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Abstract

Conventional one-point turbulence closures have been extended with an addi-
tional transported scalar for modeling of magnetohydrodynamic (MHD) tur-
bulence. The new scalar, «, captures the length scale anisotropy and tendency
towards two-dimensionality, which is a characteristic feature of MHD turbulence,
and allows accurate modeling of the Joule dissipation of turbulence. The con-
cept has been used for both a full Reynolds stress closure, and a three-equation
K-e-amodel. An exact transport equation for « was derived from the governing
equations. All terms in the equation require modeling, however. The proposed
model transport equation for « includes terms for magnetic dissipation, non-
linear energy transfer, and effects of mean shear and strain. Modeling of the
magnetic and strain-related terms was based on rapid distortion analysis of the
linearized equations, while modeling of nonlinear effects is phenomenological in
nature. For homogeneous turbulence, the model was compared with linear the-
ory, direct numerical simulations and experiments. For turbulence subjected to
a strong magnetic field, the model reproduces the energy and length scale evo-
lution predicted by linear theory. When nonlinear effects are of importance, it
predicts energy decay and length scale evolution in agreement with experiments.
The eddy viscosity and Reynolds stress versions of the model coincide with the
respective conventional models in the absence of a magnetic field. The objective
of this project has been to develop efficient MHD turbulence models for engi-
neering applications, especially for modeling of continuous steel casting. The
novel MHD turbulence models appear to be numerically robust, and they have
been implemented in a commercial flow solver, together with electromagnetic
equations for the Lorentz forces in the mean momentum equations.

Descriptors: Turbulence model, magnetohydrodynamics, MHD, magnetohy-
drodynamic turbulence, computational fluid dynamics, continuous casting, di-
mensionality, Reynolds stresses, eddy viscosity
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Preface

This thesis considers the modeling of magnetohydrodynamic (MHD) turbulence,
by including additional structural information in conventional Reynolds stress
and eddy-viscosity closures. The thesis is based on and contains the following
papers.

Paper 1. O. WIDLUND, S. ZAHRAI & F. H. BARK (1998) Development of a
Reynolds stress closure for modeling of homogeneous MHD turbulence. Phys.
Fluids 10, 1987-1996.

Paper 2. O. WIDLUND, S. ZAHRAI & F. H. BARK (2000) Structure informa-
tion in rapid distortion analysis and one-point modeling of axisymmetric mag-
netohydrodynamic turbulence. Phys. Fluids 12, 2609-2620.

Paper 3. O. WIDLUND & G. TALLBACK (2000) Modeling of anisotropic tur-
bulent transport in simulations of liquid metal flows in magnetic fields. 3rd
Int. Symposium on Electromagnetic Processing of Materials, EPM2000, Nagoya,
Japan, April 3-6, 2000. ISLJ.

Paper 4. O. WIDLUND (2000) MHD turbulence modeling: Effects of mean
strain on dimensionality anisotropy. To be submitted.

Paper 5. O. WIDLUND (2000) Implementation of MHD model equations in
CFX 4.3. Technical Report TRITA-MEK 2000:10, Dept. of Mechanics, KTH,
Stockholm.

Paper 6. O. WIDLUND (2000) Modeling anisotropic MHD turbulence in sim-
ulations of liquid metal flows. 4th International PAMIR Conference, Presqu’ile
de Giens, France, 18-22 September, 2000. PAMIR.

Paper 7. O. WIDLUND (2000) Nonlinear effects in modeling of homogeneous
MHD turbulence — Comparison with experiment To be submitted.

Compared to already published versions, the papers have here been typeset in a
consistent format, and minor typos have been corrected.



CHAPTER 1

Introduction

Faraday and his contemporaries were already in the early 19th century aware
of the interaction between a magnetic field, and an object moving through it
[13]. They knew, that if an electrically conducting solid object or a fluid moves
through a magnetic field, an electric current is generated. The current induces
a magnetic field of its own, which distorts the original field. The current also
interacts with the magnetic field to create forces, which tend to counteract the
original motion.

The interest for the interaction between conducting fluids and magnetic fields
increased in the end of the 19th century, when astrophysicists realized that elec-
trically conducting ionized gases (plasmas) are abundant in the universe, together
with strong magnetic fields. The concentration of gases is naturally very low,
but the effects can be dramatic because the time scales and length scales are
extremely large. In 1919, Larmor presented a brief communication with the title
“How could a rotating body such as the Sun become a magnet?” [19]. One of
the explanations suggested by Larmor was that the rotating motion of the sun
induces electrical currents, which themselves produce the magnetic field neces-
sary for their creation. The result is a self-exciting hydrodynamic dynamo (see,
e.g., Moffatt [27]). Much later geophysicists embraced the dynamo theory for
explaining how the rotation of the earth causes its liquid core to generate the
earth magnetic field. The term “magnetohydrodynamics” was introduced by the
Swedish astrophysicist Hannes Alfvén in 1942 [3], when he, in a classical paper
in Nature, reported the first mathematical deduction of magnetohydrodynamic
wave motion, later known as Alfvén waves. At about this time, the formal the-
ory of magnetohydrodynamics (MHD) was finding its present form (see, e.g.,
Shercliff [35]).

The first electromagnetic pumps and generators were conceived around 1920,
and especially since the second world war, MHD has found wide-spread practical
and industrial application. FElectromagnetic pumping of liquid metal coolants
was, for example, standard practice in the early nuclear reactor designs, and
MHD is a cornerstone in modern research on controlled thermonuclear fusion.
In a fusion reactor, the hot plasma is confined using magnetic fields, and lig-
uid metal “blankets” are used both for cooling and moderation. Magnetic fields
are used in materials processing for heating, levitation (to avoid contamination),
stirring, and flow control. In the manufacture of semi-conductor substrates, mag-
netic fields are applied in the crystal growth process to control the detrimental
effect of natural convection. In the metallurgical industry, magnetic fields are
commonly used for stirring and braking of liquid metal flows.
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A process of particular relevance for this thesis is the continuous casting
of steel. In this process, the liquid steel is continuously supplied to a water
cooled copper mold through a submerged inlet pipe. The strong momentum of
the injected liquid steel causes recirculation in the mold and this may lead to
inclusion of particles and impurities, that would otherwise migrate to the slag
layer at the surface. The fluid motion in the mold can be damped and controlled
by applying a static magnetic field across the mold. The field is provided by a
so-called electromagnetic brake (EMBR), a device often used to improve quality
and productivity in continuous casting operations. The primary effect of the
magnetic field is here to brake the mean flow; the motion of the fluid through
the magnetic field induces Lorentz forces, which tend to counteract the motion
perpendicular to the magnetic field. Another effect is magnetic dissipation of
turbulence, or Joule dissipation, which reduces the turbulent transport of heat
and momentum. Figure 1.1 illustrates the effect of a localized magnetic field
on the mean flow in the mold. The momentum of the inlet jet is reduced and
redirected. The penetration depth of the jet is thus considerably reduced, as
is the entrapment of oxide particles and gas bubbles. The meniscus, i.e., the
near-wall interface between liquid steel and the slag layer, will be calmer and the
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FIGURE 1.1 Outline of flow field and transport of inclusions in con-
tinuous slab casting. The left side of the figure is for conventional
casting, without magnetic braking. On the right side, an electromag-
netic brake (EMBR) has been applied to brake the momentum of the
inlet jet.
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surface temperature higher. The increased stability of the process often leads to
a substantial reduction of cracks in the surface of the product.

Manufacturers of magnetic brakes use numerical flow simulations to opti-
mize their designs and verify that they meet performance specifications (see,
e.g., Lehman et al. [22]), and steel producers use simulations to optimize their
processes [39, 43]. The most economic way of simulating turbulent flows is to
solve equations for the mean flow velocities, mean temperatures, etc. The effects
of the turbulent fluctuations on the mean flow are accounted for by including
model equations for statistical turbulence quantities. Common quantities used
in turbulence models are the kinetic energy of the turbulence (turbulence in-
tensity), and quantities related to length scales or time scales of the largest
turbulent eddies, which account for most of the turbulent transport. The ex-
tension of commercial numerical flow solvers to include the effects a magnetic
field on the mean flow is relatively straightforward, but the effect of the mag-
netic field on turbulence is more difficult to incorporate. The magnetic forces act
preferentially on motion perpendicular to the magnetic field. One consequence
of this is that turbulent structures are elongated in the direction of the magnetic
field. These structural changes are very important for a correct description of
Joule dissipation of turbulence, but the effects are not captured by conventional
turbulence models.

If we look at the effects of a magnetic field in more detail, it is useful to
define a few dimensionless numbers. The interaction between the fluid flow and
the magnetic field is characterized by the magnetic Reynolds number. For an
incompressible Newtonian fluid with constant density p, magnetic permeability
w1 and electric conductivity o, the magnetic Reynolds number is defined as

Rm = puoUL = %, (1.1)
where U and L are characteristic velocity and length scales of the flow, and
A =1/(uo) is the magnetic field diffusivity. Lehnert [23] was the first to formu-
late the dimensionless number (1.1) and recognize the analogy with the hydro-
dynamic Reynolds number Re = UL/v (where v is the kinematic viscosity). The
magnetic Reynolds number can be interpreted as a ratio of the time scales for
diffusion of magnetic field perturbations, and flow convection. In most industrial
and laboratory-scale liquid metal flows, magnetic diffusion dominates, and the
magnetic Reynolds number is very low, Rm < 1. This means that the distortion
of the magnetic field due to the flow is negligible, and our theoretical treatment
of the electromagnetic equations can be simplified considerably.

Regarding magnetic effects on the flow, the strength of magnetic effects rel-
ative to inertial mechanisms is measured by the magnetic interaction parameter,
defined as

2
_B°L (1.2)
p U
where B is the flux density of the magnetic field. N is the ratio of inertial forces
and magnetic Lorentz forces, characterized by time scales L/U and p/(cB?),
respectively.
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Lehnert [24] studied the decay of turbulence in an imposed magnetic field
He considered the final period of decay, where both magnetic and viscous forces
are present (Re < 1), but nonlinear effects are negligible. Lehnert formulated
the linearized induction and momentum equations, and derived a law of decay
for the spectral energy tensor (see Sec. 3.1.3). He noted that the asymptotic
state of decay is two-dimensional with respect to the magnetic field, so that
surviving turbulent structures are very long the direction of the magnetic field.
Moffatt later continued along the same lines [26]; He used Lehnert’s linearized
equations, focusing on the case of high Reynolds number, Re > 1, and strong
magnetic fields, N > 1, where also viscous effects can be neglected. For the case
of low magnetic Reynolds number, Moffatt found that turbulent kinetic energy
decays as K ~ (t/7,,) /2, where 7,, = p/(0B?) is the magnetic time scale. It
is interesting to note that this often cited result follows already from integration
of Lehnert’s decay law for the spectral energy. Moffatt further showed that,
although the final state of decay is two-dimensional (no variation in the direction
of the field), linear theory predicts that the remaining turbulent kinetic energy
is partitioned equally between fluctuations parallel with, and perpendicular to
the magnetic field.

Sommeria and Moreau [37], and Davidson [11] used dimensional arguments
to estimate the development of length scale anisotropy during the linear phase
of decay. If [ and [, respectively, are length scales in the perpendicular and
parallel directions relative to the magnetic field, they found that I; ~ (¢/ T )2,
if | is assumed to change only slowly. Davidson argued that the field-parallel
component of angular momentum is conserved during decay in a magnetic field,
and this lead to the energy decay rate found earlier by Lehnert and Moffatt.

A scale estimate of the magnetic term in the linearized equations shows that
the magnetic Joule dissipation, u, of turbulent kinetic energy, K, is

(see, e.g., Davidson [11]). Even if Joule dissipation dominates initially, it will
diminish with growing anisotropy of the length scales, and we will eventually
reach a point where nonlinear inertial effects are no longer negligible. If the
initial interaction parameter is Ny, Alemany et al. [2], and Sreenivasan and
Alboussiere [38] have estimated that the duration of the linear phase of decay is
tlin ~ 7'mN61 / 3 The role of nonlinear inertial mechanisms in MHD turbulence is
still not well understood, but they are expected to increase the Joule dissipation
rate, by transferring energy to regions of spectral space where Joule dissipation
is strong (see, e.g., Moreau [28]).

Most of the MHD experiments reported on in the literature are studies of
pipe and channel flows, both laminar and turbulent. Magnetic fields are generally
found to reduce the level of turbulence, and delay transition from laminar to
turbulent flow. The monograph by Branover on MHD duct flows [5], and the
review by Lielausis [25] provide good overviews of experimental results. The
thesis of Burr [6] is an example of more recent work.
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The experimental setup used by Alemany et al. [2], and later Caperan and
Alemany [8], is unique as it is probably the only one where wall effects are
negligible. They studied the decay of homogeneous grid generated turbulence in a
magnetic field. The initial interaction parameter was of order unity, so nonlinear
effects should be important. They found the energy decay rate K ~ t~7, which
is significantly faster than the theoretical results for the linear case mentioned
earlier.

The most accurate approach to numerical modeling is direct numerical sim-
ulations (DNS), where one resolves all turbulent fluctuations in time and space.
Already in 1976, Schumann used DNS to study the decay of homogeneous tur-
bulence in a magnetic field [34]. In a more recent study, Zikanov and Thess
[44] applied an artificial forcing to study the development of two-dimensional
turbulence. Noguchi et al. [30, 17] have performed DNS of a plane channel flow
in a weak magnetic field (N < 1). Homogeneous MHD turbulence has also
been studied using spectral models, like the eddy-damped quasi-normal Markov-
ian (EDQNM) approximation, and the direct-interaction approximation (DIA).
See Nakauchi et al. [29] and Shimomura [36] for applications of EDQNM and a
two-scale version of DIA, respectively.

The turbulence models generally used for computation of complex flows in
industrial applications rely on statistical quantities for modeling of turbulent
transport. One of the most popular models, the K-¢ model, include transport
equations for the turbulent kinetic energy, K, and the viscous dissipation rate, .
Turbulent transport in the mean equations is then modeled by defining a turbu-
lent viscosity as a function of the variables K and . In more advanced models,
transport equations are introduced for the Reynolds stresses appearing in the
mean momentum equations. The Reynolds stresses are statistical second mo-
ments of velocity fluctuations in all directions. Conventional turbulence closures
carry no information about length scale anisotropies, however, and this makes it
difficult to incorporate MHD effects in a physically realistic way. Ji and Gard-
ner [16] proposed a modification of a low-Re K-¢ model for modeling of MHD
pipe flows. They used an exponential damping function to model a decrease of
the Joule dissipation with increasing magnetic field strength (as measured by a
bulk interaction parameter). More recently, Kenjeres and Hanjalié¢ [18] suggested
significant improvements of this model.

The objective of the work presented in this thesis has been to develop an
effective and numerically robust engineering turbulence closure for industrial
MHD applications. The closure developed here differ from earlier work by intro-
ducing an additional transported scalar variable for the length scale anisotropy
information we need for modeling of the Joule dissipation. The definition of the
new dimensionality anisotropy variable « is such that the Joule dissipation of
homogeneous turbulence can be expressed exactly as

20 B?

P
A transport equation for the variable o can be derived from the governing equa-
tions, but all terms require modeling. The resulting model equation for « in-
cludes effects of mean strain, nonlinear energy transfer, and magnetic dissipation.

aK.

’LL:
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The magnetic terms in the £ and Reynolds stress equations can also be modeled
in terms of a. The scalar o and its transport equation can thus be used for
an MHD extension of conventional turbulence closures, for example in a three-
equation “K-e-a” model, or an eight-equation “Reynolds stress—a” model.



CHAPTER 2

Basic concepts

2.1. Governing equations

With spatial coordinates x and time ¢, the Navier—Stokes and continuity
equations for the instantaneous velocity field u;(x,t) of an incompressible fluid
are

6ui 6ui - 71 ap 82ui

S = — 2.1
ot M Ox; p 0x; eraxj@xj +f 1)
8ui -
0, 0, (2.2)

where p(x,t) is the pressure field, p is constant fluid density, v is the kinematic
viscosity, and f; is the magnetic Lorentz force, as governed by the Maxwell
equations. Using lower-case letters to denote instantaneous values, we have

1 .
fi - _Eiknjkbn- (23)
P
The electric current density j; is given by Ohm’s law,

Ji = o(ei + €irnurbn), (2.4)

where e; is the electric field and b; the magnetic flux density. The scalar electro-
static potential ¢ is defined by

o
(’)xi ‘
In the absence of free charges, the electric current density is divergence free. If

the conductivity o is constant, the divergence of Ohm’s law (2.4), together with
(2.5), therefor yields

(2.5)

e; =

0%¢ 0
——— =€k =—(u;bg). 2.6
axlaxl Ejkal‘i (U] ’v) ( )
2.2. Reynolds decomposition

The instantaneous variables above can be split into mean and fluctuating
parts, using the so-called Reynolds decomposition. We define the mean of a
quantity v as the ensemble average over an infinite number of realizations,

(v) = lim %Zvn. (2.7)
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For the quantities in the Navier—Stokes equations, the Reynolds decomposition
is defined by

wi(x,t) = (ui(x, 1)) + uj(x,t) = Ui(x,t) + uj(x,t),

p(x,t) = (p(x,t)) + p'(x,t) = P(x,t) + p'(x,1), (2.8)

fi(x’ t) = <fi(X7 t)> + fz’/(xv t) - Fi(Xv t) + fi/(xv t)’
where we have used capital letters to denote the mean quantities, and primes to
denote the fluctuating parts. Reynolds decompositions for the electromagnetic
quantities are defined in the same way, except for the magnetic flux density: the

mean magnetic flux density is the sum of the induced mean flux density B; (due
to the mean flow), and the applied external magnetic field By,

bi(x,t) = (bi(x,t)) + bi(x,t) = Bi(x,t) + bi(x, 1), (2.9)
where
B;(x,t) = Bri(x,t) + Boi(x). (2.10)
The external magnetic field Bg is here assumed steady, but not necessarily ho-
mogeneous. For electric current, electric potential, and electric field, we have
Ji(x,t) = Ji(x,t) + ji(x, 1),
d(x,t) = B(x,t) + ¢'(x, 1), (2.11)
ei(x,t) = Ei(x,t) + e}(x,t).

2.2.1. Mean equations. The ensemble averaged Navier—Stokes and con-
tinuity equations, often called the Reynolds equations, are

ot I dr; pOx; Oz (V Oz <uiuﬂ'>> + I, (2.12)
ou;
o (2.13)

We see that the statistical second moments of the velocity fluctuations appear on
the right-hand side of the mean momentum equations; the quantities —p(uju’;)
are the Reynolds stresses.

The interaction between the velocity field and the magnetic field is char-
acterized by the magnetic Reynolds number. For an incompressible Newtonian
fluid with magnetic permeability p and electrical conductivity o, the magnetic
Reynolds number is defined as,

Rm = puoUL, (2.14)

where U is a characteristic velocity scale, and L is the integral length scale.
The magnetic Reynolds number can be interpreted as the ratio between the
diffusion time scale of the magnetic field, and the time scale of the velocity field.
In most industrial and laboratory-scale flows, the magnetic Reynolds number
is very low, Rm <« 1. This means that the distortion of the magnetic field
due to the flow is negligible. The treatment of the electromagnetic equations
can then be simplified considerably by applying the inductionless, or quasistatic
approximation, in which we can neglect the flow-induced magnetic flux densities
B; and b beside the external field Bg. We use the quasistatic approximation
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here without further motivation, and refer to Sec. 2.5 for a discussion about the
underlying scale arguments in the context of Reynolds averaging.

We introduce the Reynolds decomposed quantities into Egs. (2.3) through
(2.6). Ensemble averaging yields the following equations for the mean electro-
magnetic quantities,

V20 =V - (UxB+(u xb')) = V- (U xBy), (2.15)
E=-Vo, (2.16)
J=0(E+UxB+ (u x b)) ~c(E+ U x By), (2.17)

1 1
F:;(JquL(j’xb’));s;JxBo, (2.18)

where the relative errors of the approximation are of order Rm, or smaller.

Most commercial codes for turbulent flow simulations solve the Reynolds av-
eraged equations, (2.12) and (2.13), with additional turbulence model equations
for predicting the Reynolds stresses (u;u’;). One way to include the Lorentz force
in the mean momentum equation is to solve also Eq. (2.15) for the mean electric
potential equation, with appropriate boundary conditions; the Lorentz force can
then be computed from Egs. (2.16) through (2.18), with due attention given to
the conservation of electric current.

2.2.2. Fluctuation equations. If we subtract the mean Reynolds equa-
tions from the instantaneous Navier—Stokes and continuity equations, we are left
with the equations for the fluctuating velocity and pressure fields,

o ou ,0U; 10p 02,
e i = —U: —_——— —|— v
ot Oz T0x;  pOx; O0x;0x;
a (2.19)
— (') — i /
+ 8IJ(<uluj> ulu])+fl’
/
g;‘% =0. (2.20)

We use the same procedure to obtain equations for the fluctuating electro-
magnetic quantities, and again apply the quasistatic approximation,
V2 =V-(Uxb +u' xB+u xb — (u xb))
~ V- (u' x Byp),
e =-V¢, (2.22)
=0 +Uxb +u xB+u xb —(u xb’))

~ o(e +u’ x By),

(2.21)

~

(2.23)

1
f’:;(Jxb/+j/><B+j’><b’—(j’><b’>)

1
~ —jl X B().
p

(2.24)
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2.3. Reynolds stresses and turbulent kinetic energy

The velocity fluctuations enter the mean equations (2.12) as the a priori
unknown Reynolds stresses —p(ujuf).

A transport equation for the Reynolds stress tensor R;; = (ujuf;) can be
derived by multiplying the Navier—Stokes equations (2.1) by wuy, ensemble aver-
aging, and subtracting the mean part (the latter is Eq. (2.12) multiplied by Uy).

This yields (see, e.g., Hallbdck et al. [15], Sec. 3.4)

6Rij 6Rij . 1o} 6Rij
ot * UJ 81”] a R] + Hlj “ij axm (me v aIW’L (225)
+ (uif) + (5 £7),
where
oU; oU;
P’L = —Lim J im Z, 2.2
J R O, By 0%, (2:26)
2 1 /0ou o',
I;; = = (p's’. ith s/, == — 4 =— 2.2
A, ou;
=2 i J 2.2
&1 V<(9xm8xm>’ (2:28)
1
Jijm = <u;u;u;n> + ; (<U;p/>6im + <ng/>(5jm) . (2.29)

In (2.27), s;; is the fluctuating strain rate tensor. ¢;; is the viscous dissipation
tensor. Only the production term P;; and part of the transport term in (2.25)
are explicit in the Reynolds stress tensor R;;. All other terms require modeling.

The pressure terms in the Reynolds stress transport (RST) equation have
been split into two parts. The pressure-strain rate correlation II;; is traceless
and represents intercomponent energy transfer; it thus has no counterpart in the
transport equation for the turbulent kinetic energy K = R;;/2. The pressure
term in J;j,,, represents pressure-gradient work (Tennekes & Lumley [41]); it has
here been lumped with the triple correlation responsible for turbulent transport,
so that J;;,,, represents spatial redistribution.

There is a problem with closure of the RST equations for two reasons, as
noted by Reynolds & Kassinos [32]. First there is the non-linearity of the Navier—
Stokes equations; a formally derived equation for a higher-order moment will
contain terms of the next higher order. Second, the terms involving the fluctu-
ating pressure represent non-local interactions.

The traditional theoretical treatment of the pressure-strain rate correlation
(2.27) is based on the formal solution of a Poisson equation for the fluctuating
pressure field. The divergence of (2.19), together with (2.20), yields

oU; Oy 0? of!
_7’ J + (u;u/. f— <u;ul>) — i
al‘j 83:1 89616333 J J 63:1
The integration of the Poisson equation is usually subject to a number of local
homogeneity assumptions (see, e.g., Chou [9]). One of these is that the mean

velocity gradients are assumed homogeneous, so that they can be extracted from
the integrals. For the MHD problem at hand, we split the pressure—strain term

1
—EVQp’ =2 (2.30)
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into three traceless parts, representing the contributions from the respective
terms in the pressure Poisson equation (2.30),
_ 17 (s) (m)
IL; = 11,7 + 1L + 11,7 (2.31)
The rapid part HE? here represents interaction of turbulence with the mean
velocity field. The slow term HE? represents non-linear turbulence—turbulence
interactions, generally acting to restore a turbulence field to isotropy. The mag-
netic part HE;-H) represents interaction between turbulence and Lorentz forces.
In this thesis, we treat the magnetic part of the traceless pressure—strain
term together with the explicit body-force terms in (2.25). All effects of the
magnetic field are thus incorporated into a Joule dissipation tensor, defined as

pij = — (Ui f5) — () — T, (2.32)
(The dissipative nature of p;; will be demonstrated in Sec. 3.1.)

An equation for turbulent kinetic energy K = R;;/2 is obtained by taking
the trace of (2.25),

oK oK 0 oK
where

aU;
Py = —<u;u;n>87, (2.34)

oul; Ou;
€= <83: e > ) (2.35)

_ 1 I 1 /A
Im = §<uiuiu7n> + _<u7np >7 (236)
P
1

H=gHii = —(uifi). (2.37)

Here Pg and e are the turbulence production and viscous dissipation, respec-
tively, while J,, represents turbulent transport, and p is the scalar Joule dissi-
pation of turbulent kinetic energy.

In the following section we briefly discuss conventional turbulence closures,
which do not consider effects of the Lorentz force. Modeling of the Joule dissi-
pation terms p;; and p is discussed in Chapter 3.

2.4. Conventional turbulence closures

The mean momentum equation (2.12) must be closed by providing a model
for the Reynolds stresses —p(uju’;), or by defining closed model transport equa-
tions for them. In practical applications we often want to predict also the trans-
port of a scalar, for example temperature (or enthalpy), or the concentration
of a chemical species. Consider a scalar g, for which a Reynolds decomposition
defines mean and fluctuating parts () and ¢/, respectively. The mean transport
equation can be written

Q) n 0Q 0 (TgoQ

2% _ 2 [ T% Ta’
ot U; e, ~ oz ( » 0z + (uiq >> + S0, (2.38)
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where pSq is a volume source of the scalar. Turbulent fluctuations contribute
to the transport of the mean quantity through the turbulent Reynolds flux
—p {ulq’), which must also be quantified by some kind of turbulence model.

If we consider the case without external body forces, conventional turbulence
models can be put into two broad classes; eddy viscosity models, and Reynolds
stress transport (RST) models. The most common eddy viscosity model is the
K- model.

2.4.1. Reynolds stress transport models. A full Reynolds stress closure
features transport equations for each of the six independent components of the
Reynolds stress tensor R;; = <u;u;>, complemented by a transport equation for
scalar viscous dissipation, e. The turbulent transport in the mean momentum
equation (2.12) is thus accounted for without further modeling.

The Reynolds flux term in the scalar equation is usually modeled as

~ulg) = =y £

oQ ¢ * &vj’

where C; is a model constant, and og is the turbulent Prandtl number for the
scalar (Daly & Harlow, [10]). The use of the Reynolds stresses in this model
makes the turbulent diffusion anisotropic, and governed by the velocity fluctua-
tions in different directions.

In the Reynolds stress equation (2.25), only the production term P;; is exact,
and all other terms require modeling. With the most common model (Launder,
Reece & Rodi [20]), we have

(2.39)

_ oU; oU;
‘PZJ = _Rzk% - Rjka—:vk’
s € 2
ng) = *01} <Rij - §K5¢j> ;

. 2
I} = — (Pm‘ - ngk‘Sij> ;
2

Eij = §€5ija
Cs K OR;;
Ji'm:* . _Rm _”-
J ORs € ! (9.%'1

Here K = R;;/2, while the scalar viscous dissipation ¢ is given by a model
transport equation (neglecting molecular transport),
Oe Oe € g2 0 <C’SKR 86)

= +U Pii/2 ~ Cer e + o —
+ / 2K+(9xj

ot " Vige, ~ O . = kg

This particular Reynolds stress model has nondimensional model constants Clq,
ng, 01, Y, Cs, ORS, and Oc.

Wall boundary conditions for the discretized equations are generally applied
using wall functions. The mean velocity and the value of ¢ are then prescribed
some small distance from the wall, within the logarithmic region of the bound-
ary layer. The Reynolds stress equations are solved assuming the wall-normal
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gradient is zero, and the source terms are evaluated in a way consistent with the
logarithmic law of the wall.

