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Abstract

Propagation of waves in nonlinear, dispersive and dissipative media, as de-
scribed by Korteweg-de Vries-Burgers’ equation (KdVB), has been studied.
The focus of the investigation has been to study analytically, the structure of
a shock wave that is broken down by dispersive and dissipative phenomena.
To be able to use the inverse scattering transform (IST) to get analytical so-
lutions for Korteweg-de Vries’ equation (KdV), an N-wave was used as model
for the initial shock. The IST is used to transform KdV, which is a nonlin-
ear differential equation, into Marchenko’s equation that is a linear Volterra
integral equation. A zeroth order iteration solution, which reconstructs the ini-
tial waveform, is presented. For positive times, this solution shows a decaying
shock front which slows down, leaving an oscillating tail behind. This solution
is valid for moderate values of the dispersion coefficient. In order to obtain
solutions for smaller values of the dispersion coeflicient, asymptotic analysis
is used. The corresponding asymptotic analysis for Burgers’ equation, with a
small dissipation coefficient, is quoted for comparison. An asymptotic analysis
is also made for KdVB, in the case for which dispersion as well as dissipation
is important.
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Chapter 1

Introduction

The concept of waves has been proven to be an adequate description of such
fundamentally different physical phenomena as light (electromagnetic waves)
and sound (acoustic waves). Propagation of electromagnetic waves in vacuum
can be described in a straightforward manner by Maxwell’s equations, which in
this case can be rewritten as the linear wave equation. This holds also for elec-
tromagnetic waves in some fluids, e g air or water, but with different wavespeeds
(depending on the media). Acoustic waves do not propagate in vacuum. Acous-
tic waves in non viscous fluids can, for small amplitudes, also be described by
the linear wave equation. In viscous fluids, the waves are attenuated due to
the dissipation of energy. For some media also dispersive effects become im-
portant, i e the propagation velocity is dependent of the wavelength. The
behaviour of the waves is changed even more radically if nonlinear phenomena
occurs. This usually means that energy is transferred from lower frequencies
to higher within the wave. Nonlinearities make the equations much harder to
handle since the different wavelengths cannot longer be treated separately, i e
using the superposition principle, but on the other hand this makes everything
much more interesting. Dispersion and dissipation are characteristic also for
electromagnetic waves in conductive media. Under certain circumstances even
nonlinear electromagnetic waves occur in dielectric[28] and magnetic media.
We will here study acoustic waves and investigate how they are influenced by
dissipation, dispersion and nonlinearities.

As a model for a nonlinear, dispersive and dissipative medium, a fluid composed
by a liquid containing small gas bubbles has been studied. The gas bubbles
are assumed to be homogeneously distributed in the liquid. It is also assumed
that the typical frequencies are well below the lowest resonance frequency of the
bubbles. (A description of resonance phenomena can be found in Naugolnykh &
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Ostrovsky[27]) Following van Wijngaarden[33], but also considering dissipation,
it can be shown that Korteweg-de Vries-Burgers’ equation

U +UUy — OUgy + O Ugze =0 (1.1)

can be used to describe propagation of plane waves in this medium. It is de-
rived from Navier-Stokes’ equation, the continuity equation and the Rayleigh
equation for the expansion and contraction of a gas bubble in a liquid as formu-
lated by Lamb|[22]. In this derivation it is also assumed that a small region, in
relation to the wavelength, contains many bubbles and that the total amount
of gas is small. Furthermore, the sound velocity is assumed constant and the
behaviour of the gas bubbles isothermal. That the last assumption is plausi-
ble for most frequencies was shown by Plesset & Hsieh[29]. The liquid is also
considered incompressible.

If there is no dispersion, i e ¢ = 0, the remaining terms of (1.1) will form
Burgers’ equation. If instead the dissipation is negligible, i e 6 = 0 they will
give Korteweg-de Vries’ equation. Burgers’ equation is analytically solvable
through the Cole-Hopf transformation. Some results from investigations of
Burgers’ equation will be quoted. A similar attempt to solve Korteweg-de Vries’
equation leads to the inverse scattering transform. It is also here possible to
obtain analytical solutions, but only for a few special cases.

In the limit that the dissipation goes to zero for Burgers’ equation, it can be
shown that N-waves are formed after long times independently of the initial
waveforms.(See Gurbatov et al[13]) Here we will give an analytical solution
of Korteweg-de Vries’ equation with an N-wave as initial waveform, by using
the inverse scattering transform. This solution is valid for moderate values of
the dispersion coefficient . As a complement, asymptotic analysis for small
values of o are made for the shock region and for the shock tail region. For
comparison the corresponding asymptotic analysis for Burgers’ equation, by
Crighton&Scott[6] for the shock region and by Enflo[8] for the shock tail region,
are quoted. Performing an asymptotic analysis for Korteweg-de Vries-Burgers’
equation usually leads to either the asymptotic analysis of Korteweg-de Vries’
equation or the analysis of Burgers’ equation. We will here also study the spe-
cial case for which the values of the parameters (6, o) of KAVB give dissipative
and dispersive effects of the same order of magnitude.

Korteweg-de Vries-Burgers’ equation gives a fairly general description for non-
linear, dispersive and dissipative wave propagation. Some further applications
are electromagnetic waves in ion plasmal[l1] and density waves in traffic flow[26].
In both these cases also shock waves occur.



Chapter 2

Derivation of
Korteweg-de Vries-Burgers’
Equation

(In this chapter, the only essential deviation from [33] is that the viscosity has
been included in (2.1))

As starting point we will use Navier-Stokes’ equation in one spatial dimension.
This is as usual accompanied by the continuity equation, but instead of an
ordinary state equation, the Rayleigh equation for the dynamics of a gas bubble
will be used.

1 v
vy + vl + ?p;, - ?U;,m, =0 (2.1)
py + (PV)er = 0 (2.2)

3
pi(RRyy + 533) = Py Pe. (2.3)

Here R is the bubble radius and [, g are indices for the liquid and the gas
respectively. If the relative motion of bubbles and liquid is small p, can be
replaced by p/, i e the average pressure in the mixture at the location of the gas
bubble. Since the mass of a gas bubble is constant the isothermal assumption

Pg _ Po (2.4)
pg ng

can be used to write

R=Ry (p—-")_% , (2.5)

Po
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where 0 represents the undisturbed state. Using (2.5), the equation (2.3) can
be written as

1 _1 _1\ 2
by o [(Pe) T () L3 (P
P =pg— G (p0> a2 \ po + ACTA . (2.6)

2.1 Sound velocity

In order to formulate our problem in terms of dimensionless variables, an ex-
pression for the sound velocity is needed. A derivation of this expression follows.
That a unit mass of the mixture contains a constant mass of gas can be written
as

pg _ ng
1-6 1-p
under the assumption that the mass of gas can be neglected compared to the

mass of the liquid. Here [ is the volume fraction of gas in the fluid. This means
that the density of the medium will be

pl=1—0)p +Bp,- (2.8)

With the term (3p, approximated to be zero in (2.8), the equation (2.7) can be
used to obtain

(2.7)

p/ Pg.
Lo »w (2.9)

P B
P Eg' + -5,

Differentiation of (2.9) with respect to p, gives, by using the formal equation

d d )\ !
—py=|—-— 2.1
= (30 (2.10)
the expression
d 1- 2
o _ 20 1= fo (&4——/30 ) . (2.11)
o' p Bo \po 1-fq
For waves of moderate amplitude the ansatz
Po _14ee (2.12)
Po

is used. Here ¢ is a small parameter. Substituting (2.12) into (2.11) gives

dpy _pol—fo (1 _Po )2 2.13
dp’ P Bo +6£+1—/30 ' ( )
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If only terms which are up to linear in ¢ are considered, this can be written as

dpg P01 _
a0~ Bl g (T2 - B0 (2.14)

