thereby combining three of the above four features.

In the following sections we will call SIMD or MIMD computer paral-
lel computers, i.e. restricting the concept to machines with several processing
units. Pipelining of arithmetic operations and several functional units can be
thought of as parallelism within a single processing unit. The ENIAC was there-
fore not a parallel computer, but it was a computer with parallelism within the
processing unit.

The first computers aimed for government agency and scientific laboratory,
with their need of high performance number crunchers, came from Control Data
Corp., or CDC. IBM had actually attempted to build such a machine, a tube
operated machine called STRETCH, but the machine was a disaster, and IBM
took a $20 million loss, Shurkin (1984), when pulling the plug from the project.

The CDC6600 machine was the second machine that Seymore Cray built.
It became a big success, being 20 times faster than any computer in the world.
CDC 6600 was the first computer to employ functional parallelism. It was
first delivered in 1964. It had 10 separate functional units for multiplication,
division, long addition, shift, boolean, branch, and increment. It also had
10 independent peripheral processors, forming a link with slow input/output
devices. In 1968 the CDC6600 was replaced by the CDC7600. It was four
times faster because the clock cycle was reduced from 100 ns to 27.5 ns. The
10 serially organized functional units were replaced by 8 pipelined functional
units and one serial unit which could not be pipelined.

After the fiasco with the STRETCH, IBM announced a series of computers,
the 360, in 1964. but no machine was delivered until 1967. This computer, the
IBM 360/91, had a performance of about twice that of CDC6600. It had a
look-ahead facility, and separate execution units for floating-point and integer
address calculations each of which was pipelined.

2.2.1. Vector computers

In 1964, a computer named STAR 100 was conceived at CDC. It was to be a
processor for vectors, that would be pipelined and able to sustain performance
of 100 Mflops on long vectors. The actual design started in 1967, but the
computer was not delivered until 1973. The STAR 100 suffered from its old
technology, it had magnetic-core memory, whereas other computers in 1973
had semiconductor memory, and the clock was slow with an 80 ns period. It
did not become a success. It was, however, completely reengineered to use
semiconductor memory. This new machine, the CYBER 205, was released in
1980.

The CYBER 205 consists of a vector unit and a scalar unit. The vector
unit comprises up to four floating-point pipelines, each of which comprises five
separate pipelined functional units. The peak performance of the four pipe-
machine is 800 Mflops. The memory is divided into 8 sections, each section into
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8 memory stacks and each memory stack into 8 memory banks. This machine
works on vectors directly in the memory, not in special vector registers.

In 1983 the CDC founded a company, the ETA System Inc, and in 1986
they announced their machine ETA10. This machine has 8 processors with an
architecture similar to the CYBER 205 but three times faster. It also has up to
18 I/O units, and a shared memory. Each processor is architecturally similar
to a two-pipe CYBER 205. One ETA10-Q processor, with a clock period of
19 ns, has a peak performance of 210 Mflops. The company goal was a clock
period of 5 ns and a peak performance for one processor of 800 Mflops, and
this is almost met in the ETA10-G, with a clock period of 7 ns, and a peak
performance of 570 Mflops.

In 1976 the first CRAY-1 computer was announced. It contained 12 func-
tional units, all pipelined, a fast clock, 12.5 ns, and a 16-bank memory. The
novel feature was the eight vector registers, capable of holding 64 64-bit floating-
point numbers, and a set of machine instructions for manipulating and perform-
ing arithmetic on these vectors. It was the first pipelined vector computer to
become a commercial success. It had a peak performance of about 160 Mflops,
Dongarra (1995). In 1982 the CRAY X-MP was announced. It was a multipro-
cessor system of pipelined vector machines, with a shared memory (MIMD).
The model X-MP/48 has a peak performance of 840 Mflops.

IBM did not enter the vector computer market until 1985, when the mul-
tiprocessor IBM 3090 (a part of the System/370 series) was announced. It had
a scalar performance of about 5 Mflops and a vector performance about four
times higher. Each processor of the 3090 can support one vector unit, and the
maximum number of processors are six. The theoretical performance of the
latest model, the IBM 3090/600J VF, with 6 processors and a clock period of
14.5 ns, is 828 Mflops.

2.2.2. Parallel computers

The performance level achievable by pipelining operations is limited. One can
only subdivide an operation into a few number of subtasks. To achieve higher
performance one must either use a faster clock, use more functional units or
use several processors, performing work in parallel. The number of functional
units that can be used in parallel is also limited, mainly because it is difficult to
make programs that can use many units simultaneously in an efficient manner.
To reach the Tera-flop limit, one must most certainly build parallel machines.
Indeed, the most powerful supercomputers of today are also parallel machines.

When building a parallel computer one may either interconnect several
computers each of which is capable of independent of each other perform com-
putations (MIMD), or one may interconnect several simple processors, which
are in turn are controlled by a master controller (SIMD). The latter machines
are also called computer array. Example of the former is CRAY Y/MP (shared
memory MIMD), and SP2 (local memory MIMD), whereas the CM200 is an
example of the latter category.
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In the above section on vector computers we have already seen examples
of shared memory MIMD computers. We will here discuss a few other MIMD
computers, as well as SIMD. The first MIMD machine was the Burroughs D-
825, built in 1960, see the survey of multiprocessors by Enslow (1977). It was a
shared memory machine, with up to four processors, 16 memory modules, and
64 I/O devices. The connection between the processors and the I/O devices
was a crossbar switch matrix.

In the 60s a few other other multiprocessor machines were built, including
Burroughs B-5000 with two processors and CDC 6500, a dual CDC 6400s sys-
tem. In the 70s, though, the technology, and the integrated circuit had evolved
to a stage where it became possible to build more complex multiprocessors, in-
cluding computer arrays. The first machines were essentially research projects,
but later commercial versions of several of the machines were built. The first
idea for computers arrays appeared in a paper by Unger (1958). This machine
was a two dimensional array with interconnected neighbors, all controlled by a
single master controller. The idea of grid-connected computer was also pushed
in a paper by Slotnick et al. (1962).

An early example of MIMD computer was the Carnegie–Mellons C.mmp
which consisted of 16 DEC PDP-11 connected to 16 memory modules by a
16×16 crossbar switch. Along the same lines another computer was projected,
the S1. The complete design of the S1 would have consisted of 16 Cray-1 vector
computers connected to 16 memory banks by a full cross-bar switch.

The first technically successful array processor was the ILLIAC IV, built
by Burroughs. It consisted of 64 processors, arranged in a two-dimensional
grid. The clock period was 80 ns, and the peak performance about 100 Mflops.
Although it never reached the envisioned 1 Gflops for a machine with 256
processors, it still had a major influence on the development of algorithms for
parallel machines and computer languages, Hockney (1985).

Burroughs went on building parallel machines. After the ILLIAC, they
built PEPE (Parallel Element Processor Ensemble). PEPE consisted of loosely
coupled system of 288 processing elements. Each processing element (PE)
consisted of three different processors. The PEPE was designed to control a
ballistic missile defense system, and the three processors in one PE had different
task. One for input of radar signals, one for processing of data, and one for
output of control signals. The three different types of processors were controlled
by three master control units, and they in turn were controlled by a CDC7600.
Since each of the PEs was to follow its own target the need for communication
among the PEs was little. When necessary, the communication took place via
the memories of the control units. Deliveries began in 1976.

ICL DAP (Distributed Array Processor) consists of 4096 1-bit processors
arranged in a two-dimensional array (64 × 64). There is a single master con-
troller unit which processed a single instruction stream and broadcasts a single
command to all 4096 PEs. In addition to referencing its own memory each PE
can reference data stored in the memory of its immediate NEWS (North, East
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West and South) neighbors. Since the processors are 1-bit processors the speed
of the arithmetic is very dependent of the word length, and the performance
for 32-bit floating point multiply is about 16 Mflops.

The Delencor Heterogeneous Element Processor (HEP) is a computer that
offers the facility of programming with multiple instruction streams. A full
system consists of 16 Process Execution Modules (PEM) connected to 128
Data Memory Modules via a multi-stage packet switching network. Each PEM
may process up to 50 instruction streams. These streams share an 8-stage
instruction execution pipeline, and the execution of the streams are switched
every clock cycle. Only one instruction from every instruction stream can be
in the pipeline, so in order to reach the maximum performance the pipeline
must be full i.e. at least eight instruction streams must be initiated. The peak
performance of a full system is about 80 Mflops.

One computer with a more unusual network is the Erlangen General Pur-
pose Array (EGPA) (see Hockney (1985) survey of MIMD computers in 1985).
The nodes consists of AEG 80-60 minicomputers, and the interconnection net-
work is topologically in the form of a pyramid. The control C-computer, at the
top of the pyramid, controls four B-computers at the corner of its base. This
configuration with five computers was built in 1981, but the idea is expandable
to more levels.

Hypercubes as the interconnection network became popular after a paper
by Pease (1977). The first hypercube built was the Cosmic Cube, at Cal Tech.
They made a commercial derivate called Intel iPSC/1, (in 1985), which is a
SIMD computer with a maximum of 128 nodes. Each node consists of an 80286
plus an arithmetic coprocessor, 80287, and 512 kbytes of memory, and the host
computer is an Intel 310 minicomputer. The maximum peak performance of a
full system is 8 Mflops.

Another company, N-cube, marketed a machine called Ncube/10. This
machine could be expanded to a maximum of 1024 nodes, each node consisting
of a custom VLSI chip containing CPU, FPU and the necessary communication
channels. Each node also has 512 kbytes of memory, and the peak performance
of the machine is 100 Mflops. The host that controls the machine is based on
a 80286 processor.

The Connection Machine/2 is a machine with hypercube architecture, with
up to 4096 nodes. Each node consists of 16 single-bit processors connected in
a crossbar. Later models have an additional floating point unit per every 32
processor, see section 6.3 for more details.

3. More modern designs.

Experience has shown that the bottleneck in massively parallel computers is
the communication. One must add additional communication hardware to each
node in order to obtain a better balance between speed of calculation and com-
munication. There are several examples of modern designs where this issue is
addressed, examples are Meiko, which has an additional processor per node for
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Figure 1. An overwiev of the different computers described
in the text. SIMD machines are marked with bold italic. The
type of multistage network is given in parenthesis. A descrip-
tion of computers within brackets can be found in Hockney
(1985).

the communication, and Cray T3D, which has a direct memory access controller
(BLT) on each node that works independently of the processor. Many of the
modern parallel machines have fewer than 1000 processors, but the processors
in turn are in some cases the most powerful processors that exist today.

Meiko CS-2HA is a MIMD machine with a multi-stage packet switch, fat
tree network, in which the bandwidth between stages remains constant. The
maximum number of nodes is 256, where each node consists of a SPARC scalar
unit, a communication processor and two Fujitsu µVP vector units. This gives
a performance of 200 Mflops per node, with a 20 ns clock cycle, and 51 Gflops
for a full system.

Intel Paragon MP has three Intel i860 XP processors per node, one for the
communication, and two for computations, giving a performance per node of
250 Mflops. The interconnecting network is a two-dimensional mesh.

Hitachi SR2201 is a massively parallel computer, with up to 1024 processors
in a three-dimensional crossbar switch network, capable of 300 Gflops.

Cray T3D is a MIMD machine with a three dimensional torus network.
Each node consists of two processors (from DEC), one block transfer engine
(BLT) and a network interface. A full system consists of 2048 nodes, and has
a peak performance of about 300 Gflops.
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The CM500 is a more modern design than the model 200. CM500 has a
fat tree interconnecting network with a maximum of 2048 nodes. Each node
consists of a 40 MHz SuperSPARC microprocessor and four vector unit floating
point and integer arithmetic accelerators, for a total per node performance of
160 Mflops and a total performance for a full system of 330 Gflops

NEC SX-4 is a machine with very powerful nodes, each node is capable of
achieving a peak vector performance of 2 Gflops. Each node consists of a vector
unit with eight pipelines, and a scalar unit capable of issuing two instructions
per clock period. A full system comprises 512 nodes in a crossbar network and
have a peak performance of 1 Tflops.

Fujitsu VPP500 is also a parallel machine with very powerful processing
nodes, each node is in itself a supercomputer with a performance of 1.6 Gflops,
and since a total of 222 nodes can be interconnected in a crossbar network, the
full machine has a performance of 350 Gflops. Prior to VPP500 Fujitsu built
a computer for National Aerospace Laboratory in Japan. This computer, the
Numerical Wind Tunnel consists of 140 processors, each capable of 1.7 Gflops.
We may here mention the performance of 60–70 Gflops obtained for a CFD
code on the Numerical Wind Tunnel.

As we have seen, there are principally two design philosophies, either de-
sign a machine with many, not so powerful, processors, or a machine with few
but very powerful processors. The early parallel computers had a few pro-
cessing nodes, mainly because with the technology of that day one could not
build extensive networks requiring tens of thousands of logical gates. But when
the technology evolved it became possible to build more processors and more
elaborate networks, and with the VLSI technique it became possible in the
80s to build thousands of processors at low costs. But these massively parallel
computers with thousands of processors is very difficult to program efficiently,
a typical program reaches only 5–20% of peak performance. Compared to
the more conventional vector processors such as Cray X-MP, where it is not
unusual to get about 40–50% of peak performance, this utilization is rather
low. Also, the necessary system software (compilers etc) tend to become very
complicated for the massively parallel machines. This tends to delay the soft-
ware development and also sometimes makes them less user-friendly. To quote
Lincoln (1977)

The resource and development time requirements for essentially
simple software systems can exceed estimates by astronomical
amounts when a radically new architecture is at hand.

Therefore it seems that most of the modern designs tend to use a moderate
number (100–1000) of very powerful processors interconnected with a simple
network such as two- or three-dimensional mesh. A further advantage with
few processors is that the communication/calculation ratio is lower, thereby
decreasing the demand on the speed of the interconnecting network.
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4. The governing equations

The equations governing fluid flow is the Navier–Stokes equations. For an
incompressible fluid they can be written as:

∂u
∂t

+ (u · ∇)u = − 1
ρ
∇p+ ν∇2u in Ω (1)

∇ · u =0 in Ω (2)

u =0 at ∂Ω (3)

where boldface is used to denote a vector, and Ω is the domain of interest.
The boundary conditions for the velocity is u = 0 at solid stationary bound-
aries. These are the momentum and continuity equations. If we introduce
non-dimensional variables we can write the momentum equation as:

∂u
∂t

+ (u · ∇)u = − ∇p+
1
R
∇2u (4)

where R is the Reynolds number, R = ν/UL, U is a typical velocity scale,
L is a typical length scale and ν is the viscosity. If we introduce a rotating
coordinate system we can write the velocity in an inertial system as:

uI = uR + Ω × r

and the corresponding material derivative becomes:(
Du
Dt

)
I

=
(

Du
Dt

)
R

+ Ω × (Ω × r) + 2Ω × uR

where the second term on the right hand side is the centrifugal term and the
third term is the Coriolis term. Altogether, the non-dimensional momentum
equation in a rotating system can be written as (dropping the subscript R):

∂u
∂t

+ (u · ∇)u = −∇p− Ω × (Ω × r) − 2Ω × u +
1
R
∇2u. (5)

Since the centrifugal force acts as an extra pressure term we can include this
term in the pressure term and introduce a ’reduced’ pressure p′. Also, if we
rewrite the convective term as:

(u · ∇)u = ∇
(

1
2
u · u

)
+ (∇ × u) × u

we can write the Navier–Stokes equation as:
∂u
∂t

= − ∇p′ − ∇
(

1
2
u · u

)
+ u × (∇ × u + 2Ω) +

1
R
∇2u in Ω (6)

∇ · u =0 in Ω (7)

u =0 at ∂Ω. (8)

The unknowns in the above equation system are the velocities and the pressure.
But the treatment of the pressure is difficult, since, unlike the velocities, there
is no evolution equation for the pressure. Instead, it is determined by the
continuity equation. We will avoid this difficulty by rewriting the pressure-
velocity formulation into a velocity-vorticity formulation where the pressure



“main”
2000/11/15
page 123

✐

✐

✐

✐

✐

✐

✐

✐

Numerical simulation on parallel computers 123

does not appear explicitly. By taking the divergence of the momentum equation
(6) we obtain a Poisson equation for the pressure:

∇2p = ∇ · H −∇2

(
1
2
u · u

)
(9)

where H = −(∇ × u) × u − 2Ω × u. Applying the Laplace operator on the
momentum equation (6), and substituting the pressure with equation (8) and
using the continuity equation (7) one obtains an equation for the velocities
without the pressure:

∂∇2u
∂t

= ∇2H − ∇(∇ · H) +
1
R
∇4u. (10)

This equation can be split into a system of two equations:
∂φ

∂t
=hv +

1
R
∇2φ (11)

∇2u =φ (12)

where

hv =∇2H − ∇(∇ · H). (13)

An equation similar to the the one above can be obtained for the vorticity by
taking the curl of the momentum equation:

∂ω

∂t
=hω +

1
R
∇2ω (14)

where

hω =∇ × H. (15)

So far we have written the equations in general coordinates, but in the
numerical algorithm we use Cartesian coordinates. Therefore we will write
down the equations in Cartesian coordinates. Also, we can define the flow
studied to be channel flow, i.e. flow between two plates of infinite extent in the
x- and z-direction. The domain Ω = (−∞,∞) × (−1, 1)× (−∞,∞), and with
boundary ∂Ω = (y = ±1).