2.4.2. Eddy viscosity models. In eddy viscosity models, the Reynolds
stresses are modeled using the so-called Boussinesq hypothesis, relating Reynolds
stress anisotropy to the mean strain tensor:

2
3

where v is the turbulent viscosity, K = (u;u}) /2 is the turbulent kinetic energy,

and
1 /0U; 0U;
= +
2 81‘]' 81‘1'
is the mean strain tensor.

The widely used two-equation K—s model contains transport equations for
the turbulent kinetic energy K, and the viscous dissipation rate €. The turbulent
viscosity in (2.40) is given by a constitutive relationship,

K2
vp = ON?’ (241)

K(Sij -+ Z/TSZ‘]', (240)

AN

where C), is a nondimensional model constant. If (2.40) is inserted into the mean
momentum equation, we get

oU; ou; _ 10P +i
ot T0x;  pOx;  Oxj

(2.42)

[(V +vr) aUZ} :

ij

In analogy with (2.40) we have the eddy diffusivity hypothesis, which expresses
the Reynolds flux as

o VT oQ
(wid) = oo Ox;’
where 0g is a turbulent Prandtl number.
The most common formulation of the K— model is that of Launder and
Spalding [21]. The exact production term (2.34) is modeled using the Boussinesq

hypothesis (2.40), so that

(2.43)

PK - QVTSiiji- (244)
If we neglect molecular diffusion, the model transport equations for K and ¢ are
oK oK 0 vr oK
— 4+ U;— = P — el 2.45
ot + ]6333- K et a.%'j |:O'K (9.%']:| ( )
Oe Oe € &2 0 |vr Oe
—4+Uj—=Ca—=Px —Coo—=+—|—7—]|. 2.46
ot o 70z TKK €2K+8xj [05 (%cj} (246)

Here C.q, C.2, 0k and 0. are nondimensional model constants.

In the standard high-Reynolds number version of the K—= model, the treat-
ment of wall boundary conditions is the same as described above for the Reynolds
stress model.
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2.5. The quasistatic approximation of magnetic flux density

In the following we derive scale estimates for the induced mean and fluctu-
ating magnetic flux densities. Based on these scale estimates, we formulate the
quasistatic, or inductionless, approximation of the Reynolds-decomposed elec-
tromagnetic equations.

2.5.1. The induction equation. We assume a Reynolds decomposition
of the magnetic flux density into mean and fluctuating parts, as defined in (2.9)
and (2.10),

b; = B; + b,

where the mean magnetic flux density is understood to be the sum of a steady!
external magnetic field By and the mean induced field B; due to the fluid motion,

B; = By, + Bri.

An equation for the instantaneous magnetic field can be found by combining
Ohm’s law, j = o(e + u x b), with Ampere’s law, V X b = pgj. In the latter,
the current density j is related only to the induced field (no externally imposed
currents), and V x Bg = 0 in the flow domain. We then obtain

V x (B;+b') = poo(e +u x b).
Taking the curl of this, using Faraday’s law V x e = —db/Jt and some algebra,
we get the induction equation |

Bt Y gn;, " ge, T iee  0z,0m, (2.47)

2.5.2. Scale estimates of induced magnetic flux density. A Reynolds
decomposition of (2.47) yields the mean induction equation,

8BZ- (’)BZ- 8UZ ’ 8u; ’ (’)b; 1 8QBH
ot + Ui ox; B; Oz + <bj 8xj> <uj 8xj> + poo 0z0x;’ (2.48)
from which we should be able to find a scale estimate By for the mean induced
magnetic flux density. In order to obtain a scale estimate b for fluctuating mag-
netic flux density, we derive a transport equation for (b.b}) by taking the scalar
product of the instantaneous flux density b; and the induction equation (2.47).
Ensemble averaging, and subtraction of an equation for B;B; (not shown here),
yields

a<b2b;> 8<b;b;> _ ,o0 0B; 0 s1/,1
ot +UJ (%cj =2 <bzu]> al‘j - &rj <blbzu3>
ou; oU; ou,
Sy —2 ap d fb, —2
+ﬂz<@&%>+2wﬁga%+2<qQ8%> (2.49)
_ 2 /OO 1 Db
poo \ 0z; Ox; poo Ox;0x;

1In the analysis, the external field could in principle be slowly time dependent, provided
its time scale is large compared with the time scales of the turbulence (the external field may
otherwise excite turbulence).
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If the magnitude of the external field is By, we can assume that By > By,
and B; > b (these assumptions can be verified a posteriori). We further allow
the mean velocity field and the turbulent velocity fluctuations to be characterized
by separate velocity scales U and u, respectively (in a homogeneous shear flow
without magnetic effects, there is only one relevant velocity scale so that U ~ u).
The characteristic length scale of all mean field gradients is L.

For a correct scale estimate of the turbulent correlations, we must consider
the strength of correlation between pairs of fluctuating quantities, and determine
sensible length-scale estimates for the fluctuation gradients 9b;/0x; and du;,/dx;.

If we consider the correlation ((Ou}/0x;)*) (which governs the viscous dis-
sipation of turbulent kinetic energy) the largest contribution comes from the
smallest scales in the spectrum. It is usually estimated as

oul\? u?
<<996j> T
where A is the so-called Taylor microscale, which relates to the integral scale L
through

A~ Re V2L, (2.50)

where Re = uL /v is the hydrodynamic Reynolds number (see, e.g., Tennekes &
Lumley [41], Sec. 3.2). For high-Reynolds number flows, A is thus much smaller
than the integral scale L of the largest eddies. Looking at the corresponding
magnetic term ((9b;/0x;)*), however, we should note that the magnetic diffu-
sivity is several orders of magnitude larger than the kinematic viscosity, and the
magnetic Reynolds number Rm is presumably smaller than unity. This means
that all but the largest-scale magnetic fluctuations will be effectively smeared
out by the magnetic diffusivity; there is in fact no significant separation of scales
between the energy-containing and the dissipating magnetic fluctuations. The
appropriate scale estimate for the correlation ((9b;/0x;)?) is therefor b*/L*. We
conclude that ou)/0x; ~ u/\, while OV, /0x; ~ b/L.

In estimating the correlation between two fluctuating quantities, Tennekes
& Lumley [41] noted that two quantities cannot interact strongly unless they are
“tuned to the same frequency band”. They found that the correlation coefficient
scales with the ratio (< 1) of the time-scales involved. A correlation between
and Ou//dx; is thus proportional to both the ratio of their time scales (L/u and
A/u, respectively) and their individual scale estimates, so that

o’ A u u?
/ 7 -z 3
<ui3xj> ul X\ w'/L

Note that from (2.50) this is smaller by a factor of Re'/? than the estimate
u? /X we would get if the two quantities were perfectly correlated. The time and
length scales of the magnetic fluctuations presumably follow those of the large
turbulent eddies responsible for their creation, with length scale L and time scale

L/u (which applies to both b, and 9b;/0x;).
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Assuming that the transient term in (2.49) can be neglected (steady-state
conditions), the remaining terms of the (b;b}) equation can now be estimated as

oLy b2U

; 2.51
U] 6$j L ( 2 )
6B bB()u
2 (b ~ 2.52
(Hi) Gt ~ 25 (2.52)
O i b*u
oz, ~— (bibyu;) 7 (2.53)
ou, Abu  bByu
2B; { bil—=2 ) ~ Bg—— = 2.54
J< Zaxj> LN L (2:54)
b2U
2(bb, ~— 2.
) 2 259
4 A\ b2 b%u
27 Auw_bu
2 bzb]ax > X 7 (2.56)
/ / 2 2
2 ob;, o, N 1 b_2 _ 1 U (2.57)
oo 81”] 3203 oo L Rm L
1 02 (b.b! 1 v 1 VU
> —_—— = (2.58)

oo 8%81”] poo L2 Rm L

For small Rm, Eq. 2.14, and u < U, the terms (2.51), (2.53), (2.55), and (2.56)
will be smaller than (2.57) and (2.58). At least one of the terms (2.52) and
(2.54), containing By, should presumably be of the same order as (2.57) and
(2.58), so that

1 »2U  bBou
Rm L L

The scale estimate for the magnetic fluctuations is thus

b~ %RmBo. (2.59)

For the terms of the mean induction equation equation (2.48), we have (using
(2.59) and neglecting the transient term)

0B; UBy

UjaTj ~ T (2.60)
ngTU; ~ Ufo, (2.61)
<b; SZ> ~ “fb ~ Rm%uTBO, (2.62)
<ugg—§i> ~ “fb ~ Rm%uTBO, (2.63)
L @By 1B _ 1UB (264

100 90,00, " oo I Rm L
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If Rm < 1 and u < U, the terms (2.62) and (2.63) are smaller than (2.60) and
(2.61). At least one of the latter two should balance (2.64), so that

UBy 1 UB;
L “Rm L

This gives the scale estimate
B[ ~ RmBo (265)

The scale relations (2.59) and (2.65) form the basis for the quasistatic or in-
ductionless approximation, in which the induced mean and fluctuating magnetic
fields can be neglected beside the larger external field By, provided Rm is low.

Comparing the scale estimates for b and By , we finally note that b/B; ~
u/U; the mean velocity field is responsible for the induced mean magnetic flux
density, and the turbulent velocity fluctuations induce magnetic fluctuations.

2.5.3. Quasistatic approximation of the electromagnetic equations.
The scale estimates for B; and b’ can now be used to motivate the approxima-
tions in Sec. 2.2.1 and 2.2.2.

The mean electric potential equations is

V20 =V - (UxB+ (u xb')) ~ V- (U x By). (2.66)
The approximation is due to the scale estimates
U x B ~ UBy,
(u’ x b') ~ uByRmu/U,

which show that U x B > (u’ x b’), if v < U and Rm <« 1. The equation for
the fluctuating potential is

V2 =V-(Uxb +u xB+u xb — (u xb)). (2.67)

The last two terms are of order ub, and vanish beside the second term, u’ x B ~
uBy. The first term is estimated using the scale relation (2.59) for b, so that

U x b’ ~ URmByu/U = RmuBy.

Note that this estimate is not altered by the gradient operator in (2.67), because
the length scale of the largest eddies is governed by the length scale of the mean
velocity gradients. The second term in (2.67) is larger than the others by a factor
of Rm ™! so that

V2¢' = V- (0’ x By). (2.68)
The decomposition of the electric field yields
E=-Vo, e =-V¢.

Assuming there are no external electric fields, Eqgs. (2.67) and (2.68) suggest that
|E| ~ UBO, and |e’| ~ UB().
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If we again use the approximations of the cross-product terms from (2.66)
and (2.67), we get the current equations

J=0c(E+UxB+ (u xb')) ~c(E+U x By), (2.69)
=0 +Uxb +u' xB+u xb' —(u' xb'))

2.70
~ o(e +u’ x By). (270)
The mean Lorentz force becomes
1 1
F:;(JxB—i—(j/xb/>)z;(JxB0), (2.71)

based on the scale relations J ~ cU By and j’ ~ cuBy, deduced from Egs. (2.69)
and (2.70) (under the assumption that |E| ~ UBy, and |€'| ~ uBy). Subtracting
(2.71) from the instantaneous equation gives

1
f’:;(J><b’+j’><B+j’><b’—<j’><b’>). (2.72)

Applying the scale relations for J and j’ shows that the terms in (2.72) have the
same relative magnitudes as the terms of the potential equation (2.67). With
the same arguments we get

1
f ~ ;j/ X B().



CHAPTER 3

MHD turbulence modeling

For turbulence subjected to a steady external magnetic field, B, the model
equations for K, R;;, and € discussed in Sec. 2.4 must be complemented with
sink terms to account for magnetic (Joule) dissipation. If we let p and u. be
the Joule sink terms in the K and € equations, respectively, dimensional analysis
yields

BQ
n=d 2K,
p
ocB?
pe = da—¢,
p

where 0B?/p is the inverse of a magnetic time scale, and the coefficients d; and
dy are dimensionless (see, e.g., Branover [5], Sec. 2-3).

Unfortunately, the coefficients d; and dy are not constants, but depend on
the structure and length scale distribution of the turbulence. One effect of the
magnetic field is that turbulent structures tend to grow in the direction of the
magnetic field and, as a consequence, d; (and dy) will decrease. Sommeria and
Moreau [37] found that

2
()
d

where [} and [ are turbulent length scales perpendicular to, and parallel with
the magnetic field, respectively.

In a few recent model proposals, the variation of d; and ds is estimated in
terms of variables of a conventional turbulence closure. With the rationale that
the length scale anisotropy in a steady flow should depend on the strength of
the magnetic field, relative to inertial effects, Ji and Gardner [16] proposed a
modification of a low-Re K-¢ model where they let d; and ds be proportional to
an exponential damping function,

exp(—cNpm),

where N, is the mean-flow (or bulk) interaction parameter,
oB%L
N7n = p—U

For less obvious reasons, they included the same damping function in the consti-
tutive relationship (2.41) for the turbulent viscosity, vr. More recently, Kenjeres
and Hanjali¢ [18] suggested some significant improvements of this model; they
dropped the damping function in the equation for v, and replaced N,, with a

19
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turbulent interaction parameter N = 0 B2K/(pe), based on the local turbulence
variables.

The central idea developed in this thesis is to include in the closure an
additional transported scalar variable for the length scale anisotropy information
we need for modeling of the Joule dissipation. The definition of the new variable
« is such that the Joule dissipation of homogeneous turbulence can be expressed
exactly as

20 B?
P

W= aK.

3.1. Spectral analysis of homogeneous MHD turbulence

Spectral analysis offers several important advantages for the study of ho-
mogeneous turbulence. In the spectral domain, we deal with two-point velocity
correlations; one-point quantities like the Reynolds stresses are formed through
spherical integration over spectral space. The non-locality of the pressure fluc-
tuations is tractable, as we can solve the Poisson equations for the pressure
fluctuations explicitly, and eliminate pressure from the Navier—Stokes equations.
Finally, the Poisson equation for the electrostatic potential is easy to deal with,
and the Lorentz force as well as the magnetic Joule dissipation of turbulence can
be written in closed form. (See also Batchelor [4], Lehnert [24], and Hallback
[14)).

3.1.1. Fourier transform of fluctuations. We consider the case of ho-
mogeneous turbulence, allowing for homogeneous mean velocity gradients,
_ou;

B a1'771 .

The fluctuating quantities may each be expanded in an infinite Fourier series
if we consider a flow domain which is periodic in all spatial directions. The
dimensions of the flow domain may depend on time in a way that conserves

the volume of the domain. We define the Fourier expansions for the fluctuating
velocity and pressure fields as

ul(x,t) = Z&ieik'x,
p/ (X, t) _ Zﬁeikx.

Fourier transformation of the fluctuation equations (2.19) and (2.20) yields

Ui,m, (t)

dféi N .ki ~ . Y, ~ ;
— = —U; ju; — z;p — zk](u;u;) — vk, + f;, (3.1
ikit; =0, (3.2)

complemented by an equation for the rate of change of the wave number, due to
the mean strain,
dk;

E + Uj’ikj =0.
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Fourier transformation of the electromagnetic fluctuation equations (2.21)
through (2.24) yields

f= %j x By, (3.3)
j=o(é+ 1 x By), (3.4)
& = —iko, (3.5)
—k%$ =ik - (i x By). (3.6)

We can find an explicit expression for the transformed fluctuating Lorentz force
(see, e.g., Schumann [34]). From (3.5) and (3.6) we have

k-(GxB 1 . N
%k:—ﬁkx (k x [@t x By]) — @ x B,

where we made use of the vector identity a x (b x ¢) = (a-c)b — (a-b)c. Using
(3.3) and (3.4), we get

6=—

o

pk?
In the following we use B without subscript for the external magnetic field.

The pressure field p can be eliminated from the transformed fluctuation

equations (3.1) by twice taking the cross-product with k. Using the continuity
condition (3.2) and some algebra, we finally get a complete set of equations as

[k x (k x (1 x Bg))] x By.

= —U, ;0 + 27Um,juj — ij(u;u;) +4 23 J (u;nu;)
) o (B- k)2 ) (3.7
—vk®u; — — Uq,
p k2
dk;
T —Uj ik;. (3.8)

3.1.2. The spectral energy and Reynolds stress tensors. The spec-
tral energy tensor is defined as the ensemble averaged second moments of 1,

Oyi(k,t) = (as(—k, 1) (k, 1)) = (@fa;),
which correspond to the two-point velocity correlations in physical space. Here
47 is the complex conjugate of ;. The time derivative of ®;; is

i<A*A.>f a3\ /A
at ‘it T A\ dt )

The dynamical equations for <i>ij can now be derived by inserting (3.7). We
further rewrite the convolution integrals in the second line of Eq. (3.7) as

i (k) = / i (k — k)it (K) K,

ul u
and introduce the triple correlation and its complex conjugate
Tk K) = (@5(k — K)a; (K )in(—k)) ,
[ (kK = (0(K — k)i (—K )i (k) .

ijk
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This yields

d - N R
—@” (ka t) = 7Ui,'mq)7nj - Uj’rmq)”n

dt
ki k7n k] k7”
k2 k2

+ik,, {Am/T;‘mj(k, k’)d3k’ —Aj, TAmm-(k, k’)d3k/}

o(B- k)2,

+2 Um,n&)nj + 2 Um,n&)in

(3.9)

where Aij = 5ij - ﬁ

The components of the Reynolds stress tensor represent the ensemble aver-
aged velocity correlations in the one-point limit, R;; = (uju’;). For homogeneous
turbulence they can be expressed in terms of the spectral energy tensor,

Ri(t) = / ®;;(k, t)dk.

Integration of the dynamical equations of the spectral energy tensor produces
the spectral representation of the Reynolds stress transport (RST) equations we
introduced in Sec. 2.3,

dR;;(t)

g Lt M + 10 — 235 — pag, (3.10)

with
P;; = —U; k1 Rij — Uj i Ry,

- Kikm, < kejkm -
7 _2U7n,n/( $,; + -2 <I>m> &k,

k2 k2
) = / ik, {Am / T (k, K )dK/
A | Tl k’)d3k’} Pk,
€ij = QV/kQ@ijdg’k,

o [(B-k)?,
[ij = 2;/ e ®,;d%k,

where P;; is the turbulence production, HZ(-;) and HZ(-;) are rapid and slow pressure—
strain terms, respectively, and €;; is the dissipation rate tensor. As mentioned
in Sec. 2.3, the Joule dissipation f;; includes the explicit body force terms, as
well as their contribution to the redistributive pressure—strain interaction; see
Eq. (2.32).

Of the terms in Eq. (3.10), only the production term is explicit in the mean
velocity gradients and the Reynolds stresses themselves. All other terms must
be modeled in some way, as discussed in Sec. 2.4.1
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3.1.3. The “angular” energy distribution. If we assume magnetic dis-
sipation dominates in Eq. (3.9), all other terms may be neglected. The resulting
linear equation is similar to that of Lehnert [24], but we here neglect also the
viscous term (Re > 1).

Let the magnetic field B be in the ks-direction, and introduce spherical
coordinates,

k = k{sin 8 sin o, sin § cos ¢, cos 6},

where ¢ is an azimuthal angle about B, and 6 is the angle between k and
B. Contraction of (3.9) then yields an evolution equation for spectral energy

EE (i)m‘/Q,

dE(k,t)

=—j 11
p L, (3.11)

. ocB?
p=E22 cos?o. (3.12)
p
Here [i represents a spectral Joule dissipation. If we let Eg(k) be an isotropic
initial energy spectrum, the solution to (3.11) can be written as a function of
the angle 6,

E(6,t) = Ey(k) exp (”T?tho# 9) : (3.13)

Figure 3.1 shows a polar plot of £ and ji as functions of 6, as given by (3.13) and
(3.12) for a few points in time. Joule dissipation acts selectively on energy located
about the axis parallel with the magnetic field, and the remaining energy tends
to be concentrated near the perpendicular plane. Note also that the relative
magnitude of the Joule dissipation decreases rapidly, as the energy near the k-
axis is depleted. (Schumann [34] used a similar illustration for the individual
components of ;).

In the more general case, where also viscous and nonlinear inertial effects
are important, the situation can be illustrated as in Fig. 3.2 (similar to that of
Moreau [28]). Joule dissipation is largest in a cone about an axis parallel with the
magnetic field (shaded region). Outside the dotted circle, the turbulent struc-
tures a small enough for viscous dissipation to be significant. Nonlinear inertial
mechanisms cause what we can call angular energy transfer, transferring energy
from the energy-containing region near the &, -plane, to the region where Joule
dissipation is strong. The nonlinear mechanisms thus enhance Joule dissipation.

3.2. Modeling of the Joule dissipation

For modeling purposes, the rapid pressure—strain term Hg? is often written
as

Hl(;) = 22U n(Minkj + Mjnki),
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—>

FIGURE 3.1 Polar plot of E and [ as functions of 0, for a couple of
moments in time. The data is computed using Egs. (3.13) and (3.12)
(assuming Eo = 1). Time t* is here relative to the magnetic time
scale, i.e. t* = to B%/p.

Magnetic (Joule)
dissipation

Viscous
dissipation

FIGURE 3.2 Illustration of the general case, where also nonlinear
and viscous effects are important. Joule dissipation is largest in
a cone about an axis parallel with the magnetic field (shaded re-
gion). Viscous dissipation is significant outside the dotted circle,
where wavenumbers are large (small scales). Nonlinear inertial mech-
anisms cause angular energy transfer, which transfers energy from the
energy-containing region near the k| -plane, to the region where Joule
dissipation is strong. (Moreau [28].)



3.2. MODELING OF THE JOULE DISSIPATION 25

where we have introduced the fourth-rank tensor
kpkg -
Mijpg = / %@ij(k, t)d’k. (3.14)
The Joule dissipation tensor may be exactly expressed in terms of the M-tensor
[42],

o B2
pii(t) = 2 P NpgMijpq, (3.15)
where
1
Nij = ﬁBiBj = n;n;,

and n; is the direction unit vector of the magnetic field.

In classical turbulence modeling, the M-tensor is generally modeled in terms
of the Reynolds stress tensor alone, or rather in its nondimensional version, the
anisotropy tensor
K
Although models of this kind seem to do well in many irrotational mean flows,
they fail to predict, for example, the complex behavior of turbulence subjected
to rapid rotation. One of the problems with a model in terms of R only is that it
includes only information about the distribution of turbulent kinetic energy into
Reynolds stress components, while the original M-tensor contains information
also about the distribution of length scales in different directions. Reynolds [31]
and Reynolds & Kassinos [32] therefore discussed the possibility to include other
tensors in models for rapid rotation (see also Cambon [7]). For this purpose they
introduced the structure dimensionality tensor Y, defined by

aij =

2

kik; -
Y, = / kzj Dy (k)dPk = My (3.16)
From the definition follows that Y;; = 2K.

The dimensionality tensor Y carries length scale information which seems
to be vital for successful modeling of MHD turbulence. If we contract (3.15),
the scalar Joule dissipation p = u;;/2 can be expressed as

oB?
p(t) = TNijMnnji

oB?
=, NuYs (3.17)

oB? 2
In the last equality we have introduced the normalized dimensionality anisotropy
tensor, defined by

Yy 2

Yij = K 3%
In analogy with the Reynolds stress anisotropy tensor, this tensor is traceless and
the values of its diagonal components are limited to the finite interval [—2/3,4/3]
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(see, e.g., Reynolds [31]). A value of y1; close to —2/3, for example, indicates
that the energy-containing eddies are relatively long in the x; direction, while a
value of 4/3 would indicate that they are relatively short in the z; direction.

Inspired by Eq. (3.17), it was proposed in Paper 1 (Widlund et al. [42]),
that a model for MHD turbulence should include a model transport equation for
a normalized dimensionality anisotropy variable «, defined as

_ NijYi
(0= 2K .

(3.18)

The variable « is thus the normalized component of 'Y which is in the direction
of the magnetic field. It follows from the discussion above that 0 < a <1, and
that & = 1/3 for isotropic turbulence. In the limit of two dimensional (2D)
turbulence, o = 0.

With this new transported scalar, the Joule dissipation in homogeneous tur-
bulence can expressed exactly as

_ 20 B2
p

i Ka. (3.19)

Widlund et al. proposed a coordinate invariant tensor function for modeling of
the Joule dissipation tensor y;; in the Reynolds stress equations:

oB?
Hij (t) = 27KFZ] (akl7 N,y Oé), (320)

where Fj; is a second-rank symmetric tensor function of the form

G(a, Ina)
K

2
=G, Ina) [aij + g%} (3.21)

H
(a) (nlnkRM + njnkRM)

F; = 7
2K

Ri; +

1 2
+ H(Oé) {i(nmkak]’ + njnkaki) + gninj
G and H are here functions of a and I,,,, as indicated, and I,, = n;ngay; is
the only relevant invariant of the terms in F;;. A model equation for viscous
dissipation ¢ should also include a magnetic destructions term. Based on the
Joule dissipation term (3.19), and simple dimensional arguments, the magnetic

destruction of € can be modeled as

ea. (3.22)

In Paper 1, Widlund et al. proposed a simple phenomenological transport
equation for the new closure variable «,

do
= Mo~ fa (3.23)
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with

1
o = 002% <§ - a> , (3.24)

a®, (3.25)

Here p, represents magnetic destruction, driving the turbulence towards the
two dimensional (2D) state (v = 0). The term 7, is a linear return-to-isotropy
term of Rotta type [33]. It represents nonlinear angular energy transfer (see
Sec. 3.1.3), and promotes a return to the isotropic state (v = 1/3).

3.3. An exact equation for «

The main features of the phenomenological transport equation proposed for
« in Paper 1 are confirmed in Paper 2 and Paper 4, based on an equation
derived for the complete tensor Y. We have
dY;;
dt

= PY + I + o) — el — uls, (3.26)
where

kik;
PY = 20, / S bdk

kik; kmk

Y, = ~UnjYni — UniYnj + 2Umn / g, dok
v o kik; / INUINE

wh = [ ikn gt ( Tk K) = T (k, K )) &K dk
el =2 / ki Prnd®k

B -k)? k;k;
uh =2 / B 5,k
p

k? k2

Like the Reynolds stress tensor R, the dimensionality tensor has trace 2K, so
that contraction of equation (3.26) yields an equation for turbulent kinetic en-
ergy. The different terms on the right-hand side of (3.26) have been grouped and
labeled according to their physical origin, and the way they contribute to the
turbulent kinetic energy. PY represents turbulence production, as the contracted
term equals the contractlon P;; of production in the Reynolds stress equations.
The traceless term H}; represents what we can call mean deformation energy
transfer, and corresponds to the rapid pressure-strain term in the Reynolds
stress equations. The non-linear term 7TY is also traceless, correspondlng to slow
pressure—strain in the Reynolds stress equatlons s - and /,LU represent viscous
and Joule dissipation, respectively.

Let N;; = n;n;. We take the time derivative of the definition (3.18), and
insert (3.26) to obtain an evolution equation for c:

da

_:Pa Ha a  Ca T Ma, 2
7 +1Iy +7q —€a — 1 (3.27)
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where
P, = % (NP, — 2aPk)
I, = %Nikﬂé,
Mo = %Nikﬂkym
Ea = % (Nikei/i — 2&5) ,
1

T (Nikpt; — 20p) .

The properties of the last two terms were examined in Paper 2, using rapid
distortion theory and the linearized version of Eq. (3.9) (neglecting mean strain
and the nonlinear term). e, is expected to be small, and can be conveniently
absorbed in the return-to-isotropy model (3.24) proposed in Paper 1 for the
nonlinear term 7,. With the simple model term (3.25) proposed for p, the
model was found to give the desired asymptotic behavior, for long times, if the
coefficient C,; was adjusted to give good agreement with rapid distortion results
for small values of « (see Paper 2 and Paper 7 for details).

The mean strain terms P, and II,, were analyzed in Paper 4. Unfortunately
I1,, depends on all components of Y, not only on N;xYy;. A model of I, in terms
of o was found to be appropriate only if Y is reasonably symmetric about an axis
parallel with the magnetic field. This should fortunately be the case wherever
magnetic effects are important.

The nonlinear inertial mechanisms behind the term 7, are currently not well
understood; some progress is made in Paper 7, and ideas for future work are
discussed briefly in Sec. 5.1.