From (2.6) it is obvious that p’ — p, then Ry — 0 and thus it is possible to
define the sound velocity, in terms of py, by

dp’ dp
2 g
= — =~ —=. 2.15

In the lowest order (2.14) and (2.15) leads to the relation
Po 1

2
g=——— (2.16)
0 1 Bo (1= Bo)
where all involved entities are assumed to be constant.
2.2 Dimensionless variables
We are now ready to introduce dimensionless variables by
T =t
x =3/ (2.17)
ev = cUlﬂo v
where A is a typical wavelength. Using the chain rule in the form
op  0p 0
g _ 9P P (2.18)
ot Opg Ot

with the equations (2.2), (2.12) and (2.13) gives, if terms which are O (¢?) are
neglected, the equation

d d d
d—f +aﬂov£ + (14 (2-B,) a{)é =0. (2.19)
It is also possible to combine (2.1), (2.6), (2.9), (2.12) and (2.16) to obtain
dv dv  _(1+(1—By) &) d®v (1~ Byet) dé B
(e - ) -

wl—=

)2> . (2.20)

U= )\C—;Ul/
2 (2.21)

1 2 1
p (1= ehof) ((1 +ef) " % (1+e)7% + g (% (1+e)”

where we have introduced
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Under the assumption that g = O(e), if again only terms up to linear in ¢ are
kept, (2.20) will get the form

dv dv d?v dé B 3¢
3

d_T_'—EIBOUa_D(l_IBOE&)d ( /80 5)_ dTQdX

=0. (222

2.3 Reduction of the system
The system of equations is (2.19),(2.22):
4y sﬁovﬂ — (1 — Boe) £5 + (1 — Boet) & + & d:ijx =0
& T eBovge + (1+ (2 Bo) <€) &

This does not seem to be easier to solve than the original system (2 1)-(2.3).
For the special case where e =0, ¢ = 0 and 7 = 0 the system (2.23), however
is reduced to

(2.23)

oo
(2.24)
+ dv =0
with the solution
v=E&=f(x—-7). (2.25)
To examine solutions to (2.23) for small values of €, 1 and ¥ the assumption
v—€6=0/¢) (2.26)
is used. From (2.24) and (2.26) follows the expressions
3 0
=0 2.27
5 =00 (2.27)
and
0 0 B 2
<E+8_X) (v—¢&=0(). (2.28)
From (2.27) also follows that
0? 0? 0 0 0 0
il ) (25 (22 . 2.2
(672 " ax2> (67’ " ax) (67 ax> 0 (2:29)
Addition of the two equations in (2.23) gives with (2.28)
de de do  de\ &2
2<d +d )+550U<d +d )V(IEﬂof) 5 T
dg Lh b
5ﬂ0§ ‘1' (2 Bo) f 3 a2dy =0, (230)

if terms which are O (52) are neglected. The expression (2.29) can be used to
write the mixed derivative in (2.30) as a derivative of one variable only. If u
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and 7 are assumed small, i e O (g), the reduced equation system can now be
written as

dede | dEpdE i

L 2.31
T ay T 242 TG (2:31)

which is one form of Korteweg-de Vries-Burgers’ equation(KdVB). This equa-
tion is also valid for v instead of £ since we started with the assumption (2.26).

2.4 Retarded variables

A retarded variable z is introduced as
! t/
T=X—T <_ L /\CO ) , (2.32)

i e the reference system moves with the sound speed in the positive direction.
This allows us to write (2.31) on the form

e de bd | pd
ar % 9 Teae (2.33)

Using the scaling u = £ and the notations for the dissipation coefficient

5= g (_ %;—;01/) (2.34)
and the dispersion coefficient
1 R3
=& (owmn) (239
gives us the more compact form
Up + Uy — OUgy + OUggy = 0 (2.36)

of KAVB. Thus the coefficient for the dissipative term is proportional to the
viscosity of the fluid, whereas the dispersion is affected by the size of the bubbles
as well as the volume fraction of gas in the fluid. We will now study how the
solutions of (2.36) depend on the values of § and o.






Chapter 3

Burgers’ equation

For non dispersive media, i € 0 = 0, KdVB is reduced to Burgers’ equation
Up + Uy — OUgy = 0. (3.1)
This is analytically solvable via the Cole-Hopf transform[5][14]

u(z,t) = 26% = 265% Inwv, (3.2)

which after some manipulations gives the heat equation
v = O Ugy (3.3)

from (2.36). This equation can be solved by separation of variables and use
of Fourier series. Thereafter the solution to Burgers’ equation is obtained by
use of (3.2). For a single frequency boundary condition, u(0,t) = sin(t), the
solution can be written

f: (=1)"n e*"‘z‘szn(Q—lé) sin(nt)
u(z,t) = —46 n=1 — (3.4)
2 3 (~1)r e ¢ (55) cos(nt)

)

S
—~
S
N—
_|_

3
Il
—

where I,, are modified Bessel functions. This form is however difficult to handle.
There are two approximate solutions to this equation which are fairly well
known. They both use single Fourier series as approximations. These are for
the region @ < 1 the corrected, i e valid also for § # 0, Fubini solution[4]

u(z,t) =2 Z (% - %Zrbr [Jm—r(Mm @) + Jppir(m :1:)]) sin(mt)

(3.5)
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where!

=
[SIE

by=r (1—2) 22" (1— (1—2%)" )T (3.6)

and for x >> 1 Fay’s solution|[9]

u(z,t) _252 sin(n?) (3.7)

sinh(n 6 x)

Fay’s approximation happens to be an exact solution of Burger’s equation but
the boundary condition of the original problem is not fulfilled. In the limit
when the dissipation approaches zero it can be shown that regardless of which
initial condition is used, N-waves will be formed after long times [13].

3.1 Asymptotic analysis

Already for a single frequency initial condition, the solutions are a bit convo-
luted. To study the evolution of an shock-wave it is therefore necessary to use
asymptotic analysis. This has been done with an N-wave as initial waveform
for a generalized Burgers’ equation
ov ov o*V
+V——-0g —
3T 0x (T) Ox?
by Crighton & Scott[6]. In this equation the factor g (T') depends on the ge-
ometry of the problem. For wave motion with plane symmetry, which is what
we are studying here, g (T') = 1. The problem was, in this article, formulated
as

=0 (3.8)

) 2’V _

Ve 69 =0

Vi, 1) = z |zl <1 (3:9)
LYUTL0 |z >1

where we have inserted g (I') = 1. The dissipation coefficient 6 is here assumed
to be small. The choice of using 7" =1 as the initial time is made because this
gives, in the limit that ¢ is zero, the outer solution as

aor T

z T3
Vow )= 4 T o< 3.10
ole.T) {o | > T (3.10)
An inner variable
— T3
ot =2 ; (3.11)

and the expansion V' = V{ 4+ 6V{" is then introduced. This gives, in the leading
order of 6, the differential equation

LFor our purposes the notation could be simplified by ¢, = rb, but in [4] b, is used also
in other equations.
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1.1\ oVy 9%V
* T2 — = 12
(VO 2 ) Ox*  Ox*? 0, (3.12)
which may be integrated to
e e
(VO -T ) o -8 —0). (3.13)

This equation has the implicit solution

. av
‘ _2/(VT%)VC(T). (314

It can be seen that the matching against the outer solution (3.10)

lim V5 =0
lim Vg =T"%

¥ ——00

(3.15)
is fulfilled if C (T") = 0 is used. This gives the solution

Vg = T; (1 ~ tanh (T; (@ — A(T)))) (3.16)

By integral conservation technique[6] the unknown function in (3.16) can be
determined to be

A(T)=-T?InT (3.17)

Thus the inner solution written in the original variable is

_1 1
Vg = T2 - (1 — tanh (i (T‘é v 76T_ + lnT>>> (3.18)

This obviously fulfils (3.15). If the first term of the argument of the tanh
function dominates over the second one, the solution can be expressed on a
somewhat more transparent form.

