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Optimal control of boundary layer transition.
Markus Hogberg Department of Mechanics, Royal Institute of Technology
S-100 44 Stockholm, Sweden

Abstract

Methods for optimal control of transition in boundary layers are investi-
gated and developed in this thesis. A model problem is studied in order to
investigate an approximative method for objective function gradient computa-
tions. The approximation is to use the continuous formulation of the equations,
instead of the discrete counterpart, to derive the optimization problem. The
conclusion is that the approximative method is sufficiently accurate for the
purpose of transition control. A nonlinear control approach using the Navier—
Stokes equations and the associated adjoint equations to minimize an objective
function measuring the energy of the perturbation to a laminar flow is devel-
oped and tested using direct numerical simulations.

A similar optimization problem is posed, using the Orr—Sommerfeld—Squire
equations, which can be solved directly to obtain localized physical space feed-
back control laws. The performance of these control laws is quantified in direct
numerical simulations by computing transition thresholds. It is shown that the
threshold values can be increased by about 500% for a random perturbation.
By using a physically motivated modification of the objective function it is
shown that these linear controllers are also able to relaminarize a low Reynolds
number turbulent flow.

In this linear framework an estimator in the form of an extended Kalman
filter is developed and shown to have exponential convergence using the normal
derivative of the normal vorticity as a wall measurement. The estimator and
controller are combined into a compensator for which transition thresholds are
computed. In this case the threshold value for the random perturbation is only
increased by about 48%.

The linear control approach is then applied in direct numerical simulations
of spatially developing boundary layer flows with successful reduction of per-
turbation energies for Tollmien—Schlichting waves and optimal perturbations
in the Blasius boundary layer. In a Falkner—Skan—Cooke flow the control strat-
egy also reduces the energy of traveling and stationary, saturated cross-flow
vortices.

Descriptors: laminar-turbulent transition, transition control, turbulence con-
trol, flow control, boundary layer flow, channel flow, optimal control, adjoint
equations, Riccati equations, Orr—Sommerfeld—Squire equations, secondary in-
stability, transient growth, DNS, oblique waves, Falkner—Skan—Cooke flow,
cross-flow vortices.



Preface

This thesis is about optimal control of transition and turbulence in channel
and boundary layer flow. The first part is a summary of the research presented
in the papers included in the second part. An effort has been made to make
the summary available to a general audience, and short sections describing
methods and equations are included to make the thesis more self-contained.
The summary also includes presentation of, and discussions about, the main
results obtained. References to the papers in part 2 are made in order to clar-
ify where to find more detailed information. Related research is reviewed and
referred in order to put the present work into context and to help identify orig-
inal contributions. A guide to the papers and the different authors respective
contributions is also included in the last chapter of the thesis.

The seven papers in part 2 are adjusted to comply with the present thesis
format for consistency, but their contents have not been altered compared to
published or submitted versions except for minor corrections. The presentation
is streamlined for clarity, and the discussion and the papers are for this reason
not organized in chronological order.

Stockholm, 20011002
Markus Hogberg
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Part 1

Summary






CHAPTER 1

Overview

1.1. Introduction

The desire to control processes governed by the laws of nature has been a driving
force for mankind ever since we were unable to control fire. The potential
benefits from such abilities has attracted researchers in many areas such as
biology, chemistry, combustion, aerodynamics, physics and fluid mechanics. In
these areas many processes with complex dynamics occur, and the gains from
being able to control these processes can be substantial from economic as well as
environmental perspectives. Within the field of fluid mechanics there are many
challenging control problems to consider. The ability to prevent turbulence
could have a large impact on the performance of air and water vehicles since
the drag, and thereby also the fuel consumption, can be decreased. Enhancing
or stimulating turbulence can also be of interest where efficient mixing or heat
transfer is desired. In other applications the main concern is to suppress or
trigger separation in a controlled manner. Flow control can take many different
forms and some kind of classification of different strategies is useful. The term
passive control is used when the flow is affected without requiring an input of
energy. The swimsuits developed to decrease the drag of a swimmer uses a
passive strategy where the manufacturers claim to have imitated the skin of a
shark. Apparently it is a successful design since so many new world records
have been set by people wearing those suits. Another sport where passive flow
control has had an impact is golf. The small dimples in the surface the ball
trigger turbulence and thereby separation is delayed and drag is reduced. As
opposed to passive control, active control requires an energy input to the flow.
This is done either according to a predetermined scheme in an open loop or
determined from measured data in a closed loop. An example of an active,
open loop, approach to flow control is used in the process of continuous casting
of metals. Magnetic fields are applied to affect the flow in the mold during the
casting process to improve the quality of the solid metal. Another example is
the application of suction on the wing or fin of an airplane to stabilize the flow
and decrease drag. Closed loop active control is also known as reactive control
which means that information about the state of the process measured and
used in feedback to the controller that acts based on this information. This
kind of controller is used in large scale flow systems e.g. to get the optimal
mixture of gas and air in a combustion engine to maximize the efficiency and
minimize pollution. It is not as commonly used to affect the flow itself on a

3



4 1. OVERVIEW

small scale as it is for these larger systems. In the last decade there has been
rapid development of mechanical sensors and actuators for small scale flow
measurement and actuation through the MEMS technology, and these devices
are being used in laboratory experiments around the world. The development
of this new technology could mean that we in the near future will see more
active and reactive flow control in practical use. In this thesis the topic of flow
control is approached from a numerical perspective. Tools from optimization
and control theory are applied to fluid mechanical systems in order to evaluate
different strategies. The focus is on active and reactive control of flows in
simple geometries. Such model problems are used to evaluate new methods
and to establish what is doable and what is not, which provides important
information for future research in this field.

|

Control region

Measurement region

FIGURE 1.1. Schematic picture of measurement based control
of boundary layer transition.

