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Preface

This thesis consists of one introduction to the subject and two papers.

Paper 1. Borg, K. I. & Soderholm, L. H. 2000 Thermophoresis of axi-
ally symmetric bodies. Rarefied Gas Dynamics. Submitted.

Paper 2. Soderholm, L. H. & Borg, K. I. 2001 Shearing Phoresis. To
be submitted.

Division of work between authors

Paper 1: Karl Borg had the idea for paper 1. Karl Borg made all the
calculations, theoretical and numerical, under Lars Soderholm’s super-
vision.

Paper 2: Lars Soderholm had the idea in paper 2 and made a pre-
liminary calculation of the force and the torque. Karl Borg made the
final calculation of force and the torque, calculated the asymptotics, and
made the stability analysis, under Lars Soderholm’s supervision. Karl
Borg also made the numerical calculations.
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CHAPTER 1

Introduction

Thermophoresis and Shearing Phoresis belong to a class of interesting
phenomena that appear in a gas with gradients in the temperature or the
velocity in the limit where a continuum mechanical description breaks
down.

If the gas is heat conducting, we have the well-known phenomenon of
thermophoresis: A small body suspended in the gas will be transported
towards the cooler parts of the gas. Thermophoresis as a phenomenon
has been known for a long time, and several authors have approached
the problem. For example, Einstein calculated the final velocity of a
spherical particle in a heat conducting gas using elementary kinetic the-
ory. A recent review of the phenomenon is given in an article by Sone,
[2].

Thermophoresis is used in some industrial processes. For instance, to
accumulate small particles in a gas onto a solid boundary, a temperature
gradient is applied normal to the boundary. As a consequence, the small
particles start to drift towards the cooler part of the gas, and finally wind
up on the solid boundary. These applications are studied in [11] and in
[12].

The first systematic attempt to describe the thermophoresis phe-
nomenon using kinetic theory is found in an article by Waldmann from
1959, see [3]. That work was made under the assumption that the mean
free path of the gas is much larger than the dimension of the body. Fur-
ther results are found in a variety of articles, but these results mostly
apply to bodies large compared to the mean free path. Some of these
works deal with corrections to the Navier-Stokes equations. It should
be mentioned that in this region, negative thermophoresis appears for
bodies with high thermal conductivity, cf [4].

In paper (I) thermophoresis of an axially symmetric body is studied
in the limit where the typical length of the body is much smaller than
the mean free path of the gas.



2 1. INTRODUCTION

If the gas is subject to a gradient in the velocity, and if the suspended
body is small compared to the mean free path in the gas, Shearing
Phoresis occurs. This means that the small body will be transported
along the eigendirections of the symmetric and traceless part of the
velocity gradient.

Shearing phoresis is, to the best of the knowledge of the authors,
a new phenomenon. Bell and Schaaf, [6], calculated the aerodynamic
forces on a cylinder in shearing gas flow in 1953. Their result for the
force from the shearing is valid for a finite Ma-number. In paper (II)
it is shown that the shearing will give rise to a force of first order in
the global Ma-number. This force does not appear in the results in [6],
because the cylinder is mirror symmetric. It is however apparent from
their results that there exists a second-order force from the shearing
acting on the cylinder.

Several authors, however, have studied the dynamics of larger bodies
in a shearing gas, cf. [8],[9],[10]. These works deal with the problem in
the continuum limit, and in particular corrections to the Navier-Stokes
equations. A phenomenon of transverse diffusion of spherical particles
in a shear layer is described in [13]. This phenomenon occurs in a di-
lute suspension of particles as a result of the collisions of the particles.
Further results on this topic are found in [14] and [15].



CHAPTER 2
General theory

This thesis deals with a transport of small bodies that occurs in nonuni-
form gases. In particular, gases with gradients in the temperature and in
the velocity are considered. The surrounding gas is assumed to be mod-
erately rarefied. This means that the mean free path, A, of the gas (that
is, the typical distance a gas molecule travels between two collisions) is
much smaller than the typical length L over which the temperature and
the velocity varies. This assumption defines the region of the kinetic
theory of gases called the continuum limit. 1t is in this limit the Navier-
Stokes equations provide a satisfactory description of the non-uniform
gas.