It is sufficient to calculate the normal velocity and the normal vorticity, be-
cause the other velocity components can be obtained from the incompressibility
constraint and the definition of the normal vorticity. The reason for choosing
to solve the equations for the normal velocity and vorticity is that continuity
is automatically satisfied and pressure is eliminated from the problem. The
equations to be solved are for the normal velocity:

∂φ

∂t
=hv +

1
R
∇2φ (16a)

∇2u =φ (16b)

v(±1) =
∂v

∂y
(±1) = 0 (16c)
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where

hv =
(
∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
(17)

and for the normal vorticity:
∂ω

∂t
=hω +

1
R
∇2ω (18a)

ω(±1) =0, (18b)

where

hω =
∂H1

∂z
− ∂H3

∂x
. (19)

5. Spatial and temporal discretization

The spatial discretization is a spectral collocation method with Fourier series
expansion in the homogeneous directions and Chebyshev series in the inhomo-
geneous y-direction. The use of Fourier series assumes periodicity which may
be justified provided that the length scales of the flow are substantially smaller
than the extent of the computational domain (Canuto et al. 1988). The com-
putational domain here is Ω = (−xL/2, xL/2) × (−1, 1) × (−zL/2, zL/2). The
collocation points in the x and z-direction are:

xl = lxL/Nx, l = −Nx/2, . . . , Nx/2 − 1 (20)

zm = mzL/Nz, m = −Nz/2, . . . , Nz/2 − 1 (21)

where Nx and Nz are the number of collocation points in the x and z-direction
respectively. The independent variables have discrete Fourier expansions of the
form:

u(x, y, z, t) =
Nx/2−1∑

l=−Nx/2

Nz/2−1∑
m=−Nz/2

ûl,m(y, t)eαlx+βmz (22)

where αl = 2πl/xL, and βm = 2πm/zL, and Nx −1 and Nz −1 are the number
of Fourier modes in each direction. The collocation points in the y-direction
are:

yn = cos
πn

Ny
, n = 0, 1, . . . , Ny. (23)

In the y-direction the velocity has the following discrete Chebyshev poly-
nomial representation:

ûl,m(y, t) =
Ny∑
n=0

ũl,m,n(t)Tn(y). (24)

The time discretization is chosen as a semi-implicit scheme. The linear
part of equation (16a) is discretized implicitly using the second order accurate
Crank–Nicolson scheme and the nonlinear (advective and rotation) terms ex-
plicitly by either the second order Adam–Bashforth or a low storage third order
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an/∆tn bn/∆tn

Euler 1 0
AB2 1 + ∆tn/2∆tn−1 −∆tn/2∆tn−1

RK3 8/15 0
3-stage 5/12 -17/60

3/4 -5/12
RK3 8/17 0
4-stage 17/60 -15/68

5/12 -17/60
3/4 -5/12

Table 1. Time-stepping coefficients.

three or four stage Runge–Kutta scheme. The C–N scheme is A-stable, i.e. it
is absolutely stable in the entire left-half plane, Strikwerda (1989). The time
discretization will take the following form (applied on equation 16a)

φn+1 = φn + anh
n
v + bnh

n−1
v +

(an + bn)
2R

(φn+1 + φn) (25)

where an and bn are dependent on the explicit scheme used. The different
coefficients are given in table 1. For a discussion on the stability properties of
the time stepping see Lundbladh et al. (1992).

If we now expand the dependent variables in equations (16a)–(18a) in
Fourier series and apply the above time stepping we obtain the following equa-
tions for the normal velocity and vorticity:(

1 − an + bn
2R

(D2 − k2)
)
φ̂n+1 =

(
1 +

an + bn
2R

(D2 − k2)
)
φ̂n +

anĥ
n
v + bnĥ

n−1
v (26)

(D2 − k2)v̂n+1 =φ̂n+1 (27)

v̂(±1) = Dv̂(±1) =0 (28)(
1 − an + bn

2R
(D2 − k2)

)
ω̂n+1 =

(
1 +

an + bn
2R

(D2 − k2)
)
ω̂n +

anĥ
n
ω + bnĥ

n−1
ω (29)

ω̂(±1) =0, (30)

where D denotes a derivative in the normal direction, and k2 = α2 + β2. This
can be written in a more compact form as

(D2 − λ2)φ̂n+1 =f̂n
v (31)

(D2 − k2)v̂n+1 =φ̂n+1 (32)

(D2 − λ2)ω̂n+1 =f̂n
ω (33)
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where

λ2 =k2 + 2R/(an + bn) (34)

f̂n
ψ =p̂n

ψ − 2Ran

an + bn
ĥn

ψ (35)

and

p̂n
ψ = −

[
D2 − λ2 +

4R
an + bn

]
ψ̂n − 2Rbn

an + bn
ĥn−1

ψ

= − f̂n−1
ψ − 4R

an + bn
ψ̂n − 2Rbn

an + bn
ĥn−1

ψ . (36)

The quantity p̂n
ψ denotes the partial right hand side of the equations, where ψ

denotes v or φ.
This gives us the normal velocity and vorticity. From these and the con-

tinuity equation we can find the remaining velocity and vorticity components.
One finds that

û =
i

k2
(αDv̂ − βω̂) (37)

ŵ =
i

k2
(αω̂ + βDv̂) (38)

for the velocities, and

χ̂ =
i

k2
(αDω̂ − βφ̂) (39)

ϑ̂ =
i

k2
(αφ̂ + βDω̂) (40)

for the vorticities. This gives the velocity and vorticity components for all
wave numbers except for wave number zero. This wave number needs special
treatment, see Lundbladh et al. (1992).

The remaining direction to be expressed in discretized form is the y-
direction. Using equation (24) to expand, for instance, the equation (31), and
furthermore using the orthogonality property of the Chebyshev polynomials,
we find the following relation between the coefficients

φ̃
(2)
j − λ2φ̃j = f̃j j = 0, . . . , Ny (41)

where φ̃(2)j denotes the second derivative. We will solve for the coefficients of
the Chebyshev series for the second derivative. One can relate the Chebyshev
coefficients of the derivatives to the coefficients of the function. Using this rela-
tion one can rewrite the equation (41) to yield a pentadiagonal equation system
with the two top rows filled by the boundary condition (Lundbladh et al. 1992;
Canuto et al. 1988). This equation system decouples into two three-diagonal
systems with the top row filled.

Thus, the solution of the wall normal velocity, v, in each time step, consist
of the following steps:
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1. Calculate the nonlinear term H , by inverse transformation of the veloc-
ity and vorticity components, find H in physical space from equation
Hi = εijkuj(ωk + 2Ωk), i = 1, 2, 3, and transform H back to spectral
space.

2. Calculate (D2 − λ2)φ̂n+1 = f̂n:
(a) Chebyshev transform Ĥi and calculate ĥv according to equation

(17).
(b) Calculate f̂ according to equation (35).
(c) Set up the matrix and solve the equation system for φ̂n+1.

3. Finally, calculate (D2 − k2)v̂n+1 = φ̂n+1:
(a) Set up the matrix and solve the equation system for v̂n+1.

In addition, the wall normal vorticity is found by a similar procedure. When
the normal velocity and vorticity is found it is easy to find the other velocity
and vorticity components from equations (37)–(40).

5.1. A remark on aliasing

The equations (31)–(33) are all in the Fourier space, where the non-linear
terms become convolution sums. These sums can be evaluated in an efficient
way by transforming the velocities and the vorticities to physical space, where
they become pointwise operations. This transformation is done with the fast
Fourier transform, FFT.

When evaluating the convolution sum by Fourier transforming to the phys-
ical space and then back to the spectral space one must be careful not to intro-
duce aliasing errors. We may illustrate the problem by introducing the above
described discrete transform on two variables

Uj =
N/2−1∑

k=−N/2

ûke
ikxj j = 0, 1, . . . , N − 1 (42)

Vj =
N/2−1∑

k=−N/2

v̂ke
ikxj j = 0, 1, . . . , N − 1 (43)

and define the pointwise operation in physical space

Wj =UjVj j = 0, 1, . . . , N − 1

and the inverse transform

Ŵk =
1
N

N−1∑
j=0

Wje
−ikxj k = −N

2
, . . . ,

N

2
− 1 (44)

where

xj =2πj/N. (45)
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Use the discrete transform orthogonality property to obtain

Ŵk =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n = ŵk +
∑

m+n=k±N

ûmv̂n. (46)

The second term on the right hand side is the aliasing error. In other
words, evaluating the convolution sum by Fourier transforming the variables
u and v to physical space, do a pointwise multiplication, and the transform
back to spectral space leads to an extra term not present when doing the con-
volution directly. To remove this extra term there are essentially two different
techniques, cf. Canuto et al. (1988). One is based on the fact that if one uses
M rather than N points in the discrete transform when evaluating the convo-
lution sum, and M > 3N

2 − 1, then the error in the convolution sum will be
zero.

There are also another technique for the dealiasing. This aliasing removal
is based on phase shifts. One transforms on a grid shifted by a factor ∆ in
physical space. If one evaluates the convolution sum twice, with one evaluation
on a grid shifted by half a grid cell (∆ = N/π), then the aliasing error will be
totally eliminated, Canuto et al. (1988). This at the cost of two evaluations of
the convolution sum. There is another method of greatly reducing the aliasing
error by using random phase shifts instead of the above N/π, and only evaluate
the convolution sum once. This will reduce the aliasing error to (∆t)2 times
the aliasing error. This was observed by Rogallo (1977), and is also described
in Canuto et al. (1988).

But it is not necessary to use dealiasing. If one wants to reduce the aliasing
error one could increase the resolution. According to Canuto et al. an aliased
calculation will yield as acceptable an answer as a dealiased one, if the resolution
is sufficient.

When comparing the number of flops required to obtain a certain error,
with and without dealiasing Lundbladh (1993) finds that for high resolutions
it may even be more efficient not to use dealiasing in x- and z-directions. On a
massively parallel computer, the truncation of 1/3 of the grid points can be done
in two ways: either just zeroing 1/3 of the matrix, which implies a performance
loss of 1/3 (the operations on the zero elements is never used), or reshaping the
matrix to a smaller one, which implies communication, and thereby a reduction
in performance. Thus, both these methods yields a performance loss. The
method described by Rogallo could be used as well, and without performance
loss, but because of the simplicity of the 2/3 dealiasing method we decided
to implement the 2/3 dealiasing method, rather than the method by Rogallo
(1977).
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6. Implementation of the numerical algorithm

6.1. Parallel computers in general

There are a number of things that differ from one parallel computer to an-
other, control of the processors, local or shared memory and the interconnec-
tion scheme. Flynn (1966) proposed a taxonomy based on instruction and data
stream. This yields the following four categories:

• SISD, or Single-Instruction-Single-Data defines a serial computer.
• MISD, a Multiple-Instruction-Single-Data would involve multiple pro-

cessors applying different instructions on a single datum, a hypothetical
possibility.

• SIMD, in a Single-Instruction-Multiple-Data all processors are under the
control of a master processor, and all the individual processors carry out
the same operation. There is a single instruction stream operating on
multiple data. An example of a SIMD type machine is the Connection
Machine 200.

• MIMD, in a Multiple-Instruction-Multiple-Data the individual proces-
sors run their own program. This allows for more flexible ways of pro-
gramming, but also introduces the problem of synchronization. In a
SIMD system this synchronization is carried out by the master proces-
sor, but in a MIMD system other mechanisms must be used to make
sure that the processors are working in the correct order with the cor-
rect data. Examples of MIMD type machines are the SP2 from IBM,
and the Power Challenge, from Silicon Graphics.

See also the survey of parallel computer architectures by Duncan (1988), where
the authors discuss not only the above taxonomy, but also other other impor-
tant aspects of parallel arcitectures.

Another important distinction in parallel computers is shared or local mem-
ory. In a shared memory system all processors have access to a common mem-
ory, whereas in a local memory system all processors have their own memory.
In shared memory systems all communication between individual processors
is through the memory. This gives potentially very rapid communication of
data between processors. But if more than one processor wants to access the
common memory simultaneously, one processor must wait until the memory is
free again, the access is delayed. This delay, which is called congestion time,
depends on the memory bandwidth. With this type of machines there is an
upper limit to how many processors the system can have. Usually the memory
bandwidth puts an upper limit of 16–32 processors. An example of a MIMD
with shared memory is Power Challenge from Silicon Graphics.

In local memory system each processor can address only its own memory.
The machines can be classified according to different programming models.
One is message-passing, where communication between processors take place
by sending messages between processors, in which data or code are transferred.
The communication is like package-switching, every processor in the system
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has an address, and routing information in a message guides it through the
network to its destination. This routing of messages is generally worked out
by the programmer as the program is written. This need for explicitly cod-
ing the communication into the program tends to complicate the use of these
machines, and some vendors have tried some to hide the communication from
the user. The effect is that the user essentially sees only one global memory as
in shared memory machines. This approach is sometimes called data parallel
programming model.

The advantage of this approach is that the user does not have to bother
with the details of communication and thus the programs tend to become less
complex. One disadvantage though is that the difficult task of coding high
performing programs on parallel machines may become even more difficult since
the user does not have explicit control over the communication.

How the individual processors communicate with each other is an another
important aspect. There are a number of interconnection schemes, but here we
will mention only two, the hypercube and the switching network.

The processors in an n-dimensional hypercube can be visualized as the 2n

vertices of the cube. Each processor is connected to its n adjacent vertices,
along the edges of the cube. The hypercube has a number of interesting the-
oretical properties, of which one is that it is well suited for implementing fast
Fourier transforms (see Leighton (1992)), by embedding a butterfly network
on the hyper cube. The communication pattern is well suited for the hyper
cube architecture. One drawback with the architecture is that the number of
connections to each processor grows logarithmically with the size of the net-
work, which can present some difficulties for large machines. One example on
a machine with a hypercube network is Connection Machine 200

In a switching network the processors are interconnected through a series
of switches, and the switches are connected in some network, a popular one
being the omega network.

6.2. Parallel work and speedup

The degree of parallelism of a numerical algorithm is the number of operations
that can be done in parallel. In the present problem this is typically very high.
Almost all of the operations in the algorithm lies in the various transforms
and in the three diagonal matrix solvers and they can all be done in parallel.
The number of transforms that can be done in parallel is n1n2 if the trans-
form is done in the n3 direction. Furthermore, there is a certain degree of
parallelism in each transform. For an N -dimensional transform performed on
an log2N -dimensional butterfly network with N processors, this parallelism is
equal to N , Leighton (1992). Thus, the transform takes only log2N steps, as
opposed to the transform on one processor which takes N log2N . The solv-
ing of the three diagonal matrices, one for each x-z point can also be done
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in parallel. The only operations that cannot be parallelized are some oper-
ations performed on wave number zero (the wave number zero needs special
treatment, see Lundbladh et al. (1992) for further details).

One can define the speedup of a parallel algorithm as

Sp =
execution time for a single processor
execution time using p processors

.

With this definition the speedup of the above transform would be N . But in
reality it is not that simple, the need for communicating the data across the
different processors adds time to the parallel algorithm. Also, the amount of
serial work as opposed to parallel work slows the algorithm down.

Taking the above effects into account, we can write the speedup as

Sp =
T1

(α+ (1 − α)/p)T1 + td

where T1 is the time for the algorithm on a single processor, α is the amount
of serial work, (1 − α) is the amount of parallel work with average parallelism
p, and td is the total time for communication. The total communication time
depends on the amount of data being transferred and on the bandwidth of
the network. It also depends on the latency, the time it takes for the network
and the processors to get ready to transmit data. A crude model for the total
communication time can then be written as

td = τn +m/bn

where τn is the latency, m the total number of bytes transferred and bn is the
network’s bandwidth.

We are now able to estimate the possible speedup of the present algorithm
on a parallel machine with p processing units. The total number of operations
that can be done with average parallelism p in each iteration of the algorithm is
approximately 110n1n2n3+9·2.5n1n2n3 ·log2(n1n3)+9·2.5n1n2n3 ·log2(n2−1).
The amount of serial work done on one single processing unit per iteration is
about 48n2.

As an example we can take the parallel machine to be the CM200 with 128
processing units (FPU’s). This machine has a network bandwidth bn of 700
Mbytes/s for simple communication patterns (circular shift, see Helin (1992)
for a discussion of communication and communication models for the CM200).
But the communication in the FFT’s are not as fast as this. Measurements
made by Johnsson et al. (1992) suggest that the performance of an entirely
local FFT on a CM200 with 2048 FPU’s is about 10 Gflops, or about half the
peak performance. But the speed of a distributed three dimensional FFT on
a 5123 array is merely 1.2 Gflops. The difference between the two operations
are the communication time. This can be estimated to be about 12 seconds for
the three dimensional FFT. The amount data transferred in an FFT is about
n3 log2 n. This gives a bandwidth of about 800 Mbytes/s for the CM200 with
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2048 FPU’s. If we repeat this calculation to obtain the bandwidth on a CM200
with 128 FPU’s we end up with a bandwidth bn of about 420 Mbyte/s.

The total amount of bytes being transferred in each iteration of the algo-
rithm is about m = 9 · 8 · n1n2n3 log2 n3 for 9 variables in double precision (8
bytes) with the n3-axis as the distributed axis.

The time for the algorithm on a single processing unit must also be esti-
mated in some manner. One simple estimate is to take the total number of
operations for one iteration and divide by 20 % of the peak performance of
one processing unit, and thereby obtain the time for one iteration on a single
processing unit. The figure 20 % is somewhat randomly chosen, but tests made
by Lundbladh et al. suggests that it is a typical performance value on work-
stations for the algorithm, it is also a typical value obtained on the CM200
when running Fortran code, see Helin (1992). But, since the used FFT’s has a
performance of about half the peak performance, when entirely local, we must
take that into account. The local three diagonal matrix solvers and the local
Chebyshev transform requires about 45 % of the total work and the FFT’s
about 55 %. This gives a value of T1 = 410 s/iteration for a problem with
dimensions 128 × 129 × 128 in the n1, n1 and n3 directions respectively. The
total communication time td = m(p− 1)/(p · bn) = 2.5 s/iteration if we ignore
latency. We can now proceed to calculate the speedup (neglecting the amount
of operations done serially), as

Sp =
410

(1/128) · 410 + 2.5
= 70.

As we shall see this estimated speedup has the right order of magnitude al-
though it’s not entirely correct.

6.3. Connection Machine model 200

The Connection Machine model 200, (in the following denoted by CM200), is a
SIMD (Single Instruction Multiple Data), (Connection machine technical manual
1991). It has implemented data parallelism. Objects in data parallel languages
are represented by high level data types such as the array object of Fortran 90.
Parallel data, that is, arrays, are allocated to processing elements (PE). Since
many data sets are larger than the number of PEs available, the system uses a
virtual processing mechanism, whereby each physical processor simulates some
number of virtual processors. The ratio between physical and virtual proces-
sors is called the virtual processor ratio. The virtual processor concept makes
the size of the physical machine transparent to the programmer.