3.4. Inhomogeneous effects

Spectral analysis is a powerful tool for analyzing homogeneous turbulence.
On the other hand, the assumption of homogeneity is fundamental for the anal-
ysis, and it is difficult to see how the results could be generalized to account for
effects of walls and mean-flow inhomogeneities.

Apart from boundary conditions, inhomogeneity effects appear through the
Poisson equations for fluctuating pressure and fluctuating electric potential. The
elimination of these quantities in the spectral analysis accounts only for the spa-
tially homogeneous solution to the Poisson equations. The fluctuating pressure
appears mainly in the pressure—strain rate terms, where it acts to redistribute
energy between the Reynolds stress components; it has no net effect on the tur-
bulent kinetic energy. The fluctuating electric potential, however, appears in the
scalar Joule dissipation of turbulent kinetic energy. Below we derive an expres-
sion for the scalar Joule dissipation of homogeneous turbulence in physical space.
This allows us to see where assumptions of homogeneity enter the analysis. The
analysis largely follows that of Chou, for the pressure-strain terms [9].

We here use plain lower-case letters (without primes) to denote fluctuating
quantities. If the external magnetic field B is homogeneous, the Poisson equation
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for fluctuating electric potential is

du;
Ox;
Successive differentiations are commutative, so that the gradient of ¢ also satis-
fies a Poisson equation,

*v2(75 - *Bkeijk (328)

_vQ 8(]’) 82 Uj

ax Bken]k 81‘ :E'. (329)
Egs. (3.28) and (3.29) have integral solutions
ou’;
(f)(X) = _Bkeijk/a_gG@(a x’)dV’, (330)
a(/) 62 /
O ( Bkenjk/a /a / )dV/’ (331)

where we have used primed quantities to denote variables of integration, and
G(x,x’) is the Poisson Green function. We here assume the latter is defined
to account for boundary conditions, and note that the spatially homogeneous
solution, with boundary conditions prescribed in infinity, is governed by the
“homogeneous” Green function

1

hom
G x) = dr|x’ — x|

(3.32)
From Egs. (2.22) through (2.24), we have the scalar Joule dissipation as
p(x) = —(fiui)

0
— % |:Bk€ijk: <u187¢> =+ BQ<UZUZ> — Bsz<ukul> ,

J

(3.33)

where the quantity (u;u;) are the Reynolds stresses. The first term in (3.33) can
be rewritten using (3.31). Since x and x’ are independent, u(x) is unaffected by
differentiation over x’, and some algebra yields

82<uiugj>

/d /
0x',0x, Glx,x)dv

n) =2 [BkaiquEqps
P (3.34)
+BQ<uiui> — BlBk<ukul>] .

We here recognize (u;u;,) as the two-point velocity correlation.
Let r be the difference vector of x and x’, such that

/
T :.’L‘i — X4,

and the distance between the points is » = |x’ — x|. Differentiation and integra-
tion inside the integral in (3.34) is with respect to x’, keeping x constant, so a
change of coordinates from x’ and x, to x and r, yields dV’ = drydradrs, and

02 (usul) 02 (uguy,)

0z’ 0, Or;0rs

G(x,x')dV' = G(x,x')dv’.
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Following Chou [9], we introduce two conservation relations for the two-point
velocity correlations. Due to the continuity condition, we have du,, /0x], = 0.
For the ensemble averaged two-point correlation this yields

Ouguy,) _ Ouiuy,)
= =0, 3.35
ox! ( )

. orn,

assuming x is kept constant during differentiation. Chou argued, that if we
are not too close to flow boundaries, this conservation relation is approximately
symmetric with respect to points x’ and x, so that (still x constant)

o unu)

o 0. (3.36)

Let us now assume coordinates oriented so that B = Bez. Equation (3.34)
yields

_oB? O (wuy) | O (usul)
M(X)—T /{ 87’% + 67’%
82
“ oo, () + <u2u/1>)} G(x,x)dV’ (3.37)

+<U1U1> + <U2U2>] .

Due to the first conservation relation (3.35),

MNuuz)  Olwuy)  O{uruf)

Ore orq Ors '
O(ujug)  O(ugup)  O(ugus)
6’7“1 o 6’)“2 6’)“3 '

so that the last term of the integrand in (3.37) is

82
87"1 61“2

((uruy) + (upu)) =

CPluud)  Pluguy)  Plunuy) 9 (uzu)
67’% 67‘% 87’167’3 67’287‘3 '

(3.38)

The second conservation relation (3.36) gives

Ourug)  Ofuguy)  Olusug)

~

67’1 87’2 87’3

Away from the walls, the last two terms in (3.38) can then be approximated by

_82<u1u§,> B 9% (ugus) _62<u3u§,>

61“1 87"3 87"281“3 - 87"% <339)
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We may now collect and rearrange the terms of (3.37) as follows (note the
use of index notation to represent summation),

2 /
,/ a <u’nun> G(X,X/)dvl

2
ors

o B2
P

+/{82<u1u/1> n 02 (ugub) } G(x, x)dV' + (ugur) + (ugus) | .

/,L%

(3.40)

ar,ory, or,ory,

For comparison with the spectral expression (3.14) for homogeneous turbu-
lence, we note that the definition of the M tensor in physical space is (see, e.g.,
[15], Sec. 3.8.2)

9 (ujuf)
a Orp0ry
and that, for homogeneous turbulence, contraction of the second index pair yields
the Reynolds stresses,

Mijpg = Ghom(x, x")dV’,

]V[ijnn = (uiuj > .

Sufficiently far away from flow boundaries, the general Green function G(x,x’) in
Eq. (3.40) can be replaced by the homogeneous GP°™(x, x’). The second integral
in (3.40) then cancels the explicit Reynolds stress terms, and the second integral
can be expressed as

Mpnss = Ys3 = 2K a,

according to the definitions (3.16) and (3.18).

We expect effects of inhomogeneity to be largest for walls perpendicular to
the magnetic field, because turbulence structures will be longer in the magnetic
field direction. These walls are called Hartmann walls; they exhibit very step
velocity gradients, and are therefor often responsible for a large part of the wall
friction and heat transfer in a MHD channel flow. The wall-normal Reynolds
stress will however be small near a wall. The first homogeneity approximation
we made in Eq. (3.39) involved the term 02 (usu})/9r3, which should be small
compared to the other terms, at least near the Hartmann walls. As far as
the scalar Joule dissipation is concerned, this suggests that the most important
effects of inhomogeneity appear through the (spatially) inhomogeneous part of
the Poisson Green function in the integrals of Eq. (3.40).

A proper account of the effects of walls and inhomogeneities should be a top
priority for future modeling efforts; see Sec. 5.2 for a brief discussion.

3.5. Implementation in a commercial flow solver

The technical report included as Paper 5 in this thesis describes an imple-
mentation of the MHD model equations in the commercial flow solver CFX 4.3.
From the experience obtained so far, the MHD turbulence models appear to be
numerically robust and well-behaved.

In implementing MHD model equations in a commercial flow solver, the
biggest challenge is to make a numerically accurate implementation of the mean
flow equations, and especially the computation of total current. Including the
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magnetic sink terms in the turbulence equations is rather straightforward, and
the « equation can usually be defined as a transported scalar. The « equation
(3.27) is then complemented with convection and diffusion terms.

As mentioned above, no attempt has so far been made to model the near-wall
effects. For high-Reynolds number implementations of the K-¢ and Reynolds
stress models, the wall boundary conditions are applied in the center of the first
cell near the wall, and turbulence wall functions are used to account for what
happens closer to the wall. The wall functions for mean velocity have not yet
been modified to account for the effect of the magnetic field (although recent
results by Alboussiére and Lingwood [1] may be of interest). The treatment
adopted for wall boundary conditions for the a equation is the same as for the
K and Reynolds stress equations: we assume zero transport to the wall (i.e.,
0/0n = 0), and solve the equation as usual (with source terms in the first cell).
This procedure gives a smooth behavior of o near the wall, and it is easily verified
that the budget of « near the wall is indeed dominated by the source terms, and
that transport is negligible.



CHAPTER 4

Concluding summary

In this thesis, conventional turbulence closures have been extended with an
additional transported scalar, «, for modeling of MHD turbulence. The new
scalar captures the anisotropy of length scales, which is a characteristic feature
of MHD turbulence, and allows accurate modeling of the Joule dissipation. The
concept has been used for both a three-equation “K-e-a” model, and a full
Reynolds stress or “RST-a” model.

Below follows a brief summary of the MHD source terms and model equations
discussed in the thesis, and finally a summary of the appended papers.

4.1. The MHD turbulence closure

If n; is a unit vector parallel with the magnetic field, the proposed Joule
destruction terms in the K, ¢, and Reynolds stress equations are, respectively,

2
p=28 ko, (4.1)
P
20 B2
fe = C’MUTsoz, (4.2)
20 B2 H(o
Wi = G(a, Ina)Rij + L(ninkRk]’ + njnkR;ﬂ-)] , (43)
where
27 2
I,,)= a1 - I = 4.4
Glo o) =t 55021 =0) (1 3). (4.4
H(a) = —f—goﬂ(l —a), (4.5)
Ry 2
Ina = = 3 (4.6)

The destruction terms (4.1) through (4.3) were first defined in Paper 1, while
the scalar functions (4.4) and (4.5) shown here are those proposed in Paper 2.

For homogeneous turbulence, an evolution equation for a was developed from
the governing equations (Paper 2 and Paper 4). All terms require modeling,
however. The proposed model transport equation for « is

—+Uk7—Da:Pa+Ha+7Ta_Maa (47)

33
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where D, is the diffusions term (see Paper 5)

2 (VT Oa > (K-e-ce model)

8l‘k O'_Q (%ck
D=1 , (4.8)
= (%51% a) (RST-a model)
8mk

on s By
vy is here the turbulent viscosity (Eq. [2.41]), used in the standard K-¢ model
[21], and o, is a turbulent Prandtl number for @ (we have used o, = 1, which is
the value generally used for the other turbulence quantities). The source terms
in the a model equation are

P, = —%SimRki [(G + a)émk + Hnmnk], (49)
I, = a(l —a) fg(l —3a) — %a Sipnen;, (4.10)
€
Car (3 —a) (Alt. 1)
o = (4.11)
€
7 max {Cloa; Caz (3 —a)} (Al 2)
2
o = Con 2782, (4.12)

The strain related terms P, and II, were modeled in Paper 4 (for the K-
model, R;; in P, can be replaced by the Boussinesq hypothesis, Eq. [2.40]). The
strain terms were found to have little effect on the turbulent kinetic energy in a
channel flow with a transverse magnetic field, and can probably be neglected in
most practical applications. The return-to-isotropy term 7, represents nonlinear
angular energy transfer. The original model (“Alt. 17) was used in Paper 1,
Paper 3, and in the flow solver implementation reported in Paper 5. The rather
crude piecewise linear modification, “Alt. 27, was used in Paper 7. It was found
that the modified behavior near the 2D limit (v = 0) was important for obtaining
the expected nonlinear energy decay observed in experiments (Alemany et al.
[2]). The form of the magnetic destruction term p, was proposed in Paper 1,
and supported by the linear rapid distortion analysis in Paper 2.

This thesis has not considered the modeling of near-wall effects, and the
models have so far been used together with conventional high-Reynolds number
closures, and standard wall functions. The wall boundary condition used for the
a equation (applied in the first node) is the same as that generally used for K
and the Reynolds stresses: the wall-normal gradient is set to zero, so that the
solution is determined by the balance of the source terms.

The MHD model coefficients have varied as the work has progressed. The
following values are currently recommended, based on the analysis in Paper 7
(assuming the standard value Ceo = 1.92 in the ¢ equation):

{ Ca1, Cly, Caz, Cea b = {2, 472,04, 1.5 }. (4.13)

For high interaction numbers (strong fields), the model then reproduces the en-
ergy and length scale evolution predicted by linear theory. When nonlinear effects
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are of importance, it predicts energy decay and length scale evolution in agree-
ment with experiments. The models coincide with the respective conventional
models in the absence of a magnetic field.

4.2. Summary of papers

Paper 1. Ola Widlund, Said Zahrai, and Fritz H. Bark. Development of a
Reynolds stress closure for modeling of homogeneous MHD turbulence. Physics
of Fluids, 10(8):1987-1996, 1998.

A Reynolds stress closure is proposed for modeling of homogeneous MHD
turbulence. The paper introduces the dimensionality anisotropy variable c,
(called simply « in later work), and relates it to the Reynolds structure dimen-
sionality tensor, Y;; [31]. The new variable allows the scalar Joule dissipation to
be expressed as

BQ
u(t) = 20704MK.

Based on scaling arguments, a phenomenological transport equation is proposed
for o, including a Joule destruction term a and return-to-isotropy term of Rotta
type for nonlinear energy transfer. Model predictions are compared with Schu-
mann’s DNS data [34].

Paper 2. Ola Widlund, Said Zahrai, and Fritz H. Bark. Structure in-
formation in rapid distortion analysis and one-point modeling of axisymmetric
magnetohydrodynamic turbulence. Physics of Fluids, 12(10):2609-2620, 2000.

An evolution equation for the dimensionality tensor Y;; is derived, to re-
place the phenomenological equation for « used earlier; the analysis includes
homogeneous mean velocity gradients, to support a future extension to general
inhomogeneous flows. Rapid distortion theory (RDT) is applied to study the be-
havior of the different magnetic terms of the dimensionality and Reynolds stress
tensor equations; a variety of different anisotropy states could be examined by
letting magnetic forcing act on a number of initial spectral energy distributions
obtained from axisymmetric strain. The properties and limitations of linear or
bilinear invariant tensor models for the magnetic terms are evaluated. In the
limit of large interaction number, where Joule dissipation dominates (linear de-
cay), the resulting model equations have analytic solutions. Appropriate choice
of one model coefficient produces the asymptotic energy decay K ~ t=1/2 pre-
dicted earlier by linear theory (Lehnert [24], Moffatt [26]).

Paper 3. Ola Widlund and Gé6te Tallback. Modeling of anisotropic tur-
bulent transport in simulations of liquid metal flows in magnetic fields. 3rd
Int. Symposium on Electromagnetic Processing of Materials, EPM2000, Nagoya,
Japan, April 3-6, 2000.

This conference contribution reports how the MHD Reynolds stress model,
and a simpler three-equation K-s-a model, can be implemented in a commercial
flow solver. Known limitations of the current models are discussed, especially
concerning near-wall effects. The implemented equation for « includes strain
terms documented in Paper 4. The full model implementation is documented
in a technical report, available here as Paper 5.
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Errata: The abstract promises comparison with experimental data, but the
relevant 3D simulations were not finished in time for the proceedings. (The oral
presentation included comparison with data of Tananaev [40]; see Paper 5 for
details.)

Paper 4. Ola Widlund. MHD turbulence modeling: Effects of mean strain
on dimensionality anisotropy. (To be submitted.)

The evolution equation for the Y;; tensor derived in Paper 2 is used to
formulate an equation for a. Models are proposed for two terms related to mean
strain. One of the terms correspond to the production of turbulent kinetic energy,
and the other is related to the rapid pressure-strain term in the Reynolds stress
equations. A simulation of channel flow in a transverse magnetic field suggests
that strain effects in the « equation are significant only in regions where the
magnetic interaction parameter is small, and Joule dissipation is small compared
to viscous dissipation. The net effect of the « strain terms on turbulent kinetic
energy is therefor very small. In most practical MHD applications, it is probably
appropriate to neglect effects of strain on dimensionality anisotropy, especially
considering the algebraic complexity of the proposed model terms.

Paper 5. Ola Widlund. Implementation of MHD model equations in CFX
4.3. Technical report TRITA-MEK 2000:10, Dept. of Mechanics, KTH, Stock-
holm, 2000.

The report documents an implementation of MHD model equations in the
commercial flow solver CFX 4.3. The implementation of the mean equations is
accurate also for arbitrary non-orthogonal body-fitted multiblock grids. The new
MHD turbulence closure is implemented as both a full Reynolds stress model, and
a three-equation model of K-¢ type. The properties of the model implementation
are demonstrated in a simulation of a 3D channel flow with “M”-shaped velocity
profiles. The implementation of the new MHD turbulence models appear to
be well-behaved and numerically robust. The MHD model implementation can
be used together with standard CFX modeling options, such as heat and mass
transfer, multiphase and multicomponent flows.

Paper 6. Ola Widlund. Modeling anisotropic MHD turbulence in simula-
tions of liquid metal flows. 4th International PAMIR Conference, Presqu’ile de
Giens, France, 18-22 September, 2000.

The conference contribution discusses the asymptotic properties of the pro-
posed turbulence closure, and presents a comparison with the experiment of
Alemany et al. [2]. The principal differences between homogeneous and wall-
bounded turbulence are discussed briefly.

Paper 7. Ola Widlund. Nonlinear effects in modeling of homogeneous
MHD turbulence — Comparison with experiment. (To be submitted.)

The paper presents an analysis of the asymptotic properties of the turbulence
closure for large times. For the case of intermediate interaction parameters,
the analysis suggests that the model term originally proposed for the nonlinear
energy transfer in the a equation should be modified, so that it vanishes in the
2D limit. A unique set of model coefficients could be determined, which makes
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the model consistent with theory and experiments for interaction parameters
N ranging from zero to infinity. The model coincides with the standard K-
¢ model when there is no magnetic field. In the linear regime of large N, it
produces the K ~ t~1/2 energy decay and length scale evolution predicted by
linear theory. For intermediate interaction numbers (typically N ~ 1) where
nonlinear effects are important, K ~ t=*7 and L ~ t%% in agreement with the
classical experiments by Alemany et al. [2].



CHAPTER 5

Future challenges

We concluded with a discussion of remaining challenges for modeling of MHD
turbulence in engineering applications.

5.1. Understanding nonlinear inertial effects

The magnetic model terms in the proposed models have been studied us-
ing rapid distortion theory. The return-to-isotropy term in the a equation is
still phenomenological in nature, however, and we know very little about the
underlying nonlinear inertial mechanism. Neither do we know much about how
the magnetic field affects the nonlinear intercomponent energy transfer in the
Reynolds stress equations.

In Paper 7 it was argued that the return-to-isotropy term 7, in the «
equation should be modified, so that the term decreases linearly to zero when we
approach the 2D limit (o« = 0). The properties of such a model was evaluated
using a crude piecewise linear model expression,

Mo = % max { Clya 3 Caz(1/3—a) }. (5.1)

For large times, i.e., sufficiently small «, this term behaves as 7, = C/,ac/K.
The analysis showed that this behavior reflects the expected balance between
angular energy transfer and Joule dissipation. The predicted decay of energy
and length scale evolution is then consistent with expectations, and the model
could be adjusted to reproduce the experimental results of Alemany et al.

The analysis in Paper 7 did not consider the effect of the magnetic field
on the triple correlations responsible for nonlinear energy transfer. Using DNS,
Schumann found that the magnetic field reduces both the angular energy trans-
fer rate, and the nonlinear slow pressure—strain interaction in the Reynolds stress
equations [34]. One can argue that also viscous dissipation is affected, because
nonlinear interaction is responsible for the transfer of energy from larger to
smaller scales; Sreenivasan and Alboussiere showed that the k~3-spectra mea-
sured in many MHD turbulence experiments is consistent with reduced energy
transfer to the dissipative scales [38].

Alemany et al. [2] have suggested that the nonlinear energy transfer rate in
a magnetic field is reduced by a factor (1 + N), where N = 0 B2K/(pe) is the
interaction parameter. The nonlinear energy transfer rate is usually estimated
as ¢/K. Using Alemany’s suggestion, the reduced transfer rate is then fye/K,

38
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with
1

IN=1w
The analysis in Paper 7 supports the idea of Sreenivasan and Alboussiere, that
the “nonlinear” phase of decay (in which there is balance of angular energy
transfer and Joule dissipation) is characterized by a constant value of the so-
called true interaction parameter; In Paper 7 this is defined as N* = aN. In
the nonlinear regime of decay, « is small and presumably N* ~ const., so that
N ~ 1/a, and fy ~ a. This means that the original return-to-isotropy term
To gets the desired asymptotic properties of (5.1), if we use the modified energy
transfer rate, i.e.,

(5.2)

o = cang%a/:a —a). (5.3)

If we assume the same reduction is appropriate for the viscous dissipation terms,
the viscous dissipation in the K equation would be replaced by a model term
ex = fne, and the destruction term in the £ equation becomes e, = ngst/K.
Note that the closure variable ¢ would no longer directly represent the viscous
dissipation of turbulent kinetic, but it would keep its role for estimates of time
and length scales of the energy-containing eddies, K/ and K 3/2 /&, respectively.

Although this model formulation is rather speculative in nature, we shall
look at some very preliminary numerical results. We solve the equations for K,
¢ and « for a few different initial interaction parameters Ng. Here Cpo = 1 in
(5.3); remaining model coefficients are the same as in Paper 7. According to
(5.3), mo depend on N, which changes with time; in Fig. 5.1 we have plotted
o K /€ against o, with data from the simulations. The magnitude of 7, decreases
with increasing N, but the approach towards the 2D limit (o = 0) follows the
same straight line. An consequence of the N dependence is that the time it takes
to reach the nonlinear regime (constant N*) depend on Np; this is demonstrated
in the left pane of Fig. 5.2. In the right pane of Fig. 5.2 the duration tj;, of
the linear phase of decay is estimated and plotted against Ny. The duration
of the linear phase is described well by ty;, ~ TNé / 3, which is consistent with
the estimates of both Alemany et al. [2], and Sreenivasan [38]. A preliminary
analysis suggests that the viscous terms are negligible for large IV, and that the
asymptotic decay of energy is K ~ t=1/(Ce«=1)  This gives K ~t~2 if C.o = 1.5
(see Paper 7). For C., = 1.59 we get K ~ t 17 (the result of Alemany et al.).

Schumann obtained very useful results from direct numerical simulations
already in 1976; with the much more powerful computers available on our desk
tops today, it should be possible to produce very useful data with relatively
simple means. In a not too distant future, this may hopefully shed some light
on the angular energy transfer mechanism, and the effect of the magnetic field
on nonlinear energy transfer in general.

5.2. Including effects of walls and inhomogeneities

As discussed briefly in Paper 6, MHD turbulence in wall-bounded flows be-
have differently than homogeneous MHD turbulence. If a flow domain is bounded
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FIGURE 5.1 Plot of 7o K /e versus a. Computed using Eq. (5.3), with
data from the simulations (C42).
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FIGURE 5.2 The left plot shows the evolution of the true interaction
number. The right plot shows how the estimated duration of the
linear decay (i.e., the time before N* ~ const.) depend on No. The
dash-dotted line shows the power-law slope 4/3, for comparison.

by walls perpendicular to the magnetic field, the turbulence tend to become not
only two-dimensional (long structures in the magnetic field direction), but also
two-component (2C), i.e., with vanishing energy in the field-parallel stress compo-
nent. The current models will not predict this particular feature of wall-bounded
MHD flows.

Solid boundaries modify the solution not only through boundary conditions,
but also through the fluctuating pressure, and the fluctuating electric potential.
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The spectral analysis of Sec. 3.1 accounts only for the spatially homogeneous
contribution to the fluctuating pressure and electric potential (see also Sec. 3.4).

The fluctuating pressure enters the Reynolds stress equations through the
pressure—strain terms. These are responsible for transfer of energy between in-
dividual stress components, but has no net effect on turbulent kinetic energy.
The pressure-strain terms are i.a. responsible for the damping of wall-normal
Reynolds stresses near walls. For a Reynolds stress model to predict the de-
velopment into a two-component state, the pressure-strain model terms [See
Eq. (2.31)] should be designed to promote damping of the wall-normal stress
component (when the length scale of turbulence becomes comparable with the
wall distance). Furthermore, all tensorial model terms must be realizable (see,
e.g., [15], Sec. 3.6.4), so that they will not produce unphysical results (e.g. nega-
tive normal stresses) in the 2C limit. This includes not only the pressure-strain
terms, but also the viscous dissipation tensor ¢;;, and the non-pressure part of
the Joule dissipation tensor [see Eq. (2.32)]. Realizability generally requires the
model tensor functions to be high-order in the Reynolds stress tensor. In addi-
tion, a realistic description of the wall damping requires that we include the extra
length scale information available through « (and the magnetic field direction
vector n) in the modeling.

As discussed in Sec. 3.4, the fluctuating electric potential give rise to near-
wall effects also in the scalar Joule dissipation of turbulent kinetic energy. In
the equations for scalars like K, e, and «, the near-wall effects can probably
be accounted for by relatively simple damping functions. This may allow the
development of a low-Reynolds number K-e-a model, where equations are in-
tegrated down to the wall. In a high-Reynolds number model, the wall effects
would instead be accounted for by modification of the wall functions (see, e.g.,
recent work by Alboussiére and Lingwood [1]).

It appears to be very difficult to develop an MHD Reynolds stress model,
which takes full account of wall effects, and allows transition to a two-component
2D state. Unless simplifications can be made, the complexity of the resulting
model terms, and the modeling effort involved, is discouraging. In compari-
son, the inclusion of near-wall effects in a scalar K-e-a model appears relatively
straight-forward.

Efforts to model these wall effects would benefit greatly from direct numerical
simulations (DNS) on channel flows. At least one such project is currently in
preparation, within the group of Prof. Thess in Ilmenau, Germany.

5.3. Modeling of anisotropic turbulent transport

One experimentally verified feature of wall-bounded MHD flows is that the
magnetic field will reduce the transport of a passive scalar (heat, species con-
centration) in the direction of the magnetic field (see, e.g., data of Kolesnikov
and Tsinober [25]). This effect can be attributed to the elongation of length
scales in the field direction, and the subsequent damping of wall-normal velocity
fluctuations.

The ability of a Reynolds stress closure to predict this effect depends on how
well the model can deal with damping of the field-parallel stress component. The
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discussion in the previous section suggest it will be rather difficult to develop a
Reynolds stress model with these properties. A more promising route may be to
use a three equation K-e-a model, and instead modify the Boussinesq and eddy
diffusivity hypotheses to account for the effects of the magnetic field.

The original Boussinesq hypothesis, Eq. (2.40), relates the Reynolds stress
anisotropy to the mean strain rate tensor. A modified expression should pre-
sumably depend also on « and the magnetic field direction vector n, something
like

2
— <u;u;> = 7§K(5ij + Bij(Sij, N, o, K, €, N, cee ), (54)
where B;; is a traceless symmetric tensor function.

In order to obtain an anisotropic eddy diffusivity, the original isotropic ex-
pression (2.43) may be exchanged for
oQ

92y (5.5)

—(uq') = Gig(ni,vr,09,a,N,--)

where G; is a symmetric tensor function.

It should be remembered that development of large anisotropies in MHD
turbulence is accompanied by very strong Joule dissipation of turbulence; in
many practical applications, turbulent transport may be small enough for effects
of anisotropy to be insignificant.
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Paper 1



DEVELOPMENT OF A REYNOLDS STRESS CLOSURE FOR
MODELING OF HOMOGENEOUS MHD TURBULENCE

Ola Widlund!, Said Zahrai2, and Fritz H. Bark!
1Faxén Laboratory, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
2 ABB Corporate Research, SE-721 78, Viasteras, Sweden

Abstract. A Reynolds stress closure is developed for homogeneous shear-
free turbulence subjected to a strong magnetic field at low magnetic Reynolds
numbers. A scalar dimensionality anisotropy parameter is introduced to
carry information about the distribution of energy in spectral space. This
information is vital in modeling MHD turbulence, as it determines both
magnitude and anisotropy of the Joule dissipation tensor. The Joule dis-
sipation tensor is modeled by a tensor function, which is bilinear in the
Reynolds stress anisotropy and the unit direction vector of the magnetic
field. The tensor function coefficients are second-order in the scalar dimen-
sionality parameter. A phenomenological transport equation for the dimen-
sionality parameter is proposed. The model is closed using the pressure—
strain model of Sarkar, Speziale and Gatski and a magnetic destruction
term in the standard dissipation equation. The purely magnetic linear
problem contains no undetermined constants, while the complete model
contains two constants. Model predictions for the case of decaying turbu-

lence show very good agreement with direct numerical simulations.

Due to copyright restrictions, only the abstract is available online.