The typical length of the small body, R, is in turn taken to be
much smaller than the mean free path of the gas. In this region, the
Navier-Stokes equations cannot be applied. Thus the complete descrip-
tion of the problem of the small body in the inhomogeneous gas involves
three different length scales: R, A and L, and for these the assumption
R < A < L is made.

2.1. Kinetic Theory and The Boltzmann equation

Consider first an ensemble of NV identical mono-atomic interacting molec-
ules. To describe the evolution of the entire system, we introduce the N-
particle distribution function Fj, defined on the 6 N-dimensional phase
space spanned by the resp. positions and velocities of the N molecules.
We call this space I'-space. The 6-dimensional phase space of a sin-
gle gas molecule we denote by <-space. The interpretation of Fy is
that Fnd*z1d®pi1d3zod®ps...d>znyd3py is the probability that the posi-
tion and momentum of molecule no 1 lie within d®z;d3p;; the position
and momentum of molecule 2 lie within d3z;d?p; etc. The interac-
tion between the molecules is given by Newton’s laws, and consequently
the N-particle distribution function F satisfies the Liouville equation,

3



4 2. GENERAL THEORY

which in the absence of external forces is given by

aFN + Z (2.1)

The first assumption to be made is that the mono-atomic gas molecules
interact via a spherically symmetric potential, that is, the potential sat-
isfies

V(r) =V (r).

We assume that the gas is dilute. This means that the typical diameter
of the cross-section of the interaction between the molecules, d, is small
compared to dy, the average distance between gas molecules. For air

under standard conditions, % ~ %

Since the gas molecules are identical, the state of the system is invari-
ant under interchange of position of the molecules in y-space. Therefore,
to an assembly of N molecules in y-space, there corresponds N! points
in I'-space. We now introduce the function fy = fn(¢,x1,P1,.., XN, PN)
by writing the probability of finding the system at the points (x;, p;) as

fN(taxla P, XN, pN)daa:ldBpl METIN d3$Nd3pN7

Then we must have fy = N!Fy.

Further, we impose the condition of molecular chaos. This is a good
approximation if the correlations vanish. This condition admits factor-
izing the distribution function into a product of identical one-particle
distribution functions, each describing a ’typical’ gas molecule, that is,

v = f(x1,p1) - f(x2,P2) - .. - f(xn,PN). (2.2)

Then the Liouville equation is reduced to an integro-differential equation
for this one-particle distribution function: The Boltzmann equation. In
the absence of external forces, if takes the form

i
e V=T ), 23)

where the collision operator J(f, f) is given by

6.0 = [ | [ (78 = 15) ghavdedes, (2.4)

see [1]. In the expression for J(f, f), b is the impact parameter in the
binary collision, € is the angle of impact, g is the relative velocity of
the colliding molecules, ¢ is the velocity of the typical gas molecule, ¢’



2.1. KINETIC THEORY AND THE BOLTZMANN EQUATION )

is the velocity of the molecule it collides with. ¢; and ¢} are the cor-
responding velocities after the collision. Further, fi = f(c1), f' = f(c)
and f] = f(c}). Note that the collision operator is bilinear in f. On
the left-hand-side of the Boltzmann equation we have the material time
derivative of the one-particle distribution function f. On the right-
hand-side, the collision operator J(f, f) determines the rate of change
in the one-particle distribution function due to collisions between the gas
molecules. This equation is much simpler to handle than the Liouville
equation. The Bolzmann equation lacks the time-reversal symmetry ex-
posed by the Liouville equation.

If we denote the length scale of the problem for which we want to
solve Boltzmann’s equation by A, an order of magnitude estimate of the
Boltzmann equation shows that the left-hand side is of the order of %
times smaller than the collision term on the left hand side (we recall that
A denotes the mean free path of the gas. That is, in non-dimensional
variables the Boltzmann equation looks like

A [OfF
(the *-superscript will be dropped in what follows.) For our purposes,
there are two separate length scales for which we want to solve Boltz-
mann’s equation: Firstly, we need a description of the gas subjected
to the macroscopical gradients, that is, A = L. Secondly, we want to
examine the situation for the small body, that is, A = R. Since by as-
sumption % < 1and % > 1, the corresponding investigations turns out

to be quite different. For % < 1 we use the so-called Chapman-Enskog

solution, [5], to the Boltzmann equation. For 1—)% > 1 we end up in the
equations of Free Molecular Flow.