6.3.1. The physical processor and FPU

The basic unit of the CM200 is an integrated circuit consisting of 16 small
processors and a routing device for communication. The 16 processors and
the router are etched on a single chip, which are arranged in pairs. Each pair
shares a group of memory chips with 4 Mbit memory and a optional floating-
point unit, see figure 2. There are 2048 pairs of such chips in a fully configured
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Figure 2. The processor chip

CM200, making a total of 65536 processing units. Thus the CM200 has a total
memory of 8 gigabyte. The 16 processors on each chip are interconnected by
a switch making it possible to create a direct connection between any pair of
processors. The router on each chip is connected to 12 other routers in a 12-
dimensional hyper cube, allowing communication with any processor in only 12
communication steps. Each pair of chips with its FPU is a CM200 processing
node. The CM200 operates at 10 MHz. Theoretically, the FPU is able to
produce two 32-bit results per cycle giving it a peak performance of 20 Mflops.
With a full machine with 2k FPUs, or 64k processors, the peak performance is
about 40 gigaflops in 32-bit arithmetic, or 20 gigaflops in 64-bit arithmetic.

The CM200 needs a host computer to control the instruction stream, the
so called front-end. When running a program on the CM200 the front-end
computer executes the program, performs any serial operations on scalar data
stored in its own memory, and sending any instruction for parallel operations
on parallel data to the CM200. The peak performance of the front end is
typically on the order of a few thousandth of the CM200. This means that
even a small proportion of serial operation, in a program, can reduce the speed
of the program severely. But the front end is capable of doing serial work
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while the CM200 is busy doing parallel work, so if the serial work is spread out
evenly among the parallel, the impact on the performance does not have to be
too severe.

6.3.2. Address field and array mapping

The address field of the CM200 is divided into three parts: (off-chip | on-chip
| memory). The off-chip field encode the CM200 processor chips, the on-chip
field encodes the 16 processors on each chip, and the lowest order encodes the
memory address local to a processor. The standard data allocation scheme is
consecutive storage, where the CM200 first determines how many data elements
there are to each processor, then stores that many successive elements at each
processor. This can be illustrated as:

(xm−1xm−2 · · ·xm−n︸ ︷︷ ︸
rp

xm−n−1xm−n−2 · · ·x0︸ ︷︷ ︸
vp

)

where the field denoted rp encodes real processor addresses and the field vp
encodes memory addresses.

There are three different ways of allocating data on the CM200:

1. :news order, maps array elements via the use of gray codes to allow fast
NEWS (North-East-West-South), or grid, communication.

2. :serial order, in which data is allocated to a single processor.
3. :send order, maps the array elements on to the processing elements

according to the binary representation of the array element’s integer
label.

For multidimensional arrays, each axis is encoded separately according to
the description above, but first ignoring any serial axis, cf. Sabot (1991). Serial
axes are encoded last, by simply making them local on every processor. The
compiler tries to allocate the arrays so that each axis will have a segment of
each address field, although this can also be controlled through the use of the
compiler directive cmf$ layout. To modify this default allocation, weights
can be specified to each axis. The weights are used to control the swapping of
off-chip hyper-cube address bits between different parallel axes. The weights
are interpreted in a linear fashion, that is, if axis x has a weight two times that
of z, the compiler will try remove twice as many off-chip bits from the former
axis, assuming that there are other axes that can accept these bits. This means
that a heavily weighted axis may reside entirely on-chip.

6.3.3. Data layout in memory

In order to get good performance of the program the data allocation in mem-
ory is crucial. On-chip communication is much faster than inter-chip commu-
nication, because on-chip communication is a local memory reference, whereas
inter-chip communication is slowed down by the limited bandwidth at the chip
boundary. Obviously, one should try to allocate data in such a manner as
to minimize inter-chip communication. However, the transforms used accesses



“main”
2000/11/15
page 135

✐

✐

✐

✐

✐

✐

✐

✐

Numerical simulation on parallel computers 135

serial axis first serial axis last
Mflops Mflops

a=b+c 120 120
forall a=b+c 10 10
doloop a=b+c 120 0.5

d=e+f 20 20
forall d=e+f 10 10
doloop d=e+f 120 0.5

a=e+f 4.0 4.0
forall a=e+f 3.7 3.7
doloop a=e+f 7.5 0.08

Table 2. The measured performance of adding two double
precision (128,128,128) arrays on a 4k CM200.

data from positions far apart along the axis of transformation, and since there
are Fourier transforms in two directions, and a Chebyshev transform in the re-
maining direction, essentially all the data must be communicated in each three
dimensional transform.

6.3.4. FFT performance tests and array layout

The CMSSL documentation stated that the FFT would yield best perform if
the data was allocated according to :send or :serial ordering. Due to memory
considerations, only one axis can be completely local on a processor. To find
out more about what impact the data allocation has on performance, we tried
several different ways of allocating data and measured the performance of each.

First, we decided to make the y-axis serially ordered. The reason for this
is that we have a lot of code with loops over the y-axis, i.e. the Chebyshev
transforms and the three-diagonal matrix solvers, and CM Fortran performs
best when no communication is necessary. The communication pattern in an
FFT is complicated, but regular, and the CMSSL routines exploit the hyper-
cube architecture fully, making them very efficient. The allocation of the axes
is now clear, :send for x- and z-axes, and :serial for y-axis.

To determine the impact on performance of the order of the axes, and if
there are any performance differences when writing the loops with the HPF
(High Performance Fortran) extension forall compared to Fortran 90 and
Fortran 77 syntax, we timed addition of two (128×128×128) double precision
arrays with one serial axis and two send axes and with the above mentioned
different ways of expressing a do-loop. Furthermore, to check the compilers
ability to handle automatic and explicitly declared arrays, we timed the loops
with both static and automatic arrays. The arrays d, e and f in table 2 are
automatic arrays, and a, b and c are explicitly declared arrays. The forall in
the table reads:

forall (y=1:128) a(y,:,:)=b(y,:,:)+c(y,:,:)
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array size (128,128,128) Single precision Double precision
array layout [s] Mflops [s] Mflops

:serial, :send, :send 0.936 78 1.62 45
:serial, 10:send, :send 0.395 185 0.653 112
:serial, 100:send, :send 0.395 185 0.650 113

Table 3. Performance of real to half-complex FFT, with the
second axis as the conjugate symmetric axis, on a 4k CM200

array size (128,128,128) Single precision Double precision
array layout [s] Mflops [s] Mflops

:serial, :send, :send 0.976 75 1.67 44
:serial, 10:send, :send 1.20 61 2.13 34
:serial, 100:send, :send 1.20 61 2.13 34

Table 4. Performance of real to half-complex FFT, with the
third axis as the conjugate symmetric axis, on a 4k CM200

and the do loop reads:
do y=1,128; a(y,:,:)=b(y,:,:)+c(y,:,:); enddo.

The operations in the table are all equivalent and should take about the same
time. From the table we can deduce that the compiler, cmf 2.0, does not yield
high performance when the serial axis is last, or automatic arrays are used in
conjunction with explicitly dimensioned ones. In addition it was found that
forall loops over serial dimensions are undesirable.

According to Sabot (1991), and our own tests, all serial dimensions must
precede all parallel dimension for best performance. But the issue of different
weights on the axes is still not solved. Table 3 gives performance for real to
half-complex FFT, with the second axis as the real axis packed into a com-
plex, and table 4 gives the performance with the third axis as the conjugate
symmetric axis. The second and third axes are transformed. The arithmetic
operation count is calculated from 2.5n1n2n3 log2(n2n3), where n1, n2 and n3
are the lengths of the respective axes. Notice that the performance for single
precision data is about 60 % higher than for double precision data. According
to Johnsson et al. (1992) this difference is due to the fact that the data path
between each floating point unit and its memory is 32-bits wide. Data paths
internal to the floating point unit are 64-bits wide.

From these tables it is clear that the preferable layout is 10:send, or
100:send, for the conjugate symmetric axis, to obtain the highest possible
performance of the FFTs.

According to our tests we should use :serial, 10:send, :send in the
program. This means that for a sufficiently large problem (see further section
6.5) the data will be allocated on the CM200 according to figure 3, where the
y-axis is local for one processor, the x-axis is entirely on-node, and the only
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Figure 3. The data allocation on the CM200

axis off-node is the z-axis. A in the figure shows the data allocated on a single
processor, and the slice B shows the amount of data allocated on one processor
node. There are 128 such slices in a 128 cube problem, one for each processing
unit in a 4k CM200. Compare figure 2, where one processor is a gray box, and
the whole figure represents a processor node.

6.4. The IBM SP2

The SP2 from IBM is a MIMD type of machine with distributed memory. The
machine is built on a 66 MHz POWER2 architecture processor node capable of
up to 266 Mflops. The nodes are of two types, ’thin’ or ’wide’. The thin nodes is
similar to a RISC System/6000 Model 390, and the wide node to a Model 590,
Tengwall (1994). The main difference between the two types of nodes is the
memory bandwidth, which on the wide node is 2 Gbytes/s. Another difference
is the data cache size, thin nodes have data cache of 32 kbytes, and wide nodes
have 256 kbytes. This means that for most programs the wide node has a better
performance. The POWER2 nodes have double FXUs (Fixed eXecution Units)
and FPUs (Floating Point Units), see also figure 4. Up to six instructions, or
eight operations may be carried out simultaneously. Four of which are floating
point operations. This means that for the processors running at 66.6 MHz, a
peak performance of 266 Mflops is possible. The interconnection network is a
multistage switched omega network providing a minimum of four path between
any pair of nodes.

We have made a preliminary investigation of how our code would be imple-
mented to run efficiently on the SP2. Our first thought was that we would only
have to take the code, written in cmf, from the CM200, and essentially recom-
pile it with the beta version of IBMs HPF compiler. Naturally we would have to
replace the cmf, and CMSSL, specific code, such as the layout directives, and
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Figure 4. SP2 wide node

the FFT routines, with HPFs corresponding directive distribute, and IBMs
ESSL (Engineering and Scientific Subroutine Library) FFT routines. Unfor-
tunately the beta version of the HPF compiler was performing badly, and the
ESSL did not have any parallel FFT routines. We have therefore concentrated
on running the code efficiently on one node, using IBMs Fortran 90 compiler
(xlf), and using the serial ESSL FFT routines.

In order to get reasonable performance for the final parallel version of the
program it is of utmost importance to get good performance on one node.
We tested a few routines, the Chebyshev transform, on the SP2, and realized
that the memory access pattern was totally wrong for this type of cache based
machine. The problem was the following: we had explicit do-loops over the y-
axis, and array syntax over the x and z axes, and on the CM200 the direction
with the explicit do-loop must be the first dimension in the array (since it
is the serially ordered direction), this means that the arrays was declared as
(ny,nx,nz) to suit the Connection Machine. The xlf compiler essentially
expands expressions like:

do y=1,ny
a(y,:,:)=b(y,:,:)*c(y,:,:)

enddo

to

do y=1,ny
do z=1,nz

do x=1,nx
a(y,x,z)=b(y,x,z)*c(y,x,z)

enddo
enddo

enddo
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and we see that the memory access pattern is wrong on a conventional machine,
the y-direction varies fastest in memory, and should be the innermost loop. We
therefore redeclared all the arrays, so that the y-direction would lie last in the
array, and then it is correct to have it as the outer loop. It was also found that
the use of compiler flags is important to get good performance. We achieved
a performance of the code of about 55 Mflops on one wide node, and about
20 Mflops on a thin node, in 64 bit arithmetic. The difference in performance
between a wide and a thin node is understandable since the wide node has a
higher memory bandwidth and a larger data cache.

Recently IBM has delivered a parallel version of the ESSL, called Parallel
ESSL. We have therefore begun to work on a parallel version of the SP2 code.
We will use Fortran 90 with MPL, Message Passing Library, or MPI, Message
Passing Interface, for the communication, and a parallel FFT from PESSL. The
distributed axis will be the z-axis, and x and y axes are local on each processor.
Almost all communication will take place in the FFT, the only communication
we have to explicitly state are in the input routines (rdisc.f rparam.f), the
output routines (wdisc.f wpl.f wamp.f and wcfl.f), and a few routines that
collect statistics (boxamp.f boxcfl.f hghamp.f).

Since there is no concept of a global address space in Fortran 90 (as in CM
Fortran or HPF), we must declare all arrays to be the size of the local arrays.
Example, if we run our code on four nodes, and have a 64 cube problem, we
must declare the extent of the z-axis to be 64/4 = 16. This is done in the
include file par.f where one declares the number of processors to run on.

It is difficult to predict what kind of performance levels we could expect
from the code when running on several nodes. The code on local data would
yield a perfect speed-up, and the only part of the algorithm suffering from
communication would be the FFT. Measurements made by IBM on a eight
wide node SP2 suggests a speedup of about 5 for an complex two-dimensional
FFT. If this would hold also in our code the expected overall speedup would be
about 5–6, thus giving a performance of about 250–300 Mflops on eight wide
nodes.

6.5. Performance of chapar on CM200

Predicting performance of a program on the CM200 is a difficult task. It
depends on the size of the machine, and on the size of the problem. It also
depends on how the compiler decides to distribute the arrays on the machine,
and on the communication pattern that results from this distribution. This
distribution is not explicitly controllable by the programmer (at least not in
Fortran), but one has to rely on the compiler directives.

In our measurements of the performance of the program, we have found
that the number of instances along the z-axis should match the number of
FPU’s on the machine for best performance. See for instance table 5 where we
have listed the performance of a 256× 257× 256 problem, with various length
of the x and z axes. The times are for one iteration and the flop count are
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problem size Single precision Double precision
[s] µs/gp Mflops [s] µs/gp Mflops

1024 × 257 × 64 21.7 1.3 510 37.3 2.2 300
512 × 257 × 128 21.6 1.3 510 37.2 2.2 300
256 × 257 × 256 21.6 1.3 510 37.1 2.2 300
128 × 257 × 512 11.0 0.65 1000 17.6 1.0 630
64 × 257 × 1024 12.0 0.71 920 18.8 1.1 590
Table 5. Performance of the program for the largest problem
fitting in the memory, and various length of the z-axis on a 16k
CM200. gp in the table stands for grid points.

CM200 problem size Single precision Double precision
size [s] µs/gp Mflops [s] µs/gp Mflops
4k 32 × 33 × 32 0.19 5.6 80 0.30 9.1 50
4k 64 × 65 × 64 1.30 4.9 100 2.13 8.1 65
4k 128 × 129 × 128 5.47 2.6 230 8.81 4.2 140
8k 32 × 33 × 32 0.18 5.3 85 0.28 8.3 55
8k 64 × 65 × 64 0.66 2.5 210 1.09 4.1 130
8k 128 × 129 × 128 5.37 2.5 230 9.12 4.3 140
16k 32 × 33 × 32 0.18 5.3 85 0.28 8.3 55
16k 64 × 65 × 64 0.36 1.3 380 0.56 2.1 250
16k 128 × 129 × 128 2.85 1.3 440 4.74 2.2 260

Table 6. Performance of the program for various sizes of the
problem and various sizes of the CM200. gp in the table stands
for grid points.

about 110n1n2n3 + 9 · 5/2n1n2n3 · log2(n1n3) + 9 · 5/2n1n2n3 · log2(n2 − 1).
The length of axis x is halved and the length of axis z is doubled in each row,
but the total number of spectral modes remains constant (about 17 million).
The tests are run on a 16k CM200, i.e. with 512 FPU’s. Notice the doubling in
performance for a problem with z-axis of length equal to the number of FPU’s.

For performance data on smaller problem, see table 6, where we have tab-
ulated three different problem sizes, and tested each on three different machine
sizes. When the size of the problem is doubled in each dimension, the time
required do not scale accordingly, but only about 2–7 times, meaning that the
time per iteration and grid-point decreases, and thus the performance increases.
We also see from the table that running a small problem on larger machines
does not yield higher performance. For instance the 32 cube problem yield
about 50 Mflops independent of the size of the machine. But when running
sufficiently large problems the performance usually doubles when moving to
a larger machine, see the 64 cube problem, which runs at 65 Mflops on a 4k
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CM200 and doubles to 130 Mflops on a 8k CM200 and doubles again to 250
Mflops on a 16k CM200.

On a larger machine we can expect an increase in performance proportional
to the size of the machine if the problem size is scaled similarly and the increase
in size is put on the off-chip (z) axis. However, the length of the two other
axes cannot be increased on-chip. The added off-chip address bits may affect
performance, causing a sub-linear speed-up. However, the length of one on-chip
axis can be increased if the length of the other on-chip axis is decreased with
the same factor, without performance loss.

7. Performing a simulation

A simulation consists of several steps, first one has to create an initial velocity
field, then perform the actual simulation, and last one has to analyze the data.
These steps are performed with the aid of the programs sta, chapar and various
programs for analyzing the data. These are rit for whole velocity fields, rps for
plane files, pamp1 and pamp2 for box averaged amplitude files, and pstat for y-
dependent x-z averaged amplitude files. These programs are further described
below.

7.1. Initializing velocity fields

The necessary initial velocity field is generated by the program sta, which
is the same program used for the serial version of the channel code, i.e. cha,
see further Lundbladh et al. (1992). The same options that can be used for
the serial version of the code can also be used in the parallel version, the
only exception is the symmetry option, this should not be used in the parallel
version: nfzsym should be 0.

The initial velocity field resides in the front end file system, therefore the
start up of chapar is rather slow, due to the limited speed of data from the
front end to the CM200.

7.2. Execution of chapar

7.2.1. Configuring chapar

The main configuration is done in par.f, which is an include file that contains
the size of the problem, i.e. the number of grid points in each direction. For an
example of a par.f file see appendix Appendix A.3.1.

The configuration that can be done at run time is set in the input file
cha.i. The options can be divided in numerical options and options for data
input and output. Among the numerical is options for variable or fixed time
stepping, time stepping method, Adam–Bashforth or 3 or 4-stage third order
Runge–Kutta, and dealiasing in x and/or z-direction. The options for data
input includes the name of the input file, if the input field can be of differ-
ent size than what chapar in configured for. The options for output of data
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includes possibilities of writing various data, i.e. whole velocity fields for dif-
ferent times, plane files and amplitude files, both y-dependent x-z-averaged
and box-averaged. The plane files can also be written in compressed format to
save disk space. For a complete description of the different options see section
Appendix A.1, and for an example of a cha.i file see section Appendix A.3.3.

7.2.2. Memory requirements and problem size considerations

Due to the performance loss associated with automatic arrays, almost all of
the programs need to be recompiled for each size of problem, excluding only
some startup routines, which are size independent. The size of the problem
(i.e. the number of grid points) is set before compilation in the file par.f,
by the parameters nx, ny and nz. There are restrictions on the parameters:
nx and nz must be powers of two, due to the FFT routines used, and ny-1
must be even and factorable by 2,3 and/or 5. The code is written in single
precision, whereas in most cases there is a need to run in double precision. The
CM200 Fortran compiler, cmf has a compiler flag, -double-precision to be
used for that purpose. One problem is that the cmf flag -double-precision
only promotes real and complex to double length (8 bytes), but not integers.
The f77 flag -r8 on the other hand promotes both real and integer to double
length. Therefore we could not use the latter flag for compiling the VECFFT
package or the sta program. Instead we run all sun-fortran program through
a filter which converts single precision program to double precision.