3.2 Shock tail region

The shock tail region is used to describe the development of the N-wave far
away from the shock region. (See Enflo[8]) If a new variable is introduced as

1 2—T2
= —— 1
( 26 T3 ) (3.19)

W=

1
Y = Ex*T*



12 Chapter 3. Burgers’ equation

the equation (3.16) with (3.17) gets the form
1 1 -1
Vg =14 (1 +T% exp Y) . (3.20)

In the shock tail region, defined as {T'=0(1),Y >1n(e7*)} where ¢ < 1,
this is reduced to

Vg =T texp(-Y). (3.21)
This is, in the shock tail region, also a solution to (3.8) (with g (T") = 1) if the
nonlinear term is neglected. In terms of the original variables, (3.21) can be
written as

1o—T2
VO* == T_l €exXp (—g%) (322)
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Korteweg-de Vries’
equation

If the dissipation can be neglected, i e the viscosity is zero which means that
the second derivative vanishes from KdVB, the remaining equation is called
Korteweg-de Vries’ equation (KdV).

Up + Uy + O Uggy =0 (4.1)
KdV is analytically solvable only for a few special cases and thus most studies
deal with these!. We will here study an initial value problem, which does not
fall into this small group.

4.1 Inverse scattering transform

To solve KAV analytically the inverse scattering transform (IST) is used. (For a
more comprehensive description see e g Marchenko[25], Ablowitz[2] or Lamb|[21].)

\I](E(E
v(z,t) = + A(t) (4.2)
v
If the ansatz (4.2) is rewritten as
Wop + (A(t) — v(z,t))¥ =0, (4.3)

it is recognized as the time dependent Schrodinger equation. The principle of
IST, as formulated for KdV, is as follows. If \; = 0, (4.3) is a time independent

IMaybe it should be mentioned that these special cases are the soliton solutions whose
peculiar properties attract ”some” attention themselves.

13
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eigenvalue problem. It can be shown that a sufficient condition for this is that
the potential v(x,t) fulfils Korteweg-de Vries’ equation on the form

vy — % (Vggz — 6V VL) —c(t) vy =0 (4.4)
This means that if v(z,t) fulfils KdV, the solutions to (4.3) are independent
of the value of ¢t used in v(z,t). Especially v(z,0) can be used and thereafter
the solution to the KdV with this initial value is obtained from the solution
to (4.3). To get the KdV equation as (4.1), we choose ¢(t) = 0, a = —40 and
introduce

u(z,t) = —G%U(:E,t) . (4.5)

4.2 Scattering potentials

We will now study the solutions to the Schrodinger equation (4.3). For a given
localized potential, two fundamental solutions can be written as

( ) \I/L _ ez’k:c + RLe—ikm ( )
WUy (x, k) : ) 4.6
\I/R = TLeka
Uy = TRe—z’km
Uy (2, k) : , , (4.7)

\I]R _ e—zk:c + RRezk:c
where the indices L and R means to the left/right of the scattering region. Here
R is the reflection coeflicient while T is the transmission coefficient. Thus the
first solution (4.6) represents the case of an incident wave from the left while
the second solution (4.7) represents the case of an incident wave from the right.
We now introduce the more general fundamental solutions f;(x, k) and fo(z, k)
which fulfils

lim e~ f) (2,k) =1

r—00

lim e fy (2,k) =1

r— —00

From (4.8), we find for the fundamental solutions fi(z, —k) and fa(z, —k):
lim e*® f) (z, k) =1

r—00

lim e % fy (z,—k) =1

(4.8)

(4.9)

T——0Q

Since the Schrodinger equation is linear, it is always possible to express each
solution as a linear combination of a set of linearly independent solutions.
Accordingly, we write

fa(@, k) = c11 (k) fi(x, k) + c12 (k) fi(x, —k)

(4.10)
fi(@, k) = ca1 (k) fo(w, k) + c22 (k) folx, —k)
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From (4.10) with (4.8) and (4.9) follows that in the limit ¢ — oo

folx, k) = c11 (k) e 4 ey (k) etk (4.11)
while for x — —o0

fi(z, k) = ca1 (k) e 4 oo (k) etk (4.12)

Comparing (4.11) and (4.12) with (4.6) and (4.7), the reflection and transmis-
sion coefficients can be written

Rp(k) = 228 Ry(k) = 22

(4.13)

Tr(k) = o Telb) = m

4.3 Variation of parameters
With the fundamental solutions above as model, we now make a solution ansatz
for Schrodinger’s equation (4.3). This in the form, to use variation of parame-
ters as solving method,
U = a(x) et 43 (z) e e (4.14)
The first derivative of (4.14) with respect to x is
U, = (o + ika) e*® + (B, +ikpB) e k. (4.15)
We are free to add one constraint for « (z) and g (z). By choosing
oy e 4 3 ek =0 (4.16)
the second derivative of (4.14) will be
Wy = —k2W + ik (o € — B, e7 ) . (4.17)

Demanding that the expressions (4.14) and (4.17) must fulfil Schrodinger’s
equation (4.3) gives with (4.16) an equation system for o, and 3,

ik (am ehr — B e k) =yl (4.18)
) ) .1
Qi ezk:v + ﬂz efzk:w =0
with the solution
0y = sule— e
{ 22kl ik (4.19)
B, = —gzu¥e .
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Integration of (4.19) gives

{ a(@) =gy fo u(s)T(a(s),B(s),s) e *ds + (420
Blx) = —g% fo u(s) W (a(s),B(s),s) e*ods +cy | '
From (4.8) and (4.9) we also have
fl (I, k) j) ez’km
falwk) — e 20
In terms of (4.14) this can be written
: a(z) —1
hio—oon{ 500
(4.22)

afz) — 0

h”ﬁ‘””{ﬁwgﬂ

Combining (4.20) and (4.22) gives Volterra integral equations of second kind

for the fundamental solutions.
fi(@ k) = e — 1 [*u f1 (s,k)sin (k(x — s)) ds
(4.23)
fo (@, k) = e+ 1 [* wu(s) fao(s, k)sin (k (z — s)) ds .

These could be solved with iteration methods and it is seen that the integrals
converge for Im (k) > 0,1 e fi (z, k) and fy (2, k) are analytic functions in the
upper half-plane. This will be used later on.
4.4 Marchenko’s equation

Due to the form of (4.23) we define two new functions

AR (2, k) = f1(x,k) — etk

A (2,k) = fo (2, k) —e™™ .
We introduce the Fourier transform
An(z,s) = % /_ Z Ap (2, k) e~ dk (4.25)
and its inverse
Ag (2, k) = / - Ag (z,8) e**ds . (4.26)
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Comparing with (4.23) it is seen that

Ag(z,8)=0:s5<zx
. (4.27)
Ap(xz,8)=0:s>x

)

which from (4.24) leads to

fi(z, k) = etk 4 f;o AR (z,9) e'*s s

4 R , (4.28)
fo (z,k) = e7th® 4 ffoo Ap (z,5) e7*ds

The function u (s) appears in (4.23) in a similar way as Ag (z, s) and Ay (z, s)
in (4.28). It can be shown that they are related by

u(z) = 72%12112 (z, )

. (4.29)
u(z) = 2%AL (z,x)

Since our goal is to express the solution to Korteweg-de Vries’ equation in terms
of solutions to Schrodinger’s equation, the next step is to derive a relation
between Ap, (,s) and these solutions (f1 (z, k), fa (¢,k)). (The choice of using
the right index, as opposed to the left, is somewhat arbitrary. The derivation
of the expression for Ay, (x,s) is done in a similar way.) With (4.13) the first
equation of (4.10) can be written

Tr (k) f2(z, k) = Rg (k) fi(z, k) + fi(z, —Fk). (4.30)

In order to obtain an expression that has a Fourier transform for each term we
have to add and subtract terms as follows

(T (B) 1) fular ) =
= Rr (k) (f1(z, k) — €**) + Ry (k) e+

" " (4.31)
+ (fl(:c, —k)—e? ””) + (e*“ z _ fz(x,k))
= Rg (k) AR (xv k) + Rr (k) etk + AR (x: _k) — AL (:E, k) X
The Fourier transform of (4.31) is
L~ (Tr (k) — 1) fo(x, k) e*vdk =
o - R ’
= / R (y +5) Ag (z,5) ds+ Rp (¢ +y) + Ag (v,y) — AL (z,y) . (4.32)

where s is the convolution variable and Rp (y) is the Fourier transform of

Ri (k).
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If x < y is assumed, the integration path along the real k-axis can be completed
with a semicircle in the upper half-plane which does not contribute to the value
of the integral if Tgr (k) — 1 tends to zero for k& — oo as k~ (%% or faster
(e >0). Also Ay (x,y) = 0 follows from (4.27). As shown earlier fo(z, k) is
analytic for Im (k) > 0. Furthermore T (k) is analytic for Im (k) > 0 with
the exception of simple poles on the imaginary axis. We are now ready to use
Cauchy’s residue theorem which for this case can be written

273
poles

1 .