2.1.1. The Chapman-Enskog Solution

In the limit where A < L the solution to the Boltzmann equation can be
expanded in the small parameter % = Kn, where the Knudsen number
Kn measures the rarefaction of the gas. To zeroth order in Kn, we
acquire the solution for a gas in local equilibrium: the Maxwellian, f ©)
given by

—3/2
f(O) =n (27-‘—7]:/LBT> e—mCZ/QkBT. (26)

In this expression, n is the number of molecules per unit area, kg is
Boltzmann’s constant, 7" is the temperature, m is the mass of a gas
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molecule and c is the velocity of a gas molecules. The Maxwellian is
thus the solution to J(f, f) = 0. This solution describes a gas in local
equilibrium, with no stresses and no heat currents.

To take into account the influence of the non-uniformity of the dis-
tribution function, we must include deviations from the Maxwellian in
the distribution function. Therefore, we seek the solution to first order
in Kn. This solution can be found through the Chapman-Enskog expan-
sion. In case of a gas subject to gradients in the temperature and the
velocity v, this solution takes the form

1 [2kgT 2
f= f(o) [1 — n_T TA(C2)62TJ — EB(C2)C<iCj>'Ui,j . (27)

Here, C; = \/m/2kpTc; is a non-dimensional molecular velocity. The
function A is related to the heat conduction of the gas and B to the
shearing. A and B both depend on the intra-molecular potential and
has the order of magnitude of Kn. Further, < ... > denotes symmetric
and traceless part.

This solution is well-established and gives correct values of the co-
efficients of heat conductivity and viscosity. This completes the macro-
scopic description of the gas.

2.2. Free Molecular Flow

We must now adopt the perspective of the gas of the small body. On
the length scale of R the molecules of the surrounding gas do not collide
with each other. Still, they will of course collide with the small body.
Accordingly, in the limit where % > 1 the collision operator drops out
of the Boltzmann equation, and we have

of

5, Te V=0 (2.8)

This is the Liouville equation for the one-particle distribution function f.
As a consequence, the gas molecules move along straight lines. Further,
far away from the body, the distribution function has to approach the
Chapman-Enskog solution.

The body is taken to be convex. By this assumption, a gas mole-
cule will never undergo two consecutive collisions with the small body.
It is further assumed that the body is small enough for the test-body
approximation to be valid, that is, the gas influences the body, but the
impact of the small body on the gas is negligible.
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The fate of a gas molecule that has collided with the body is not
obvious. A rather well-established model that can be used is the Maxwell
boundary condition. This model states that a fraction of the stream of
molecules incident on the body surface is reflected specularly (or like
a particle colliding with a solid wall). The remaining fraction of the
incident stream of molecules reaches thermal equilibrium with the body
(complete energy accommodation is assumed), and is reflected as a local
Maxwellian. This fraction is said to be diffusely reflected. It is easy to
see that the part specularly reflected on the surface element does not
transfer any tangential momentum. Therefore, the fraction number is
called, 'the accommodation coefficient of tangential momentum’, and is
usually denoted by «,. Put in mathematical terms, the reflected stream
) fulfills

n(r)

Fe) = (1 =) fO(e) + a7 - 1) (2.9)

Here, f@ is the distribution function describing the incident stream of
molecules given by the first order Chapman-Enskog solution. Further,
¢ = ¢; — 2nnjcj. n(") is a number density to be determined, and f(%)
is a Maxwellian with the temperature of the body.

Now we can describe the particle flux incident on a surface element
dS with unit normal n on the body, N™)  in terms of the distribution
function f:

N = —/ (n-c)fdc, (2.10)
n-c<0
and the momentum flux incident on the surface element according to
P = —/ (n-c)me; fdc. (2.11)
n-c<0

With the Maxwell model we can also in a similar manner formulate the
out-flux of mass and momentum by the stream of molecules that leave
the surface. From demanding that the surface of the body is imperme-
able we can determine n("). Then we are in a position to calculate the
net momentum transferred from the gas to the surface element and thus
arrive at an expression for the force and the torque exerted on the body
surface element by the gas. The corresponding expressions can then be
integrated over the total surface of the body to yield the total force and
torque acting on the body.