The parallel program uses more memory than the serial one, although some
effort to minimize the memory usage was made. There are more three dimen-
sional arrays in the parallel code than in the serial code, due to the fact that the
serial code traversed the data plane by plane, whereas in the parallel program
the whole domain is transformed as a whole. There are 14 three dimensional
variables, and the memory requirement is 14*nx*ny*nz*nprec bytes, where
nprec is 4 bytes for single precision and 8 for double. In addition to this there
are a few two-dimensional arrays, but since they only require nx*nz*nprec
bytes each they do not contribute significantly to the total memory usage.
This means that the program requires about 230 megabytes of memory for a
128 cube problem, and about 1800 megabytes for a 256 cube problem. This
means that the 128 cube problem can run on a 4k CM200 using about half the
memory, and the 256 cube problem can run on a 16k CM200 using about 90
% of the memory.

7.3. Post processing

The post processing programs are used to analyze the various output files.
They can generate plots in Postscript, and some in other more special formats.

7.3.1. Post processing the velocity field with rit

The program rit is used to read an entire velocity field and generate various
plots. These can be generated in either Tektronix 4014 format or Postscript.
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There is also a possibility to generate plots of the velocity field in one plane in
PGM format, a grey scale coding of the velocity. The program rit is able to
read compressed format. The program is intended to be fairly self explanatory.

7.3.2. Post processing the plane files with rps

The program rps reads plane files, both compressed and uncompressed, and is
used to generate various plots. The program handles x-z planes and x-y planes
but not y-z planes. The program is also used for generating the input files for
the utility xmovie to enable the visualization of the flow. This data format of
these files is binary, with one pixel corresponding to one byte. The program is
intended to be fairly self explanatory.

7.3.3. Post processing the amplitude files with pamp1, pamp2 and pstat

The programs pamp1 and pamp2 reads the box averaged amplitude files. pamp1is
used to plot data from one file and pamp2 is used to plot data from several files.
pstat reads the y-dependent x-z-plane averaged amplitude file. It can be used
to generate plots of various y-dependent quantities, both time averaged and
instantaneous. There is also a possibility to plot the same data as pamp1 does,
i.e. box averaged data. It can also be used for plotting running time averaged
data together with instantaneous data. The programs are intended to be fairly
self explanatory.

7.4. Utilities

There are a few utilities to the above programs. One is the already mentioned
xmovie, which takes as input the files generated by rps and displays them on
the display as a movie. Other utilities are the compression programs, dpc and
dfc. dpc compresses and uncompresses the plane files and dfc compresses and
uncompresses the velocity field files.
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Appendix A. Appendix, description of parameter files and
subroutines

Appendix A.1. cha.i file

cha.i is formatted and sequential. Comments can be put after data on lines
not containing character input, but no tabbing are allowed. Contents line by
line :

1. namnin; character*80. Input velocity file name.
2. namnut; character*80. Output velocity file name.
3. tmax; real. The final time to which to simulate, determines the scope of

the simulation.
4. imax; integer. The maximum number of iterations to simulate. The

simulation will stop after this number of iterations, if the final time is
not reached.

5. dt; real. The time step length, ≤ 0 for variable time step, in which case
it will be regulated to keep the CFL number close to CFL max for the
time stepping method chosen.

6. nst; integer. The time stepping method. (1 Euler/AB2, 3 three Stage
Runge-Kutta, 4 four stage Runge-Kutta)

7. nfxd; integer. Dealiasing flag for x-direction, 1 for dealiasing, 0 for no
dealiasing

8. nfzd; integer. Dealiasing flag for z-direction, 1 for dealiasing, 0 for no
dealiasing

9. varsize; logical. Flag to allow read of a file of different size than the
code is compiled for. The spectral coefficients are padded with zeros or
truncated to achieve a spectral accurate interpolation. The resolution
can not be reduced in wall normal direction.

10. cflux; logical. Flag for constant mass-flux.
11. rot; real. The dimension less rotation rate around the spanwise axis, 0

for no rotation.
12. spat; logical. Flag for spatial simulation. With this version of chapar

it is currently not possible to do a spatial simulation. This flag should
be set to .false..

13. icfl; integer. The interval in number of iterations for calculating the
CFL number.

14. iamp; integer. The interval in number of iterations for calculating, and
saving, the various amplitudes. If equal to zero no amplitudes will be
calculated.

15. namamp; character*80. The name of the amplitude file if the previous
item is nonzero, otherwise left out.

16. longli; logical. Flag to generate long (y-dependent) amplitude statis-
tics .

17. namlng; character*80. Name of the file to save the y-dependent statistics
if the previous item is true, otherwise left out.
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18. iext; integer. The interval in number of iterations for extremum am-
plitudes. Currently unused. Should be 0 in the current version.

19. namext; character*80. The name of the extremum file if the previous
item is nonzero, otherwise left out. Currently unused.

20. msave; integer. The number of complete intermediate velocity fields to
be saved. If nonzero item 21 and 22 are repeated for each file.

21. tsave; real. The time for which to save an intermediate field. If variable
time stepping has been chosen the program automatically adjusts the
time step to reach exactly the desired time. For fixed time stepping the
save is done at the nearest time.

22. nmsave; character*80. The name of the intermediate velocity file.
23. mwave; integer. The number of wavenumbers to save amplitudes for. If

nonzero, item 25 is repeated for each wavenumber. Currently unused.
Should be zero in the current version.

24. namwav: character*80. The name of the wavenumber file.
25. kx kz; both integers. The wavenumber α as multiples of the fundamen-

tal 2π/xL, the wavenumber β as multiple of the fundamental 2π/zL.
26. npl; integer. The number of planes to be continuously saved during the

simulation (< 15). If nonzero followed by item 27 and then for each
plane item 28 through 31, and possibly 32.

27. ipl; integer. The saving interval for planes in number of iteration.
28. tpl(:,1); integer. The type of plane to be saved. 1 for x-y plane, 2 for

x-z plane. Saving of y-z plane currently not implemented.
29. pl(:,2); integer. The variable to be saved, i.e. 1 for u, 2 for v, 3 for w.
30. cpl; real. The coordinate for which to save the plane.
31. nampl; character*80. The name of the file in which to save the planes.

If the name has a suffix of .pc,.pcl, .pch or .pcv the output is com-
pressed. The compression rate depends on the desired accuracy of the
output plane, and this is chosen with the suffix, .pc for an accuracy of
10−8, pcl for an accuracy of 10−4, .pch for an accuracy of 10−12. The
suffix .pcv for lets the user determine the accuracy. In this case the
next item is the desired accuracy.

32. eps; real. The desired accuracy of the compressed plane.

Appendix A.2. Description of the various variables and subroutines

Here we give the various subroutines, their names and what they do.

Appendix A.2.1. chapar and main variables

This is the main code segment which contains declarations of all the global
arrays. The local code takes care of the time stepping. General naming con-
vention is that an array whose name ends with an ’r’ is the real part of the three
dimensional array, and an array whose name ends with an ’i’ is the imaginary
part.



“main”

2000/11/15

page 147

✐

✐

✐

✐

✐

✐

✐

✐

Numerical simulation on parallel computers 147

Variable names in italic are old variables that is unused in the current version
(1.5).
global variables

main storage
ur, ui before nonlin the velocity û, after the nonlinear product hatH1

vvr, vvi before nonlin the velocity v̂, after the nonlinear product hatH2

wr, wi before nonlin the velocity ŵ, after the nonlinear product hatH3

omxr, omxi vorticity χ̂
omyr, omyi vorticity ω̂

omzr, omzi vorticity ϑ̂
fomyr, fomyi right hand side for normal vorticity equation p̂ω

homyr,homyi nonlinear term in the normal vorticity equation ĥω

phr, phi particular solution for the φ equation
fvr, fvi right hand side for φ equation p̂v

q the top rows in the tridiagonal matrices
w3 work space array for FFTs and integration
tmprx, tmpix work space array used in prhs

tmpry, tmpiy work space array used in prhs

tmprz, tmpiz work space array used in prhs

other global variables
boxr, boxi two dimensional work arrays
k2, k2i two dimensional arrays containing k2 and 1/k2

alfa the wavenumbers α in the x-direction
beta the wavenumbers β in the z-direction
puw partial right hand sides for the u,w equations, wavenumber zero
vart flag for variable time step length
t the simulation time for the present time step
tc the simulation time for the present stage
tmax the maximum (final) time to which to simulate
tleft the amount of time left until next save of a velocity field
dtn the time step length for the current step
dtnp1 the time step length for the next step
an, bn time stepping coefficient an, bn for the current step
anp1, bnp1 time stepping coefficient an+1, bn+1 for the current step
anrk, bnrk table for the time-stepping coefficients for RK3
it the number of the current iteration
maxit the maximum number of iterations
nst the number of stages in the time discretization
nsave the maximum number of saved velocity field
varsiz flag for allowing read of a velocity field of another size than

the program is compiled for
namnin the name of the input velocity field file
namnut the name of the final output velocity field file
nmsave the names of the intermediate velocity fields files
tsave the times for which to save intermediate velocity fields
isave the number for the next intermediate velocity field to save
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urx temporary variable to read or write one record from an external file
udr temporary variable to read or write one record from the external ur file
mpl the maximum number of plane files
nampl the names of the plan files
tpl(,1) the type of plane 1 for xy, 2 for xz
tpl(,2) the variable 1 for u, 2 v and 3 w
tpl(,3) the coordinate index for the plane, i.e. z for xy-planes, y for xz
npl the number of plane files
ipl the number of time iterations between writing planes
cpl the coordinate value for the plane, i.e. z for xy-planes, y for xz
longli flag to output y-dependent statistics
icfl the calculation interval for the CFL number
iamp the calculation interval for the amplitudes
nwave the maximum number of waves for which to save amplitudes
mwave the number of waves to save amplitudes for
namamp the name of the amplitude file
namlng the name of the y-dependent amplitude file
namwav the name of the wave amplitude file
namext the name of the extremum amplitude file
cfl the CFL number
cflmax the value to which the CFL number is regulated
cflp the partial CFL values in each box = CFL/(π∆t)
kx, kz the wave numbers for which to save amplitudes
amp the total amplitudes for each y-plane
campw the complex wave amplitude for selected wavenumbers for each y-plane
iext the calculation interval for the extremum amplitudes
vext the extremum amplitudes for each y-plane
cext the coordinates for the extremum amplitudes
pou Poiseuille flow flag, T/F Poiseuille/Couette flow
cflux flag, .true. to enforce constant massflux
re the Reynolds number
px the mean pressure gradient
mflux the initial field massflux
rot the rotation number Ω
u0low, u0upp the mean u-velocities on the lower and upper plate
w0low, w0upp the mean w-velocities on the lower and upper plate
eta the coordinates for the collocation points
deta the distances between the collocation points
wint the integration weights for each collocation point
xl xL, the length of the box in the x-direction
zl zL, the length of the box in the z-direction
xs the distance the box has been shifted to the right since time zero

at the current time-step
xsc the distance the box has been shifted at the current stage
prex preprocessing data for the x-direction FFT
prey preprocessing data for the y-direction Chebyshev transform
prez preprocessing data for the z-direction FFT
ifac preprocessing data for the y-direction parallel Chebyshev transform
wsave1 preprocessing data for the y-direction parallel Chebyshev transform
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wsave2 preprocessing data for the y-direction parallel Chebyshev transform
fftid1 preprocessing data for CMSSL FFT
fftid2 preprocessing data for CMSSL FFT
nfxd dealiasing flag in x-direction
nfzd dealiasing flag in z-direction
i loop index

dabyte # bytes in a record, plane compressing
darec record, used to save plane compressed data
eps the chosen accuracy for plane compressing
epsc all stored values in the plane compressing are multiples of epsc
mbit plane compressing stuff
mcbit plane compressing stuff
darecl record length necessary to host dabyte bytes
dapt pointer, pointing to the right position in darec

Appendix A.2.2. The other subroutines

boxamp and boxcfl

boxamp accumulates the square of the amplitudes for 12 statistical quantities by
y-plane. Both total amplitudes and those of selected wavenumbers are calculated.
The accumulation is done in Fourier-physical space by use of the Parseval identity.

boxcfl finds the maximum partial CFL number in one box.

dcheb and icheb

dcheb and icheb perform Chebyshev differentiation and integration respectively on
wave number zero. In case of integration the zeroth coefficient in the integrated
variable must be supplied.

dealias

dealias performs dealiasing in the x and/or z direction by truncating the top 1/3
spectral modes.

fft2db and fft2df

The routines perform a 2-dimensional Fourier transform in the x and z directions
of one variable by calling the appropriate routines in CMSSL. fft2df works from
physical to Fourier space and fft2db in the opposite direction. The transforms are
not normalized.

getdt

getdt calculates the timestep corresponding to the desired value of the CFL-number,
cflmax.

hghamp

hghamp accumulates the amplitudes to the power of three and four for the velocities
as well as the amplitude of the Reynolds stress uv by y-plane. This is done in physical
space. A total of 23 statistical quantities are accumulated by y-plane.
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inifft

inifft initiates the various FFT routines as well as the parallel Chebyshev routine.

linear

linear advances all velocities one iteration with the nonlinear terms calculated in
nonlin as driving terms in the linear evolution equations.

nonlin

Calculates the quadratic advective terms, the cfl number and accumulates statistics.

par.f

par.f is an include file in which compile time options can be set. The size of the
problem is set here.

pchbb and pchbf

The routines perform a Chebyshev transform in the y direction of one variable. pchbf
works from physical to spectral space and pchbb from spectral to physical space. The
transforms are not normalized.

pcmppr

pcmppr performs preprocessing for the plane compression subroutines.

pcosti

pcosti initializes the preprocessing arrays for the parallel Chebyshev routines.

pdcheb and picheb

pdcheb and picheb are parallel versions of dcheb and icheb. They perform Cheby-
shev differentiation and integration respectively on the parallel arrays. In case of
integration the zeroth coefficient in the integrated variable must be supplied.

ppar

ppar prints all compile time parameters.

prad2, prad3, prad4 and prad5

prad2 performs a radix 2 Chebyshev transform of one variable. The others perform
a radix 3, 4, or 5 Chebyshev transform. They are used by pchbb and pchbf.

prepr

prepr calculates certain preprocessing information to increase the speed of the sub-
sequent computation.

prhs

prhs is called once in the initialization phase to calculate partial right hand sides and
the vorticities χ, ϑ necessary to start the main time iteration loop. These quantities
are later generated as a byproduct when advancing the evolution equations in linear.

psetmat, trid3 and trid5

psetmat and trid3, trid5 are the parallel versions of setmat and trid. They together
solve Helmholtz equations arising from the implicit discretization of diffusion and pres-
sure in the y-direction. Psetmat generates the system matrix which is pentadiagonal
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with the two first rows filled but with odd and the even coefficients uncoupled so that
the system splits into two tridiagonal systems (with their first row filled), which are
then solved by trid3 or trid5. In fact several systems each with multiple right hand
sides are generated and solved simultaneously, trid3 is called with three right hand
sides, and trid5 with five right hand sides.

rdisc and wdisc

rdisc and wdisc reads/writes the contents of the main storage from/to a sequential
file. Rdisc can optionally read files of a different size than the program is compiled for.
In that case the upper frequencies are truncated or padded with zeroes as appropriate.

rparam

rparam reads in the execution parameters from the file cha.i, and sets the regulation
allowed cfl value.

setmat and trid

setmat and trid together solve Helmholtz equations arising from the implicit dis-
cretization of diffusion and pressure in the y-direction. Setmat generates the system
matrix which is pentadiagonal with the two first rows filled but with odd and the
even coefficients uncoupled so that the system splits into two tridiagonal systems
(with their first row filled), which are then solved by trid. In fact several systems
each with multiple right hand sides are generated and solved simultaneously. They
are here used only for wave number zero.

wamp, wcfl

wamp accumulates the statistics generated by boxamp and writes them to the logfile
and an ampfile. If longli is true it also writes the statistics generated by boxamp
and hghamp by plane to a separate ampfile. wcfl similarly accumulates the cfl
number generated by boxcfl and writes it to the logfile.

wpl

wpl writes selected planes to output files at iteration intervals set by the parameter
ipl. The planes are transformed to physical space by Fourier transforms. At present
only x-y and x-z planes can be generated.

Appendix A.3. Examples, user created files

Appendix A.3.1. Example par.f file

Below is an example of the adjustable part of a par.f include file. It is set up
for a 32 × 33 × 32 spectral mode simulation.

c par.f contains size of problem
.
.
.
c adjustable parameters
c number of spectral modes

integer nx,ny,nz
parameter (nx=32,ny=33,nz=32)
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Appendix A.3.2. Example sta.i file

Below is an example of a simple sta.i file to generate a velocity field with
random disturbances in a file named c0.u. Note that comments are allowed on
lines with non-character data.

c0.u
750 re
60 xl
30 zl
.false. Couette flow
0.0 amplitude (.1399 for 6%)
0.0 theta
1. scale in x direction
1. scale in z direction
1 type of distribution in the normal direction
.true. noise
.005 energy density
16 number of x-modes (<=nx/2)
12 number of y-modes (even,<ny*2/3)
31 number of z-modes (odd, <nz)
-1 seed -700000 - -1

Appendix A.3.3. Example cha.i file

Below is an example of a simple cha.i file to run initial data in file c0.u to
time 10 and output the result to file c10.u. An amplitude list is written to
c10amp.d and a y-dependent amplitude file is written to c10amp.dl. Two plane
files are written, both compressed, the first with default accuracy 10−8 and the
other with user chosen accuracy 10−7. Dealiasing is turned on in both x and
z directions, and we allow read of field of other size than the compiled size
of chapar. Cfl calculation interval is set to 4 iterations, i.e. every physical
time step since the selected time stepping scheme (four stage Runge–Kutta)
requires four iteration per time step. Amplitude calculation interval is set to
20 iterations, and also the plane saving interval is set to 20. One intermediate
velocity field is saved at time 5, under the name c5.u.

c0.u
c10.u
10. simulation end time
300 max number of iterations
0.0 time step, 0 for automatic variation
4 number of time-discretization stages (1/3/4)
1 dealiasing flag in x direction (1=dealiasing)
1 dealiasing flag in z direction (1=dealiasing)
.true. allow read of field of other than compiled size
.false. constant massflux



“main”
2000/11/15
page 153

✐

✐

✐

✐

✐

✐

✐

✐

Numerical simulation on parallel computers 153

0.0 rotation rate
.false. spatial simulation
.false. linearized equations
4 cfl calc interval
20 amplitude calc interval
c10amp.d
.true. y-dependent amp-file
c10amp.dl
0 extremum calc interval, not available
1 number of saved fields
5 the time to save the complete field
c5.u
0 number of saved wavenumbers, not available
2 number of saved planes
20 plane saving interval
2 type of plane 2=xz-plane
1 variable to be saved 1=u
0.9 the coordinate for which to save the plane
cm9u10.pc
2 type of plane 2=xz-plane
2 variable to be saved 2=v
0.9 the coordinate for which to save the plane
cm9v10.pcv
1e-7 the desired accuracy for the above compr. plane
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Development of a spectrally accurate DNS code
for cylindrical geometries

By Jukka Komminaho and Arne V. Johansson

Dept of Mechanics, KTH, SE-100 44 Stockholm, Sweden

Unpublished

A spectrally accurate simulation code for cylindrical geometries is devel-
oped, and the algorithm is described in detail. The algorithm is based on
Fourier transforms in the azimuthal and axial directions, and Chebyshev poly-
nomials are used in the radial direction. Verification of the algorithm was done
by comparing analytical and numerical growth rates of eigenmodes, and showed
excellent agreement.