1.2. Objectives

In figure 1.1 a hypothetical flow control situation is sketched. A homogeneous
flow from the left flows past a flat plate on which a thin boundary layer develops.
On the surface of the flat plate the fluid is at rest and at a short distance above
the surface it has the speed of the freestream, the region in between where
there is a rapid change in fluid velocity is the boundary layer. If the flow
is perturbed in the boundary layer, for example by a surface roughness or
free stream turbulence, these perturbations can grow and cause transition to
turbulence. One goal of transition control is to be able to prevent this from
happening. In an experiment this could mean that at some region of the surface
of the plate measurements are made to obtain information about the state of
the flow. This information is then used to compute an optimal normal velocity
distribution to be applied in the control region and hopefully transition can be
avoided or at least delayed.

The process of transition from laminar to turbulent flow is an area of
intensive research and many of the secrets of the dynamics of this nonlinear
process are yet to be revealed. Complicated processes leading to transition
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such as the bypass transition scenarios with nonlinear effects are non-intuitive
and can therefore be difficult to control. The goal of the current work is to
determine how to control such processes in the optimal way given the method
of controlling the flow, and an objective function describing the features of
the flow to be controlled. In other words the problems studied can be viewed
as the formulation and solution of an optimization problem. Exploring the
many possibilities for flow control within this framework is necessary in order
to identify efficient and feasible flow control schemes for practical use. One
can also speculate that by doing this, it is possible study the results to gain
insight into the physics of transition and perhaps identify key mechanisms of
this complex process. The studies are limited to low Reynolds numbers and
simple geometries where the bypass transition scenarios are dominating, and
exponential primary instabilities are absent unless the mean flow profile has an
inflection point. These flows are suitable to study in numerical experiments,
and numerical methods as well as reliable simulation codes have been developed
for these purposes. The transition scenarios considered in this work have been
subject to intensive studies and the recent book by Schmid & Henningson
(2001) covers many aspects of transition and contains most of the present
knowledge in this field.

1.3. Problem formulation issues

The complicated physics of a transitional flow makes it difficult to identify the
key mechanisms to be targeted by an effective control scheme. Different phys-
ical properties of the flow can be affected by the controller through the choice
of objective function, which therefore is an important part of the formulation
of the optimization problem. In the present thesis a measure of the energy of
flow perturbations is often used in the objective functions, but this is not in
any way suggested to be the best choice for all cases. Other possibilities are
e.g. drag, mass flux, vorticity or something that is not a quantity of the flow
itself such as the transition point.

There are several possibilities to affect the flow of a fluid. Heating and
cooling can be used to affect the viscosity of the fluid, application of magnetic
and electrodynamic forces can be used when the fluid is conducting and blow-
ing and suction through small holes can be used if the flow in bounded by a
solid surface. Different methods are applicable to different situations and flow
characteristics. The method of actuation chosen here is blowing and suction at
solid walls since it is a fairly simple way of acting on the flow, and also because
it is a technique that is widely used both in experimental and numerical stud-
ies. The blowing and suction is also restricted to have zero net mass flux, and
this will limit the ability of the control to affect the mean flow but is suitable
for controlling perturbations.

When the objective and the actuation technique is chosen the formulation
of the optimization problem is basically done. The next step is to choose the
equations to use for description of the flow that the optimal controller is to
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be designed for. The properties of the governing equations will also implicitly
determine what methods can be used to solve the optimization problem. When
the Navier—Stokes equations are used, an iterative optimization technique must
be used due to the nonlinearities of the equations. If the governing equations
are the linearized Navier—Stokes equations, the optimal solution can be found
directly through the solution of Riccati equations. Once all choices have been
made, the framework in which the control is developed is determined and it
is also known in what sense the control will be optimal. It is important to
remember in the nonlinear control case that the resulting control obtained is
far from general, and only optimal with respect to the particular perturbation,
and the discretization of the control. In the linear control case we can compute
controllers that are independent of the initial perturbation and time, which
makes this approach more general.

1.4. Optimization methods

The optimization methods used in the present work are very general, and in-
stead of giving a detailed description for the particular problems considered
here a more general form is used to illustrate the methods. In particular one
can look at a general real system of equations to get a picture of how the non-
linear and the linear optimization approaches are connected. There are many
equivalent ways of formulating these problems, and a common method not dis-
cussed here is to use a Lagrangian multiplier technique, whereas an adjoint
equation approach is used in this work. The papers in the second part of the
thesis give more detailed information on these methods.

