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Abstract

This thesis explores the dynamics of two mechanical systems capable of
performing their tasks without the use of active control. The first system is an
autobalancer, which can continuously balance rotating machinery. This is
accomplished by using compensating masses that move in a viscous media about the
axis of rotation. The second system is a passive bipedal walker, capable of human like
gait in the absence of external active control. Since there is no control system to
suppress errors in the mechanisms it is important to have a detailed knowledge of how
parameters influence on these systems.

The dynamics of mechanical models, such as the three dimensional passive walker and
autobalancer, are explored and understood using standard dynamical systems
methods. This includes calculating the stability of equilibrium positions and limit
cycles and creating bifurcation diagrams as parameters of the system are varied. In
the case of the autobalancer it is possible to analytically solve for the equilibrium
positions. In the passive walker the stability of limit cycles, which corresponds to
periodic gaits, are studied. To find these limit cycles a Newton-Raphson root solving
scheme is implemented. The model for the autobalancer results in a smooth
dynamical system whereas the passive walker includes different kinds of
discontinuities. These discontinuities are taken care of by introducing suitable
mappings.

Results for the autobalancer include suggestions on how to choose parameters of the
systems and how to avoid possible dangerous parameter combinations. It also
explains some experimentally observed limit cycles.

In the case of the passive walker, it is shown how the planar passive walker can be
extended into a fully three dimensional walker having dynamics in all spatial
directions. Many parameter studies are reported which give an insight to the
dynamics of the system. The thesis ends with an report on the search for an
implementable passive walker.

The methods introduced in this thesis are not limited to the study of autobalancing
and passive bipedal walking but are applicable to many mechanical systems with or
without discontinuities.

Descriptors: autobalancing, bipedal walking, multibody systems, nonlinear
dynamics, stability, bifurcations, limit cycles, variational equations, discontinuities






Preface

This thesis present studies, made on two different passive mechanical systems,
the Autobalancer, capable of passively balancing rotating unbalance and the
passive walker, capable of human like bipedal gait without using active control.
This thesis includes modeling assumptions, simulations, and analysis performed
on these systems. It is based on the following papers;

Paper 1 Adolfsson, J.: 1997 ‘A Study of Stability in Autobalancing Systems
using Multiple Correction Masses’, Technical Report, KTH, Department of Me-
chanics

Paper 2 Adolfsson, J.: 2000 ‘A short introduction to walking’, Technical Re-
port, KTH, Department of Mechanics

Paper 3 Adolfsson, J. & Nordmark, A.: 2000 ‘Planar Passive Walkers: Code
Implementation Issues’, Technical Report, KTH, Department of Mechanics

Paper 4 Adolfsson, J., Dankowicz H., & Nordmark, A.: 1998 ‘3-D Stable Gait
in Passive Bipedal Mechanisms’, In Proceedings of Furomech 375, Biology and
Technology of Walking, pp 253-259

Paper 5 Adolfsson, J., Dankowicz H., & Nordmark, A.: 2000 ‘3D Passive
Walkers: Finding Periodic Gaits in the Presence of Discontinuities’, In Nonlin-
ear Dynamics, Volume 24, Number 2, February 2001, pp. 205-229

Paper 6 Dankowicz H., Adolfsson, J., & Nordmark, A.: 1998 ‘Existence of
Stable 3D-Gait in Passive Bipedal Mechanisms’, In Journal of Biomechanical
Engineering, Volume 123, Number 1, February 2001, pp. 40-46

Paper 7 Adolfsson, J.: 2000 ‘3D Passive walkers: Code Implementation Is-
sues’, Technical Report, KTH, Department of Mechanics

Paper 8 Adolfsson, J.: 2000 ‘Finding an Implementable 3D Passive Walker
using Continuation Methods’, Technical Report, KTH, Department of Mechan-
ics

The papers are here re-set in the present used thesis format. Some of them
are published as indicated above.
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Chapter 1

Introduction

In our everyday life, we are surrounded by mechanisms, which perform many
different tasks. The operation of most of these mechanisms can be understood
intuitively by just looking at them. Examples of such mechanisms are wheels,
pulleys, chains, link mechanisms, and even devices such as automotive vehicles.
At the time of their invention, most of them have been made to work by clever-
ness and ingenuity, without a need for deeper theoretical understanding. As the
theory of Newtonian mechanics was developed by Newton in 1666, it became
possible to refine and optimize their operation by making theoretical models of
the mechanisms. These theoretical models could now answer questions about
the mechanism without constantly having to build new prototype mechanisms.
Thus, greatly enhancing the understanding of the mechanism and thereby in-
creasing the speed of development. However, it was not until the possibility of
numerical calculations on modern computers that the major revolution came.
Today, most mechanisms found around us have gone through many theoretical
considerations. For example, it is not uncommon that a mechanism design has
gone though one or more of the following steps; CAD system, simulation in a
dynamics program, solid-mechanics / thermal / magnetic analysis by a finite
element program, and fluid dynamics analysis before emerging as a final prod-
uct. Today, all these steps are available through commercial or free computer
programs running on standard computers. So how does this relate to the two
mechanisms studied in this thesis? Here, we will study two mechanical systems,
which have greatly benefited from modeling, simulation, and analysis of the
dynamics using computers. The two mechanical systems are the autobalancer,
capable of continuously balancing rotating unbalances, and the passive bipedal
walker, capable of humanlike gait without external control. Both these systems
have in common that they are passive by design, thus neither of them requires
any active control to function. Since no control systems can suppress errors in
the mechanism it is important to have a detailed knowledge of parameters influ-
ence on the system. The goal of the two studies is to find parameters that are
suitable for implementation. However, in this thesis different approaches have
been taken to reach this goal. The autobalancer, which at least dates back to
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the 1930’s, was an existing mechanical system that needed better understand-
ing as to how parameters influence the system. Thus, the goal was reached by
developing a working mechanism using theoretical modeling, simulation, and
analysis. In the case of passive bipedal walking, previous walkers had been con-
strained to walk in a plane so as to prevent lateral dynamics. Here, the goal
was reached by first extending previous models into three dimensions having
dynamics in all spatial directions using theoretical modeling, simulation, and
analysis. When this had been accomplished and implementable parameters had
been found, a prototype was to be built to verify the theoretical results. Thus, in
the case of the passive walker we did not a priori know that it should work, but
relied on advanced mathematical methods to find a possible implementation.
The three dimensional passive walker can therefore be seen as an experiment
in ultimate virtual prototyping where the functionality was developed theoreti-
cally. However, only the simulated walker succeeded in walking passively. The
implemented walker had some of the dynamics found in simulations but not all.
It is believed that given enough time and resources, an actual three dimensional
passive walker should succeed in walking.

This thesis can therefore be viewed as the study of two systems where the
first is an example of traditional analysis, where the system under investiga-
tion already exists and works reasonably well and another where we develop a
mechanical system from pure theoretical considerations.

In the following chapters short introductions to the autobalancing system
and the three dimensional passive walking system will be given. A discussion is
then given of the theoretical background and the mathematical methods used
to analyze these two mechanical systems.



Chapter 2

AutoBalancing

2.1 Background

In 1994, Electrolux wanted to reduce vibrations during spin-drying in washing
machines, due to the uneven distribution of wash. The company contacted the
Department of Mechanics at KTH to get some help with the theoretical mod-
eling of such a system. It was known that a Japanese manufacturer of home
appliance had, a decade earlier, filed a patent for using autobalancing in washing
machines. However, it was not known if any products had been manufactured
using this technology. In 1994, there was no widespread use of autobalancers in
washing machines and since this application had already been tried, some con-
cerns were raised that there existed some ”hidden” problems with the system.
After the initial success to model the system it was decided to continue with the
project. It was decided that a more advanced theoretical model should be devel-
oped simultaneously with building a prototype washing machine at Electrolux
Wascator. Due to design issues, it was also decided that a small experimental
autobalancer should be built, see Figure 2.1. This experimental autobalancer
was to be used to verify the theoretical model. Autobalancing is not limited to
washing machines. Other fields where it has been used or have been tested are;

e Grinding machines, the Atlas Copco Grinder GTG 40 can be equipped
with a SKF autobalancing unit. Vibrations levels have been reduced so
that the operator now can use the machine without time restrictions.

e Turning lathes

e Fans, dirt attaches to the blades during operation

e Refrigerator compressors, to reduce noise from piston movements

e Computer CD drives, to reduce vibrations from unbalanced CD’s operat-
ing at much higher rotational speeds than originally intended for CDs

3
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Figure 2.1: The left picture shows the experimental autobalancer equipped with
two balance rings. Two balance rings are required to balance dynamic unbal-
ance. Two compensating masses and the viscous media can also be seen. The
right illustration shows the model used to analyze the autobalancer. By only
using one balance ring placed at an approriate location on the axis, the ex-
perimental autobalancer is well described by the mathematical model found in
equations 2.1-2.3.

The history of autobalancing is quite interesting in itself since it is not clear
who the original inventor of the mechanism is. The person who is usually be-
lieved to be the inventor is E.L. Thearle, who filed a patent in 1934 describing
its use to dynamically balance machine tools, see [38]. However, it has been
told that this technique was used at the end of the eighteenth century to bal-
ance rotating parts in combustion engines. This was supposedly abandoned
since it later became possible to manufacture rotating parts with little inherent
imbalance.

2.2 AutoBalancer

The cooperation between Electrolux and the Department of Mechanics resulted
in a Master Thesis, see Adolfsson [1], where it is shown that good agreement
between the theoretical model and experimental model is possible. Thus, it was
decided to continue with the more specific parameter investigations. A detailed
description of the theory behind autobalancing can be found in Adolfsson [2]
(paper 1). In short, the idea is to have compensating masses, free to move in a
circular path about the axis of rotation. At high enough rotational speed, these
compensating masses will move to a position so as to reduce the vibration levels
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in the system. The equations of motion used in all parameter studies are,

i=n

M'#y + 131 + kyzy = mew? cos(wt) + Z mli (& sin(a;) + & cos(ay)), (2.1)

i=1

i=n

M' &y + coto + koxo = mew? sin(wt) + Z mli(é; cos(ay) — a7 sin(ey)), (2.2)

i=1

i

1=1,...,n,

where the parts corresponding to a simple rotating unbalance are identified,
see Figure 2.1 or Table 1 and 2 for a description of the parameters and state
variables.

Table 1. Description of the parameters found in the autobalancing system.

Parameter Description

M’

12
1,2
m

Total mass of the system

Spring constant in vertical and horizontal direction

Viscous damping constant in vertical and horizontal direction
Mass of unbalance

Distance from axis of rotation to c.m. of unbalance

Mass of compensating mass

Moment of inertia of compensating mass

Radius of the compensating mass

Distance from axis of rotation to c.m. position of compensating mass
Viscous damping constant - translation of compensating mass
Viscous damping constant - rotation of compensating mass
Angular velocity of the rotation system

Table 2. Description of the states found in the autobalancing system.

State  Description

T1,2 Horizontal and vertical position of the axis of rotation

1,2 Horizontal and vertical velocity of the axis of rotation

1,2 Horizontal and vertical acceleration of the axis of rotation

Q; Angular position of c.m. of compensating mass, measured relative to unbalance
Q; Angular velocity of compensating mass

0y

Angular acceleration of compensating mass
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Many of the questions answered in Adolfsson [2] (paper 1) are a result from
phenomena discovered when working with the experimental autobalancer, and
talking with the persons who built the autobalanced washing machine at Elec-
trolux Wascator. For example, the operation of autobalancers requires some
viscous media, typically oil, to operate. Due to varying temperature in washing
machines, this oil might change its viscosity, potentially resulting in a failure of
the autobalancer. Therefore, many of the parameter studies deals with studying
the effects of varying the parameters sensitive to temperature changes. Another
important questions is what happens when the autobalancer is anisotropically
suspended. Typically, a washing machine is suspended in a way that results
in different stiffness in the horizontal and vertical directions. For example, it
is shown that given enough separation in the horizontal and vertical natural
frequency, autobalancing operation is possible in regions between these two fre-
quencies.

Generally, autobalancers require at least two compensating masses to func-
tion at varying amounts of unbalance. When using metal balls in a race the
configuration where all metal balls are lined up side by side corresponds to the
maximum imbalance load that the system is capable of balancing. By filling half
the race with metal balls the maximum imbalance load is maximized. Adding
an additional metal ball will only compensate for an already present metal
ball. Thus, using only two metal balls in a race is usually not volume efficient
since there is always the possibillity of using many smaller metal balls, which
will reduce the volume occupied by the race. However, using more than two
compensating masses complicates the parameter studies, since a family of equi-
libriums will result. Hence, the stability of the family of equilibrium positions
have to be scanned for safe operation.

Fitting an autobalancer on a rigidly mounted flexible shaft will result in equal
stiffness in all directions. In this isotropic case, it is shown that the equations of
motion 2.1-2.3 can be transformed to a time independent form, thus reducing
the complexity of stability calculations and reducing the computational cost.

Most studies on the autobalancer were carried out by linearizing the equa-
tions of motion about the different equilibrium positions existing in the system.
This was done to find out their stability characteristics. For safe and robust
operation it is important that the equilibrium, corresponding to a balanced sys-
tem, is globally attractive. Since the autobalancer is capable of continuously
adjusting to different imbalance loads, it is important that all imbalance loads
result in stable equilibriums. However, this is not always case, and could lead to
a problem if not all imbalance loads are tested in a real system. After it has been
established that all imbalance loads result in a stable balanced equilibrium, it
is important to investigate that these equilibriums are globally attractive. This
was checked in three different systems by performing 30000 simulations, with
random initial conditions and random imbalance load. The investigated sys-
tems have the same capacity, in terms of imbalance load, but are configured
differently. The first system have heavy compensating masses close to the axis
of rotation and the last two have lighter compesating masses far from the axis.
Histograms are presented showing the number of revolutions before the system
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is satisfactorily balanced. The general result indicates that when the desired
equilibrium positions are stable, they are also globally attractive. However, the
system with the heavy compensating masses close to the axis balance the sys-
tem faster than the other two. The local stability of the three systems are also
compared and it appears like the local stability can be used as reasonable guide
to optimize the system.

Other studies on autobalancing systems have been done by for example
Hedaya et al. [12], which report similar stability results when internal and
external damping are varied. These studies have been performed on a system
similar to a washing machine. Friction effects and a study of the effects of the
eccentricity of the race have been done by Majewski [25] and [26]. In reference
[9], Bovik et al. shows that it is possible to have autobalancing in non-plane
rotors by using multiple scale techniques. It is also interesting to note that
some early theoretical studies, using simplified models, had come to certain
conclusions regarding stability and rotational speed. These result do not seem
to agree with experiments and more advanced models, see Kravchenko [18],[20],
and [19].

2.3 Conclusion

There still isn’t any widespread use of autobalancing technology, which might
be explained by the one big disadvantage of autobalancers. Namely, that they
don’t work at rotational speeds lower than the lowest natural frequency of the
system, see Adolfsson [2] (paper 1). Sometimes, it can even be disadvantageous
to have an autobalancing system at low rotational speeds. Many devices have
been developed to overcome this problem, such as clamping the compensating
masses at low speeds, only releasing them at high speeds. However, introducing
these locking devices removes the attractive simplicity of the mechanism and
certainly increase its cost. Despite this, SKF, with its long history of making
ball bearings, have developed autobalancing into a commercial product named
DynaSpin, see [36]. They envisage use in washing machines, grinders, cen-
trifuges, and optical storage devices. It will be interesting to see if they succeed
in making autobalancing a successful commercial product.
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Chapter 3

3D Passive Walking

3.1 Background

The activity of normal walking is something we perceive as requiring very little
conscious effort. While on a higher level it is clear that some sort of control
is necessary, such as that required for negotiating rough terrain and recovering
from large disturbances, on a lower level it has been shown that the ability to
walk is largely a consequence of the inertial and geometrical makeup of bipedal
mechanisms, see Basmajian and Tuttle [8] and McGeer [28], [27], [29].

The models studied in this paper are usually referred to as passive walkers,
see McGeer [28], since the source of energy is gravity alone and no external active
control is applied. Sustained gait is realized by letting the walker descend an
inclined plane to counteract the energy dissipated in collisions with the ground
and in the knees. To accomplish walking on level ground, actuation would be
needed. Different schemes for actuation have been thought of using for example
a leaning torso as to provide a torque on the upper legs, see Howell and Baillieul
[14] or impulsive pushing of the hind legs, see McGeer [30].

Most of the previous studied passive walkers have been constrained to move
in a plane to prevent lateral dynamics. However, to be successful in a life like
environment it is evident that a fully three dimensional walker is needed. Many
successful attempts have been made to build active walking mechanisms. The
most successful up to date is the Honda Biped [13]. This walker is capable of
walking in relatively life like environments, such as climbing stairs. The P1
version weighs about 210kg and can operate for about 10 minutes on its own
battery pack. The position of limbs are controlled using electrical direct drive
servos. Since electrical motors usually have low torque and high speed, some
sort of gearing is necessary. This gearing both amplifies inertia and friction,
thus making it hard to control the actual force output on the limbs. Instead,
it is most common to control the position and angle of different joints. The
drawback of this is that it makes it hard to use the natural dynamics available to
the mechanism, such as the natural pendulum motion of a swinging leg. In light

9
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Rolling foot to point foot

Extending the toe point to a line toe

Separating the hip

No overlap in the feet

Figure 3.1: The steps taken to extend the planar passive walker into a 3D passive
walker.

of this, we decided to try to extend the planar passive walker into a fully three
dimensional passive walker, having dynamics in all spatial directions. The idea
was to slowly extend previous found planar walkers into a three dimensional
configuration, see Figure 3.1. The planar passive walker, originally devised
by McGeer [27], had large radius feet and attempts to directly extend this
configuration into three dimensions had resulted in unstable dynamics of the
system, McGeer [30]. Other attempts had succeeded, albeit outside the passive
category by using active control to stabilize the swaying motion, Kuo [21]. The
first successful experimental attempt was the passive and knee-less Tinkertoy
walker, see Coleman et al. [10], which was later modeled and shown stable,
Mombaur et al. [10] [32]. However, it requires masses to be put on extended
booms as to obtain the necessary moments of inertia. The path taken here was
to add an extra contact point to the foot. This was made possible after realizing
that the foot radius could be shrunk to zero, see Adolfsson and Nordmark [5]
(paper 3). By starting with very wide feet, see Figure 3.1, the dynamics would
essentially resemble those of the planar walkers. Thus initial conditions and
parameters from the planar walker could be utilized. The extension into three
dimensions resulted in a lot of new dynamics such as gaits heading obliquely
down the plane, see Dankowicz et al. [11] (paper 6) and Piiroinen et al. [33]
[34]. The initial extension was made using direct numerical simulation. Thus,
the convergence to periodic gaits were slow. Therefore, a root finding algorithm
was developed to locate periodic gaits, see Adolfsson et al. [6] (paper 5) and
Adolfsson [3] (paper 7). This also made it possible to locate unstable periodic
gaits. The reason for studying unstable gaits is that they can turn into stable
gaits as parameters of the system are varied. Potentially, finding new stable
gaits, which would have been hard or impossible to locate using direct numerical
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o knee joint active when in
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L, toe point has a downward velocity

Figure 3.2: The different bodies of the 3D passive walker. Continuous impact
dynamics are used in knee and ground plane.

simulation. Initial attempts with the root finding algorithm looked promising
and work started on finding a 3D passive walker having no overlap in the feet
and a geometry resembling a human, see Adolfsson [4] (paper 8).

3.2 3D passive walker

The mechanical model of the walker consists of five rigid bodies connected by
hinge joints, as depicted in Figure 3.2. The bodies are the torso, the upper legs,
and the lower legs. The walker makes regular contact with the ground plane
through its four toe points. The 3D passive walker is modeled as a continuous
system, where the impact laws used for the planar walker have been replaced
by springs and dampers. These are activated based on the state the walker is
in, such as knee-lock and contact with ground, thus avoiding the complexity
of treating different impact sequences. A problem that could occur if impact
models were used is that the toe points, representing the contact cylinder, could
bounce between its ends infinitely many times in a finite time. To handle this
would require some extra conditions on the impact models. Thus, the interac-
tion between walker and ground plane is through springs and dampers attached
from the initial toe contact point to the toe points. These springs/dampers are
active as long as the toe point is below the ground plane, see right pane of Fig-
ure 3.2. In human walking, the stance-leg knee is never overstretched. Instead
muscles prevent the knee from collapsing, see Inman et al. [15]. To prevent a
collapse of the knee in our model, the knee has to be in hyperextension where
it rests against a torsional spring/damper. For a detailed description on geome-
try, kinematics, and forces/torques acting on the walker see Adolfsson et al. [6]
(paper 5) and Adolfsson [3] (paper 7).
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Table 3. Continous and discrete state variables.used in the 3D passive walker

CHAPTER 3. 3D PASSIVE WALKING

Continous states

Description

q1, 92,93 Position of hip point T

q4, 95,96 Angles describing the orientation of the torso
q7,q9 Hip angles

qs, 910 Knee angles

P1,P3,P5,P7 Initial toe contact point relative to hip point T
P2, P4, P6, P8 Initial toe contact point relative to hip point T
U1, Uz, U3 Velocity of hip point T’

Uy, Us, Ug Angular velocities of body T'

Discrete states

51,82 Knee 1 and 2 (locked/unlocked)
83,84 Toe 1 and 2 of leg 1 (attached/detached)
S5, S6 Toe 2 and 2 of leg 2 (attached/detached)

Table 4. Description of the parametrization of the 3D walker.

Body Parameter description nr
Torso Described by a center of mass position, a mass, 10
and six moments of inertia
Upper legs See above 10
Lower legs See above 10
Hip joints Position on hip line 1
Knee joints Relative to hip joint in upper leg direction 1
Toe points Each toe point is described by three coordinates, 6
two toe points on each leg
Knee dynamics A angular knee stiffness and damping 2
Hip damping To resist rotations of the torso 1
Ground plane Stiffness and damping in three directions 6
Inclination Inclination of the ground plane 1
Total 48

3.3 Numerical simulation

In Figure 3.3, a stick animation of the 3D walker is shown, sampled at the
different events for twelve consecutive gait cycles. This particular walker has an
overlap in the feet of 0.1m. The walker is started just after the impact of the
right leg’s toe points. The events for each toe of the legs are combined into one
stick figure, since the time interval between the successive impacts or successive
releases is very short. The event percentage is defined relative to the stride
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Hip center motion

:
2
]
=

515 % -0.02 0 0.02

Lateral deflection (m)

Stride time 1.6s
Stride length 0.69m .
Inclination 4.6° v

Figure 3.3: Stick animation of an stable periodic gait of the 3D walker. Toe
clearance refers to the configuration having a nonzero local minimum in distance
between toe points and the ground plane.

time. With methods described in Adolfsson et al. [6] (paper 5) it can be shown
that this choice of parameters and initial conditions result in an stable periodic
gait. The butterfly-shaped orbit of the center of the hip, as displayed in Figure
3.3, shows a similarity with results reported in Rose and Gamble [35].

3.4 Finding an implementable 3D passive walker

Initial attempts to reduce the foot overlap to zero resulted in unstable periodic
gaits, see Adolfsson et al. [6] (paper 5). Thus, an extensive parameter search
was undertaken to find a walker without an overlap. The 3D passive walker is
described by 28 state variables and approximately 80 parameters. If the left
and right side of the walker are mirrored in the sagittal plane, the number of
parameters will be reduced to 48, see Table 4. The sheer number of parameters
makes it hard to draw any reasonable conclusions about a particular parameter
variation. Typically, the conclusion drawn from a one parameter variation might
not hold if one changes the value of another parameter. This emphasizes the
importance of having a very clear goal when performing parameter studies, such
as finding an implementable 3D passive walker. Below are the requirements set
up for an implementable 3D passive walker.

e The mass distribution should be realizable, thus masses should not have
to be placed in awkward positions, such as on long extended booms, to
get the required moment of inertia.

e Required friction between toe points and ground plane should be reason-
able.
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e There should be an anthropomorphic (human like) look of the 3D passive
walker. This means that geometrical measures of the experimental walker
should have similar ratios as a human. For example, the ratio of leg length
to hip width should be close to the values found in humans.

e No overlap of the feet.

e Insensitive to parameter changes. This is especially important when the
parameters are hard to control or measure in an experimental walker. For
example, the actual force between ground and toe points might be very
hard to model. Thus, a stable gait should exist for reasonable intervals in
the parameters associated with the ground plane.

e Initial conditions that is possible to realize and have a reasonable basin of
attraction. The latter might be hard to investigate due to the number of
states of the walker.

e Be able to carry some payload, however not necessarily with an upright
torso, which most likely would require active control.

e Knee mechanism should be possible to implement passively. The current
design requires quite large angular motions of the lower legs during the
locked state of the knees.

The search to fulfill these requirements and a presentation of the implemented
3D walker are given in Adolfsson [4] (paper 9).

3.5 Conclusion

It is believed that most of these requirements were fulfilled during the parameter
search. However, we were not able to achieve a stable working walker in the
laboratory. There are two possible reasons for this, the parameters of the ex-
perimental walker didn’t match the parameters used in simulation or the walker
was not started in the basin of attraction of found stable gaits. It could also be
that it was a combination of these two reasons. But due to the lack of adequate
measuring equipment, such as 3D motion measuring system, it is hard to know
why it failed. For a more thorough discussion on why it failed and possible sug-
gestions to make it work, see Adolfsson [4] (paper 9). Despite this, it is believed
that the results presented here still support the assumption that human gait is
largely a consequence of geometry and mass characteristics.



Chapter 4

Mechanics

To calculate the motion of a rigid body we use Newton’s equation or the linear
momentum principle

Nd

—(mv)=F 4.1
where N is the inertial reference frame where the time derivative is taken, v is
the body center of mass velocity given in the inertial reference frame N, and F
is the external force acting on the body. Together with the mass center motion,
we also need to know how the orientation of the body evolves in time, which is
governed by the angular momentum principle

TOtl(L) =T, (4.2)

where L is the angular momentum of the body and T is the torque acting on
the body. Its interesting to note that equation 4.1 and 4.2 does not contain any
explicit dependence on the actual position or orientation of the body. This is
obvious in equation 4.1, and can be seen in the latter equation by carrying out
the differentiation of the angular momentum

Nd Nd Bq

n (L) = T (Iw)=wxIw+1I " (w),
where both the angular velocity vector w and the moment of inertia dyad I
are expressed in the reference frame B attached to the body. However, most
forces and torques acting on bodies depends on both position and orienta-
tion. Some of these forces might be a result of constraints applied to the
body. Constraint forces/torques play an important role since they can be
viewed as control systems, operating on a much smaller time scale than the
rest of the system as to maintain the constraints. Constraints can typically
be divided into position/orientation constraints and velocity constraints. All
position/orientation constraints (holonomic constraints) can be turned into ve-
locity constraints through differentiation, however not all velocity constraints
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can be turned into coordinate constraints. These, non-integrable constraints
are called non-holonomic constraints. Examples of holonomic constraints are;
hinges, joints, and guides. Examples of non-holonomic constraints are a skate
on ice or a sphere rolling on a plane. Constraints on a mechanism results in
forces/torques, therefore one usually divide the right hand side of equations 4.1
and 4.2 into

F=F°+F and T=TY + T4 (4.3)

where the division between constraint and applied forces/torques has been made.

Various methods have been developed to either remove or calculate these
constraint forces from the equations of motion, such as for example Lagrange’s
method and Kane’s method which removes the constraint forces/torques and
differential algebraic formulations which calculates them. Naturally, all these
techniques result in the same dynamics. However, Kane’s method has proven
to be practical in deriving equations of motions for engineering systems where
the number of bodies and constraints are not too high.

The method of finding the equations of motion and stating the constraint
forces can be viewed as a two step process. We start by describing the position
and orientation of our bodies using generalized coordinates ;. For free and
unconstrained bodies this would require six generalized coordinates for each
body. If we have simple constraints, such as hinges, joints and guides and the
mechanism does not have any closed loops, it is usually possible to describe
the configuration by using a minimum set of generalized coordinates. Since
this is not always possible the second step is therefore to state the additional
contraints as relations between the generalized coordinates or its time derivative,
the generalized velocities.

Thus, by using generalized coordinates g; we can express the position x; and
orientation R; of our bodies as

x; = x;(q)and (4.4)
R; R;(q)
where the index j runs over the bodies. By differentiation of these relations we

obtain a linear relation between our generalized velocities ¢; and the physical
velocities v; and wj,

= A(Q)q. (4.5)

where the columns of A is a set of basis vectors for the possible motions of
the system. D’Alembert’s principle of ideal constraints now says that the
forces/torques acting on the bodies can be written as

p b1
BT, )= | 0 #eP2 o | =3 b, = B,
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where B should satisify BA = 0 and the scalars p;(t) can be determined. The
additional constraints we might have can be described as relations between the
generalized coordinates of the mechanism. Thus they can be written as

fila) =0.
By differentiating these constraints with respect to time, we get,
e cl
ofi _ [ ... ¢
8qk .

fi .
af qr = 0,Ci, =
& qk

If we have additional velocity constraints, they can also be added to C;j;. The
null space of matrix C;; now represents a subspace of possible motions of the
system. A set of basis vectors of this subspace is usually referred to as the
tangent vectors 7,

C(q)m(q) =0, where, 7= | 71, T2,

The velocity configuration of the mechanism can be written in the tangent base
as,
q=uT; (4.6)

where the scalars u; are the coordinates in this base and are named generalized
speeds. Our physical tangent vectors 3, can be written as

/32‘ = ATt;

by using equation 4.5 in 4.6. D’Alembert’s principle now states that the projec-
tion on A of the constraint forces/torques resulting from these constraints can
be written as

[F{, TS, JA=> " Aic; = AC

where \;(t) are scalars. Taking the dot product between our physical tangent
vectors (3, and the constraint forces/torques will result in
[FY. T, 18 = ([FL. T, ]+ [FL, T ]) B =
([~ ]+[DAT = (uBA+XC)T =0.
Thus, by making the division between applied and constraint forces/torques in

the right hand side of Newton’s equation and the angular momentum principle
we get

Ng
— (myvi) = F!+F{ =F; +FS+F’ and (4.7)

Nd
G Liws) = TP+ TF =T+ Tj+ T} (4.8)
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Now, the dot product between the constraint forces/torques and the physical
tangent vectors will vanish. Thus, we can take the dot product on the right
hand side and left hand side of equation 4.7 and 4.8 to get rid of the constraint
forces/torques

[(%(mlvﬂ — F{‘) : (%(Ilwl) - Tf‘) ] B, =0,

which result in one equation for each 3,.

4.1 Sophia

Sophia is a tool for deriving equations of motion and follows Kane’s method; see
Kane & Levinson [17]. Sophia, originally developed by Lesser [24] and [23], runs
in computer algebra programs such as Maple and Mathematica. It contains tools
for handling reference frames, rotations, frame-based differentiation, computing
tangent vectors, and an implementation of Kane’s method. An export utility,
exmex has been developed by Lennartsson [22], which provides functionality
for exporting equations of motion for numeric integration in Matlab. It also
provides support for forming and exporting variational equations of dynamical
systems, which can be used in stability calculations.

The extension to multi-body dynamics is done via a construct called K-
vectors, which is a list of ordinary vectors. The velocity configuration K-vector
contains the center of mass velocities and angular velocities of each body,

A similar construct is used to hold the corresponding applied forces/torques on
each body in the system,

F<1
T<1

Ry=]
F<K
T<K

By expressing the system velocity configuration v< using a minimum set of
generalized speeds u;, it is possible to extract the tangent vectors, since v< can
be written as

v =D wiB + BE(1).
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Momentum and angular momentum is obtained by multiplying each row in v<
by either the mass m; or the moment of inertia dyad I,

myv<lt
Iw<!

. )
mgv<i
Tew<K

where K is the number of bodies. Using D’Alembert’s principle it is now possible
to get rid of the constraint forces/torques since RS o 35 = 0, where the fat
dot product is an operation where the ordinary dot product between vectors
is performed between each row and the result is summed up. By using these
tangent vectors on Newton’s equations and the angular momentum principle
one gets

(P<7R§)./8i<:07

which results in as many equations as there are 3;’s. These equations, together
with the KDE’s, usually on the form

can be retained on an implicit form or can put on a first order form,

@ = gi(gu),
ilfi = hi(q7u7t)a

since the equations motion are linear in all derivatives. These first order form
equations are suitable for numerical integration in standard ODE packages.
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Chapter 5

Analysis methods

5.1 Nonlinear dynamics

Generally, it is not possible to analytically solve nonlinear ordinary differential
equations (nonlinear ODEs). We therefore have to resort to numerical methods.
Today, it exists many robust integrators, capable of handling different types of
ODE’s. In this thesis, all integration has been performed using Matlab’s ODE
suite, which range from non-stiff to stiff, low-order to high-order, and variable-
order integrators.

A general nonlinear dynamical system is described by a set of differential
equations having a nonlinear driving function, this can be written as

i = f(x). (5.1)

If the system doesn’t explicitly depend on time it is said to be autonomous,
otherwise it is said to be non-autonomous. Points z* for which f(z*) = 0 are
called equilibrium points of the system. If the system is started at an equilibrium
point, it will stay there and x(t) = x* for all times. If all neighboring points
are attracted to this point, it is said to be stable. If some neighboring points
are repelled, it is said to be unstable, see Figure 5.3 for an illustration of this.
Depending on the complexity of the equations of motion, it can sometimes be
convenient to put the equations of motion in the form:

M(z,t) = g(x,t), where f = M'g. (5.2)

This is useful when an explicit inversion of M (x,t) is cumbersome.

5.1.1 Flow

Although it is not possible to generally write a closed form solution to equation
5.1, we can, given the initial condition z(0) = g, formally define the flow of
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solutions z(t) = ®(xp,t) where ® satisfies

0P
n F(®) and

(I)(l'o,()) = Xy.

5.1.2 Limit cycles

In nonlinear systems, self-sustained oscillations can occur, such as the famous
Van der Pol oscillator, see José and Soletan [16]. These self-sustained oscillations
are called limit cycles and are isolated and closed trajectories of the dynamical
system. Thus, in terms of the flow a limit cycle has to fulfill

O(x,t) = Pz, t +T),

where T # 0 is the period time of the limit cycle.

The periodic gait of the passive walker is a limit cycle, since the walker
returns to the same configuration, having the same velocities, after one stride.
Stable limit cycles attract neighboring trajectories, thus if the stable limit cycle
is slightly perturbed, the system will asymptotically return to the original limit
cycle. Conversely, unstable limit cycles repel some neighboring trajectories.

5.1.3 Stability of the dynamical system

Stability of the equilibrium point x* can be calculated by linearizing the non-
linear dynamical system found in equation 5.1 about the equilibrium point. For
a proof that linearization works for hyperbolic equilibrium points, Strogatz [37]
gives a reference to Andronov et al. [7]. Introduce a small displacement Az
from z* and Taylor expand the right hand side of equation 5.1

0
(i* + Ai) = f(z*) + 6—£Aaz +O(|Az]?).
However, for an equilibrium point * = f(2*) = 0 and we are left with
of
At = =N
&= o A,

neglecting higher order terms. The matrix df/0x is called the Jacobian of the
system and controls how small disturbances about the fix point evolve in time.
The general solution to this linear differential equation is (assuming no repeated
eigenvalues of the Jacobian)

Ax(t) = Z avierit

where \; are the eigenvalues of the Jacobian, v; are the corresponding eigen-
vectors, and «; are determined by Az (0). Hence, Az(t) will tend to zero if the
real part of all A\;s are less than zero. Thus, the equilibrium point is stable if all
eigenvalues have a real part less than zero.
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— 7
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Figure 5.1: Consecutive intersections of the Poincaré section H(z) = 0 by a
trajectory of the dynamical system. The limit cycle starts and ends in the same
point z* of the Poincaré section.