Published in Physics of Fluids, 10(8), 1998.
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STRUCTURE INFORMATION IN RAPID DISTORTION
ANALYSIS AND ONE-POINT MODELING OF
AXISYMMETRIC MAGNETOHYDRODYNAMIC
TURBULENCE

Ola Widlund!, Said Zahrai2, and Fritz H. Bark!
1Faxén Laboratory, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
2 ABB Corporate Research, SE-721 78, Viasteras, Sweden

Abstract. It has recently been suggested that dimensionality information,
as carried by the Reynolds dimensionality tensor, should be included in an
extended Reynolds stress closure for modeling of magnetohydrodynamic
(MHD) turbulence at low magnetic Reynolds numbers. This would enable
more accurate modeling of the Joule dissipation, and capture the length-
scale anisotropies and tendencies towards two-dimensionality characteristic
of MHD turbulence. In the present work, an evolution equation for the
Reynolds dimensionality tensor is derived, based on the spectral formula-
tion of the Navier—Stokes equations. Most of the terms in the equation
require modeling. Rapid distortion theory (RDT) is applied to study the
behavior of the different magnetic terms of the dimensionality and Reynolds
stress tensor equations; a variety of different anisotropy states could be ex-
amined by letting magnetic forcing act on a number of initial spectral en-
ergy distributions obtained from axisymmetric strain. The properties and
limitations of linear or bilinear invariant tensor models for the magnetic
terms are evaluated. In the limit of large interaction numbers (where Joule
dissipation dominates), the resulting model equations for the energy decay
have analytic solutions. By choosing one model constant appropriately,
these are made consistent with the asymptotic energy decay K ~ t—1/2
predicted earlier by Moffatt. The long-term objective of these efforts is the
development of an effective second-moment closure for engineering appli-
cations.

Due to copyright restrictions, only the abstract is available online.

Published in Physics of Fluids, 12(10), 2000.
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MODELING OF ANISOTROPIC TURBULENT TRANSPORT
IN SIMULATIONS OF LIQUID METAL FLOWS IN
MAGNETIC FIELDS

Ola Widlund! and Géte Tallbick?
IFaxén Laboratory, Royal Institute of Technology, Stockholm, Sweden
2ABB Automation Systems AB, Visteras, Sweden

Abstract. The paper deals with an extended Reynolds stress closure for
modeling of turbulent transport in engineering MHD applications. The
model was implemented in a commercial CFD code, and predictions were
compared with experimental data. Properties and limitations of the model
are discussed, especially in view of the extreme anisotropies encountered in

MHD turbulence.

Due to copyright restrictions, only the abstract is available online.

Presented at 3rd International Symposium on Electromagnetic Processing of Materials,
EPM2000, Nagoya, Japan, April 3-6, 2000.

103



Paper 4




MHD TURBULENCE MODELING: EFFECTS OF MEAN
STRAIN ON DIMENSIONALITY ANISOTROPY

Ola Widlund
Faxén Laboratory
Royal Institute of Technology
SE-100 44, Stockholm, Sweden

Abstract. Widlund et al. have suggested to include an extra transported
scalar, «, in one-point models of MHD turbulence. The new scalar is de-
fined in terms of one single component (in the the direction of the magnetic
field) of the Reynolds dimensionality tensor Y. It captures the length scale
anisotropy characteristic of MHD turbulence, and allows accurate modeling
of Joule dissipation of turbulence in a magnetic field. Earlier efforts have
focussed on magnetic and nonlinear terms in the « transport equation; in
the present work, an attempt is made to incorporate also effects of mean
shear and strain. One of the new terms involves references to other com-
ponents of the full tensor Y, which could only be resolved by assuming
that Y is axisymmetric about the direction of the magnetic field. A sim-
ulation of channel flow in a transverse magnetic field suggests that strain
effects in the a equation are significant only in regions where the magnetic
interaction parameter is small, and Joule dissipation is small compared to
viscous dissipation. The net effect of the « strain terms on turbulent ki-
netic energy is therefor very small. In most practical MHD applications,
it is probably appropriate to neglect effects of strain on dimensionality an-
isotropy, especially considering the algebraic complexity of the proposed

model terms.

1. Introduction

Widlund et al. [10, 11] have suggested that an extra transported variable, «,
should be included in Reynolds stress transport (RST) and eddy viscosity clo-
sures for modeling of MHD turbulence. The extra scalar captures the length-
scale anisotropy and tendency toward two-dimensionality, which is characteristic
of MHD turbulence, and allows accurate modeling of magnetic effects on turbu-
lence.

The new scalar is defined in terms of the normal component of the Reynolds
dimensionality tensor Y [5, 6] in the direction of the magnetic field. If n is a unit
vector parallel with the magnetic field, and K is the turbulent kinetic energy,

nin; Vi
— 1

a =
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For homogeneous turbulence, the Joule dissipation of turbulent kinetic energy
can then be expressed exactly as

The dimensionality tensor Y carries information about the anisotropy of
length scales of turbulence structures, and was introduced by Reynolds and co-
workers to improve the modeling of rapidly rotating flows [5, 6]. Cambon et al.
have worked with similar ideas, but using a slightly different formulation [1].

The phenomenological transport equation for o proposed in [10] for homoge-
neous turbulence was later confirmed by deriving an evolution equation for the
full tensor Y [11]. These earlier efforts focussed on the magnetic and nonlinear
terms in the o equation. In the present work we attempt to include model terms
which describe the effects of mean velocity gradients (mean shear and strain) on
Q.

2. Theory

2.1. Governing equations. With spatial coordinates x and time ¢, the Navier—
Stokes equations for the instantaneous velocity field u;(x,t) of an incompressible

fluid are
6ui 6ui - 1 ap 82ui
ot ox; — plxy N V@xj(%:j +fo ®)
8161' -
o (@

where p(x,t) is the pressure field, p the fluid density, v the kinematic viscosity,
and f; is the Lorentz force (per unit mass).

The Lorentz force f; in (3) is governed by the non-relativistic Maxwell equa-
tions. If the magnetic Reynolds number is small (Rm; < 1), convective distur-
bances to the magnetic field will be small compared to the external field B, and
we can use the so-called quasistatic approximation (see [11] for details). Using
lower-case letters to denote instantaneous values, we have

1 .
fi ® —€iknjrBn, (5)
p
where the instantaneous electric current density j; is given by Ohm’s law,
Ji = o(e; + €ipnurBn). (6)
and e; is the electric field. The scalar electrostatic potential ¢ is defined by
o
€ = — axz . (7)
The current field is divergence free, so it follows from (6) that
0? 0
°~ €ijk 5 (Ui Br). (8)
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A Reynolds decomposition can be applied to split the instantaneous variables
into mean and fluctuating parts [11]. If we consider the case of homogeneous tur-
bulence, the equations for the fluctuating quantities can be Fourier transformed,
allowing for homogeneous mean velocity gradients
_ou;

Oy
In the spectral domain we can eliminate the fluctuating pressure from the equa-
tions, and find an explicit expression for the fluctuating Lorentz force (see [11],
and Schumann [7]). The Fourier coefficients of velocity are then given by

du; . kik .

o = Uiy + 2= Un,ji;

9)

kikmk; — . o(B-k)?_ (
o (Uuf) = vk — ;%ui,

m7y
complemented by an equation for the rate of change of the wave number of a

Ui,m (t)

—ikj (udy) + i

component,
dk;
dt

The spectral energy tensor is defined as the ensemble averaged second mo-

—Uj.:k;. (10)

ments of 14,

Dy;(k, t) = (i (—k, )it (k,t)) = (a7i;), (11)

T

which correspond to the two-point velocity correlations in physical space. Here
i i

* is the complex conjugate of @;. An evolution equation for ®;; can be de-
rived from (9), and from this we can formulate equations for several one-point
turbulence quantities [11]. The turbulent kinetic energy, for example, is

1 (.
K =3 / D, A%k, (12)
given by
dK
L — P —e— 1
dt K € H, ( 3)
where the production and dissipation terms are
Pr = —U; 1 Ry, (14)
e=v / K2, d%k, (15)
o [(B-k)?. 4
=— | ———9,,,d°k. 16
=2 [ (16)

The Reynolds stress tensor can be defined in the same way, as

Rij = /éijdi’)k. (17)
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It is given by

dR;;(t) ") | )
g = Lo I I — ey — g, (18)
with
Pij = =UixRij — Uj Ry (19)
(r)y klk‘m 2 k‘jkm 2 3
Hij - 2U7n,n/ (Wq)n] + 7©zn d k, (20)

(s) _ : Tk 3
m) = / ik {Am / T (0 K) K.

(21)
A | Tymi(k, k’)d3k/} 3k,
€ij = 2v / K2d,;;d%k, (22)
o [(B-k?: 53

where P;; is the turbulence production tensor, ¢;; is the viscous dissipation rate
tensor, and p1;; is the Joule dissipation tensor. The redistributive pressure-strain
rate interaction falls naturally into three parts: a rapid part HZ(»;) , representing
the mean deformation—turbulence interaction, a slow part HZ(-;), representing non-
linear turbulence-turbulence interaction, and finally a magnetic part, which is
here included in the Joule dissipation tensor.
The Joule dissipation of turbulent kinetic energy in (16) can be written as
2
p= %nmﬂ/ji, (24)

where n is a unit vector parallel with the magnetic field, and Y is the so-called
dimensionality tensor introduced by Reynolds and co-workers [5, 6],
kikj ~

V= [ Sk (25)
Reynolds showed that Y contains information related to turbulent length scales
in different directions. Based on (24), Widlund et al. [10] proposed a Reynolds
stress transport (RST) model for MHD turbulence, which included an extra
transport equation for a dimensionality anisotropy variable, o, defined as

_ nin; Yy
= = 2
“="oK (26)
so that
32
p=22""uK. (27)
P

This expression for Joule dissipation is exact for homogeneous turbulence.
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2.2. Transport equation for «. The main features of the phenomenological
transport equation proposed for « in [10] were later confirmed, based on an
equation derived for the complete tensor Y [11]. We have

dY;;
o = B H Il el - e (28)
where
Kk
Py = —2Upm / k; B,,pd°k (29)
kik; kmk
H}; 7Un,ani - Un,iYnj + 2(Jm n/ dsk (30)
v [ BR [ gy k) K dPk 31
ﬂ-ij - Rm k2 ( 7npp( ) ) mpp( ) )) ( )
el =2 / kikj®ndk (32)
Y _ o0 (B k)2 kik; ~ 3
Hiz = 2;/ 12 L2 q)nnd k. (33)

Like the Reynolds stress tensor R, the dimensionality tensor has trace 2K, so
that contraction of equation (28) yields an equation for turbulent kinetic energy.
The different terms on the right-hand side of (28) have been grouped and labeled
according to their physical origin, and the way they contribute to the turbulent
kinetic energy. P}; represents turbulence production, as contraction yields two
times the production of turbulent kinetic energy (14). The traceless term HZYJ-
represents what we can call mean deformation energy transfer, and corresponds
to the rapid pressure—strain term in the Reynolds stress equations. The nonlinear

term 7TY

is also traceless, correspondmg to slow pressure—strain in the Reynolds
stress equatlons 5 - and “w represent viscous and Joule dissipation, respectively.
Let N;; = n;nj;. We take the time derivative of the definition (26), and insert

(28) to obtain an evolution equation for a:

da
= Py + 1, « — Hay 4
r +1o +m w (34)
where
Pa 1 (Nsz]m QQPK) 5 (35)
2K
1
I, = — N, IV,
« 2K kg (36)
1
Ta = ﬁNikﬂ-Zh (37)
1 Y
T (Nirep; — 20¢) (38)
_ Y
Ha = 577 (Nikﬂki - 20‘#) : (39)
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Earlier work [10, 11] described the modeling of the last three terms. The Joule
destruction term pu, was modeled with a simple linear expression, while the
viscous term &, was absorbed in a “return-to-isotropy” model term, together
with the nonlinear term m,.

In the following we propose model expressions for the mean strain related
terms P, and Il,.

3. Modeling

3.1. Modeling of P,. The mean strain tensor S;; = (U; ; +Uj;)/2 can replace
U; ;j in (29). The antisymmetric part, the mean rotation rate tensor Q;; = (U; ; —
Uj.i)/2, is cancelled due to index symmetries of the integral. The production
term P, can be rewritten as

1
Pa = ﬁ (—QSZJKFJZ — 204PK) 5 (40)
where
/ qq) k. (41)

The tensor F;; appears also in the Joule dissipation tensor (23), which can be
expressed as

BQ
pij = 22— KFy;. (42)
p
Earlier papers [10, 11] proposed a bilinear tensor model for F;;,
1 H
Fij = It GRZ‘J‘ + E[NikRkj + Nijki] , (43)

where G and H are scalar functions of « and tensor invariants. The same model
can be reused here for P,, without further assumptions. We use the third-order
functions proposed in [11], as these behave well also near the 1D limit:

27 , 2
Gl Ina) = @+ 550°(1 = a) (Lm + §> : (44)
2
Hia) = — 21021 — a), (45)
10
where I,, = N;jpRri/K — 2/3 is a tensor invariant. The behavior of (43) is

discussed in more detail in [11].
We insert (43) into (40), together with the production of turbulent kinetic
energy Prx = —S;, Ry, to get
1

P, = oK (—2G Sk Ryi — 2H Siry Nyt R — 200Si1 Rii)

= (46)
Sszkz [(G + 04)57nk + HNWLk] .
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3.2. Modeling of II,. We saw above that the single component of Y rep-
resented by the scalar « is enough to describe the effect of Joule dissipation.
Unfortunately the other components of Y show up in the right-hand side of the
a equation (34), through the mean deformation transfer term II,. The latter
can be rewritten as

where we have introduced the symmetric second-rank tensor
koknkik; -
Ajj = Ny / %cbppd?'k. (48)

Note that U; ; in the last term of (47) has been replaced by S;;, due to the index
symmetry of A.

In the following we will assume that Y is axisymmetric about the unit di-
rection vector n. This is a good approximation only when the magnetic effects
are dominating, i.e., when the strain related terms are relatively weak. This
is clearly a weakness in an attempt to model the strain terms. On the other
hand, the assumption of axisymmetry about n is consistent with the definition
of o, which assumes there is a well-defined direction n, presumably given by the
orientation of the magnetic field.

According to invariant theory (see, e.g., [4]), any symmetric second-rank ten-
sor D;; which is axisymmetric about a vector n can be expressed as

Dij = d16;5 + dangng, (49)

where d; and dy are scalar functions. D has only two independent principal
components. As for the dimensionality tensor Y, its axial component is given
by «a, and we know the trace of Y is 2K. It is easily verified that the full
axisymmetric tensor can then be expressed as

Yi; = K(1—a);; + K(3a — 1)N;. (50)

The definition of A (48) is rather similar to that of Y, which suggest that the
spectral information contained in the two tensors is related. We therefor assume

that also A is axisymmetric about n, and that we can model A in terms of a.
The trace of A is

A dimensionally correct model expression is then

where f is a scalar function of a.
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When we insert (50) and (52) into (47), we get

Mo = —(1 — @)Up i Nt — (3 — 1)U o N Nig (53)
+ 2f () Sinbni + 2(a — 3f () Sin Nus
= —6f(c)Sit. N
= 9()Six Ny

Here we have used the identities (Sikaj = Nij, Nikaj = Nij, and Slkéjﬂ =
S;; = 0. The resulting expression is a scalar function of «, times the mean strain
normal component in the direction of n.

The rapid distortion analysis developed in the previous paper [11] can be
reused here to study the behavior of II,, in the axisymmetric case (see appendix
for a description of the RDT equations). We assume an initially isotropic spec-
trum (with e = 1/3), and let a magnetic forcing drive the spectrum towards the
2D limit, for which o = 0, and “backwards” (although not physically realistic)
towards the theoretical 1D limit, where ov = 1. This enables us to study II,, (and
g(a)) for all permissible values of @. The solid line in Fig. 1 shows the RDT
calculation of I, /S Nk = g(«).

We would like a model expression for I, to be accurate for isotropic turbu-
lence, and in the 2D limit, and as good as possible in between. We also wish
the model to be correct in the 1D limit, to avoid unphysical values of «. This
gives us three conditions for determining a model function g(c). With sufficient
degrees of freedom, a model function could also be required to have accurate
derivatives in one or two points, especially in the 2D limit, and in the isotropic
state. Table 1 summarizes these conditions on g(«) and its derivative ¢’(«), with
numerical values obtained from the RDT analysis.

The following fourth-order ansatz makes g(a)) = 0 in the 2D and 1D limits:

g(a) = a(l — a)(co + cra + c2a?). (54)

The remaining three conditions in Tab. 1 can be used to determine cg, ¢; and
¢2. A third-order model (co = 0) can be designed to fix the value of g in the
isotropic state, and fulfill one of the two derivative conditions. A second-order
model (¢; = cg = 0) is sufficient to fix the value of g at isotropy, but not to
control the derivatives. This gives four alternative models for g(«), of different
order, all of which give correct values of g in the three points in Tab. 1. Details
of the models are listed in Tab. 2.

TABLE 1. Desired properties of the function g(a), and its derivate g'(a).

State a | g(a) g (a)
2D 0 0 —14/5
Isotropic 1/3 | —2/5 ~ 0.4286
1D 1 0 -
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TABLE 2. Desired properties of the function g(c), and its derivate g’ ().

Model {cg,c1,c2} Comment
I {—14/5,5.29, —6.69} 4th order in o. Gradients correct
in 2D and isotropic states.
Ila  {-14/5,—-27/5,0} 3rd order. Correct gradient in

2D limit.

IIb  {-2.06,0.77,0} 3rd order. Correct gradient at
isotropy.

I {-9/5,0,0} 2nd order in . No control of gra-
dients.

0.2
o

0.1r - lla N
- 1lb

ikai

n./s
a

F1GURE 1. The four models in Tab. 2, compared with RDT results.

The four models are compared with RDT results in Fig. 1. The 2nd-order
model probably gives the best overall performance. Only the 4th-order model is
significantly better than the 2nd-order between the 2D and isotropic states, but
at the cost of poor fit around o = 0.7.

The 2nd and 3rd order models can all be parameterized in ¢y, which equals
the derivate in the 2D limit, ¢g = ¢’(0). We have

I, = a1l — @) |eo(l — 3ax) — 2—57a St Nii. (55)
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4. Results

We will illustrate the effect of the « strain terms in two simple channel flow
examples. In both cases we have used a standard RST model [3], and an imple-
mentation of the MHD model equations in the commercial flow solver CFX 4.3
(see Widlund [9]).

4.1. Fully developed channel flow, without magnetic field. We consider
the effect of the strain terms in a quadratic channel with fully developed flow
(Re &~ 10°), but without a magnetic field. The flow is in the z-direction, and we
let n be in the transverse y-direction. Since there is no magnetic field, there is no
physical reason for the dimensional changes to be aligned with n. The purpose
of the test is to check the behavior of the model in regions of flow where the
magnetic field is weak, or even absent; although the value of a does not affect
the other equations in this case, we should still require that the model does not
produce unphysical results, or cause a simulation to crash.

Figure 2 shows predicted profiles of o (top) and its source terms (bottom) in
the center of the channel. The production term is positive near walls which are
parallel with n (Z/h = 0), and negative near walls perpendicular ton (Y/h = 0).
The production term P, is balanced by the return term m,, and the resulting
value of a thus depends on the coefficient C,o in the return term. For the
predictions in Fig. 2 we used Cp2 = 1.0, which gives o = 0.5 in the center of the
channel. If instead C,o = 0.2, a = 0.9 in the channel center.

The transverse (and streamwise) mean strain normal components are zero in
a fully developed channel flow, so that the modeled II, is zero when n is in
one of these directions. In the absence of a magnetic field, the orientation of
the principal axes of the full tensor Y would rather be determined by the mean
velocity gradients, and the “pressure—strain” related term H}; could be expected
to play an important role, just as its counterpart in the Reynolds stress equations.

4.2. Channel flow with M-shaped velocity profile. Consider a 1 m long
channel with flow in the = direction (see illustration in top-left pane of Fig. 3).
The cross-section is 4 x 3 cm (in y and z directions, respectively). A transverse
magnetic field is applied in the z direction, half-way along the channel. The
length of the magnet is approximately 0.3 m. Based on channel half-width
h = 0.02 m, the flow Reynolds number is Re = 2 - 10°, and the Hartmann
number is Ha = 700. The resulting bulk interaction parameter is N = 2.45.
This particular case has been studied experimentally by Tananaev [8], and has
been subject to numerical simulations by Kenjeres & Hanjali¢ [2].

Figure 3 shows variable profiles of streamwise velocity, «, and budget of «
source terms. The strain terms have an effect only near the wall. The change
of «, and thus of the Joule dissipation, is about 10 — 15%. In the same region,
however, the local interaction parameter can be shown to be well below one,
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FIGURE 2. Fully developed quadratic channel flow, without magnetic
field (Re &~ 1111). Channel half-width h, and mean velocity U. The
unit direction vector n in the definition of « is in the transverse y
direction. The plot at the top shows predicted profiles of o in the
transverse directions, and plots below show the budget of o source

terms.

and the viscous dissipation is 5 — 10 times larger than the Joule dissipation (not
shown here; see [9] for details). The net effect of the « strain terms on turbulent
kinetic energy is therefor very small.

As noted earlier, the modeled pressure—strain term (here model Ila of Tab. 2)
is small in a developed channel flow, because the transverse normal component
of mean strain is small. The MHD model coefficients in the simulation were
{Ca1,Ca2,Ceo} ={0.86,0.2,0.5}.

5. Discussion and conclusions

The MHD turbulence models proposed by Widlund et al. [10, 11] include a
transport equation for a dimensionality anisotropy variable, c. Apart from the
magnetic and nonlinear effects discussed in earlier work, the o equation con-
tains terms which describe the interaction with mean velocity gradients. The
terms are related to the production of turbulent kinetic energy, and to the rapid
pressure—strain rate correlation. For the case of homogeneous turbulence, these
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FIGURE 3. The geometry of a channel flow is illustrated in the top-left
pane of the figure. The other panes show predicted variable profiles
in the center of the magnet (X = 0.452 m, Z = 0.015 m). The top-
right plot shows the M-shaped velocity profile. The lower-left plot
shows predicted values of «, with and without the strain terms P,
and II,, and the lower-right shows a budget of « source terms in the
same cross-section.

terms could be formulated based on the evolution equations derived for the full
dimensionality tensor, Y [11].

For modeling of the production term P,, we could reuse the model tensor
function developed in [10, 11] for modeling of the Joule dissipation tensor. No
further assumptions were required.

The rapid pressure—strain term I, contains references to all components of the
full Y tensor, as well as to components of another second-rank tensor integral
A with similar structural information (presumably related to that in Y). By
assuming that both tensors are axisymmetric about the unit direction vector n
in the definition of «, the pressure—strain term could be modeled in terms of « and
the axial component of the mean strain tensor. The assumption of axisymmetry
about n is a fair approximation when the effect of the magnetic field dominates
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over mean strain effects. The axisymmetric rapid distortion equations described
in [11] were used to study the properties of the exact term.

A consequence of the axisymmetry assumption is that only the axial mean
strain normal component S;;n;n; enters the resulting model expression for the
pressure—strain term II,. This component generally says very little about the
mean velocity gradients. In a channel flow with a transverse magnetic field, for
example, S;jn;n; is small, and we saw that the modeled II, is negligible. The
part of Y that would really interact with the mean velocity gradients in this
situation, and contribute to Il,, is the part which is not axisymmetric about n.
The proposed II, model term would be non-zero in expanding, or contracting
flows. Omne example is the jets of liquid steel from the submerged inlet pipe
in a continuous casting machine; with a transverse magnetic field, IT, would
presumably be negative. If we were to consider the purely hydrodynamic problem
of axisymmetric flow expansion or contraction, e.g. in a wind tunnel contraction,
and let n be in the streamwise direction, the proposed model equation for «
would probably predict the dimensional changes of the turbulence reasonably
well.

A simulation of a channel flow with a transverse magnetic field showed that
the strain terms have an effect only near the wall. The change of «, and thus of
the Joule dissipation, is about 10-15%. The Joule dissipation is however much
smaller than the viscous dissipation in this region, and the net effect on turbulent
kinetic energy is therefor negligible.

To conclude, strain effects in the « equation appear to be significant only
in regions where the interaction parameter is small, and Joule dissipation is
small compared to viscous dissipation. In most practical MHD applications, it
is probably appropriate to neglect effects of strain on dimensionality anisotropy,
especially considering the algebraic complexity of the proposed model terms.

Appendix: Rapid distortion equations

For a detailed discussion, see Widlund et al. [11], or Schumann [7].

Assume that the magnetic interaction number is large (N > 1), and that
velocity gradients are small, so that the non-linear term and all terms containing
U,,; can be neglected beside the magnetic and viscous terms. We further assume
that the magnetic field is oriented in the wxs-direction, so that the problem is
axisymmetric about the z axis. The evolution of the spectral energy tensor is

then described by

d . os K -

Eq)ij (k, t) = -2k (I)ij - QJVIECI)U, (56)
where M = 0B?/p (the inverse of the magnetic time scale). This is a linear sys-

tem of uncoupled ordinary differential equations, which has the analytic solution

D;;(k,t) = @ (k)exp {Qt (MZ—% +yk2>] : (57)



128 EFFECTS OF MEAN STRAIN ON DIMENSIONALITY ANISOTROPY

We here assume the initial spectrum @?j (k) is isotropic,

(k) = 20, <5z'j - kikj) : (58)

4rk? 2
Introducing spherical coordinates, k = k(sin 6 cos ¢, sin 8 sin ¢, cos 8), all relevant
one-point statistics and equation terms may now be obtained by spherical in-
tegration. It is convenient to separate out the radial integration over k; with
axisymmetry about x3, this leaves only geometric tensor functions in 6 to be
evaluated.

The objective of the analysis is here to examine the behavior of certain tensor
integrals for different shapes of the spectral energy distribution function, as char-
acterized by o = Y33/2K. Regardless of initial energy distribution, the magnetic
term in (56) will eventually drive the solution to a 2D state, for which the axial
diagonal component Y33 = 0, so that &« = 0. We will here artificially extend the
range of the analysis by allowing the magnetic deformation-rate parameter M
in (56) to take negative values. This corresponds to an artificial forcing with the
same structure as the magnetic force, but with opposite sign; the energy would
grow exponentially, forcing the field to a 1D state with energy concentrated on
the z3 axis and Y33 — 2K (o =1).

The assumption that velocity gradients are small and can be excluded from
(56) may seem to be in conflict with the objectives of the paper. Equation 57
is however used only to obtain axisymmetric spectral distributions with varying
values of . Different distortion mechanisms may well give energy spectra with
the same «, but otherwise different properties. This is however not an issue here,
since « is the only independent variable in the proposed model functions.
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IMPLEMENTATION OF MHD MODEL
EQUATIONS IN CFX 4.3

Ola Widlund
Faxén Laboratory
Royal Institute of Technology
Stockholm, Sweden

Abstract. This report documents an implementation of magnetohydro-
dynamic (MHD) model equations in the commercial flow solver CFX4.3.
The implementation assumes a DC external magnetic field, which can be
specified in user fortran, or read from a file. The code solves the Poisson
equation for mean electrostatic potential. Great care has been taken to
make the calculation of total electric current densities, and sources for the
potential equations, accurate even on arbitrary non-orthogonal body-fitted
multiblock grids. For modeling the effect of the magnetic field on turbu-
lence, the implementation uses the MHD turbulence model proposed by
Widlund et al. Both a full Reynolds stress model, and a three-equation
model of K- type are available. Commercial symbolic mathematics soft-
ware was used to automate linearization, optimization and code generation
for the often complex source terms in the turbulence model equations. The
properties of the model implementation are demonstrated in a simulation
of a 3D channel flow with “M”-shaped velocity profiles. The implementa-
tion of the new MHD turbulence models appear to be well-behaved and
numerically robust. The MHD model implementation can be used together
with standard CFXmodeling options, such as heat and mass transfer, mul-

tiphase and multicomponent flows.

1. Introduction

This report documents the implementation of mean electromagnetic equations
and magnetohydrodynamic (MHD) turbulence models in the commercial flow
solver CFX 4.3.

The featured MHD turbulence models where developed by Widlund et al.
[8, 7, 9] for modeling of Joule dissipation in simulations of continuous steel
casting applications. The modeling approach is based on the formulation of
a transport equation for a length scale anisotropy variable, a. The novel model
can formulated either as a full Reynolds stress transport (RST) model, or as a
three-equation K-e-a model.