— ff(z) dz = Z a(f)l, (4.33)
c inside C

where a@l are the residues of f(z). For simplicity we introduce the notations

Ky = kny, (4.34)

for the poles of Tg (k) and

(4.35)

for the corresponding residues. This gives

1 o

(Tr (k) = 1) fo(z, k)™ dk = =", folz,ikn)e " . (4.36)

2 J o

From (4.13) it is seen that the poles of Tg (k) are the zeroes of ¢;2 (k) and thus
with (4.10) follows that

fa(@,ikn) = c11 (ikn) fi(z,ikn) . (4.37)

Combining (4.32) with (4.36) and using (4.37), (4.24), (4.26) and (4.27) gives
Marchenko’s integral equation on the form

AR(x,y)—i—KR(as—i—y)—i—/ooKR(s—i—y) Ag (z,8) ds =0, (4.38)

where

Kgr(2) = Rr (2) + Z'yn c11 (iky,) €777, (4.39)
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4.5 Time dependence

The time dependence of ¥(x,t), i e the solution to the Schrédinger equation
with a solution to KdV as potential, fulfils the Gardner-Greene-Kruskal-Miura
equation[10]

C11 (k‘,t) = C11 (k‘,O) €8ik3t

c1a(k,t) = c12(k, 0) (4.40)

which can be derived by the examination of the time dependence of the reflection-
and transmission coefficients in the asymptotic region. With the time depen-
dence from (4.40) explicit, the equation (4.39) can be written

—0o0

1 [ 4 »
Kr(z1) = 5 / R (k,0) /(=850 g 13" ey (i, 0) e s t800L,
(4.41)

where

C11 (k, 0)

R (1,0) = 22

(4.42)

This means that Kg (z,t) is completely determined by ¢11 (k,0) and ¢;2 (k,0).
It is thus possible to formulate Marchenko’s equation

AR(x,y;t)—l—KR(a:—l—y,t)—}—/ Kr(s+y,t) AR(az,s;t) ds=0. (4.43)

This equation is only analytically solvable for the special case Rg (k,0) = 0
since the exponential function in the integral in (4.41) contains a cube of the
integration variable. However the integral equation is linear and it is possible
to solve for Ag (x,y;t) by i e iteration methods. Thereafter the solution to
Korteweg-de Vries’ equation is obtained as

w(z, ) = —Q%AR (@, 2:1) . (4.44)

Accordingly the solution to the Schrodinger equation can be used to find the
solution to Korteweg-de Vries” equation.
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Chapter 5

KdV with an N-wave as
initial condition

We will now use the theory described in the former chapter to study Korteweg-
de Vries’ equation as an initial value problem with an N-wave as the initial
value. We thus write our problem

Up + Uy + OUggy =0

B x|zl <1 (5.1)
u(:L“,O)—{ 0:z]>1

and use the inverse scattering method to investigate how the N-wave develops
and how this depends on the dispersion coefficient . A major part of this
chapter was presented[30] at the 15" International Symposium on Nonlinear
Acoustics, held in Gottingen, Germany 1999.

5.1 Solving the Schrédinger equation
For our form of KdV, i e (5.1), the corresponding Schrédinger equation is (cf
Karpman[19])

u
Voot (A+ )T =0. (5.2)

Due to the discontinuities in our initial condition, we must solve (5.2) in three
different regions (I < —1, II: |z| < 1, III: .2 > 1). We write A = k? and
thereby obtain the Schrodinger equations for our problem on the forms

IIIT: W, + k20 =0
(5.3)

IT: W, + (K +&)P =0

21
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The solution to the first equation is the well known
U= Arrre™ + Brpre ™ (5.4)

which makes the comparison to (4.11) and (4.12) straightforward. This is
really the motivation for our choice of A. For the middle region, we compare
our Schrodinger equation with the Airy equation

v,,— 20 =0, (5.5)
whose solutions are called Airy functions. We make the ansatz
z=—(ak®+ ba) (5.6)

and use the chain rule to write

L 2\1/ = (5.7)
Txr — d{L‘ zZz — zz - .

In order to obtain our Schrédinger equation in (5.3) from the Airy equation
(5.5), the parameters a and b must fulfil

a= >
{ b3 :bei (5.8)

We thus find that the solutions for region I1 can be written as linear combina-
tions of Airy functions' of first and second kind on the form

N (— (SW + f)) + By Bi (— (3%2 + f)) . (5.9)

where we have defined s = (60)é

have the solution

to get a more compact notation. We thus

Aj ekt By emike r< -1
U=3 AAi(—(s*k*+2)) + By Bi(— (s*k*+ 2)) |z[ <1 (5.10)
Ajqr €% + Byype—ike r>1

s

where we also demand ¥ € C!'. This demand gives two equations at each
boundary point. Since the solution in each region has two coeflicients, two
equations are needed to uniquely determine these unknowns as functions of the
coefficients in the neighbour region.

It is possible to instead use linear combinations of either Bessel functions of first kind
with order 1/3 and -1/3 or Bessel functions of first and second kind with order 1/3.
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By comparing (5.10) with (4.11) and (4.12), we can determine the coefficients
cij by studying the fundamental cases. We choose to study the case that fulfils

U s eTihe (5.11)

ie Ay =0, By =1 (cf (4.8)). This gives by the continuity demand for x = —1

Ay = e {iks Bi(—[s” kﬁ—ﬂ) Bi'(—[s*k*—1])}
AV (=202 =3 ])Bi(—[s2k2 1) -Ai(-[s*h2 3] )Bi (= [s*42—1]) (5.12)
By = ”‘{zksAl( [s k2 — %]) Al( [s k‘—% )} )
AP (1) A (P[]

The denominator in the expressions for A;; and Bjy can be simplified by the
general relation for the Wronskian of Airy functions of first and second kind,
see Lebedev[24],

W {Ai(2),Bi(2)} = Ai(2) Bi’ (2) — Ai’ (2) Bi(2) = % . (5.13)
This allows us to write

{ Ay = —met® [iksBi (- (s?k? — s71)) = Bi' (- (s*k% — s71))]

ik [; : 21,2 -1 :! 21,2 -1 (5'14)
B =me [zksAl(—(sk — s ))—Al (—(sk — 38 ))]

Our next step is to use the continuity demand for =1 to get expressions for
Aqrr and Byyg.
Ay = f% [AH Ai( (B2 45 1)) + By Bi(— (282 +51))]
ok e A AT (— (82K 4+ 571)) + BB (— (8242 + s7))]
By = 3€ [AH Ai(— (k2 +s7Y)) + B Bi (— (8262 + s71))]
e (A AT (- (#12-457) 4 B BY (- (202 4 o7)]
(5.15)

Finally we make the identifications

c1(k,t =0;0) = A1 (ks s)

(5.16)
C12 (k),t == 0; O') == B[[[ (k), 5)

s

where (5.14) and (5.15) are used to express Arr; and Bjy; as functions of k
and o. As earlier defined s = (60)#
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5.2 Solving Marchenko’s equation