CHAPTER 3
Introduction to the papers

In the papers (I) and (II), it is shown that a body small compared to
the mean free path in a nonuniform gas is set in a motion relative to the
surrounding gas due to gradients in the temperature and the velocity.
The typical length of the small body, R, is assumed to be much smaller
than the mean free path of the gas. Further, the typical length over
which the temperature and the velocity varies, L, is much larger than
the mean free path of the gas. The body surface is convex. The way
of finding the force and torque acting on the small body presented in
preceding paragraphs is applied.

3.1. Axially symmetric body

The small bodies under consideration here are all axially symmetric.
This means that the body has no other geometrical direction than the
axis of symmetry, N.

Axially symmetric bodies can posses an additional symmetry: If
there exists a plane orthogonal to the axis of symmetry in which the
body is mirror symmetric, the body is said to be equatorially symmetric.

Further, geometric integrals over the total body surface of local ge-
ometrical quantities such as the unit normal n and the vector from the
center of mass of the body to a point on the body surface, x, must all be
isotropic functions of the axis of symmetry N. That is, these geometric
integrals are sums of products of N; and the Kronecker delta d;;. An
example of an integral of this type is given by [ gninjdS, and due to
isotropy it must fulfill

1
/ninde =5 (Clg(sij + CZNiNj) .
S

Here, S is the total body surface area. The non-dimensional scalar coeffi-
cients ¢; and ¢y can be found from successive contractions with products
of N; and the Kronecker delta. When this is done, it is convenient to
write the tensor as the sum of one isotropic part proportional to ¢;; and

9
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one symmetric traceless part proportional to N ;Nj~ = N;N; — %&j.
The tensor integral then takes the form

1
/ninde =5 (5523 +aN<Z-Nj>> .
S

One finds that a measures symmetric deviations of the body shape from
a sphere: For a coin shaped body, a = 1, and for a needle shaped body,
a= —%. For a sphere, a = 0.

3.2. Force and torque on the body

The force, dF', acting on a surface element of the body can now be
obtained by calculating the net transfer of momentum to the surface
element from the gas. This force will in general also produce a torque
acting on the body surface element according to dM = x x dF', where x
is the vector from the center of mass of the body to the surface element.
As a consequence, the body will start to move and rotate, and a full
rigid-body motion results. A body-fixed frame of reference is introduced,
where one of the pricipal axis is chosen to be N. The time evolution
of this frame can then be related to the angular velocity by Euler’s
equations. The resulting motion of the body will generate additional
forces and torques on the body.

Both the force and the torque acting on the surface element of the
body will be tensor functions of the unit normal n and the vector x. To
obtain the net force and torque acting on the body, we must integrate
the force and the torque acting on a surface element of the body over
the total body surface. This can be done using the method described
above.

The total force will, to the present order of approximation, contain
three different forces: One force arising from the non-uniformity of the
gas, that is, from the heat currents or the stresses; One force depending
on the velocity of the center of mass of the body, and one force depending
of the rotation of the body. The total torque on the body can be split
up in a similar manner into three corresponding parts.

3.3. Asymptotic solutions

Given the force, the torque and Euler’s equations, the equations of mo-
tion of the rigid body can be formulated. This resulting system is a set
of non-linear coupled ordinary differential equations, that contain scalar
coefficients that depend on the shape of the body.
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With these at hand, asymptotic solutions with no rotation and a
constant velocity can be found. These differ very much in character
between thermophoresis and Shearing Phoresis. This is due to the dif-
ference in symmetry between the vectorial heat current and the tensorial
stress tensor.

In order to investigate the stability of the resulting asymptotic states,
the equations of motion of a test body are linearized close to these states.
The test body is a ’double cone’. It consists of two cones, pointing in
the opposite directions and glued together at their common base. The
radius of the base is denoted by D, and the total length by R.

R

s-R (I1-s)-R

FIGURE 3.1. The ’double cone’

The base is situated a distance s- R from the left cusp, where the
dimensionless parameter s obeys 0 < s < 1. When s = 0 the double cone
degenerates into a single cone with its cusp pointing in the direction of
N. When s = 1 we recover another single cone, pointing in the direction
of —IN. This body is in general not equatorially symmetric, except when
s=1

In the case of Shearing Phoresis, the parameter s is restricted to
vary in the interval 0 < s < %; Thus, in this case, N always points in
the same direction as the sharpest cusp of the double cone.

Given the linearized system, the eigenvalues of the infinitesimal mo-
tion of the double cone close to the asymptotic states can be calculated
numerically. The stability character of these states can in this way be
obtained for the double cone.
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