As for the mean equations, the external magnetic field is assumed to be steady,
so that we need to solve only for the mean scalar electrostatic potential. We
further assume the magnetic Reynolds number is low, so that the so-called qua-
sistatic, or inductionless approximation is valid.

Also published as Technical Report TRITA-MEK 2000:10 (KTH, Stockholm, 2000).
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There are several motives for this CFX implementation. First of all, we want
to demonstrate that the new MHD turbulence models can be implemented in a
commercial flow solver, and that the models are numerically robust and efficient
enough to be useful for engineering MHD applications. Second, a complete 3D
solver for complex geometries will be very useful in the work with validation
of the new turbulence models. Finally, this work shows how existing in-house
implementations of the mean equations in older versions of the code can be
updated to work with complex multi-block non-orthogonal grids in CFX 4.3.

The following list summarizes the features of the MHD model implementation:

e User scalar equations for mean electrostatic potential EPOT (®), and tur-
bulence dimensionality anisotropy ALPHA («).

e Joule dissipation terms in both Reynolds stress, K, and ¢ equations, so
that either the full RST MHD closure or the reduced three-equation K-e-
« closure can be used. Automatic detection of model type in user fortran.

e The mean strain terms in the a equation can be disabled.

e Mean electrostatic potential and total electric current densities are com-
puted accurately even on multiblock non-orthogonal grids.

e The external magnetic field can be specified as constant and uniform in the
command file, read from a separate text file, or specified in user fortran.

e Total current density and Lorentz force components are stored in user
scalars for post-processing.

e Under-relaxation of Lorentz forces in the mean momentum equations (sup-
ported by standard command file options in CFX 4.3).

e Walls can be either non-conducting, or given a fixed electric potential.

e The electrical boundary conditions in flow inlets and outlets can be modi-
fied with options in the command file.

e The location of a zero reference point for electric potential can be specified
in the command file.

e A number of MHD model options and model parameters are read from the
end of the CFX command file when a simulation is started. This reduces
the need for recompilation of the fortran source code.

The report is structured as follows: Section 2 introduces the governing equa-
tions, and the model equations. Section 3 describes how the model equations are
discretized and implemented in the code. Some of the results obtained with the
code so far are described in Section 4. Section 5 contains discussion and conclu-
sions. Appendix A describes the various CFX and specific MHD model options
specified in the CFX command file, while Appendix B provides details about
the fortran routines used in the implementation. Appendix C lists a MAPLE
script for linearization and coding of source terms, and App. D is a listing of a
sample command file.
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2. Theory and model equations

2.1. Governing equations. With spatial coordinates x and time ¢, the Navier—
Stokes equations for the instantaneous velocity field u;(x,t) of an incompressible
fluid are

dpu; dpu; dp 0 du; .
815 + uj 8xj a 81‘1 + an <M(’)xj> + f“ (1)
(9ui o
o @

where p(x,t) is the pressure field, p is the (molecular) dynamic viscosity !, and
fi is a body force (per unit volume). In the MHD problem at hand, the body
force f; in (1) corresponds to the magnetic Lorentz force.

The fluid is subjected to an external magnetic field, with magnetic flux density
B (here in vector notation). The fluid flow will induce electrical currents in
the fluid, and these in turn give rise to an induced magnetic field, which can
be regarded as a perturbation of the external field. The relative size of this
perturbation is governed by the dimensionless magnetic Reynolds number

Rm; = noulL, (3)

where 77 is magnetic permeability, o electrical conductivity, and v and L are
characteristic velocity and length scales, respectively. In most industrial and
laboratory flows, the magnetic Reynolds number is very low, Rm; < 1. The
flow-induced magnetic field perturbations are then negligible beside the external
field. Using this so-called quasistatic approximation, the non-relativistic Maxwell
equations yield

f~jxB. (4)
The instantaneous electric current j is given by Ohm’s law,
jmo(e+uxB), (5)
where e is the electric field. The scalar electrostatic potential ¢ is defined by
e=—-Vo. (6)

In the absence of free charges, the current field is divergence free. If the conduc-
tivity o is assumed constant, the divergence of Ohm’s law (5), together with (6),
therefore yields

V2p~ V- (uxB). (7)

INot to be confused with the Joule dissipation p introduced later
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2.2. Reynolds averaged equations. A Reynolds decomposition is applied to
split the instantaneous variables into mean and fluctuating parts. The mean of
a quantity v is here defined as the ensemble average over an infinite number of
realizations v,

(v) = Jim — Z Up- )
We use capital letters for mean values, and primes to denote fluctuating parts.
The velocity is, for example, expressed as the sum U; +u}, where U; is the mean
velocity, and u} is the velocity fluctuations. By definition the mean value of the
fluctuation is zero.

Ensemble averaging of (1) and (2) gives the Reynolds averaged Navier—Stokes
(RANS) equations, or the mean momentum equations,

OpUs | 1 OpUs 0P 0 ( OUi 0\

or U gr; | Om  om (Maxj (wig) ) + Fi, (9)
ou;
o (10)

Here F; is the mean Lorentz force; see Sec. 2.3 below.
After Reynolds averaging, the transport equation for the mean @ of a passive
scalar ¢ = Q + ¢’ is

0 0 0 0
§?+U8pQ = o <F 6Q+p<uq>>+5’Q, (11)

where Sg is a volume source of the scalar, and I'g is the molecular diffusivity of
the scalar.

Turbulent velocity fluctuations contribute to the transport of the mean quan-
tities through the turbulent Reynolds stresses p <u;u;> in (9), and the turbulent
Reynolds flux p(uiq’) in (11), respectively. These turbulent correlations must
be provided by a turbulence model of some kind (see Sec. 2.4).

3. Mean electromagnetic equations. We perform a Reynolds decomposi-
tion also of the Maxwell equations (4) through (7). The mean Lorentz force F;
n (9) is thus given by

F=JxB. (12)
The mean electric current density is
J=0(-V®+UxB). (13)
The divergence of (13), together with the continuity condition V -J = 0, yields
V- (cV®)=V-(cU x B). (14)
For constant conductivity o, this reduces to the familiar Poisson equation

V29 =V - (U x B). (15)
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The Lorentz force F can be computed, if we first solve (14) with appropriate
boundary conditions. If n is an inward unit normal at the boundary, (13) yields
the Neumann boundary condition

o0 JIn
%—*FJFD-(UXB), (16)

where J,, = J-n is the current into the domain. A non-conducting wall has zero
normal current at the wall, J, = 0. For a stationary wall with no-slip velocity
boundary conditions, the boundary condition for @ is then simply

0P
— =0. 17
o (17)
The formal solution to (14) with only Neumann boundary conditions contains an
undetermined constant term. The electric potential must therefor be specified
explicitly in at least one point in the domain. Alternatively, a fixed electric
potential can be specified at one or more walls.

2.4. Conventional turbulence models. The complete set of transport equa-
tions must be closed by providing models for the Reynolds stress and flux terms
p <u;u;> and p (ulq’) appearing in the mean momentum and scalar equations (9)
and (11). Common models can be put into two broad classes; eddy viscosity
models, and Reynolds stress transport (RST) models. The most common eddy
viscosity model is the K-& model.

2.4.1. Second moment RST model. A full Reynolds stress closure features trans-
port equations for each of the six independent components of the Reynolds stress
tensor R;; = <u >, complemented by a transport equation for scalar viscous
dissipation, . The turbulent transport in the mean momentum equation (9) is
thus accounted for without further modeling.

The Reynolds flux term in the scalar equation is usually modeled as

Cs K, 0Q
—
<uzq> Rﬂal,]

18
o (18)
where C; is a model constant, and og is the turbulent Prandtl number for the
scalar [1]. The use of the Reynolds stresses in this model makes the turbulent
diffusion anisotropic. The transport equation (11) for the mean @ of a passive
scalar becomes

Q , ; 0pQ 0 Cs 09
0 U or, 7, <[FQ@J+;} RW] 31”]) So. (19)
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If we neglect molecular diffusion, the turbulence model equations are

apRij U 3pR¢j _i( Cs ER aRij)

ot b Oz, Oxy, pURS € K ox;

(20)
P (PZJ + HZ(;) + HE;-) — Eij) + Sgs,
Ope Ope 0 Cs K de \
ot +Ujaxj_8xj ( Oe € Rjkaxk> N
(21)

CasPuj2— Cale) 18
P ElK (1 EQK £

In the Reynolds stress equation (20), only the production term P;; is exact,
and all other terms require modeling. With the most common model (Launder,
Reece & Rodi [3]), we have

oU; oU;

P = _RikaTk ~Rivg (22)
(s) _ € 2
) = 01— <Rij - chﬁij) , (23)
. 2
HEj) =7 <Pij - ngk‘Sij> ; (24)
2
Eij = §€5ij. (25)

Here (23) and (24) represent slow and rapid pressure-strain, while (25) is viscous
dissipation. 5’5’5 is a source term due to the body force in the Navier—Stokes
equations. The first two model terms in the right-hand side of the ¢ equation (21)
represent production and viscous dissipation, respectively, while S. is a source
term. The Reynolds stress model above has model constants C.1, C.o, C1, 7,
Cs, 0Rrs, and o..

Wall boundary conditions for the discretized equations are generally applied
using wall functions. The mean velocity and the value of € are then prescribed
some distance from the wall, within the logarithmic region of the boundary layer.
The Reynolds stress equations are solved assuming the wall-normal gradient is
zero, and the source terms are evaluated in a way consistent with the wall law.

2.4.2. FEddy viscosity models. In eddy viscosity models, the Reynolds stresses
are modeled using the so-called Boussinesq hypothesis, relating Reynolds stress
anisotropy to the mean strain tensor:

2
—p (uiuj) = —3pK8i; + prSi (26)
where pr is the turbulent viscosity, K = (ufu}) /2 is the turbulent kinetic energy,
and
_1/oU; 0U;
Sij = 5 <8a:j + 8331-) (27)

is the mean strain tensor.
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The two-equation K-¢ model contains transport equations for the turbulent
kinetic energy K, and the viscous dissipation rate €. The turbulent viscosity in
(26) is given by a constitutive relationship,

K2
pr = Cup=—, (28)
where C), is a model constant.

If (26) is inserted in (9), the mean momentum equation becomes

8PU¢ 6pUZ- oP 0 0 i
; = — — )+ F,. 2
(’% +U] 8xj 8%‘1 + axj ([M+MT] 63:]) + ! ( 9)

In analogy with (26), we have the eddy diffusivity hypothesis which expresses
the Reynolds flux as

. N :u_TaQ
pluig’) = oo i’ (30)

where o¢ is a turbulent Prandtl number. The mean scalar transport equation
then takes the form
9pQ 9pQ 0 pr| 0Q

U ——(Ir — | =] =580 31

ot +o Ox; Oz, e+ og | O0x; Q (31)

Neglecting molecular diffusion, the model transport equations for K and ¢ are
(Launder & Spalding, [4])

OpK | 1y oK D (ﬂ_Ta_K

U~ 5 ) = p(Pi o)+ 8k (32)
2

Ope . 0pe O (pr 0= _ £ P — O
ot +Ujaxj 0x; (05 Ox; —7 CglKPK C€2K 5. (33)

OK al‘j

Here Py is the turbulence production, which is modeled using the eddy viscosity
hypothesis (26),

Py
PKE?

~ M—TSiiji. (34)
P
Sk and S. are source terms due to the body force in the Navier—Stokes equations
(1). Cu, Cz1, Ca2, 0k and o, are model constants.
In the standard high-Reynolds number version of the K-¢ model, the treat-
ment of wall boundary conditions is the same as for the Reynolds stress model
(see above).

2.5. Models for MHD turbulence. The MHD turbulence models proposed
by Widlund et al. [8, 7, 9] extend the conventional turbulence closures with a
transport equation for a dimensionality anisotropy variable, o. The new scalar
is then used to model Joule dissipation source (sink) terms for the K, ¢ and
Reynolds stress equations. The model concept can be used either as a three
equation K-e-a model, or as a full Reynolds stress model.
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The dimensionality anisotropy variable is defined in terms of the component
of the Reynolds dimensionality tensor, Y;;, which is parallel with the magnetic
field. If n; is a unit vector parallel with the magnetic field,

_ ningYii
=10 35
a=—s (35)

With this definition, the expression for scalar Joule dissipation of turbulent ki-
netic energy is exact for homogeneous turbulence,

32
o= 207041(. (36)

The dimensionality tensor Y was first introduced by Reynolds and co-workers
to improve modeling of rapidly rotating turbulence [5]. Like the Reynolds stress
tensor R, Y is a symmetric tensor with trace 2K, so that 0 < a < 1. For
isotropic turbulence, o = 1/3. The effect of a magnetic field is to decrease «
towards the limit of 2D turbulence, where o = 0. A low value of o means that
the turbulent structures are very long in the direction of the magnetic field. In
contrast, a value close to unity means that the structures are flat, and short in
the direction of the field.

An exact equation for a can be derived from the Navier—Stokes equations
[9], but all terms in the equation require modeling. The model equation for «
implemented in this work can be written on the generic form (11), with a source

term
Sa/p =Py +T) + 714 — i, (37)
where
R.:S nin; Rix Sk R::S..
P, =-2 AL § & it e Laadud L)t
o G— R at (38)
3 29 7
(r) — 222, L . Q..
my 2a< 50+ 0% 5>nm]5ﬂ, (39)
T = CQQ% (% - a> 3 (40)
BQ
Mo = 2Ca10—042. (41)
p

The first two terms, (38) and (39), represent the effect of mean strain (production
and rapid pressure-strain, respectively). 7, is a return-to-isotropy term, due to
non-linear energy transfer, while p, is the Joule destruction term. S;; is the
mean strain tensor, and G and H are model functions defined below.

The modeling of the mean strain terms P, and Hg) relies on the assumption
that the the full dimensionality tensor Y is axisymmetric about the magnetic
field (see [9]). This is probably a rather poor assumption in regions where the
magnetic field is weak, but there the value of « is not important. Wherever mag-
netic effects are strong, the strain terms are likely to play little role; considering
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their algebraic complexity they can probably be neglected in most cases, to save
computation time.

The current version of the MHD model assumes the underlying conventional
turbulence model is of high-Reynolds number type, with wall function boundary
conditions. The wall boundary conditions for the discretized a equation are
defined in analogy with those normally used for K and the Reynolds stresses.
The equation is dominated by a balance of its source terms near walls, and
transport is negligible. We therefor assume zero normal gradient in the first cell
(da/dn = 0), and evaluate the source terms as usual. There is currently no
low-Re version of the MHD model.

Magnetic destruction terms for K, € and the Reynolds stresses are put in the
source terms of the respective equations (32), (33)/(21), and (20). We have (see
8, 9])

32
Sk/p=—pn= *207041(, (42)
BQ
Se/p=—pe = 72%”7%, (43)
oB? H
SZ»(JRS>/p = —Hij = —27 <GRij + 5 [nmkRkj + njnksz}> s (44)
where
7 27 2
G(a Ina) = @+ 55a(1 - a) (Ina + 3> : (45)
H(0) = ~20a(1 ~ a), (46)
Iy = —2 2 4
na 7 3 (47)

3. Model implementation

3.1. Electric potential equation. The generic user scalar transport equation
available in CFX can be reduced to a Poisson equation by defining the scalar as
quasistatic (to disable the transient term) and disabling the convection term (one
option in selecting differencing scheme). With the eddy diffusivity hypothesis,
the resulting model equation for mean electric potential then takes the form

0 HT 0P
——{Ir 2= ) = 9%, 48
3Ij([¢+%}3%‘> * )
To obtain the desired results, we must cancel the turbulent contribution to the
total diffusivity in (48). We do this by setting the total diffusivity explicitly in the
user subroutine USRDIF. The actual value used is unimportant, but the same

value must of course be used when the source term S¢ is computed. Here we
use the value for the electric conductivity specified in the command file, I'¢ = o.
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For consistency with (15), the source term Sg in (48) must be
Se = -V - (T'sU x B). (49)

When (48) is integrated over a control volume, we use Gauss’ theorem to
rewrite the volume integral of the source as a surface integral,

/Sq>dV = —/V~ (TeU x B)dV
:7/FQ)(UXB)'dA.
In its discretized form, this is a sum over the faces f of a grid cell,
/Scpdv =S¢ Veeur

== Te(Us xBy)- Ay,
f
so that
1
Veell

Sp = — > To(Up xBy)- Ay (50)
!

Here Uy and By are interpolated values of U and B at the faces, and A is the

outward normal area vector of the face. This approach guarantees conservation

of source current, and it is consistent with the calculation of total current density

described in Sec. 3.2.

Walls are generally assumed to be non-conducting, in which case zero normal
flux boundary conditions should be specified for electrostatic potential. Alter-
natively, a fixed potential is specified at the wall. If only zero flux boundary
conditions are used, the electrostatic potential is not uniquely defined. The po-
tential must be known in some point in the domain. An MHD model option
can be read from the command file to define Cartesian coordinates for a refer-
ence point in the domain where the electrostatic potential is forced to zero (see
App. A.2).

All inlet boundaries in CFX use Dirichlet boundary conditions for user scalars.
The same is true if we have inflow through pressure and mass flow boundaries.
Unless we want these boundaries to have fixed potentials, the behavior can be
modified with MHD model options read from the command file, causing the flow
boundaries to behave as if they were electrically insulating (see App. A.2). This
is achieved by evaluating the source term (50) with U x B = 0 on cell faces at
the flow boundaries, and setting the corresponding diffusion coefficient to zero
when the potential equation is solved.

3.2. Total current density and Lorentz force. The total current density is

J=-0V®+oU xB. (51)
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The two terms on the right-hand side are of the same order, and the total current
density is often a small difference between them. Near an isolated wall, for
example, the two terms must balance almost completely for the wall-normal
current to be zero. A second-order accurate calculation of the potential gradient
in a cell P can be interpreted as the average of the first-order gradients evaluated
at the cell faces. To achieve the required accuracy of the total current density,
it is essential that we compute the U x B term in a similar manner. It should
therefor be computed as the average of (U x B) at the cell faces.

To describe the calculation of the U x B term for general body-fitted grids,
we need to discuss briefly the general non-orthogonal coordinate system used in
CFX.

We first introduce the Cartesian physical space coordinates x?, and the general
non-orthogonal computational space coordinates £°. The computation space
system is such that grid cells have unit volume and edges of unit length in terms
of computational coordinates. The two systems are related through the Jacobian
matrix J ;, and the inverse Jacobian matrix j},

J;p = @, (52)
= o
Ji = R (53)
We also define the Jacobian determinant
| J| = det (J)). (54)

In any point in the curvilinear coordinate system (£%), we can define two
frames of basis vectors:

e = g; (tangent to coordinate curves), (55)
el = gf (normal to coordinate surfaces). (56)
X

These are the covariant and contravariant basis vectors, respectively. Any Carte-
sian vector V. = (V) has two sets of components with respect to these basis
vectors:

V = V’ie(i) = Vlie@), (57)

where V' and V’; are the contravariant and covariant components of V, re-
spectively. The two sets of basis vectors are dual to each other, which means
that

e(i) "€ = (5; (58)
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A
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FI1GURE 1. The covariant basis vectors in a point P generates a paral-
lelepiped. Area vector are normal to the faces, with magnitude equal
to the face area.

(From (57) it then follows that the scalar product of a basis vector with the
Cartesian vector produces the corresponding components,

v (59)
V-/ = Ve(z) (60)
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<

o
=

The two sets of basis vectors can be given a geometric interpretation. Let
2 be denote a parallelepiped generated by the covariant basis vectors e(;). Let
A be area vectors, i.e., vectors normal to the faces of Q with magnitude equal
to the area of the faces. See Fig. 1. Area vectors are given by

A(l) = e(g) X e(3), A(2) = 9(3) X e(l), A(3) = e(l) X e(g), (61)
and the volume of ) is
’UOl(Q) =€(1) " €(2) X €3) = ‘J| (62)
This is often called the infinitesimal volume element; in CFX the notation /g =
vol(2) = |J| is used.
JFrom the above we can express the contravariant basis vectors in terms of
the area vectors and the infinitesimal volume element,

e® — A_@)

]
In CFX, both face area vector A) (positively oriented in computational
space) and the facial volume element /g s is stored, so the contravariant basis

(63)

vector normal to each face f is given by (63),
A
o) —

N (64)
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The covariant basis vector at a cell face is given by the vector between the cell
centers P and () on either side,
e(f> :de =XQ — Xp (65)
(assuming @ is located towards positive computational coordinates, relative to
P).
Let us now return to the calculation of the U x B term in (51). For a more
compact notation, let

Z=U xB. (66)

Using the weight factors stored in CFX, we interpolate U and B to cell faces,
and compute Zy at cell faces. The contravariant component in the face normal
direction is

Zéf) :Z-e(f> :Z-de. (67)

The vector Zp in the center of cell P is now redefined as the average of the
contravariant components at the cell faces,

Zp = > WPz eld) (68)
f
=S wiz, A g, (69)
f

The weight factor in the averaging is one half, W},f ) =1 /2.

In the special case where the grid is orthogonal, the contravariant and co-
variant basis vectors are parallel, e(; || €. ;From (63) and (58) then follows
that

VI
€ = A?f A(f)v (70)

where A; = |A()| is the face area. If this inserted in (67) and (68), we get
Zp = ZW}J)Z(”A(”/A?, (71)
f

where Z(f) =7 IE A is the normal flux component we used for computing the
source term for the electrostatic potential equation. This was stored in memory,
and can be reused for computing the total current in the orthogonal case.

To compute the total current density, we also need to compute the gradient
of electrostatic potential. We use the built-in CFX subroutine GRADS for this.
This routine however does not compute the correct gradient in cells adjacent to
wall boundaries. The gradients in cells next to walls, inlets, pressure boundaries
and massflow boundaries are therefor recomputed after the call to GRADS (see
App. B.10). If the MHD model options for insulated inlets/outlets are invoked,
this affects both the calculation of potential gradient, and the U x B term at
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the boundaries, in a way consistent with zero total current through the flow
boundary (see App. B).

With total current density computed with (51), the mean Lorentz force is
given by F;, = J x B. CFX supports under-relaxation of body forces in the
command file. The Lorentz forces can be switched off completely with a MHD
model option read from the command file.

3.3. Dimensionality anisotropy. In the CFX implementation, « is assigned
a user scalar equation of the generic form (11). Source terms are linearized so
that, for the source in a cell P, the source term for a scalar () can be written

S =Sy + SpQp. (72)

Source terms proportional to the variable itself should be put in Sp if they are
negative, since they will then enhance the diagonal dominance of the solution
matrix and improve convergence and robustness.

The symbolic mathematics engine MAPLE V was used to manipulate the
source terms, and translate the model expressions presented above into fortran
source code (see App. C). This procedure reduces the risk for programming
errors, and simplifies debugging. The procedure was as follows:

1. The source term model expression is expanded into component form and
simplified.

2. The resulting expressions are evaluated term by term, sorting them into
Sy or Sp. A proportional term is put into Sp if it is guaranteed to be
negative, and into Sy otherwise. The sign of the term is determined by
MAPLE, assuming that K and ¢ are positive, « is between zero and one,
and all other variables and constants are real.

3. Names of variables and parameters are substituted for those used in CFX,
and the expressions for Sy and Sp are automatically optimized and trans-
lated into fortran source code.

4. The automatically generated source code is included in the appropriate
user fortran routine.

The mean velocity gradients used in P, and H((f) are computed using the built-
in CFX subroutine GRADV. As far as we can tell, the gradients obtained next
to the walls are consistent with those used to compute the turbulence production
and pressure—strain terms in the standard turbulence equations. If the user has
selected the K-¢ model, the Reynolds stresses in P, and ng are substituted by
the Boussinesq hypothesis (26). The two strain terms contain the unit direction
vector of the magnetic field, n, which is undefined if B = 0. In this case, the
code uses n = e, to avoid numerical errors. Note however, that if there is no
preferred direction of length scale anisotropy, the only physically relevant value
for o would be the isotropic value of 1/3. The mean strain terms P, and Hg)
can be switched off with an MHD model option in the command file, to reduce
the computational effort.
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3.4. Turbulence equations. The fortran code for the source terms in the tur-
bulence equations is automatically generated, with the same procedure described
above for the source terms of the a equation.

All magnetic source terms in the standard turbulence equations can be switched
off with an MHD model option in the command file.

4. Results

4.1. Calculation of currents on non-orthogonal grids. The calculation of
total current on non-orthogonal grids is demonstrated in the following simple 2D
case. The electric potential and total current are computed in a box with side L,
with fixed zero potential boundary conditions on all sides. We assume a uniform
velocity field through the domain, from left to right, and solve only the electric
potential equation. The magnetic field distribution is cone shaped, localized
inside a circle of radius 0.14L, and the field orientation is perpendicular to the
plane. This induces currents cU x B directed downwards inside the magnetic
field, and a counteracting electric potential which causes the currents to close
outside the magnetic field.

In Fig. 2 we compare results computed on one uniform rectangular grid, and
one non-orthogonal grid with badly distorted grid cells. Both grids have 50 x
50 grid cells. The distortion and the uneven distribution of grid cells cause a
slight asymmetry of both electric potential and current distribution on the non-
orthogonal grid, but the results are otherwise consistent. In contrast, the lower
right plot shows what happens if we compute the total current on the skewed
grid as if it was rectangular. The accuracy of the term U x B is then very poor,
and we get a large false horizontal current component inside the magnetic field.

The non-orthogonal grid above was constructed of two 50 x 25 blocks. This
enabled us to use the same simple test case to verify that the algorithms for elec-
trostatic potential and total current work for multiblock grids with orientation
changes at block boundaries.

4.2. Channel flow with “M?” profiles. The following simulation of a channel
flow considers the same geometry as the mercury experiment by Tananaev [6)
(also studied numerically by Kenjeres and Hanjali¢ [2]). The flow is subjected
to a localized transverse magnetic field, as illustrated in Fig. 3 (the region of
the magnetic field is shaded). In terms of the channel half-width & = 0.020 m,
the channel Reynolds number is Re = Uh/v = 2 - 10°, the Hartmann number
Ha = \/o/(pr)Bh = 700, and the interaction number N = Ha?/Re = 2.45.

The most striking effect of the magnetic field is the development of an “M”-
shaped velocity profile. This is caused by the distribution of mean Lorentz forces
in the entry to the magnet, and it is enhanced further in the magnet exit.

The Joule dissipation of turbulence in the magnetic field reduces the turbu-
lent viscosity, but the reduction of turbulence is visible only as a secondary effect
on the mean velocity profiles. Unless we have measured turbulent statistics to
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F1GURE 2. The top two figures show contours of electrostatic poten-
tial and vectors of total current for a uniform rectangular grid (left),
and a non-orthogonal grid (right). The non-orthogonal grid and the
region of the magnetic field is shown in the lower left plot. The lower
right plot, finally, shows what happens if we try to compute the total
current as if the grid was rectangular (assuming contravariant and
covariant basis vectors are parallel). Note that the current here has
a false horizontal component inside the magnetic field.

compare with, the dominating effect of the mean Lorentz forces makes this ex-
perimental configuration a less than ideal test case for MHD turbulence models.
Nevertheless, it serves here as an illustration of how the MHD model imple-
mentation works, and a chance to look at the behavior of the MHD turbulence
models in a wall-bounded 3D flow.

The number of grid cells used in the channel cross-section was 59 x 39 (largest
in the y direction), and 65 in the streamwise direction. The grid was stretched
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FIGURE 3. Geometry of the channel flow.

to give the highest resolution close to walls, and in the entry and exit of the
magnet.

All walls were assumed non-conducting, and the inlet and downstream pres-
sure boundary defined as electrically insulated. We used standard turbulent wall
functions, with 3™ in the range 50 to 80 inside the magnet.

Four different simulations were performed, with different turbulence mod-
els. See Table 1. In all cases, the model constants were {Cy1, Ca2,Cea} =
{0.866,0.2,0.5}.