5.1.4 Stability of limit cycles

This method is fine as long as we have equilibrium points of the dynamical
system, but what about limit cycles? To study their stability we introduce a
Poincaré surface/section H(z) = 0 into the flow that the limit cycle intersects
transversely, see Figure 5.1. Thus, we can now look at the consecutive points
of intersection of this surface. This is called a Poincaré map,

T = f(or), (5.3)

if all z;, belongs to the surface and the intersection xj, of this surface is followed
by the intersection 1. If we start with a point on the limit cycle and in the
Poincaré section, the same point will be intersected turn after turn, * = f(z*),
x* is said to be a fixed point of the Poincaré map. We are now interested to see
how points close to this fixed point map. Introduce a small disturbance dy and
Taylor expand the right hand side of equation 5.3 about the fixed point,

vy = S+ do) = £) + Dy + O,

However, z* = f(x*), since z* is a fixed point, and the result is,

of
dy = %dm

or more generally,

_of
dgy1 = %dk.
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In a similar fashion to the vector field case, 0f/Jx is said to be the Jacobian
of the linearized Poincaré map for the fix point x*. Asymptotic decay to z*
of all neighboring points is assured as long as the eigenvalues of the Jacobian
are all inside the unit circle. This stability criterion can easily be seen if we
assume that Jacobian has no repeated eigenvalues. If so, we can express the
initial disturbance dy using the eigenvectors of the Jacobian,

d(): E ;' V.
i

Inserting this into the linearized Poincaré map we get,
of
d1 = % ; Q; V.

Since the v;’s are the eigenvectors of Jacobian and therefore df/dxzv; = A\;v;.
This results in

dy, = Z A)F v,

and as long as all |\;| < 1, dj will tend to zero as k goes to infinity.

5.1.5 Finding limit cycles

Much of the work relating to finding an implementable 3D passive walker has
been focused on finding periodic gaits. Since periodic gaits of the walker corre-
spond to limit cycles of the dynamical system a method of locating limit cycles
has been implemented. The problem of finding limit cycles can be stated as
that of finding x¢ and Ty # 0 satisfying

(I)((E(], T()) — Xy = 0. (54)

However, the number of unknowns exceeds the number of equations by one (all
points on the limit cycle fulfill equation 5.4 above), so a Poincaré section is used
to make the solution locally unique,

If we now have a good initial approximation (x, Tp) to the solution of the above
we can calculate an update (Ax, AT) that will take us closer to the solution by
using the Newton-Raphson method,

0u®(x0, To) — I 0 ®(x0,Tp) } { Az } _ _[ (0, To) — o (5.5)

0. H(z0) 0 AT H(xo)

where I is the identity matrix, see Adolfsson [6] (paper 6).
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5.1.6 Variational equations

The derivative of the flow 9, ®(x,Tp), found in equation 5.5, can be obtained
through the standard variational equations, see Adolfsson et al. [6] (paper 6).
Forming and exporting the variational equations to Matlab code is supported
by the exmex package, see Lennartsson [22]. This includes support for using
implicit formulations, as in equation 5.2, or explicit formulations, as in equation
5.1.

5.1.7 Discontinuities

Different types of discontinues can be encountered in engineering systems. For
example, force discontinues occur if the Coulomb friction model is used or if
a particle goes from one media to another, such as a particle impacting with
a water surface. Discontinuities involve the sudden change of state variables
and/or their derivatives. This typically occurs in standard impact models, where
velocities of the system change discretely according to some impact model. In
the 3D passive walker, force discontinues occur when the knee locks or when
the foot impacts with the ground. Sudden change of state variables also occur,
since the initial foot contact point is stored as a state of the system. Thus, it is
discontinuously updated at each foot impact.

The standard use of variational equations has to be suitably modified at
a discontinuity. Although a little bit intricate to derive, see Miiller [31] or
Adolfsson et al. [6] (paper 6), the resulting discrete Jacobian correction has a
simple form

(F, — 0,GFy)0,N

U =
.G + ONE,

where G;_,; is the discrete change in state variables, F,, and Fj, is the vector field
of the dynamical system just after and just before the discontinuity, and 0, N
is the normal of the impact surface, see Figure 5.2 for an illustration. Applying
this discrete Jacobian correction to the derivative of the flow just before the
discontinuity will yield the derivative of the flow just after the discontinuity,

amq)after = \Ilaa:q)before- (56)

5.2 Bifurcations

Bifurcations occur when the stability type of the system is changed. The stabil-
ity type of the system might change as parameters are varied. The parameter
value where the system changes stability type is called a bifurcation point. Here,
we assume that the crossing occurs transversely. Thus, if we are looking at the
variation of a parameter p, we assume that

ORe(N)

hudiahiia V4 #0
o Re(\)=0
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N(x)=0

G(x)

Figure 5.2: A trajectory of the dynamical system intersects a discontinuity
surface N(x) = 0 where the state variables are updated to a new position
in state space by the function G(x). The vector field is given by F, at the
intersection of the discontinuity surface and F, at the new updated position.

unstable equilibrium

unstable equilibrium

[ stable equilibrium
no equilibrium

stable equilibrium stable equilibrium  stable equilibrium

Figure 5.3: A bifurcation occurs when a system changes its stability type. As-
sume that the spheres move on a surface that is lowered into some viscous media.
The equilibrium position of the left bowl will be stable. If the bowl is gradu-
ally transformed into the right bowl, the middle position will loose its stabillity
and two new stable equilibrium positions are created. This is called a pitchfork
bifurcation. The incline illustrates a saddle node bifurcation. No equilibrium
exist in the left incline and as it is gradually changed into the right incline, one
stable and one unstable equilibrium is created.

for an equilibrium point in a dynamical system and that

o,
op IA|=1 ?
for a fixed point of the Poincaré map.
Two different types of bifurcations are illustrated in Figure 5.3, where the
stability of a small particle on an incline and in a bowl are shown. The two bifur-
cations that are illustrated are the saddle-node bifurcation and a super-critical
pitchfork bifurcation, however there exists other bifurcations. The bifurcations
occurring in the two studied systems are described below. Since stability cri-
terions are different for equilibrium points of the dynamical system and fixed
points of the Poincaré map, they are listed separately.
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5.2.1 Saddle-node bifurcations

Saddle-node bifurcations occur in the passive walker system as the inclination is
decreased. At some inclination one stable and one unstable branch are created.
This bifurcation also occur in the autobalancer, for some of the equilibrium
positions, as the rotational speed is varied.

Flow: A real valued eigenvalue starts at 0 and either goes to the left half
plane (stable branch) or goes to right half plane (unstable branch).

Poincaré map: A real valued eigenvalue starts at 1 and either becomes less
than 1 (stable branch) or greater than 1 (unstable branch).

5.2.2 Pitchfork bifurcations

These bifurcations usually occur in systems with symmetry. The 3D walker
has a right and left symmetry with respect to the legs. It is the super critical
pitchfork bifurcation that usually occurs in the 3D walker. Typically, the gait
heading straight down the plane becomes unstable and two oblique gaits emerge.
These two oblique gaits are mirrored in each other, see Piiroinen et al. [33].
This bifurcation has not been observed in the autobalancer due to the lack of
symimetry.

Flow: A real valued eigenvalue crosses the border between the right and left
half plane.

Poincaré map: A real valued positive eigenvalue goes through the unit circle.

If the two forked solutions are stable, a super critical pitchfork bifurcation
is said to occur, if the two forked solutions are unstable a sub critical pitchfork
bifurcation is said to occur. The forked stable solutions always occur on the
unstable side and vice versa.

5.2.3 Hopf bifurcations

Hopf bifurcation occurs both in the autobalancer and the 3D walker system.
A super critical Hopf bifurcation occurs in the autobalancer if the damping on
the compensating masses is decreased or if the suspension damping is increased.
The result is small oscillations of the compensating masses.

Flow: A complex conjugate eigenvalue pair crosses the border between the
right half plane and left half plane.

Poincaré map: An eigenvalue pair crosses the unit circle.

If there exist a small stable limit cycle on the unstable side, a super-critical
Hopf bifurcation is said to occur, the amplitude of this oscillation is proportional
to the square root of the distance from the bifurcation point. The sub-critical
Hopf bifurcation occurs if there exist a small unstable limit cycle at the stable
side. In engineering the sub-critical bifurcation is the most dangerous of the two
types, since no stable limit cycle is available after the bifurcation has occurred.
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5.2.4 Period doubling

Period doubling sequences occur in both systems analyzed in this thesis. In
the autobalancer the previous mentioned limit cycles goes through a series of
period doublings, eventually resulting in chaotic motion of the compensating
masses. This occurs when the damping on the compensating masses are further
decreased or if the suspension damping is further increased. In the 3D passive
walker this sometimes occurs when varying the inclination of the plane. It
always occurs after a pitchfork bifurcation has occurred, creating oblique gaits.

Just after the period doubling has occurred, the limit cycle will take twice
the time to return to the same point in the Poincaré map compared to before
the period doubling. In the planar walker, a sequence of period doublings is
typically followed by chaotic regions.

Poincaré map: An eigenvalue goes through —1.

5.3 Conclusion

In this thesis, the dynamics of two different mechanical models are explored
using standard dynamical systems methods. The mechanical models are the
autobalancer and the three dimensional passive walker. The two models dif-
fer in complexity and details but the analysis methods are similar. The model
for the autobalancer results in a smooth dynamical system whereas the passive
walker includes different kinds of discontinuities. These discontinuities are taken
care of by introducing suitable mappings. In the case of the autobalancer it is
possible to analytically solve for the time independent equilibrium positions.
The equations of motion are then linearized about the equilibrium positions
and stability can be assessed. It is not possible to analytically solve for the pe-
riodic gaits of the passive three dimensional walker. Hence, a Newton-Raphson
root solving scheme for locating periodic gaits was implemented. Periodic gaits
correspond to limit cycles of the dynamical system. Since this scheme involves
integrating the variational equations of the flow, stability is easily assessed after
the root solving scheme has converged to an equilibrium point.

The process of deriving analytical expressions for the equations of motion
and the variational equations would not have been practical without symbolical
manipulation programs. For example, the compiled C code for calculating the
equations of motion of the passive walker are about 90kb and the variational
equations is about 300kb.

The methods described in this thesis are not limited to the study of auto-
balancing and passive bipedal walking but are applicable to many mechanical
systems with or without discontinuities.
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state

saddle node

pitchfork (super critical)

pitchfork (sub critical)

hopf (super critical)

hopft (sub critical)

period doubling

Wa' A

) ] ) parameter
bifurcation point

Figure 5.4: Tlustration of bifurcations occuring in the autobalancing system
and the 3D passive walker system. The saddle node bifurcation is character-
ized by the sudden birth of two solutions, one stable and one unstable. The
pitchfork bifurcation is characterized by the creation of two forked solutions at
the bifurcation point. Pitchfork bifurcations come in two flavors, super- and
sub-critical. Hopf bifurcations occur when small limit cycles are born at the
bifurcation point. This type of bifurcation can also be sub- or super-critical.
The final bifurcation discussed here is the period doubling. These might occur
when limit cycles changes their stability in a certain way.
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ABSTRACT. The stability of an autobalancing system is investigated. This work is
divided into three parts.

The first part is concerned with the stability in an isotropic two correction mass
autobalancer. By isotropic it is meant that the system has the same stiffness and
damping in the horizontal and vertical direction. It is shown that the equations of
motion can be transformed, in the isotropic case, to a time independat form. This
transformation reduces the complexity of the stability computations. The equilibrium
positions are calculated. Linear stability analysis is done about these equilibriums.
The influence of different parameters are investigated, such as the rotational speed,
the suspension stiffness and damping, internal damping acting on the compensating
masses and different mass configurations. It is shown that instability can occur when
the rotational speed is above the natural frequency of the system. It is also shown
that stabillity can depend on the amount of imbalance load in the system. When
the internal damping acting on the correction masses is reduced, a super critical hopf
bifurcation occurs.

The second part is concerned with the anisotropic autobalancer, i.e. with different
stiffness and damping in horizontal and vertical directions. In this case the equations
of motions are time dependant and stability analysis is performed by integrating the
variational equations over one half period. It is shown that given enough separation
in the horizontal and vertical natural frequency, regions of stability occur when the
rotational speed is varied. It is also shown that some of the phenomena occuring in
the isotropic autobalancer also occurs in the anisotropic autobalancer.

The third part studies the case when more than two compensating masses are used.
This adds some complexity to the stability calculations since using three compensating
masses gives a family of equilibrium positions. This means that the stability has to
be calculated for all possible equilibrium configurations.
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1 Introduction

Autobalancing of rotating machines using moving correction masses is best ac-
complished where one wants to correct imbalanced rotation varying in time.
The type of imbalance can be both static, dynamic or a combination of both.
Depending on the design of the autobalancers continuously or discrete bal-
ancing can be achieved. The discrete balancing usually involves some sort of
locking mechanism of the correction masses. The need of a locking mecha-
nism is due to the fact that continuous balancing can only be achieved when
certain system parameters are chosen correctly. The most noticeable system
parameter, regarding continuous balancing, is the rotary speed.

The term auto in autobalancing refers to the fact that it is a passive system.
By passive it is meant that no active forces are needed to move the correction
masses. Therefore no controllers are needed in the system.

The idea behind autobalancers is old and the first patents are from the
1930’s. There is not a widespread use of autobalance although there exist
many different patents on the subject, mostly regarding the design of lock-
ing mechanism of the moving correction masses. Why autobalancers have not
been used more widely depends on several things. For example the forces that
move the correction masses to their proper location is small compared to the
normal forces. The normal forces tend to be very high in practical applica-
tions which also require high surface finish and high precision in balance rings
and correction masses. However this is not a serious obstacle since ball bear-
ing manufactures have mastered these skills. It therefore seems that the most
likely manufacturer of autobalancers will be the ball bearing industry. Another
serious drawback is that it does not work at all rotary speeds, and this is here
analyzed in greater detail. This means that for some systems, operating at ro-
tary speeds which are not in the autobalancing regime, it is not possible to use
this technique. In some system it might still be possible to use it with a lock-
ing mechanism of the correction masses. Locking mechanisms have been tested
in turning lathes and stationary grinding machines. During normal operation
the spindle is rigidly connected to the machine and the correction masses are
locked. When imbalance occur one can release the spindle so it is suspended
with springs. This allows the machine to enter the autobalancing regime and
consequently the corrections masses are released. After autobalancing has oc-
curred the correction masses are locked and the spindle is rigidly connected to
the machine again. The locking mechanism is usually a mechanical device but
other types exist. For example fluids with a melting point so that it is pos-
sible to have it solid when the correction masses are locked and melted when
they move. The heating needed is usually accomplished by electrical means.
Another important aspect of the problem is how system parameters should be
chosen to achieve satisfactory autobalancing. It is commonly believed that the
only criterion for autobalancing is that the rotary speed is above the natural
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frequency of system (see section 3 for an explanation). However this is not true
in general and only appears to be one of several requirements on the system,
as will be shown later. Theoretical studies in this field have been performed to
prove this common misbelief. These theoretical studies, see for example V.I.
Kravchenko et al., see [2] [4] [3], have reached this conclusion by simplifying the
problem. The nice thing about these studies is that they have obtained analyt-
ical results. With some heuristic reasoning one is lead to the same conclusion
(see section 3).

Autobalancers have successfully been used in grinding machines, such as
the Atlas Copco Grinder GTG 40 equipped with an SKF Auto-Balancing Unit.
Imbalance occur in grinding machines because of wear. This installation has
reduced vibration levels to less than half of the vibrations occurring without
the autobalancing unit. This means that the operator now can use the grind-
ing machine without time restrictions. Other successful attempts have been
washing machines where the load causes imbalance during spin drying. This
has been tested, with good result, by Wascator in their commercial washing
machines. Other areas where it has been tested with various results are refrig-
erator compressors to reduce noise from piston movements, fans operating in
environments where dirt attaches to the blades such that when the dirt comes
imbalance occurs.

2 Objectives

This work is mainly focused on how different parameters influence the auto-
balancing system. In previous work by the author, see [1] it is shown that
a relatively simple analytical model accurately models a real autobalancing
system. This was accomplished by numerical simulations and measurements
on an experimental autobalancer built by the author, see picture 1. Since
the model accurately describes the real system, stability analysis are made on
the equations of motion. Calculations are performed on a plane isotropic and
anisotropic two-ball balancer. In the last chapter it is shown how calculations
on an autobalancer equipped with more than two balls can be made. Equa-
tions of motions are linearized and eigenvalues and eigenvectors are calculated
about the equilibrium positions. Also normal form calculations are performed
to analyze hopf bifurcations.

While working on the experimental machine a self sustained oscillation of
the ball bearing balls, about their equilibrium position was found. This was not
possible to explain with previous stability analysis. However, it will later be
shown that these oscillations can be predicted by analytical/numerical means.

3 Illustrative model

There are two common designs of autobalancers. The most common design
is letting balls move in a circular ring centered about the axis of rotation.
This ring is usually filled with some viscous media such as oil. It will be
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Figure 1.  Picture of the experimental machine. The suspension is similar to a wash-
ing machine suspension. Two balance rings can be fitted on the axis of rotation. The
correction masses are ballbearing balls.

shown later that choosing the right viscosity is of major importance to achieve
good performance. This construction is used in the GTG 40 grinding machine
mentioned above. The second design is to use pendulum arms mounted on
the axis of rotation. This design has been used in turning lathes. There also
exist autobalancers where the moving correction masses are small carriages
with wheels mounted on them. The reason for using carriages is that it can be
designed with a better weight to occupied volume ratio, therefore reducing the
volume of the balance rings compared to ball balancers. However, the carriage
is a more complex design compared to using balls and is therefore not widely
used. However in respect to the models used in this work these designs are
mechanically equivalent and can be modelled with the same analytical model.

To get an idea of how autobalancing works consider figure 2. Assume that
the system has low damping compared to the critical damping (for an introduc-
tion to basic theory of vibration see for example Thomson, Theory of Vibration
with Applications [5]). The behavior to exploit is that we will have a = phase
shift when the rotary speed is above the natural frequency of the system.

When the driving angular velocity w of the system is below the natural
frequency of the system we will have zero phase shift between the line AB and



A Study of Stability in AutoBalancing

BC in figure 2. The natural frequency of the system is here defined as

k
= S— 1
“ \/M+m+zi_1mi S

where M is the system mass and m is the mass of the unbalanced component
and m; is the mass of the i’th compensating mass. If m and the m;’s are
small compared to M the expression for the natural frequency reduces to the
normal expression w,, = /k/M. A small mass on a ring centered about the
axis of rotation B would then move, as indicated in the figure, to the same side
as the unbalance. This would increase the amplitude, line AB thus making
the vibrations worse. However, when the system rotates at speeds above the
natural frequency of the system we will have a 7w phase shift between the line
AB and BC. A small mass, positioned the same way as before, would then
tend to the opposite side of the unbalanced component. Assuming that this
quasi static argument holds and that there are at least two masses moving
symmetrically about the line BC the amplitude AB would decrease. In this
quasi static argument it is assumed that the damping is small compared to the
critical damping, which implies a phaseshift of 7w radians when w goes from just
below to just above the natural frequency. It is also assumed that there are no
inertial forces due to the compensating masses acting on the system.

w<o, »‘\\ O> o,

1. Centrifugal force

2. Projection of centrifugal
force on the normal
direction

3. Normal force

4. Driving force

=~
AN\
NN
)

Figure 2. Figure showing the direction the centrifugal force would move a small
imaginary mass on a ring when angular velocity is below and above the natural
frequency of the system.

If more damping where present this phase shift would occur through a large
region and this analysis would fail since it would not be clear what would
happen when w is in the range around wy,.

4 Analytical model
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Figure 3. The auto balancing model.

4.1 DERIVATION OF EQUATIONS OF MOTION

To investigate the dynamics of autobalancing an analytical model constrained
to move in a plane is used. This might appear to be a serious constraint
since in most autobalancers the static unbalance is not situated in the same
plane as the autobalancer. However, when using a one plane auto balancer
one is forced to place the autobalancer as close as possible to the plane of
unbalance. Therefore the plane analytical model will closely resemble an actual
system, such as a grinding machine equipped with an autobalancer. If it is not
possible to put the auto balancer in the plane of static unbalance or if you
have dynamical unbalance one could use two auto balancers, letting the static
or dynamic unbalance be situated anywhere between the autobalancers. This
setup is for example used in washing machines. Actually it is possible to let
the plane of static unbalance be situated outside the auto balancers.

In this model (see figure 3) the mass M is able to move in the n; ny plane.
Linear springs and a linear viscous dampers are attached to mass M. Springs
are considered to work in orthogonal directions to each other, the same applies
to the dampers. The springs equilibrium position is the point A, therefore
the displacement of mass M is measured from A to B with coordinates x;
along n; and x- along ny. The rotating mass is divided into two parts, the
mass M with centre of mass at B and the mass m with centre of mass at C
situated a distance e from B. The point C is assumed to be rotating about the
geometrical centre B with angular velocity w. The compensating masses, with
mass m; and rotational inertia i;, are assumed be rotating, without slipping,
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on a circular path centered about the geometrical centre B. The distance from
B to the centre of mass of the compensating mass is I; and the radius of the
compensating masses are r;. The angular coordinate is ;. The forces acting on
the compensating masses are assumed to linear in their relative speed compared
to the rim. The viscous damping acting on the correction masses will be referred
to as internal damping. The viscous damping from dampers will be referred
to as external damping. The derivation of the equations of motion was made
in Sophia, see [?]. Sophia is a set of routines for doing mechanics in computer
algebra packages, such as Maple and Mathematica. Sophia was developed by
Professor Martin Lesser at KTH. The equations of motion are

M'#y + 12 + k121 = mew? cos(wt) + Z mil; (& sin(a;) + &3 cos(ay)), (2)
i=1

M'#g + codo + koxo = mew? sin(wt) + Z ml;(é; cos(a;) — a3 sin(y)), (3)
i=1

(m; + %)liézi +1;(6; + %)(aZ —w) = m;(& sin(a;) — &2 cos(w;)) (4)
1=1,...,n,

where M’ equals (M+m+>_"_, m;) and is introduced since it occurs frequently.
Parameter m is superfluous since the masses M and m are rigidly connected.
It is introduced since parameter analysis will be simplified by it.

5 The isotropic case

5.1 DERIVATION OF EQUATIONS

The isotropic case, where k1 equals ks and c¢; equals ¢y is interesting since it is
possible to get the equations of motion in a time independent form. An example
of a isotropic system could be an autobalancer mounted on a rotating shaft,
where the shaft is stiffly mounted. To get the equations in a time independent
form is accomplished by expressing the position of point B relative to the point
A with coordinates along the axis a; and ap (see figure 4). It can be expressed
as a substitution

1 = qp cos(wt) — ga sin(wt)
x9 = q sin(wt) + qo cos(wt)
o =0;+wt,i=1,...,n. (7)
inserted into equations 2,3,4. Furthermore, since equations 2 and 3 are the

projections of the time derivative of the linear momentum along n; and ng we
now need the projections along a; and as.
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7.

Figure 4. Coordinates in the rotating frame.

This is easily accomplished in Sophia since it has the ability to express
vectors in all defined reference frames. The time independent equations can be

written as
M0 i ¢ —2wM [ ¢
o[ e ][R
k—w?M' —cw q | [ mew?

{ cw k—sz’}{qg]_{ 0 }+ (8)
S ([ B (Bt w)? } { sin(3,) D

;mlll ([ (B tw)? =B cos(f3,,)

and

(mi + 5)0B3; + (8 + 2)LB; =
m; (1 — w?q1 — 2wge) sin(3;) + (—Ga + w?q2 — 2wr) cos(f;)) 9)

1=1,...,n.

We will first study a system with two correction masses. Using more than
two correction masses will result in a system with a family of indifferent equi-
librium positions. See chapter 7 for an explanation.
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We will always assume that the correction masses have equal mass and equal
distance from the axis of rotation, this will be the case in an autobalancer with
two ball bearings in a circular race filled with some viscous media. We will
also assume that the parameters, 6;,v;, regarding the viscous damping acting
on the correction masses are equal.

5.2  EQUILIBRIUM POSITIONS

To find the equilibrium positions we first rewrite the system of equations in 9
and set all time derivatives to zero, the resulting equations are

—q18in(B;) +q2cos(By) =0
—q1sin(By) + gz cos(By) =0 . (10)

This can be split into two kinds of solutions. The first is when ¢; 2 equals zero
and f3; 5 are given by the system of equations in 8 and can be expressed as

By =m—cos ! (g25), (11)
By =7+ cos’l(m’y’;fll) . (12)

This is the preferred solution where the system is balanced and no vibrations
exists. This is actually two solutions since 3; and (5 can be interchanged to
produce a new solution. These solutions only exist when

|me| < 2mqly. (13)

The absolute value should be interpreted that e, the distance from the geo-
metrical centre to the mass centre of the unbalanced component, can be both
positive and negative. Negative e only means that the unbalance is situated at
the opposite side of the defined positive side in figure 3. To obtain the other
solutions we rewrite the equations in 10 as

2 — tan(3,) (14)
2 — tan(B,) . (15)

q1
This show that if g1,2 is not equal to zero the solution in terms of 3, 5 can be
written as
By =01 +nm,n=0,1,.. (16)
For n = 0, which means that the two correction masses are in the same place,
the solution for ¢; 2 in term of 3; will be

(k — w?M")(mew? + 2myliw? cos(B;)) + 2cwmqlyw? sin(3;)

= 17
N (k— w2M")? + (cw)? , (17)
2(k — WM )Ymyliw? sin(B,) — cw(mew? 4 2myliw? cos(B;)) (18)
@ = (k — 2M')2 + (cw)? '
Inserting 17 and 18 into 14 will result, after some manipulation in
(k — w?*M")Ymesin(8;) + cwme cos(B,) + 2cwmqly = 0 (19)
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which has a real solution if

2

(k —w?M")? + (cw)? > (cw)? <2m—lll) . (20)

me

Fixing all parameters except for w, which we will vary, and letting me < 2mqly
we see that equation 20 will not have any solution for w about /k/M’. The
exact bifurcation points can be obtained by solving for the equality in equation
20. Also note that fixing all parameters, except for me, equation 20 won’t have
any solutions when me is below some value. The solution of 19 can be found
in Appendix A. Equation 19 will, in general, have two solutions in

Now turning back to equation 16 and setting n = 1, which physically means
that the correction masses are on opposite sides, and following the same route

as before results in
(k — w?M"Ymew?

ql = (k’ o sz,)Q + (CLL))Q’ (21)
2
—cwmew
92 = (k—w2M')? + (cw)?’ (22)
The solution for 8, will then be
_ —cw
ﬁl = tan 1 <m> . (23)

It is worth noting that equation 21 and 22 will be the equilibrium solution to
a simple rotating unbalance isotropically suspended and that equation 23 will
be the phase angle as it is usually defined. This is also two solutions since (3,
and O, can be interchanged to produce a new solution.

In all the system have six equilibrium positions in this coordinate repre-
sentation, four of which are physically distinguishable. These four equilibrium
positions are schematically drawn in figure 5 below.

5.3 LINEAR STABILITY ANALYSIS

It is now possible to linearize equation 8 and 9 to study the stability of the four
equilibrium positions. The equations of motions are put on the standard form

M(z)i = f(z). (24)

where = = [q1, @2, 81, B2, 1, G2, By, Bo]T, M (x) and f(z) are easily derived from
8 and 9. We will now study the eigenvalues and eigenvectors for A that control
the stability about the equilibrium positions where

of (&702)

A= Mﬁl(»’fo,x‘)T (25)

where x¢; are the four equilibrium positions. A will now be a function of the
system parameters. It is possible to derive A analytically and in this case it is
done with the help of Maple. However, it is not possible to derive the analytical
expression for the eigenvalues and eigenvectors of A (eight order system). We
therefore insert numerical values for the parameters and equilibrium positions

10
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Equilibrium 1 Equilibrium 2

L |

I

Equilibrium 3 Equilibrium 4

Figure 5. Schematically showing the 4 physical solutions. A is the centre of rotation.
B is the geometrical centre. This figure is made for a particular choice of parameters.
Note that all positions depend on the amount of unbalance load.

and calculate the eigenvalues and eigenvectors of A numerically. The criterion
for stability is that the eigenvalue of A with the maximum real part is negative.
This would assure asymptotic stability when we are close to the equilibrium
position. We therefore define the stability as

w* = max real \; (26)

i=1..2n
where A; are the eigenvalues of A. Thus, if w* is negative the equilibrium
position is stable and if its positive the equilibrium is unstable. Therefore
plotting w* as a function of the parameters we are interested in examining will
show the stability of selected parameters. Since different \; will have maximum
real part when parameters are varied, w* will in genereal be a non-smooth
function of the varied parameters.

5.4 PARAMETER STUDY

What is usually of interest is to vary w for a given system to see under what
rotational speeds the system behaves as desired. It is also important, as we shall
see, to investigate different amounts of unbalance by varying m and e, since
we don’t want a system where stability depends on the amount of unbalance.

11
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| Par | Value || Par | Value

M | 1.000 |[m: ] 0.010
k| 1.000 |[ I./rZ | 0.004
c | 0700 |[ 1y 1.000
m | 0.010 || &, 0.005
e | 1.000 ||, 0.000

Table 1: Parameters used for stability analysis.

These three, or two since it is the product of m and e that is important, are the
most critical when one wants to install a predesigned autobalancing device in a
pre-existing system without modifying the suspension of the system. We first
pick some parameter values and compare with a previous stability analysis. By
setting M equal to one all other masses will be measured in terms of this unit
mass. We also set k and [y to one. This means that lengths will be measure
in terms of [; and spring constants in terms of k. For example the conversion
factor between natural units of time and common units will be v Mk—1.

In table 1 the rest of the parameters are found. These parameters corre-
spond somewhat to the experimental machine used. By assigning a value to
all parameters except for one parameter we can plot the eigenvalue with the
maximum real part as a function of the varying parameter.

5.4.1 Stability when the rotational speed is wvaried

In figure 6 all parameters are assigned the values in table 1 and w is varied
between 0 and 6. The same plot is done for each equilibrium position.

The left graph in figure 6 shows, for low values of w, that we have a stable
solution for type 3 equilibrium position and the rest of the equilibrium points
are unstable. The third equilibrium represents a solution where the correction
masses are at the same position and at the same position as the unbalance.
This shows that at low rotational speeds the correction masses will increase the
unbalance compared to a system without autobalancing.

The cross indicates the natural frequency of the system as expressed in 1.
According to previous stability analysis made by V.I. Kravchenko et al., see [2]
[4] [3] the region to the left of the cross is stable. In this graph the difference
between our stability point, the crossing of zero, and the point obtained in
previous work is small. We will however see a greater difference when other
parameters are varied. The right picture shows that at higher w the only stable
equilibrium is type 1, which is the desired equilibrium position, for the selected
parameters.One of the assumptions in earlier stability analysis is that external
damping is small, which corresponds to small ¢ here. Therefore, decreasing c
should make the point where stability is attained come closer to the cross. In
figure 7 the viscous damping c is reduced to 0.1. The result is the opposite
of previous analysis. It is possible, by also decreasing the damping on the
correction masses, parameter 01, to move the crossing point even further away

12
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0.025

0.02

0.015

-0.005

-0.01
0

Figure 6. The stability as function of w, the rotational speed. The numbers cor-
respond to the equilibrium positions. The cross indicates the natural frequency as
defined in expression 1.1. Parameters from table 3.1.

13
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0.2

-0.05

Figure 7. The result of decreasing ¢ from 0.7 to 0.1 with the rest of the parameters
from table 3.1.

from the natural frequency of the system. It is appearant that previous stability
analysis oversimplified the problem.

5.4.2 Stability when the imbalance load is wvaried

Assume that we have a machine with parameters according to table 1 and
running it at w = 5.0 as figure 6 tells us that this is a stable choice for w
and for the chosen m. It is now important to check stability when we vary the
imbalance load. We vary the load by changing me in the range from zero load
to 20 percent above the limit given by inequality 13. It is important to see
what happens when the load is above the limit given by 13 since the wanted
equilibrium position type 1 does not exist in this region. In figure 8 the result
is displayed. At zero load we have an indifferent equilibrium since all positions
where the compensating masses are at opposite sides are allowed. Note that
equilibrium type 1 and 4 are both indifferent since they represent the same
equilibrium position at zero load.

Close to maximum load, me is somewhat less than 0.002, the stability of
equilibrium type 1 is lowered, point A in figure 8. At maximum load the stabil-
ity of equilibrium type 1 and 2 coincide. When the load is above the maximum
load capacity only equilibrium type 2 is stable. Only looking at equilibrium
type 1 and 2 we have two stable and one unstable equilibrium when me is below
maximum load (equilibrium type 1 is actually two equilibrium positions since

14
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Figure 8. The result of varying the load by changing m. The numbers corresponds
to the equilibrium positions. The angular velocity w = 5. The rest of the parameters
from table 3.1.

(B, and (3, can be interchanged). When me is above 0.02 only one stable equi-
librium exists (equilibrium type 2). We therefore have a supercritical pitchfork
bifurcation at m equal to 0.02. This is positive since it means that overloading
the autobalancer, at high rotational speeds, will result in that the two correction
masses will be at opposite side of the imbalance, ie. the autobalancer will work
as well as possible.

The local maxima at me ~ 0.014 is interesting since it is possible to let it
grow by increasing the external viscous damping and decreasing internal viscous
damping. This is accomplished by increasing the external damping from ¢ = 0.7
to ¢ = 2.7 and decreasing the internal damping from 6; = 0.005 to 6; = 0.002.
In figure 9 the local maxima has grown becoming unstable, since w* is greater
than zero. We then have a system where the stability depends on the amount
of load. This could potentially be a problem when using an autobalancer if is
not tested with all admissible loads. In figure 9 the local maxima has grown
and become unstable.Generally it seems like increased external viscous damping
requires increased internal damping. We can test this hypothesis by doing a
contour plot of w* as function of external damping ¢ and internal damping 6;.
In figure 10 contour plots with different loads are found, the zero contour line
divides the stable region from the unstable. As seen in figure 10b-d the zero
contour line is increasing in internal damping with increasing external damping.
It is worth noting that optimal damping, in terms of linear stability, depends on

15
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unstable
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Figure 9. By increasing external damping and decreasing internal damping the sys-
tem will be unstable for certain loads.

the amount of load. Therefore, choosing the right amount of internal damping
and external damping has to be a compromise so that sufficient stability is
guaranteed at all amounts of load taken from a figure such as 10. In figure 8
we see that the local maxima has a maximum at m ~ 0.014. This correspond
to an equilibrium position 3, ~ ?jT’T and 3, ~ %’T. From all contour plots in
figure 11 we see that the zero contour line has a maximum in §; at m ~ 0.014.
Therefore it seems natural to test a two correction mass autobalancer with a
load so that the equilibrium positions of the two correction masses will be 37“
and ‘%’r. This test would then assure stability for all other loads.

5.4.8 Varying the mass of the compensating masses

The maximum amount of imbalance the autobalancer can compensate for, with
zero resulting amplitude, is equal to 2mql/; assuming two compensating masses
of equal mass and distance from the geometric centre. Assuming that we have
limited space available where the autobalancer is mounted we could increase
my and decrease [; but still keeping two times their product to a constant
value given by the maximum imbalance. The dynamics of the system will
then change, which can be seen by looking at equations 8 and 9. In equation
8 nothing will be changed since the only place where m; and I; occur is as
a product and that is kept constant by our assumption above. However, in
equation 9 we will have a term like 6;I; multiplied by ﬂl and the right hand will
be multiplied by m;. Keeping some sort of balance between the viscous forces
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Figure 10. Contour plots of the maximum real part of eigenvalues as function of
external damping, parameter ¢, and internal damping, parameter 6;. Parameters
from table 3.1 and w = 5. The load in a m = 0.002, in b m = 0.008, in ¢ m = 0.014
and in d m = 0.019.

and the right hand side forces we expect that increasing m; and decreasing I;
will have to be compensated for by increasing 6;. That this is the case can be
seen in figure 12 where the border line between stable and unstable regions
have been plotted for various m, and [;.cult also seems like the border when ¢
is increased tends to some limiting value in ;. This would imply that if 67 is
chosen above this limiting value stability will not depend on c. One could argue
whether this low internal damping actually will occur in a real system. There
are a lot of factors which actually could produce a system close to this boundary.
For example in a washing machine with the drum mounted horizontally it is
not desirable to activate the compensating masses at revolutions lower than the
stable limit given by figure 6. To activate the compensating masses the viscous
force must overcome the force from gravity so that the balls start moving with
the outer rim. This might impose a constraint on the viscosity of the oil, lower
viscosity will activate the compensating masses at higher revolutions. Another
important factor is temperature. In a system which is operating under different
temperature conditions the viscosity of oil might change dramatically, maybe
so much that the stability boundary is crossed.