1. Introduction

The use of direct numerical simulation (DNS) is today a well established tech-
nique to study different turbulent flows and increase our understanding of fun-
damental phenomena in turbulent flows.

Turbulence in pipe flow was studied as early as 1883 by Reynolds. Later
experiments of fully developed turbulent pipe flow include, among many oth-
ers, those by Laufer (1954); Towens et al. (1972); Lawn (1971); Perry & Abell
(1975). More recent experiments include those by Reich & Beer (1989); Westerweel et al.
(1992); Fontaine & Deutch (1995); Schwartz-van Manen & Nieuwstadt (1996);
den Toonder & Nieuwstadt (1997); Zagarola & Smits (1998).

Reich & Beer (1989) investigated rotating pipe flow at low to moderate
Reynolds number and different rotation rates. They report the effect of the
rotation on the mean flow, flow resistance and heat transfer. They found that
rotation suppresses the turbulent fluctuations, thus considerably reducing the
friction coefficient and the heat transfer coefficient.

Fontaine & Deutch (1995) measured velocity statistics in the wall region of
a turbulent pipe flow with the use of LDV. The Reynolds number based on bulk
velocity, Reb, was 5050. They report both second and higher order statistics
very close to the wall, down to y+ ≈ 2, and compare the experimental findings
with the ones from the bondary layer experiment of Karlsson & Johansson
(1988) and the direct simulation of a channel flow of Antonia et al. (1992) with
good agreement of the mean flow and second order statistics.

den Toonder & Nieuwstadt (1997) also made measurements with LDV in
turbulent pipe flow for several different Reynold numbers. The Reb varied from

157
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5000 to 25000, and they investigated the Reynolds number effect on second or-
der statistics. They concluded that the axial rms value does not show any
Reynolds number effect for y+ < 30 whereas for the radial rms a clear Re-
dependance was observed. The Reynolds-number-independence of axial rms
velocity is consistent with the findings in the survey of several different flow
cases, boundary layer flow channel flow and pipe flow, with a large range of
Reynolds number by Mochizuki & Nieuwstadt (1996). The Reτ varied from
100 to 4300, and the peak axial rms value was almost constant. They com-
pared these rms profiles with the DNS of Eggels et al. (1994) and found good
agreement for the axial rms value, but a discrepancy for the radial rms, with
higher values than in the simulation. The reson for this was unclear.

Zagarola & Smits (1998) made experiments in a pressurised pipe, and mea-
sured the mean velocity for Reynolds number from 31 × 103 to 35 × 106.

There are today a few reported studies of turbulent pipe flow using numeri-
cal simulations. The early work concerned stability and transition. Fully devel-
oped laminar pipe flow shares with Couette flow the property that it is linearly
stable over all Reynolds numbers, Salwen & Grosch (1972); Garg & Rouleau
(1972).

Patera & Orszag (1981) and Orszag & Patera (1983) investigated the non-
linear stability of pipe flow guided by their theory of secondary instability.
They found that all axi-symmetric disturbances decay, but non-axisymmetric
disturbances can be strongly unstable (non-linearly). Schmid & Henningson
(1993) examined optimal energy density growth in pipe flow. They showed that,
even in the linear region, certain optimal disturbances exhibit large transient
growth before they eventually decay.

Leonard & Wray (1982) developed a spectral algorithm using Fourier trans-
forms in azimuthal and axial directions and Jacobi polynomials in the radial
direction. The disadvantage with Jacobi polynomials is that they lack fast
transform methods, i.e. the number of operations for the algorithm scales as
O(N2) whereas for a spectral method based on fast transforms it scales as
O(N logN), where N is the number of polynomials in the expansion.

Unger et al. (1993) used a second-order accurate finite difference method
for DNS of fully developed turbulent pipe flow, with Reynolds number, Reb up
to 5300. They obtained good agreement with experiments by Westerweel et al.
(1992) for the second order statistics and fair agreement for higher order sta-
tistics. See also Eggels et al. (1994) where the results are presented in more
detail.

Zhang et al. (1994) used a spectral method in their DNS of pipe flow with
Reynold number up to 4000. Their code uses Fourier transforms in axial and
azimuthal directions, and spectral elements with Jacobi polynomials in the
radial direction.

Loulou (1996) developed and implemented a spectral method for pipe flow
simulations, using fourier transformation in azimuthal and axial direction, and
B-splines in the radial direction. In their simulation of rotating pipe flow,
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Orlandi & Fatica (1997) used a finite difference scheme, second-order accurate
in space. The algorithm is described in more detail in Verzicco & Orlandi
(1996). They present both mean flow and both second and higher order sta-
tistics for both rotating and non-rotating pipe flow. As in the experiments
by Reich & Beer (1989) they find that rotation gives a reduced drag. For the
non-rotating case they obtain good agreement with Eggels et al. (1994). The
data base produced was further used in Orlandi (1997) to study the change of
turbulence production and dissipation with rotation.

This seemingly simple flow configuration hides two difficulties when solving
Navier–Stokes equations in cylindrical coordinates. The first is purely mathe-
matical and is related to the treatment of the coordinate singularity at the axis
r = 0. The second comes from the numerical treatment of the time derivatives,
and is related to the fact that when using cylindrical coordinates the azimuthal
grid resolution is proportional to the radial distance from the centreline. Of
these two difficulties, the former is most important. The only consequence of
not taking the latter into consideration is a decrease in the size of the time-step.
One possibility to remedy the time step problem is to filter the solution near
the origin (Umsheid & Sankar-Rao 1971) and thereby reducing the resolution.
Another approach is made by Akselvoll & Moin (1995). They decompose the
computational domain into two regions. Within each region the derivatives in
one direction, radial for the outer, and azimuthal for the inner region, is treated
implicitly, thereby avoiding the time-step problem.

Loulou (1996) also reduced the number of grid points near the origin to
alleviate the time-step problem. Unger et al. (1993) used a method similar to
Akselvoll & Moin, they treated the diffusive and advective terms implicitly in
the azimuthal direction, thereby allowing much larger time steps compared to
the original explicit treatment.

When excluding the origin from the computational domain, i.e. in annular
pipe or Taylor–Couette flow the time-step problem is less of a concern. For
annular pipe flow there are relatively few experiments. One with a moving
inner wall is the experiment by Shands et al. (1980)

Schumann (1975) developed a finite difference method for simulations of
turbulent flows in plane channels and annular pipe flow, and obtained results
that agreed rather well with experimental values.

Shapiro et al. (1999) recently investigated linear and nonlinear stability of
annular pipe flow. The linear stability analysis was performed with Chebyshev
collocation method. The nonlinear analysis was made with the same code
used by Eggels et al. (1994), adapted to the annular domain. They obtained
good agreement between the linear theory and their DNS simulation of the
growth of the eigenfunctions with small initial amplitude. However, some of
the eigenvalues in their eigenvalue map seems to be wrong, se further section
5.2 where we present eigenvalue maps for the same case. The further studied
non-linear stability by introducing finie-amplitude eigenfunctions which were
unstable, and followed their evolution in time, down to a point where their
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resolution was unsufficient. They concluded that the mechanism of transition
consists of two counter-rotating modes with streamwise rolls, originating in the
simulation from non-linear interaction between azimuthal modes.

The Taylor–Couette flow case has attracted many researchers. There are
many articles on that subject, see e.g. Chossat & Iooss (1994) and references
therein for a wealth of information. As examples of experimental studies see
Andereck et al. (1986) for pure Taylor–Couette flow, and Takeuchi & Jankowski
(1981) for Taylor–Couette flow with a pressure gradient in the axial direction.
The latter case was also studied by Leuptow et al. (1992) and Wereley & Leuptow
(1999).

Moser et al. (1983) developed and implemented an algorithm for solving
Navier–Stokes equations in a cylindrical geometry, i.e. for Taylor–Couette flow
as well as curved channel flow. It is a spectral algorithm, based on fourier
transforms in axial and azimuthal directions and Chebyshev polynomials in the
radial direction. The algorithm was evaluated for plane channel and Taylor–
Couette flow with both axisymmetric and wavy vorticies, with good agreement
with theoretical and experimental results.

Other flow configurations in cylindrical geometries that are possible to
study with the present code are Taylor–Couette flow, annular pipe flow and
curved channel flow.

This report describes the development of a spectral method for use in cylin-
drical coordinates. There are some differences in the algorithm for the cases
pipe flow and annular pipe flow, mainly concerning the Chebyshev expansion
in the radial direction.

2. Governing equations and the numerical method

The incompressible Navier–Stokes equations can be formulated in several dif-
ferent ways. The standard is based on the primitive-variables (velocity and
pressure), but formulations can also involve streamfunctions and/or vortic-
ity, see Aziz & Hellums (1967) for a streamfunction-vorticity formulation, and
Dennis et al. (1979) for a velocity-vorticity formulation.

2.1. Derivations of the velocity-vorticity formulation

We will here solve the equations with a velocity-vorticity formulation, thereby
avoiding the difficulty of solving for the pressure. Unlike the velocity, there is
no evolution equation for the pressure and it is determined from the continuity
equation. This often causes problems, see Canuto et al. (1988); Gresho & Sani
(1987) where the authors discusses this.

The incompressible Navier–Stokes equations can, in conservative form, in
a rotating reference system in general coordinates, be written as

∂u
∂t

= −∇p+ u × (∇ × u + 2Ω)︸ ︷︷ ︸
=H

−∇(
1
2
u · u) +

1
R
∇2u, (1a)
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and the continuity equation for incompressible flow is given by

∇ · u = 0, (1b)

where u is the velocity vector, Ω is the system angular rotation rate vector,
R is the Reynolds number based on the pipe radius (δ) in case of pipe flow,
or half the gap width in case of annular pipe flow, centreline (or maximum)
velocity (UCL) and the kinematic viscosity (ν), R = UCLδ/ν.

We rewrite in velocity-vorticity formulation to eliminate pressure. For this
purpose we first take the divergence of the momentum equation and use the
continuity equation to obtain a Poisson equation for the pressure,

∇2p = ∇ · H −∇2

(
1
2
u · u

)
. (2)

We apply the Laplace operator on the momentum equation, use the above
equation for the pressure, to obtain a fourth order equation for the velocities
with the pressure eliminated,

∂∇2u
∂t

= −∇(∇ · H) + ∇2H +
1
R
∇4u. (3)

The next step is to rewrite (3) into a system of second order equations by
introducing an auxiliary vector φ,

∇2u = φ (4a)
∂φ

∂t
= −∇(∇ · H) + ∇2H︸ ︷︷ ︸

=−∇×(∇×H)

+
1
R
∇2φ. (4b)

By taking the curl of the momentum equation we obtain a second order equation
for the vorticities

∂ω

∂t
= ∇ × H +

1
R

(∇ × φ) . (5)

Note that ∇ ×φ ≡ ∇2ω. We now have our velocity-vorticity formulation in a
general coordinate system.

2.2. Express in cylindrical coordinates

Introduce a cylindrical coordinate system (r, ϕ, z) with velocities

[u(r, ϕ, z, t), v(r, ϕ, z, t), w(r, ϕ, z, t)] ,

and vorticities
[ω1(r, ϕ, z, t), ω2(r, ϕ, z, t), ω3(r, ϕ, z, t)] .

In the following we will not write the dependence of r, ϕ, z, t. Let the system
angular rotation rate be around the z-axis, Ω = (0, 0,Ω3). The continuity
equation for the velocities can here be written as

1
r

∂ru

∂r
+

1
r

∂v

∂ϕ
+
∂w

∂z
= 0. (6)
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The radial and azimuthal components of equations (4a), (4b) and (5) expressed
in cylindrical coordinates read

∂φ1
∂t

= hu1 +
1
R

[(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2

)
φ1 − φ1

r2
− 2
r2

∂φ2
∂ϕ

]
(7a)

∂φ2
∂t

= hu2 +
1
R

[(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2

)
φ2 − φ2

r2
+

2
r2

∂φ1
∂ϕ

]
(7b)

φ1 =
(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2

)
u− u

r2
− 2
r2

∂v

∂ϕ
(7c)

φ2 =
(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2

)
v − v

r2
+

2
r2

∂u

∂ϕ
(7d)

∂ω3
∂t

= hω3 +
1
R

[
1
r

∂rφ2
∂r

− 1
r

∂φ1
∂ϕ

]
, (7e)

where

hu1 =
1
r2

∂2H1

∂ϕ2
+
∂2H1

∂z2
− 1
r2

∂H2

∂ϕ
− 1
r

∂2H2

∂r∂ϕ
− ∂2H3

∂r∂z
(7f)

hu2 =
1
r2

∂H1

∂ϕ
− 1
r

∂2H1

∂r∂ϕ
− H2

r2
+

1
r

∂H2

∂r
+
∂2H2

∂r2
+
∂2H2

∂z2
− 1
r

∂2H3

∂ϕ∂z
(7g)

hω3 =
1
r

∂rH2

∂r
− 1
r

∂H1

∂ϕ
, (7h)

and the nonlinear terms are

H1 = v(ω3 + 2Ω3) − wω2 (7i)

H2 = −u(ω3 + 2Ω3) + wω1 (7j)

H3 = uω2 − vω1. (7k)

The equations are coupled, the equation for φ1, (7a) also contains φ2, but as is
shown in the next section a simple change of variables decouples the equations.

2.3. Fourier transformation

We apply the Fourier transform in the ϕ and z direction, with wave numbers
α and β, u(r, ϕ, z, t) → û(r, α, β, t). Introduce the new variables

φ̂A = φ̂1 + iφ̂2 (8a)

φ̂B = φ̂1 − iφ̂2 (8b)

ûA = û+ iv̂ (8c)

ûB = û− iv̂. (8d)

This leads to a set of equations in α and β, where the only coupling comes from
the nonlinear terms. This technique has also been used by Garg & Rouleau
(1972); Orszag & Patera (1983) and Zhang et al. (1994) to decouple the veloc-
ity equations.
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The equations can be divided into one general and three special cases,
depending on the wave number. This decomposition into four cases facilitates
the treatment of the equations when dealing with the boundary conditions, see
section 2.7. The categories are

• the general case, α, β > 0,
• α = β = 0, the mean flow, which is solved directly from the momentum

equation (1a),
• α = 0, axi-symmetric case, for which (7a) is uncoupled, and we solve

directly for φ̂1 and û, and for v̂ through the momentum equation (1a),
• β = 0, where we need to solve for ŵ from equation (1a), and solve for
ω̂3 from (5) to obtain û and v̂.

One difficulty with the resulting equations is that we have no a priori
boundary condition for φ̂1 and φ̂2. The boundary conditions apply to the
velocities û, v̂ and ŵ. This difficulty can be handled by solving for both a
particular solution with a boundary condition that equals the value of the
solution at the previous time level, and a homogeneous solution with non-zero
boundary conditions. We then reconstruct the solution as a linear combination
of the homogeneous and particular solutions, see also section 2.7.

2.3.1. Equations for the general case, α, β > 0

The equations (7a) to (7e) can now be written in Fourier space as

∂φ̂A

∂t
= ĥuA +

1
R

(
∂2

∂r2
+

1
r

∂

∂r
−α2+2α+ 1

r2
−β2

)
φ̂A (9a)

∂φ̂B

∂t
= ĥuB +

1
R

(
∂2

∂r2
+

1
r

∂

∂r
−α2−2α+ 1

r2
−β2

)
φ̂B (9b)

φ̂A =
(
∂2

∂r2
+

1
r

∂

∂r
−α2+2α+ 1

r2
−β2

)
ûA (9c)

φ̂B =
(
∂2

∂r2
+

1
r

∂

∂r
−α2−2α+ 1

r2
−β2

)
ûB (9d)

∂ω̂3
∂t

= ĥω3 +
1
R

[
1
r

∂rφ̂2
∂r

− iα

r
φ̂1

]
, (9e)

where the nonlinear terms are

ĥu1 = −α2

r2
Ĥ1 − β2Ĥ1 − iα

r2
Ĥ2 − iα

r

∂Ĥ2

∂r
− iβ

∂Ĥ3

∂r
(9f)

ĥu2 =
iα

r2
Ĥ1 − iα

r

∂Ĥ1

∂r
− Ĥ2

r2
+

1
r

∂Ĥ2

∂r
+
∂2Ĥ2

∂r2
− β2Ĥ2 +

αβ

r
Ĥ3 (9g)

ĥω3 =
1
r
Ĥ2 +

∂Ĥ2

∂r
− iα

r
Ĥ1 (9h)
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and

ĥuA = ĥu1 + iĥu2 (9i)

ĥuB = ĥu1 − iĥu2 . (9j)

The original variables û, v̂ can easily be extracted from the new ûA and
ûB by

û =
1
2
(ûA + ûB) (10)

v̂ =
i

2
(ûB − ûA), (11)

with similar equations for the other variables. The remaining variables that
have to be calculated are the vorticities and the axial velocity. The vorticities
are calculated through their definition,

ω̂1 =
iα

r
ŵ − iβv̂ (12a)

ω̂2 = iβû− ∂ŵ

∂r
(12b)

ω̂3 =
1
r
v̂ +

∂v̂

∂r
− iα

r
û. (12c)

The remaining velocity component can be obtained from the continuity
equation for the velocities, equation (6),

ŵ =
1
β

(
i

r
û+ i

∂û

∂r
− α

r
v̂

)
. (13)

The equations (9e) and (12c) are two independent ways of calculating ω̂3, and
in section 2.7 we show that we need to use both equations in order to obtain
expressions for the constants used in the evaluation of the boundary conditions.