With (5.14), (5.15) and (5.16) we can now write Marchenko’s equation on the
form

~

An (@it ) + K@+ it.)+ [ Kils +it.0) dr(esit,0) ds =0,
(5.17)

where

1 [ .
Kr (Z; t, (r) = _/ Rp (k,O; (7) ez(kz+8k3t) dk + ZmRn (ng) e*”’nz"‘s"iit

2 )
(5.18)
with the notations
c11(k,0;0
R (k, 050) = 220255
(5.19)
o C11 k,O;O‘

MREn (l‘\?n,U) - @%Clz(k,o;g) k—ik,,
and k&, (0) = ik, are the zeroes of ¢12 (k,0;0) at the positive imaginary axis.
Due to the complexity of ¢i2 (k,0;0), it is in our case not possible to obtain
a general expression for these zeroes. To proceed the investigation we need
fixed values of 0. To get the equations on the most compact form, we choose

1
o= % as the first value since s = (60)3. For this value we find only one zero
of ¢12 (k,0; 0) at the positive imaginary axis.

o=1= Kk~0111128321 = mp ~ 0.176659368 (5.20)

This means that the summation term of Kg (2;t,0) is reduced to a single expo-
nential function of time and space variables with known coefficients. Extending
our investigation to smaller as well as larger values of o we get the same result
(of course the value of x depends on o. (See figure 5.1)), i e there is only
one zero of ¢j2 (k,0;0) in the upper half plane and this root is purely imagi-
nary. However, this is not true then the dispersion is very weak. For dispersion
coefficients slightly lower than o = 0.0049, which gives k ~ 4, two roots of
c12 (k,0;0) are found at the positive imaginary axis and a third root shows up
just below 0 = 0.0015. (See figure 5.2) The integral term of (5.18) is a bit more
complicated since it is not possible to perform the integration analytically, even
for ”simple” expressions of Rg (k, 0;0), due to the cubic term of the integrating
variable in the exponential function. The state of the art solution of this kind of
problems seems to be to assume a reflectionless potential, i ¢ Rg (k,0;0) =0,
since then ”this integral does not occur” and ”the inverse scattering problem
can be solved exactly”. If we test this assumption for our case, we get a soliton
solution with an amplitude of 0.0247 (if o = %) This soliton is an exact so-
lution to Korteweg-de Vries’ equation but it certainly does not fulfil the given
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Figure 5.1. Magnitude of the zeroes of ¢12 (k, 0; o) in the upper half plane for
some different values of ¢ which give single roots. (k = ik)

initial value. The amplitude of the soliton solution is 22 and accordingly it
will be larger for smaller values of o but that does not make it look more like
an N-wave. For values of ¢ which are small enough to give more than one root
of ¢12 (k,0;0), each root corresponds to a soliton. In the limit 0 — 0 (still
for Rp (k,0;0) = 0), a large number of solitons will build up a triangular wave
since for each soliton both amplitude and velocity is proportional to x2. A
thorough investigation of single as well as multiple soliton solutions for KdV
(et al) can be found in Dodd et al[7].

In our case

Rp (k,0;0) = exp (—2ik)
[skAi(2 — s?k?) + AT (L — $%k?)][skBi(—1 — $?k?) +iBi'(— 1 — $2k?)]+
—[skAi(—L — $2K?) + AT (— L — $?k?)][skBi(2 — s%k?) +iBi (L — $%k?)]
[skAi(L — s?k?) +iAl'(L — s2k?)][skBi(—1 — $?k?) — iBi' (-1 — s?k?)]+
—[skAi(—21 — s2k?) — (A (-1 — s%k?)][skBi( — s?k?) + iBi' (2 — s2k?)]
(5.21)

(where s = (60)%) and this makes the integral in (5.18) hard to integrate an-
alytically even for t = 0. However, as seen in figure 5.3, Rg (k,0;0) has a
symmetric real part and an anti-symmetric imaginary part and for large values
of k they both go towards a zero amplitude. Accordingly this function is well
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Figure 5.2. The function ci2 (k, 0; o) has multiple roots at the positive imag-
inary axis for small values of 0. (k = ik)

suited for numerical integration. In (5.18) the multiplication of Rg (k,0;0)
with the exponential function which has an imaginary argument introduces
oscillations which become faster for large values of £ and therefore makes the
convergence better. On the other hand the presence of space and time vari-
ables in this argument means that the integration cannot be made completely
numerical. We thus make the approximation

Rg (zt,0) = Qi/ Ry (k, 0;0) ¢'(F+860) g

7T —00
Ak i(pAkz+8(pAk)*t)
z% Z Rg (pAk,0;0) e ,  (5.22)
p=—N

where N is ”large enough” (and Ak ”small enough”). How large ”large enough”
is depends on o. For all values of o, Ry (0,0;0) = —1 but for smaller values of
o the amplitude of Rg (k,0;0) decline slower for growing k. This means that
a large number of terms is needed for small values of 0. With the expression
(5.22) for Rg, we now have (5.17) in the form of a Volterra integral equation
with A r as unknown function.
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Figure 5.3. Rpg (k:, 0; %) with symmetric real part (solid line) and anti-
symunetric imaginary part (dashed line)

5.3 Iteration solution

Since the number of terms in the approximation of Ky is large, we will use an
iteration solution for the integral equations to keep the amount of calculations
which have to be done at a reasonable level. The zeroth step of the iteration
solution is to put Ag (z,s;t,0) = 0 in (5.17). We thus write this solution as

AR (I,y;t,(f) = _KR (x—l—y,t,(r) . (523)

By (4.44) the corresponding solution for Korteweg-de Vries’ equation is

d d
u(z,t) = 725143 (z,z;t,0) = 25[(3 (2z;t,0) . (5.24)

As a first test of our approximation, we examine how well the solution gives
back the initial waveform. In figure 5.4 it is seen that the zeroth order approxi-
mation matches the initial condition fairly well with N = 20385 and Ak = 0.01
used in (5.22). The overshooting at the discontinuities is known as the Gibbs
phenomenon[12]. The width of the overshoot regions can be reduced by using
more terms in the series but the amplitude of the overshoots will increase and
converge to a value which in the limit of an infinite Fourier series is almost 9
percent of the height of the discontinuity. The series converges at all points
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Figure 5.4. The initial waveform is reconstructed by the zeroth order iteration
solution for KAV with o = & at ¢ = 0.

except at the discontinuity. At the discontinuity the difference between the
limit values from the both sides is larger, than the actual height of the discon-
tinuity, by the factor %(”) The slightly negative slope of the line for x < —1
is due to the error of the approximation in the iteration solution. For the first
order iteration solution it becomes slightly positive and for the second order
solution again negative and so on. The zeroth order iteration solution is only
suitable for values of the dispersion coefficient ¢ which are not too small. One
reason for this is that that part of the kernel of the integral equation, which
for reflectionless potentials gives solitons as exact solutions, is a sum of expo-
nential functions in the zeroth order iteration solution. Another reason is that
the amplitude of the reflection coefficient, which is to be integrated over the
entire real axis by a numerical approximation, declines more slowly for smaller
values of the dispersion coefficient. Thus a larger number of terms is needed
to achieve the same accuracy. For positive times (see figure 5.5) it is seen
how the front of the N-wave is smoothened out and slowed down, leaving an
oscillating tail behind. (Note that we are using a retarded spatial variable.) As
could be expected, the shock wave is broken down faster for larger values of
the dispersion constant . This behaviour, i e the damped wave front and an
oscillating tail has been shown for numerical solutions where the first derivative
of an Gaussian curve was used as initial value by Berezin[3]. Experiments by
Kuznetsov et al[20] where a triangle wave (the "upper half” of the N-wave)
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ulx0.1)

Figure 5.5. Zeroth order iteration solution for KdV with o = % at t = 0.1.

was used as initial pulse also gave similar results. Kameda et al[17][18] have
performed experimental and numerical studies of shock waves of Heaviside type
in bubbly fluids. Even in this case a smooth wave front followed by oscillations
with decreasing amplitude was found. They have also shown that the ampli-
tude as well as the period of the oscillations are effected if the distribution of
bubbles in the liquid is nonuniform. For small times, see figure 5.6, we see
that the peak amplitude of the shock wave front first rises but then declines
as time increases. Oscillations starts near the shock and spreads quickly in the
negative z-direction.