Figure 4 shows the velocity profile in the center of the channel, and in the
center of the magnet. The width of the wall jet predicted by the MHD models is
in good agreement with experiments. With the standard K-¢ model, turbulent
diffusion is over predicted, and the velocity peak is “smeared out”. All simula-
tions locate the velocity peak too far from the wall. Assuming the experimental
data is reliable, there is currently no obvious explanation for this. The trend
is the same for both MHD models and the standard K-e. It may be a result
of the standard wall functions we used in the simulation. We are also aware
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TABLE 1. Description of channel flow simulations.

| Case | Model Description
A | K-e-a Three-equation MHD model (no strain terms in
equation).
B | RST-« MHD Reynolds stress model (no strain terms in «
equation).
C | RST-«(S) | Complete MHD Reynolds stress model, including
strain terms in « equation.
D | Std K- | Standard model (no MHD terms).
14
1.2
S 1
2E
)
2038
3
g 1
Bosf ,
H
£
8
Boar — K-e-a 8
- - RST-a
—— Std K-¢
0.2k o Experiment (Tananaev) i

that certain inhomogeneous contributions to the Joule dissipation near walls
are currently not accounted for in the MHD models. Figure 5 shows vectors
of total current, and contours of electric potential, in the entry of the magnet.
Figure 6 shows contours of the x-component of the Lorentz force in the same
region, together with the mesh. The grid resolution in the streamwise direction
is rather poor, and one might suspect that the strong gradients of total current
and Lorentz forces in the entry of the magnet are not resolved properly, and that
this could be a source of error. However, a test with three times more grid cells
in the streamwise direction in the entry of the magnet did not affect the location

0
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Y [m]

FIGURE 4. Mean velocity profiles in the center of the magnet. Lines

show model predictions, and square symbols show experimental data

(Tananaev [6]) for comparison.

of the velocity maximum.
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FIGURE 5. Vectors of total current, and contours of electric potential

in the entry of the magnet (K-e-oo model).

Figure 7 shows K, € and p in the center of the magnet, as predicted by the K-
e-a model. The results with the standard K- model are shown for comparison.
In the core flow, the MHD model predicts K and e values about two orders of
magnitude smaller than the standard model, but close to the wall the difference
is small. This is because the turbulence production and viscous dissipation
dominates over Joule dissipation close to the wall. A local interaction number
Nioe = 0B2K/(pe) is of order 10 or larger outside the velocity peak, but drops
off to below unity when we approach the wall (not shown here).

Figure 8 compares predictions of turbulent kinetic energy in the center of the
magnet, as predicted by the different models (Tab. 1). We see it makes little
difference whether we include the strain terms in the o equation, or neglect them
(models RST-a(S) and RST-q, respectively). As expected, all MHD models pre-
dict lower energy than the standard K-¢ model, but there is also a significant
difference between the three equation K-e-a and the RST-a models. The differ-
ence between the two is that the production term in a Reynolds stress model is
exact, but it is modeled using the Boussinesq hypothesis in the K-¢ model. The
Boussinesq hypothesis relates the Reynolds stress anisotropy to the mean strain
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] |4

FIGURE 6. Contours of Lorentz force, together with the mesh in the
same plane, in the entry of the magnet (K-e-oo model).

tensor. This is often a good approximation in ordinary shear flows, but in MHD
flows it neglects the effect of Joule dissipation on the stress anisotropy.

The Reynolds stresses predicted by the RST-a model in the center of the
magnet are plotted in Fig. 9 (normalized with the turbulent kinetic energy). The
plotted cross-section is in the mid plane of the channel (z = 0.015), so the only
non-zero shear stress is (u/v’). The effect of the anisotropic Joule dissipation
dominates in the center of the channel, which causes the component (w'w’)
parallel with the magnetic field to be larger than the other normal stresses.
This behavior is typical for Joule dissipation of homogeneous turbulence, for
which the current model works well. In wall-bounded flows, however, the model
neglects certain inhomogeneous contributions to the Joule dissipation tensor, and
to the pressure—strain terms in the Reynolds stress equations. The effect of these
contribution would presumably be to redistribute energy from the field-parallel
component into the other components, to force the turbulence field towards a
2D and two-component (2C) state.

The left pane in Fig. 10 shows the profile of « predicted by the different
models in the center of the magnet, while the right pane shows the budget of «
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production and dissipation in the case of the RST-a model. The strain terms in

the a equation give a significant positive contribution to a only near the wall.
The right plot shows that the source and sink terms dominate over transport
near the wall. This behavior is similar to that of the turbulent kinetic energy and
the Reynolds stresses, and thus supports our choice of zero normal flux boundary
conditions in the first node near walls.
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Figure 11, finally, shows profiles of effective viscosity, u + pr, in the exit of
the magnet, as predicted with the different models. Note that the baseline of
the figure represents the molecular viscosity. The difference between predictions
with the RST models and the K-e-a was discussed earlier (see Fig. 8).

5. Discussion and outlook

This report documents an implementation of mean electromagnetic equations,
Lorentz forces, and MHD turbulence models in the commercial code CFX4.3.

JFrom a numerical point of view, the most difficult part of this effort is not,
as one might think, the implementation of the new turbulence models. Instead
the challenge is to solve the equation for electrostatic potential, and compute
the total current density with sufficient accuracy, especially on general non-
orthogonal grids.

We used the symbolic mathematics tool MAPLE V to manipulate, simplify
and linearize all source terms for the turbulence equations, and to translate them
directly into into fortran source code for the CFXsubroutines. This minimizes
the risk for programming errors, and simplifies validation and debugging. The
procedure will also simplify future modifications, and evaluation of alternative
models.

Both the Reynolds stress and eddy viscosity versions of the implemented MHD
turbulence models appear to be very robust and well-behaved. Apart from the
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extra work required for solving one more equation, the rate of convergence seem
to be no worse for the MHD models, than for the standard models.

The current versions of the MHD turbulence models were developed to per-
form well for homogeneous turbulence, in the absence of walls. In order to
simplify the model expressions, some inhomogeneous contributions to fluctu-
ating pressure and fluctuating electric potential were neglected. Some of the
missing terms are analogous to the wall reflection terms in the rapid pressure—
strain model by Launder, Reece and Rodi [3]. This is the Reynolds stress model
used in CFX, but the wall reflection terms are not implemented. For ordinary
shear flows, the neglected terms are usually important only near walls. In MHD
flows, however, the turbulence tends to be two-dimensional, so that turbulent
structures grow very large in one direction. When the length of these structures
becomes the same order as the distance to the nearest wall, we can expect the
neglected inhomogeneous terms to be important. They will hence be impor-
tant even in the core of an MHD channel flow, if the length scale anisotropy is
sufficiently developed.

The missing inhomogeneous terms should certainly contribute to the Joule
dissipation terms in the scalar K and e equations, but their effect is perhaps
more obvious in the Reynolds stress equations. Here they should contribute to
the Joule dissipation tensor, and to the rapid and slow pressure—strain terms.
For a wall perpendicular to the magnetic field, their net effect would be to
redistribute energy from the wall-normal component (parallel with the field), to
the other components. This means that the Reynolds stress component parallel
with magnetic field will be damped, so that we approach a turbulent state which
is two-component (2C) as well as 2D. This a feature typical for wall-bounded
MHD flows, and different from the behavior of homogeneous turbulence. The
channel flow simulation discussed in Sec. 4.2 (especially Fig. 9) illustrated the
inability of the current MHD Reynolds stress model to predicted the damping
of the field-parallel stress component.

Including the inhomogeneous contributions in the scalar K and ¢ (and «)
equations is probably relatively straightforward. Including them in the Reynolds
stress equations is much more difficult. The simple Launder, Reece and Rodi
model only works well for relatively small stress anisotropies. Since all terms are
linear, they will produce unphysical results even for rather moderate anisotropies.
To deal with the situation, completely new and algebraically complex higher-
order model terms would have to be developed, including also dimensionality
information. The main reason we want accurate predictions of Reynolds stresses,
is to model anisotropic diffusion, using Eq. (18). Considering the difficulties with
a full Reynolds stress model, a more effective approach is probably to use a three-
equation K-e-«, with an algebraic model for modeling of Reynolds stresses and
anisotropic diffusion.
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In future work, the present model implementation will be used to study the

effect of the different MHD model constants, and

to compare model predictions with experiments reported in literature. Un-

fortunately turbulence statistics are very difficult to measure, and not often

reported in the literature. This makes validation of MHD turbulence models

very difficult. Direct numerical simulations (DNS), and large eddy simulations

(LES) may play an important role here.

]
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Appendix A. Using the MHD model in CFX

In order to use this MHD model implementation, the first step is of course
to include all the necessary MHD fortran routines, and the CFX user fortran
routines, and make sure that latter contain the proper calls to the MHD routines.
If the magnetic field should be defined in user fortran, the routine MHDBXT
should be updated accordingly. Even if MHDBXT is not used, it should be
included in the compilation.

Most of the modeling can then be controlled from the CFX command file.
Section A.1 describes the necessary CFX options in the command file, while
Sec. A.2 describes the special MHD model options read from the end of the
command file.

A.1. CFX options in the command file. CFX user subroutines must be
specified, as follows:

>>USER FORTRAN
USRSRC
USRBF
USRINT
USRWTM
USRDIF

The first three perform calls to specific MHD routines, which do the actual work.
The user can add his/her own stuff in any of the routines.

The following user scalar variable names must be defined. The names are
important, but the order is not.

>>VARIABLE NAMES
USER SCALAR1 ’EPOT’
USER SCALAR2 ’ALPHA’
USER SCALAR3 ’USRD B_X’
USER SCALAR4 ’USRD B_Y’
USER SCALARS5 ’USRD B_Z’
USER SCALAR6 ’USRDCC J_X’
USER SCALAR7 ’USRDCC J_Y’
USER SCALAR8 ’USRDCC J_Z’
USER SCALAR9 ’USRDCC S_MAG’
USER SCALAR10 ’USRDCC S_RET’
USER SCALAR11 ’USRDCC S_PRD’
USER SCALAR12 ’USRDCC S_PST’

The last seven are stored only for post-processing, and the code could easily be
rewritten to save storage space.

The differencing scheme for EPOT must be set to “NO CONVECTION”, to
disable the convection term. If the simulation is transient, also the transient
term must be disabled by defining EPOT as “quasistatic”. Example:
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>>MODEL DATA
>>DIFFERENCING SCHEME
EPOT ’NO CONVECTION’
>>PHYSICAL PROPERTIES
>>TRANSTIENT PARAMETERS
>>FIXED TIME STEPPING
TIME STEPS 30%0.010
>>QUASISTATIC VARIABLES
EPOT

Fluid viscosity and density should be specified as usual. Note however that
exactly the same values must be specified for the corresponding MHD model
options (see next section)! It is recommended to set the scalar diffusivity of
ALPHA equal to the viscosity. The value specified for EPOT is unimportant,
as it is overridden by the value of the MHD model option COND read from the
end of the command file (see next section).

[k =mmmmmmmmmmmmmmemes %/
#CALC
DENS = 13550.0;
VISC = 0.00156;
COND = 1.05E+6;
#ENDCALC
/% - Y/

>>FLUID PARAMETERS
VISCOSITY  #VISC
DENSITY #DENS
>>SCALAR PARAMETERS
>>DIFFUSIVITIES
EPOT #COND
ALPHA #VISC

The MHD model implementation supports both the RST model, and the
high-Re K-¢ model. The code automatically recognizes which one is used. The
turbulent Prandtl number for ALPHA is set to 1.0, same as for the Reynolds
stresses.

>>TURBULENCE PARAMETERS
>>TURBULENCE MODEL
TURBULENCE MODEL ’DIFFERENTIAL STRESS’

/* TURBULENCE MODEL ’K-EPSILON’ */
>>TURBULENT PRANDTL NUMBER
ALPHA 1.0

The body forces can be underrelaxed from within the command file, if it helps
convergence. If turbulence equations are underrelaxed, it makes sense to use the
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same under-relaxation for ALPHA. Note that no under-relaxation should be used
for EPOT, as it makes convergence slower than it needs to be. It is recommended
to allow a fairly large number of sweeps for both pressure and EPOT equations
(and a small value of the reduction factor), as this is noted to improve the rate
of convergence.

>>SOLVER DATA
>>PROGRAM CONTROL
MAXIMUM NUMBER OF ITERATIONS 1200
MASS SOURCE TOLERANCE 1.0E-6
>>UNDER RELAXATION FACTORS
U VELOCITY 0.
V VELOCITY 0
W VELOCITY 0
BFX 0
BFY 0.
BFZ 0
K 0
EPSILON 0
ALPHA 0
EPOT 1.
>>SWEEPS INFORMATION
>>MAXIMUM NUMBER
EPOT 50
PRESSURE 200
>>REDUCTION FACTORS
EPOT 0.10
PRESSURE  0.10

W W W NNN DD

o

/* NOTE! =/

Flow boundary conditions are set as usual. The inlet Dirichlet boundary
condition for EPOT (default treatment for scalars) can be overridden using MHD
model options for insulated inlets and outlets (see next section).

>>MODEL BOUNDARY CONDITIONS
>>SET VARIABLES
PATCH NAME °’0UT’
PRESSURE 5000.0
>>SET VARIABLES
PATCH NAME °’IN’

NORMAL VELOCITY 1.15
K 2.0E-5
EPSILON 9.9E-6
EPOT 0.0

ALPHA 0.333
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ALPHA should have zero normal flux at walls. This is the default treatment
for all scalars in CFX, so the specification in the example below is redundant.
The same is true for EPOT and non-conducting walls, but in some situations
one might want to set EPOT to a fixed potential, as for the wall “W_HIGH” in
the example below.

>>WALL BOUNDARY CONDITIONS
PATCH NAME °’W_LOW’
EPOT FLUX 0.0
ALPHA FLUX 0.0

>>WALL BOUNDARY CONDITIONS
PATCH NAME °’W_HIGH’
EPOT 0.0
ALPHA FLUX 0.0

A complete sample command file is found in App. D.

A.2. MHD model options. The CFX frontend stops reading the command
file when it reaches the stop command,

>>STOP

This allows us to control certain features of the MHD model implementation, by
specifying a number of MHD model options at the end of the CFX command
file.

Table 2 is a description of scalar model parameters that can be set. The model
option is written on one line, and its new value on the following. The following
lines, for example, sets the viscosity, electric conductivity and density to that of
mercury:

COND
1.05E+6
DENS
13550.0
VISC
0.00156

Table 3 shows a list of option for defining the external magnetic field. The
following lines, for example, indicate that a magnetic field is specified in user
fortran (MHDBXT), but it should be multiplied by two:

B_FORT
BSCALE
2.0

Table 4 describes model options used to modify the solution of the EPOT and
ALPHA equations. The following example prevents currents through inlets and
outlets, specifies a zero reference point for the EPOT equation (in the origin),
and disables the mean strain terms in the ALPHA equation:
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TABLE 2. A list of scalar model parameters, set using MHD model

options read from the end of the command file.

| Model parameter | Description

PERM Magnetic permeability, p,, [Vs/Am)].

COND Electrical conductivity, o [Q~tm™1].

DENS Fluid density, p [kg/m?3].

VISC Fluid dynamic viscosity, p [kg/m/s].

CA1l MHD model constant, Cgq.

CA2 MHD model constant, Cs.

CA3 MHD model constant, Cy3 (currently not used).

CA4 MHD model constant, Cy4 (currently not used).

CEA MHD model constant, C.,.

CAMOD Moderator coefficient for Joule dissipation source
terms in turbulence equations (CAMOD=1 by de-
fault).

CLF Moderator coefficient for Lorentz force in mean mo-
mentum equations (CLF=1 by default).

ALPHA Constant initial value for ALPHA (default is AL-
PHA=0.33).

TABLE 3. Model options for defining the external magnetic field.

| Model option |

Description

BO

B_FORT

B_FILE

XYZ

BSCALE

Sets a uniform magnetic field, with all three compo-
nents given on the following line.

The magnetic field is specified in subroutine MHD-
BXT (must be supplied by the user.

The magnetic field should be read from file 'B.dat’
in the problem directory. (See next option.)

Causes the code to print a file *xyz.dat’ in the prob-
lem directory, containing XYZ coordinates of all cell
centers. The magnetic field in 'B.dat’ should be in
this order.

The magnetic field read from file, or defined in
MHDBXT, is multiplied by this factor before use.
(BSCALE=1.0 by default.)

INSULATED_INLETS

INSULATED_OUTLETS

EPOT_REFERENCE_POSITION

0.0

0.0

0.0

NO_STRAIN_IN_ALPHA
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TABLE 4. Model options for modifying the solution of the EPOT and
ALPHA equations.

| Model option | Description |
INSULATED.INLETS Causes inlet and outlet patches, respec-
INSULATED-OUTLETS tively, to be electrically insulated. (Af-

fects the source term and solution ma-
trix in the EPOT equation, and the cal-
culation of total current.)

NO_STRAIN_IN_ALPHA DISABLES the strain-related model
terms in the ALPHA equation. The
terms are algebraically complex, and re-
quires calculation of mean velocity gra-
dients. The model terms give inaccu-
rate results outside the magnetic field,
and slows down the calculation. The

effect of the terms appears to be small
inside a magnetic field.
EPOT_REFERENCE_POSITION | The next line should contain the XYZ
coordinates for a point where EPOT
will be forced to zero. This is necessary
unless a fixed value of EPOT is speci-
fied on any of the boundaries (otherwise
EPOT is undefined!).

Appendix B. Documentation of fortran source code

Table 5 shows a list of fortran subroutines. The grouping and indentation is
used as a rough illustration of dependencies and calling order. All routines
starting with “USR” are standard CFX user subroutines, while those starting
with “MHD” are used only for implementation of the MHD models.

The CFX routines USRINT, USRBF and USRSRC contain only calls to the
corresponding routines MHDINT, MHDBF and MHDSRC, respectively. The
remaining routines are discussed individually below.

The common block UC_MHD is used to simplify the transfer of common vari-
ables and model parameters between the subroutines of the model implementa-
tion. Most of the parameters are initialized in the subroutine MHDINT (based
on MHD model options read at the end of the CFX command file), although
some of the parameters are given useful defaults in the block data subprogram
MHD_DATA. The parameters carried in the common block are listed in Table 6.
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TABLE 5. List of fortran subroutines, grouped and indented to show
calling order.

| Subroutines | Purpose
| USRINT (Call MHDINT.)
MHDINT Read MHD model options from the end of the
CFX command file. Initialize model parameters.
Call MHDBXT, if magnetic field is defined in user
fortran.
MHDBXT Definition of magnetic field in all nodes (op-
tional).
| USRBF (Call MHDBF.)
| MHDBF Compute total current density and Lorentz force.
MHDJSC Compute contravariant component of U x B at
cell faces (for body-fitted grids).
MHDGEP Compute gradient of EPOT.

MHDGE2 | Recompute EPOT gradient in a single cell next
to a boundary.

USRDIF Set diffusivity for EPOT equation explicitly.
USRWTM Set turbulent wall multiplier for EPOT explicitly,
to override turbulent wall function.
USRSRC (Call MHDSRC.)
MHDSRC Compute source terms for scalar and turbulence
equations.
MHDJSF Compute normal flux components of U x B on
all cell faces.
MHDSEP Compute source term for the EPOT equation.
Modify matrix coefficients at certain boundaries.
MHD_DATA BLOCK DATA subprogram. Assigns default val-
ues for some parameters in the UC_MHD common
block.

B.1. MHDINT. Called from USRINT. Reserves permanent workspace for cur-
rents at cell faces (computed in MHDJSF and MHDJSC), checks which turbu-
lence model is used, and initializes common block pointers to user scalars.

Reads a number of MHD model options from the end of the command file,
starting after the CFX “>>STOP” command. See App. A.2 for a description
of model options.

Depending on model options, the magnetic field is either specified as constant
and uniform, read from the file “B.dat” in the problem directory, or a call is made
to the subroutine MHDBXT. One option causes the routine to print Cartesian
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| Parameter | Type

Description

PERM real | Magnetic permeability, p,, [V's/Am)].

COND real | Electrical conductivity, o [~ 1m™1].

DENS real | Fluid density, p [kg/m?].

VISC real | Fluid dynamic viscosity, p [kg/m/s].

CAl real | MHD RST model constant, Cq;.

CA2 real | MHD RST model constant, C,s.

CA3 real | MHD RST model constant, Cy3 (currently not used).

CA4 real | MHD RST model constant, C4 (currently not used).

CEA real | MHD RST model constant, Ck,,.

CAMOD real | Moderator coefficient for Joule dissipation
source terms in turbulence equations (CAMOD=1
by default).

CLF real | Moderator coefficient for Lorentz force
in mean momentum equations (CLF=1 by default).

ISCL integer | Variable number for SCAL array (from GETVAR).

IEP integer | Scalar number for EPOT variable (from GETSCA).

IALPHA | integer | Scalar number for ALPHA wvariable (from
GETSCA).

IB(1:3) integer | Scalar numbers for stored B-field components.

1J(1:3) integer | Scalar numbers for stored total current components.

IJSF integer | Pointer to facial currents in WORK array.

INDEPR | integer | INODE number for EPOT zero reference point.

LINSIN logical | Logical TRUE to avoid currents through INLET
boundaries.

LINSPR logical | Logical TRUE to avoid currents through PRES-
SURE boundaries.

LINSMF | logical | Logical TRUE to avoid currents through MASS-
FLOW boundaries.

LEPREF | logical | Logical TRUE if an EPOT zero reference points is
defined.

LNOSTR | logical | Logical TRUE to disable mean strain terms in AL-
PHA equation.

LRSM logical | Logical TRUE indicates that the Reynolds stress
model is used. If FALSE, we assume the high-Re
K-£ model is specified.

coordinates for all nodes to a file “xyz.dat”, in the order B-field values should
appear in “B.dat”.
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In case all inlets, outlets and walls are non-conducting, there is an option for
specifying the coordinates of a zero reference point for the electrostatic potential
EPOT. If the given point is not in the flow domain, the center of the first block
is used instead.

B.2. MHDBXT. Called from MHDINT. This routine can be used to specify
the magnetic field in all nodes, e.g. as function of position. Even if the routine
is not used, a dummy version should still be available at compilation time. The
following example sets a uniform field B = 1 in the z direction.

SUBROUTINE MHDBXT (XP,YP,ZP,SCAL,IBX,IBY,IBZ,BSCALE,BMAX

+ ,NNODE ,NPHASE,NSCAL)
C
C Routine for specification of external B-field.
C
DIMENSION
+ SCAL (NNODE ,NPHASE ,NSCAL)
+ ,XP (NNODE) , YP (NNODE) , ZP (NNODE)
C
C___ - - -
C
C B-field should be specified below for all nodes, e.g.
C as a function of node coordinates XP, YP and ZP!
C
C Maximum norm of B should be stored in BMAX!
C
C _____________________________
DO 100 INODE=1,NNODE
C
BX = 0.0
BY = 0.0
BZ=1.0
C
SCAL (INODE, 1,IBX)=BX
SCAL (INODE, 1,IBY)=BY
SCAL (INODE, 1,IBZ)=BZ
BMAX=MAX (BMAX, SQRT (BX**2+BY**2+BZ**2) )
C
100 CONTINUE
C___ - - -

RETURN
END
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The factor BSCALE can be specified in the command file, so that the magni-
tude of the magnetic field can be scaled without recompiling the fortran routines.

B.3. USRDIF. Explicitly sets the total diffusivity for the EPOT equation
equal to the electric conductivity COND stored in the UC_MHD common block.
This is necessary to override the turbulent diffusivity added by CFX. (Note that
the diffusivity can be scalar or tensorial, depending on what turbulence model
is used.)

B.4. USRWTM. For the EPOT equation, sets the turbulent wall multiplier
TMULT for each wall boundary node to

COND
YWALL’
where COND is the electric conductivity, and YWALL the distance to the first
node. This overrides the effect of the turbulent wall function in CFX, and ensures
natural wall boundary conditions for the EPOT equation.

TMULT = (73)

B.5. MHDSRC. Called from USRSRC, for both ICALL=1 and ICALL=2.

For the EPOT equation, and if ICALL=1, MHDJSF is called to compute
normal flux components of the term o(U x B) on all cell faces. Then MHDSEP
is called to compute the source term for EPOT. MHDSEP is called also if
ICALL=2, for modification of SU, SP, and AM to account for boundary condi-
tions.

MHDSRC further computes magnetic source terms for all turbulence equa-
tions, including ALPHA. The magnetic source terms in all turbulence equations
are multiplied by the factor CAMOD. By default CAMOD=1, but by setting it
to zero with the MHD model options in the command file, all magnetic source
terms are disabled.

If the mean strain terms in the ALPHA equation are to be computed, the
mean velocity gradients are computed with the CFX routine GRADV. The dif-
ferent ALPHA source term contributions are currently stored in user scalars (see
Sec. 2.5):

SMAG = —pa, (74)
SRET = 7, (75)
SPRD = P,, (76)
SPST = m{. (77)

B.6. MHDJSF. Called from MHDSRC. Computes and stores the normal flux
components o(U x B)¢ - Ay on all cell faces.

In the interior of the flow domain, facial values of U and B are interpolated
using the CFX weight factors WFACT. We assume no-slip boundaries, so that
U = 0 on all walls. The relevant velocity at inlet, pressure and massflow bound-
aries are taken from the dummy nodes at the boundary. If the command file
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options for insulted boundaries are specified, however, the normal flux is set to
zero at the respective boundaries.

B.7. MHDSEP. Called from MHDSRC for both ICALL=1 and ICALL=2.

If ICALL=1, MHDSEP loops over all cells and computes the source term for
EPOT from the facial source currents computed in MHDJSF.

If ICALL=2, and if the relevant insulated boundary option is specified, the
matrix coefficient AM in the direction of the boundary is set to zero in all active
cells adjacent to the boundary.

If a zero reference point for EPOT is specified, MHDSEP sets SU=0 for this
node, SP to a large negative number, and all its matrix coefficients to zero. This
forces EPOT to zero in the node.

B.8. MHDBF. Called from USRBF. Computes the total current density and
the Lorentz force in all cells. The total current density is stored in user scalars.
The total current density is given by

J=-0Vd+oU xB. (78)

In the first part of the routine, MHDGEP is called to compute the gradient of
EPOT. For the U x B term to behave well together with the gradient term, we
need to compute U x B in the cell center as the average of the contravariant
components on the faces of the cell. The procedure is similar to that used for
body forces in CFX, to make these compatible with gradients of pressure.

If the grid is rectangular, the contravariant components of U x B can be
expressed in terms of the normal flux components already computed by MHD-
JSF for the EPOT source terms. Note, however, that MHDJSF is called from
MHDBEF on the first iteration, if it is a restart from an existing dump file. This
is because the momentum equations are the first variables in the outer iteration,
and no call has yet been made to MHDJSF from MHDSRC.

If the grid is body-fitted (and presumed non-orthogonal), we call MHDJSC
to compute and store the contravariant components of U x B on the faces.

The Lorentz force is multiplied by the factor CLF before it is added to the
body force array. By default CLF=1, but by setting it to zero with the MHD
model option in the command file, the Lorentz force can be disabled.

B.9. MHDJSC. Called from MHDBF. Computes and stores the contravariant
components of U x B on the faces. (These components overwrite the normal
flux components previously stored by MHDJSF.) The general approach, and the
treatment of boundary conditions, is similar to that in MHDJSF (see App. B.6).

B.10. MHDGEP and MHDGE2. Called by MHDBF. Calls the CFX rou-
tine GRADS to compute the gradients of EPOT. The gradients must however be
modified in the cells adjacent to walls, inlets, pressure and massflow boundaries.
The main reason for this is that the normal gradient at walls is incomplete, as
the wall gradient of a scalar usually depends on a turbulent wall function.
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The modification at boundaries is made in two steps. First, the gradient
in cells adjacent to wall, inlet, pressure and massflow boundaries are marked as
undefined, by setting its x component to a large dummy value (larger than 101°).
In the next step, we loop again over cells adjacent to the different boundary types.
The new gradient in the node P is defined as

(9(1)) 1
., =1 <I))"‘Afv (79)
<:8)( P ‘GD 2;:

where Vp is the cell volume, ® the value of EPOT at the cell faces f, and Ay is
the face area vectors. This equation follows from the generalized Gauss law (see
the CFX manual, Sec. 13.2). If the gradient is already defined (will happen if the
cell is adjacent to more than one boundary), the contribution from the current
boundary is modified with the appropriate value of EPOT at the current face.

The calculation of the gradient (79) in an individual cell is performed in the
routine MHDGE2, which is called from MHDGEP with the appropriate EPOT
value for the current boundary face.