2.3.2. Equations for α = 0

For the case α = 0, i.e. axi-symmetric case, the equations (7a)–(7b) are uncou-
pled and in this case we solve for φ̂1 and û. Thus equations (9a) and (9c) are
replaced by

∂φ̂1
∂t

= ĥu +
1
R

(
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

−β2
)
φ̂1 (14a)

φ̂1 =
(
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

−β2
)
û, (14b)

and we go back to the original momentum equation for v,

∂v̂

∂t
= Ĥ2 +

1
R

(
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

−β2
)
v̂. (14c)

The gradient terms (of pressure and dynamic pressure) on the right hand side
of (1a) here vanish since α = 0.
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The equations for the axial velocity, (13) and ω̂1, (12a) and ω̂3, (12c) remain
unchanged. For ω̂2 we can use the equations (13) and (14b) to obtain

ω̂2 = − i

β
φ̂1. (15)

The reason for this special treatment of α = 0 is of a numerical nature. When
solving directly for φ̂1 and û the expression for the constant necessary to obtain
the correct boundary condition at the wall for û (see section 2.7) is very simple,
and actually the equations to solve become very similar to those of the channel
flow code. Observe that it is only in the case α = 0 that the equations are
similar, because of the decoupling of û and v̂.

2.3.3. Equations for β = 0

In the case β = 0 we clearly need another equation for the axial velocity ŵ.
This we obtain from the original momentum equation,

∂ŵ

∂t
= Ĥ3 +

1
R

[
∂2

∂r2
+

1
r

∂

∂r
− α2

r2

]
ŵ − Pzδα0, (16)

where Pz is the pressure gradient driving the flow, δα0 = 1 for α = 0, and
zero otherwise. The gradient of the fluctuating pressure and dynamic pressure
vanish here since β = 0.

For this case we may make use of the continuity equation in a more direct
way and replace the equations for φ̂A and φ̂B by an evolution equation for ω̂3,

∂ω̂3
∂t

= ĥω3 +
1
R

[
∂2

∂r2
+

1
r

∂

∂r
− α2

r2

]
ω̂3. (17)

It is now possible to obtain relations between û, v̂ and ω̂3. Start by defining a
stream function Ξ such that u = ∇ × Ξ. Now

ω = ∇ × u = ∇ × (∇ × Ξ) ≡ −∇2Ξ,

and we are able to compute Ξ̂3 from (keeping in mind that β = 0)[
∂2

∂r2
+

1
r

∂

∂r
− α2

r2

]
Ξ̂3 = −ω̂3 (18)

and û and v̂ from

û =
iα

r
Ξ̂3, v̂ = − ∂

∂r
Ξ̂3. (19)

The vorticities ω̂1 and ω̂2 are computed from (12a) and (12b).

2.3.4. Equations for α = β = 0

For the case α = β = 0 we compute v̂ and ŵ from equations (14c) and (16). The
radial velocity û is zero, and the vorticities are computed from their defining
equations (12b) and (12c) (with ω̂1 = 0).
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2.4. Time stepping

The time stepping chosen is a semi-implicit one, with explicit treatment of the
nonlinear term in equation (9a), (9b) and implicit treatment of the viscous
term.

The model equation is

∂f

∂t
= G(f) +

1
R

(
D2f − λ2f

)
(20)

where G(f) is a nonlinear term which we will discretize with explicit time
stepping, and D denotes a derivative.

2.4.1. The implicit part

The time derivative in the following model equation

∂f

∂t
=

1
R

(
D2 − λ2f

)
(21)

can be discretized with the following three time level implicit scheme, (Fletcher
1991)

(1 + γn)(fn+1 − fn)
∆tn+1

− γn(fn − fn−1)
∆tn

=
1
R

(
D2 − λ2

) (
(1 − βi)fn + βif

n+1
)
.

(22)

With this scheme we can get Backward Euler, Crank–Nicolson and the three-
level fully implicit scheme (3LFI). Table 1 summarises the different properties
of these schemes.

βi γn order in time
B Euler 1 0 1
CN 1/2 0 2, A-stable
3LFI 1 1/2 2, A-stable

Table 1. Time-stepping coefficients for the implicit part.

2.4.2. The explicit part

The explicit part can be discretized with the following three time level explicit
scheme, (Fletcher 1991)

(1 + γn)(fn+1 − fn)
∆tn+1

− γn(fn − fn−1)
∆tn

= (1 − βn
e )G(fn) + βn

e G(fn−1). (23)

With this scheme we can get Forward Euler, second order accurate Adam–
Bashforth and three-level fully explicit scheme, see also table 2.



“main”
2000/11/15
page 167

✐

✐

✐

✐

✐

✐

✐

✐

Spectrally accurate DNS code for cylindrical geometries 167

βn
e
∆tn+1

∆tn γn order in time
F Euler 0 0 1
AB2 -1/2 0 2
3LFE -1 1/2 2

Table 2. Time-stepping coefficients for the explicit part.

2.4.3. Combining implicit and explicit parts

When combining both explicit and implicit parts we must use the same param-
eter γn for both parts, but the parameter βe, βi does not have to be the same.
For example, take γn = 0, βi = 1/2 and βe = −1/2 yields CN for the implicit
part and AB2 for the explicit part. See also table 3.

βi βn
e
∆tn+1

∆tn γn order in time
BE/FE 1 0 0 (1,1)
BE/AB2 1 -1/2 0 (1,2)
CN/AB2 1/2 -1/2 0 (2,2)
BDF2 1 -1 1/2 (2,2)

Table 3. Time-stepping coefficients to obtain the different schemes.

We write the complete equation as

(1 + γn)(fn+1−fn)
∆tn+1

− γn(fn−fn−1)
∆tn

=
1
R

(
D2 − λ2

) [
(1 − βi)fn + βif

n+1
]
+[

(1 − βn
e )G(fn) + βn

e G(fn−1)
]
. (24)

Divide by βi, multiply with R and collect terms,[
D2 − λ2 −R

1 + γn

βi∆tn+1

]
fn+1 = −1 − βi

βi

[
D2 − λ2

]
fn −

R

(
1 + γn

βi∆tn+1
+

γn

βi∆tn

)
fn +R

γn

βi∆tn
fn−1 −

R
1 − βn

e

βi
G(fn) −R

βn
e

βi
G(fn−1). (25)

Before we procede to apply the above time advancement scheme to the general
equations, we need to consider the effect of the variable time-step on the ac-
curacy of the solution. When using Crank–Nicolson there is no problem with
variable time-step since this scheme only involves two different time levels, but
for BDF2 one has to consider the effects.
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2.5. The influence of the variable time step on the accuracy

In this section hn denotes the time step at time level n. For the case of BDF2
we approximate the time derivative of y with the following scheme:

∂y

∂t
≈ 3(yn+1 − yn)

2hn
− yn − yn−1

2hn−1
. (26)

Taylor expansion of yn and yn−1 around time tn+1 yields

yn =yn+1 − hny
′(n + 1) +

h2n
2
y′′(n + 1) − h3n

6
y′′′(n + 1) + O(h4n) (27)

yn−1 =yn+1 − (hn + hn−1)y′(n + 1) +

(hn + hn−1)2

2
y′′(n + 1) − (hn + hn−1)3

6
y′′′(n + 1) + O((hn + hn−1)4)

(28)

where hn is the time step at time level n and a prime denotes a time derivative.
Putting these into the equation (26) gives

∂y

∂t
≈ y′(n+ 1) + y′′

(
−hn

4
+
hn−1

4

)
+ O(h2n)

= y′(n+ 1) + y′′
εhn

4
+ O(h2n)

(29)

where we have assumed hn−1 = hn + εhn. The order in time is thus 2 if ε is
zero, i.e. for a constant time-step, and close to 2 if the variation is reasonably
slow.

2.6. Applied to the general case, α, β > 0

Here we describe time advancement scheme applied to the general case α, β > 0,
equations (9a) and (9b). For the other cases it is done in the same manner.

(D2 − λ2A)φ̂n+1
A = −C1

[
D2 − λ2A

]
φ̂n

A − C2Rr2φ̂n
A +

C3Rr2φ̂n−1
A − C6Rr2ĥn

uA
− C4Rr2ĥn−1

uA
(30a)

(D2 − λ2B)φ̂n+1
B = −C1

[
D2 − λ2B

]
φ̂n

B − C2Rr2φ̂n
B +

C3Rr2φ̂n−1
B − C6Rr2ĥn

uB
− C4Rr2ĥn−1

uB
(30b)

where

D2 = r
∂

∂r

(
r
∂

∂r

)
= r2

∂2

∂r2
+ r

∂

∂r
(31a)

λ2A = (α+ 1)2 + r2
(
β2 +RC5

)
(31b)

λ2B = (α− 1)2 + r2
(
β2 +RC5

)
. (31c)

Define

f̂n
φi

= p̂n
φi

− C6r2Rĥn
ui
, i = A,B (32)
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where

p̂n
φi

= −C1
[
D2 − λ2i

]
φ̂n

i − C2Rr2φ̂n
i + C3r2Rφ̂n−1

i − C4r2Rĥn−1
ui

=

= −C1f̂n−1
φi

− C2Rr2φ̂n
i + C3Rr2φ̂n−1

i − C4Rr2ĥn−1
ui

, i = A,B (33)

and

C1 = 1−βi

βi
C2 = 1+γn

∆tn+1β2
i

+ γn

∆tnβi

C3 = γn

∆tnβi
C4 = βn

e

βi

C5 = 1+γn

∆tn+1βi
C6 = 1−βn

e

βi

C7 = 1+γn

∆tn+1βi
+ γn

∆tnβi
.

We can then write equations (30a), (30b) as

(D2 − λ2i )φ̂
n+1
i = f̂n

φi
, i = A,B. (34a)

These two equations are ordinary differential equations in r and can be solved,
e.g. by expanding the functions involved in Chebyshev polynomials and solve
the resulting equation system (see section 3).

From φ̂A and φ̂B we are able to calculate the ûA and ûB velocities. We
multiply equation (9c) and (9d) with r2 to get(

D2 − γ2i
)
ûn+1

i = r2φ̂n+1
i , i = A,B (34b)

where D2 is defined by (31a), and

γ2A = (α + 1)2 + r2β2 (35)

γ2B = (α− 1)2 + r2β2. (36)

Notice that the equations (34a) and (34b) are similar in structure and can be
solved with the same numerical subroutine.

2.7. Boundary conditions and constants

A problem with the above equations (34a)i=A,B and (34b)i=A,B is that the
boundary condition do not apply to the quantities for which we have differential
equations. To remedy this, each of the quantities can be solved for a particular
solution with the value at the preceding time level as boundary conditions.
Then we solve for a homogeneous solution with non-zero boundary conditions.
Finally the boundary conditions are fulfilled by a suitable linear combination
of the particular and homogeneous solutions (see also Boyd (1989), p 188). For
the case of annular pipe flow we solve for twice as many homogenous solutions.
This is because of the coupling between the odd and even Chebyshev coefficients
in the annular pipe flow case.

This approach of computing the constants is slightly different from the
one chosen in the channel flow code, where the boundary condition for the
particular solution is zero. Both approaches have been tried in the pipe flow
code and the present approach allows at least a factor of ten smaller time steps
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compared to the channel flow code approach. The time step is limited by the
resolution near the wall. With a small time step the numerical boundary layers
near the wall, arising from the solution of equation (37b) and (38b), become
thin and for a small enough time step the resolution will be inadequate to
resolve these thin layers.

2.8. Pipe flow

2.8.1. The general case, α, β > 0

For all α and β > 0 we solve for a particular solution, fulfilling the correct
right hand side with a boundary condition equal to the value at the preceding
time level, and a homogenous solution with zero right hand side and boundary
condition of unity. We then combine these two solutions to obtain a solution
with correct boundary condition. Note that it is sufficient to prescribe the
boundary condition of the solutions at r = 1 without loss of generality, since
the odd and even Chebyshev coefficients decouple (the boundary condition at
r = −1 follow automatically).

(D2 − λ2A)φ̂n+1
A,p = f̂n

φA
φ̂n+1

A,p (1) = φ̂n
A(1) (37a)

(D2 − λ2A)φ̂n+1
A,h = 0 φ̂n+1

A,h (1) = 1 (37b)

(D2 − γ2A)ûn+1
A,p = r2φ̂n+1

A,p ûn+1
A,p (1) = 0 (37c)

(D2 − γ2A)ûn+1
A,h = r2φ̂n+1

A,h ûn+1
A,h (1) = 0 (37d)

(D2 − λ2B)φ̂n+1
B,p = f̂n

φB
φ̂n+1

B,p (1) = φ̂n
B(1) (38a)

(D2 − λ2B)φ̂n+1
B,h = 0 φ̂B,h(1) = 1 (38b)

(D2 − γ2B)ûn+1
B,p = r2φ̂n+1

B,p ûn+1
B,p (1) = 0 (38c)

(D2 − γ2B)ûn+1
B,h = r2φ̂n+1

B,h ûn+1
B,h (1) = 0 (38d)

where subscripts p and h denote the particular and homogeneous parts, respec-
tively.

From no-slip at the wall and continuity we obtain the following boundary
condition

∂û

∂r
= 0, at r = 1. (39)

The constants are defined from

ûA = ûA,p + C1ûA,h (40)

ûB = ûB,p + C2ûB,h (41)

φ̂A = φ̂A,p + C1φ̂A,h (42)

φ̂B = φ̂B,p + C2φ̂B,h. (43)
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At r = 1 we have
∂

∂r
(û) =

1
2
∂

∂r
(ûA + ûB) ⇒ ∂

∂r
(ûA,p + ûB,p) + C1

∂

∂r
ûA,h + C2

∂

∂r
ûB,h = 0.

(44)

This yields a relation between C1 and C2. To get another relation we take the
definition of ω̂3, (12c)

ω̂n+1
3 =

i

2r
∂

∂r

[
r(ûn+1

B − ûn+1
A )

]− iα

2r
(ûn+1

A + ûn+1
B ) =

=
i

2r
∂

∂r

[
r(ûn+1

B,p + C2û
n+1
B,h − ûn+1

A,p − C1û
n+1
A,h )

]
−

iα

2r
(ûn+1

A,p + C1û
n+1
A,h + ûn+1

B,p + C2û
n+1
B,h ) =

= {r = 1} =
i

2
∂

∂r

[
ûn+1

B,p + C2û
n+1
B,h − ûn+1

A,p − C1û
n+1
A,h

]
. (45)

Now we have a relation between C1 and ω̂n+1
3 at r = 1, and we need another

relation for ω̂n+1
3 at r = 1. This we get from equation (9e) by applying our

time advancement scheme

ω̂n+1
3 = ω̂n

3 +
∆tn+1

1 + γn

[
γn

∆tn
(ω̂n

3 − ω̂n−1
3 ) +

1 − βi

R
L̂n

ω +

iβi

2R

(
C2(1 − α+ φ̂′n+1

B,h ) − C1(1 + α+ φ̂′n+1
A,h )−

φ̂n
A(1 + α) + φ̂n

B(1 − α) + φ̂′n+1
B,p − φ̂′n+1

A,p

)
+

(1 − βn
e )ĥn

ω3
+ βn

e ĥ
n−1
ω3

]
(46)

where

L̂n
ω3

=
1
r

∂rφ̂n
2

∂r
− iα

r
φ̂n
1

ĥn
ω3

=
1
r

∂rĤn
2

∂r
− iα

r
Ĥn
1 .

This will finally yield a 2 × 2 linear equation system,(
a11 a12
a21 a22

)(
C1

C2

)
=
(
r1
r2

)
(47)

where

a11 = û′A,h a12 = û′B,h

a21 = 1 + α+ φ̂′
A,h −RC5û′A,h a22 = −1 + α− φ̂′

B,h + RC5û′B,h

r1 = −û′A,p − û′B,p r2 = −2ip̂n+1
ω3

− φ̂′n+1
A,p + φ̂′n+1

B,p − φ̂n
A(1 + α)+

φ̂n
B(1 − α) +RC5û′n+1A,p −RC5û′n+1B,p
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and

p̂n+1
ω3

=R
(

1 + γn

∆tn+1βi
+

γn

βi∆tn

)
ω̂n
3 −R

γn

βi∆tn
ω̂n−1
3 +

1 − βi

βi
L̂n

ω +R
1 − βn

e

βi
ĥn

ω3
+R

βn
e

βi
ĥn−1

ω3
. (48)

We are now able to calculate the required constants at the new time level
n + 1, and update the velocities. We have to store the value of ω̂n−1

3 , ω̂n
3 , L̂n

ω,
ĥn

ω3
, ĥn−1

ω3
, φ̂n

A and φ̂n
B at r = 1 for every wave number.

2.8.2. The case α = 0

In the axi-symmetric case we will solve for φ̂1, û and v̂

(D2 − λ2A)φ̂n+1
1,p = f̂n

φ1
φ̂n+1
1,p (1) = φ̂n

1 (1), (49a)

(D2 − λ2A)φ̂n+1
1,h = 0 φ̂n+1

1,h (1) = 1, (49b)

(D2 − γ2A)ûn+1
p = r2φ̂n+1

1,p ûn+1
p (1) = 0, (49c)

(D2 − γ2A)ûn+1
h = r2φ̂n+1

1,h ûn+1
h (1) = 0, (49d)

(D2 − λ2A)v̂n+1 = f̂n+1
v v̂n+1(1) = 0. (49e)

The main difference here is that the equations for the constants C1 C2 are
different. Since we solve for v̂ directly we only need C1, which we get directly
from the boundary condition (39)

C1 = − û′p
û′h

. (50)

2.8.3. The case β = 0

In this case we solve time evolution equations for ŵ and ω̂3. By using the
relations between Ξ̂3 and ω̂3 we obtain û and v̂.