30 Chapter 5. KdV with an N-wave as initial condition

—
y.
1

—

o
(]

=
=

=

= =

k2 o
NI BTSN B BT R R

0.7 0.g 0.9 1

O

Figure 5.6. The zeroth order iteration solution for KdV with ¢ = 0.25 at
t= {10_5,0.5 *10™4, 10_4} shows how oscillations starts near the shock and
spread towards left.



Chapter 6

Asymptotic analysis of
KdV

Since the analytical solution to Korteweg-de Vries’ equation is somewhat com-
plicated, we will here study the asymptotic behaviour of solutions to KdV.
Even for this case an N-wave will be used as initial value, but for convenience
we choose our time variable to have 7" = 1 as starting point. We therefore
rewrite our problem (5.1) as

v EA% Vv
ar tVr togm =0

z Jz| <1 (6.1)
V(1) _{ 0 Jz|>1

The dispersion coefficient ¢ is assumed to be small. In the limit that the
dispersion coeflicient o is zero, we get the outer solution

Vo, 7) =4 T l7l< I (6.2)
’ 0 |z|>T2
First we investigate the discontinuity at « = T=. We introduce the inner
variable
— T3
o2

and the expansion V = V{ + O%VJ . This gives, in the leading order of o, the
differential equation i

1L\ ovg Vg
¥ T2 = 4
(VO 2 ) FE T (64

31
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which is readily integrated to

-) Vo Ve _ A(T). (6.5)

(VO* - 2 Ox*2

This equation has the implicit solution

av

/ _ (6.6)
\/B (T)+2A(T)V + 457 V2 = 3V3
To achieve the matching against the outer solution (6.2) the condition

lim V=0 (6.7)

T*—00

must be fulfilled. This means that V' = 0 should be a singular point of the
integral in (6.6), i e zero is a double root of the polynomial under the square
root. Since two coeflicients are already known, the only allowed form is

av
o = / : (6.8)
T2
ViV s
which we can rewrite as
av
xt = /f (6.9)
VIV -3V,
After integration we obtain
«_ 351 2 (o8t
Ve =57 (1 ~ tanh (2 i1 (0" + C(T)))) (6.10)
Unfortunately, this does not fulfil the matching condition
lim Vg =73, (6.11)

¥ ——00

We return to (6.6) to see if we can find a solution for z* < 0 which we could
combine with (6.10) valid for «* > 0 .If we rewrite (6.6) on the form

. / av (6.12)
\/__ —a(T))(V =0b(T))(V —c(T))
where

T-% —2b(T) , (6.13)
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we get the general solution

Vi=c(T)+(1—a(T (w/ T) - b(T)) («* +d(T)), /> i:: )

(6.14)

where sn(z, k) is one of the Jacobi elliptic functions. This function is periodic®
unless £ = 1 and z is real (sn(z,1) = tanh (z),z € R). In our case, this
means that matching conditions only can be fulfilled if o (T)=5b(T) and
c¢(T)>b(T) . Combining this with (6.13), we see that matching is only
possible if b(T) < %T*% and thus it is not possible to accomplish (6.11).

To understand why this matching fails, we try to get nearer the shock. Crighton
& Scott[6] have made an analysis of what they call ”the embryo shock region”
for Burgers’ equation. We will now make the corresponding investigation for
Korteweg-de Vries’ equation. To study this small region we introduce the
scalings

T=1x (6.15)
V( T ):Vo(x,T)+o(1)

)

where V (:i, T 6) = 0O (1) and o is small. Substituting this into (6.1) we get

Wy 4 Yr Ve 4 9V
3T +Voai+8$‘5 —0

. (6.16)
Vo(2,0) =1—-H(2)

where H is the Heaviside step function. The differential equation (6.16) cannot
be solved by using the inverse scattering transform since IST demands that the
potential, which here would be V5(Z,0) = 1 — H(Z), must be localized. We
therefore try a ”quasi-localized” potential in the form of

~o e 2<0

Vo(2,0) = { 0 >0 (6.17)
where we let a« — 0. This gives the solution to the Schrodinger equation in
the region £ < 0 as

. 2\ 7 ebod 2\ 7 ebod
\I’(:E) —C]Jz% ((g) o )‘FCQY% ((g) o ) (618)

To get a solution for « — 0 , asymptotic expansions for Bessel functions
of infinitely imaginary order and infinite real argument must be found. Even
though this sounds fascinating, it is probably not a good idea.

L Actually sn(z, k) is a doubly periodic function in the complex plane but here we are only
interested in the behaviour for real arguments.
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However it is interesting to notice the self similarity of KdV, i e the scaled
KdV equation is a new KdV equation. Comparing with numerical solutions
with similar conditions (e g [11] and [17]) we see that the solutions shows a fast
but smooth decay for & > 0 and for £ < 0 the solution oscillates around V=1
with the amplitude of the oscillations being largest near £ = 0 and declining
for smaller values of z.

We instead try to combine the outer solution (6.2) for 2* <0 with the inner
solution written as (6.10) for «* >0 . This can be done by calculating the
value of C (T') in (6.10) which makes

lim V5 = T 7. (6.19)
The result is
C (T) = 2% TTarctanh (3—%> , (6.20)
i e the inner solution is
Vo = gT_% (1 — tanh® (2_%T_%:c + arctanh (3_%))> (6.21)

for «* > 0 . We combine this with the outer solution and rewrite it in terms

T z<T?
Vo = 3L 2 (Bl T3 1 1
3772 [ 1—tanh” (27277 ! + arctanh (3 2) z>T?2

(6.22)

This solution is continuous but not differentiable at # = 7% and the combina-

tion with the outer solution means that we do not get any information about
. . 1

how the oscillations develop for © < T'z.

Investigating the discontinuity at « = —7T%, starting with (6.2), we find a
similar behaviour as the analysis above for ¢ = Tz. Whether it is a similarity
or a difference that also at this point the matching can be done to the right,
but not to the left, is not obvious. Here we use the inner variable

o= (6.23)

o2

(cf (6.3)). Proceeding in the same way as (6.4)-(6.10), we find the inner solution

Vgt = %T*% (1 — 3tanh? (2*%T*% (@t +C (T)))) (6.24)

s
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Figure 6.1. The asymptotic solution (o = 0.001, T = 1.001) shows the decline

1 1
for x > T2 but fails to describe the oscillations for ¢ < T2,

which fulfils

- -3
milgloovo =-T2 (6.25)
but not
Jim VgF =0, (6.26)
As with (6.19), we now choose to let (6.24) fulfil
; + _
Tim V" =0, (6.27)

which can be done by

(S

C () = 2% Tiarctanh (3— ) (6.28)

)

which happens to be identical to (6.20). Thus we have the solution

0 v < T2

=9 1 (1 — 3tanh? ( —%T—if“;—f + arctanh (3—%)» w> T3
(6.29)
near z = —T'2. Also here we have combined our inner solution with the outer

solution (6.2), which for z < ~T7 is identically zero. This means that here, as
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well as for ¢ = Té, the asymptotic analysis fails to describe the development
of oscillations to the left of the discontinuities.