It is also interesting to see how the stability changes when this product,
2mgly, is held constant and the mass and length is varied. In figure 13 two
cases are compared. Line one correspond to a system where the compensating
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Figure 11. Contour plots of the maximum real part of eigenvalues as function of
external load, parameter m, and internal damping, parameter 6;. Parameters from
table 3.1 and w = 5. The external damping, parameter c equals , in a 0.5, in b 1.0,
in ¢ 1.5, in d 2.0.

mass is equal to 0.01. Line two correspond to a mass equal to 0.05. In both
systems the product 2m4; is held constant and is equal to 0.01. The parameter
controlling the viscous damping, 1, is increased in the second system following
the reasoning above. As seen in the figure 13 the increased mass system shows
a superior stability over the lower mass system. Also note that the first curve
segment in the system with a heavier compensating mass decreases earlier and
more rapidly than the low mass system. One would then expect that the system
with a heavier compensating mass would perform better compared to a system
with a lighter compensating mass. In section 5.6 it is shown that this the case.

5.5 HOPF BIFURCATIONS AND CHAOS

In figure 12 the border line between stable and unstable regions are drawn for
some different choices of system parameters. As argued before there might be
situations when the internal damping is low, even so low that the border line
might be crossed. It is therefore important to know what will happen when
crossing the stability boundary.

A bifurcation will occur when a equilibrium point changes stability. For an
excellent introduction to bifurcation theory nonlinear dynamics see [?].
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Figure 12. Border line dividing stable from unstable region when the mass and dis-
tance from geometrical centre to compensating masses are varied but their product is
kept constant and equal to 0.01. Numbers indicating mass m. Regions to the north-
west of border line is stable. Parameters taken from table 3.1 except for m; = 0.014
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Figure 13. Comparison of stability when the compensating mass is increased. Line
1 m1 =0.01,/; =1 and 61 = 0.005. Line 2 m; = 0.05,/1 = 0.2 and §; = 0.04. Rest of
the parameters from table 3.1.

If two complex conjugate eigenvalues crosses from the left half plane into
the right half plane a Hopf bifurcation typically occurs. Since the real part is
positive in the right half plane the equilibrium point looses its stability. When
crossing the imaginary axis in this way two things can happen. We might
see oscillations in the system approching some limiting amplitude resulting in
a limit cycle. This is called a supercritical Hopf bifurcation. When the real
part is small and positive the limit cycle will be sinusoidal with an angular
frequency equal to the imaginary part of the crossing eigenvalues. We might
also find sinusoidal oscilliations that continues to grow exponentially away from
the equlibrium point. In this case local analysis can not tell what will happen.
This is called a subcritical Hopf bifurcation. In engineering this is potentially a
much more dangerous bifurcation, since the supercritical bifurcation will have
an amplitude proportinal to /i — g, , where p is the bifurcation parameter we
are interested in varying and g = p. when crossing the imaginary axis. This
applies for small p’s. Since our system have four degrees of freedom, which
results in eight state variables, there is somewhat more to it. The dynamics
of the system will approach a 2-dimensional surface embedded in the eight di-
mensional state space of our system. This surface is called the centre manifold.
The trajectories approach this centre manifold because the other eigenvalues
still have a negative real part. The shape of the surface and the dynamics on
this surface depends on the parameters of the system.
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If the stability boundary is crossed and a subcritical Hopf bifurcation occur,
the system might experience violent vibrations due to the compensating masses
movement. However, if there instead will be a supercritical Hopf bifurcation,
the result will be a stable limit cycle. This stable limit cycle will manifest itself
as small oscillation of the balls about their equilibrium position with resulting
small vibrations of the suspended mass.

To examine this a numerical experiment can be made in the stable and the
unstable regions. From figure 12 we have that at 6; = 0.0065 the system will
be in the stable region and that 6; = 0.0045 it will be in the unstable region for
m = 0.02. In figure 14 the phase portrait of 3, 5 is plotted for various values of
61.All trajectories are plotted after the initial transients has dissapeared. Since
1,2 can be interchanged to produce a new solution, both solutions are plotted.
At 67 = 0.0065 the system remains at the stable fixpoint. At 6; = 0.0045 a 1
periodic limit cycle exists. This limit cycle can be observed in the experimental
machine when external damping is high or interal damping is low. There is one
noticable feature of this limit cycle, one of the compensating masses has a larger
amplitude than the other. This is also observed in the experimental machine.
The time of the oscillations also agrees with the measured. Continuing to lower
the internal damping results in period doubling. At §; = 0.0032 we have a 2
periodic limit cycle and at §; = 0.00305 we have a 4 periodic limit cycle. This
results at even lower internal damping in a chaotic motion of the compensating
masses. When §; = 0.00302 we have a chaotic motion of the system. At
01 = 0.003 something interesting happens, the two correction masses start
changing positions with each other. This would of course be hard to realize
since that would mean that the balls would have to move through each other.
That some sort of Hopf bifurcation occur can be seen in figure 15 where one
pair of eigenvalues are crossing the real axis when the internal damping 6; is
varied from 0.01 to 0.003.

Using centre manifold theory and normal form analysis it is possible to
calculate whether a stable or unstable Hopf bifurcation will occur. This was
done for the border in figure 12 where m = 0.02. These calculations show
that a stable Hopf bifurcation will occur for this particular border. This in
combination with the experimental machine would indicate that a stable Hopf
bifurcation will occur when the internal damping acting on the compensating
masses are lowered.

5.6 NUMERICAL EXPERIMENTS

We have employed a local stability analysis, i.e. we examined the stability of
the linearized equations of motion about the equilibrium position. It is there-
fore interesting to examine whether local stability will influence the complete
motion. To see this we could devise some rules which determines a good perfor-
mance from a poor one and run a series of time simulations. These simulations
can then be compared to the local stability analysis. As usual the problem
is to decide what separates a good performance from a poor one. To the au-
thors knowledge there does not exist any accepted performance test to evaluate
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Figure 14.  Phase portrait of 3, , when varying the internal damping 61. Period
doubling occurs and at low internal damping chaotic motion is found.
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Figure 15. Showing the crossing of eigenvalues of the real axis when 6, is varied.
Cross indicates 61 = 0.01 and ring §; = 0.003.

autobalancers. The following is proposed as a candidate for such criteria. In
most cases an autobalancer is fitted where one can not foresee the amount of
unbalance and its position. Therefore the most common situation will be that
the autobalancer is compensating for an unbalance and suddenly this amount
of unbalance and its position change. A corresponding time simulation will
then have initial conditions; all speeds are set to zero and the position of the
axis of rotation is at the geometrical centre. The angular position of the cor-
rection masses are chosen randomly which corresponds to a system balancing
some unbalance at some position. The new unbalance situated at zero angular
position is randomly chosen and within the maximum balancing capability. We
could then measure the time or number of revolutions until the amplitude of
the oscillations are below some specified value. This value could be a fraction of
the maximum amplitude in the simulation or some value determined by what is
acceptable as amplitude. To test this evaluation method 10000 numerical sim-
ulations were made on some different choices of parameters. The measurement
used were the number of revolutions before the amplitude becomes permanently
smaller than one fifth of 2m4ly /M . The amplitude 2m4ly /M correspond to
the amplitude one would have if the unbalance me equals 2m4l; and the rotary
speed w is much greater than the natural frequency of the system. In figure
16 the stability of three different parameter choices is plotted , when the load
is varied. The parameters used can be found in table 2. In the left table the
parameters that are common to all three system are found. In figure 17 the
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| Par | Value(Common) || Par | 1 | 2 | 3 |
M 1.000 || ¢ 1.8 0.7 0.7
k 1.000 || 6, 0.003 | 0.005 | 0.003
m 0-0.02 || m 0.01 0.01 0,05
e 1.000 || 14 1.0 1.0 0.2
o 0.000 || Z1/r2 | 0.004 | 0.004 | 0.040

Table 2: Parameters used for numerical comparison.

outcome is displayed as a histogram over the number of revolutions. The mean
value and standard deviation is also displayed. The first system has relatively
high external damping c¢; and low internal damping §; compared to system two.
System one has somewhat better stability at low loads but worse at the middle
region compared to system two. System one and two have identical compen-
sating masses. System two clearly behaves better than system one, both the
mean value and the standard deviation is lower than in system one. Since
figure 16 only displays the stability of the linearized system there is no reason
to expect that the full nonlinear system will behave the same way.We are not
even guaranteed that the system will tend to the equilibrium position. How-
ever these three histogram display the result of 30000 simulations and not one
has not reached the equilibrium position. The idea is that when the system is
reaching its equilibrium position it has to spend some time in the region where
the linear model accurately models the behavior and therefore it should have
some correspondence with the outcome in the histograms. In system three the
mass of the compensating mass is increased five times over system one and two.
The length [; is also reduced to one fifth of system one and two. Following the
reasoning in section 5.4.3 the internal damping 0 is increased to compensate
for the inertial forces due to a heavier mass. As seen in figure 16 this system
show a higher stability than both system one and two. The outcome of the
numerical simulations is displayed in histogram three of figure 17. Parameter
set three shows both lower mean value and lower standard deviation than both
system one and two. It therefore seems that one should choose heavier com-
pensating masses close to the axis of rotation over lighter masses far from the
azis of rotation. It also seems that the local stability tells something about
the dynamics of the global system and can be used as a reasonable guide to
optimize a system.

6 Anisotropic case

6.1 DERIVATION OF EQUATIONS

Most constructions where an autobalancer might fit in is clearly anisotropic.
For example a common use of autobalancers are in washing machines. When
spin drying the wash is not evenly distributed and as result of this an unbalance
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Figure 16.  Stability when the load is varied. The three different plots correspond
to the parameters found in table 3.1.

exist. The suspension in washing machines is not isotropic since the drum is
usually standing on or hanging from springs almost vertically mounted. This
will give a much lower natural frequency in the horizontal plane than in the ver-
tical plane. It should be noted that using autobalancing techniques in washing
machines requires two balancing rings, since the location along the axis of rota-
tion of the unbalance is not static. Also there might exist dynamic unbalance
in a washing machine. Using two balance rings solves both these problems.
Another anisotropic case occurs when a grinding machine is operated. When
a grinding machine is operated the suspension parameters will depend on the
configuration and whether the grinder is in contact with the work piece or not.

The equations used in the anisotropic analysis are equations 2, 3 and 4 with
the substitution 7. Using substitutions 5 and 6 will result in lengthy equations
which are more time consuming to compute numerically than equations 2, 3
and 4 with the substitution 7. Substitution 7 is used so that the state, when
the system is balanced, will be at zero speed in all state variables. Using
substitution 7 the equations of motion will look like

M iy +eriy ko = mew? cos(wt)JrZ mili(3; sin(B;4+wt)+(6;+w)? cos(8;+wt)),
i=1

(27)
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Figure 17. The relative frequency of number of turns before the amplitude is below
one fifth of the maximum amplitude due to a simple rotating unbalance.

M iy+coiotkors = mew? sin(wt)+z mil;(B; cos(B;4wt)—(3;+w)? sin(3;4wt)),
i=1

(28)

(m; + #)llﬂz + 1 (6; + %2)51 = m;(&1sin(B; +wt) — ¥ cos(B; + wt))
i=1,...,n (29)

k3

where M’ equals (M +m+>__, m;), as before, and is introduced since it occurs
frequently. We we still use the assumption that the parameters describing the
compensating masses are equal and that the balancing device is capable of
balancing the unbalance, i.e.

me < 2mqly. (30)

The only equilibrium position in this coordinate representation will be

g1 =0, (31)
g2 =0, (32)
By =m—cos M (g) (33)
By =7+ cos*1(2,::;”fll ) (34)
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6.2 LINEAR STABILITY ANALYSIS

We now have an explicit time dependence in the equations of motion. The way
to go for calculating the stability of the equilibrium position is to use Poincaré
maps. The equations of motions can be written as

M(z,t)x = f(x,t) (35)
where & = [x1, %2, 31, By, &1, &2, By, B5)T. Both M(t,z) and f(x,t) are 2T pe-
riodic, as can be seen from equations 27 to 29. It therefore seems natural to
look at the configuration at intervals of 27” in t. The k’th intersection of the
Poincaré map will then be when t = %’“k‘ The Poincaré map is then defined
by

Tpy1 = (zy, 2m/w) (36)
where ®(xz,t) is the flow of solutions i.e. ®(x,t) represents all solutions to
35 with initial conditions ®(z,0) = z. If we have a equilibrium zg, clearly
xo = ®(x0,27/w). In the general case x may vary with time between the
intersections. However, in our case the equilibrium is given by 31 to 34 and
does not vary in time. Wheter this equilibrium is stable or not depends on the
derivatives of ®(zg,2m/w) with respect to z. The criterion for a equilibrium
position to be stable is that the eigenvalues of ®,(xg, 27 /w) have a magnitude
that is less than one. To calculate @, (xg, 27/w) we start with inserting ®(z, t)
into 35, this gives

M((I)’ t)q)t = f((I), t)' (37)
We then take the implicit derivative with respect to x, which result in,

My(®,6)D,®; + M (P, )Py, = fo(D,1)D, (38)

In our case ®(zg,t) = xo, thus it does not depend on ¢ and its derivative with
respect to t is therefore zero. We are then left with

M(l'(), t)q)t’z = f:r (1‘(), t)q)m (39)
Changing the order of differentiation of ®; , and inverting M gives

(I)z,t = M_l(xo,t)fm(xo,t)q)w. (40)

which is a differential equation for ®,. The initial condition for ®, comes
from differentiating ®(x,0) = x with respect to z, i.e. ®,(z,0) = I where [
is the identity matrix. This differential equation is, in our case, numerically
integrated to produce ®,(zg, 27 /w).

By looking more carefully at equations 27 to 28 we see that there exists a
symmetry under the simple substitution

m
t t+ — 41
-t (41)

Ti2 — —T12, (42)
51,2 - 51,2 (43)
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Par | Value || Par | Value |
M 1.000 || e 1.000
k1 1.000 || mq 0.010
ci | 0.700 |[ I,/77 | 0.004

ko 0.500 || & 1.000
c2 0.350 || 61 0.005
m 0.010 || ~, 0.000

Table 3: Parameters used for the anisotropic stability analysis.

which will give equations 27 to 28 again. Therefore, we only have to inte-
grate 40 over the interval ¢ : € : [0,7/w] and using the symmetry to calculate
&, (20, 2m/w). The symmetry can be written as

I
]
3]

-1 0 0 0 O 0 0 0
0 -1 0 0 O 0 0 0
0 0 1 0 O 0 0 O
0 0 01 0 0 0 0
D, (zg, 27 /w) = 0O 0 00 -1 0 00 D, (2o, m/w)| . (44)
0 0o 00 0 -1 00
0 0 0 0 O 0 1 0
Lo 000 0 0 01 |

Since stability is governed by the eigenvalues of ®,(z, 27w /w) we define

W = max |\ |
) 2n

1=1..

where \; are the eigenvalues of ®,(x, 27 /w). The stability w** is then plotted
as a function of the parameters we are interested in varying and when it is
below one the equilibrium point is stable. The difference here compared to
to the isotropic case, found in section 5.3, is that w** will now show the am-
plitude decay per turn compared to w*, in the isotropic case, which show the
exponential decay in time.

6.3 PARAMETER STUDY

We start our stability examination by varying w for a system given by parame-
ters from table 3 below. This particular choice of parameters will give a system
where the natural frequencies will be quite close to each other and their ratio
will be equal to /2. In figure 18 w is varied from zero to seven. Note the
similarities compared to figure 6. In previuos stability analysis the region be-
tween the leftmost cross and middle cross was considered stable and the region
between the middle and rightmost cross unstable. To the right of the rightmost
cross the region was considered stable. By separating the natural frequencies
in the horizontal and vertical direction with a higher ratio than given by the
parameters in table 3 we will get a stable middle region. In figure 19 the ratio
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Figure 18. The stability as a function of the rotational speed. The crosses indicate

the natural frequencies in the vertical direction and in the the horizontal direction.
The middle cross indicates the rms of the two frequencies. Parameters from table 4.1.

of natural frequency in the horizontal and vertical direction is 10. This explains
why it is possible to mount an autobalancer more stiffly in one direction com-
pared to the other and run it at a rotary speed between the natural frequencies
in horizontal and vertical direction.In this case the previous stability results
predicts the middle region quite accurately but fails to predict the stability in
the high w region. In general we will have a stable middle region when we have
large separation of natural frequencies and no stable middle region when we
have low separation. We can also infer from figure 19 that we should run an
autobalancer with these parameters at w ~ 3.5 if we want maximum decay in
amplitude per turn. If instead we are interested in maximum decay in time we
can run the autobalancer somewhere between w ~ 3.5 and w ~ 6.3.

6.5.1 Stability when the imbalance load is wvaried

The anisotropic case with varying load show the same behaviour as the isotropic
case. In figure 20 the load is varied in the range where the autobalancer is
capable of balancing. The figure shows the same features as the figure in the
isotropic case. The local maxima at m ~ 0.014 is still present, corresponding to
a equilibrium position of the compensating masses where 3; ~ ?ﬂf and [y =~ %’r.
It is possible by decreasing the viscous damping acting on the compensating

masses to let the local maxima grow and become unstable.It is also useful to
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Figure 19. The stability as a function of w when the spring constant in the horizontal
and the vertical direction differs greatly. Parameter values from table 4.1 except for
ko = 100, c2 = 0.7 and m = 0.014.

examine the case when we are running at a rotational speed between the two
natural frequencies. In figure 21 , w = 5, which is between the two natural
frequencies. The stability plot is similar to the other stability plots when m is
varied.

7 Multiple correction masses

7.1 INTRODUCTION

Using only two correction masses is usually not volume efficient since there
will be a lot of unused space in the balance rings. This, of course, depends on
the design of the balancing ring, but since most balance rings use ballbearings
with a radius which is less than the radius of the balance rings, more than two
balls are more volume efficient. Using more than two correction masses results
in a system capable of correcting for a higher imbalance load. The maximum
number of correction masses to use is the amount which fills half the ring with
correction masses.
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Figure 20. The result of varying the unbalance load by changing m. The angular
velocity w = 5. The rest of the parameters from table 4.1.

7.2  EQUILIBRIUM POSITIONS

An aspect of using more than two correction masses is that we will get a
family of equilibrium positions where the compensating masses correct for the
unbalance. For example when we have three correction masses we will have a
one parameter family of equilibrium positions. Figure 22 show that there will
be a combined centre of mass of the unbalance and the third correction mass.
The position of the combined centre of mass is labeled D in figure 22. We call
this the new unbalance. By varying the angular position, angle 35, of the third
correction mass, the point D will take different positions. In order to calculate
the equilibrium position of the two other correction masses the distance from
the geometrical centre to the centre of gravity of the new unbalance is needed.
Labeling this distance, in the figure from B to D, with ¢’ it can be expressed
as

o v/ (maly sin B5)% + (me + mily 60853)2. (45)

m 4+ mq
Now exchanging e for ¢/ and m for m + my the expressions for the equilibrium
positions 11-12 are valid with the exception that an angle « is added to 3; and
5. This angle compensates for the new angular position of the unbalance, see
figure 22. Note that « is the angle between BC' and BD and can be expressed

as

a = atan2(mqly sin B35, me + myly cos B5) (46)
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Figure 21. The result of varying the unbalance load by changing m when running
at a revolutionary speed between the two natural frequencies. The angular velocity

w = 5. Parameters from table 4.1 except k2 = 100 and c2 = 0.7.

where atan2 is the two argument arctangent function. We can not choose any
value for 35 since the last two correction masses must be able to corrrect for
the new unbalance. This can be stated as

(m+mq)e’ < 2mqly. (47)
Inserting the expression for e’ and equating this for 85 gives
3(myly)? — 2
cos B < (m1ly)” = (me) . (48)

2memalq

This shows, as expected, that if the imbalance is less or equal to ml; we can
freely vary (5. For the parameter study it is worth observing that we only need
to vary 35 in the region 0 to 7 since it will be symmetric to the region 0 to —.

In the anisotropic case this equilibrium position will be the only one in
this coordinate representation. However, the isotropic case will have some
more equilibrium positions. To derive these equilibrium positions we return to
equation 9. Setting all time derivatives to zero we get

—q1s8infB; + ga2cosB; =0,i =1,2,3. (49)
The solutions of this, in terms of 3, are,
ﬁQ = ﬁl +n7r,:n=0,1, (50)
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Centre of mass of unbalance and the
third compensating mass

Compensating for unbalance and
third compensating mass

Figure 22. Using more than two correction masses will, depending on the unbal-
ance load, result in a family of equilibrium positions. The equilibrium positions will
therefore be indifferent.
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By = [Bi+km:k=0,1 (51)

which corresponds to two physical solutions since n = 0,k = 1 is physically
equal ton =1,k =0 and n = 1 and £ = 1. The two physical solutions are
that the correction masses are at the same angular positon 5, = 8, = 35 and
that one of the correction masses is at the opposite side 8, = 8y = 83 — 7. If
we would have four correction masses we would also have the case where there
are two correction masses together on opposite sides. The solutions for g; and
g2 can easily be obtained from the equilibrium equations given in section 5.2.
Obtaining the first solution when 3; = 3, = (35 is done by replacing 2m; with
3my in equations 17,18 and results in

(k= wrM')(mew? + 3mylyw? cos B;) + 3cwmyliw? sin ;) (52)
"= ((k — M) + (cw)? ’

_ 3(k — WM )myliw? sin B; — cw(mew? + 3myliw? cos §,)) (53)
@ = (k — w2 M')2 1 (cw)? '

This will result in, in terms of (3,

(k — w?M")ymesin 3y + cwme cos 31 + 3cwmyly = 0 (54)

which has a real solution if

2
(b — w? M2 + (cw)? > (cw)? <3m—1l1) . (55)
me
This shows that depending on the choice of parameter values there might not
exist a real solution. Equation 54 has two roots resulting in two physically
different solutions. The next case, when 8, = By = 83 — 7, is similar to the
above except that 3m; has to replaced by m;. The reason why this can be
done is that the opposite side correction mass, labeled 3, will compensate for
the correction mass labeled 2 leaving only correction mass number 1. This
case will also result in two physically different solutions. All in all we have five
physically distinguishable solutions. If we were to extend to use greater number
of correction masses we would have for four correction masses, six equilibrium
positions and five would give seven and so on.

These solutions only exists when both ¢; and ¢ are equal to zero. This is
important since one could else believe that there exist solutions when 8, = «
and B, = a+m. However this is not possible since compensating mass 3, angle
B4, is not rigidly connected to the unbalance and would in this case start to
move. This is the case for the other unbalanced solutions as well.

7.3 LINEAR STABILITY ANALYSIS

The stability analysis is performed by linearization of the equations of motion
given by equation 8 and 9. The equations of motion are put in the form

M(z)i = f(x) (56)
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Par | Value || Par | Value

M 1.000 |[ e 1.000
k1 1.000 |[m; | 0.010
2 0.700 |[ 7,/rZ | 0.004
ks 0.500 |[ 11 1.000
C2 0.350 || &, 0.005
m | 0-0.03 [, 0.000

Table 4: Parameters used for multiple mass stability analysis.

where  now equals [q1, g2, 31, B, B3, G1, G2, 31, B, B5]T. The linear stability is
now governed by A, which equals
of (1’0,1‘)

A(ZL‘OJ‘) = M_1($07¢)T,2 1= ]., ) 5 (57)

where xg; are the five equilibrium positions given in the previous section. A
can be derived analytically but the eigenvalues and eigenvectors are calculated
numerically. Since the first equilibrium position, where the system is balanced
and no vibrations exists, is indifferent, we expect that one of the eigenvalues
of A(xo,1) should be zero. The condition for stability is that the rest of the
eigenvalues are less than zero. Therefore we define the stability as

witt = ,_max Re \; (58)
where \; are the eigenvalues of A(moyj) and Ay, is the zero eigenvalue and is
therefore removed. It is important to check stability for all admissible values
of B4 since xp; is a function of 35. If the stability condition holds for all
admissible values of 35 the system will certainly selfbalance if you are close to
the equilibrium position. It is also important to check the stability of the other
equilibrium positions since we don’t want them to be stable in the operating
region.

7.4 PARAMETER STUDY

The parameter study is complicated by the fact that we now have to vary
not only the parameter we are interested in but also the equilibrium position.
Starting with the parameters found in table 4 where we vary the load between
0 and 0.3 which is the maximum load the system is capable of balancing. The
stability w’™ is plotted as a contour plot since this controls the asymptotic
behaviour of small disturbances. In figure 23 the greyed area in the upper left
corner corresponds to the condition found in 48 for 35. The zero at m = 0.1
and B3 = 7 is the result of another indifferent equilibrium position, namely
that the balancing mass and correction mass are of equal mass. Since they are
on opposite side the two other correction masses they may assume any position
where they are on opposite side. From figure 24, where the stability for the five
other equilibrium positions are plotted, we see that they are all unstable in the
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regime where the autobalancer is capable of balancing the imbalance. When
overloaded the balanced equilibrium cease to exist. Equilibrium type 5 then
becomes the only stable one. This equlibrium position physically corresponds
to the three compensating masses being at the opposite side of the unbalanced
component. This means that the system is working as well as possible when
overloaded.

0025+ b

0.021 e P focsescessssctosees
Bootsf— e —
0.01

0.005

sk sk

Figure 23.  Contour plot of stability wi™* when m is varied from 0 to 0.3 and 5 in

the range 0 to the value given by equality in 5.4. Parameters from table 5.1.

It is also possible to get a system where stability depends on the amount
of imbalance. This can be accomplished by lowering the damping acting on
the correction masses. In figure 25 three regions are unstable when we lower
61 to 0.0007. For low amount of imbalance, m about 0.002, it does not exist
any stable equilibrium. The case for m about 0.02 is somewhat better since
there exist stable equilibrium for 85 is some intervals. What might happen in
a real system when starting in region 2 and 3 is that the correction masses
might move outside the unstable region and stabilize in a stable region. This
is somewhat supported by numerical simulations. However, this behaviour is
not guaranteed.

8 (Conclusions

This analysis has mainly been concerned with local stability analysis. One of
the most important conclusions that one can draw from local analysis is that
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Figure 24. Plot of w3*swhen m is varied from 0 to 0.4. Equilibrium position five
become stable when m is above 0.3, which is the maximum amount of unbalance the
system can correct for. This means that the system work as well as possible when
overloaded. Parameters from tabel 5.1.

the natural frequency is not the border between stable and unstable balancing
operations. However, it seems like running the autobalancer above the natural
frequency is a necessary condition for stability.

The local analysis also tells us that the unbalanced equilibrium positions
found in the isotropic case are not in general stable in regimes where the bal-
anced equilibrium is stable. This would assure, for example in a system where
the unbalance suddenly changes, that the correction masses would not move to
an unbalanced equilibrium. The anisotropic case do not show these unbalanced
equilibriums.

Another important conclusion is that the autobalancer work as well as possi-
ble when overloaded, i.e. all correction masses end up in a stable configuration
at the opposite side of the unbalanced component.

This analysis also tells us something about the effects of internal damping
compared to external damping. If we have high external! damping and low
internal damping the autobalancer might be unstable. This effect is particularly
noticeable when using two correction masses situated at an angle i%’f radians

1 The damping from dampers are referred to as external damping and

internal damping is the damping acting on the correction masses.
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Figure 25. Contour plot of the stability when m is varied from 0 to 0.3 and B35 in
the range 0 to the value given by equality in 5.4. Parameters from table 5.1 except
for the damping acting on the correction masses, 6;=0.0007. The dashed area are
unattainable, see inequality 5.4. The dark grey area is unstable.

from the line connecting the geometrical centre and the centre of mass of the
unbalanced component. This unstability results in a periodic motion of the
compensating masses about the balanced equilibrium position.

The anisotropic case, where we have a different spring constant and damp-
ing constant in the horizontal and vertical direction, shows a somewhat more
complicated stability when the rotational speed is varied. We might then have,
depending on the magnitude of separation in horizontal and vertical direction,
alternating unstable and stable regions when the rotational speed is varied.

It is also shown that it is possible to extend this local stability analysis
when more than two correction masses are used. However, we will then have
indifferent equilibrium positions. The same instabilities show up in the multiple
correction mass case, such as unstabillity due to low internal/high external
damping and stability depending on the amount of unbalance.

Although local analysis does not tell what happens when the dynamics
are far from the equilibrium position there seems to be a correspondence be-
tween the complete dynamics and the local dynamics. This is supported by
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the numerical simulations. It therefore seems possible to use local analysis for
guidance when designing an autobalancing system.
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Appendix A.

9.1 SOLUTION OF EQUATION 3.15

Equation 19 can be written as two equations,

(k — w?*M")Ymesin(B;) + cwme cos(B,) + 2cwmqly = 0 (A-1)

and,
sin(3,)% + cos(3,)* =1 (A-2)
to get two well defined solutions. The solution can be written as,

—be + /a* — a?(b? — c2))

cos(0) = ZTP (A-3)
and,
sin(8,) = % (A-4)
where,
a=me(k —wM')?
b = mecw (A-5)
c = 2cwmily
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ABSTRACT. This short background on artificial walking is meant to present
some of the ideas that have influenced the author and others regarding artifi-
cial walking and in particular passive walking. Results from different fields of
research are given below, which in some cases directly support the idea that
human walking is largely a consequence of the geometry and the mass distribu-
tion. Some results are just presented because they are interesting in themselves.
These research fields include medicine, biomechanics, toydesign, and robotics.

1 Introduction

Upright walking is the natural way of locomotion given to us by nature. The
evolution from walking/climbing on all four extremities to walking on our legs
freed the upper extremities to deal with other important tasks. Certainly,
this gave us advantages compared to species still forced to walk on all four
extremities. For example, we could now use our hands while we where moving
around, such as hunting with tools in our hands. It was now also possible to
cover relatively large distances on land, thus being able to move to new habitats
as needed. Footprints and found limbs indicate that the upright posture was
quite well established between 3,000,000 to 3,500,000 years ago (encycl.brittan).
The earliest known evidence of bipedal gait are footprints in volcanic ash found
in northern Tanzania and is dated 3.6 million years ago. These advantages
certainly put an evolutionary pressure on further developing and refining our
walking system. At first sight, it would seem that this change increased the
complexity of our locomotion system, such as keeping the upright posture.
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However, in some sense the complexity was lowered, such as only having to
control two legs instead of four. In addition, as this thesis and other research
in the field of passive walking all indicate, the complexity of bipedal walking
can, to a large extent, be explained by the geometrical makeup of the walking
mechanism. Thus, complex control strategies are not needed.

2 Biology

An indication that human gait is different from quadruped gait is evident from
research in biology. For example, the role of the central pattern generator
(CPG) has been studied extensively by biologists and has been used, for ex-
ample, as a model for generating gait sequences in quadruped robots. The role
of the CPG is to generate the locomotor stepping pattern autonomously. The
CPG can change behaviour depending on speed requirements. In humans, it
seems like the role of the CPG has been reduced to generate the first stumbling
steps of infants, see Gait Analysis [5]. Experiments with cats have shown that
it is still possible to generate walking patterns and simple obstacle avoidance
after the spinal cord has been transected. However, in paraplegic humans it has
not been possible to get the same walking patterns. Thus, it is believed that
higher brain centers are responsible for the control of the locomotion in humans.
Thus, it can be speculated that the reduced role of the CPG in humans is a
consequence of the human capability of largely generating the walking motion
passively. This also indicates that the human capability of bipedal walking is
not innate but learned.

The activity of normal walking is something we perceive as requiring very
little conscious effort. How is it then that something so deceptively simple as
walking still poses such engineering difficulties? One of the problems is that
we don’t really know where to start searching for the answers. Before it was
possible to record gait motion researchers where mainly forced to study humans
in action. In 1836, the Weber brothers proposed the idea that the motion of
the leg, during swing phase, could be explained by the motion of a double
pendulum in a gravity field, see Human Walking [25]. This was observed by
letting a human leg hang freely and releasing it from a pre-swing position and
noting the similarities to a leg during normal walking, such as swing time and
motion. Since this was before photography was available, the measurements
had to be accomplished by using a hand-operated clock.

Some years later this idea was challenged by results from artificial stimula-
tion of muscles and the fact that patients with paralysis of the muscles in the
leg had to compensate during the swing phase or the foot would hit the ground.
Thus, if the swing phase was purely passive the compensating movement of the
hip shouldn’t be necessary. However, it is possible that the relaxed position of
the ankle made such a compensating movement necessary.
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Later in the 19’th century, still photography was used to record the motion
of different subjects, such as animals and humans in action. However, these
images were just motion frozen and it was not until Muybridge in 1873 de-
veloped his technique of taking pictures in a sequence, that the whole motion
could be captured. The original use of the Muybridge technique was to set-
tle a bet whether a horse was completely in the air during gallop or not. By
using electrical switches sequentially arranged and connected to a battery of
cameras, it was shown that the horse indeed had all its feet in the air. This
technique was later used by Marey to record the walking motion of humans. He
used his results to calculate the mechanical energy needed for sustained walk
for different walking speeds. The photographic technique was further devel-
oped and using stereometry photography, it was possible to study the motion
in three dimensions. This technique combined with mass properties measure-
ments of cadavers made it possible to estimate the forces that were needed for
propulsion, see Human Walking [25].

One of the reasons for studying walking from a medical point of view comes
from the need of differentiating pathological walk from ordinary walk. Thus,
large quantities of data have been collected. These data range from foot pres-
sure during the stance phase to the motion of various parts of the human
body. This data is then compared with data obtained from patients and gait
pathologies can be discovered, see Human Walking [25] and Gait Analysis [5].

Another common use of this data is to estimate the internal forces in hu-
mans, such as the forces in the skeleton, tendons, and muscles. This is accom-
plished by making a mathematical model having the right mass properties and
then using the data as input for the motion of the model. From an engineering
point of view, this data can be used to compare artificial walkers and their
movement with real data.

3 Walking aids

Another driving force in walking research is the construction and development
of walking aids. Many different designs have been implemented as to account
for different kinds of disabilities, such as above- and below-knee amputees, see
Human Walking [25]. Various mechanical designs have been developed, some
of them with the intention of functionally duplicating the original limb as close
as possible and in some cases as substitutes. From a mechanical engineering
point of view some interesting designs are;

e Using four-bar-linkage knee mechanisms give a wide range of stability
choices. Thus, the amputee can control the knee collapse.

e Flexible foot to make smoother impacts with the ground.

e Spring mechanisms for running.

It has been common to construct lightweight prosthesis, believing that it

would be simpler to handle for the amputee. However, the effect of differ-
ent mass properties has been studied by letting subjects walk with their own
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lightweight prosthesis as well as ones with added mass. The result was that the
subjects feeling increased when the mass properties were chosen as to resemble
those of the original limbs, see Human Walking [25]. This indicates the impor-
tance of having the appropriate mass distribution of the walking mechanism.

It is also interesting to mention the device constructed by Nichols and Witt
[20] to help children that had no legs. These children had usually been fitted
with swivel-walkers or rockers. This aid consisted of a seat with a pair of pylons
attached to it. These pylons had feet that were large enough as to allow the
child to stand. The feet attached to these pylons could rotate about a vertical
axis. Thus, the children could move forward by rocking the device so that they
were standing on one foot and at the same time twist with their upper body
as to move the other foot forward. However, the forward motion was slow
and Nichols and Witt came up with a device having swinging legs that could
increase the forward speed. The new device had legs that used a parallelogram
linkage designed as to obtain a heel impact at the end of the swing phase. A
crossbar was mounted between the legs so that when one leg swung forward the
other one had to swing backwards. This provided the stability needed to stand
still. To prevent collapse at the swing phase, a torsion spring was mounted
between the crossbar and the seating. This prevented a too large opening
angle between the legs. By tuning this spring in relation to the mass of the
carrier, different walking frequencies could be obtained. What is interesting
with this device, in relation to walking machines, is that a mechanical torso
was built so as to provide the rocking motion. This actually turned the device
into a bipedal walker. The walker, with the artificial torso, obtained a speed
of 0.23m/s compared to 0.33m/s for a human rider. This can be compared to
the previous swivel walkers, where speeds of 0.05m/s up to 0.18m/s had been
obtained. The power consumption was as low as 4W, disregarding electrical
and hydraulic losses.