The EPOT value for a face at a wall is taken from the active cell. This
corresponds to the desired zero normal gradient at the wall. The default behavior
for an inlet boundary is to take the EPOT value from the boundary node, where
the boundary conditions are stored. If the insulated inlet option is active, the
value is instead taken from the active cell (zero normal gradient). The default
behavior for pressure and massflow boundaries is to use the EPOT value from
the dummy node. The value in the dummy node is equal to the value in the
active cell on outflow (Neumann boundary conditions), but equal to the Dirichlet
condition specified at the patch in case of inflow. If the insulated outlet option
is active, the value in the active node is used instead (zero normal gradient).

Appendix C. MAPLE script for generating source terms

Below is a listing of a MAPLE script for generating the fortran source for the
source terms in the ALPHA equation. A similar procedure is used for the source
terms in the Reynolds stress equations.

restart:with(linalg) :with(plots):

#.
#

¢ ¢sumt’’

# Load definitions for using the function
# to manipulate tensors in index notation
# (from Torbj\"{o}rn Sj\"{o}gren, Doctoral Thesis, KTH, 1997,
# TRITA-MEK 1997:5, ISSN 0348-467X)
read(‘/home/mech/olwi/maple/twopoint2.1olwi‘);
read(‘/home/mech/olwi/rdt/Mmod/tensorfunc2.0¢);

#

# Define model functions, and

# substitutions for CFX fortran variable names
#
£1:=-9/5%(1-alpha):
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scalfunc:={G=alpha-3*alpha~2*f1/2/2%(Ina+2/3),
H=3*alpha~2xf1/2,
aN=CA3* (-alpha+4*alpha~2-3%alpha”3)
+13/10*alpha”2-3/10%alpha”3 }:
namesubs:={R.1.1=UU,R.2.2=VV,R.3.3=WW,
R.1.2=UV,R.2.3=VW,R.1.3=WU}:
fortsubs:={R.1.1=RS[INODE,IPH, 1],R.2.2=RS [INODE,IPH,2],
R.3.3=RS[INODE,IPH,3],R.1.2=RS[INODE,IPH,4],
R.2.3=RS[INODE,IPH,5],R.1.3=RS[INODE,IPH,6],
alpha=ALPHA,
n.1=DUV[1],n.2=DUV[2],n.3=DUV[3],
K=TE [INODE, IPH] , eps=ED [INODE, IPH] , ttuinv=TTUINV,
Ug11=UGRX,Ug12=UGRY,Ug13=UGRZ,
Ug21=VGRX,Ug22=VGRY,Ug23=VGRZ,
Ug31=WGRX,Ug32=WGRY , Ug33=WGRZ}:
EVMsubs:={seq(seq(R.i.j=2/3*K*delta[i,j]-nuT*(Ugli,j]1+Uglj,i])
,j=i..3),i=1..3)}:

Define tensors and tensorial groups

:=array(symmetric,1..3,1..3):

B o # # #

i=array(1..3,[n1,n2,n3]):
Ug:=array(1..3,1..3):

Set variable properties for linearization:

- Diagonal R_ij: > 0

- 0ff-diagonal R_ij: REAL

- Kinetic energy: K>0

- Dissipation: eps>0

- Alpha: O<=alpha<=1

- direction unit vector, all components: -1 <=n_k <=1
CMU and CA3 >0

H OH OH O OH OH OH H O H

for i from 1 to 3 do
assume(n.i>=-1,n.i<=1);
for j from i to 3 do
if (i=j) then
assume(R.i.j>0);
else
assume(R.i.j,real);
fi;
R[i,jl:=R.i.j;
od;
od;
for i from 1 to 3 do
for j from 1 to 3 do
assume (Ug.i.j,real);
Ugli,jl:=Ug.i.j;
od;
od;
assume (alpha>=0,alpha<=1) ;
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assume (K>0) ;

assume (TELIM>O0) ;

assume (eps>0) ;

assume (EDLIM>0) ;

assume (CA3>0) ;

assume (CMU>0) ;
a:=evalm(sumt (R[i1,i2] /K-2/3*deltal[il,i2],0,2)):
Ina_:=simplify(sumt (n[s1]*n[s2]*al[s2,s1],2,0)):
InaRST:=expand (subs (K=TELIM,Ina_)):
InaEVM:=simplify (subs (nuT=CMU*K"2/EDLIM, subs (EVMsubs,Ina_))):

Derived tensors, groups and invariants

Production term, P_alpha

H H OH OB OB

prodl:=sumt (-2*G*Ug[s1,s2] *R[s1,82],2,0):

prod2:=sumt (-H*Ug[s1,s2]*n[s1] *n[s3]*R[s3,s2],3,0):
prod3:=sumt (-H*Ug[s1,s2]*n[s2] *n[s3]*R[s3,s1],3,0):
prodK:=sumt (-Ug[s1,s2] *R[s1,s2],2,0):

Prod:=simplify ((prodl+prod2+prod3-2*alpha*prodK)/(2*TELIM) ) :
#
# Production term in eddy viscosity model:

# prodl & prodK: subs K=0 to cancel K-term
# (drops out due to continuity)...
#

prod1EVM:=subs (K=0, subs (EVMsubs,prodl)):

prod2EVM: =subs (EVMsubs ,prod2) :

prod3EVM: =subs (EVMsubs ,prod3) :

prodKEVM: =subs (K=0, subs (EVMsubs ,prodk) ) :

ProdEVM:=simplify (subs (nuT=CMU*K"~2/EDLIM,
(prod1EVM+prod2EVM+prod3EVM-2*alpha*prodKEVM) / (2%K))) :

#.
#

# Pressure-strain term, Pi_alpha:
#
Pi_:=simplify(sumt (2% (aN-alpha)*Ug[s1,s2]*n[s1]*n[s2],2,0)):

Compute source terms and print fortran to file

Linear terms put in SP if always negative. Otherwise in SU.

# H H O

writeto(‘alpha_source.f);
#
# Production term:
@

M

:=expand (subs (Ina=InaRST, subs (scalfunc,Prod))):

H#

Prepare linearization of source term...

su0:=coeff (x,alpha,0):

sp0:=expand (simplify((x-su0)/alpha)):

# -- Only negative linear part in SP, rest in SU...
# -- Check whether polynomial, or product/mil...

171



172 MHD MODEL EQUATIONS IN CFX 4.3

if (whattype(sp0)=‘+‘) then
sp:=select (t->is(t<=0),sp0):
su:=suO+alpha*remove (t->is (t<=0) ,sp0) :
else
if (is(sp0<=0)) then
sp:=sp0:
else
su:=suO+alpha*sp0:
fi:
fi:
# -- Simplify...
su:=simplify(su):

sp:=simplify(sp):

lprint(‘C ——=———-- 9
lprint(‘C  Production (RST version)‘):
lprint(‘C ——=———-—- 9

fortran([SU[INODE, IPH]=SU[INODE,IPH]+DENS*VOL (INODE) *subs (fortsubs,su),
SP [INODE, IPH] =SP [INODE, IPH] +DENS*VOL (INODE) *subs (fortsubs,sp)],
optimized) :

Production term in EV model:

:=expand (subs (Ina=InaEVM, subs (scalfunc,ProdEVM))) :

Prepare linearization of source term...

H M OH OB

su0:=coeff(x,alpha,0):
sp0:=expand (simplify((x-su0)/alpha)):
# -- Only negative linear part in SP, rest in SU...
# -- Check whether polynomial, or product/nil...
if (whattype (sp0)=‘+¢) then
sp:=select (t->is(t<=0),sp0):
su:=suO+alpha*remove (t->is (t<=0),sp0) :
else
if (is(sp0<=0)) then
sp:=sp0:
else
su:=suO+alpha*sp0:
fi:
fi:
# -- Simplify...
su:=simplify(su):
sp:=simplify(sp):

lprint(‘C ——=———-- Y
lprint(‘C Production (EVM version)‘):
lprint(‘C ———————- “y:

fortran ([SU[INODE, IPH]=SU[INODE, IPH] +DENS*VOL (INODE) *subs (fortsubs,su) ,
SP [INODE, IPH]=SP [INQODE , IPH] +DENS*VOL (INODE) *subs (fortsubs,sp)],
optimized) :

#.
#

# Pressure-strain term:
#

x:=expand (subs(scalfunc,Pi_)):
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# Prepare linearization of source term...
su0:=coeff(x,alpha,0):
spO:=expand (simplify((x-su0)/alpha)):

# -- Only negative linear part in SP, rest in SU...

# -- Check whether polynomial, or product/nil...

if (whattype(sp0)=‘+‘) then
sp:=select (t->is(t<=0),sp0):
su:=suO+alpha*remove (t->is (t<=0),sp0) :
else
if (is(sp0<=0)) then
sp:=sp0:
else
su:=suO+alpha*sp0:
fi:
fi:
# -- Simplify...
su:=simplify(su):
sp:=simplify(sp):

lprint(‘C ———————- “y:
lprint(‘C Pressure-strain interaction®):
lprint(‘C ——=———-- Y

fortran([SU[INODE,IPH]=SU[INODE, IPH]+DENS*VOL (INODE) *subs (fortsubs,su),
SP [INODE, IPH] =SP [INODE , IPH] +DENS*VOL (INODE) *subs (fortsubs,sp)],

optimized):
writeto(terminal);

Appendix D. Listing of sample command file

>>CFX4
>>SET LIMITS
TOTAL INTEGER WORK SPACE 14000000
TOTAL CHARACTER WORK SPACE 1500
TOTAL REAL WORK SPACE 90000000
MAXIMUM NUMBER OF BLOCKS 10
MAXIMUM NUMBER OF PATCHES 50
MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 20
>>0PTIONS
TURBULENT FLOW
TRANSIENT FLOW
USER SCALAR EQUATIONS 12
>>USER FORTRAN
USRSRC
USRBF
USRINT
USRWTM
USRDIF
>>VARIABLE NAMES
USER SCALAR1 ’EPOT’
USER SCALAR2 ’ALPHA’
USER SCALAR3 °’USRD B_X’

173



174 MHD MODEL EQUATIONS IN CFX 4.3

USER SCALAR4 °’USRD B_Y’
USER SCALARS5 °USRD B_Z’
USER SCALAR6 °’USRDCC J_X’
USER SCALAR7 °’USRDCC J_Y’
USER SCALAR8 ’USRDCC J_Z’
USER SCALAR9 °’USRDCC S_MAG’
USER SCALAR10 ’USRDCC S_RET’
USER SCALAR11 ’USRDCC S_PRD’
USER SCALAR12 ’USRDCC S_PST’
END

/* - - - - Parameters - - - - x/
#CALC
DENS = 13550.0;
VISC = 0.00156;
COND = 1.05E+6;
#ENDCALC

>>MODEL DATA
>>DIFFERENCING SCHEME
EPOT ’NO CONVECTION’
>>PHYSICAL PROPERTIES
>>TRANSIENT PARAMETERS
>>FIXED TIME STEPPING
TIME STEPS 30%0.010
>>QUASISTATIC VARIABLES
EPOT
>>FLUID PARAMETERS
VISCOSITY  #VISC
DENSITY #DENS
END
>>SCALAR PARAMETERS
>>DIFFUSIVITIES
EPOT #COND
ALPHA #VISC
>>TURBULENCE PARAMETERS
>>TURBULENCE MODEL
TURBULENCE MODEL ’DIFFERENTIAL STRESS’

/* TURBULENCE MODEL ’K-EPSILON’ */
>>TURBULENT PRANDTL NUMBER
ALPHA 1.0 /* Same as for Reynolds stresses */

>>SOLVER DATA

>>PROGRAM CONTROL
MAXIMUM NUMBER OF ITERATIONS 1200
ITERATIONS OF TURBULENCE EQUATIONS 3
PRESSURE REFERENCE POSITION 0.452 0.02 0.015
MASS SOURCE TOLERANCE 1.0E-6

>>UNDER RELAXATION FACTORS
U VELOCITY 0.4
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V VELOCITY
W VELOCITY
BFX
BFY
BFZ
K
EPSILON
uu
vV
WW
uv
W
WU
ALPHA
EPOT 1.0 /* NOTE! */

>>SWEEPS INFORMATION
>>MAXIMUM NUMBER

EPOT 50
PRESSURE 200

>>REDUCTION FACTORS
EPOT 0.10
PRESSURE  0.10

O O O O O O O O O O o O o o
W W wWwwWwwwwwwNnNnNDd D

>>MODEL BOUNDARY CONDITIONS
>>SET VARIABLES
PATCH NAME °0UT’
PRESSURE 5000.0
>>SET VARIABLES
PATCH NAME °IN’

NORMAL VELOCITY 1.15

K 2.0E-5

EPSILON 9.9E-6

EPOT 0.0

ALPHA 0.333
/¥ — — — — = — = — - — — - — - */

>>WALL BOUNDARY CONDITIONS
PATCH NAME °W_LOW’
EPOT FLUX 0.0
ALPHA FLUX 0.0

>>WALL BOUNDARY CONDITIONS
PATCH NAME °’W_HIGH’
EPOT FLUX 0.0
ALPHA FLUX 0.0

>>WALL BOUNDARY CONDITIONS
PATCH NAME °’W_SOUTH’
EPOT FLUX 0.0
ALPHA FLUX 0.0

>>WALL BOUNDARY CONDITIONS
PATCH NAME °’W_NORTH’
EPOT FLUX 0.0
ALPHA FLUX 0.0
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>>0UTPUT OPTIONS
>>PRINT OPTIONS
>>WHAT
NO VARIABLES
WALL PRINTING
>>WHEN
FINAL SOLUTION

>>STOP

% - - - MHD model options follow — — — — = = = = — — — -
YA
yA
% On a COMPAQ mahine, the components of vectors must lie
% within these marks:
yA | | |
COND
1.05E+6
PERM
1.25664E-6
DENS
13550.0
VISC
0.00156
CEA
1.5
EPOT_REFERENCE_POSITION
0.452 0.020 0.015

INSULATED_INLETS
INSULATED_OUTLETS
NO_STRAIN_IN_ALPHA
B_FORT
BSCALE

1.35
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MODELING ANISOTROPIC MHD TURBULENCE
IN SIMULATIONS OF LIQUID METAL FLOWS

Ola Widlund
Faxén Laboratory
Royal Institute of Technology
SE-100 44, Stockholm, Sweden

1. Introduction

Electrostatic magnetic fields are used in continuous casting of steel to brake and
control the mean flow of liquid metal in the mould. The magnetic field also causes
magnetic Joule dissipation of turbulence, thus affecting turbulent transport of
heat and mass. Numerical simulations of this and other turbulent MHD flows
generally suffer from the inability of conventional turbulence models (like the
K—¢ model, or a full Reynolds stress closure) to deal with the large anisotropies
of length scales encountered in MHD turbulence. To improve the situation, it
has been suggested to include information about length-scale anisotropy in an
extended Reynolds stress model for MHD applications (Widlund et al. [6]).

The so-called dimensionality tensor, Y;;, was first introduced by Reynolds [4]
to help describe the effect of rapid rotation on turbulence. While the Reynolds
stress tensor R;; accounts for the kinetic energy of fluctuations in different di-
rections, the dimensionality tensor carries information about the length scales in
different directions. The latter information seems vital for a correct description
of Joule dissipation. The scalar Joule dissipation rate can, for example, be ex-
actly expressed in terms of the component of the dimensionality tensor which is
parallel with the magnetic field,

2
H= %Nnn = %ninjygi, (1)
where n; is a unit direction vector of the magnetic field.

A conventional Reynolds stress transport (RST) model includes transport
equations for the six independent Reynolds stresses and the scalar viscous dis-
sipation rate. Inspired by (1), an RST model has been extended with a model
transport equation for a dimensionality anisotropy variable «a, defined as

_ man;Yi
T @)
The anisotropic Joule dissipation tensor is then modeled with an invariant tensor
function in R and «. An exact transport equation for a can be derived from

Presented at 4th International PAMIR Conference, Presqu’ile de Giens, France,
September 18-22, 2000.
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the Navier—Stokes equations, including magnetic and inertial effects, as well as
effects of mean shear and strain. All terms in the equation require modeling,
however.

The complete model has been implemented in the commercial CFD solver
CFX/ [5]. Predictions show qualitative agreement with available experiments for
the energy dissipation, and the elongation of turbulence structures. They also
demonstrate known limitations with the current model implementation, when it
comes to predicting extreme Reynolds stress anisotropies in wall bounded flows.

In Section 2 we highlight properties of the model for the homogeneous case,
and compare predictions with the classical experiment of Alemany et al. [1].
In Section 3 we briefly discuss effects of inhomogeneity in wall bounded flows.
These effects are currently not captured by the model.

2. Homogeneous turbulence

2.1. Model equations. Assume Cartesian coordinates oriented so that the
magnetic field vector is in the xg-direction, i.e. B = Beg. For the case of homo-
geneous shear-free MHD turbulence, initially axisymmetric about the magnetic
field vector, there is only two independent Reynolds stress components, Ry; and
Rs33, and the turbulent kinetic energy is K = (2Ry1 + Rs3)/2. If we introduce
a magnetic time scale 7 = p/(20B2), the Reynolds stress closure proposed by
Widlund et al. [6] reduces to

dd_[t( = feflaK, (3)
Lo 0,s - Gea (4)
Mg g 2o S@Tu/B 4 Ha) (©

An equation for Ry is redundant, as it can be computed from K and Rs3. In
(6), w33 is a component of a return-to-isotropy model for slow pressure—strain,
and the anisotropy of the Joule dissipation is governed by the functions G and
H; see [6] for details.

The K equation is exact, as the Joule dissipation term follows from the defi-
nition of . In contrast, both destruction terms in the e equation (4) are model
terms, with model constants Ceo and C.,, respectively. The last term in (5)
represents destruction of o due to the magnetic field, driving the equation to-
wards the 2D limit (e = 0). The first term in (5) is a linear return-to-isotropy
term of Rotta-type, which governs a return to the isotropic state when there
is no magnetic field. In the homogeneous case, the properties of the model are
determined by the coupled non-linear system of scalar ODE:s for K, € and «
(decoupled from stress anisotropy).
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In the absence of magnetic field, (3) and (4) form the familiar two-equation
K— model. There are analytic solutions for K and ¢ in this case. For large
times K (t) ~ t~™, where n = 1/(Cea — 1). The standard value Ceo = 1.92 gives
n =~ 1.09 | in good agreement with experiments on grid generated turbulence.

In the limit of large interaction numbers (N = 0B2K/(pe) > 1), Joule dis-
sipation dominates and the decay is controlled by the K and « equations. An-
alytic power law solutions can be found also for this case [7], and K(t) ~ ¢t~"
with n = 1/C41. By choosing C,1 = 2 the model is made consistent with the as-
ymptotic decay rate K ~ t~'/2 found earlier by Moffatt [3]. The integral length
scale L ~ K3/2/5 goes as t(Cea=3/2)/Car g0 that the length scale is unaffected if
C.a = 3/2. Furthermore, a(t) ~ ¢! for large t. Comparison with earlier work
suggests that a ~ (L/Lj)?, so that this is consistent with L ~ t1/2 if L changes
slowly [2].

The situation is more complicated for intermediate interaction numbers. As
explained in spectral terms by Alemany et al. [1], we will eventually reach a bal-
ance between Joule dissipation and nonlinear angular energy transfer. Angular
energy transfer is represented in the a equation (5) by the “return-to-isotropy”
term,

o = QQ%(l/?)—a). (1)

The behavior of (7) near & = 0 is very important for large times. One can argue
that the spectral triad interactions responsible for the angular energy transfer
should vanish in the limit of 2D turbulence, where all the energy is concentrated
in the wave number plane k| = 0. This means that 7, should be zero for a = 0.
In contrast, the linear model term (7) has its maximum value for « = 0. We
would like to use a value of C.,, close to 3/2 to get a slow evolution of the length
scale L, but then (7) causes a faster energy decay than we would expect (~t =4
for large times). In the following we use C., = 3/2, with a small value of Cyg
in (7) to postpone the adverse effect on the energy decay.

It would be fairly easy to construct a higher-order model term for 7, which
is zero in both the isotropic and 2D states. A detailed analysis shows that the
desired asymptotic development of both energy and length scales can then be
obtained by adjusting the slope of 7, near o = 0.

2.2. Comparison with experiment. The experiments by Alemany et al.
measured the r.m.s. velocity parallel with the magnetic field, u ||, and the parallel
integral scale, /. The MHD turbulence model, on the other hand, features the
independent variables Rss, K, € and «; only R33 can be compared directly with
the measured uﬁ We therefor assume that a turbulent length scale L and a
parallel length scale L) can be related to the closure variables through

K3/? L\?
L=A PO aaiso(L_|> ) (8)
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where A is a constant of order one, and a5, = 1/3 the isotropic value of a.

Alemany et al. performed experiments with and without magnetic field, and
for three different mean velocities, U = [5,10, 20] cm/s. Without magnetic field,
we should find good agreement between the standard K-¢ model and experiments
if the Reynolds number is high enough. This appears to be the case only for
U = 20 cm/s; for the lower velocities the length scale development is slower than
predicted by the model and conventional theory. The comparison below is made
only for U = 20 cm/s.

Like Alemany et al., we present the results with the non-dimensional time
scale Z — Zy =tU/M, where M = 2 cm is the mesh size, Zy = 4 is the location
of the effective origin, and ¢ is real time in the simulation. Initial conditions were
computed from measured data in Z — Zy = 2, corresponding to a time ¢; in the
simulations. An ODE solver was then run forwards and backwards in time, so
we could check the model behavior near the effective origin. The measured uﬁ at
t = t1 was used for the initial R33. The Reynolds stress anisotropy is small and
does not affect results much; we computed K assuming Ry = 0.85R33. L) was
taken from the measured /). The turbulent length scale L had to be estimated;
we used a value Ly = 0.25 cm that makes L approximately equal to L) in the
effective origin. Initial values for ¢ and a were computed using relations (8), with
a constant A = 0.23 adjusted to match the measured energy decay. The model
coefficients used in the simulation were {Ceo, Ca1, Ca2,Cea} = {1.92,2,0.4,1.5}
(see discussion above).

Results are showed in Fig. 1. The agreement between model predictions and
measurements is good. Note especially that the decay of a predicted by the
model reproduces the divergence of the two length scales; faster growth of the
parallel scale, and slower of the turbulent length scale. A detailed analysis of
the model equations shows that the model variables have power-law behavior
determined by the model coefficients. We therefor expect that the coefficients
may be given values of rather general validity.

3. Additional effects in wall-bounded flows

In contrast to homogeneous turbulence, wall bounded turbulence in a magnetic
field tend to become not only two-dimensional (long structures in the magnetic
field direction), but also two-component, i.e., with vanishing energy in the field-
parallel stress component. For a couple of reasons, the current model will not
predict this particular feature of wall-bounded MHD flows.

The MHD model has been derived in Fourier space, where the Poisson equa-
tions for fluctuating pressure and fluctuating electrostatic potential can be used
to eliminate these variables from the analysis. This however accounts only for
the homogeneous parts of the solutions to the Poisson equations. The inhomoge-
neous contributions are of importance when the turbulence length scales become
of the same order as the wall distance.
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FIGURE 1. Comparison of model predictions and experimental data
by Alemany et al. (U = 20 cm/s). Left pane: Decay of field-parallel
Reynolds stress. Right pane: Development of computed length scales
(see text). Predictions with standard K—¢ model and experimental
data for B = 0 are shown for comparison.

We note the following:

1.

There should be a near-wall correction to the scalar Joule dissipation, to
account for the inhomogeneous contribution to the fluctuating potential.

. In a Reynolds stress closure, the pressure—strain rate correlation is respon-

sible for redistribution of energy between stress components. The pressure—
strain terms are i.a. responsible for the damping of wall-normal Reynolds
stresses near walls. The magnetic part of the pressure—strain correlation is
included in the Joule dissipation tensor, but only the homogeneous effects
are accounted for in the present model.

The so-called slow and rapid pressure-strain terms are part of the con-
ventional Reynolds stress closure. Most commercial implementations of
these models also neglect the inhomogeneous contributions to fluctuating
pressure in models for pressure—strain.

The linear models for the viscous dissipation and pressure—strain tensors
used in the most common Reynolds stress models are not “realizable”, i.e.,
they produce unphysical results in the limit of two-component turbulence.
In fact, they give reasonable accuracy only for moderate anisotropies.

The last item could be addressed with high-order models available in the

literature, but at the cost of algebraic complexity. The other items are perhaps

more

intricate, and characteristic of local one-point modeling. The turbulent

pressure—strain correlation is non-local by nature. Any description of it in terms
of local one-point statistics is therefor unlikely to be universal, but may depend
on geometry and other properties of the flow.

Only the first item applies to a three-equation K-e-a model. This kind of
model, on the other hand, assumes isotropic turbulent diffusion, and uses the
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Boussinesq hypothesis (relating stress anisotropy to mean strain) for modeling
of the production term. A possible route to an effective engineering model could
be to model anisotropic diffusion and stress anisotropy using the anisotropy
information available in «.
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NONLINEAR EFFECTS IN MODELING OF HOMOGENEOUS
MHD TURBULENCE — COMPARISON WITH EXPERIMENT

Ola Widlund
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Royal Institute of Technology
SE-100 44, Stockholm, Sweden

Abstract. The dynamical properties of the MHD turbulence model pro-
posed by Widlund et al. are studied for the case of homogeneous decaying
turbulence. The proposed model is a Reynolds stress closure, extended
with a transport equation for a dimensional anisotropy variable, «, which
carries information about length scale anisotropy. The analysis suggests
that the model term originally proposed for the nonlinear energy transfer
in the a equation should be modified, so that it vanishes in the 2D limit.
A unique set of model coefficients could be determined, which makes the
model consistent with theory and experiments for interaction numbers N
ranging from zero to infinity. The model coincides with the standard K-&
model when there is no magnetic field. In the linear regime of large N, it
produces the K ~ t—1/2 energy decay and length scale evolution predicted
earlier by Moffatt, and Sommeria and Moreau. For intermediate inter-
action numbers (typically N ~ 1) where nonlinear effects are important,
K ~t17 and Ly~ t9-65 in agreement with the classical experiments by
Alemany et al.

1. Introduction

Electrostatic magnetic fields have found widespread use in many industrial ma-
terials processing applications. In continuous casting of steel, for example, a
static magnetic field is often applied to brake and control the mean flow of liquid
metal in the mould. Numerical simulations of this and other turbulent MHD
flows generally suffer from the inability of conventional turbulence models (like
the K—& model, or a full Reynolds stress closure) to deal with the large anisotro-
pies of length scales encountered in MHD turbulence. To improve the situation,
it has been suggested to include information about length-scale anisotropy in an
extended Reynolds stress model for MHD applications (Widlund et al. [12]).
The so-called dimensionality tensor, Y;;, was first introduced by Reynolds [6]
to help describe the effect of rapid rotation on turbulence. While the Reynolds
stress tensor R;; accounts for the kinetic energy of fluctuations in different di-
rections, the dimensionality tensor carries information about the length scales in
different directions. The latter information seems vital for a correct description
of Joule dissipation. The scalar Joule dissipation rate can, for example, be ex-
actly expressed in terms of the component of the dimensionality tensor which is

187
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parallel with the magnetic field,

1 oB?

where n; is a unit direction vector of the magnetic field.

A conventional Reynolds stress transport (RST) model includes transport
equations for the six independent Reynolds stresses and the scalar viscous dissi-
pation rate. Inspired by (1), Widlund et al. [12] extended a RST model with a
model transport equation for a dimensionality anisotropy variable «, defined as
nans T @)

2K
The anisotropic Joule dissipation tensor is then modeled with an invariant tensor
function in R;; and «. An exact transport equation for o can be derived from
the Navier—Stokes equations, including magnetic and inertial effects, as well as
effects of mean shear and strain [13]. All terms in the equation require modeling,

(0%

however.

The strength of magnetic damping of turbulence, relative to nonlinear inertial
mechanisms, is measured by the interaction number, or Stuart number, defined
as

2
= @

where v and [ are characteristic velocity and length scales of the turbulence, B

N

is the magnetic flux density, p density, and o electric conductivity.

A recent paper by Widlund et al. [13] showed that, in the linear regime of large
interaction numbers (where Joule dissipation dominates), the proposed model
equations have analytic solutions. By choosing one model constant appropriately,
these are made consistent with the energy decay K ~ t=/2 predicted earlier by
Moffatt [5], and the parallel length scale growth [} ~ t1/2 proposed by Sommeria
and Moreau [10].