(D2 − λ21)ω̂
n+1
3,p = f̂n

ω3
ω̂n+1
3,p (1) = ω̂n

3 (1), (51a)

(D2 − λ21)ω̂
n+1
3,h = 0 ω̂n+1

3,h (1) = 1, (51b)

(D2 − γ21)Ξ̂
n+1
3,p = −r2ω̂n+1

3,p Ξ̂n+1
3,p (1) = 0, (51c)

(D2 − γ21)Ξ̂
n+1
3,h = −r2ω̂n+1

3,h Ξ̂n+1
3,h (1) = 0, (51d)

(D2 − λ21)ŵ
n+1 = f̂n

w, ŵ(1) = 0, (51e)

and to obtain û and v̂

û =
iα

r
Ξ̂3 =

iα

r

(
Ξ̂3,p + C5Ξ̂3,h

)
(52)

v̂ = − ∂

∂r
Ξ̂3 = −

(
∂

∂r
Ξ̂3,p + C5

∂

∂r
Ξ̂3,h

)
(53)
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and the constant C5 is easily obtained from (39) as

C5 = − Ξ̂′
3,p

Ξ̂′
3,h

. (54)

2.8.4. The case α = β = 0

In this case we simply use the evolution equations for both v̂ and ŵ, (49e) and
(51e).

2.9. Cylindrical geometry with finite inner radius

Flows that may be computed in this geometry include annular pipe flow,
Taylor–Couette flow and curved channel flow. A change of variables from r
to y = 2 r−µ

δ transforms the flow domain from [ri, 1] to [−1, 1], to suit the use
of Chebyshev polynomials.

2.9.1. The general case, α, β > 0

Here we solve for particular solutions in the same way as for regular pipe flow,
but for the homogenous solution it is not enough to prescribe the boundary
condition at one wall only, since the Chebyshev coefficients do not decouple.
Hence we are forced to use two different homogenous solutions instead of one.

(D2 − λ2A)φ̂n+1
A,p = f̂n

φA
φ̂n+1

A,p (±1) = φ̂n
A(±1) (55a)

(D2 − λ2A)φ̂n+1
A,h1 = 0 φ̂n+1

A,h1(−1) = 0, φ̂n+1
A,h1(1) = 1 (55b)

(D2 − λ2A)φ̂n+1
A,h2 = 0 φ̂n+1

A,h2(−1) = 1, φ̂n+1
A,h2(1) = 0 (55c)

(D2 − γ2A)ûn+1
A,p = r2φ̂n+1

A,p ûn+1
A,p (±1) = 0 (55d)

(D2 − γ2A)ûn+1
A,h1 = r2φ̂n+1

A,h1 ûn+1
A,h1(±1) = 0 (55e)

(D2 − γ2A)ûn+1
A,h2 = r2φ̂n+1

A,h2 ûn+1
A,h2(±1) = 0 (55f)

with identical equations for B. The necessary constants are defined from

ûA = ûA,p + C1ûA,h1 + C2ûA,h2 (56)

ûB = ûB,p + C3ûB,h1 + C4ûB,h2 (57)

φ̂A = φ̂A,p + C1φ̂A,h1 + C2φ̂A,h2 (58)

φ̂B = φ̂B,p + C3φ̂B,h1 + C4φ̂B,h2. (59)

(60)

The procedure for obtaining the equations necessary to compute the constants
are the same as above, the only difference is that we now obtain a 4×4 equation
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system, 
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



C2

C4

C1

C3

 =


r1
r2
r3
r4

 (61)

where the different coefficients are

a11 = û′n+1A,h,2(−1), a21 = −1 − r0φ̂
′n+1
A,h2(−1) − α+RC5r0û′n+1A,h2(−1)

a12 = û′n+1B,h,2(−1), a22 = 1 + r0φ̂
′n+1
B,h2(−1) − α−RC5r0û′n+1B,h2(−1)

a13 = û′n+1A,h,1(−1), a23 = −φ̂′n+1
A,h1(−1) +RC5û′n+1A,h1(−1)

a14 = û′n+1B,h,1(−1), a24 = φ̂′n+1
B,h1(−1) −RC5û′n+1B,h1(−1)

a31 = û′n+1A,h,2(1), a41 = −1 − φ̂′n+1
A,h2(1) − α+RC5û′n+1A,h2(1)

a32 = û′n+1B,h,2(1), a42 = 1 + φ̂′n+1
B,h2(1) − α−RC5û′n+1B,h2(1)

a33 = û′n+1A,h,1(1), a43 = −φ̂′n+1
A,h1(1) +RC5û′n+1A,h1(1)

a34 = û′n+1B,h,1(1), a44 = φ̂′n+1
B,h1(1) −RC5û′n+1B,h1(1)

and the right hand side

r1 = − û′n+1A,p (−1) − û′n+1B,p (−1)

r2 =2ir0pn+1
ω3

(−1) − r0φ̂
′n+1
B,p (−1) + r0φ̂

′n+1
A,p (−1) +

(1 + α)φ̂n
A(−1) + (α− 1)φ̂n

B(−1) +RC5r0
[
û′n+1B,p (−1) − û′n+1A,p (−1)

]
r3 = − û′n+1A,p (1) − û′n+1B,p (1)

r4 =2ipn+1
ω3

(1) − φ̂′n+1
B,p (1) + φ̂′n+1

A,p (1) +

(1 + α)φ̂n
A(1) + (α− 1)φ̂n

B(1) +RC5
[
û′n+1B,p (1) − û′n+1A,p (1)

]
.

We are now able to calculate the required constants at the new time level n+1
and update the velocities. As before we have to store the value of ω̂n−1

3 , ω̂n
3 ,

L̂n
ω, ĥn

ω3
, ĥn−1

ω3
, φ̂n

A and φ̂n
B but now at both walls, y = ±1, for every wave

number.
The special cases α = 0 and β = 0 are handled in the same manner as in

the pipe flow case, taking into account the need for two homogenous solutions.

3. Chebyshev expansion

We will expand the variables in Chebyshev polynomials in the radial direction
with r = [−1, 1]. In the case of annular pipe flow, we need to transform this
range to [ri, 1], where ri is the radius of the inner cylinder.



“main”
2000/11/15
page 175

✐

✐

✐

✐

✐

✐

✐

✐

Spectrally accurate DNS code for cylindrical geometries 175

3.1. Pipe flow

The typical equation systems to solve are given by

(D2 − λ2i )ψ̂ = f̂i, i = A,B (62)

or if we insert D2 from (31a) and λ2 from (31b)(
r2

∂2

∂r2
+ r

∂

∂r
− γ1 − r2γ2

)
ψ̂i = f̂i (63)

where γ1 = (α ± 1)2 and γ2 = β2 +RC5. This is a coupled system of ordinary
differential equations with known right hand sides.

We will here present two ways at solving this system. The first is to expand
the second derivative of the unknown function, and integrate twice to get the
function itself. This method is called the integration method, and was initially
used in the channel flow code of Lundbladh et al. (1992). The main advantage
with this approach is that there is no need to differentiate to get the first or
second derivate, thereby avoiding an operation that can be shown to amplify
numerical errors in the solution.

The second way to solve the system of ODE’s is to expand for the function
itself, and differentiate to get the derivatives needed. This method is referred
to as the Chebyshev-Tau method and was used in the channel flow code of
Kim et al. (1987).

3.1.1. The integration method

In the integration method we expand the second derivative of the unknown
function ψ̂ in a series of Chebyshev polynomials. We can write the expansion
as

∂2ψ̂n

∂r2
=

N∑
j=0

ψ
(2)
jn Tj. (64)

In the analysis we need the following two basic relations:

r Tj =
1
2
(Tj+1 + Tj−1) (65)∫

Tj dr =
1
2

(
Tj+1

j + 1
− Tj−1
j − 1

)
+ const. (66)

For further useful relation see Appendix A. Deriving the relation between the
Chebyshev coefficients is now straightforward. Use the relations (66) and (65)
twice to expand the first term in (63), use both relations once to obtain the
second term, and so on. A more thorough derivation of the equation system
can be found in Appendix B. For brevity we will here only show the general
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form of the equations in the resulting system

− ψ
(2)
n−4

γ2
16(n− 3)(n− 2)

+

ψ
(2)
n−2

(
1
4

+
1

4(n− 1)
+

3γ2
8n(n− 3)(n− 1)

− γ1
4(n− 1)n

)
+

ψ(2)n

(
1
2
− 1

2(n2 − 1)
+

γ2(n2 − 10)
8(n2 − 1)(n2 − 4)

+
γ1

2(n2 − 1)

)
+

ψ
(2)
n+2

(
1
4
− 1

4(n+ 1)
− 3γ2

8n(n+ 1)(n+ 3)
− γ1

4(n+ 1)n

)
−

ψ
(2)
n+4

γ2
16(n+ 3)(n + 2)

= gn. (67)

Special cases occur for n < 5 and n > N−5 (see Appendix B). From the above
relation it is apparent that the system will decouple into two different equation
systems for the odd and even Chebyshev modes. If we arrange the equations in
a straightforward manner we get two systems, with N/2 + 2 equations for the
even and N/2 + 1 equations for the odd coefficients. For the even Chebyshev
coefficients the system looks like

A =



q0 q2 q4 q6 q8 q10 q12 · · · qN+2

c0 d0 e0 f0

b2 c2 d2 e2 f2

b4 c4 d4 e4 f4 0
· · · · ·

· · · · ·
· · · · ·

· · · · ·
0 bN−4 cN−4 dN−4 eN−4 fN−4

bN−2 cN−2 dN−2 eN−2

bN cN dN


where q is the boundary condition discussed in section 3.3. The solution vector
is

ψ = [ψ(0)0 , ψ
(1)
0 , ψ

(2)
0 , ψ

(2)
1 , . . . , ψ

(2)
N ]T

and the equation system to solve can be written as

Aψ = g

where g is the right hand side.

3.1.2. The Chebyshev-Tau method

In the Chebyshev-tau method we expand in the function itself. Following
Canuto et al. (1988) p131, we have the following useful expression for the co-
efficients for v̂ = r(dû/dr)

cnv̂n = nûn + 2
N∑

p=n+2, p+n even

pûp (68)
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from which we obtain the recursion relation

cn−1v̂n−1 − cn+1v̂n+1 = (n− 1)ûn−1 + (n+ 1)ûn+1. (69)

Again, we show only the general case here, more details can bo found in
Appendix C.

− ψn−4γ2
1

8(n− 1)
+

ψn−2

[
(n− 2)2 − γ1

2(n− 1)
− γ2

1
4(n2 − 1)

]
+

ψn

[
n(n2 − 2 + γ1)

n2 − 1
+ γ2

n

4(n2 − 1)

]
+

ψn+2

[
(n + 2)2 − γ1

2(n+ 1)
+ γ2

1
4(n2 − 1)

]
−

ψn+4γ2
1

8(n+ 1)
=

1
2(n− 1)

gn−2 − n

n2 − 1
gn +

1
2(n+ 1)

gn+2. (70)

This pseudo 9-diagonal equation system also decouples into odd and even
modes, and we only need to solve two 5-diagonal systems. Now the system
matrix will have the following look for the even Chebyshev coefficients:

A =



q0 q2 q4 q6 q8 q10 q12 · · · qN

c2 d2 e2 f2

b4 c4 d4 e4 f4

b6 c6 d6 e6 f6 0
· · · · ·

· · · · ·
· · · · ·

· · · · ·
0 bN−4 cN−4 dN−4 eN−4 fN−4

bN−2 cN−2 dN−2 eN−2

bN cN dN


where q is the boundary condition discussed in section 3.3. The solution vector
is

ψ = [ψ0, ψ1, . . . , ψN ]T

and the equation system to solve can be written as

Aψ = h

where h is the right hand side, constructed from g.
The matrix is solved with direct Gaussian elimination, starting from the

lower right corner. In this manner we eliminate all super diagonals, then the
boundary condition rows, and finally the sub diagonals.
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3.2. Cylindrical geometry with finite inner radius

The integration method seems to be less suitable than the Chebyshev-Tau
method for the cylindrical geometry, and therefore we will only present the
Chebyshev-Tau method for the annular pipe flow case.

In order to be able to use the algorithm developed above for annular pipe
flow, we need to change the radial coordinate from [ri, 1] to [−1, 1]. Let us
introduce the following change of variable

y = 2
r − µ

δ
(71)

where µ = .5(ri+1) is the mean radius, and δ = 1−ri is the gap width between
the cylinders. Now we need to change all occurrences of r to y and ∂

∂r to ∂
∂y . It

is possible, with considerable amount of algebra, see Delabre & Trempé (2000),
to derive expressions similar to (68) and obtain a 9-diagonal system matrix.
However, in this case the odd and even modes do not decouple, and we have
to handle the full 9-diagonal matrix. This is easily realized by considering
the relation for multiplying with r, (97), which involves both odd and even
coefficients. Here we present the general form of the equations,

− ψn−4
1
32

γ2δ
2

n− 1
− ψn−3

1
4
γ2δµ

n− 1
−

ψn−2
1
16

δ2γ2 + 8µ2γ2(n + 1) + 8γ1(n + 1) − 8(n3 − 3n2 + 4)
(n− 1)(n + 1)

+

ψn−1
1
4
µ(16n2 − 8n− 24 + γ2δ

2)
δ(n+ 1)

+

ψn
1
16

γ2δ
4n+ 16γ2δ2µ2n+ 16n3δ2 + 16γ1nδ2 − 32nδ2 − 128nµ2 + 128n3µ2

δ2(n + 1)(n− 1)
+

ψn+1
1
4
µ(16n2 + 8n− 24 + γ2δ

2)
δ(n− 1)

+

ψn+2
1
16

δ2γ2 − 8µ2γ2(n− 1) − 8γ1(n− 1) + 8(n3 + 3n2 − 4)
(n− 1)(n+ 1)

−

ψn+3
1
4
γ2δµ

n + 1
− ψn+4

1
32

γ2δ
2

(n+ 1)
=

1
2

1
n− 1

gn−2 − n

(n + 1)(n− 1)
gn +

1
2

1
n + 2

gn+3. (72)

The above expression simplifies, in the case of ri = −1 (i.e. µ = 0, δ = 2) to
the same general expression as for the pipe flow.

The above described method is somewhat more efficient than the method
described in Moser et al. (1983). Their expansion in the Chebyshev polyno-
mials result in a banded matrix with 14 super- and 8 sub-diagonals, and a
few offdiagonal elements. They report that the operation count for solving
this matrix is 235N . In our method the operation count is 2(pq + 2)N =
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2(4 · 4 + 2)N = 36N , (Golub & van Loan 1989), for the above 9-diagonal ma-
trix, and 2(2 · 2 + 1)N = 10N for the 5-diagonal matrix in the pipe flow case,
where p is the number of sub-diagonals, and q is the number of superdiagonal.
The extra 2N (1N) comes from the treatment of the boundary condition.

3.3. Boundary conditions

The boundary conditions can be expressed in terms of the coefficients in the
Chebyshev series. The boundary condition at r = 1 can be expressed as (see
equation 99 in Appendix B) keeping in mind that Tj(1) = 1, ∀j:

ψ̂r=1 = ψ
(0)
0 + ψ

(1)
0 + ψ

(2)
0

1
4
− ψ

(2)
1

1
12

− ψ
(2)
2

7
48

+
N−2∑
n=3

ψ(2)n

3
(n2 − 1)(n2 − 4)

−

1
2(N − 3)(N − 2)(N − 1)

− 1
2(N − 2)(N − 1)N

, (73)

for the integration method. For the Chebyshev–Tau method the boundary
condition simply reads

ψ̂r=1 =
N∑

n=0

ψn. (74)

4. Numerical aspects concerning the system matrix

At first glance the integration method seems superior to the Chebyshev-Tau
method, because in the integration method there is no need to take derivatives
of the function, only to integrate. Differentiation is more sensitive to numerical
errors than integration. The algorithm would, hence, seem to be less sensitive
to numerical errors for the integration method than for the Chebyshev-Tau
method. As it turns out the choice it not that simple. There are some subtle
numerical aspects involved in the choice of Chebyshev method. One such aspect
is the condition number of the resulting system matrix.

The condition number of a matrix is defined as (Golub & van Loan 1989),

cond(A) ≡ ||A||
||A−1||

and the condition number goes to infinity if A is singular. The relative error in
the solution x to the linear equation system Ax = b can be cond(A) times the
relative error in A and b. The condition number of the matrix hence quantifies
the sensitivity of the equation system.

The condition number of the system matrix for both the integration method
and the Chebyshev-Tau method have been calculated for the present applica-
tion, pipe flow, and is also compared with the channel flow case. The result is
tabulated in table 4 for a Reynolds number of 4000 and 65 Chebyshev modes.
A much lower condition number for the Chebyshev-tau method can be noted
for both cases.
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integration Chebyshev-tau
pipe 3 × 1010 6 × 104

channel 4 × 1010 5 × 104

Table 4. Condition number of the system matrix. pipe in
the table refers to the present work, and channel referes to the
code described in Lundbladh et al. (1992)
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Figure 1. Eigenvalues for α = 1, β = 1 and Re = 2000. The
eigenvalue marked ∗ was used in the evaluation.

5. Verification

In order to verify the pipe flow code, we have studied the evolution of eigen-
modes, the so called Orr–Sommerfeld–Squire modes. The solver for the eigen-
modes was provided by Peter Schmid at University of Washington, and has
been used in a study of pipe flow and growth of optimal disturbances by
Schmid & Henningson (1993).

The flow variables are assumed to be of the following form

(u, v, w, p) = (û, v̂, ŵ, p̂)eiαϕ+iβz−iωt (75)

where α is the azimuthal wave number and β is the streamwise wave number.
The streamwise base flow is of the formW = W (r). Following Schmid & Henningson
the eigenvalue problem can be written in radial velocity, radial vorticity form
as:

(−iω + iβW )TΦ− iβ

r

(
W ′

k2r

)′
Φ =

1
Re

T (k2r2T )Φ +
2α2β
Re

TΩ (76)

k2r2(−iω + iβW )Ω +
iW ′

r
Φ =

1
Re

SΩ +
2β
Re

TΦ (77)
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Figure 2. Velocities associated with the wall mode (cr, ci) =
(0.4064,−0.06988), α = 1, β = 1 and Re = 2000, the radial
(−−) (u), the azimuthal (v) (− −) and the streamwise (w)
(− · −) velocity.

where

k2 =
α2

r2
+ β2 (78)

T =
1
r2

− 1
r

d
dr

(
1
k2r

d
dr

)
(79)

S =k4r2 − 1
r

d
dr

(
k2r3

d
dr

)
(80)

Φ ≡− irû (81)

Ω ≡βrv̂ − αŵ

αk2r2
. (82)

The velocities can now easily be calculated from the eigenmodes corresponding
to the eigenvalue

û =
iΦ
r

(83)

v̂ = − α

k2r2
∂Φ
∂r

+ αβrΩ (84)

ŵ = − β

k2r

∂Φ
∂r

− α2Ω. (85)

5.1. Pipe flow

Before calculating the eigenmodes we specify the mean flow in the axial di-
rection W (r) = 1 − r2. In pipe flow all eigenmodes are damped and we have
studied the least damped wall mode. The Reynolds number was 2000, and the
azimuthal (α) and streamwise (β) wavenumber for the eigenmodes was (1, 1).
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Figure 3. Velocity vectors in an r–ϕ–plane, with the stream-
wise velocity as contours, showing the eigenmode.