4 Merits of walking

There are several merits of walking machines compared to their wheeled coun-
terpart. The most obvious ones relate to the legs capability to avoid obstacles.
The flexibility of movement in legs also gives the possibility of putting down the
foot at a specified location. This can be favorable in poor ground conditions,
such as avoiding soft ground in favor of more solid ground. During slippery
conditions, legged vehicles can excel over wheeled ones by taking smaller steps,
as to minimize horizontal forces. Depending on the design of the legs, such
as the number of degrees of freedom at each joint, gives a great flexibility of
positioning the body. This can be important in complex environments where
difficult manipulation tasks have to be accomplished. In addition, using legs
can reduce the impact on the surroundings. For example, the forest robot by
Plustech Oy [21] is much gentler on its surroundings than a traditional forest
machine using wheels. Thus, there are a several aspects of legged walking that
makes it both interesting and preferable over its wheeled counterparts. How-
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Figure 1. A picture of a statically stable lego walker. The current support pattern
is shown by the brighter triangle. The lighter triangle is the other support pattern.
These two support patterns will suceed each other, hence moving the walker forwards
or backwards.

ever, one should not forget that wheels excel when it comes to speed, economy
and a much lower complexity in terms of understanding and construction.

5 Walking machines

Walking machines can roughly be divided into statically stable walkers and
dynamically stable walkers. Loosely speaking, statically stable walkers try to
keep their projection of the center of gravity within the support pattern, see
Figure 1. As long as they can maintain this condition and have enough traction
at each foot, they will function. Their movement is accomplished by going from
one stable state to a new stable state. Usually they move at low speeds and can
therefore neglect inertial forces that could potentially destabilize the motion.
These walkers come in many different shapes, everything from quadrupeds to
insect like versions with many legs. For a nice introduction to walking machines
see for example Todd [26]. For a good overview of recent walking machines,
see for example Hardarson [10].

Dynamically stable walkers have the capability of letting the center of grav-
ity move outside its support pattern without loosing stability. Stability is in
some cases obtained by using control laws and actuators and in other cases by
designing the walker to have inherent stability. The latter are usually referred
to as passive walkers. Controlled walkers in this category usually take into
account inertial forces occurring as they move. Both dynamically stable bipeds
and quadrupeds exist.
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Figure 2. Pane (a) shows the design of a toy walker by Fallis. Pane (b) shows the
construction of Bechstein and Uhlig that supposedly generated the rocking motion of
the toy walker.

6 Historic and contemporary walking machines

The history of walking machines starts with different kinds of toy walkers. The
toys were usually driven by clockworks that made the toy perform a repetitive
motion as to propel it forward. Other toys used weights that were attached to
the walker via a string. For example, by hanging the weight over the edge of a
table, the force needed to move it forward was obtained. These toys included
bipedal as well as quadrupeds and similar toys are still manufactured.

At the end of the 19’th century, toys capable of motion resembling human
gait started to appear. One of these toys is described in the patent of Fallis,
dated 1888, see reference [6]. This patent describes a toy that uses straight
knee-less legs hinged at the shoulders. The feet had gently curved surfaces as
to prevent the foot to hit the floor during the other legs swing phase, see Figure
2. The propulsion of this walker came from letting it walk down an inclined
plane. In 1912, Bechstein and Uhlig filed a patent, see [2], describing a similar
bipedal toy walker. Instead of using gently curved feet, they used a sole, which
had differently inclined planes as to generate the side-to-side rocking motion.
This patent later inspired Wisse in 1998 to build a kneed walker that could
walk down an incline, see reference [29].

A driving force, partly associated with robotic walking, has been to over-
come different limitations in humans. Such as increasing the strength and
endurance of humans and helping people with disabilities. In the early sixties,
General Electric undertook an investigation on how to build a bipedal walk-
ing machine capable of carrying a human operator. The idea was to let the
operator have full control of the motion of different parts, such as legs and
body. Since the intended size was much larger than a typical human, it was
decided that it should be actuated by hydraulics. The operator controlled the
hydraulics via force feedback devices. This project was considered possible (at
least in the mechanical engineering sense) but it was never implemented due to
other designs being more appealing, such as the four legged General Electric



A short background to artificial walking

walking truck. It is unfortunate that this walker never was built since if the
operator would have been able to control the biped some interesting data could
have been obtained. Such data could have given us the control laws used for
keeping the balance, control laws regarding start and stop and so forth. This
data seems to be very complicated to obtain from humans. As mentioned be-
fore, what was actually implemented by General Electric was the four-legged
walking truck. This was controlled in a similar way to the proposed bipedal
robot. The hind legs were controlled by the operators legs and the fore legs by
the arms of the operator. However, this device put such a control load on the
operator, thus, making it possible to operate for only a few minutes.

Another interesting device that was built by General Electric was the Hardy-
Man. It was an exoskeleton capable of amplifying the force generated by the
operator. This made it possible to lift heavy things. These three devices had in
common that they were completely operator controlled, thus lacking any kind
of higher control system to offload the operator.

Partly building on the experience from the walking truck, the adaptive sus-
pension vehicle was constructed by the Ohio State University in collaboration
with Adaptive Machine Technologies and the Stanford University, see reference
[23]. This walker had six legs and walked in a statically stable manor. It had a
number of operating modes specialized for different tasks. In normal operation
over smooth terrain, it was possible to control elevation, heading and position
in the plane, thus offloading the operator from the complex task of moving each
leg to obtain a gait.

In the light of the successful implementation of statically stable walkers
using control laws and actuation it is not too far fetched to believe that this
would also work for designing dynamically stable walkers. One of the earliest
bipedal robots is the Wabot by the Useda University [27] that was constructed
in the early seventies. It was capable of walking, although always keeping its
center of mass within the support pattern of the foot currently standing on
the ground. Its size was comparable to a human and it used hydraulics to
move its limbs. The most successful, up to date, is the famous Honda bipedal
walking robot [11]. Little is known about this robot since it was developed
internally at Honda. It is also believed that it took more than a decade to
develop. Nevertheless, watching movies where it performs different tasks such
as walking and climbing stairs is certainly impressive. Both these robots have
in common that the limbs are directly controlled by servos, the Honda robot
being controlled by direct drive servos. Since electrical motors usually have low
torque and high speed, some sort of gearing is necessary. This gearing both
amplifies inertia and friction, thus making it hard to control the actual force
output. Instead, it is most common to control position/angles of different joints.
The drawback of this is that it makes it hard to use the natural dynamics,
such as the motion of a swinging leg, available to the mechanism. To address
the problem of getting force control, the series elastic actuator was developed,
see Williamson et al. [28]. The idea is to connect a servo in series with an
elastic element, such as a spring. By controlling the elongation of the spring
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Figure 3. The springs represent the virtual force, which is generated at the joints
labeled a. The attachment point of the virtual springs is labeled b.

it is possible to generate forces. Thus, turning the force control problem into
a position control problem. This gives excellent control over the force but
lowers the bandwidth of the controller. At least two planar walkers have been
implemented using these actuators, the spring turkey and spring flamingo, see
Pratt [22]. The walking motion was generated using something called virtual
model control. The idea is to attach virtual springs or force elements between
different parts of the robot and then calculate the corresponding forces/torques
that realizes these virtual forces.

7 Hopping robots

Humans as well as animals usually have different walking patterns depending
on the velocity. At low speeds, the walking gait is usually preferred and can be
categorized by having a double support phase. As speed is increased, humans
change from walking to running. Running can be described as having no double
support phase and periods of no contact with the ground. The velocity at which
the transition from walking to running occur can be obtained by theoretical
reasoning, see Alexander [1],

Utransition < \/aa (1)

where [ is the length of the extended leg. For an adult human this corresponds
to about 3 m/s. However, by moving the hip in an appropriate way, higher
walking speeds can be obtained.

Running or hopping robots have been implemented with great success.
These robots were pioneered by Raibert [24]. Starting with the one legged
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d 7

Figure 4. Raiberts hopping robot. The arrows show the movement that is con-
trolled.

hopper which was attached to a tether boom so as to prevent lateral dynamics.
Later versions had both two and four legs and were capable of moving in all
three dimensions. One interesting aspect of these robots is that the number of
controlled degrees of freedom is less than the mechanisms degrees of freedom
and that the control does not depend on a reference trajectory.

8 Passive walkers

At the extreme of little or no control are the mechanisms that are referred
to as passive walkers, originally pioneered by McGeer [14],[15],[16], and [17].
Passive walkers completely lack any kind of control and rely completely on
the geometry and appropriate mass distribution. By letting the passive walker
walk down an inclined plane gravity re-injects the energy lost at various stages
of the walking cycle. A typical source of dissipation is the plastic impacts at
knee lock and foot impact. A precursor to passive walking is ballistic walking,
studied by Mochon et al. [18] and Formal’sky [7] for example. These walkers
were usually studied on level ground. The term ballistic is used to describe
that no actuation is used during the swing phase of the leg: thus the leg swings
freely. One of the motivations for this comes from biological studies showing
that muscle activity is very low during swing phase and is concentrated to the
double support phase, see Human Walking [25] or Gait Analysis [5]. The task
in ballistic walking is to find a set of initial velocities that return the walker
into the same configuration after one step (with a switch of stance and swing
leg). Since the final velocities will not match the initial velocities and impulse
is introduced at the double support phase to make up for this. Animations of
ballistic walkers produce a very human like walking pattern.

McGeer later showed that the impulse could come from the impact of the
swing leg with the ground. This was accomplished by finding the appropriate
mass distribution and geometry, as well as finding the right inclination of the
plane. The first passive walker by McGeer was kneeless and constrained to
move in a plane so as to prevent lateral dynamics. Since both legs had the
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A

Figure 5.  Some of the studied simple planar passive walkers; McGeers spooked
wheel, Ruinas simplest passive walker, McGeers two legged walker having a foot
radius equal to the leg length, and a similar walker but the radius is shrunken.

same length, foot scuffing at mid swing was neglected. Implemented walkers
had devices that could contract the leg slightly so as to prevent the foot scuffing.
McGeer later showed that it was possible to add a knee. This gave the walker
a more human look and, as it turned out, avoided the foot-scuffing problem.
Since simplifying can be a key to understanding, many simple models have
been proposed as means to understand walking. Some examples of these are;

e Rimless wheels (McGeer) which models impacts and the up and down
motion of the hip.

e The three point mass walker (Garcia [8]). Consisting of one hip mass and
two masses situated at the foot. Shows chaotic walking patterns.

o The walking wheel (McGeer), which models the un-actuated swing of the
legs.

e Straight legged bipedal walker (McGeer). Similar to the walking wheel
but had a shorter foot radius.

Planar passive walkers have been implemented with great success by for
example McGeer and Ruina and his group. Usually, lateral dynamics have been
suppressed by building legs in pairs. The walker is started in a configuration
where the outer legs move together and the inner legs are mechanically joined.

Sustained passive walking on level ground is not possible unless energy is
constantly injected into the system as to counter the energy lost at impacts.
However, one could of course imagine a walker capable of putting down its
feet on the ground with zero velocity and having knee lock at zero angular
velocity. Blajer and Schiehlen [3] have developed control strategies as to prevent
relative velocities at foot impacts. However, the goal was not to minimize
energy costs but to stabilize and find gentle motion of the walker. It is not at
all clear how to mechanically build such a device since it will certainly involve
some clever mechanism needed to obtain zero velocity impacts. However, there
exists at least one mechanism, albeit not being a walking machine, which have
these properties and that is the rolling wheel. In order to obtain walking on
level ground some schemes have been proposed which are based on the passive
walkers. For example, McGeer used impulsive pushing to model the push of
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the trailing foot. He also suggested length cycling of the leg, as to mimic the
push generated by knee flexure.

Adding a torso has also been used as a mean of propulsion. McGeer used
and upright torso, which kept its position by using a rotational-spring/damper
attached to the stance leg. Leaning the torso forward provided the additional
torque needed to propel the walker. Where McGeer had studied the effect of
different torso-inclinations, Howell and Baillieul [12] fixed the position of the
torso in a bowed position and studied the effects of changing the center of mass
position.

A natural next step was to find three-dimensional walkers capable of sus-
tained stable gait down an incline. McGeer devised a walker capable of lateral
motion but only found unstable periodic gaits. Kuo [13] used one of McGeer’s
kneeless designs and extended it laterally by including a hip. However, Kuo
only found unstable walkers and proposed several control laws for stabilizing
the motion. These control laws have been shown to work in simulations. In
1997, Coleman and Ruina [4] built an unpowered three-dimensional kneeless
two-legged walker out of Tinkertoy parts. This walker is apparently stable (as
seen in video clips) and has recently been shown to be stable, see [19]. The
mass properties of the walker are not very human like, but clearly shows the
possibility of passive walking in three dimensions. It is worth mentioning that
some researchers in this field divide passive walkers into two categories depend-
ing on their stability properties. The first category includes walkers capable of
standing upright when standing still, thus having at least one statically stable
configuration. The second category are the ones that have to constantly move
as to obtain stable behavior, such as the Tinkertoy Walker, which only has
one contact point per foot. Whether the difference is fundamental or merely
esthetical can be debated. One could argue in favor of passive walkers having
statically stable equilibrium positions so that a passive walker would be able
to stand passively and not have to rely on control and actuation for static
equilibrium.

9 Animation

In most cases the simulation is used as a tool to understand or develop walk-
ing machines. However, in some cases a believable simulation is the goal in
itself. Today most computer animations of walking are generated by using mo-
tion capture devices or keyframing. Motion capture is usually accomplished
by putting markers on a person, who then performs the motion that should
be recorded. However, this is both time-consuming and sometimes hard to get
accuracy in readings, due to markers put on the skin and not on the joints
[9]. Keyframing is accomplished by the animator specifying the geometric con-
figuration at specific times and letting the software interpolate the in-between
sequence. In addition, it is not possible to just increase the walking speed of
a previously captured motion, since the resulting animation will not be believ-

11
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able. However, simulations of walking and running offer a new way of obtaining
realistic and believable animations.
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ABSTRACT. The planar passive walker was used as a starting point for the 3D passive
walker. This system is modeled as a continuous system, which is regularly interrupted
by collisional events such as knee collision and foot impact. Besides the collisional
events, events which will terminate the gait sequence are also monitored. Hence, this
report contains modelling assumptions for our planar passive walker, which includes
geometry, forces and impact models.

Previously presented planar passive walkers had large radius feet, which was not
suitable for extension into 3D. This report therefore presents the parameter variations
resulting in a planar passive walker suitable for extension into a 3D passive walker.
The linear stability of the system is shown for all parameter variations. The equations
of motion have been derived using Sophia and Maple and this code is included.

1 Introduction

In this text, we show how passive walking of planar mechanisms studied by,
for example, McGeer [11],[12],[13], and Ruina and collaborators, see Garcia [6],
can be utilized as a starting point for 3D passive walkers, see also Dankowicz
et al.[4]. However, it was felt that a thorough understanding of planar passive
walking was necessary before modelling and simulating a 3D passive walker.
Therefore, previous work by McGeer and Ruina was recreated using the tools
developed at the Department of Mechanics, KTH. These tools include Sophia,
which is a set of routines for deriving equations of motion in symbolical algebra
programs, see Lesser [9], and the exmex routines used to export the equations
of motion to Matlab, see Lennartsson [8].

Since the walker makes regular contact with the ground, impact dynamics
is introduced. All impacts are treated as perfectly inelastic collisions, thus
the velocities of the impact points are assumed to have zero relative velocity
after the impact has occurred. Simulation of the resulting dynamical system
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was performed in Matlab using it sets of ordinary differential equations (ODE)
solvers. The dynamical system is assumed to be continuous between impacts,
thus event handling is used to end the simulation as impacts occur. In addition,
events that terminate the gait sequence are also monitored, for example such
as the hip point hitting the ground. It should be noted that some differences
exist between the present model and those studied in the above mentioned
references, such as more restrictive criteria for successful gaits. In addition,
the release of the hind leg knee occurs after the swing-leg foot has impacted
with the ground.

The next section contains a brief overview of our modeling assumptions,
impact conditions, impact modelling, and numerical results. In the third sec-
tion it is shown how linear stability calculations were implemented. In the
last section, a parameter variation is shown that ends in a design which is
believed to be implementable in a 3D passive walker. The appendix contains
the Sophia/Maple code used to derive the equations of motion and impact
dynamics.

2 Modelling

2.1 GEOMETRY

The planar walker, see Figure 1, consists of four bodies constrained to move in
a plane. The four bodies are the two identical upper legs and the two identical
lower legs. The unconstrained mechanism has 6 degrees of freedom (DOF),
labeled ¢;, namely, the position of the hip, the two thigh angles and the two knee
angles. Associated with each degree of freedom are the generalized velocities u;.
The generalized coordinates are related to the generalized velocities through
the relation ¢; = u;. All bodies are connected via frictionless hinge joints. The
knee joints are at point P3 and P, and the hip joint is at P5. The knee joint
angles are constrained to positive values.

The centers of mass are specified with coordinates along and perpendicular
to the lines P; Py, Ps P53 for the thighs and PyP;, P3P, for the lower legs. The
moments of inertia I; are given relative to the respective bodies centers of
mass. The gravity vector is inclined an angle o as shown in the figure. Thus,
the gravity vector has a positive component in the forward direction n;, which
will propel the walker forward.

The walker makes regular contact with the ground plane at point C; and
(5 via its circular feet. The circular feet have a radius r and a center with an
offset Iy from the points P, and P. The contact points C; and C5 are situated
-7y ny from the foot center positions.

2.2  IMPACT MODELLING AND INTEGRATION

Impacts occurring in the system are treated as perfectly inelastic collisions.
Thus, the relative velocity between the impacting bodies, at the impact point,
is zero after the impact has occurred. Generalized impulses are introduced at
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Figure 1. The geometry of the planar walker.

the instant of impact to bring the relative velocity to zero. At knee locking, an
angular impulse is introduced at the knee joint. At foot impact, vertical and
horizontal impulses from the plane are used at the initial contact point.

During an ordinary gait cycle, the planar walker goes through two contin-
uous states, as illustrated in Figure 2. The first state is the three-link mode,
which is ended at knee lock and the walker is transferred into the two-link
mode. This mode ends at foot impact and the walker is returned to the three-
link mode. At the end of each discrete state, some of the state variables make
a discontinuous jump in their values.

In the following paragraphs, a detailed description will be given of the sim-
ulation and the impact modeling used in each step. In addition, the necessary
checks to make sure that the solution is physically realizable are given and
discussed.

Swing leg foot impact

Three link mode Two link mode
Continuos integration

Knee lock

Figure 2. The walker goes through two continous states during an ordinary gait
cycles. These two states are connected via impact models.
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2.3  TRANSITION FROM TWO-LINK MODE TO THREE-LINK MODE

The calculations at each impact are simplified by considering the mechanism as
having all its six DOF available to it and introducing the appropriate impulses
and constraints at each impact. As it turns out, the impact at knee lock can
then be described by the same constraint and impulse equations as the impact
of the swing-leg foot. However, as can be seen in figure 3 the geometrical
configuration is different in the two cases.

Foot impact Knee lock

Figure 3. Impulses at foot impact and knee impact. Note that it is only the geo-
metrical configuration that differentiate the two impacts.

Since the walker has different DOF, depending on its state, it is wise to give
the initial conditions in the configuration having the least DOF. Immediately
before foot impact, the state of the walker can be described by one of the leg
angles and two angular velocities. Since the impacting-leg knee (soon to be
the new stance-leg knee) is locked, only us is needed to describe the stance leg
angular velocity. The current stance-leg knee (soon to be new swing-leg knee)
is also locked at this instant and therefore only u; is needed to describe the
swing-leg angular velocity. Since the walker is invariant to translations in the
forward direction, g4 can be chosen at any value, preferably zero. From these
four state variables [q1, g4, u1, us] the remaining ones are given by,

¢ = —2arctan((ly +12) /1lf) — q1, (1)
g5 = rf—lgsin(qr)+ (I +12) cos(q1),

ug = ui(—(l1 +1lz)cos(qr) + lysin(qr) — 7y),

us = wi(—lycos(qr) — (l1 +l2)sin(q1)),

3 = g =usz=0,

where the velocities of uy and us are given by the rolling constraint of the
stance leg (point C5). The configuration of the walker is now given at the
foot plane pre-collision instance. We now need to calculate the velocity jump
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due to the impulses occurring at the foot impact. Since we assume that the
mechanism is free at each impact, additional angular impulses are needed to
maintain the locked state of the knees. Calculating these constraint impulses
gives a possibility to check whether the constraints will be kept or broken. The
equations that calculate the velocity jump can be stated as a matrix equation,

M(q)Av =C(q)r (2)

where M(q) is the reduced mass matrix of the system, which is given in the
appendix, and Av=[v" —v 7] is the resulting velocity jump due to the impulses
r. The constraint matrix C(q) relates the impulses at the point C; and the
rotational impulses at the knees to the generalized velocities. This results in six
equations for the ten unknowns (6 velocities and 4 impulses). The remaining
4 equations come from the velocity constraints, namely,

U6ZO,U3=0,

Nd/dt(OCy) =0, (3)

where the raised N indicates that the derivative is calculated in the inertial ref-
erence frame N. These velocity constraints are linear in the generalized speeds
and expressing the zero velocity contact point constraint in the same directions
as the impulses one can write the velocity constraint as,

Clg)"vt =0 (4)

where v is the generalized velocity after the impact. Thus, if put on a matrix
form, we can simultaneously solve for the new velocities v and the impulses
r, given the pre-collision velocity v~. The matrix equation is given by,

& V(]

where C(g;) has 6x4 components and its non-zero elements equals,

Cii = lacos(qi) + lysin(gs — q1) + licos(gs — q1) + 1y, (6)
Cia = losin(qi)+1fcos(ge —q1) — lisin(gs — q1),

Ce1r = —lgsin(ge —q1) —licos(gs —q1) — ¢

Cea = —lfcos(ge —q1)+l1sin(ge — q1),

C3p= Cez3 = Cy1 = Cs2 = 1

and
r= [Rw7Ry7Q1aQ2]T7U: [Ul,...,U;6]T. (7)

2.4 POST COLLISION CHECKS

To ensure that the impact solutions are physically realizable, post collision
checks are required. After the foot collision, the vertical velocity of the contact
point of the new swing leg has to be positive,

Nd/dt(OCy) - ng = l4(ug cos(qz) — ug cos(q1))+
(ll + ZQ)(U;Q SiH(QQ) — U Sin(ql)) >0

(®)
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Additionally, if simple mechanical stops are used, both rotational impulses have
to be positive or the knees will collapse. However, in the simulations, only
negative angular impulses at the hind-leg knee were found (point P3 in the left
pane of Figure 3). Therefore, the knee is assumed locked until immediately
after the foot collision has occurred. This implies a zero angular velocity of ug
at the start of the swing phase. The final check that is made is to ensure that
the acceleration of the new swing leg is positive, i.e. the new swing-leg foot
should move away from the plane.

2.5 THREE-LINK MODE INTEGRATION

The constraints applied to the free mechanism during the three-link phase
consists of the stance leg knee being locked, which can be written as,

ge = ug =0 9)

and that the stance leg foot should be rolling. The rolling condition implies
that the point C should have a zero vertical position and that the horizontal
velocity of the current contact point in the foot is zero. Since the position
constraint is holonomic, it can be expressed as,

gs = —lysin(q1) + (i1 + l2) cos(qr) +ry (10)

The rolling without slipping constraint is,

ug = u1(—(l1 + lz) cos(qr) + l¢sin(q1) — 7y) (11)

which can be integrated to a holonomic constraint,

gs = —(l1 +12)sin(q1) — Iy cos(q1) — ry * q1 + const. (12)

where const. is an integration constant, which can be determined at the
start of the integration. The system to integrate now consists of the states
[q1, G2, g3, u1, ua, us], which is integrated until one of the below conditions oc-
cur.

2.6 CHECKS DURING THREE-LINK INTEGRATION

In this state, four different events, which terminate the gait simulation are
monitored. Namely, that heel strike shouldn’t occur before the knee locks.
Heel strike occur when

lysin(—q3 + g2) — la cos(g2) — 11 cos(—gq3 + g2)— (13)
lf sin(ql) + (ll + lg) COS(ql) =0
The walker shouldn’t fall back, which occurs when the hip (point P5) hit the
floor. This condition can be expressed as,
ry—lgsin(qr) + (L +12) cos(q1) =0 (14)

In addition, to ensure that an over swing of the lower leg doesn’t occur, g3 has
to be less than 7. The correct termination of this integration is when knee lock
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occur, g3 = 0. After the integration has terminated, the states [qa, ¢s5, u4, us]
can be calculated using equations (10-12)

To be on the safe side, one could also check that the vertical component
of the constraint force between the plane and rolling foot is always positive.
However, all observed gaits have the velocity of the hip below +/gl, which is
the required velocity to leave the ground (compare the walker to an inverted
pendulum), therefore, this was not checked during simulations.

2.7 TRANSITION FROM THREE-LINK MODE TO TWO-LINK MODE

As discussed earlier, the same equations as in the foot impact calculations
can now be used again. However, as seen in the right pane of Figure 3, the
geometrical configuration is different.

2.8 POST COLLISION CHECKS

Since it is assumed that the stance leg foot is only constrained by the plane, it
is free to move upwards. This implies that the impulse R, has to be positive,
or the foot will leave the ground plane. If Coulomb friction laws are valid for
impacts, see Brach [3] for a discussion of this topic, one could also make sure
that the absolute value of the ratio of horizontal impulse to vertical impulse is
below the friction coefficient,

R,

Ry
We also have to check that q; > ¢ otherwise the knee lock occurred when the
swing leg was behind the stance leg. Since both legs are assumed to have equal
geometry, the swing cannot take place when both knees are locked. This will
eventually result in foot scuffing.

< p. (15)

2.9 TWwWO-LINK MODE INTEGRATION

During the two-link mode, both knees are locked, g3 = g = 0, and consequently
both angular knee velocities, us and ug, are equal to zero. In addition, the
rolling constraint has to be satisfied, see equation (11). The system to integrate
now consists of the state variables [q1, ¢2,u1, uz], which is integrated until one
of the below conditions occur.

2.10 CHECKS DURING TWO-LINK MODE INTEGRATION

Two events, which terminate the gait simulation, might occur in this mode.
The first one occurs if the hip hits the floor, see equation (14). The second
one occurs if the swing leg rotates back to a configuration where g; = g». The
termination that continue the gait cycle takes place when the swing-leg foot
impacts with the ground and the legs have an opening angle. This occurs when,

q1 +q2 + 2arctan((l1 + lg)/lf) =0 (16)

The additional states [qa, g5, ug, us] can now be calculated from equations (10-
12). The walker is now in the pre-foot-collision state and the transition from
two-link mode to three-link mode can take place again.
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3 Simulation

Simulation of the planar walker was performed in Matlab using the ode45 in-
tegrator (Runge-Kutta 45). This integrator is suitable for solving non-stiff
ordinary differential equations. All integrators in Matlab support event detec-
tion, which were used to detect the end of the two continuous integrations.
Both the absolute and relative tolerance was set to le-6.

stride time 1.45s, stride length 1.05m, plane inclination 5.16°

PP e I

e e

<« 1.0m—»

15.9 deg 23.0 deg
4.74 kgms™ 0.354kgms™

Figure 4. Simulation of a planar walker during 7 consecutive steps. Parameters and
initial conditions can be found in Table I.

Table I. Parameter values and initial conditions used in the simulation found in Fig-
ure 4. Immediately before the double support only three state variables are needed to
specify the complete state of the walker. The leg angle ¢ (the opening angle, which
equals g1 — @2, can be calculated given ¢ and the double support configuration), the
angular velocity of the new stance leg ¢, and the angular velocity of the new swing

leg q'g.

Param  Value Param  Value Param  Value

my 1.013 kg Mo 2.35 kg Iy 0.123 m

i1 0.0393 kgm? io 0.231-1072 kgm® 1y 0.12 m

liz 0.0432 m log 0.0 m g 9.81 ms 2
Ly 0.1663 m lay 0.091 m a 0.09 rad
I 0.3132 m Iy 0.35 m

State variable Q q1 Go
Initial value -0.5196 rad -1.933 rads™! -2.037 rads™!

Parameter values and initial conditions were obtained from previous work
of Ruina and Collaborators, see [5]. However, the initial conditions had to be
manually tuned before a stable gait was observed in the simulation. This is
probably due to some modeling differences between our planar walker and the
aforementioned walker. Stability was observed by plotting the three needed
state variables [q1,u1,us] in a three-dimensional diagram at subsequent steps.
A stable gait is observed to converge to a point.

In Figure 4 a simulation of a stable planar walker is shown. The walker
is drawn at different geometrical configurations during 7 consecutive steps (a
stride consists of two steps, thus the walker is back to its original configuration
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after two steps or one stride). The impulses from the plane are shown at foot
impact and at knee locking. The impulse angle at foot impact requires a fric-
tion coefficient of p = 0.28 and at knee impact p = 0.42 or the walker will slip.
The parameters for this particular walker can be found in Table I.

4 Stability

The stability of the gait was calculated by perturbing the stable periodic solu-
tion xg in each state variable. The accuracy of the periodic orbit was obtained
to le-9 (relative and absolute) and the perturbations e are of size 5e-6. By
perturbing one state variable at the time and subtracting the periodic solution
from the resulting state after one step, the Jacobian J of the system can be
approximated,.as indicated below,

zo +[£,0,07 — integration —
zo+[0,6,0/7  — integration — xy

zo+1[0,0,e]7 — integration — x3
1 : : :

J~—| x1—x9 x0—239 T3— X0
5

Stability is now given by calculating the eigenvalues of this Jacobian. As long as
all eigenvalues are inside the unit circle, the periodic solution is stable. Having
access to the Jacobian also makes it possible to implement root-finding algo-
rithms for locating periodic solutions, both stable and unstable. This approach
was used to locate periodic gaits of the passive 3D walker, see Adolfsson [1] and
[2]. However, in this chapter we only study periodic gaits, which are accessible
through direct numerical simulation, i.e. stable periodic solutions. In Table
II, the eigenvalues and eigenvectors of the periodic solution found in Table I is
given

Table II. Eigenvalues and eigenvectors corre-
sponding to the periodic solution given by
the data in Table L.

Eig.Vec.1 Eig.Vec.2 Eig.Vec.3

q1 -0.0343 0.0047 0.0017
ul -0.0433 -0.0725 0.1088
U9 0.9985 -0.9974 0.9941

Eig.Val -0.7034 0.0088 0.1060
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4.1 PARAMETER STUDY

Many interesting parameter studies have been done on the planar walker. For
example, the inclination of the plane has been extensively studied by both
McGeer, see [10],[11],[12], and Garcia, see 7] and [6]. By tuning the mass
properties of the walker, Garcia [5], found periodic solutions for arbitrarily
small slopes.

Since the goal is to extend the planar walker into three dimensions, a foot
design that is suitable for this is needed. The approach taken here is to reduce
the foot radius while maintaining an offset for the foot radius. In Figure 5, the

stability

impulse angle (deg)

1)

impulse (kgms

0.02 0.04 0.06 0.08 01 foot radius (m)
0.107 0.113 0.120 foot offset (m)

Figure 5. Parameter variation showing the stability of the planar walker as the foot
is shrunk. Also shown, is the needed impulse and impulse angle at the foot impact.

foot radius is shrunk from 12cm (corresponding to the walker found in Figure
4) to lem (corresponding to the walker found in Figure 6). To remain stable, it
was noted that the offset [ had to be decreased slightly, from 12.3cm to 10.5cm.
In figure 5 the stability of this particular parameter variation is shown, along
with the needed impulse at foot impact. Stability is plotted as the absolute
value of the eigenvalues of the Jacobian. As seen in the figure, it is stable over
the whole parameter interval, with maximum stability at f,. ~ 0.05m. The
y-shaped crossing at maximum stability is due to a complex-conjugate pair of
eigenvalues turning into two real eigenvalues. The impulse from the plane, at
foot impact, shows no dramatic change over the interval. Thus, it is expected
that if slip does not occur in the large radius foot it will not occur in the small
radius foot either.

10
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5 Conclusions

In Figure 6, the small foot walker is drawn at different geometrical configu-
rations for seven consecutive steps. The trajectories are quite similar to the
ones found for the large radius foot, however, a somewhat smoother motion of
the foot radius center can be observed. A difference in stride time and stride
length can also be observed, which is probably due to the change of the length
(l1y + ) of the lower leg.

<+«——1.0m—»

18.3 deg 35.9 deg
3.33 kgms' 0.118 kgms"

Figure 6. Simulation of a planar walker having small feet during 7 consecutive steps.

Although not shown here, it was possible to reduce the foot radius to ar-
bitrarily small values. It was even, although not realizable, possible to use
negative values of the foot radius. This suggests that the shape of the foot
can be chosen quite freely, as long as the foot design allows for the inverted-
pendulum motion to take place.

An advantage of this foot design is that it is easier to implement compared
to the previous used large radius foot. In addition, it is now possible to extend
this construction into three dimensions while guaranteeing the existence of
periodic solutions, see Piiroinen [14]. In Figure 7, the path from planar passive
walker into a 3D passive walking is shown. The point toe can now be extended
into a line foot in three dimensions. By starting the three dimensional passive
walker with zero hip distance and symmetrically overlapping feet, the periodic
solution will exist. However, the stability characteristics are not known since
additional degrees of freedom will be present.

Some comparisons between the planar passive walker and three-dimensional
passive walker can be found in Dankowicz et al., see [4].

6 Appendix

6.1 MAPLE AND SOPHIA CODE

This is the Sophia/Maple code for deriving the equations of motion and the
impact equations for the planar passive walker. The Sophia package is a use-
ful tool for analysis of multi-body dynamics, vector algebra and calculus, and
has application to systems of ordinary differential equations. Sophia is im-
plemented in Maple and has export routines to Matlab, (see Lesser [9] and

11
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Rolling foot to point foot

Extending the toe point to a line toe

Separating the hip

Figure 7. Illustrative picture showing the transition from a planar passive walker
into a fully 3D passive walker having dynamics in all spatial directions.

Lennartsson [8]). Sophia uses Lesser’s geometrical interpretation of Kane’s
method.

Maple code will be written with this typeface and comments with the or-
dinary typeface. Sophia can be downloaded at www.mech.kth.se/sophia and
the code for deriving the equations of motion can be found at
www.mech.kth.se/sophia/passivewalking

The Maple session is started by resetting the workspace and then reading the
Sophia library.

> restart;

> read ‘sophiaV5‘;

6.2 GEOMETRY

We start by defining the frame relations where N is the inertial reference frame.

Upper leg 1, reference frame A
> &rot[N,A,3,q1]:
Upper leg 2, reference frame B
> &rot[N,B,3,92]:
Lower leg 2, reference frame CC
> &rot[B,CC,3,-q3]:
Lower leg 1, reference frame DD
> &rot[A,DD,3,-q6]:
The geometry of the walker is now defined and the centers of mass are labeled,
refer to Figure 1.

Hip (point Ps)
j > P5 := N &ev [q4,95,0]:

12
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Upper leg 1 and leg 2 center of mass

> rl := P5 &++ (A &ev [12x,-12y,01):

> r2 := P5 &++ (B &ev [12x,-12y,0]1):
Position of the knees, leg 2 & 1 (point P; and Pj)

> P3 := P5 &++ (B &ev [0,-12,0]):

> P4 := P5 &++ (A &ev [0,-12,0]1):
Lower leg 2 and lower leg 1 center of mass

> r3 := P3 &++ (CC &ev [11x,-11y,0]):

> r4d := P4 &++ (DD &ev [11x,-11y,0]):
Circle foot contact point for leg 1 and 2 (point Cy and Cs)

> Cl := P4 &++ (DD &ev [1f,-11,0]) &++ (N &ev [0,-rf,0]):
> C2 := P3 &++ (CC &ev [1f,-11,0]) &++ (N &ev [0,-rf,0]):

6.3 KINEMATICS

Compute the required center of mass velocities and angular velocities for each
body.