6.1 Peak region

Even though the solution obtained by using Marchenko’s equation is valid for
moderate values of o, while the asymptotic analysis is valid for small o, it is
interesting to notice that the amplitude of the shock front rises before it starts
to decline. We therefore investigates if it is possible to use the location of the
peak of the shock front zg (T), to analyse the early stages of the break down
of the shock wave. Also here we study the Korteweg-de Vries’ equation (6.1)
with the outer solution (6.2). We define xo (T) to be the location of the peak
of the shock front, i e g (T') is the value of x that fulfils

oV
. o =0. (6.30)
An inner variable can now be defined as
i = z—ao(T) (6.31)

1
o2

1.~

If 2o (T) = T2, this is the same as (6.3). With the expansion V = Vg + 02 V;,
the new differential equation in the leading order of o will be

63‘70 dxo 6‘70 62‘70 ~
_ 0 x"0 Vo =0. .32
033 T 0z | 0& o To=0 (6.32)
where %&l and %Z‘l ~are parameters which may be functions of 7. The

-
values of these parameters are not known but to define a peak, we must have

A
042

<0, (6.33)
=0

To get some idea about the value of %&’, we look at the previously defined outer

solution (6.2). For this outer solution the shock front is located at 2o (T') = T'%,
which would give

d.’EO 1 1

— =777, 6.34

ar 2 (6:34)
Since we are looking for a solution that could replace the outer solution (6.2)
at the peak, this is probably not the correct value. However, it seems plausible
to assume that

d:EO
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We thus have the ordinary differential equation
V" (2) — a1 v () —agzv(2) =0 (6.36)

where a1 and ag are positive. Even though it is linear, it does not have any
Liouvillian (”closed form”) solutions (cf Singer & Ulmer[31][32]). It is possible
to transform it to a nonlinear second order differential equation, with variable
coeflicients, but that equation does not seem to fall into any of the classes of
differential equations with known solution methods. Still, (6.36) is linear and
thereby it is possible to assign a series solution on the form

v (&) = Z c;id (6.37)

Substituting (6.37) into (6.36), we find that the coefficients ¢; must fulfil

(J+1)arcjyr +azcj
G+DG+2) G +3)

where ¢g = v (0) (the amplitude of the peak) , ¢; = 0 (according to (6.30))
and ¢z = —ay (by the notation used to write (6.32) as (6.36)). (¢; =0Vj < 0)
This means that all odd number coeflicients are zero, which makes our series
solution symmetric. The inner solution (6.10) with C'(T") = 0 would give the
parameters

Gi+3 =

(6.38)

cog = %Tﬁé
a =17 (6.39)
as = %Til

This makes (6.37) with (6.38) an accurate description of the soliton-like function
(6.10) with C (T) = 0 near « = T%.

6.2 Shock tail region

The solutions (6.22) and (6.29) from the asymptotic analysis above, is valid
only near the shocks. To investigate the shock tail region for KdV, we consider
the variable (3.19) used for Burgers’ equation and the difference between the
inner variables (3.11) and (6.3). We therefore try the scaling

1 1la-T3
243 T3

(6.40)

(Note that o is small) With this substituted into (6.1) we get, in the leading
order of o, the equation
19V 1 T4y oV

1
TIT oy 2 oy T3 ovs

~0. (6.41)
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If we assume that V* = O (¢) where ¢ < 1, which is fulfilled if the value of Y’
is large enough, this is reduced to

Love 1. s BV

AT oY + 3t 7 ays =0 (6.42)

in the leading order of {0,e}. (Actually we define the shock tail region as the
set of Y:s with large enough values) The general solution of (6.42) is

VE(Y,T) = Cy (T) + Ca (T) eV?TTY 4 C5(T) e~ V2TV (6.43)

Demanding that

VY, T) — 0 (6.44)

Y —oo

we must have Cy (T') = 0 as well as C2 (T') = 0 and thus

4 1 z-T3
V*(Y,T) = C3 (T) e~ V2T = 0y (T S 6.45
Y,T)=C3(T) e 3 (T) exp Joe T3 (6.45)
Comparing with (6.21), we see that Cs (T) o T2.
( C3(T)=6T"2exp (—\/iarctanh (%)) ~ 23672 )



Chapter 7

Asymptotic analysis of
KdVB

Since we do not have an analytical solution to Korteweg-de Vries-Burgers’
equation, we will here study the asymptotic behaviour of solutions to KdVB.
Even here an N-wave will be used as initial value. (Note that T'=1 is used as
the initial time.)

A% A% 8%v v
o TV 0z togs=0

z |z/ <1 (7.1)

V(x,l)_{ 0 Jz|>1

Here we have two coefficients (6 and o) which we consider to be small. This
is however not enough information. We must also determine how large the
coefficients are with respect to each other since if one of them gives a larger
contribution than the other we will only get one of the solutions for either
Burgers’ or Korteweg-de Vries’ equation as analysed above. In the limit that
both coefficients are zero, we get the outer solution

lz| < T2

7.2
2| > T (72)

(=R

Vo(z,T) = {

We find that in order to get a differential equation for the asymptotic analysis
which contains dissipation as well as dispersion, we must have o = o (&?) if
1

6 = o(e) where ¢ is small. We introduce the inner variable z* = wngE and the

expansion V = V' +eVj*. This gives, in the leading order of ¢, the differential
equation

39
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1\ ovg vy ot
* =T — b = .
(VO 2 2> oz Loz + Ox*3 0, (7.3)

where we have chosen to use § = ae and o = be? with {a,b} = o(1). With
V=V - %T*§ , this can be written on the form

~OV 9V 9

Since all terms may be described as partial derivatives with respect to =*, we
can integrate it to

1~, OV 02V
il VA —
2 Via Ox* + Oz*2

= C(T). (7.5)

Despite that this is an ordinary differential equation with 7" as a parameter, it
is hard to find a solution. To illustrate that this equation is not easily solved we
note that Leach[23], then trying to find first integrals for the modified Emden
equation

¢"+a(@)qd +q"=0 (7.6)

(for a(z) # £), states that "The case n = 2 is seen to be particularly difficult
to solve.”.

However, the equation (7.5) can be rewritten with an implicit solution because
the dependence of «* is only through V and its derivatives

o = / v (7.7)

»(7)

)

but here p (‘N/) is the solution to

p(V) (g—é - %) + %(f/? +20(T)) =0, (7.8)

which is one form of Abel’s differential equation. This equation is not, as far as
we know, more easily solved than (7.5) and thus we probably do not want to
integrate this solution according to (7.7) even if we could find it. We therefore
turn our attention back to (7.5) but we will try to solve it using Abel’s identity.
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7.1 Abel’s identity

Abel’s identity[1] states that for a system of two first order linear, homogenous
differential equations

. 7.9
B=p()y+alt)a 79
g=r{t)y+s(t)x
which has the general solution
(7.10)

r=ax+ P
y=ayr+ By

the Wronskian of this system (W = x1 yo — z2y1) fulfils

W (t) = W (to) exp </t () +r ()] dt’) (7.11)

to

An extension of Abel’s identity to nonlinear differential equations[15] and a
method to use this to construct solutions to nonlinear autonomous systems|16]
was presented in two articles by Jones et al. We will now use this method for
our problem. In an attempt to avoid confusion, we will use their notation while
describing the solution process and return to our variables later. To be able to
use this method the nonlinear system should have the form

&= F(2,y)
{ = Gley) (7.12)

where
Fo+Gy=p. (7.13)

(e is a constant). To get (7.5) on this form we first formally rewrite it as a
system of two differential equations.

oy _ oV
% ov "mev 72 4 c@) (7.14)
dz* 9z* — b dz*  2b + b
Thereafter we introduce the new notation
=V
t=2a"
and thus get the system on the form
T=y
. 7.16
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Theory

We will here quote the relevant theory in chapter 4 of [16], where the construc-
tion of integrals (of motion) for systems of the form

LI hut o 10
is described. A first integral on the form
h(z,y) =c (7.18)
can be found by integrating the differential equation
yy' =py+g(x). (7.19)

If (7.18) is an integral of this equation, h (x,y) satisfies the partial differential
equation

yhe + (ny +g(x)) hy =0. (7.20)

To simplify the construction of a solution to this equation, a new dependent
variable z = z (x,y) is introduced. The relation between z and h is defined to
be

h(z,y) = A(z) /uz(az,u) du+ B (z) , (7.21)

where the functions A (z) and B (z) are to be determined. Here yo can be
chosen arbitrary. The function B (z) fulfils

x

B(z) = - / A(s) 2 (5,90) (v0+ 9 (s)) ds. (7.22)

Zo

Here the choice of g is free. Substituting (7.21) into (7.20), the equation

Yza+ (1y +9(2)) Zy+(u+%/y>2—0 (7.23)

can be derived. Also the factor ‘j‘/((f)) can be chosen freely. In the special cases

that z = w™ where n is a constant, (7.23) can be written

A/
nywg +n (py +g(x)) wy+<u+zy)w:0. (7.24)

Besides (7.18), a second independent integral of (7.17) can be found on the
form

hﬂ =coexp (ut) (7.25)
y
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Keeping (7.21) in mind this means that if z (z,y) is found, this integral can be
written

A(z) 27t =coexp (ut) (7.26)
In [16], also a solution to the (carefully chosen) example
2
g(z) = —§,u2 r+ead (7.27)
is stated. For n = —2 and A (z) =1 a solution of (7.24) (with (7.27)) is
2 1 1
_.2_Z 1202 1 4
w=y 3,u:1:y+9,u z” —geat. (7.28)
This means that
1
2 (x,y) = (7.29)

3
(2= 3y + it — fea)’

satisfies (7.23) with (7.27) if A (z) =1 is chosen.