The eigenvalues are depicted in figure 1. The eigenvalue for the wall mode we
chose is marked with ∗, (cr, ci) = (0.4064055,−0.06988367).

The corresponding velocities are shown in figure 2. Figure 3 shows the
radial and azimuthal velocities as velocity vectors in an r–ϕ–plane, and contours
of the streamwise velocity.

5.1.1. The numerical simulation

We have used the pipe flow code to simulate the time evolution of the above
shown eigenmode. The computational domain was (r, ϕ, z) = (1, 2π, 2π), and
the numerical resolution (nr, nt, nz) = (65, 32, 16). The time advancement
scheme used was the mixed explicit/implicit BDF2.

The initial amplitude of the eigenmode was set to a low value, 10−6, to
avoid nonlinear effects. The energy of the eigenmode was monitored, and is
shown in figure 4 for a time step of 0.07. Ths gives a CFL number of about
0.05. The decay of the energy follows the theoretical value within the resolution
of the graphics.

When starting the time evolution we do not have access to more than the
first time level, and must therefore use a first order time advancement scheme
for the explicit part. We use a first order time advancement scheme for the first
implicit time step also. The first time step is therefore Forward Euler/Backward
Euler.

To verify the order of the combined explicit/implicit time advancement
scheme, we did several different simulations and varied the time step, and
calculated the damping rate of the eigenmode, see table 5 for the different
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Figure 4. The energy of the eigenmode, as a function of time,
where (–) is the numerical result, for a time step of 0.07, and
(- -) is the theoretical exponential decay -0.069883667.

simulations. We could then calculate the overall order in time. In order to
avoid the errors introduced by the first time step being of only first order, we
skipped the first few time steps in the evaluation of all damping rates.

Define the error ε of the damping rate

ε =
|ci,num − ci,theory|

ci,theory
,

and make the assumption that ε = k(∆t)p, where k is a constant, and p is the
order of the time advencement scheme. We can now evaluate the order in time
by

p = ln
(

∆t2
∆t1

)
ln
(
ε1
ε2

)
.

For the resulting orders in time see table 6.

∆t ci ε× 103

0.08 -0.0700120 1.838
0.07 -0.0699785 1.368
0.06 -0.06995377 1.003

Table 5. The error in the damping rate for various time steps,
and the second order scheme. ε is the normalised error in the
damping rate, ε = |ci,num − ci,theory|/ci,theory.



“main”
2000/11/15
page 184

✐

✐

✐

✐

✐

✐

✐

✐

184 J. Komminaho & A. V. Johansson

∆t1 ∆t2 p

0.08 0.07 2.2
0.07 0.06 2.01
0.08 0.06 2.1

Table 6. The order in time for various time steps.

5.2. Annular pipe flow

For the case with finite inner radius the eigenvalue solver had to be rewritten
to an annular geometry. Since the solver uses a Chebyshev transformation
in the radial direction, one only needs to change the definition of Chebyshev
polynomials, and change the boundary condition at ri. The mean axial velocity
is now

W (r) =
1
4

(
1 − r2 +

r2i − 1
ln(ri)

ln(r)
)
.

There is one more parameter in the annular geometry, compared to pipe
flow, namely the size of the gap between the inner and outer cylinders, or
equivalently the ratio between the outer and the inner radius. The growth rate
of the eigenmodes in annular pipe flow depends on this ratio, as well as the
Reynolds number. In a recent study by Shapiro et al. (1999) the stability of
annular pipe flow was investigated. They did both a linear stability analysis and
calculated eigenvalue maps, and a non-linear analysis where they introduced a
finite amplitude eigenfunction and studied the evolution in time with a DNS
code.

5.2.1. The numerical simulation

We have used the annular pipe flow code to simulate the time evolution of the
above shown eigenmode. The computational domain, measured in radius of
the outer cylinder, was (r, ϕ, z) = (0.3, 2π, 0.6π), and the numerical resolution
(nr, nt, nz) = (97, 32, 16). The time advancement scheme used was the mixed
explicit/implicit BDF2.

The Reynolds number based on half the gap width, δ, was 10000, with
δ = 0.3. The azimuthal (α) and streamwise (β) wavenumber for the eigenmodes
was (1, 1). The eigenvalues are depicted in figure 5, and the wall mode we
chose is marked with ∗, (cr, ci) = (0.23794, 0.0017622), and since ci is positive
it represents an unstable mode.

For this Reynolds number the flow becomes linearly unstable for ri > 0.595,
corresponding to δ < 0.404.

The initial amplitude of the eigenmode was set to a low value, 10−6, to
avoid nonlinear effects. The corresponding velocities are shown in figure 6,
and figure 7 shows the radial and azimuthal velocities as velocity vectors in an
r–ϕ–plane, complemented with contours of the streamwise velocity.
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Figure 5. Eigenvalues for α = 1, β = 1 and Re = 10000.
The eigenvalue marked ∗ was used in the evaluation.
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Figure 6. Velocities associated with the wall mode (cr, ci) =,
α = 1, β = 1 and Re = 10000, the radial (−−) (u), the az-
imuthal (v) (− −) and the streamwise (w) (− · −) velocity.

In figure 8 we can see the theoretical and numericaly obtained solution at
a time T = 6.7, and they show excellent agreement.

6. Conclusions

We have developed an algorithm for solving the Navier–Stokes equations in
cylindrical coordinates. Based on that algorithm we have implemented both a
pipe flow code and an annular pipe flow code.

We have verified both the pipe flow code and the annular pipe flow code,
by simulating the time evolution of an Orr–Sommerfeld-Squire mode, and com-
pared the damping rate with the theoretical value. They are in excellent agree-
ment. Furthermore we have verified that the mixed explicit/implicit time ad-
vancement scheme we used is second order in time.
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Figure 7. Velocity vectors in an r–ϕ–plane, with the stream-
wise velocity as contours, showing the eigenmode.
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Figure 8. Velocities associated with the wall mode (cr, ci) =,
α = 1, β = 1 and Re = 10000, the radial (−−) (u), the az-
imuthal (v) (− −) and the streamwise (w) (− · −) velocity.

7. Future work

There are some remaining issues with the algorithm, for the case of pipe flow.
When including the origin in the computational domain one has to be careful
with the behaviour of the velocities when approaching the origin, i.e. when
r → 0. There are some constraints that the velocities have to obey to get a
regular, well behaved velocity field near the origin, see Appendix D. While the
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initial velocity field is well behaved, numerical errors inevitably destroys this
property if not imposed on the solution.

The condition are automatically fulfilled for α = 0 and 1, but for higher
α values we should implement some constraint on the velocities in order to
fulfil the regularity condition. As an example, for α = 3, uA is even and zero
at r = 0 and ∂2

∂r2uA = 0. With the algorithm we are only guaranteed to get
uA = 0, but not to have a zero second derivative.

In this report we have not tried to avoid the time stepping problem orig-
inating from the dense grid in the azimuthal direction, near the origin. As
we remarked in the introduction it is possible to filter the solution near the
origin. Since we are using spectral methods it is easy to filter in the azimuthal
direction. However, care must be taken in the radial direction, where we have
the Chebyshev expansion. The filter function must be a smooth function in
the radial direction in order to retain the spectral accuracy. These issues need
to be addressed in a future study.

These issues are not of concern in the annular pipe flow code, since the
origin is excluded from the computational domain. In our tests we have noticed
that the annular pipe flow code is less sensitive to errors in the implementation,
and the present code can be used in future studies of annular pipe flow.
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Appendix A. Useful relations for Chebyshev polynomials

The Chebyshev polynomials of the first kind represent the eigenfunctions of a
Sturm–Liouville problem, Canuto et al. (1988). They can be defined through
a recursion formula:

2xTj(x) = Tj−1(x) + Tj+1(x). (86)

The recursion is started by T0(x) = 0 and T1(x) = x. With a change of
variables one can write the Chebyshev polynomials as

Tj(x) = cos(kθ), θ = arccosx.

Thus, the Chebyshev polynomials are cosine functions after a change of vari-
ables, and one can use Fast Cosine Transforms for transformations between
physical and Chebyshev space.

A regular function can be expanded as a sum of Chebyshev polynomials
between x = 1 and x = −1,

f(x) =
+∞∑
n=0

anTn(x), (87)

and the values of an can be computed from

an =
2
πcn

∫ 1

−1

f(x)Tn(x)√
1 − x2

dx, (88)

where {
c0 = 2
cn = 1 if n > 0. (89)

The boundary condition at −1 or 1 can be written as a relation between
the different Chebyshev coefficients:

f(−1) =
+∞∑
n=0

(−1)n an = BC−1, f(1) =
+∞∑
n=0

an = BC1. (90)

It is possible to find the Chebyshev coefficients of a function multiplied by
x if we know the coefficients of the original function,

g(x) = xf(x) =
+∞∑
n=0

bnTn(x) (91)

with

bn =
1
2

(cn−1an−1 + cn+1an+1). (92)

To integrate in Chebyshev space:

g(x) =
∫

f(x)dx =
+∞∑
n=0

bnTn(x) (93)
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where

bn =
1
2n

(cn−1an−1 − cn+1an+1). (94)

Appendix A.1. Change of domain

In the annular pipe flow case we make a change of variables from r to y:

r = µ+
δ

2
y (95)

and expand

f(y) =
+∞∑
n=0

anTn(y). (96)

By using equation (92), we can establish how the Chebyshev coefficients
are changed when a function is multiplied by r, i.e. the coefficients for rf(y)
are given by

bn = µan +
δ

4
(cn−1an−1 + cn+1an+1) . (97)

Appendix B. Chebyshev integration method

Using the relation (94) to integrate equation (64) we get:

∂ψ̂n

∂r
= ψ

(1)
0 T0 + ψ

(2)
0 T1 + ψ

(2)
1

1
4
T2 +

N∑
j=2

ψ
(2)
j

1
2

(
Tj+1

j + 1
− Tj−1
j − 1

)
. (98)

Integrate one more time to obtain ψ̂n:

ψ̂n = ψ
(0)
0 T0 + ψ

(1)
0 T1 +

ψ
(2)
0

4
T2 +

ψ
(2)
1

8

(
1
3
T3 − T1

)
+
ψ
(2)
2

8

(
1
6
T4 − 4

3
T2

)
+

N∑
j=3

ψ
(2)
j

1
4

(
Tj+2

(j + 2)(j + 1)
− 2Tj

j2 − 1
+

Tj−2
(j − 1)(j − 2)

)
. (99)

Multiply equation (99) with r2, and use relation (65) twice:

r2ψ̂n =ψ(0)0

1
2
(T2 + T0) + ψ

(1)
0

1
4
(T3 + 3T1) + ψ

(2)
0

1
16

(T4 + 2T2 + T0) +

ψ
(2)
1

1
96

(T5 − T3 − 8T1) + ψ
(2)
2

1
192

(T6 − 6T4 − 15T2 − 8T0) + (100)

ψ
(2)
3

1
320

(T7 − 3T5 + T3 + 25T1) +
N∑

j=4

ψ
(2)
j

1
16

(
Tj+4

(j + 1)(j + 2)
−

6Tj+2

(j + 2)(j2 − 1)
− 2(j2 − 10)Tj

(j2 − 1)(j2 − 4)
+

6Tj−2
(j2 − 1)(j − 2)

+
Tj−4

(j − 1)(j − 2)
).
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Multiply equation (98) with r:

r
∂ψ̂n

∂r
= ψ

(1)
0 T1 + ψ

(2)
0

1
2
(T2 + T0) + ψ

(2)
1

1
8
(T3 + T1) +

N∑
j=2

ψ
(2)
j

1
4

(
Tj+2

j+1
− 2Tj

j2−1
− Tj−2

j−1

)
. (101)

Multiply equation (64) with r2:

r2
∂2ψ̂n

∂r2
=

ψ
(2)
0

4
(2T2 + 2T0) +

ψ
(2)
1

4
(T3 + 3T1) +

N∑
j=2

ψ
(2)
j

1
4
(Tj+2 + 2Tj + Tj−2).

(102)

Putting it all together and collecting terms results in the following system
of equations for the Chebyshev polynomials T0–TN , with coefficients ψ

(2)
j as

unknowns:

n = 0 : − ψ
(0)
0 (

γ2
2

+ γ1) + ψ
(2)
0 (

1
2

+
1
2
− γ2

16
) + ψ

(2)
2 (

1
4
− 1

4
+
γ2
24

) = g0

n = 1 :ψ(1)0 (1 − 3γ2
4

− γ1) + ψ
(2)
1 (

3
4

+
1
8

+
γ2
12

+
γ1
8

)+

ψ
(2)
3 (

1
4
− 1

8
− 5γ2

64
− γ1

8
) − ψ

(2)
5

γ2
192

= g1

n = 2 : − ψ
(0)
0

γ2
2

+ ψ
(2)
0 (

1
2

+
1
2
− γ2

8
− γ1

4
) + ψ

(2)
2 (

1
2
− 1

6
+

5γ2
64

+
γ1
6

)+

ψ
(2)
4 (

1
4
− 1

12
− γ2

80
− γ1

24
) − ψ

(2)
6

γ2
320

= g2

n = 3 : − ψ
(1)
0

γ2
4

+ ψ
(2)
1 (

1
4

+
1
8

+
γ2
96

− γ1
24

) + ψ
(2)
3 (

1
2
− 1

16
− γ2

320
+
γ1
16

)+

ψ
(2)
5 (

1
4
− 1

16
− γ2

192
− γ1

48
) − ψ

(2)
7

γ2
480

= g3

n = 4 : − ψ
(2)
0

γ2
16

+ ψ
(2)
2 (

1
4

+
1
12

+
γ2
32

− γ1
48

) + ψ
(2)
4 (

1
2
− 1

30
+

γ2
240

+
γ1
30

)+

ψ
(2)
6 (

1
4
− 1

20
− 3γ2

1120
− γ1

80
) − ψ

(2)
8

γ2
672

= g4
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5≤n≤N : − ψ
(2)
n−4

γ2
16(n− 3)(n− 2)

+

ψ
(2)
n−2(

1
4

+
1

4(n− 1)
+

3γ2
8n(n− 3)(n− 1)

− γ1
4(n− 1)n

)+

ψ(2)n (
1
2
− 1

2(n2 − 1)
+

γ2(n2 − 10)
8(n2 − 1)(n2 − 4)

+
γ1

2(n2 − 1)
)+

ψ
(2)
n+2(

1
4
− 1

4(n+ 1)
− 3γ2

8n(n+ 1)(n + 3)
− γ1

4(n+ 1)n
) −

ψ
(2)
n+4

γ2
16(n+ 3)(n + 2)

= gn.

Actually, for the highest values of n the above equation is modified in a way
that depends on the specific method of truncation of the series.

Appendix C. Chebyshev-Tau method

Using the recursion relation (69) twice to obtain a relation between ψn−2, ψn

and ψn+2, and using relation (91) twice to handle the r2 multiplication yields
a relation between ψn−4, ψn−2, ψn, ψn+2 and ψn+4. (Notice that there is an
error in the derivation of the equation for n = 2 in Canuto et al. (1988).)

n = 2 :ψ0

[
−γ1 + γ2

1
6

]
+ ψ2

[
8
6

+ γ1
4
6

+ γ2
1
24

]
+

ψ4

[
16
6

− γ1
1
6

+ γ2
1
12

]
− ψ6γ2

1
24

= g0 − 2
3
g2 +

1
6
g4

n = 3 :ψ1

[
1
4
− γ1

1
4
− γ2

3
32

]
+ ψ3

[
21
8

+ γ1
3
8

+ γ2
3
32

]
+

ψ5

[
25
8

− γ1
1
8

+ γ2
1
32

]
− ψ7γ2

1
32

=
1
4
g1 − 3

8
g3 +

1
8
g5

n = 4 : − ψ0γ2
1
12

+ ψ2

[
4
6
− γ1

1
6
− γ2

1
60

]
+ ψ4

[
4
14
15

+ γ1
4
15

+ γ2
1
15

]
+

ψ6

[
36
10

− γ1
1
10

+ γ2
1
60

]
− ψ8γ2

1
40

=
1
6
g2 − 4

15
g4 +

1
10
g6

5 ≤ n ≤ N : − ψn−4γ2
1

8(n− 1)
+ ψn−2

[
(n− 2)2 − γ1

2(n− 1)
− γ2

1
4(n2 − 1)

]
+

ψn

[
n(n2 − 2 + γ1)

n2 − 1
+ γ2

n

4(n2 − 1)

]
+

ψn+2

[
(n + 2)2 − γ1

2(n+ 1)
+ γ2

1
4(n2 − 1)

]
−

ψn+4γ2
1

8(n+ 1)
=

1
2(n− 1)

gn−2 − n

n2 − 1
gn +

1
2(n+ 1)

gn+2.
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Appendix D. Behaviour of the velocities near the origin

A short remark may be made on the apparent singularities in the above equa-
tions (9a)–(9d) as we approach r = 0. Since we are dealing with physical quan-
tities, representing the velocity field in a pipe, we know that the quantities in-
volved are finite, and bounded near the axis. It can be shown, (Batchelor & Gill
1962; Loulou 1996), that near the axis the Fourier components behaves as

(ûA, ûB, ŵ) ≈ (c1rα+1, c2r
α−1, c3rα), α = 1, 2, 3, . . .

(ûA, ûB, ŵ) ≈ (c1r1, c2r1, c3r0), α = 0

and it is easy to verify that the equations (9c), (9d) are well-behaved as r → 0.
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