Upper leg 1
> vl := &simp subs(kde6,N &fdt rl):
> wl := subs(kde6,N &aV A):

Upper leg 2

> v2 := &simp subs(kde6,N &fdt r2):
> w2 := subs(kde6,N &aV B):

Lower leg 2

> v3 := &simp subs(kde6,N &fdt r3):
> w3 := subs(kde6,N &aV CC):

Lower leg 1

> v4 := &simp subs(kde6,N &fdt rd):
> w4 := subs(kde6,N &aV DD):

Use simple kinematical differential equations, i.e. ¢; = u;.
> &kde(6) ;kde6:=kde:

Assemble a K-vector of velocities
> vK := &KM[vl,wl,v2,w2,v3,w3,v4,wl]:

Momentum and angular momentum for each body

Upper leg 1
> pl 1= m2 &*xx vi:
> hl := 12 &**x wl:
Upper leg 2
> p2 = m2 &x*x v2:
> h2 := 12 &**x w2:
Lower leg 2

13
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> p3 :=ml &*x*x v3:
> h3 := i1 &**x w3:
Lower leg 1

> pd = ml &*xx véd:

> h4 := i1 &**x w4:
Assemble a momentum K-vector

> pK := &KM[p1,h1,p2,h2,p3,h3,p4,h4]:
Differentiate each component of the momentum K-vector with respect to time
to obtain the inertia forces and substitute the kde.

> pKt := &Ksimp subs(kde6, N &Kfdt pK):

6.4 FORCES AND TORQUES

The applied forces and torques are now given. Since gravity is the only applied
force on the walker, all torques will be zero.

Upper leg 1
> Ral := N &ev [m2*gxsin(alpha),-m2+*g*cos(alpha),0]:
> Tal := N &ev [0,0,0]:

Upper leg 2
> Ra2 := N &ev [m2*g*sin(alpha),-m2*gxcos(alpha),0]:

> Ta2 := B &ev [0,0,0]:

Lower leg 2
> Ra3 := N &ev [ml*g*sin(alpha),-ml*gxcos(alpha),0]:
> Ta3 := CC &ev [0,0,0]:

Lower leg 1
> Ra4 := N &ev [ml*g*sin(alpha),-ml*gxcos(alpha),0]:
> Ta4 := DD &ev [0,0,0]:

Assemble applied forces and torques in a K-vector
> RK := &KM[Ral,Tal,Ra2,Ta2,Ra3,Ta3,Ra4,Ta4]:

6.5 KANE’S EQUATIONS

Compute the tangent vectors. Since the tangent vectors are assumed ”orthog-
onal” to the constraint forces, they can be used to project away the constraint
forces.

> tauK := KMtangents(vK,u,6):
Project the tangent K-vectors on the applied forces K-vector and the inertia
forces K-vector
> GAF := tauK &kane RK:
> MGIF := tauK &kane pKt:
Extract Kane’s equations from the Generalized Applied Forces (GAF) and the
Minus Generalized Inertia Forces (MGIF)

> kaneeq := [seq(MGIF[i]-GAF[i],i=1..6)]:

> kaneeq := map(simplify,kaneeq):

14
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> kaneeq := map(combine,kaneeq,trig):
Read the linalg library.

> with(linalg):
Put the equations on the form Mvu = F where M is the reduced mass matrix @
is the vector of generalized accelerations, and F' is the generalized force vector.

> TOT:=genmatrix(kaneeq, [ult,u2t,u3t,udt,ubt,ubt] ,flag):
> M:=submatrix(TOT,1..6,1..6):
> F:=submatrix(TOT,1..6,7..7):

M is the reduced mass matrix, which is also used in impact calculations.

6.6 THREE-LINK MODE

We now derive the equations of motion for the planar passive walker with
the stance leg knee locked and the stance leg foot rolling on the plane. The
constraints are gs = 0 (knee angle), the vertical position of the contact point
C1 must be zero, and the horizontal velocity of the contact point C1 must
also be zero. The reduced state of the walker will, in three-link mode, consist
of [q1,q2,q3, qa, w1, uz, u3], thus, [gs, g6, us, us, us] can be removed by the con-
straints.

Generalized coordinate constraints solved for ¢s (vertical position of hip) and
gs (stance leg knee angle).

> gconstr3:=solve({(N &to C1) &c 2 = 0, g6=0},{q95,96}):
The velocity of the instantaneous contact point Cy is (Vd/dtO Py)+wyx P,Ch.

> v_contactl := &simp (N &to (&simp subs(kde6,N &fdt P4)
&++ (wéd &xx (C1 &-- P4)))):

Differentiate the generalized coordinate constraint with respect to time
> qtconstr3:=map(diffTime,qconstr3):

Combine all generalized velocity constraints and express them as relations be-
tween the generalized velocities

> uconstr3:=simplify(subs(qconstr3,solve(subs(kdeb,
qtconstr3) union {v_contactl &c 1 = 0},{ud,u5,u6}))):

Compute the generalized acceleration constraints

> aconstr3:=subs(uconstr3,qconstr3, subs(kde6,
map(diffTime,uconstr3))):

Kinematical differential equations for three-link mode

> ki := subs(kde6,uconstr3,qconstr3, [qlt,q2t,q3t,q4t]);
> kde3 := {seq(q.i.t=kil[i],i=1..4)};
Velocity K-vector expressed with reduced state
> vK3 := &Ksimp subs(uconstr3,qconstr3,vK):
Compute the tangent K-vectors
> tauK3 := KMtangents(vK3,u,3):
Project the new tangent K-vectors on the applied forces and inertial forces

15
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> GAF3 := tauK3 &kane RK:
> MGIF3 := taukK3 &kane pKt:

Substitute for the removed states [gs, g6, U4, us, ug] and their derivatives. Ex-
tract Kane’s equations from the Generalized Applied Forces (GAF) and the
Minus Generalized Inertia Forces (MGIF)

> ndof := 3:

> kaneeq3 := simplify(subs(aconstr3,uconstr3,

qconstr3, [seq(MGIF3[i]-GAF3[i],i=1..ndof)])):

> kaneeq3 := map(simplify,kaneeq3):

> kaneeq3 := map(combine,kaneeq3,trig):
Put the equations on the form Mu = F where M is the reduced mass matrix, @
is the vector of generalized accelerations, and F' is the generalized force vector.

> TOT3 := genmatrix(kaneeq3, [ult,u2t,u3t],flag):

> M3 := submatrix(T0T3,1..3,1..3):

> F3 := submatrix(T0T3,1..3,4..4):

6.7 TWO-LINK MODE
In addition to the three-link mode constraints, the swing leg knee is now locked,
g3 = 0 (knee angle). The reduced state of the walker will, in two-link mode,
consist of [q1, ¢2, g3, Ga, U1, uz).
> gconstr2 := qconstr3 union {q3=0}:
Differentiate the generalized coordinate constraint
> qtconstr2 := map(diffTime,qconstr2):
Generalized velocity constraint
> uconstr2 := uconstr3 union {u3=0}:
Generalized acceleration constraints
> aconstr2 := aconstr3 union {u3t=0}:
Velocity K-vector expressed with reduced state
> vK2 := &Ksimp subs(uconstr2,qconstr2,vK):
Kinematic differential equations for two-link mode
> ki:=subs(kde6,uconstr2,qconstr2, [qlt,q2t,q4t]):
> kde2:=[qlt=ki[1],q92t=ki[2],q4t=ki[3]]:
Compute the tangent K-vectors
> tauK2 := KMtangents(vK2,u,2):
Project the new tangent K-vectors on the applied forces and inertial forces

> GAF2 := tauK2 &kane RK:
> MGIF2 := tauK2 &kane pKt:

Substitute for the removed states [gs, gs, us, U4, us, ug] and their derivatives.
Extract Kane’s equations from the Generalized Applied Forces (GAF) and the
Minus Generalized Inertia Forces (MGIF)

> ndof := 2:
> kaneeq2 := simplify(subs(aconstr2,uconstr2,
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qgconstr2, [seq(MGIF2[i]-GAF2[i],i=1..ndof)])):
Put the equations on the form Mu = F where M is the reduced mass matrix, @
is the vector of generalized accelerations, and F' is the generalized force vector
> TOT2 := genmatrix(kaneeq2, [ult,u2t],flag):
> M2 := submatrix(T0T2,1..2,1..2):
> F2 := submatrix(T0T2,1..2,3..3):

6.8 IMPACT EQUATIONS

Both knees are assumed locked and therefore the constraint knee impulses
(Q1,Q2) are introduced as to maintain the locked state of the knee. We want
the equations on this form,

M C vt ] [ —Mv™
RTINS

where CT is the transpose of C, vT is the generalized velocity vector after
impact and v~ is the generalized velocity vector before impact.
The impulse from the plane, at point C7, on the impacting foot (Lower leg 1)
and the knee angular impulse is,

> iRa4 := N &ev [R1,R2,0]:

> iTa4 := &simp ((Cl &-- r4) &xx iRad &++

(N &ev [0,0,-Q11)):

Upper leg 2
> iRa2 := N &ev [0,0,0]:

> iTa2 := B &ev [0,0,Q2]:
Lower leg 2

> jRa3 := N &ev [0,0,0]:

> iTa3 := N &ev [0,0,-Q2]:
Upper leg 1

> iRal := N &ev [0,0,0]:

> iTal := DD &ev [0,0,Q1]:
Assemble the applied impulses and angular impulses in a K-vector.

> iRK:=&KM[iRal,iTal,iRa2,iTa2,iRa3,iTa3,iRa4,iTa4]:
Compute the generalized impulses

> genimp := map(combine,map(simplify,tauK &kane iRK),trig):

The generalized impulses are linear in the applied impulses and therefore it can
be written as Cr, where r = [Ry, Ra, Q1, Q2]T

> C := genmatrix(genimp, [R1,R2,Q1,Q2]);
Velocity constraints after impact are obtained from the condition that contact
point C7 should have zero velocity
> v_contactl := &simp (N &to (&simp subs(kde6,N &fdt P4) &++

(w4 &xx (C1 &-- P4)))):

This constraint is linear in the generalized velocities

17
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> CT:=map(combine,genmatrix([v_contactl &c 1,

v_contactl &c 2,u6=0,u3=0], [ul,u2,u3,u4,u5,u6]) ,trig);
Since the applied impulses are parallel to the directions of the velocity con-
straints and applied at the same point C7, the transposed C should equal CT.

6.9 MASS MATRIX AND GENERALIZED FORCES

Only non-zero elements of the diagonal and upper right part of the mass matrix
is shown,

My = (3,4 85,)me+ (13, + 13, + 15 + 2lsl1, cos(gs) + 21412 sin(ge))my +
i1+ 19
My = (laycos(qr) — log sin(gi))ma +
(lizsin(—q1 + gs) + L1y cos(—q1 + gs) + la cos(q1))m
Mys = (laysin(qr) + l2z cos(qr))ma +
(lie cos(—q1 + g6) + l2sin(q1) — L1y sin(—q1 + g6))m1
(—lzl2 sin(gs) — 13, — cos(ge)lalyy — I3, )ma —ix
( + 12 )my + (3 + 13, + l%y + 21514 sin(qz) + 21211, cos(gs))ma +
i1 + 1o
(=1 lly laliy cos(qz) — lalix sin(gs))my — 4
(l2y COS(CIz) lag sin(ga))ma +
(I cos(qa) + l1y cos(—q2 + g3) + l1 sin(—q2 + q3))m1
Mas = (laysin(ge) + log cos(ge))ma +
(—liysin(—g2 + g3) + lasin(ga) + lizcos(—g2 + g3))ma
@
(=
(—

M3 1yt 12.Ymy + iy

My, = lipsin(—gq2 + g3) — liy cos(—g2 + g3))m
Mss = l1z cos(—q2 + q3) + L1y sin(—q2 + g3))m
My, = 2mq + 2ms

My = (—liycos(—qi +g6) — liz sin(—q1 + ge))m1
Mss = 2my +2mg

Mss = (lysin(—q1 + gs) — L1z cos(—q1 + gg))ma
Mes = (IF,+5,)mi+i

The generalized forces equals,

Fy = (lgysin(a—q1) — log cos(a — ¢1))mag +
(lasin(a — q1) — l1z cos(gs + o — q1) +
liysin(gs + o — q1))mig +
(—lasin(ge)udlyy + 212 sin(ge )ususly, —

2 cos(gg)laurugliy + cos(q(;)lgugllx)ml
Fy = (—lagcos(a— q2) + laysin(a — g2))gma +
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(=15 cos(qs + @ — q2) + lasin(a — ¢2) +
liysin(gs + o — g2))mag +
(—2cos(g3)laususli + cos(qg)lzugllz —

Iy sin(qg)uglly%Q sin(gs)usualiy)ma

F3 = (—liysin(gz +a —q2) + l1z cos(qs + a — g2))mag +
(liz cos(gs)uzly — liyusls sin(gs))my
F, = (sin(ql)u?lgy + cos(qg)uglgx + 2gsin(a) +

sin(ga)uilay, + cos(qr)uila,)ms + 2mygsin(a) +
(ufliaz cos(—q1 + g6) — uiliy sin(—q1 + g6) —
ugliy sin(—q + gs) — usliy sin(—go + q3) +
u3li, cos(—qo + q3) + sin(qr)ully +

2ugugliy sin(—g2 + g3) +

2uguiliy sin(—q1 + gs) —

u%lly sin(—qa + q3) — 2ugusly, cos(—qa + q3) —
2uugliz cos(—q1 + gs) + u3lizcos(—qs + g3) +

sin(qz)usly + uglicos(—q1 + ge))my

Fs = (sin(ga)ujlay — cos(ga)uilay, + sin(q1)uilo, —
cos(q1)uily, — 2g cos(a))ma — 2my g cos(a) +
(2uyuglie sin(—q1 + g6) — ughe sin(—q1 + g¢) —
uzlie sin(—gz + g3) — uzliycos(—g2 + g3) +
2uguiliy cos(—q1 + go) + 2usugliy sin(—g2 + g3) —
uiliy sin(—q1 + g6) — uiliy cos(—q1 + gg) —
ugly cos(—q1 + gs) — uzlizsin(—qz + g3) —
cos(qi)uils + 2uzusliy cos(—q2 + q3) —
u3liycos(—g2 + g3) — cos(gz)uzlo)m

Fg = (—liysin(gs + o — q1) + iz cos(gs + @ — q1))mag +

(—llyu%lg SiD(Q6) + llw COS(qg)u%lg)ml
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3D Passive walkers: Implementing code
for simulation and stability calculations
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ABSTRACT.This text is meant to be an introduction to the implemented code for
modelling, simulating, and analyzing the 3D passive walker. Since external force func-
tions are used, special care has to be taken when deriving the variational equations.
The variational equations are used for locating periodic gaits of the walker and to
determine the stability of found periodic gaits. However, the standard use has to be
modified due to the discontinuities in the 3D passive walker. Numerical computa-
tions were performed in Matlab. However, Matlab’s standard ODE-file format had to
be suitably modified to support discontinuity handling and external force functions.
Also reported here are the implemented Matlab code for locating periodic gaits of the
walker.

1 Introduction

Previous studied planar passive walkers were constrained to move in a plane
to prevent lateral dynamics, for example see McGeer [10]. McGeer’s original
planar passive walker did not have any knees, thus foot scuffing was neglected
during the swing phase. McGeer later introduced a knee, which solved the
foot scuffing problem. All impacts were modeled as perfectly inelastic impacts
using impact laws resulting in discontinuous jumps in velocity state variables.
Extending such a mechanism into three dimensions presents the modeler with
some design decisions, such as the foot design, knee design, and how the two legs
should be linked together. Depending on design choices it might be necessary
to switch the impact model, such as the replacement of discontinous models
with stiff springs and dampers. What usually necessitates this switch is the
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problem of handling multiple contact points, which might result in infinite many
bounces between contact points in finite time. Thus, most of the 3D walkers
using discontinuous impact models have made sure that only one contact point
exist at any give time and that the switch of stance leg to swing leg and vice
versa will occur at the impact instance. Examples are;

e Keeping the shape of planar walker foot, thus, creating a knife edged foot
in three dimensions, see McGeer [11].

e Introducing an additional curvature of the foot, thus, making it a contact
surface, see Mombaur et al. [12] and Kuo [7].

e Using a light foot plate that instantaneously levels with the ground at
foot impact, see Wisse et al. [18]. The impulse from the ground plane on
the foot can therefore be assumed to take place at a single point.

It is worth noting that the two first designs, in the ideal case, won’t restrict
rotation about the normal direction of the ground plane at the contact point.
However, the foot plate design can, depending on joint design, restrict rotations.
In the first two cases, the rolling constraint gets more complicated in three
dimensions. The foot surface will introduce some extra design parameters. For
example Mombaur et al. [12], used toroidal feet in the successful modeling and
simulation of the Tinkertoy walker, thus, only adding one additional parameter
to the foot design.

In contrast to the planar knee-less walkers, 3D knee-less passive walkers
don’t need to suffer from foot scuffing since they can lean to the opposite side
of the swing leg, see Kuo [7], Coleman and Ruina [4], and Nichols and Witt
[13].

The foot design chosen here is to add an additional toe contact point for
each foot, which necessitates the switch from discontinuous impact models to
continuous impact models. An advantage of this design is that is now possible to
start the 3D walker in a configuration that intuitively should retain the essential
dynamics of the planar passive walker. This configuration is to some extent
similar to the ones used for implemented passive walker. Namely, that the mass
centers of each body are kept in a plane and the feet are placed symmetrically
about this plane. However, as shown in Figure 1, the foot points are placed at
the same distance from the sagittal plane.

The remainder of this work has the following form. In section 2, the mod-
elling assumptions are presented and discussed in detail, which includes the
kinematical modelling of the 3D passive walker and how forces and torques can
be modelled and implemented using external functions. Section 3 deals with
the intricacies of exporting the equations of motion and variational equations
to the Matlab environment. In section 4, is is shown how the standard Matlab
ODE-file was altered to support discontinuity handling and variational equa-



3D Passive walkers: Implementing code

nominal plane

\

Figure 1.  The toe points make regular contact with the ground plane. The nominal
plane is defined by the initial hip point position and spanned by the gravity vector
and the ground plane normal. The sagittal plane contains the center hip point and
has a normal in the hip axis direction.

tions. The paper concludes with a discussion on how this framework can be
used for parameter searches.

2 Modelling

The planar model used different sets of differential equations, see Adolfsson [2],
depending on the state of the walker. Here, these impact models are replaced
with linear springs and linear dampers. These springs and dampers are acti-
vated/deactivated depending on the current state of the walker, such as a foot
point being in contact with ground or not or knee being locked or not. Thus,
the same set of differential equations can be used throughout the simulations.

A drawback of this particular way of modeling contact forces is that it
introduces extra modeling parameters, see Figure 2. The 3D passive walker
was started using initial conditions from the planar passive walker. However,
some manual tuning of these initial conditions was required before a gait was
observed in the 3D walker. It is interesting to note that the first observed
simulated gaits of the 3D passive walker didn’t walk straight down the plane.
Thus, the introduction of additional degrees of freedom and the switch to a
continuos system introduced new interesting dynamics.
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upper leg

active when in

knee joint. . .
nee _]Ol?y | hyperextension

lower leg

vertical damper active when free to swing hyperextension
toe point has a downward velocity

Figure 2.  Stiff springs and dampers are used to model the contacts between the toe
points and the ground plane. Stiff angular springs and dampers are used between the
upper leg and lower leg to prevent a collapse of the knee during hyper extension.

2.1  GROUND PLANE MODELLING

Initially, the ground was modeled with stiff springs and high damping, as to
mimic the inelastic impacts of the planar walker. This also prevents the toe
contact points of having any larger motion while attached to the ground. It is
now possible to investigate the effects of different ground plane characteristics,
such as walking on a hard floor versus a soft floor. Additionally, it is straight-
forward to estimate the required friction coefficient by taking the ratio of the
horizontal to the vertical force at each instant.

2.2 KNEE MODELLING

Since discontinuos impacts models were discarded in favor of continuos im-
pact models, the inelastic knee impact model was also replaced with a con-
tinuous model. Thus, linear angular springs and linear angular dampers are
activated/deactivated depending on the position of the knee, see right pane of
Figure 2. In the planar case, the knee is assumed locked just until after the
release of the hind leg. To model this in the 3D passive walker, the angular
damping of the knee was assumed active in both directions as long as the knee
is in hyperextension. In Adolfsson [1], it is shown how this can be passively
implemented in an experimental walker.

2.3 Torso

Another major difference between the planar walker and the 3D passive walker
is the introduction of a torso. This torso acts as the link between the two
legs. The torso was introduced for two reasons, firstly it was assumed that
measurement equipment would have to be used in the experimental walker
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and that the weight of this equipment would not be negligible. Secondly, for
practical purposes it is necessary that the walker should be able to carry some
payload. Thus, the effects of different torso mass configurations should be
possible to investigate. However, there were no plans on using an upright
torso with a center of mass situated above the hip line, which would most
likely require active control to maintain the upright position. Therefore, most
simulations and parameter studies presented here have the center of mass of
the torso situated on the hip axis. Positioning of the center of mass on the hip
line introduced a new problem. The coupling between the rotational motion
of torso and the rest of the walker became too weak, thus potentially creating
problems in the search of periodic gaits. To increase the coupling, a rotational
damping between the legs and the torso was introduced.

2.4  SIMULATION AND ANALYSIS

Using direct numerical simulation, only stable periodic gaits are accessible.
Therefore, a root finding scheme for the 3D walker was implemented to access
unstable periodic gaits. Of course, the stable gaits are of main interest due
to their possibility of being implemented passively. However, unstable gaits
can turn into stable gaits, as parameters of the system are varied. Therefore,
following unstable periodic gaits can expand the number of found solutions.
In addition, it is believed that unstable or weakly unstable solutions are easier
to stabilize with active control, compared to actively achieve the motion from
ground up. Root finding is implemented with the Newton-Raphson scheme,
which require derivative information. By using the export routine exmez, de-
veloped by Lennartsson [8], it is possible to export the variational equations.
Since the 3D walker contains both force discontinuities and impact like changes
of the state variables, the standard use of the variational equations needs to
be suitably modified. In addition, the derivative information can be used to
determine stability characteristics of a found periodic gait.

In the following text, some issues regarding the derivation of the equations
of motions and variational equations are discussed. In the final chapters, the
Matlab code used for integrating the equations of motion and variational equa-
tions is discussed, along with the implemented Newton-Raphson scheme for
finding periodic gaits. In the appendix, the Sophia/Maple code for deriving
the equations of motion and variational equations is given.

2.5  MAPLE/SOPHIA

The equations of motion (EOM) were derived with the aid of Sophia, see Lesser
[9]. Sophia is implemented as a set of routines, which can be executed in differ-
ent symbolical algebra programs, such as Maple and Mathematica. Sophia in-
cludes routines for deriving EOM for mechanical systems using Kane’s method,
see Kane and Levinson [6] or Lesser [9]. It is also useful for kinematical anal-
ysis of mechanisms. For example, Sophia has been used for deriving EOM
in the field of robotics at ABB Robotics, vehicle dynamics see Vagstedt [17],
pantographs see Drugge [5], and washing machines at Electrolux Research and
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Innovation AB. It has also been used in education, both in its original form to
teach constrained rigid multi-body dynamics and in a revised form, for teach-
ing kinematics. Thus, Sophia is a versatile utility with many applications.
Since the symbolical-algebra programs have rather limited numerical capabili-
ties and performance, the exmex set of routines was developed by Lennartsson
[8]. Exmex is currently only available for Maple. Exmexz includes routines for
exporting EOM to Matlab. For performance reasons, it exports them as Matlab
compatible C files (mex-files). The EOM can be on both explicit and implicit
form, or a combination of the two. It also includes routines for exporting vari-
ational equations (VE), which are here used for locating periodic gaits and
stability calculations, see later chapters.

The Sophia/Maple code for deriving the EOM and VE can be found in the
Appendix.

2.6 KINEMATICS

The passive walker consists of five bodies as depicted in Figure 3. The bodies
are connected by hinge joints. The bodies are; an upper torso labeled 7, two
upper legs labeled U; and Us, and two lower legs labeled £1 and L5. We also
consider the ground plane as a body A'. The mechanism has ten degrees of
freedom. With each body B we associate three basis vectors by, bs, by. We also
specify a coordinate system for each body based on an origin B. A position of
a point in this coordinate system will be labeled [b1, ba, bs]5, vectors will use
this notation too. Starting from the top, we have the reference point of the
torso, labeled T' which is given by [q1, g2, g3]ar- This reference point is situated
on the hip line, which connects the two legs. The rotation from N to 7 is
accomplished by rotating an angle g about the 3-direction, an angle g5 around
the new 2-direction into an intermediate body V. Finally, the orientation of
body B is accomplished by rotating an angle g4 around the 1-direction in body
V. All rotations are positive in the sense of the right hand rule. Connected to
the torso by the hip hinge joints are the two upper legs. The orientations of
the upper legs are given by a rotation from V an angle g7 respectively g9 about
the 1-direction. Thus, the orientation of the legs doesn’t depend on the angle
q4. This is different from the definition found in Adolfsson et al. [3] where the
orientation of the legs depended on g4. The reason for doing this is that under
certain parameter choices the dynamics of the walker will be invariant to the
orientation of the torso corresponding to the angle ¢4, see later chapters. Thus,
g4 need not to be taken into account in the search for periodic gaits.

The origins of the hip joints are situated on the hip axis. Connected to
the upper legs by the knee hinge joints are the lower legs. Their orientations
are accomplished by a rotation gg respectively g9 about the 1-direction. The
origins of the lower legs are situated on the knee hinge joints. When all angles
are zero all body-fixed axes coincide.

We introduce a set of generalized speeds u;,i = 1,...,10 corresponding to
the generalized coordinates g; described above. The velocity of reference point
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Figure 3. Illustrative picture of the 3D passive walker where bodies and points are
labeled.

T'is [u1, uz, us]pr and the angular velocity of the torso T is given by [u4, us, ugT,
thus the velocity components will also be independent of the rotation angle qq.

The angular velocities of the upper legs relative to the torso are given by
[u7,0,0]7 and [ug,0,0]7. Similarly, the angular velocities if the lower legs are
[us, 0, 0]y, and [u10, 0, 0]y, relative to the upper legs. The kinematical differen-
tial equations (KDE) relating ¢; to u; are,

a1 cos(ge) cos(qs) —sin(gs) cos(ge) sin(gs) U1
G2 | = | sin(ge)cos(gs) cos(qs)  sin(gs)sin(gs) (0 (1)
qs —sin(gs) 0 cos(qs) u3

for the positions and,

qa 1 0 tan(gs) Ug
45 = 0 1 0 Uus (2)
de 0 0 cos(gs)™? Ug

for the rotations of the torso. The relation between the hip and knee angles
are, ¢; = u;,t =17,8,9,10.

Since the forces between the ground plane and the toe points depends on
the initial contact point we need to store the corresponding coordinates. One
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possible solution is to add the initial contact points as state variables of the
system. Since we are interested in finding periodic gaits, meaning that the state
variables should return to their initial values after one step, we can give the
contact coordinates relative to some reference point in the walker, for example
T. At each foot point impact we update the corresponding states p;, 7 =1,...,8
with the new coordinates, thus a periodic gait will result in a periodic behavior
in the impact point states. The differential equations between the discontinuous
updates of the contact point states in the 1-direction and 3-direction are,

pi | [ —cos(ge)cos(gs) sin(gs) — cos(ge)sin(gs) uy
[ Pi } ; [ —sin(gs) 0 cos(gs) Z; 3)

where ¢ = 1,3,5,7 (1-direction) and j = 2,4, 6,8 (3-direction). Since the con-
tact points are given relative to the walker, it follows that changing the initial
conditions, which corresponds to moving the walker in the plane (changing ¢
and ¢3), the foot points will follow along. Therefore, the toe force will be in-
dependent of ¢; and g3. Thus, the dynamics will be indifferent to changes in
q1 and ¢3 and we do not need to consider those state variables in the search
for periodic gaits. If we include ¢; in the search for periodic gaits, we limit
ourselves to gaits where the hip point T start and ends in the nominal plane.

In order to study very wide feet, Piiroinen, see [15], expressed the contact
point positions in the V reference frame. Thus, the contact points will follow a
rotation of the walker.

2.7 STATE VARIABLES

Along with the 28 continuous state variables there are six discrete state vari-
ables. These discrete states correspond to the knee being locked or unlocked
and the toe contact points being attached/detached from the ground plane.
When certain events occur in the system the discrete states change their val-
ues. Two types of events are monitored. A zero crossing of the knee angles
(gs, q10), positive values correspond to hyperextension of the knee. A zero cross-
ing of the toe points L;; vertical position. For convenience, the 28 continuos
and 6 discrete states are listed in Table I. The unlocked knee and the detached
foot point state is represented by a zero value and the locked knee and attached
foot point state with the value one.

2.7.1 Mass properties

Each physical body has a center of mass labeled B.,,. The position of B,
is given relative to the origo B. The moments of inertia are given about the
center of mass and its six components are given relative to the body fixed basis
vectors.

2.8 FORCES AND TORQUES

For modeling reasons, it is advantageous to divide the forces and torques acting
on the walker into two categories. Firstly, continuous forces that are always
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present, such as gravity and, secondly, intermittent forces, such as knee torques
and toe point contact forces. The always-present forces lend themselves to be
incorporated into the equations of motions at the modeling stage whereas the
intermittent forces enters as general forces and torques in the modeling stage
and are evaluated by external functions.

These external functions can be further divided into functions that have the
generalized states as arguments and the functions that have functions of the
generalized states as arguments. This can symbolically be expressed as,

fl = fl(q7uap) (4)
f2 = fa(z(q,u,p))

When deriving the VE, special care has to be taken when the arguments of
the functions are functions of the generalized states, since the inner derivative
needs to be computed. This dependence is accomplished by explicitly declare
that x is a function of (g, u, p). Since Sophia/Maple is aware of this dependency,
it can use the chain rule of differentiation to evaluate the derivatives of these
force functions with respect to the generalized state. Thus, we only have to
specify the derivative of the force functions with respect to the arguments of
the function. We can symbolically write the derivatives of f5 as,

dfs _ Ofs da
d_q 9z dg (5)

We supply 0f2/0x as a C function whereas dx/dg is computed by export routine
exmez. This provides a numerically efficient solution, since all expressions of
type dz/dg can be optimized together with the EOM and the VE. Thus, there
is no difference in the external C file between functions that depend directly or
indirectly on the generalized states.

The next sections describe how the forces and torques enter the Sophia/Maple
code at the modeling stage. Since the same external C-function can be used for
calculating forces or torques at different places, the arguments that differenti-
ate the function calls are shown. For example, different toe points use the same
function to calculate the force. In addition, the C implementation is given.

2.8.1 Gravity

Since the walker is assumed to walk down an incline, gravity is inclined an
angle o with respect to the ground plane normal, as depicted in Figure 1. The
plane containing the gravity vector is referred to as the nominal plane. The
gravity force, which is acting on all bodies, can be written as,

F'™ = —m,;g[0, cos(a), sin(a)]n (6)

K2

where g is the gravity constant and m; represents the mass of each body. The
gravity force is incorporated into the EOM.
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Table I. Continous and discrete state variables.used in the 3D passive walker

Continous states  Description

q1,92,q3 Position of hip point T given in body N

q4, G5, Q6 Angles describing the orientation of the torso

a7, Go Hip angles

qs, Q10 Knee angles

D1,P3, D5, P7 Initial toe contact point relative to hip point T (1-dir. in N)
D2, P4, P6, P Initial toe contact point relative to hip point T (2-dir. in A)
U, Uz, Us Velocity of hip point 7" given in body V

Uy, Us, Ug Angular velocities of body T given in reference frame V
Discrete states

S1, 82 Knee 1 and 2

83,84 Toe 1 and 2 of leg 1

S5, Sg Toe 1 and 2 of leg 2

2.8.2 Hip torque

Torques are introduced between the torso and the upper legs to increase the
rotational coupling between the two bodies. These torques are aligned with
the hip axis and the torque applied to the torso is,

Tiorso = [T}fll + T}ﬁz,O, O}V (7)
and
Tuh = [7Th€11 b Oa O]V (8)
ﬂllg - [_T}iza 0; O]V

for the two upper legs. The actual torques are calculated in an external C-
function, which returns 73 and T, .

Ty, = hip(gs, g7, us, ur, hip_khip_deltahip_d) (9)
be = hlp(Q47 g9, U4, Ug, hlp_kahlp_deltaahlp_d)

Thus, the same parameters are used for leg one and two. The corresponding C
function, which include support for a hip spring, is found in the code below.

double hip(double torso_g,double leg_q,double torso_u,
double leg_u,double hip_k,double hip_delta,double hip_d)

{
return hip_k*(leg_q-torso_q-hip_delta)+
hip_d=*(leg_u- torso_u);

10
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Expressing the necessary derivatives of this function is straightforward and in
the code below, the above C function is differentiated with respect to the torso
angular velocity.

double hip_torso_u(double torso_qg,double leg_q,double torso_u,
double leg_u,double hip_k,double hip_delta,double hip_d)

{
return -hip_d;

3

2.8.3 Knee torque

The lower leg is free to swing as long as it is not in hyperextension. However,
when the knee is in hyperextension, corresponding to knee angles gs and qi¢
being positive, a collapse is prevented by an applied torque. This torque is
aligned with the hip axis and acts between the upper leg and the lower leg. At
the modeling stage, the torque acting on upper leg one is expressed as,

T, = 13,0, 0urc, (10)
and the torque acting on lower leg one is accordingly,
Ty, = [-T,,0,00uc, (11)

Similar to the hip case, the actual torque is calculated in an external C function,
which return the value for 7} and 7}, .