Application

Comparing our system (7.16) with the general formulation (7.17), we see that
for our case
L oo

g(x):—c—%x . (7.30)

Since (7.30) resembles (7.27) but one order lower (in x) in both terms, it seems
reasonable to investigate a solution on a form similar to (7.28). We therefore
make the ansatz

w=12+co1y—+ci1xy+co+crox+car’ +esoa’. (7.31)

Substituting this into (7.24) and collecting the terms in powers of « and y, we
see that a first requirement ("the coefficient of y*7=0) is

A/

Z = .32

1 0 (7.32)
so also in this case A(z) = 1 is a convenient choice. We use this in the

expression and repeats this process for all the unknowns (n and ¢ included). It

turns out that n = % is the value which gives a solution here. We end up with

a solution, to (7.23) with (7.30), which has the somewhat complicated form

1
z(v.9) = 9 | 24 ad 4 72 ab 12 at 242 9, 1._3\%
a a a a a
(4% + 35570 — 380U + Toms 0T — w5 578 — z5 ez’ + 3p2®) "
(7.33)
This can be rewritten as
1
z(x,y) = = (7.34)
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First integral

The first integral, h (z,y) = ¢1, can now be found by using the solution (7.34)
n (7.21) and (7.22). This gives us the expression

(7.36)

In this case yo = 0 seems to be a convenient choice as it simplifies (7.36) to the
form

B(x)_/m (o %) (S_%a_j)_ds. (7.37)
w (HE- 55 6+ 59)

The integration of this integral can be performed in two steps. The first is

/ (s+k)(s—k) s —
(

5

(s+ k) (s — k)
(s+k)(s—k) 7% ds

((5 k) (s — k)4) ((s +E) (s — k)4)

— 9 (7.38)

1
6

o=

and the second
d 2\ ? E\© 12 k
[ () (%) = (eie) o
((s+m)° (s = 1))

where F is the hypergeometric function

> Fn—}—p n—}—q)(
oF1 (p,q;75¢) = nz=o N CETOT (7.40)

Combining (7.38) and (7.39) with (7.37), we get the expression

38 1 1 4 1 127 a+k
B =3 @bt @bt - ot e it on (53550

(7.41)
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where k= 2—65“—2 . Here we have chosen x¢ so that B(xg) = 0. Another
possibility is to choose x¢ = 0 since B (0), according to the expression above, is
a constant. This constant can then be considered to be a part of ¢; in (7.18).

In a similar manner the integration of the integral term in (7.35), can be per-
formed as

/%du:
(u? 4+ au+ ()%

2
3 (2 p_o_ ut3 153 (utg)
=3(u"+au+f) 5 =2k (2’6’2’ 3 (7.42)

(—he?+5)° i
where
4a 6 a2
and

2\ 2 2
ﬂ:w(x,O):%(x—%%) (x+2—65%) (7.44)

From (7.35), (7.42) and (7.41) we now have the first integral as

2
. oa y+% 153 (y+4
hlesw) =3 raytf)P -5 ot g aP (5’53539«172)>3ﬂ6+

74042_1_5)0 Tilg

1.2 1.2
1 153 3
+ R, (2’6555 afa )—3/36+

(—30%+5)° i

Second integral

The construction of the second integral, i e the one on the form h—yJ =cgexp (pt) ,

is considerably more straight forward. It is found directly from our solution
z(x,y) (7.34). This since the defined relation (7.21) between h and z makes

y 1
hy (z,y)  z(z,y) (7.47)
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Thus we can write the second integral as

2 Ao 6a\ 1/ 6a\ 6\ (49)
s\ 20 )Y T\ s ) \ T as 2P,
(7.48)

It seems a bit redundant use the notations a and 3 to get this integral on a
more compact form. However the two integrals are both needed to construct
the solution for the system. Thus we note that the second integral can be
written on the fairly compact form

(y2 +ay + ﬂ)% = ¢y exp (% t). (7.49)

7.2 Construction of solution

With the two independent integrals (7.45) and (7.48), we now have a general
solution to our system. However, it is not completely transparent what this
solution looks like. We will now try to make this somewhat clearer. Comparing
the two equations, it appears to be reasonable to use the second integral to
eliminate the variable y from the first integral. First we rewrite (7.49) as

6
y? +ay+ B =czexp <3% t> (7.50)
and thereafter solve this for y.
]- ]- Sa
y_iazl:\/ZOéQﬁ-?'C?,e“’t (7.51)

The left hand side of (7.50) can be found in the first term of (7.45) and in the
second term the dependence on y only occurs at the form y + %a. We now use
(7.50) and (7.51) to write (7.45) as

h(az,y):

1 la
3¢y exp <3Zt F

$ 3 Tatk)
— (2k)% (z + k)T oF, (6,3,6, o >_c1. (7.52)

The next step is to solve this for x (¢), note that « = a(z) and § = (),
and determine the constants ¢; and c3. We have thus converted our differential
equation (7.5) to the algebraic equation (7.52). (V (z*) = z (t))
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Summary and conclusions

We have investigated the behaviour of initial N-waves in media for which the
wave propagation is nonlinear. The study of N-waves as initial condition was
partly motivated by that if neither dispersion nor dissipation occurs, N-waves
will be formed after long times regardless of the initial waveform. Korteweg-
de Vries-Burgers’ equation offers a fairly general description of nonlinear wave
propagation for which the effects of dispersion and dissipation is important.

For the special case that the dissipation is zero, i e as described by Korteweg-
de Vries’ equation, we have presented an analytical solution using the inverse
scattering transform. This in the form of a zeroth order iteration solution of
Marchenko’s equation. In the zeroth order, this method gives accurate solu-
tions only for values of the dispersion coefficient ¢ which are not too small.
The solution shows a quickly decaying shock front, which leaves an oscillating
tail behind. This solution agrees well with numerical and experimental investi-
gations by others. The solution contains a continuous and a discrete spectrum.
For smaller values of o the discrete part becomes more dominant and a con-
sists of larger number of solitons. The numerical integration, performed in
the zeroth order iteration solution, demands a very large number of terms to
describe the shock. This means that higher order iteration solutions become
computational expensive.

For small values of the dispersion coefficient we also have given an asymptotic
solution, for KdV with an N-wave as the initial waveform, describing the decay
of the shock front. In the shock tail region this solution is reduced to an
exponential decay. Contrary to the asymptotic analysis of Burgers’ equation,
for KdV it is not possible to obtain an asymptotic matching between the inner
and outer solutions. For the two discontinuities of the N-wave, the matching
can in both cases be performed in the positive direction but not in the negative.
Probably this is caused by the oscillatory behaviour in those parts.

47
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In most cases, an asymptotic analysis of KdVB leads either to the asymptotic
solution of Burgers’ equation or to the asymptotic solution of KdV. The ex-
ception is if the dispersion coefficient ¢ and the dissipation coeflicient 6 are
related by 6 = o(e) and o = o (¢?) where ¢ is small. For this special case we
have constructed two independent integrals which gives an implicit form of the
asymptotic solution. This was done using an extension of Abel’s identity.
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