For moderate values of IV, the model has been shown to compare well with
results from the few available direct numerical simulations of decaying homoge-
neous turbulence [12]. Experimental data is scarse; the experiment by Alemany
et al. [1] is unique among MHD turbulence experiments, as their setup is the
only one in which wall effects and other inhomogeneities have negligible impact
on results (see also Caperan and Alemany [2]). It is thus the only experiment
useful for validating models of homogeneous MHD turbulence.

In the present paper we study the dynamical properties of the model equa-
tions, especially for intermediate interaction numbers, N ~ 1; in this case we
have to deal with the combination of nonlinear energy transfer, viscous and mag-
netic effects. Section 2 presents governing equations, and model equations for
the homogeneous case. The dynamical properties of the model equations are
examined in Sec. 3. Some numerical results are presented in Sec. 4, including
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(in Sec. 4.2) a comparison with the classical experimental results by Alemany et
al. [1]. Results and future work are discussed briefly in Sec. 5.

2. Theory

2.1. Governing equations. With spatial coordinates x and time ¢, the Navier—
Stokes equations for the instantaneous velocity field u;(x,t) of an incompressible

fluid are
(9u¢ (9ul - 1 ap 82ui
o Yam, T pom Vamow, @
8ui -
81‘1' o 0’ <5)

where p(x,t) is the pressure field, p the fluid density, v the kinematic viscosity,
and f; is the Lorentz force (per unit mass).

The Lorentz force f; in (4) is governed by the non-relativistic Maxwell equa-
tions. The magnetic Reynolds number is defined as Rmy, = poul (p is here
magnetic permeability). If the magnetic Reynolds number is small (Rmy < 1),
convective disturbances to the magnetic field will be small compared to the ex-
ternal field B, and we can use the so-called quasistatic approximation (see [13]
for details). Using lower-case letters to denote instantaneous values, we have

1 .
fim ;Eikn]ana (6)
where the instantaneous electric current density j; is given by Ohm’s law,

Ji = o(e; + €ipnurBn). (7)
and e; is the electric field. The scalar electrostatic potential ¢ is defined by

9¢
= . 8
%= om (8)
The current field is divergence free, so it follows from (7) that
*p 0
T~ (u;By).
(’)xi(')xi Cih 81‘l (uj k) (9)

If we consider the case of homogeneous shear-free turbulence, the governing
equations can be Fourier transformed. In the spectral domain we can eliminate
pressure from the equations, and find an explicit expression for the Lorentz force
(see [13], and Schumann [9]). The Fourier coefficients of velocity are then given
by
kzkmk] _— N g (B . k)2 ~

di; o
= —ik;(Wu;) + i—5—= (U ;) — vk, — — i

dt k2

The spectral energy tensor is defined as the ensemble averaged second mo-

(10)

ments of 14,

Dij(k,t) = (@i(—k, t)i;(k, 1)) = (a75), (11)

K3
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which correspond to the two-point velocity correlations in physical space. Here
4} is the complex conjugate of ;.

An evolution equation for ®;; can be derived from (10) (see [13]), and from this
we can in turn formulate equations for several one-point turbulence quantities
[13]. The turbulent kinetic energy, for example, is

1 A
K= / D, d%k, (12)
given by
dK
o e 1
where
e = v / k2®,,d%k (14)
o [(B-k?. 4
= - D, d°k. 15
p= 2[5 (15)
The Reynolds stress tensor can be defined in the same way, as
R = / P;;d°k. (16)
In the shear-free case it is given by
dR;; (%) s
— - ) —eij — i, (17)
with

(s) o . 7 3
sy = / ik {Am / Ty (k K)d*K’ (18)

*Ajn ann'(ka k/)d?)k/} d3k7 (19)
Eij = QV/kQé)ijd?)k, (20)
o B k).

where ¢;; is the dissipation rate tensor, y;; is the Joule dissipation tensor, and
HZ(;) represents nonlinear intercomponent energy transfer.
The Joule dissipation of turbulent kinetic energy in (15) can be written as

o 2
p=——nin;¥ji, (22)
p

where n is a unit vector parallel with the magnetic field, and Y is the so-called
dimensionality tensor introduced by Reynolds and co-workers [6, 7],

Yij = / —5 ®ij(k t)d’k. (23)
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Reynolds showed that Y contains information related to turbulent length scales
in different directions.

2.2. Model equations. Based on (22), Widlund et al. [12] proposed a Reynolds
stress transport (RST) model for MHD turbulence, which included an extra
transport equation for a dimensionality anisotropy variable, o, defined as

_ ming Vi
pu— . 24
a=— (24)
If we introduce a magnetic time scale as 7 = p/(20B2), we have
aK
= 25
p=— (25)

This expression for Joule dissipation is exact for homogeneous turbulence.

A transport equation for a can be derived from the Navier—Stokes equations,
but all terms require modeling [13].

Assume cartesian coordinates oriented so that the magnetic field vector is in
the xs-direction, i.e. B = Bes. For the case of homoegenous shear-free MHD
turbulence, axisymmetric about the magnetic field vector, there is only two inde-
pendent Reynolds stress components, Ry1 and Rss, so that the turbulent kinetic
energy is K = 2R1; + Rs3. For this case, the Reynolds stress closure proposed
by Widlund et al. [12, 13] reduces to

% = —s—g, (26)
e (27)
X = e (28)
d?fg = ngfgeijLHRgg. (29)

An equation for the R;; component is redundant, as it can be computed from K
and R33. The K equation is exact, as the Joule dissipation term follow from the
definition of a. The viscous destruction term in the € equation is modeled in the
usual way, and Widlund et al. used an analogous model for the Joule destruction
term—in principal a rescaling of the corresponding terms in the K equation. We

have
52
e = OEQEa (30)
(633
e = ea ™ - 1
i C = (31)

The terms in the o equation represent nonlinear energy transfer, and Joule de-
struction, respectively. In analogy with (30) and (31), the simplest dimensionally

correct model of the Joule destruction is

a2

[lo = 0017, (32)
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The model originally proposed by Widlund et al. for the nonlinear term is a
simple linear “return-to-isotropy” expression of Rotta type,

1
T = OQQ% (g - Oé> ) (33)

assuming the energy transfer rate is governed by the turbulent time scale K/e.
In (29), m33 is a component of a return-to-isotropy model for modeling of
slow pressure-strain. Here we use the model of Sarkar & Speziale [8], but the
choice is not critical for the results presented here. The anisotropy of the Joule
dissipation is governed by the model functions G and H, here given by

9 R
G(a, Rss/K) = 04—1—1—0%042, (34)
H(a) = —2042. (35)

5

3. Dynamical properties of the model

The dynamical properties of the turbulence model are determined by the three
equations for K, € and « (since they are independent of the stress anisotropy).

Let us define the magnetic interaction number using variables of the closure,
20B’K K

e (36)

N = = .
pE 27e

In the absence of a magnetic field (N = 0), the model reduces to the common
K— model, with analytic power-law solutions. For large times, turbulent kinetic
energy decays as K ~ t~™, where n = 1/(C.2 — 1). The standard value of C.o
used in most turbulence closures is 1.92, which gives n & 1.09 (see, e.g., Launder
& Spalding [4]). For large times, an integral length scale estimated as L ~ K /¢
would then grow slowly as L ~ t%46. These results are well documented in the
literature, and in good agreement with experiments on grid generated turbulence.

Below we look at the model properties in the presence of a magnetic field.

3.1. Decay in a strong magnetic field. For large interaction numbers, N >
1, Joule dissipation dominates, at least for a time of order Ny7; Moffatt studied
this case using the linearized inviscid Fourier transformed equations [5]. For this
regime of linear decay, the energy was found to decay as K ~ t=1/2,

When Joule dissipation dominates, the model equations (26), (27) and (28)
are approximated by

dK 1

er Tk

dt o (37)
de Cea

o = T, (38)
da o Cal 2

— = —a’, (39)

Note that the equation for ¢ is retained here, although ¢ is assumed small enough
to be neglected in the right-hand sides of the equations. This enables us to study
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how the magnetic destruction terms affect the turbulent time and length scales
we can construct from K an e,

K
Ty~ ?;/2 (40)

K
L o~ —. (41)

Equations (37) through (39) have analytic solutions,

K(t) = Ko(Bt+1) V%, (42)
e(t) = eo(ft+1) T (43)
alt) = ap(Bt+1)7", (44)

where 8 = Cy1a0/7, and variables with a zero subscript represent initial condi-
tions.

The decay rate of turbulent kinetic energy is governed by the model coefficient
Cq1 in the magnetic destruction term in the a equation. By choosing C,1 = 2,
we obtain the asymptotic decay rate K ~ t=1/2 predicted by Moffatt [5].

The significance of C,; can be understood from an examination of the exact
destruction term. Widlund et al. [13] used the linearized equations and the con-
cept of rapid distortion theory (RDT) to compare the exact Joule destruction
terms in the Reynolds stress and a equations, with the proposed model terms.
Figure 1 compares the ratio u,7/a, as predicted by RDT and the simple model
(32). A coefficient C; = 0.8 was found to give the correct value for isotropic
turbulence (for which o = 1/3), while Caq1 = 2 gives a good description near the
2D limit (o = 0). With the information in Fig. 1 it would be fairly straightfor-
ward to devise a more accurate higher-order model term for p,, although this
is beyond the scope of the present paper. Figure 2, showing decay of turbulent
kinetic energy, compares model predictions with a numerical integration of the
exact RDT equations; See [13] for details. In the following we will use Cyp1 = 2,
which gives the desired asymptotic behavior for small c.

Equation 43 shows that the decay rate of ¢ is determined by the ratio C.,/Ca1,
and the value of (., thus affects the development of turbulent time and length
scales (40) and (41). Combining solutions (42) and (43), we get

K, Ceq—1

Te(t) = E—;)(ﬁt—kl) e (45)
K3/2 Ceaq—3/2

Lt) = 500 (Bt+1)" Car . (46)

Assuming C,1 = 2, we can identify two values of C., with special meaning.
Ceo. = 1 leaves the turbulent time scale unaffected by the magnetic field, with
a slow decline of the integral length scale, L ~ ¢t~ /4. If instead C., = 3/2, the
integral length scale L is unaffected, but there is slow growth of the time scale,
Ttr ~ tY/4. Tt is generally held that the length scale estimated by (41) is not
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FIGURE 1. With the model term (32), the non-dimensional ratio
HaT/o is given by the linear expression Chicr. Here this model is
compared with the exact term in the linearized equations, as a func-
tion of o (see Widlund et al. [13] for details).

affected by the magnetic field (see, e.g., Davidson [3] and Moffatt [5]). In the
following we will therefor expect C., to take a value close to 3/2.

The model variable « represents an anisotropy of length scales, relative to the
direction of the magnetic field. The definition of «, and comparison with scale
estimates in earlier work (e.g. Davidson [3]), suggests the scale relation

- ()

where L) is a characteristic length scale in the direction of the magnetic field.
Provided the change in L is small, Eq. (44) then yields the length-scale growth
Ly~ t'/2 for large times. This is consistent with the results of Sommeria and
Moreau [10], and Davidson [3].

3.2. Moderate interaction numbers. When the interaction number is of
order one, the situation is more complicated. The equations for K, ¢, and «,
are nonlinear and strongly coupled. No analytic solutions can be found for this
case. The most important change is perhaps that the o equation is now strongly
coupled to the other two, through the nonlinear return-to-isotropy term, 7.
We will see that the behavior of this term is very important for the dynamical

properties of the whole system.
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FIGURE 2. Decaying turbulence in the limit of large N, where
Joule dissipation dominates. The graphs show time development
[r = p/(20 B?)] of turbulent kinetic energy. Solid line represents the
RDT solution, and dashed lines the analytic solution of the model
equations (37) and (39), for two values of Can1. (Initially isotropic
turbulence, a0 = 1/3.)

We assume the model variables have power-law behavior for sufficiently large
times. We could introduce the variable transformation s = 1/¢, so that solutions
for large times correspond to solutions for small s. For small s, a Frobenius series
expansion of a variable ¢ has the form

o(s) :sm(a0+als+a232—|—-~~), (48)

where the exponent m may be any real number. We retain only the first term,
and look for solutions of the form

K(s) = aps", (49)

e(s) = bps?, (50)

a(s) = cgs®. (51)

For large times, « — 0, so that the return-to-isotropy model (33) is approxi-
mately

e (52)

3K
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For small values of s, the transformed equations (26), (27), and (28) then read
as

dK 1

2

= - oK

0 s’ —e¢~ -Ka, (53)
de 2 C.a

0 = SQE_ 82F_ (e (54)
d . «Q

0 = 52—a+02€fﬁa2. (55)

ds 3K T
Inserting our ansatz (49), (50), and (51) yields (after simplification)

0 = - Q0 g—aty-1) _ QO ) (56)
agp T
0 = y- =250 ary-n) _ Ceao 1) (57)
ag T
0 = o4 Z0200 (rpy—ny Lot o) (58)
3agcy T

The first constant term of each equation above must be balanced by at least one
other term of zeroth order. Presumably the magnetic terms (last) are active also
at large times, so that z = 1. Since z = 1, the second terms in (56) and (57) are
a factor s larger than the second term in (58). For this case to be different from
the linear problem of Sec. 3.1, we conclude that also the second term in (58) is
constant, so that y = =+ 2; the second terms in (56) and (57) are then 1st order
in s, and vanish for small s (large times). Equations (56) and (57) now reduce

to
.
0 = =z pup (59)
Cmco
0 = Yy — T 5 (60)
which we can solve for x and y. We find
2
x = o1 (61)
2C.q
y = ﬁv (62)
z = 1 (63)

With the ansatz (49), (50), and (51), we have for large times K ~ t~%,
e ~t7¥ and a ~ t~* while the length scales evolve as L ~ t(=32/2%%) and
Ly ~ t(=32/24y+1/2) " The coefficient value C., = 3/2 proposed in Sec. 3.1 gives
an energy decay K ~ t~*, while the length scales develop as in the linear case.
The experiment by Alemany et al. indicated that K ~ ¢~%7. To obtain this
decay, we would have to choose C., = 2.2, but then the length scales would
evolve as L ~ t'? and Ly~ t%7. This is not consistent with neither theory, nor
experiments.
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The unwanted properties of the model is caused by the unphysical behavior
of the return-to-isotropy term 7, when we approach a = 0. As explained in
spectral terms by Alemany et al., we will eventually reach a balance between
Joule dissipation and nonlinear angular energy transfer. The angular energy
transfer is represented by the return term m,, which counteracts the magentic
destruction term p, in the a equation. One can argue that the spectral triad
interactions responsible for the angular energy transfer should vanish in the limit
of 2D turbulence, where all the energy is concentrated in the wave number plane
k= 0. This means that 7, should be zero for « = 0. In contrast, the linear
model term (33) has its maximum value for o« = 0. Since po = 0 in the 2D
limit, « = 0 is not a fixed point of the system, and the 2D limit is approached
only slowly, as the growth of the turbulent time scale K /e gradually shifts the
balance of the two terms towards lower a.

The shortcomings of the original model are addressed in the following section.

3.3. Modified nonlinear term. We repeat the analysis in the previous section
with a modified version of the return-to-isotropy term m,. For a physically
correct description near the 2D limit, 7, should be zero not only for isotropic
turbulence (o = 1/3), but also in the 2D limit, where a = 0. Any such model
can be written as a series expansion

To = ;Q%a(1+d1a+d2a2+~--). (64)
For our analysis we assume small values of «, and retain only the leading-order
term,
o~ Cly—a (65)
a ™ a2 K .

The primed coefficient C?, can here be interpreted as the slope of m,K /¢, as a
function of «, near the 2D limit.
With the new expression (65), the transformed equation (55) for « is altered,
so that
zd_a Cloea Ca1 4

0 = %t "k T (66)

We insert the ansatz (49), (50), and (51) to obtain

0 = z+ Cazbo (—ary-1) _ Caro (o), (67)

agn T

The exponent of the second term in (67) has changed, compared with the original
(58), and the exponent is now the same as the second terms in (56) and (57).
For this case to be different from the linear problem, we then conclude that all
terms in (56), (57), and (67) must be of equal order, so that z =1, and y = z+1.
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Egs. (56), (57), and (67) then reduce to
b() Co

0 = $*a—0*?, (68)
Eb EQ

0 = y_M_ﬁ7 (69)
ap T
'

0 = Z+M7M. (70)
aq T

The non-trivial solution to this system of equations yields

052 + Cod - Osa + 012

v Cal(CEQ - 1) + C&Q(CEOC - 1)’ (7 )
o 052 + CEQCal - anc + OECMOZ)é2

YT Cai(Ca 1) 1 0y(Caa — 1)

z = 1 (73)

(72)

The result y = x + 1 relates the power-law decay of energy to the evolution
of the time and length scales. We saw earlier that L ~ t9, where ¢ = —3z/2 +y.
If y = 2 +1, then ¢ = 1 —x/2. The same relationship between energy decay and
length scale growth is obtained for the standard K—e model, and with C., = 3/2
this holds also for the linear case in Sec. 3.1. In contrast, the original model in
Sec. 3.2 makes y = x + 2. This gives ¢ = 2 — /2, and explains the inconsistency
between predicted energy decay and length scale growth for the original model.

Inertial effects are governed by the turbulent time scale K /e, while the Joule
energy dissipation is governed by an effective magnetic time scale 7/a, rather
than 7. The analysis shows that, for large times, both these time scales grow as
K/e ~ 7/a ~ t. This corresponds to an equilibrium between nonlinear energy
transfer, and Joule dissipation. As pointed out by Sreenivasan and Alboussiére
[11], these time scales define a “true” interaction number, N*. We here define it
in terms of the variables of the closure,
aK  p 20B%aK
e ¢ pe

N* = (74)

In the “nonlinear” phase of decay occuring for large times, Sreenivasan et al.
proposed that N* is constant and of order unity. This is consistent with our
analysis: the ansatz (49), (50) and (51), and the solution to the system (68)
through (70), gives
Cea+Cly—1
Co1 —Cea +1
The power-law exponent (71) for energy decay at large times depend on all
model coefficients C.o, Cy1, Ceq, and Cl 5. By choosing C.o = 1.92 and Cjy1 = 2,
the model predicts the correct energy decay both for high N, and for N =0 (no
magnetic field). The asymptotic energy decay for finite N is then determined
by our choice of C/, and C.,, although we prefer a value of C., close to 3/2,
to get the expected length scale evolution in the linear regime. Figure 3 shows

N* = = const. (75)
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Fi1GUrE 3. Contours of the power-law exponent x in the asymptotic
decay K ~ t~*, as a function of the coefficients C.,, and Cl5 (assum-
ing 052 = 1,92 and Cal = 2)

how the power-law exponent x in K ~ ¢t~ depend on the model coefficients
Clo and C.o (assuming Ceo = 1.92 and Car = 2). If C.n = 3/2, the value
C’, = 4.72 reproduces the energy decay K ~ t~ 17 found by Alemany et al..
The length scales then develop as L ~ t%15 and Ly~ 1965 for large times. The
true interaction parameter tends to a constant value N* =~ 3.76, given by (75).

4. Numerical simulations

The model equations can be solved numerically with a standard ODE solver, and
approriate initial conditions. For this purpose, we need to define a return-to-
isotropy model term 7, which presumably behaves roughly as the original model
(33) away from the 2D limit, but with the asymptotically correct behavior (65)
when we approach a = 0.

A simple combination of Eqgs. (33) and (65) yields

T = % min [C’(lyga; Caz <% — oz)} . (76)

For a given value of C/,, the value of C,o decides how fast m, grows as we
move away from the isotropic state, and also fixes the distinct value of o where
the model term abrubtly changes behavior and falls off towards zero. Equation
(76) is a gross simplification of the true mechanism, but we can use it here to
demonstrate some properties of the model.
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FIGURE 4. Predicted energy decay for three values of the coefficient
Ca2, and initial interaction number No = 1.

4.1. Variation of C.o and N. Initial values for K and ¢ can be chosen arbi-
trarily as Ko = 1, and ¢g. We presume initially isotropic turbulence, ag = 1/3,
and Rss = 2K /3. The initial magnetic interaction parameter is Ng = Ky/(27¢0).

The analysis above shows that the following set of model coefficients gives
an asymptotic energy decay in agreement with theory and experiments, for all
values of N:

{Ci9,Car, Cea, Clp} = {1.92, 2, 1.5, 4.72}. (77)

Figure 4 shows predicted energy decay for Ny = 1 and three different values
of the undetermined coefficient C,o, which governs the magnitude of the re-
turn term (76). Figure 5 shows the evolution of the true interaction parameter,
N* = aK/(7e). Both figures show that C,z affects how fast we reach the final
“nonlinear” phase of decay; the stronger the return term, the faster we reach the
point where 7, starts to decrease with decreasing a.

Figure 6 shows the evolution of the true interaction parameter for three intial
interaction parameters Ng = {0.1,1,10}, and Coz = 0.4. We asymptotically
reach a constant value N* ~ 3.8, given by (75).

4.2. Comparison with experiments. The experiments by Alemany et al. [1]
measured the r.m.s. velocity parallel with the magnetic field, u ||, and the parallel
integral scale, [ (from the one-dimensional spectrum in this direction). The
MHD turbulence model we want to compare with, on the other hand, features the
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FIGURE 5. Predicted evolution of the true interaction number N™,
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FIGURE 6. Predicted evolution of the true interaction number N* for
three values of initial interaction number, No = {0.1, 1,10}, and with

Caz =0.4.
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independent variables K, e, o, and R33; only Rs3 can be compared directly with
the measured u_ﬁ Based on previously introduced scale estimates, we therefor
assume that a turbulent length scale L and a parallel length scale L can be
related to the closure variables through

K3/2
£

-2

where A is a constant of order one, and a4s, = 1/3 is the isotropic value of a.

Like Alemany et al., we will present results with the non-dimensional time
scale Z — Zy =tU/M, where M = 2 cm is the mesh size, Zy = 4 is the location
of the effective origin, and t is real time in the simulation. Initial conditions are
computed from measured data in Z — Zy = 2, corresponding to a time ¢; in the
simulations. An ODE solver can then be run forwards and backwards in time,
so we can check the model behavior near the effective origin.

L=A

, (78)

4.2.1. Viscous decay (B =0). Alemany et al. performed experiments with and
without magnetic field, and for three different mean velocities, U = [5, 10, 20]
cm/s. Without magnetic field, we should find good agreement between the
standard K-e model and experiments if the Reynolds number is high enough.
Experimental data at Z — Zg = 2 gives approximately u_ﬁ/ U? =18 -1073, and
lj = 0.27 cm. We assume U = 20 cm/s, and specifiy initial conditions at ¢ = #;
as R331 = u_ﬁ, and due to isotropic conditions, K1 = 3Rs3,1/2 and L; = lH. The
initial ¢; is then computed from (78), where A = 0.31 is chosen to match the
measured energy decay.

Results are shown in Figs. 7 and 8. The predicted evolution of the length scale
agree well with measurements only for the highest mean velocity, U = 20 cm/s.
For the lower mean velocities, the measured length scale evolution is inconsistent
with the observed energy decay. This is probably an effect of the low Reynolds
numbers realized in the experiments; based on w| and [} measured at Z —Zp = 2,
the turbulent Reynolds number was Re = {157, 315, 629}, for mean velocities
U = {5, 10, 20} cm/s, respectively. In the following we consider only results
obtained with U = 20 cm/s.

4.2.2. With magnetic field. To get the desired asymptotic evolution of energy
and length scales, we use the model coefficients defined in (77), together with
Ca2 =04.

For magnetic field B = 0.25 T and mean velocity U = 20 cm/s, the first
measurement in Z — Zy = 2 gives u_ﬁ/U2 =17-1073, and ) = 0.36 cm. For the
time ¢ = ¢, the experimental data thus provide the initial conditions R331 = u_ﬁ,

and Ll\vl = lH. Assuming we can estimate L and Rq; at time ¢ = ¢, we can
compute the remaining initial conditions as follows: (i) K7 = (2R31,1 + R33,1),
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FIGURE 7. Viscous decay of turbulent kinetic energy. Comparsion
between Alemany’s experimental data (for B = 0), and predictions
with the standard K— model.
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FIGURE 8. Growth of integral length scale, as measured by Alemany
et al., and predicted by the standard K— model. Predicted length
scale is computed from Eq. (78), with A = 0.31.
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FIGURE 9. Decay of field-parallel Reynolds stress. Comparison be-
tween model predictions and Alemany’s experimental data (B =
0.25 T, U = 20 cm/s). Predictions with the standard K—e model
and experimental data for B = 0 are shown for comparison. The
dashed line represents the asymptotic power-law behavior of the

model.

(ii) oy is computed from Eq. (79), and (iii) ¢ is computed using Eq. (78). We
have chosen L; = 0.251 cm and Ry;,1 = 0.85R33,1; with these values, backward
integration to the virtual origin (¢t = 0, Z — Zy = 0) gives Ri1,0 ~ R33,0, and
Lo =~ Ly o (isotropic turbulence). As in the viscous case, we adjust A in (78) to
match the measured energy decay; here A = 0.22.

Figure 9 shows measured and predicted decay of the field-parallel Reynolds
stress. Results with B = 0 are included for comparison. The Reynolds stress
anisotropies are relatively small, so there is little difference between the evolution
of K, and the individual stress components (not shown here).

Equations (78) and (79) can be used to compute L and Lj from predicted
values of K, £, and . Computed length scales are compared with the measured
parallel scale [ in Fig. 10. Non-magnetic results are shown for comparison.
Compared to the non-magnetic case, the integral scale L evolves slower in the
presence of a magnetic field, while the parallel scale L grows faster.

5. Discussion and summary

In earlier papers, Widlund et al. proposed to model MHD turbulence by including
an extra transported scalar « in standard eddy-viscosity and Reynolds stress
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FIGURE 10. Development of computed length scales (see text), com-
pared with the parallel length scale measured in Alemany’s experi-
ment. Predictions with the standard K—e model and experimental
data for B = 0 are shown for comparison. The dashed line represents
the asymptotic power-law behavior of L, according to the model.

closures [12, 13]. The new scalar measures anisotropy of length scales, with
respect to the direction of the magnetic field.

In this paper we have studied the dynamical properties of of proposed model
equations, for the case of homogeneous decaying turbulence. On physical grounds,
we proposed a modification of the nonlinear return-to-isotropy term m, in the a
equation, so that 7, falls off linearly towards zero when we approach the 2D limit
(o = 0). We could then determine a consistent set of model coefficients, that
makes the asymptotic behavior of the model for large times consistent with the-
ory and experiments, for interaction parameters N ranging from zero to infinity.
When N = 0, the model coincides with a standard K—< model. For the linear
regime of large N, the model predicts energy decay K ~ t~1/2 and Ly~ t1/2 in
agreement with earlier theoretical results (Moffatt [5] and Davidson [3]). For in-
termediate values of N, finally, the model reproduces the energy decay K ~ t=7
and the length scale evolution measured in the classical experiment by Alemany
et al. [1].

Davidson [3] obtained his results for large N from scale estimates, assuming
conservation of angular momentum about an axis parallel with the magnetic
field. For intermediate interaction numbers, typically N ~ 1, Sreenivasan and
Alboussiére [11] analysed the dynamics of a single vortex in the late nonlinear
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phase of decay, where there is an equilibrium between Joule dissipation and
nonlinear energy transfer. They assumed conservation of angular momentum,
and further that a true interaction parameter N; = N(L/Ly)? tends to a constant
value of order one. From a modeling perspective, these assumptions are not
necessary. The properties themselves are confirmed, however, provided that
the proposed model equations capture the essential properties of the underlying
physical mechanisms. The most important aspects we have seen here are, (i)
an exact expression of the Joule dissipation in terms of the closure variables
(bt = aK/7), (ii) a dimensionally correct linear model of Joule destruction in
the € equation (31), (iii) a magnetic destruction of o matching the asymptotic
behavior of the exact term in the linearized equations (Fig. 1), and finally, (iv)
a return-to-isotropy term in the a equation, which approaches zero in the 2D
limit.

The nonlinear energy transfer mechanisms are still not well understood. We
have, for example, not considered the effect of the magnetic field on the nonlinear
energy transfer rate. The magnetic field may effect the rate of nonlinear angular
energy transfer (the return term in the « equation), and intercomponent transfer,
but also the energy cascade leading to viscous dissipation of energy in the small
scales. The study of nonlinear effects will be one of the priorities for future work.
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