Tq, = knee(si,qs,us, knee_kknee_ d,knee_d_reb) (12)
Tq, = knee(ss,qio,u10,knee_kknee dknee_d_reb)

The corresponding C function is found below.

double knee(double s, double q,double u,double knee_k,
double knee_d, double knee_d_reb)

{
if (s>0.0)
return (knee_k*q + (u <= 0.0 ? knee_d*u : knee_d_reb*u));
else
return 0.0;
}

The first argument of this C function is the discrete state of the knee. A non-
zero torque is only returned if the knee is in hyperextension, which corresponds
to s1 and s, equal to one. The C function supports different damping constants,

11
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depending on the rotational direction of the lower leg. When the rebound
damping is positive, the knee will be sticky. When set to zero, the knee torque
will model a simple mechanical stop. The derivatives with respect to q and u
are given below.

double knee_q(double s, double g,double u,double knee_k,
double knee_d, double knee_d_reb)

{
if(s>0.0) return knee_k; else return 0.0;

}

double knee_u(double s, double q,double u,double knee_k,
double knee_d, double knee_d_reb)

{
if (s>0.0)
return (u <= 0.0 7 knee_d : knee_d_reb);
else
return 0.0;
}

2.8.4 Toe point forces
The interaction between the ground plane and the walker occur at the four toe
points L;;,7 = 1,2 and j = 1,2. These toe points are situated on the lower legs
as shown in Figure 3. The resulting force has components along each of the
three basis directions in A/. There is no torque at the contact point, which is
one of the reasons for using two contact points at each foot. Two contact points
will only allow rotation around the axis defined by the line going through the
two contact points. At the modeling stage, the applied force on lower leg one
is given by,

Fy, = [fi1, + fia,, fi1, + fiay, fi1, + fres v (13)
The torque resulting from this force, acting on the lower leg, equals,

z-hl = [till + ti217 (1312 + tiZQ’ (1313 + tfli23]N7 (14)

where tf; is computed from the force expression using the common sub ex-
pression feature of exmex. Thus,

[tillatilrzvtil;;]/\/ = LcmlLll X [flellaflelzaflel;;]/\f (15)

where the vector from the toe contact point Lq; to the center of mass of the
lower leg Ly, is expressed in the A reference frame. The forces and torques for
the other contact points are calculated in the same way. Since each direction
in NV is treated independently, three different function calls are made. The
external C function calls to calculate ff; , fi1,, and ff;, are,

flell = toefx(54,x, U:E7kX7anp1) (16)

12
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f1612 = toefY(54? Y, Uy, kX7dX)
Ji, = toefz(sy, z,v., kX,dX,ps)

where s4 reflects the discrete state of the toe point being attached/detached
to the ground plane. The arguments x,y, and z are the position of the toe
point given in reference frame N and vz,vy, and vz are the corresponding
velocities. These six quantities, which all depend on the generalized states of
the system, are given as common sub expressions in Maple/Sophia. In the C
code found below, two functions that models the vertical force differently are
given. The first one models a ground plane where the damper is only active
when the velocity is into the ground plane. Thus, at rebound, the vertical force
will only come from the spring. The second force function models a ground
plane where the damper and spring are active as long as the force on the toe
point is positive.

double toefy(double stat, double y, double vy,
double kY, double dY)

{
if (stat>0.0)
return -kY*y-(vy<=0.0 ? 1.0 : 0.0)*dY*vy;
else
return 0.0;
}

double toefy(double stat, double y, double vy,
double kY, double dY, double dYrebound)
{
double Fy;
if (stat>0.0)
{
Fy = -kY*y-(vy<0 ? dY : dYrebound)*vy;
return (Fy>0.0 7 Fy : 0.0);
¥
else
return 0.0;

The horizontal force functions toefx are given in the code found below, The
argument posx is the initial toe contact point coordinate in the nj-direction.
It should be noted that with the second vertical force model, it is possible to
have forces in the ground plane directions while the vertical force component
is zero. This is somewhat unphysical and could be avoided by triggering the
detachment of the toe point when the vertical force becomes zero. However,
handling a possible reattachment, occurring shortly after the release, would
then need some special considerations, such as introducing dynamics for the

13
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ground plane. It is believed that the success of the passive 3D walker will not
depend on the exact form of ground plane model. Below is the needed deriva-
tives with respect to the function arguments given. Note that the derivative
with respect to the initial contact coordinate posx is also required, since posx
belongs to the states of the system that need to be varied.

double toefx(double stat, double x,double vx,
double kX, double dX, double posx)
{
if (stat>0.0) return -kX*(x-posx)-dX*vx; else return 0.0;

}

double toefx_x(double stat, double x,double vx,
double kX, double dX, double posx)

{
if (stat>0.0) return -kX; else return 0.0;

}

double toefx_vx(double stat, double x,double vx,
double kX, double dX, double posx)

{
if(stat>0.0) return -dX; else return 0.0;

}

double toefx_p(double stat, double x,double vx,
double kX, double dX, double posx)

{
if(stat>0.0) return +kX; else return 0.0;

}

2.9 HELPER FUNCTIONS

Since the toes initial-contact-point states p; have to be updated at each ground
impact, helper functions are used to calculate this initial position. Since these
functions return the position of the toe point given the state and parameters
of the system, it is necessary that the state variable correspond to an impact
configuration. For efficiency, these functions are coded as C functions.

The rotation matrices, which give the directions of the basis vectors of each
reference frame, are also exported as C functions. These functions are mainly
used by the visualization code, which is described in later sections.

14
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3  Exporting EOM and VE

Exporting the EOM and VE to Matlab C code is accomplished by using the
exmez routine, which is developed by Lennartsson [8]. For simulation of the 3D
walker, the kinematical differential equations (KDE) and EOM are exported
together. For integration of the variational equations the KDE, EOM, and
VE are exported together. Thus, optimization can take place across all the
equations.

The KDE are put on explicit form whereas the EOM and VE are put on
implicit form due to their complexity. The common subexpression feature of
exmez is used to evaluate external function calls (force/torque functions) and
the arguments used in these calls, see Figure 4. During derivation of the VE,
Maple needs to know the external functions dependence on state variables.
However, this syntax is not C compatible and a substitution of the VE sub-
stitution list is needed to make the functions ”C-friendly”. In Figure 4, an
example of the process of exporting the EOM and VE is shown. Before export-
ing the EOM, the VE substitution list needs to be substituted into the common
sub expressions. When generating the VE, this substitution should be delayed
until after exmez has internally generated the VE. Therefore, this list is passed
as an argument to exmex. Note that the order in the list is important.

Since Maple’s optimize command is used to reduce the computational cost,
special care has to be taken when compiling the exported C file. It seems like
C compilers have trouble when compiling already optimized computational
sequences. Therefore, this feature has to be turned off during compilation or
the result will be excessively long compilation times, especially when handling
large files such as the VE.

When using Maple’s ”optimize” command, the resulting size of the com-
piled file will be about 300kb. Using the option ”tryhard” in optimize it is
possible to further reduce the size to about 70kb. However, it takes Maple
about 40 times longer to generate the EOM code using this option and 300
times longer to generate the VE code.

Together with the EOM, the necessary C code to detect the six events is also
exported. The produced file is compatible with all Matlab ODE integrators.

3.1 DISCONTINUITY MAPPINGS

If there is a discontinuity associated with an event, during integration of the
VE, a discrete mapping needs to be applied to the derivative of the flow. The
derivative of this mapping can be written as,

(Fa(l'a) - ?)—g Tp Fb(mb)) %_1;[ Ty

ON . Fb(xb)

Ty ox |z

M,

(17)

b= 5
- ox

where G is the discontinuous jump in state variables, F, and F; is the vector
field before respectively after the event and N is the event surface. The sub-
scripts a and b refer to the instant just before the event respectively just after
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the event occurred. For a derivation of this mapping, see Adolfsson et al. [3].
The evaluation of the vector field (F, and F}) is accomplished by calling the
exported EOM C file with the discrete and continuous state corresponding to
just before and just after the event occurred. The derivative of the event sur-
face, ON/Oz, is derived in Maple by differentiating the function that triggers
the event. This derivation is with respect to all state variables. The expres-
sions for the knee events are particularly simple and are not exported as C
files. The expressions for the toe point events are more complicated and are
exported from Maple as C files. Finally, the quantity 0G/dz only differs from
the identity matrix during toe point impact, since at knee locking no jump in
the state variables occurs. At toe point impact, the toe point states will be
updated with the new impact position. The expression for dG/dz is derived
in Maple and exported as a C function.

4 Numerical integration and periodic orbit search

4.1 INTEGRATION OF THE EOM

Numerical integration of the EOM is performed in the Matlab environment.
One of the advantages of Matlab is its set of robust direct numerical integrators
which range from non-stiff to stiff, low-order to high-order, and variable-order
integrators. The speed of these integrators is moderate due to their implemen-
tation in Matlab’s own language.

A common interface is introduced for direct numerical integration of dy-
namical systems containing continuous states, discrete states, and VE. Thus,
the structure of Matlab’s ODE file was suitably modified into a statefile, which
include support for discrete states, event response and discontinuity mappings.
In addition, an extra top layer, named stateflow, was introduced for calling the
event response functions and handling the continuous and discrete states, see
Figure 5. The statefile now needs to evaluate the following,

e EOM

e Jacobian of the EOM

e FEOM and VE together

e Event detection

e Fuvent response

e ON/0x, 0G/0x
where italic text describe the additions compared to Matlab’s original ODE file.
Since some integrators need to evaluate the Jacobian of the EOM, support for
extracting the Jacobian from the VE was also added. As seen in Figure 5, the
event response function is called by the stateflow function. These events are
detected by the event trigger function, which terminates the current integration

and return execution to stateflow. Some differences exist when integrating the
VE, see next section. In addition, the event response function prints a status
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message that tells what event occurred and at what time. This can be used to
monitor the success of the simulation.

Since Matlab’s integrators does not support discrete states and exmex only
export files compatible with these integrators, the discrete states have to be
transferred into the parameter list by the statefile layer.

During integration of the EOM, the odelbs integrator is used because it
produces the fastest execution times. The integrator is a variable order inte-
grator for stiff differential equations. The 3D walker system is stiff due to the
high forces associated with the stiffness of the ground plane. This integrator
requires the evaluation of the Jacobian. This evaluation can be accomplished
either numerically or analytically, but the particular choice does not seem to
have any larger influence on integration times. In Table II, some statistics re-
garding code size and execution times are shown. As seen in this table, there
is little difference in execution time between the larger and smaller file. The
reason for this is that most of the time is spent in the integrator and not in the
function evaluating the derivatives.

Table II. Statistics using a PII 300MHz, Matlab 5.3, all integration
tolerances set to le-6, and no visualization.

Desc. dll file size exec. time % in func. time
EOM 200kb 21.8s 19 4.1s
EOM, tryhard 90kb 18.6s 7.6 1.4s
VE 850kb 375s 49 181s
VE, tryhard 312kb 253s 31.6 80s

4.2 VE INTEGRATION

During integration of the VE, an extra layer is introduced between stateflow
layer and statefile layer, see Figure 4. The purpose of this layer is twofold.
Firstly, it calls the event response function, which updates the discrete and
continuous states. Secondly, it calls the VE event function, which returns
ON/0x and 0G/0x. With this information and two calls to evaluate the vector
field before and after the event (F, and Fp), it is possible to calculate the
discrete mapping, equation (17), which is applied to the derivative of the flow.

The odel13 integrator is used for integration of the VE. It is a variable order
integrator for non-stiff differential equations. A stiff solver would have been
preferred but all ODE solvers of Matlab require the evaluation of the Jacobian.
Evaluating the Jacobian would be excessively hard due to the number of states
associated with integration of the VE (28 states for the EOM plus 28- 28 states
for the VE).
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EOM in Maple exmex EOM in C code
qlt = £ x = ql+qg2;
g2t = 0 F-- 7 £ = £(x);
1 S
! L2 qglt = £;
! % g2t = 0;
. . ! =
Common Sub Expressions in Maple_{J o
x = gl+q2 | % =
f = £(x(ql,q2)) Fe o E
o e -
[N N § g VE in C code
. . e 2 dxdgl = 1;
VE substitution list in Maple Zg'x‘ _____ Jdxdgqz = 1;
f(x(ql,q2)) = £(x) & go| | dfdx = £ x(x);
D[1] (f) (x(ql,q2)) = f_x(x) i dgltdgl = dfdx*dxdql;
diff(x(ql,qg2),9l) = dxdgl ! dgltdg2 = dfdx*dxdq2;
diff(x(ql,qg2),92) = dxdg2 | | i dg2tdgl = 0;
x(ql,g2) =X substitute dg2tdq2 = 0;

Figure 4. Showing the processing of the EOM and common subexpression feature
to generate both EOM and VE in C code.
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Figure 5. The different layers used during simulation of the EOM.
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Figure 6. The different layers used during integration of the equations of motions
(EOM) and variational equations (VE) together.

4.3  VISUALIZATION

During simulation, it is possible to animate the 3D walker. This visualization

can provide clues why a certain simulation has failed. During normal parameter

variations, it is wise to turn the animation off to reduce the execution time.
There is no mechanism for transferring the parameters of the simulation

to the visualization function. Therefore, the parameter set has to be declared

global in the Matlab environment.

4.4 PERIODIC ORBIT SEARCH

The search for periodic orbits uses the Newton-Raphson scheme, which require
the integration of the VE. The goal of the search is to find an initial condition
xo and a integration time Ty which returns the walker to the same configuration
xo after integrating the EOM a time Tj. This search can be written as

(I)(iﬂo,To) — Xy = 0 (18)

where the flow function ® satisfies ®(zo,t) = x(t) given x(0) = x¢. Since every
point on the trajectory of a periodic solution satisfy the above condition, a
Poincaré section is introduced to make the solution unique,

H () =0. (19)
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Given a good initial approximation of a periodic orbit (xq,Tp) we would now
like to get an update (Axo, ATy) which takes us closer to the periodic orbit.
Using the Newton-Raphson scheme, the equations to solve are,

fokii] 9P
Bz lwo, To ! W|930,T0 Ax _ _ ¢($07T0) — X0 (20)
oz lxg 0

where 0®/0x is obtained by integrating the VE with the identity matrix as
initial condition , 9®/0t is the vector field at the end of the integration. With
a sufficiently good initial approximation, the scheme is expected to converge.
In the implemented code, convergence is said to be reached when the difference
between the quadratic norm of two consecutive iterations is below some pre-
defined value. Although it is unphysical to compare angles and lengths, this
method has proven adequate.

The Poincaré section that is used corresponds to one of the knee angles
having a specific value. As the parameter is varied during the parameter search,
it can happen that an event moves through the Poincaré section. Therefore, an
automatic change of Poincaré section was implemented. This works by finding
the configuration having maximum time distance too any event. In Figure 7,
a flow chart is shown which describes the search for periodic orbits.

By using extrapolation, it is possible to speed up the search, requiring less
iterations. Termination of the search is done when the end of the parameter
path is reached or if the Newton-Raphson iterations doesn’t converge within
a specified number of iterations. It is not uncommon that convergence isn’t
obtained, Some possible causes are,

e No solution exists for the parameter set. Usually a saddle node or grazing
bifurcation has occurred. The grazing bifurcation might be due to foot
scuffing.

e The extrapolated initial condition and new parameter set is too far from
the periodic solution and therefore the walker has fallen during the sim-
ulation.

e The extrapolated initial condition and new parameter set is too far from
the periodic solution and therefore the Newton-Raphson scheme doesn’t
converge.

4.5 ADDITIONAL NOTES

To easily store and manage data about found periodic gaits, a Matlab struc-
ture was used to organize the information, see below. Among other things, the
structure contains information about the state after one stride, y;. This can
be used to find the step length as well as to find out if the walker walks at an
angle, i.e. doesn’t return to the nominal plane after one stride. Walking at an
angle results in different values in the first component of y¢ and y;, which cor-
responds to the hip center position. The threshold value, which is also found
in the structure, is used to signal when the Poincaré cut is too close to one
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Figure 7. Graph showing the main features of the code used for finding periodic
gaits during parameter variations.
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of the event surfaces and therefore needs to be changed. Because of this, the
value used for the Poincaré cut is also stored.

Table III. The Matlab structure used to store essential data about a found peri-
odic gait.

Ws =
ver: ’2.0° version number
date: ’99-10-07’ creation date/time
time: ’10.50’
auth: ’Jesper Adolfsson’
desc: ’Foot-width test’
yO: [1x28 doublel initial condition
TO: 1.6230 period time
stat0: [-1 -1 1 1 -1 1] initial discrete state
params: [86x1 double] parameters of the system
J1: [28x28 double] Jacobian of periodic orbit
yl: [1x28 doublel configuration after one stride
delta_t_thresh: 0.0500 threshold for pc-event
pc_in_y7: 0.3000 currently used Poincaré cut

4.6 SIMULATION EXAMPLE

Below, the command for invoking a simulation and the resulting output is
shown. As simulation is progressing the type and the time an event occurred
is printed. If visualization is turned on, the 3D-walker is drawn at the times
found in the integration time vector (third argument of stateflow).

Table IV. The output resulting from an ordinary gait cycle. Brackets with only
numbers represents the toe points and bracket containing k1l an k2 represents the
knees. Empty brackets correspond to an unlocked/detached state.

» [t,y,s,te,ye,ie,se]=stateflow(’odelbs’, ’walker_3d_ode’,
[0:0.05:ws.T0] ,ws.y0,options,ws.stat0,ws.params) ;

[ 10 1[k1]1[k2]1[22]1[21] 0.324756(s)
[111[ 1[k1][k2][22]1[21] 0.564310(s)
[11] [12] [k1] [k2] [22] [21] 0.574678(s)
[111[12] (k1] [k2]1[22]1[ ] 0.582882(s)
[111012] k11 (k21 [ 1[ 1 0.593838(s)
(1170121 k110 10 1[ 1 0.612024(s)
[1171[12] k11 k21 [ 1L 1 1.136243(s)
[117[12] (k11 (k21 [ 1[21] 1.375908(s)
[11] [12] [k1] [k2] [22] [21] 1.386299(s)
[ 10121 [k1][k2][22][21] 1.394484(s)
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[ 10 J1[x1][x2][22][21] 1.405455(s)
[ 10 10 J[x2]1[22][21] 1.423651(s)

In Figure 8, the walker is sampled at different characteristic events, during
eleven consecutive steps. In the upper right pane, the butterfly shaped mo-
tion of the hip center point 7" is shown. From this figure, it is clear that the
mechanism has motion in all spatial directions (cf. Human Walking [16]). The
parameters and initial conditions used, result in a weakly asymptotically stable
periodic gait. The largest eigenvalue of the linearized system is 0.9685. The
parameters and initial conditions of the 3D walker can be found in Table III
and IV. Note that this particular walker has an overlap in the feet of 0.10m.
In Figure 9, the time history for the knee and hip angle is shown. In addition,
the times for different events are shown. Note that after knee impact, the knee
angle is less than the hip angle, corresponding to a locked knee.

4.7  STABILITY CALCULATIONS

The search for periodic gaits are time consuming due to the size of the code
that compute the variational equations. Also, as previously mentioned, it is
common that the automatic search terminates due to different reasons, see
previous bullet list. Therefore, manual search can sometimes be preferred over
automatic search, such as interactively trying new parameter paths to avoid
problems. However, a comparably fast computer is needed to perform manual
search. The code has been tested on a computer equipped with the Compaq
Alpha EV6 processor yielding good performance when integrating the varia-
tional equations, which typically takes 20-30 seconds for one stride. Using this
computer, it typically takes a couple of working days to find all connected
solution branches of a found periodic gait.

5 Conclusion

The methods and code presented here provide a framework for simulation and
finding periodic gaits of a 3D passive walker. The methods and implemented
code are not only useful for studying 3D passive walking, but could also be
adapted for investigating other systems. The developed Matlab framework,
which handles continuos and discrete systems and integration of variational
equations, provide a good balance between flexibility and execution speed. The
integration of the variational equations provides improved robustness, speed,
and accuracy compared to using numerical derivatives. Using numerical deriva-
tives, one has to assure that the obtained derivatives are accurate. Using in-
tegration of variational equations, the accuracy is controlled by the accuracy
of the integration. In addition, calculating the Jacobian based on numerical
differentiation would require at least 28 integrations (same as the number of
states) of the equations of motion. This would approximately take twice the
time compared to integrating the variational equations, see Table II.
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Table V. Parameters used in the simulation of the 3D walker found in Figure 8. See
Figure 3 for a description of the mass and point labels used.

moments of inertia (kgm?)

Body mass (kg) X y zZ Xy Xz vz
T 0.800 2.0000 2.0180 2.4000 0.0 0.0 0.0
Uy, Us 2.354 0.0080 0.0010 0.0100 0.0 0.0 0.0
L1, Lo 1.013 0.0393 0.0010 0.0100 0.0 0.0 0.0
Point Label x (m) y (m) z (m) Ref. frame
Tom 0.0000 0.0000 0.0000 T

U, -0.1000 0.0000 0.0000 )%

Us 0.1000 0.0000 0.0000 v
Uem1;Ucm2 0.0000 -0.0910 0.0000 U, Us
Ly, Lo 0.0000 -0.3500 0.0000 Uy, Us
Lemts Lemo 0.0000 -0.1663 0.0432 L1, Lo
Ly 0.0000 -0.3132 0.1050 L1

Ly -0.1500 -0.3132 0.1050 L1

Loy 0.0000 -0.3132 0.1050 Lo

Lo 0.1500 -0.3132 0.1050 Lo
Hip/Knee Value Plane Value

Kknoe 500.0 Nmrad ! Ky, Ky, k2 5000 Nm !

Cknee 20.0 Nmsrad ™! Cyy Cxy Cx 500 Nsm~!

Chip 0.04 Nmsrad™? @ 0.08 rad

Table VI. Initial condition used for the direct numerical simulation of the 3D passive

walker found in Figure 8.

Configuration

State  Value State  Value

Q1 om q10 -7.1645-10"° rad

@ 6.6037-10 ' m q11 1.3116:10 ' m

q3 m q12 -2.7171-10 ' m

qa -2.7728-10"! rad Q13 -1.8835-10 2 m

a5 1.4256-1072 rad q14 -2.7199-10 1 m

s 4.9098:1072 rad q15 -6.5930-10 % m

g7 2.2721-1072 rad q16 7.4855-10 2 m

qs 7.9218:10" ! rad q17 8.4060-10 2 m

q9 4.7757-1072 rad q18 7.4581-10 2 m
Velocities

State  Value State  Value

Uy -1.8026:10 2 ms~! Uug 1.8713-10~2 rads ™!
Us 1.6363-10 3 ms™! wr -3.9031-107° rads~!
U3 1.2288:10 " ms™! ug 5.2527-107° rads™!
Uy 3.6005-10"% rads™!  wg 1.9532:107 ! rads~!
us 5.6527-102 rads~! wj9  -1.5636-10 2 rads~!
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Figure 8.  Stick animation of a stable periodic gait of the 3D passive walker. Pa-
rameters and intial conditions from Table IV and V. Toe clearance refers to the
configuration having nonzero local minimum in the toe point point distance to the
ground plane.

5.1 OUTLOOK

One of the goals of the parameter search is to find parameter sets that are
possible to implement. Note that the parameters used here are hard to realize
due to the high moment of inertia radius for the torso, 1.7m. As mentioned
before, the parameter path to an implementable configuration might include
many detours in parameter space. Therefore, fast execution of the integration
of the variational equations is important. As seen in Table II, most of the
execution time is spent in the integrators, thus faster integrators would sig-
nificantly improve execution speed. This could be accomplished by switching
from the integrators implemented in Matlab code to their C versions, which are
available in the Matlab C/C++ library. Another speed increase would be to
get rid of the extra layers associated with the developed framework. However,
this might include major changes of the code and export routines. The time
spent in the integrator, during integration of the equations of motion, account
for almost 60% of the execution time. Thus, a switch to faster integrators, in
combination with using the 'tryhard’ option to optimize could result in almost
real-time performance. This could inspire many new interesting studies, such
as real-time control by a human operator. In essence, one could learn how to
walk, start, and stop in a simulated environment. Since it would be possible
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Figure 9. The time evolution for the upper leg and lower leg. Upper leg angle
correspond to g7 and lower leg angle to g7 + gs.

to record the control signals, ideas on how human control their walking might
be obtained.

Since the dynamical systems usually undergo bifurcations during parameter
searches, an automatic scheme for finding the resulting solution branches would
be desirable. Schemes like this have been implemented in various programs,
see Olsson [14].

A database for storing found periodic gaits would be beneficial in the search
for new possible configurations. Such a database should store all previous found
gaits and be able to answer which of the previous found periodic gaits is closest
to the new wanted configuration, thus simplify the search.

6 Appendix

6.1 MAPLE/SOPHIA CODE
The Maple sessions is reset and the Sophia library is read:
> restart;
> read ‘sophiaV5¢;
The continuous state variables are declared as being functions of time:

> &kde (10) ;
> dependsTime(seq(p.g,g=1..8));

6.1.1 Frame relations

Frame relations are defined, starting with the rotation from inertial reference
frame N to the intermediate frame V and torso reference frame 7 and contin-
uing with left and right upper and lower legs:
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> chainSimpRot ([N,T1,3,q6], [T1,V,2,95], [V,T,1,q41);
> chainSimpRot ([V,UL1,1,q7], [UL1,LL1,1,q98]);
> chainSimpRot ([V,UL1,1,q7], [UL1,LL1,1,q98]);

6.1.2 Geometry
All relevant points of the walker are defined. The absolute positions of the
centers of mass are defined using partitioned vectors. This reduce the computa-
tional complexity during derivation of the equations of motion, see Lennartsson
8]

> rbody_hip_center:=N &ev [ql,q92,q3];

> r_torso_cm_rel :=B &ev [rx,ry,rz];

> rlegl_jointpos :=V &ev [rl11,0,0];
> rleg2_jointpos :=V &ev [r121,0,0];

ULl &ev [rlilul,rliu2,rliu3];
UL2 &ev [rl2ul,rl2u2,rl2u3];

> rlegl_upper_cm_rel:
> rleg2_upper_cm_rel:

UL1 &ev [0,11u,0];
UL2 &ev [0,12u,0];

> rlegl_upper_jointpos_rel:
> rleg2_upper_jointpos_rel:

LL1 &ev [r1111,r1112,r1113];
LL2 &ev [rl1211,r1212,r1213];

> rlegl_lower_cm_rel:
> rleg2_lower_cm_rel:

> rbody_cm:=mkc(rbody_hip_center,r_torso_cm_rel);

> leglupper_cm:=mkc(rbody_hip_center,
rlegl_jointpos, rlegl_upper_cm_rel):

> rleg2upper_cm:=mkc(rbody_hip_center,
rleg2_jointpos,rleg2_upper_cm_rel):

> rlegilower_cm:=mkc(rbody_hip_center,
rlegl_jointpos,rlegl_upper_jointpos_rel,
rlegl_lower_cm_rel):

> rleg2lower_cm:=mkc(rbody_hip_center,
rleg2_jointpos,rleg2_upper_jointpos_rel,
rleg2_lower_cm_rel):

6.1.3 KDE

The KDE is derived by expressing the velocity of the point T" in the intermedi-
ary reference frame V (no ¢4 rotation) and setting the expression for velocities
and angular velocitites the generalized speeds and generalized velocities equal.
Note that the KDE for the toe contact points are included in the new KDE:

> v_body_hipcenter:= V &ev [ul,u2,u3];
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\4

omega_body:=V &ev [u4,u5,u6];
v_body_hipcenter_qt:= diffFrameTime(rbody_hip_center,N);
> omega_body_qt:=N &aV B;

\%

\4

ikde:={seq((V &to v_body_hipcenter &c i) =

(V &to v_body_hipcenter_qt) &c i,i=1..3),

seq((V &to omega_body &c i) =

(V &to omega_body_qt) &c i,i=1..3),

seq(p. (2*%i-1).t=-qlt,i=1..4),seq(p.(2%i) .t=-q3t,i=1..4)};

> kde_new := simplify(solve(ikde,
{seq(q.i.t,i=1..6),seq(p.i.t,i=1..8)}) union
{seq(q.i.t=u.i,i=7..10)} );

6.1.4 Velocities and angular wvelocities
Velocities of the center of mass points and angular velocities expressed in the
generalized speeds. Please note the cdft command (frame-based differentia-
tion), which is used on partitioned vectors. The ccpt command is used to
remove zero elements in the partioned vectors.

> v_body_cm := ccpt(map(Esimplify,subs(kde_new,cdft(rbody_cm,N)))):

> vleglupper_cm :=

ccpt (map(Esimplify, subs(kde_new,cdft(rleglupper_cm,N)))):

> vleg2upper_cm :=

ccpt (map (Esimplify, subs(kde_new,cdft (rleg2upper_cm,N)))):
> vlegllower_cm :=

ccpt (map (Esimplify, subs(kde_new,cdft(rlegllower_cm,N)))):
> vleg2lower_cm :=

ccpt (map(Esimplify, subs(kde_new,cdft(rleg2lower_cm,N)))):

omega_leglupper := &simp subs(kde_new,N &aV UL1):
omega_leg2upper := &simp subs(kde_new,N &aV UL2):
omega_legllower := &simp subs(kde_new,N &aV LL1):
omega_leg2lower := &simp subs(kde_new,N &aV LL2):

vV V V V

6.1.5 Momentum and angular momentum
The csm command is used to perform scalar multiplication on partitioned vec-
tors. The angular momentum is stated using ordinary Sophia syntax.

> pbody:=csm(m_body,v_body_cm) :

> pleglupper:=csm(mliu,vleglupper_cm) :

> pleg2upper:=csm(ml2u,vleg2upper_cm) :

> plegllower:=csm(mlll,vlegllower_cm) :

> pleg2lower:=csm(ml2l,vleg2lower_cm) :

\4

I_body:=EinertiaDyad(I_B11,I_B22,I_B33,I_B12,I_B13,I_B23,B):
hbody:=I_body &o omega_body:

\4
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> I_leglupper:=EinertiaDyad(I_LU111,I_LU122,I_LU133,
I_LU112,I_LU113,I_LU123,UL1):
> hleglupper:=I_leglupper &o omega_leglupper:

> I_leg2upper:=EinertiaDyad(I_LU211,I_LU222,I_LU233,
I_LU212,I_LU213,I_LU223,UL2):
> hleg2upper:=I_leg2upper &o omega_leg2upper:

> I_legllower:=EinertiaDyad(I_LL111,I_LL122,T_LL133,
I_LL112,T_LL113,I_LL123,LL1):
> hlegllower:=I_legllower &o omega_legllower:

> I_leg2lower:=EinertiaDyad(I_LL211,I_LL222,I_LL233,
I_LL212,I_LL213,I_LL223,LL2):
> hleg2lower:=I_leg2lower &o omega_leg2lower:

6.1.6 Inertial forces and torques
The inertial forces and torques are transferred into partitioned vectors.

> ptbody :=map (Esimplify, subs(kde_new,cdft (pbody,N))):
ptleglupper:=map(Esimplify,subs(kde_new,cdft(pleglupper,N))):
ptleg2upper:=map(Esimplify,subs(kde_new,cdft (pleg2upper,N))):
ptlegllower:=map(Esimplify,subs(kde_new,cdft(plegllower,N))):
ptleg2lower:=map(Esimplify,subs(kde_new,cdft(pleg2lower,N))):

vV V V VvV

htbody:=mkc( &simp subs(kde_new,N &fdt hbody) ):

htleglupper:=mkc( &simp subs(kde_new,N &fdt hleglupper) ):
htleg2upper:=mkc( &simp subs(kde_new,N &fdt hleg2upper) ):
htlegllower:=mkc( &simp subs(kde_new,N &fdt hlegllower) ):
htleg2lower:=mkc( &simp subs(kde_new,N &fdt hleg2lower) ):

V V. V Vv V

6.1.7 Velocity K-vector and tangent wvector

> vK:=[ v_body_cm, vleglupper_cm, vleg2upper_cm,
vlegllower_cm, vleg2lower_cm, mkc(omega_body),
mkc (omega_leglupper), mkc(omega_leg2upper),
mkc (omega_legllower), mkc(omega_leg2lower)]

> tauK:=Kctau(vK, [seq(u.i,i=1..10)]):

6.1.8 Toe forces and torques
Maple procedure for extracting the variables that an expression depends on,
given a list of possible variables:

> check_args:=proc(expr,args)

> local temp_args,i;

> temp_args:=[]:

> for i in args do

29



J. Adolfsson

if depends(expr,i) then temp_args:=[op(temp_args),il; fi;
od;
RETURN (op (temp_args)) ;
end:

args:=seq(q.i,i=1..10),seq(u.i,i=1..10);

6.1.9 First foot first toe
The position and velocity for the first toe point of the first foot:

>

>

rtoell:=&simp (N &to (rbody_hip_center &++ rlegl_jointpos &++
rlegl_upper_jointpos_rel &++ (LL1 &ev [xtll,ytll,zt11])) ):
vtoell:=&simp (N &to subs(kde_new,N &fdt rtoell)):

Find the variables that the above expressions depends on. Since the toe position
is given relative to the hip point 7', the expressions are subtracted with ¢; and
g3 in the appropriate directions.

>
>
>

x11_args:=check_args((rtoell &c 1)-qil, [args]):
y11_args:=check_args(rtoell &c 2, [args]):
z11_args:=check_args((rtoell &c 3)-q3, [args]):

vxll_args:=check_args(vtoell &c 1, [args]):
vyll_args:=check_args(vtoell &c 2, [args]):
vzll_args:=check_args(vtoell &c 3, [args]):

The torque acting on the lower leg is derived:

>

toell_cmlll_cross_f:=&simp ((N &to ((LL1 &ev [xtl1,ytil,zt11])
&—- (LL1 &ev [r1111,r1112,711131))) &xx

(N &ev [toefx(statll,x11(x11_args),vxll(vxll_args),kX,dX,pl),
toefy(statll,yl1(yll_args),vyll(vyll_args),kY,dY),
toefz(statll,z11(z11_args),vzl1l(vzll_args) ,kZ,dZ,p2)]1)):

Common sub expressions used later in force calculations:

>

toell_list:=[
x11=(rtoell &c 1)-qi,
yll=rtoell &c 2,
z11=(rtoell &c 3)-q3,

vxll=vtoell &c 1,
vyll=vtoell &c 2,
vzll=vtoell &c 3,

fxl1l=toefx(statll,x11(x11_args),vxll(vxll_args),kX,dX,pl),
fyli=toefy(statll,yl1(yll_args),vyll(vyll_args),kY,dY),
fzll=toefz(statl1l,z11(z11_args),vzl1(vzll_args) ,kZ,dZ,p2),

txl1l=toell_cmlll_cross_f &c 1,
tyll=toell_cmlll_cross_f &c 2,
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tzll=toell_cmlll_cross_f &c 3
]:
The VE substitution list associated with this toe is created:

> dsetll:=[
D[2] (toefx) (statll,x11(x11_args),vx1l(vxll_args),kX,dX,pl)=
toefx_x(statll,x11,vx11,kX,dX,pl),
D[3] (toefx) (statll,x11(x11_args),vxll(vxll_args) ,kX,dX,pl)=
toefx_vx(statll,x11,vx11,kX,dX,pl),
D[2] (toefy) (statll,yl1(yll_args),vyll(vyll_args),kY,dY)=
toefy_y(statll,yill,vyll, kY,dY),
D[3] (toefy) (statll,yl1(yll_args),vyll(vyll_args),kY,dY)=
toefy_vy(statll,yll,vyll,kY,dY),
D[2] (toefz) (statll,z11(z11_args),vzl1l(vzll_args) ,kZ,dZ,p2)=
toefz_z(statll,z11,vz11,kZ,dZ,p2),
D[3] (toefz) (statll,z11(z11_args),vzll(vzll_args) ,kZ,dZ,p2)=
toefz_vz(statll,zl11l,vz11,kZ,dZ,p2),
D[6] (toefx) (statll,x11(x11_args),vxll(vxll_args) ,kX,dX,pl)=
toefx_p(statll,x11,vx11,kX,dX,pl),
D[6] (toefz) (statll,z11(z11_args),vzl1(vzll_args) ,kZ,dZ,p2)=
toefz_p(statll,zll,vz11,kZ,dZ,p2),

seq(diff(x11(x11_args),i)=dx11d.i,i=x11_args),
seq(diff (vx11(vxll_args),i)=dvxild.i,i=vx1l_args),
x11(x11_args)=x11,

vx11l(vx1ll_args)=vxil,

seq(diff(y11(yll_args),i)=dylld.i,i=y11_args),
seq(diff (vyl1(vyll_args),i)=dvylld.i,i=vyll_args),
y11(y1ll_args)=yl1,

vyli(vyll_args)=vyll,

seq(diff(z11(z11_args),i)=dz11d.i,i=z11_args),
seq(diff(vz11(vzll_args),i)=dvzlld.i,i=vzll_args),
z11(z11_args)=z11,
vz1l(vzll_args)=vzil

1:

6.1.10 First foot second toe

Instead of repeating all the above with parameters relating to the second toe,
a reuse of the above list is done and substitutions are made where neccessary.
The toe point dependence on state variables is the same as the first toe.

> x12_args:=x11_args:
> yl12_args:=yll_args:
> z12_args:=z11_args:
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> vx12_args:=vxll_args:
> vyl2_args:=vyll_args:
> vz12_args:=vzll_args:
Substitution list:

> from_toell_to_toel2_sset:={
xtll=xt12,ytll=yt12,zt11=2t12,
r1111=r1111,r1112=r1112,r1113=r1113,
toefx(statll,x11(x11_args))=toefx(statl12,x12(x12_args)),
toefy(statll,yl11(yll_args))=toefy(statl2,y12(yl2_args)),
toefz(statll,z11(z11_args))=toefz(statl12,z12(z12_args)),
x11=x12,vx11=vx12,
yli=y12,vyll=vyl2,
z11=2z12,vz11=vz12,
statll=statl2,
p1=p3,p2=p4,
seq(dx11d.i=dx12d.i,i=x12_args),
seq(dvx1lld.i=dvx12d.i,i=vx12_args),
seq(dyl1d.i=dyl12d.i,i=y12_args),
seq(dvylid.i=dvyl2d.i,i=vyl2_args),
seq(dz11d.i=dz12d.i,i=z12_args),
seq(dvzl1id.i=dvz12d.i,i=vz12_args),
fx11=£fx12,£fyl11=£fy12,fz11=£z12,
tx11=tx12,tyll=tyl12,tz11=tz12
}:
This list is now substituted into the position and velocity expression, as well
as torque and VE substitution list:

> rtoel2:=subs(from_toell_to_toel2_sset,rtoell):

> vtoel2:=subs(from_toell_to_toel2_sset,vtoell):

> toel2_cmlll_cross_f:=subs(from_toell_to_toel2_sset,
toell_cmlll_cross_f):

> toel2_list:=subs(from_toell_to_toel2_sset,toell_list):

> dset12:=subs(from_toell_to_toel2_sset,dsetll):

6.1.11 Second foot first toe

The toe points of this leg is functions of the angles g9 and g1, thus a state vari-

able substitution has to take place together with the parameter substitution.

> from_legl_to_leg2:={q7=99,q8=q10,u7=u9,u8=ul0}:

> x21_args:=seq(subs(from_legl_to_leg2, [x11_args]) [i],
i=1..nops([x11_args])):

> y21_args:=seq(subs(from_legi_to_leg2, [yll_args]) [i],
i=1..nops([yll_args])):

> z21_args:=seq(subs(from_legl_to_leg2, [z11_args]) [i],
i=1..nops([z1l_args])):

> vx21_args:=seq(subs(from_legl_to_leg2, [vx1l_args]) [i],
i=1..nops([vx1l_args])):
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> vy21_args:=seq(subs(from_legl_to_leg2, [vyll_args]) [i],
i=1..nops([vyll_args])):

> vz21_args:=seq(subs(from_legl_to_leg2, [vz1ll_args]) [i],
i=1..nops([vzll_args])):

> from_toell_to_toe21_sset:={
xtl1l=xt21,ytll=yt21,zt11=2t21,
rl111=r1211,r1112=r1212,r1113=r1213,
rlil=rl21,
11u=12u,
toefx(statll,x11(x11_args))=toefx(stat21,x21(x21_args)),
toefy(statll,yl1(yll_args))=toefy(stat21l,y21(y21_args)),
toefz(statll,z11(z11_args))=toefz(stat21,z21(z21_args)),
x11=x21,vx11=vx21,
yll=y21,vyll=vy21
z11=z21,vz11=vz21,
statll=stat21,
p1=p5,p2=p6,
seq(dx11d.i=dx21d.1i,i=x21_args),
seq(dvx11ld.i=dvx21d.i,i=vx21_args),
dx11dq7=dx21dq9,dx11dg8=dx21dq10,
dvx11dq7=dvx21dq9,dvx11dq8=dvx21dql0,
dx11du7=dx21du9,dx11du8=dx21dulo,
dvx11ldu7=dvx21du9,dvx11du8=dvx21dulo,
seq(dyl1ld.i=dy21d.1i,i=y21_args),
seq(dvylid.i=dvy21d.i,i=vy21_args),
dy11dq7=dy21dq9,dy11dqg8=dy21dqi0,
dvyl1dq7=dvy21dq9,dvy11dq8=dvy21dql0,
dy11du7=dy21du9,dy11du8=dy21dulo,
dvylldu7=dvy21du9,dvyl1du8=dvy21dulo,
seq(dz11d.i=dz21d.i,i=z21_args),
seq(dvzl1id.i=dvz21d.i,i=vz21_args),
dz11dq7=dz21dq9,dz11dq8=dz21dq10,
dvz11dq7=dvz21dq9,dvz11dg8=dvz21dql0,
dz11du7=dz21du9,dz11du8=dz21dui0,
dvzi11ldu7=dvz21du9,dvz11du8=dvz21dulo0,
fx11=£fx21,fy11=~£fy21,fz11=£fz21,
tx11=tx21,tyll=ty21,tz11=tz21

}:

> rtoe2l:=subs(from_legl_to_leg?2,
subs(from_toell_to_toe2l_sset,rtoell)):

> vtoe2l:=subs(from_legl_to_leg?2,
subs (from_toell_to_toe2l_sset,vtoell)):

> toe21_cmll2_cross_f:=subs(from_legl_to_leg2,
subs (from_toell_to_toe21_sset,toell_cmlll_cross_£f)):
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> toe21_list:=subs(from_legl_to_leg2,
subs (from_toell_to_toe2l_sset,toell_list)):
> dset21:=subs(from_legl_to_leg?2,
subs(from_toell_to_toe2l_sset,dsetll)):

6.1.12 Second foot second toe
See first foot second toe for an explanation.
> x22_args:=x21_args:
y22_args:=y21_args:
z22_args:=z21_args:
vx22_args:=vx21_args:
vy22_args:=vy2l_args:
vz22_args:=vz21_args:

V V V VvV V

> from_toe21_to_toe22_sset:={
xt21=xt22,yt21=yt22,zt21=2t22,
r1211=r1211,r2112=r1212,r1213=r1213,
toefx(stat21,x21(x21_args))=toefx(stat22,x22(x22_args)),
toefy(stat21,y21(y21_args))=toefy(stat22,y22(y22_args)),
toefz(stat21,z21(z21_args))=toefz(stat22,z22(z22_args)),
x21=x22,vx21=vx22,
y21=y22,vy21=vy22,
z21=2z22,vz21=vz22,
stat21=stat22,
p5=p7,p6=p8,
seq(dx21d.i=dx22d.1,i=x22_args),
seq(dvx21d.i=dvx22d.i,i=vx22_args),
seq(dy21d.i=dy22d.i,i=y22_args),
seq(dvy21d.i=dvy22d.1i,i=vy22_args),
seq(dz21d.i=dz22d.1i,i=222_args),
seq(dvz21d.i=dvz22d.1i,i=vz22_args),
£x21=£fx22,fy21=£y22,£221=£222,
tx21=tx22,ty21=ty22,tz21=tz22

> rtoe22:=subs(from_toe2l_to_toe22_sset,rtoe2l):

> vtoe22:=subs(from_toe2l_to_toe22_sset,vtoe2l):

> toe22_cmll2_cross_f:=subs(from_toe2l_to_toe22_sset,
toe21_cmll2_cross_f):

> toe22_list:=subs(from_toe21_to_toe22_sset,toe21_list):

> dset22:=subs(from_toe2l_to_toe22_sset,dset21):

6.1.13 Knee
Knee torque functions used for both legs and the associated VE substitution
list:

> kneel_list:=[Tlegll=knee(statkl,q8,u8,knee_k,knee_d,knee_d_reb)]:
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> knee2_list:=[Tleg2l=
knee(statk2,q10,ul0,knee_k,knee_d,knee_d_reb)]:

> dset_knees:=[
diff (knee(statkl,q8,u8,knee_k,knee_d,knee_d_reb),q8)=
knee_q(statkl,q8,u8,knee_k,knee_d,knee_d_reb),

diff (knee(statkl,q8,u8,knee_k,knee_d,knee_d_reb) ,u8)=
knee_u(statkl,q8,u8,knee_k,knee_d,knee_d_reb),

diff (knee(statk2,q10,ul0,knee_k,knee_d,knee_d_reb),ql0)=
knee_q(statk2,q10,ul0,knee_k,knee_d,knee_d_reb),

diff (knee(statk2,q10,ul0,knee_k,knee_d,knee_d_reb) ,ull)=
knee_u(statk2,q10,ul0,knee_k,knee_d,knee_d_reb)
]:

6.1.14 Hip

Hip torque function used for both legs and the associated VE substitution list:
> hipl_list:=[Tlegl=hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d)]:

> hip2_list:=[Tleg2=hip(q4,q9,u4,u9,hip_k,hip_delta,hip_d)]:

> dset_hips:=[
diff (hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d),q4)
hip_q_1(q4,q7,u4,u7,hip_k,hip_delta,hip_d),

diff (hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d),q7) =
hip_q_2(q4,q7,u4,u7,hip_k,hip_delta,hip_d),

diff(hip(g4,q7,u4,u7,hip_k,hip_delta,hip_d),ud) =
hip_u_1(q4,q7,u4,u7,hip_k,hip_delta,hip_d),

diff (hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d),u7) =
hip_u_2(q4,q7,u4,u7,hip_k,hip_delta,hip_d),

diff(hip(g4,q9,u4,u9,hip_k,hip_delta,hip_d),q4) =
hip_q_1(g4,99,u4,u9,hip_k,hip_delta,hip_d),

diff (hip(q4,q9,u4,u9,hip_k,hip_delta,hip_d),q9) =
hip_q_2(q4,q9,u4,u9,hip_k,hip_delta,hip_d),

diff (hip(g4,q9,u4,u9,hip_k,hip_delta,hip_d),ud) =
hip_u_1(g4,99,u4,u9,hip_k,hip_delta,hip_d),

diff (hip(q4,q9,u4,u9,hip_k,hip_delta,hip_d),u9) =
hip_u_2(q4,q9,u4,u9,hip_k,hip_delta,hip_d)
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]:

6.1.15 Forces and torques
These are the forces and torques applied to the walker:

> Fbody:=N &ev [0, -m_body*g*cos(theta), -m_body*g+*sin(theta)]:
> Tbody:=V &ev [Tlegl+Tleg2,0,0]:

> Fleglupper:=N &ev [0,-mlluxg*cos(theta),-mllu*g*sin(theta)]:
> Tleglupper:=V &ev [-Tlegl+Tlegll,0,0]:

> Fleg2upper:=N &ev [0,-ml2u*g*cos(theta),-ml2u*g*sin(theta)]:
> Tleg2upper:=V &ev [-Tleg2+Tleg21,0,0]:

> Flegllower:=N &ev [fx11+fx12,fyl1+fy12-ml1l*g*cos(theta),
fz11+fz12-m111*g*sin(theta)]:

> Tlegllower:=(UL1 &ev [-Tlegll,0,0]) &++
(N &ev [tx11+tx12,tyll+tyl2,tz11+tz12]):

> Fleg2lower:=N &ev [fx21+fx22,fy21+fy22-m121*g*cos(theta),
£z21+£222-m121*g*sin(theta)]:

> Tleg2lower:=(UL2 &ev [-Tleg21,0,0]) &++
(N &ev [tx21+tx22,ty21+ty22,tz21+t222]):

6.1.16 Kane’s method

Assemble the inertial forces and applied forces into K-vectors of partitioned
vectors:

> pKt:=[ptbody, ptleglupper, ptleg2upper, ptlegllower, ptleg2lower,
htbody, htleglupper, htleg2upper, htlegllower, htleg2lower]:

> RKt:=[mkc (Fbody) ,mkc(Fleglupper) ,mkc(Fleg2upper) ,mkc(Flegllower),
mkc (Fleg2lower) , mkc(Tbody) ,mkc(Tleglupper) ,mkc(Tleg2upper),
mkc(Tlegllower) ,mkc(Tleg2lower)]:

> kane_eq:=map(simplify,ckane(tauk,pKt,RKt)):

6.1.17 Matlab  export
The common sub expressions are assembled:
> cse:=[op(toell_list),op(toel2_list),
op(toe21_list),op(toe22_list),op(kneel_list),op(knee2_list),
op(hipl_list) ,op(hip2_list)]:
The VE substitution list is assembled:

> dset:=[op(dsetll),op(dsetl2),op(dset21),op(dset22),
op(dset_knees) ,op(dset_hips)]:
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> uts := [ult,u2t,u3t,udt,ubt,ubt,u7t,u8t,udt,ulot]:

> kde_new_ordered:=[seq(q.i.t=subs(kde_new,q.i.t),i=1..10),
seq(p.i.t=subs(kde_new,p.i.t),i=1..8)]:

> gts := [qlt,q2t,q3t,q4t,q5t,q6t,q7t,q8t,q9t,ql0t,
plt,p2t,p3t,pdt,p5t,pbt,p7t,p8t]:

> vars:=[ql,92,93,94,95,96,97,98,99,910,
pl,p2,p3,p4,p5,p6,p7,p8,ul,u2,ud,us,ub,u6,u7,u8,ud,ulo] :
The names of the parameters are listed. Note that space is reserved for the
discrete states in the parameter list. At simulation time the discrete states are
transfered into the parameter list since Matlab’s ODE solvers does not support
discrete states
> para:=[
rX,ry,rz,
rlii,
rl21,
rliul,rliu2,rliu3,
rl2ul,rl2u2,rl12u3,
11iu,12u,
r1111,r1112,r1113,
r1211,r1212,r1213,
I_B11,I_B22,I_B33,I_B12,I_B13,I_B23,
I_LU111,TI_LU122,T_LU133,I_LU112,T1_LU113,I_LU123,
I_LU211,I_LU222,I_LU233,I_LU212,I_LU213,I_LU223,
I_LL111,T_LL122,T_LL133,I_LL112,T _LL113,I_LL123,
I_LL211,I_LL222,T_LL233,I_LL212,T_LL213,I_LL223,
m_body,mllu,ml2u,ml1l1,ml121,g,theta,
kX,dX,kY,dY,kZ,dZ,
knee_k,knee_d,knee_d_reb,
hip_k,hip_delta,hip_d,
statkl,statk2,
xtll,ytl1,zt1l,statll,
xt12,yt12,zt12,statl2,
xt21,yt21,zt21,stat21,
xt22,yt22,2t22,stat22
]:
The list contaning the event functions are expressed. The list with all elements
set to one, tells Matlab to stop integrating when the corresponding event occurs.
The list of "stats” tell Matlab to trigger the event on the correct flank.

> b:=[

[
[yll=rtoell &c 2,
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y12=rtoel2 &c 2,
y21=rtoe2l1 &c 2,
y22=rtoe22 &c 2
1,
[y11,y12,y21,y22,98,q10]
[1’1’1’1’1!1] 3
[statl1l,stat12,stat21,stat22,statkl,statk2]
1:
Include file and the path where file should be exported:

> inc:=‘includes‘=[¢’’walker_3D_external.c’’‘]:
> path:=*:

6.1.18 Export of equations of motion

This exports the KDE and EOM to a Matlab compatible C file, which can be
used directly by the ODE integrators of Matlab. Note that the VE substitution
list dset is substituted into the common sub expression cse as to make them C
friendly.

> exmex (‘walker_3D‘,path, [[op(kde_new_ordered)]],
[kane_eq,uts], [op(subs(dset,cse))],
[op(qts) ,op(uts)],vars,parameters=para,
’y5°=[’events’=b],inc);

6.1.19 Export of wariational equations

The option ’variationaleqs’ is used to generate the variation equations. Here,

the VE substitution list is given as an argument since the substitution needs

to take place after exmezx has internally generated the equations.

> exmex (‘walker_3D_stab_1°‘,path, [[op(kde_new_ordered)]],

[kane_eq,uts], [op(cse)], [op(qts) ,op(uts)],
vars,variationaleqs,parameters=para,
diffset=dset,’vb’=[’events’=b],inc);

6.1.20 Helper  functions

Export of functions to calculate the position of the toes and the basis vectors
of each frame:

> toell := matrix(1,3, [rtoell &c 1, rtoell &c 2, rtoell &c 3]):
toel2 := matrix (1,3, [rtoel2 &c 1, rtoel2 &c 2, rtoel2 &c 3]):
toe21 := matrix(1,3,[rtoe21 &c 1, rtoe2l &c 2, rtoe2l &c 3]):
toe22 := matrix(1,3,[rtoe22 &c 1, rtoe22 &c 2, rtoe22 &c 3]):

vV V V
non

exmat (’pos_toell’ ,path,toell,vars,para, ’matlab’);
exmat (’pos_toel2’ ,path,toel2,vars,para, 'matlab’);
exmat (’pos_toe21’ ,path,toe2l,vars,para, ’matlab’);
exmat (’pos_toe22’ ,path,toe22,vars,para, ’matlab’);

vV V V V
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> exmat (°VtoN’,path,Rmx(N,V),vars, ’matlab’);
> exmat (°UL1toV’,path,Rmx(V,UL1) ,vars, matlab’);
> exmat (’UL2toV’,path,Rmx (V,UL2) ,vars, ‘matlab’);

Export of the derivatives of the discontinuous jump in state variables during
toe impact:

> Gl1l:=[seq(q.i,i=1..10), (rtoell &c 1)-qil,

(rtoell &c 3)-q3,p3,p4,p5,p6,p7,p8,seq(u.i,i=1..10)]:
> G12:=[seq(q.i,i=1..10),p1,p2, (rtoel2 &c 1)-qi,

(rtoel2 &c 3)-q3,p5,p6,p7,p8,seq(u.i,i=1..10)]:

> G21:=[seq(q.i,i=1..10),p1,p2,p3,p4, (rtoe2l &c 1)-qi,
(rtoe21 &c 3)-q93,p7,p8,seq(u.i,i=1..10)]:

> G22:=[seq(q.i,i=1..10),p1,p2,p3,p4,p5,p6,
(rtoe22 &c 1)-q1, (rtoe22 &c 3)-q3,seq(u.i,i=1..10)]:

> qus:=[seq(q.i,i=1..10),seq(p.i,i=1..8),seq(u.i,i=1..10)];

Gx11 :
Gx12 :
Gx21 :
Gx22 :

matrix(28,28,[1);
matrix(28,28,[1);
matrix (28,28, [1);
matrix(28,28,[1);

for i from 1 to 28 do
for j from 1 to 28 do
Gx11[i,j]:=diff(G11[i], qus[jl):
Gx12[i,j]:=diff(G12[i], qus[jl):
Gx21[i,jl:=diff(G21[1i], qus[jl):
Gx22[1,j]:=diff(G22[i], qus[jl):
od:
od;

V VV VYV VVVVVVYVYV

exmat (°Gx11’,path,Gx11,qus,para, ‘matlab’);
exmat (°Gx12’,path,Gx12,qus,para, ‘matlab’);
exmat (°Gx21’ ,path,Gx21,qus,para, ‘matlab’);
> exmat (°Gx22’,path,Gx22,qus,para, ’matlab’);

VvV V V

Derivatives of the discontinuity surfaces associated with toe impacts:

> qus:=[seq(q.i,i=1..10),seq(p.1,i=1..8),seq(u.1,i=1..10)];

> mxtoell := matrix(28,1,[]);
> mxtoel2 := matrix(28,1,[]);
> mxtoe2l := matrix(28,1,[]1);
> mxtoe22 := matrix(28,1,[]);
> i:=1;
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for ii in qus do
mxtoell[i,1] :=diff(rtoell &c
mxtoel2[i,1] :=diff (rtoel2 &c
mxtoe21[i,1] :=diff(rtoe2l1 &c
mxtoe22[i, 1] :=diff (rtoe22 &c

i:=i+1;

od:

ii);
ii);
ii);
ii);

NN NN

-

exmat (’Ntoell’ ,path,mxtoell,qus,para,’matlab’);
exmat (’Ntoel2’ ,path,mxtoel2,qus,para, ‘matlab’);
exmat (’Ntoe21’ ,path,mxtoe2l,qus,para, ‘matlab’);
exmat (’Ntoe22’ ,path,mxtoe22,qus,para, *matlab’);

Bibliography

1]

Adolfsson, J.: 2000a, ‘Finding an Implementable 3D Passive Walker using
Continuation Methods’. Technical report, KTH, Department of Mechanics.

Adolfsson, J.: 2000b, ‘Planar Passive Walkers: Code Implementation Is-
sues’. Technical report, KTH, Department of Mechanics.

Adolfsson, J., H. Dankowicz, and A. Nordmark: 2001, ‘3D Passive Walk-
ers: Finding Periodic Gaits in the Presence of Discontinuities’. Nonlinear
Dynamics 24(2), 205-229.

Coleman, M. and A. Ruina: 1998, ‘An Uncontrolled Toy That Can Walk
But Cannot Stand Still’. Physical Review Letters 80(16), 3658-3661.

Drugge, L.: 2000, ‘Modelling and Simulation of Pantograph-Catenary Dy-
namics’. Ph.D. thesis, LTU, Department of Mechanical Engineering, Di-

vision of Computer Aided Design.

Kane and Levinson: 1985, Dynamics: Theory and Applications. McGraw-
Hill.

Kuo, A. D.: 1999, ‘Stabilization of Lateral Motion in Passive Dynamic
Walking’. The International Journal of Robotics Research 18(9), 917-930.

Lennartsson, A.: 1999, ‘Efficient Multibody Dynamics’. Ph.D. thesis,
KTH, Department of Mechanics.

Lesser, M.: 1995, The Analysis of Complex Nonlinear Mechanical Systems.
World Scientific Publishing Co. Pte. Ltd.

40



[11]

[12]

3D Passive walkers: Implementing code

McGeer, T.: 1990, ‘Passive Bipedal Running’. In: Proceedings of the Royal
Society of London: Biological Sciences, Vol. 240. pp. 107-134.

McGeer, T.: 1993, ‘Dynamics and Control of Bipedal Locomotion’. Jour-
nal of Theoretical Biology 163, 277-314.

Mombaur, K., M. J. Coleman, M. Garcia, and A. Ruina: 2000, ‘Prediction
of Stable Walking for a Toy That Cannot Stand’. submitted for publication
in PRL.

Nichols, G. K. and D. C. Witt, ‘An Experimental Unpowered Walking
Aid’. Engineering in Medicine 1(1).

Olsson, A.: 1997, ‘Object-oriented finite element algorithms’. Technical
report, KTH, Department of Structural Engineering.

Piiroinen, P.: 2000, ‘Passive Walking: Transition from 2D to 3D’. Techni-
cal report, KTH, Department of Mechanics.

Rose, J. and J. G. Gamble (eds.): 1994, Human Walking. Williams &
Wilkins.

Végstedt, N.-G.: 1995, ‘On Cornering Characteristics of Ground Vehicle
Axles’. Ph.D. thesis, KTH, Department of Vehicle Engineering.

Wisse, M., A. L. Schwab, and R. Q. vd Linde: 2000, ‘A 3D Passive Dy-
namic Biped with Yaw and Roll Compensation’. to appear in ROBOTICA.

41






Paper 8
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ABSTRACT. This text describes some of the parameter searches made to find an
implementable 3D passive walker. The starting points of the parameter search are
previous found 3D walkers, see for example Adolfsson et. al. [3]. However, previous
found walkers had a number of features not suitable for implementation, which are
believed to be corrected by the presented here walker. The parameter search was ac-
complished by using continuation methods, which makes it possible to locate periodic
gaits as parameters of the system are varied, see Adolfsson et. al. [3] and Adolfsson
[1]. To be a realizable walker it is important that reasonable margins exists in both
parameter space and initial conditions. Thus, a large part of this text is devoted to
investigating the influence of parameters that are difficult to control in an experi-
mental environment. Also reported here are attempts to develop an experimental 3D
walker.

1 Introduction

The 3D walker consists of five bodies, an upper torso, two upper legs, and two
lower legs, see Figure 1. The walker makes regular contact with the ground
through its four toe points, two on each lower leg. During gait the walker
can be seen as a constrained double pendulum (swing leg) attached to an
inverted pendulum (stance leg). For a detailed description of the geometry,
mass distribution, and forces acting on the 3D passive walker see Adolfsson et
al. [3] and Adolfsson [1]. To counteract the energy lost in knee impacts and
toe impacts, the walker descends an incline, thus gravity acts as the source of
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energy. Studies of related passive 3D mechanisms have been done by Mombaur
et al. [14], Wisse et al. [16], and Coleman et al. [5].

torso orientation - 94,9596
upper leg orient. - q7\

hip center position - q,,q,,q,

lower leg orient. - 9s \
P 4

2

L
t.p. 21

-
< /tp 22
q157q16

t,p 11 / q17’q13
t.p. 12 Q13:G1a
q117q12

Figure 1. The geometry of the 3D walker with state variables. Note that the angle
of the upper legs are not given relative to the torso rotation g4 about the hip axis.
Abrevations: t.p. stands for toe point and i.c.p. stands for initial contact point.

The main goal of the parameter search was to find an implementable passive
3D walker, having dynamics in all spatial directions. This was accomplished
by using continuation methods, where periodic gaits could be followed while
varying the parameters of the system. In some cases, direct numerical simu-
lation was also used. The continuation algorithm uses the Newton-Raphson
method to locate periodic gaits of the 3D passive walker. Periodic orbits of
the dynamical system correspond to periodic gaits of the 3D passive walker.
For a detailed description of the methods used and the implementation of the
methods, see Adolfsson et al. [3] and Adolfsson [1].

The 3D passive walker is described by 28 state variables and approximately
80 parameters. If the left and right side of the walker is mirrored in the sagittal
plane, see Figure 2 for a definition of planes, the number of parameters will be
reduced to about 40. The sheer number of parameters makes it hard to draw
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any decisive conclusions for a particular parameter variation. Typically, the
conclusion drawn from a one-dimensional parameter variation might not hold
if one changes the value of another parameter. Therefore, the results presented
here should be regarded as suggestions or insights, which might or might not
work under different parameter conditions. This emphasizes the importance of
having a very clear goal when performing parameter studies, such as finding
an implementable 3D passive walker.

The parameter searches are presented in two different ways, bifurcation
diagrams and goal-oriented diagrams. Bifurcation diagrams are the classical
dynamical systems approach where new solutions, born in bifurcations, are
followed and classified. The other type of parameter search have a specific
goal in mind, such as increasing the mass of the torso. This is more of an
engineering approach to the problem. However, having decided a particular
parameter path to obtain a goal, it might turn out that no periodic solutions
exist at some point along the path; therefore a new path in parameter space
might be needed. For example, the toe points might hit the floor (foot scuffing)
during the swing phase as parameters are varied. This usually results in non
existence of periodic solutions, see Piiroinen [15] for a study where the periodic
solution survives foot scuffing. Sometimes a whole new strategy to the problem
might be required, such as introducing new forces into the model.

nominal plane

\

Figure 2. Definition of planes. The walker makes regular contact with the ground
plane. The nominal plane is defined by the initial lateral position of the hip center
and spanned by the n2 and ns direction. Thus, a walker heading straight down the
plane will start and end in the nominal plane. The sagittal plane is defined by the
hip center position and the up and forward directions of the walker. Symetric walkers
have legs that are mirrored in this plane. Gravity is inclined an angle a.
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1.1 GOAL

As previously mentioned, a clearly defined goal is needed, which in this study
is to find an implementable passive 3D walker. Below are the requirements
listed for an implementable 3D passive walker.

e The mass distribution should be realizable, thus masses should not have
to be placed in awkward positions, such as on long extended booms, to
get the required moment of inertia.

e There should be an anthropomorphic (human like) look of the 3D passive
walker. This means that geometrical measures of the experimental walker
should have similar ratios as a human. For example, the ratio of leg length
to hip width should be close to the values found in humans.

e No overlap of the feet.

e Insensitive to parameter changes. This is especially important when the
parameters are hard to control or measure in an experimental walker. For
example, the actual force between ground and toe points might be very
hard to model. Thus, a stable gait should exist for reasonable intervals
in the parameters associated with the ground.

e Initial conditions that is possible to realize and have a reasonable basin
of attraction. The latter might be hard to investigate due to the number
of states of the walker.

e Be able to carry some payload, however not necessarily with an upright
torso, which most likely would require active control.

e Knee mechanism should be possible to implement passively. The current
design requires quite large angular motions of the lower legs during the
locked state of the knees.

During the search to fulfill the above requirements, many stops were made
so as to investigate discovered phenomena. This included investigating the
effects of letting the toe points being below the ground plane at certain times.
Some of these parameter studies didn’t directly help to reach the goal but gave
valuable insights into the dynamics of the system.

The 3D passive walkers studied originate in parameters from a planar pas-
sive walker studied by Garcia et al. [9], [8], [7], and [4]. Also see Adolfsson et
al. [2] for a description of the planar passive walker and how to implement
code for simulation of planar passive walking. Since the parameters originate
from a planar walker, the 3D passive walker was started in a configuration
that mimics the dynamics of the planar passive walker. This configuration is
similar to the walker depicted in Figure 2. The first parameter variations were
made using direct numerical simulation, thus only stable periodic gaits were
accessible. These parameter variations included separating the legs on the hip
axis and decreasing the overlap in the feet. However, the need for faster con-
vergence of found stable gaits and the need to access unstable periodic gaits led
to the development of a root finder, see Adolfsson et al. [3]. The implemented
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root finder uses the Newton-Raphson scheme, which will converge to the pe-
riodic solution, given an initial state reasonable close to the periodic solution.
The stable periodic solutions are of main interest due to the possibility of be-
ing implemented passively. However, by following unstable periodic solutions,
the solution might bifurcate into a stable solution. It has also been argued
that unstable solutions might require less active control to stabilize the motion
compared to artificially generating the walking pattern.

1.2 INTERPRETING NUMERICAL RESULTS

Automating the search using a root finder brings up the important question
of whether the obtained numerical results can be understood by some simpler
reasoning. For example, it will later be shown that changing the position of
the center of mass of the legs seems to require that the moment of inertia be
changed in a specific way. Could this have been understood by looking at a
simple pendulum? Generally, it has been very hard to understand the results
by some simpler reasoning and someone using these results should make sure
that they are valid for their specific system.

The Newton-Raphson root finder scheme gives the Jacobian of the linearized
system as a by-product. The stability characteristics can be obtained by cal-
culating the eigenvalues and eigenvectors of the Jacobian. As long as all eigen-
values have a magnitude less than one, the system is stable. It has been argued
that valuable insight can be obtained by looking at the elements of a particular
eigenvector. For example, McGeer [10],[11],[12], and [13] give the eigenvectors
in the planar passive walker illustrative names, such as speed, totter, and swing.
These names are related to what they are supposed to control. These eigenvec-
tors are given in a specific Poincaré section corresponding to the configuration
having the least number of degrees of freedom. For a description of this config-
uration see Adolfsson et al. [2]. These eigenvectors might look different when
viewed in a different Poincaré section. Therefore, to get the whole picture they
should at least be viewed over an entire gait cycle.

To investigate if eigenvectors could give valuable insight into the dynamics
of the 3D passive walker, animations of eigenvectors were performed on both
stable and unstable periodic gaits. This was accomplished by adding the time
evolution of a small disturbance to the periodic gait. The disturbance was in
the direction of an eigenvector. This can be written as,

Xanim (t) - X(t) + J(t)CVZ', (1)

where z(t) is the found periodic solution, J(t) is the Jacobian at time ¢, and cv;
is a constant times the i’th eigenvector of the Jacobian. However, no success
was made in interpreting the animation Xauim (¢) . The animation resulted in
very strange walking motion, where legs started to oscillate back and forth
together with oscillating motions of the hip. This shows, as can be deduced by
looking at the elements of the eigenvector, that strong coupling of the motion
takes place over all state variables. In addition, it is hard to draw conclusions



J. Adolfsson

from comparing angular state variables with positional state variables in the
eigenvector, because there is no apparent way of comparing them.

However, in some cases the eigenvectors can be of help. The dynamics of the
3D passive walker are indifferent to placement in the plane. Thus, two eigenval-
ues reflect this by being one and the only nonzero element in the corresponding
eigenvector is the states that describe the position in the ground plane. In
addition, when pitchfork bifurcations occur the corresponding eigenvector pair
can be used to give the directions of the newborn solution branches.

2 Parameter studies

The following sections will present some of the many parameter studies that
were carried out to find an implementable 3D passive walker. The order they
are presented roughly follows the chronological order in which they were carried
out.

2.1  GOING FROM 2D 10O 3D

By taking initial conditions and parameter values from the planar passive
walker, see Adolfsson et al. [2], it was possible to start the 3D passive walker
in a configuration similar to the planar walker, see Figure 2. Ground plane
stiffness was high to mimic the plastic impacts found in the planar walker.
Knee stiffness was also high for the same reason. After some manual tuning of
initial conditions a gait was observed, which became periodic after transients
had settled down. However, an oblique walk resulted, where the hip center did
not remain in the nominal plane after one stride. By using direct numerical
simulation, it was possible to slowly introduce a hip distance and to shrink
the foot width. In Figure 3, a walker with dynamics in all spatial directions is
shown, as can be seen it also walks at an angle down the inclination. The over-
lap in the feet is 0.1m. Walking at an angle results in different time histories
for the two legs. By looking at the horizontal line in Figure 4, this asymmetry
can be seen. Since the system is symmetric about the sagittal plane, there
must exist an oblique gait mirrored in the nominal plane. Later, it was dis-
covered that by lowering the stiffness of the ground plane, the walker headed
straight down the plane, thus starting and ending in the nominal plane. From
a dynamical systems point of view, a super critical pitchfork bifurcation occurs
when increasing the stiffness of the plane. Thus, a stable gait heading straight
down the plane becomes unstable and two gaits, symmetric with respect to the
nominal plane, are born.

In reference Adolfsson et al. [3], a path from an unconstrained 2D walker
to a 3D walker having motion in all spatial directions is reported. Only gaits
heading straight down the plane were considered in this parameter variation.
At the end of this parameter variation, the toe points are symmetrically placed
about the leg, the distance between toe points is only 2.2cm. However, stability
was lost before the overlap was reduced to zero. Thus, a restart had to be made
to find a passive 3D walker without an overlap. An interesting result from this
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Figure 3.  Walker with overlap in the feet walking obliquely down the incline.
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Figure 4. Oblique walking result in different time histories for the two legs. This is
evident from the looking at the amplitudes of the hip and knee angles of the two legs.

parameter variation is that the swaying amplitude tends to zero, as the distance
between the legs goes to zero, the toe points being placed symmetrically about
the legs. In addition, this, essentially 2D symmetric walker, is here unstable.
Thus, there probably exist two stable periodic gaits, mirrored in the nominal
plane, walking obliquely.

2.2  KNEE MODELING IN 2D AND 3D

The switch from an impact model to a continuous model introduces new dy-
namics to the system. In the impact model, the knee is released after the
hind leg foot has been released from the ground. Thus, the relative angular
velocity of the lower leg is always zero at the beginning of the swing phase.
In the continuous model, an angular spring and angular damper is active be-
tween the lower leg and upper leg, as long as the knee is in hyperextension.
The result is that the continuous model allows non-zero velocities at the knee
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Figure 5.  Left pane illustrates the difference in angular velocity at knee release for
two different inclinations. The right pane illustrates the same thing, but for different
knee damping. The left pane also show the knee damping effect on stride time.

release which is not possible using the impact models. This is illustrated in the
left diagram of Figure 5, where the time history of the lower leg orientation,
relative to the upper leg, is shown for two different inclinations. At the lower
inclination, the knee release velocity is almost zero, thus mimicking the impact
model. However, when the inclination of the plane is increased, the release
velocity is no longer zero. In Dankowicz et al. [6], bifurcation diagrams are
drawn for a planar passive walker using impact models and continuous models
having similar mass distributions. For low inclinations, the two diagrams are
fairly similar, but as the inclination is increased little resemblance is shown. A
plausible explanation is the model switch, which can be seen from looking at
the stride time for two different levels of knee damping. Since the inclination
of the plane have a large influence on gait speed and stride time it is not wise
to compare stride times in the left diagram. However, in the right diagram of
Figure 5, only the knee damping is changed. The result is that at high damping
the release velocity is low, whereas it is high for low damping. Looking at the
stride times, there is a 10% increase between the lower and higher damping.
Therefore, to mimic the knee release velocity of previous impact models, tuning
of the knee stiffness and damping might be needed as other parameters of the
walker are changed.

As a side note, this is similar to catching a particle with a spring and damper
system. To make it behave inelastically, the spring and damping constants will
depend on the mass of the caught particle.

2.3 THE SEARCH FOR A 3D WALKER WITHOUT OVERLAP

Since the initial attempt to reduce the overlap to zero resulted in a highly
unstable walker, see Adolfsson et al. [3], a new approach was needed. This
included the change of many parameters, such as trying different centers of
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mass locations for the legs, changing the amount of mass of various parts, and
altering the ground plane characteristics. The major parameter changes from
the walker reported in Adolfsson et al. [3] and Adolfsson et al. [1] are;

e Increased the hip width from 0.20m to 0.26m.

e Lowered the upper leg center of mass position from 9cm to 14cm below
the hip line.

e Moved the lower leg center of mass up from 16cm to 8cm below the knee.

e Major decrease of the torso moment of inertia about all axes, from ap-
proximately 2kgm? to 0.3kgm?.

o Increased the upper leg moment of inertia from 0.008kgm? to 0.02kgm?
about the axis through the upper leg center of mass, parallel to the hip
and knee joint axes.

e Decreased the lower leg moment of inertia from 0.04kgm? 0.012kgm?
about an axis through the upper leg center of mass, parallel to the hip
and knee joint axes.

e Increased the mass of the torso from 0.8kg to 5.0kg
e Lowered the mass of the upper legs from 2.4kg to 2.2kg

e Increased the ground plane stiffness in the vertical direction from 5000N/m
to 13000N/m and damping from 500Ns/m to 770Ns/m.

e Major decrease of knee stiffness, from 500Nm/rad to 100Nm/rad and
20Nms/rad to 1Nms/rad.

e Decreased toe width from 15cm to 8.6cm and reduced the overlap from
10cm to -5.5cm (no overlap).

e Lowered the toe points 3mm and had them at slightly different height
(Imm)

The motivation for lowering the moment of inertia and increasing the mass
of the torso was to make it feasible to implement. Thus, it was desirable
that the radius should be close to the hip width, 1/0.3/5 =~ 0.24m in the no

overlap configuration, compared to 1/2/0.8 ~ 1.6m in the overlap configuration.
The increase in ground stiffness was first made to make up for the increased
weight of the walker. However, as the foot width was decreased it was observed
that stability could be maintained by increasing the stiffness of the ground
plane. The major breakthrough came unexpectedly when the knee stiffness and
damping was reduced considerably. This increased stability and introduced
a bounce in the knee, which can be seen in Figure 6. The sustained knee
lock (hyperextension) now occurred after the toe points of the swing leg had
impacted with the ground. This "new” knee dynamics once again highlight the
importance of the knee modeling on the walker dynamics. The lower stiffness
and damping in the knee allowed for larger relative motion between the upper
leg and lower leg during knee lock. This made it feasible to use the implemented
knee locking mechanism, which is described in later sections.
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Figure 6.  When lowering the knee stiffness and knee damping a bounce in the knee
occured. The enlargement show that sustained knee lock only occur after the toe
points of the swing leg foot have attached to the ground plane.

During these parameter variations, it was observed that the instability oc-
curring, when lowering the lower-legs moment of inertia, could be countered by
moving the lower-legs center of mass upwards. A similar observation was made
for the upper legs. When the moment of inertia of the upper legs was increased,
instability occurred. This was remedied by moving the lower-leg center of mass
downwards. This "rule of thumb” seems to hold and was later used to adjust
mass distributions on the upper and lower legs.

In Figure 7 a root locus diagram is shown for the parameter variation start-
ing with the no-overlap walker and ending in with the overlap walker. As seen
in the diagram, both the no-overlap walker (large arrow) and overlap walker
are stable. However, between the start and end, an unstable region exists. It
should be noted that this particular parameter variation is not the one that
was used to find the no overlap configuration, since it would have been hard
to a priori know that it would end up as a stable configuration. Instead, effort
was spent on gradually changing parameters and keeping stability, to find a
walker satisfying the previous stated requirements.

As areference, two extra sets of parameters are included in the root locus di-
agram. These points correspond to parameters ”beyond” the no-overlap walker.
Since one eigenvalue pair is outside the unit circle, the parameter sets are unsta-
ble. Somewhat concerning is the eigenvalues sensitivity to parameter variations
for the no-overlap walkers. Potentially this will make it hard to implement the

10
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Figure 7. The right pane show a root locus for a paramter variation from a walker
with an overlap in the feet to a walker with no overlap. The points are equally spaced
in parameter space. Notice the high parameter sensitivity at the no-overlap point
compared to the overlap point. The right pane show the the absolute value of the
eigen values for the parameter variation.

walker, since tight tolerances will be needed. This sensitivity is illustrated by
the large distance between the points at the no-overlap region compared to the
more closely located points at the overlap region. All bifurcations occurring
in this parameter variation are Hopf bifurcations. The eigenvalue having the
maximum absolute value is 0.942 for the no-overlap walker and 0.937 for the
overlap walker.

2.4 HIP AND CENTER OF MASS MOTION

One characteristic of the 3D passive walker is the lateral swaying motion of the
hip center. This can be clearly seen in Figure 8, where the trajectories of the
hip center and center of mass for all parts are drawn. Also shown are the toe
contact points and the center of mass position at toe impact/release. Shortly
after the toe impacts occur, the hind-leg toes release. During the short time
interval between to impact and release, the toe points create a support pattern,
which would seem to provide static stability, i.e. if all velocities were set to zero
the walker would still stand up. However, trying this in a simulation resulted
in the walker falling. Drawing a line between the toe points shows a slight toe
in. Drawing a line perpendicular to the previous line, starting at the inner toe,
show that the center of mass is on the inside of this line at the hind leg toe
release.

2.5 FOOT SCUFFING AND BEYOND

At some point, as inclination is decreased, periodic gaits are usually born
in a saddle node bifurcation. This can be seen in many references, McGeer
[10],[11],[12],[13], Garcia et al. [9],[8],[7]. This seems to hold for both planar

11
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Figure 8. The trajectory of the hip center point and total center of mass for the
3D walker. The numbers correspond to toe impact/release from the ground plane.
First the toes labeled 1 and 2 impact with the ground. The corresponding hip center
position is also labeled 1 and 2. Secondly, the toe labeled 3 and 4 release from the
ground. The corresponding hip center position is also labeled 3 and 4.

walkers and the here studied 3D passive walkers. In the reference Dankowicz et
al. [6], bifurcation diagrams are drawn for planar walkers using impact models,
planar walkers using continuous models, and 3D walkers using continuous mod-
els. All continuous models have in common that the solution is born in a saddle
node bifurcation. However, most of these solutions do not end in a bifurcation
as inclination is decreased, but terminate due to foot scuffing. Foot scuffing
is loosely speaking a toe point impact with the ground, during swing phase,
at an inappropriate time. By disregarding foot scuffing, i.e. allowing the toe
point to penetrate the ground plane without applying any force, it is possible
to follow the periodic gaits as inclination is further decreased. In Figure 9, a
bifurcation diagram for a 3D walker with an overlap is shown. The periodic
gait is born in a saddle node bifurcation at inclination 0.112 radians. As the
inclination is increased, both solutions terminate in foot scuffing, (point A and
E). However, the foot scuff occurs at different walker configurations in the two
branches. This is illustrated in Figure 10. In the left pane, the time histories
for the vertical positions of the toe points are shown for an inclination of 0.08
radians. There are two local minima for the toe points of the swing leg, labeled
hind dip and front dip. As inclination is increased, either of these two local
minima will touch the ground plane. In the unstable branch, the touch will
occur at the front dip and in the stable branch at the hind dip. This is illus-
trated in the right pane of Figure 10 for the unstable branch. By disregarding
this penetration, it possible to follow the periodic gait, as inclination is further
decreased. However, at point C, it is not possible to further follow the gaits due
to walker not having any toe attachment point. This is illustrated in Figure
11, where the arrow indicates that the attachment point is moving below the
ground plane. The next possible attachment point is 0.6s later, which is too
much of a jump for the periodic gait to survive. The stable lower branch ends
in a similar way, first the hind dip moves through the ground plane and finally
there is no attachment point left. However, before this happens, the stable
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Figure 9. Bifurcation diagram for a 3D walker with an overlap in the feet when
varying the inclination of the ground plane. When inclination is decreased beyond
point A, in the unstable branch, and point E, in the stable branch, foot scuffing
occurs. By disregarding the foot scuffing, it is possible to follow periodic gaits as
inclination is further decreased. The branches terminate when it is no longer possible
for the foot points to attach to the ground.
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Figure 10. The vertical toe point positions as a function of time for one step. The
left pane show the two characteristic dips occuring at an oridnary gait cycle. The
right pane shows what happens when the inclination is decreased, one of the toe
points will start touching the ground plane. By disregarding this foot scuffing, it is
possible to follow gaits at further decrease of the inclination. Notice that the vertical
positions are shown for one step. Leg one will perform the motion of leg two and vice
versa after one step.
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Figure 11. At some point it is not possible to disregard the scuffing since the at-
tachment point will move through the ground plane. The next possible attachment
point is too far away for the gait to survive.

branch goes through a super critical Hopf bifurcation at point E and a Hopf
bifurcation at point F.

Just before the branch ends, it goes through a saddle node bifurcation.
Thus, in a short inclination interval, there exists three periodic gaits heading
straight down the plane. Also shown in Figure 9 is the average velocity at
selected inclinations. Note that the maximum velocity does not occur at max-
imum inclination, but at some lower inclination in the unstable branch. This
seems to generally hold for passive walkers. Also note the big difference in gait
velocities at the end of the two branches (point C and D). Thus, it is very
unlikely that the stable and unstable branches will ever meet.

2.6 GROUND PLANE STIFFNESS

Depending on the foot design, the actual characteristics and dynamics of the
ground plane might only be estimated. Thus, it is important that the ground
plane model allows for some variance in the parameters describing it. The
actual design can be implemented in various ways. For example, the toe points
could be fitted with soft soles, to allow some motion at the contact point. In
addition, one could instead put small hard spheres at the toe points and walk
on a soft ground. Both solutions are believed to work, but might, to some
extent, disagree with the model used for the ground plane. These discrepancies
include, non-linear effects of the material and slip stick phenomena. It is also
possible to reduce uncertainties by clever design of the foot. For example,
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Figure 12. Parameter variation to deterimine the stable region in ground plane
vertical stiffness and damping. Notice that some of the gaits in the middle of the
region walk stable at an angle. Note 1: It was not possible to further increase the
stiffness due to one of the toe points releasing from the ground plane in the middle
of the stance phase.

Wisse et al. [16], have devised a light foot, hinged to the lower legs. Thus, the
dynamics of the light foot can be disregarded and stiffness can be controlled
via angular springs and dampers.

In Figure 12, the region of stable periodic gaits are determined in vertical
stiffness and damping of the ground plane.

This region contains both stable gaits heading straight down the plane and
oblique stable gaits. The stable region is surrounded by Hopf bifurcations. It
has not been investigated whether these Hopf bifurcations are sub- or super-
critical, but experience shows that super-critical Hopf bifurcations only exist
in a short parameter interval close to the bifurcation point. The stable gaits
heading at an angle exist between two regions of stable gaits heading straight
down the plane. At the borders between these two regions super critical pitch-
fork bifurcations occur. The stable gaits, heading at an angle, go through a
period doubling sequence as stiffness is increased. The stable range in stiffness
is about 4000N/m and 500Ns/m in damping. This corresponds to a tolerance
of about +15% in stiffness and +20% in damping. Note that not all unsta-
ble periodic gaits heading straight down the plane were located. However, it is
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Figure 13. Hip center trajectory for four different ground plane characteristics.
Stiffness seems to control the swaying amplitude whereas damping seems to control
the height at the middle region.

very likely that there exists such a solution for each found oblique periodic gait.
The period doubling sequence of oblique gaits were not followed. Therefore,
the right border, at the arrow indicating period doubling, could probably be
moved a little bit to the right, thus increasing the area of the stable region.
This ground plane model assumes that damping is only present during motion
into the ground plane. In Adolfsson [1], an alternative ground plane model
is discussed, where damping is present during upward motion depending on
the upward velocity. That model gives similar results to the present model,
although the vertical damping needs to be lower.

To investigate the ground plane characteristics effect on the dynamics of
the gait, four different locations were selected in the stable region, numbers 1-4
in Figure 12 give these locations. The dynamics of the walker was investigated
by looking at the hip center trajectory during one stride. In Figure 13, the
result is shown. The butterfly-shaped trajectories are quite similar but some
distinct differences exist. At low damping, the walkers have midpoints lower
than the high damping walkers. However, the high stiffness walkers have larger
swaying amplitude, compared to the corresponding low stiffness walkers. Thus,
the swaying amplitude seems to be controlled by the stiffness of the ground.
Also shown in the figure is the corresponding hip center position when the left
legs toe events occur. The toe points attaches to the ground at almost the
same hip center position, whereas the detachment occurs at different positions.

2.7 KNEE STIFFNESS

Although the devised design of the knee should agree with the model used, it
is good to have some margin against parameter uncertainties. In addition, the
knee model does not include dry friction, which is frequently present between
sliding surfaces. In Figure 14, a parameter study, similar to the previous study,
is shown, where the angular stiffness and angular damping of the knee is varied.
The ground plane characteristics is chosen from the lower stable region in Figure
14, being 13500N/m and 800Ns/m in the vertical direction. As can be seen in
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Figure 14. Parameter study to determine the limits in knee stiffness and knee damp-
ing for stable periodic gaits.

the figure, there exists a region of stable gaits, surrounded by Hopf bifurcations,
which render the gaits unstable. The gaits found were seen to head straight
down the plane, except for one parameter combination (the plus sign in Figure
14). The range in angular stiffness is about 40Nm/rad and the range in angular
damping is circa 0.4 Nms/rad. This results in similar tolerance percentage as in
the ground plane characteristics study, being about +18% in angular stiffness
and +20% in angular damping.

2.8 FRICTION LEVELS

In Figure 15, the no slip friction coefficients between the toe points and ground
plane are plotted for the inner and outer toe. The required combined friction
coefficient can be written as,

v/ (F11)? + (F13)?

:U‘required = F12 . (2)

For the outer toe, the combined friction coefficient is below one for most of
the times, except for a short period of time at the end of the contact. At the
very end, the required friction level is about 20, which would result in a slip.
However the time spent outside the unit circle is less than 2/100 of a second
and is not expected to cause any problem. The inner toe has a local peak in
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Figure 15. Required friction levels during the stance phase for the inner and outer
toe points. Notice the change of scale inside and outside of the unit circle. The high
friction levels are only required for very short intervals of time, typically 10ms. Thus,
these peaks are not expected to cause any larger slip at the toe points.

the middle of the contact interval, where the required peak friction level is 1.3.
However, the time spent outside the unit circle only lasts for 3/100 of a second.

2.9 INCLINATION

The range in inclinations for stable operation of the walker is between 4.3 de-
grees and 4.7 degrees. At the lower inclination, a Hopf bifurcation occurs. At
the higher inclination a super critical pitchfork bifurcation occurs, thus creat-
ing two stable branches walking obliquely down the plane. These two branches
only remains stable for a short interval and become unstable in a Hopf bifur-
cation.

3 Robustness

Equally important as to allow for a reasonable margin in parameter space is
to have some margin of error in the initial conditions. Without this, it will be
hard to initiate the gait of the walker. It has been demonstrated by both Ruina
and McGeer that it is possible, albeit with some practice needed, to manually
throw the planar walker down the incline. Thus, it is desirable that the initial
condition margin for the 3D passive walker should be similar to those found for
planar passive walkers. However, with current computer speed it is not feasible
to find this margin for all possible combinations of state variables. The search
was therefore limited to disturbing one state variable at a time from the found
periodic orbit. In addition, these disturbances are not necessarily similar to
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those occurring during an experiment. For example, an error in torso attitude
certainly involves some error in the horizontal position of the torso.

The margins were calculated for five consecutive configurations, equally
spaced over one step, as shown in Figure 21 in the appendix. This investiga-
tion was done to see if a particular configuration was more suitable for initiating
the gait, i.e. had a larger margin compared to other configurations. For com-
parison, the same study was performed on the 3D walker having an overlap in
the feet. Finding the margins were done by first finding a disturbance, which
would make the walker fall within 20 strides. After that, interval halving was
used to find the border between failure and success. These borders were ob-
tained with an relative accuracy of 1%. Of course, it is possible that there exist
regions with multiple borders of failure and success. This was also observed

when performing the same stability on the next step in the stride. How-
ever, the differences between margins were small. In the appendix, a graphical
illustration of the robustness study is shown. This illustration was made to
visually identify preferable configurations for initiation of the gait. However,
no outstanding configuration was visually identified, which would imply that
other considerations could be made, such as initiating gait at an easily obtained
configuration.

In Table 1, a statistical comparison between the walker with an overlap
in the feet and the walker without overlap is shown. This was calculated by
looking at the ratio of state space volume for the two walkers,

where Ao; is the range in initial conditions for the walker with an overlap in
state 7, similarly, Ano; is the range for the walker without an overlap. The
vector s; is a vector of state indices. The mean, m;, was then averaged over
the five configurations,

The standard deviation is calculated on logm;. In most states, the data have
small standard deviation, which indicates that the ratio is fairly similar in the
different configurations. The general result is that the walker with an overlap
has the larger margin in almost all initial conditions at all configurations. For
example, the margin in initial velocities of the torso reference point is almost
seven times larger in favor of the overlap configuration. Somewhat surprisingly
is the low advantage for the overlap walker in the angular velocities of the torso.
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Table I. Statistical comparison between a 3D walker with an overlap in the feet and
a 3D walker without an overlap. The numbers are calculated by averaging the loga-
rithm of the ratios between maximum possible disturbances in the two walkers. The
average is calculated from five walker configurations equally spaced in time. Thus, a
value greater than one means that the overlap walker is less sensitive to disturbances
than the no-overlap walker. The standard deviation is given as a factor.

State (s;) mean  std(*<) median
height (qz) 7.7 2.3 5.4
orientation (qs,q6) 8.9 1.1 8.6
leg angles (q7,4s,49,410) 3.0 1.5 2.7
toe pos. lateral (q11,913,915,917) 13.5 1.5 12.0
toe pos. sagital (q12,914,916,418) 9.0 2.1 11.9
hip center velocity (uj,uz,us) 7.0 1.2 7.1
orient. angular velocities (us,ug) 1.2 1.3 1.2
leg angular velocities (u7,ug,ug,u1q) 2.4 1.5 2.2
all states except uy 4.5 1.1 4.6

4 Implementation

Early walker configurations, with an overlap in the feet, had a total mass of
7.5kg. The current design was made to support this weight. However, this de-
sign was hard to realize due to the torsos high radius of gyration. The moment
of inertia was therefore reduced, which unfortunately resulted in unstable peri-
odic gaits. However, this was possible to correct by increasing the mass of the
torso. To retain similar ground plane penetrations, the ground plane stiffness
had to be increased. The current configuration, having no overlap, has a total
mass of 11.4kg. Since the increase of mass was made at the torso, the legs
needed to support this additional mass. The experimental mechanism turned
out to be slightly weak to support this added mass. This resulted in too much
bending of the legs and hip axis, which resulted in the two legs hitting each
other during the swing phase. In Figure 16, a picture of the experimental
walker is shown.

4.1 KNEE MECHANISM

To make the implemented knee locking mechanism behave similarly to the
modeled knee, the design in Figure 17 was used. This design is passive and
only requires a simple link mechanism between the lower leg and upper leg. The
upper link is the spring/damper element. Its operation is as follows. When
the lower leg is free to swing the spring/damper link will be fully extended
and the two links will have negligible influence on the motion. When the lower
leg goes into hyperextension, the link mechanism will be constrained by the
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Figure 16. Photographs of the experimental walker, which didn’t succed in walking.

The weights on the hip axis are placed at a location to provide for the necessary
moment of inertia. The weight of the lower legs made it necessary to put the added
weights on booms as to obtain the right moment of inertia.

slot and the spring/damper element will compress. During forward swing, the
link mechanism will slide against the surface furthest away. During backward
swing, the link mechanism will slide against the opposite surface. To make sure
that smooth sliding occurs, the distance between the surfaces is slightly larger
than the radius of the sliding bar. With this design, the damper will generate
a force, both in forward and backward swing, as long as the link mechanism is
constrained. This agrees with the theoretical model.

For a sound operation of the knee, it’s important that there exist sufficient
motion in the slot. Therefore, the angular spring and angular damping should
have suitable values as to allow for some motion. Previously presented 3D
walkers, see Adolfsson et al. [3], had high knee stiffness, resulting in very little
motion. However, the current design have a maximum angular hyperextension
of about 14 degrees, see Figure 6. This corresponds to a movement in the slot
of 24mm. This should be sufficient for the spring/damper element to perform
adequately.

The spring/damper element is a Kyosho ”Turbo Big Shock”, intended for
use in radio controlled off road vehicles. The level of damping can be adjusted
by changing the viscosity of oil or by changing the diameter of the piston plate
hole. Stiffness is controlled by a change of springs. The springs can also be pre-
loaded, although that was not tried. Parameters were obtained by the linear
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Figure 17. Illustration of the knee mechanism and its different modes of operation.
The left pane show a lower leg that is free to swing. When the lower leg swings
forward, the link mechanism will be guided into the slot, and the spring/damper will
start to work (middle and right pane).

model,

Ilowerlegd + ckneed + kkneea =0 (5)
to experimental data. The agreement between measured data and the model
was good. Fixating the upper leg and releasing the lower leg, while measuring
the angle of the lower leg, gave the needed experimental data. In Figure 18, a
picture of the implemented knee mechanism is shown.

4.2 TOE POINTS

It was originally conceived that the walker should have toe lines walking on
a soft ground plane. The toe lines were to be implemented with a 10mm
bar, thus making it possible to have an overlap in the feet. However, as the
configuration having no overlap was discovered, it was decided to use a hard
ground plane and to put the softness in the toes. This design would make it
easier to adjust the toe positions and to adjust the compliance of the toe points.
In Figure 19, the design of the toe points is shown. The vertical position can
be adjusted by releasing the lock nuts and the horizontal position by releasing
the lock ring. Compliance in the toe points are obtained by using a soft foam
rubber layer. Below the foam rubber is a rubber layer as to obtain a high levels
of friction. All layers are glued together. Foam rubber is a highly nonlinear
material, which makes it is quite hard to estimate adequate model parameters.
Stiffness was measured by statically loading the toe points and recording the
corresponding deflection. Damping was not estimated, however, very little
bounce was observed when dropping a mass, attached to the toe points, on a
hard surface.
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Figure 18. Close up of the implemented knee mechanism. The damper is inside the
coil spring.

4.3  MASS DISTRIBUTION

The weight of different parts were obtained by using an accurate scale. The
mass centers of the upper and lower legs were found by balancing the parts
on a sharp edge at a few different locations. By finding the intersection of
these edges, the mass center location could be found. When the center of
mass position and weight was known, the part was hinged like a pendulum,
with the center of mass situated some distance away from the hinge axis. The
period times for small oscillations were measured, and from this, the moment
of inertia was calculated. Masses were then added at appropriate locations to
obtain mass distributions corresponding to the parameters found in Appendix
6.1. With the exception of the lower legs, this extra mass could be fitted
naturally on the existing structure. There was little mass to be added at the
lower legs and to obtain the right moment of inertia this masses were placed
on extended booms, see Figure 18. By redistributing the mass or lightning the
structure, it should be possible to remove these extended booms.

4.4  INCLINE

The ground plane measured 1.5m x 6m and its inclination is adjustable by
changing the height at one of the ends, see Figure 20. A safety wire, attached
between the ends of the incline, was used to prevent damage if the walker would
fall. The walker is attached to the safety wire using a slack rope, attached on
the hip axis of the walker, and at a pulley running on the wire. To reduce toe
point slip, the incline was covered with a rubber mat. The short range of stable
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Figure 19. The implemented toe points are adjustable by releasing the lock nut.
The rubber sole is used to get a high levels of friction. The toe point is also later-
ally adjustable by releasing and moving the lock ring. Foam rubber is used to get
compliance of the toe point.

inclinations, between 4.3 and 4.7 degrees, corresponds to a range in height of
40mm.

4.5 EXPERIMENTS

Despite many efforts to manually throw the experimental walker down the
incline in an appropriate way, it was not possible to obtain a sustained gait.
However, after the stance leg foot impacts with the ground, the swing leg release
from the ground and performs a motion resembling the simulated motion. The
bounce of the lower leg at knee impact was also observed, see Figure 6.

5 (Conclusions and future work

Initially it was believed that initiating the 3D passive walker should only be
slightly harder compared to starting the planar passive walkers. This optimistic
view was enhanced by watching the success of the small 3D Tinkertoy walker,
see Coleman and Ruina [5]. However, this did not prove to be the case and we
were forced to seek the cause of this difficulty. However, why the experimental
walker didn’t walk is hard to answer due to the lack of adequate measuring
equipment. Either there exists errors in the parameters of the walker, or the
gait was not initiated correctly. Of course, it could also be a combination
of the two. To investigate this a catapult device for initiating gait could be
built. This device should provide for repetitive initial conditions. Secondly,
a 3D motion measuring system should be used to compare trajectories of the
experimental walker to the simulated trajectories. Using such a system, it
should be possible to establish that initial conditions are within the margins
given by the robustness study. If the walker still doesn’t walk, the error is
probably in parameters or modelling. However, the 3D measuring system at
hand was considered not good enough as to provide the needed data and no
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|

Figure 20. The inclined ground plane. The inclination is adjustable by changing
the height at one end. The walker is attached to the safety wire via a slack rope and
a pulley.

other system was available. Since this part was missing, a catapult device was
not built.

However, some issues could have been dealt with if time had been avail-
able. This includes improving the construction of the experimental walker.
The structure of the walker needs to be strengthened as to minimize bending
and play. In the hip axis, this could be done by replacing the middle part
with a tube. This tube should have a appropriate radius as to improve bend-
ing stiffness over the current design. The knee and hip joints seem to be stiff
enough, however the toe axis is too weak. As previously mentioned, the struc-
ture was too weak to carry its own weight resulting in collision between the
”non-overlapping” toe points. This could be corrected by attaching an element
capable of taking compression forces from the end of the toe axis to a point
just below the knee.

These suggestions are only small improvements over the current design and
it might be necessary to rethink large parts of the design. Such as implementing
and simulating contact forces that are easier to model. This could include a foot
with a contact patch instead of a line. In addition, a more precise knee locking
mechanism might be needed. For example, this mechanism could release the
knee after the hind leg has released from the floor. This would however include
some mechatronic device to control the knee lock and release.

6 Appendix
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6.1 PARAMETERS AND INITIAL CONDITIONS

Parameters used in the simulation of the no-overlap 3D walker. See Adolfsson
et. al. [3] for a detailed description of the mass and point labels used.

moments of inertia (kgm?)

Body mass (kg) X y z Xy Xz vz
T 5.000 0.3000 0.3000 0.3000 0.0 0.0 0.0
Ui, Us 2.200 0.0200 0.0010 0.0100 0.0 0.0 0.0
L1,Ls 1.013 0.0120 0.0010 0.0100 0.0 0.0 0.0
Point Label x (m) y (m) 7z (m) Ref. frame
Tem 0.0000 0.0000 0.0000 T

Uy -0.1295 0.0000 0.0000 %

Us 0.1295 0.0000 0.0000 %

Uem1, Uema 0.0000 -0.1400 0.0000 Uy, Us
Li, Lo 0.0000 -0.3500 0.0000 Uy, Us
Lemt, Lemo 0.0000 -0.0800 0.0432 L1, Lo
L1 -0.0160 -0.3164 0.1050 L4

Lis -0.1020 -0.3174 0.1050 L1

Loy 0.0160 -0.3164 0.1050 Lo

Loo 0.1020 -0.3174 0.1050 Lo
Hip/Knee Value Plane Value

Kinee 100.0 Nmrad " ks, k. 6000 Nm !

Cknee 1.0 Nmsrad™! k, 13000 Nm™'

Chip 0.04 Nmsrad~! Cay Cs 500 Nsm~!

o 0.08 rad cy 770 Nsm |
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Initial conditions used for the direct numerical simulation of the no-overlap 3D
passive walker. Toe 21 and 22 are attached to the ground and knee two is
locked. Knee two corresponds to leg angles q¢9 and q1¢.

Configuration

State  Value State  Value

Q1 Om q10 -1.0255-10"! rad

g2 6.5804-10 1 m q11 1.4251-10 ' m

q3 Om q12 -2.2477-10 1 m

qa -0.0000-10"° rad q13 -5.6571-10 % m

g5 4.7396-1072 rad q14 -2.2798:10 ' m

s 5.5742-10 "2 rad qis -7.0790-10 2 m

q7 3.0000-107! rad q16 1.1198:10 2 m

qs 3.7535-10" ! rad qi7 1.5149-10 2 m

Qo 4.2700-1072 rad q18 1.0877-10 ' m
Velocities

State  Value State  Value

Uup -1.9585:10 ! ms~! Ug 2.6336:10 ! rads~!
Us 1.744410 ' ms~1 w7 -3.0461-107° rads™*!
Us 4.0490-10 "t ms~! Us 7.5069-107° rads~!
Uy 4.3913-1072 rads~! Ug 9.6030-10723 rads™!
us 1.5456:10"* rads™! Ui 1.3435-107° rads™!
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6.2 RAW DATA FROM ROBUSTNESS STUDY.

Numbers show the maximum possible disturbance away from the periodic so-
lution at five different configurations. The "no overlap” and ”overlap” columns
refer to the feet configuration of the studied walkers. Both maximum positive
and maximum negative disturbance are listed. For a graphical illustration of
this data and the walker configurations see Figure 21 and 22. Note that the
toe point state variables are removed when the corresponding toe point is not
attached to the ground.

configuration 0 state mno overlap overlap no overlap  overlap
q2 0.0008 0.0039 -0.0006 -0.0022
a5 0.0113 0.1707 -0.0161 -0.0858
a6 0.0052 0.0831 -0.0094 -0.0231
qr 0.0174 0.0445 -0.0140 -0.0210
qs 0.1193 0.1222 -0.1490 -0.1252
q9 0.0060 0.0148 -0.0027 -0.0118
q10 0.0080 0.0284 -0.0084 -0.0127
q15 0.0302 0.1664 -0.0283 -0.2664
q16 0.0173 0.0391 -0.0227 -0.0208
qi7 0.0108 0.1186 -0.0102 -0.0413
q18 0.0049 0.0414 -0.0083 -0.0126
ui 0.0082 0.2184 -0.0071 -0.0754
u2 0.3016 1.2609 -0.2984 -0.2598
us 0.0127 0.0801 -0.0239 -0.0338
uyg 4.2900 3.5112 -2.4150 -2.7094
us 0.4281 1.0193 -0.3047 -0.7483
ug 2.3906 0.2493 -1.5078 -0.9565
uy 1.8203 25.7080 -0.4297 -0.6790
ug 3.6719 10.1404 -3.0156 -2.1797
ug 0.3211 0.7595 -0.1934 -0.8168
u10 3.3250 20.3672 -2.9625 -9.6797
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configuration 1  state mno overlap overlap no overlap overlap
q2 0.0023 0.0141 -0.0053 -0.0083
as 0.0230 0.5316 -0.0406 -0.0988
a6 0.0213 0.0864 -0.0150 -0.0825
qr 0.0104 0.0608 -0.0165 -0.0208
qas 0.0336 0.1298 -0.0158 -0.0412
q9 0.0334 0.1908 -0.0197 -0.0405
q10 0.1031 0.0871 -0.0547 -0.0820
q11 0.0055 0.1122 -0.0029 -0.0288
q12 0.0005 0.0153 -0.0005 -0.0041
q13 0.0049 0.1097 -0.0078 -0.0276
q14 0.0012 0.0134 -0.0010 -0.0071
up 0.0126 0.2460 -0.0115 -0.0654
ug 0.0309 0.1785 -0.0387 -0.0850
us 0.0156 0.1047 -0.0272 -0.0351
ug 2.9537 2.9076 -2.4075 -2.6648
us 0.2083 0.6330 -0.3266 -0.5720
ug 0.4534 0.2789 -0.3618 -0.4222
uy 0.4655 0.9716 -0.3073 -1.0381
usg 11.5811 21.8473 -11.5093 -11.3384
ug 0.1475 0.5486 -0.1445 -0.2410
uio 0.3086 0.9746 -0.6194 -0.6967
configuration 2 state mno overlap overlap no overlap overlap
q2 0.0010 0.0425 -0.0058 -0.0146
a5 0.0110 0.2807 -0.0151 -0.1450
a6 0.0213 0.1019 -0.0341 -0.0949
qr 0.0295 0.1091 -0.0116 -0.0242
qas 0.0389 0.2637 -0.0088 -0.0333
a9 0.0375 0.0543 -0.0327 -0.0647
q10 0.3447 0.3914 -0.2140 -0.1938
q11 0.0063 0.1071 -0.0059 -0.0378
q12 0.0010 0.0113 -0.0013 -0.0065
q13 0.0053 0.0852 -0.0096 -0.0365
q14 0.0013 0.0161 -0.0010 -0.0112
u 0.0261 0.2308 -0.0136 -0.0693
ug 0.0729 0.3932 -0.0716 -0.3932
us 0.0301 0.2469 -0.0340 -0.0580
uyg 1.2688 2.4304 -1.2703 -1.9156
us 0.2997 0.5546 -0.3342 -0.5639
ug 0.6425 0.2356 -0.3735 -0.4077
uy 0.7894 2.0181 -0.6279 -1.4952
ug 25.3687 26.1237 -12.0532 -16.5180
ug 0.0956 0.4028 -0.1182 -0.1636
uig 0.2618 0.6626 -0.3644 -0.4019
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configuration 3  state no overlap overlap no overlap overlap
q2 0.0110 0.0702 -0.0056 -0.0122
a5 0.0122 0.2698 -0.0228 -0.1671
a6 0.0279 0.0901 -0.0265 -0.0748
qr 0.0197 0.1100 -0.0220 -0.0366
as 0.0163 0.2186 -0.0107 -0.0472
q9 0.0740 0.0645 -0.0410 -0.1992
q10 0.0968 0.1942 -0.1139 -0.7493
q11 0.0083 0.1239 -0.0069 -0.0541
q12 0.0008 0.0135 -0.0017 -0.0083
q13 0.0098 0.0774 -0.0205 -0.0717
q14 0.0020 0.0181 -0.0011 -0.0105
up 0.0354 0.2363 -0.0155 -0.0649
u2 0.0400 0.3872 -0.0583 -0.3401
us 0.0549 0.6018 -0.0569 -0.0983
uyq 2.3047 2.6993 -1.3896 -2.0653
us 0.2897 0.5112 -0.3260 -0.7465
ug 0.8744 0.2317 -0.7588 -0.6359
uy 0.8461 4.3837 -0.8207 -2.0433
ug 17.7763 40.0307 -18.1475 -32.3564
ug 0.0887 0.2864 -0.1339 -0.1504
uio 0.3787 0.6427 -0.6655 -0.5296
configuration 4 state mno overlap overlap no overlap overlap
q2 0.0019 0.0852 -0.0016 -0.0117
a5 0.0150 0.1569 -0.0219 -0.1498
a6 0.0133 0.1410 -0.0324 -0.0884
qr 0.0400 0.0997 -0.0340 -0.0504
qas 0.0760 0.3483 -0.0106 -0.0508
q9 0.0184 0.0726 -0.0426 -0.0455
q10 0.0384 0.1746 -0.1228 -0.1363
q11 0.0083 1.0993 -0.0105 -0.0799
q12 0.0014 0.0250 -0.0013 -0.0077
q13 0.0080 0.0558 -0.0165 -0.0865
dia  0.0048 0.0241 -0.0021 -0.0094
ui 0.0221 0.2367 -0.0096 -0.0642
u2 0.0466 0.2298 -0.0361 -0.2396
us 0.0238 0.3550 -0.0498 -0.1127
uyq 1.7178 3.2696 -1.7766 -2.7417
us 0.1427 0.5715 -0.1799 -0.4639
Uug 0.5331 0.2426 -0.4709 -0.4199
uy 0.5546 1.5057 -0.8223 -1.5722
ug 11.0471 25.5011 -10.7568 -14.4995
ug 0.1718 0.3444 -0.1929 -0.1883
u1o 0.5065 0.7486 -1.0051 -0.7136
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6.3 GRAPHICAL ILLUSTRATION OF ROBUSTNESS DATA
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Figure 21.  Study of robustness in a 3D passive walker with no-overlap in the feet.
The graphs show the maximum possible disturbance from the stable periodic gait at
five different configurations of the walker.
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Figure 22.  Study of robustness in a 3D passive walker with overlap in the feet. The
graphs show the maximum possible disturbance from the stable periodic gait at five
different configurations of the walker.
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