1.4.1. Nonlinear equations

Consider a dynamical system described by the evolution equation,
x = A(x) + B(x,u), x(t=0)=xq,

where the dot denotes a time derivative, x is the state variable and u represents
a forcing. The operators A, describing the dynamics, and B, describing how
the forcing affects the dynamics, can be dependent of the state corresponding
to a nonlinear case or independent of the state in a linear case. The problem
is now to find the function u that minimizes an objective function,

T

J = %/X*Cfclx—l—EQu*udt,

0
where the T denotes the time interval and an asterisk (x) indicates a transpose.
The quantity of the state to be minimized is measured through C;. Assuming
that B(x) is given, the problem is to find u = u; such that J(uy) < J(u)
for all possible functions u. We wish to find an expression for the gradient of
J with respect to u in order to use gradient based optimization techniques to
find u;. By defining the operator,

L(x) =% — A(x),
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we can write the state equation as,
L(x) =B(x,u), x(t=0)=xo.

To find the gradient with respect to u we need to look at first variation of 7,
T T DY
5T = /X*Cl*Cléx—i— Cursudt 2 /(—j> sudt,
Du
0 0
and of the state equation,

(Vxﬁ(x) — Vx B(x, u))éx = VuB(x,u)du, x(t=0)=0.

Defining the inner product,
T
(p,du) = /p* -dudt,
0
and using the adjoint identity,

(p, Ndu) = (N*p, du) + boundary terms,

allows us to define the adjoint equation,
(Vx L(x) — Vx B(x, u)> p=CiCix, p(t=T)=0,

where p denotes the adjoint state variables with properly defined boundary
conditions. Combining the adjoint equation and the variational form of the
objective-function gives us the gradient,

DJg
Du
Since the operators are nonlinear we need to iterate by updating the control

in the opposite direction of the gradient and then compute the new gradient
until a minima is reached.

(Vu B(x, u)> p + (*u.

1.4.2. Linear equations

If the operators in the previous section are linear we can use a direct technique
to solve the optimization problem. This is because we can directly identify
what the solution should be from the equations and compute it numerically. In
the following the derivation is summarized and for mathematical details of this
problem see e.g. Ito & Morris (1998). It is assumed that A is a linear closed
operator and that B is linear and bounded. The equation can now be written,

X =Ax+ Bu, x(t=0)=x,
and the gradient expression becomes,

bJ _

B* (?u.
Du p+fu
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By introducing a linear mapping such that,
p=X()x,

where X self-adjoint and non-negative we can find the optimal solution by
setting the gradient to zero. This gives a feedback law for u,

1
u= _E_QB*X(t) X.
—_————
K(t)
Substituting the linear mapping and the feedback law into the adjoint equation
and combining it with the state equation leads to an operator Riccati equation
for X that has to be satisfied for any admissible x,

<X+A*X +XA- X%BB*X —|—Ci"C1>x =0, Xt=T)=0.
If T — oo in the objective function we need to find the stationary solution to
the Riccati equation to get the optimal time-independent feedback law.

A related problem is that of state estimation when only a noisy measure-
ment of the state is assumed to be known. The objective is then to reconstruct
the state from these measurements in an optimal fashion. Formulating this
problem in the linear setting also leads to a Riccati equation similar to the one
for the control problem. This optimal estimator is also known as a Kalman
filter.

1.5. Governing equations

For the reader not familiar with the governing equations and the basic stability
results forming the foundation for analysis of transition a short summary is
given in this section. The flow of an incompressible Newtonian fluid is gov-
erned by the Navier—Stokes equations. In their dimensionless form they can be
written using Cartesian tensor notation,

ou; L+ ou; or . 1 0%u;
e e A R ,
ot ! Oz Ox; Re &r?

Ou;

i 0,

83%
where {u;}?_, are the velocity components and 7 is the pressure. The Reynolds
number Re is composed of a length scale L, a velocity scale U and a viscosity
scale v such that,

(1.1)

UL

v

Re

The choice of length scales and velocity scales depend on the particular flow
considered. The centerline Reynolds number Re. = U.h/v is often used for
the laminar channel flow. It is based on the centerline velocity U, and half the
height of the channel h. For turbulent flows the skin-friction Reynolds num-
ber Re, = u,;h/v is commonly used. The velocity scale is here the mean
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skin-friction velocity @, = +/7w/p, where 7, = p(0u/0yY)wan is the mean
skin friction on the walls. For boundary layer flows the displacement thick-
ness 0* is used as the characteristic length scale and the freestream velocity
Uy as velocity scale. This gives the displacement thickness Reynolds num-
ber Res« = Usd*/v. The Navier—Stokes equations are also accompanied by
boundary conditions, depending on the geometry, and initial conditions. On a
solid surface it is common to apply a no-slip condition meaning that the fluid
is at rest. In the case of control the boundary conditions can also be used to
describe the actuation. If a fluid is flowing past a wall the velocity of the flow
rapidly increases as we move away from the surface. This region where the
velocity changes is known as the boundary layer and its thickness depends on
the Reynolds number. In the boundary layer the flow is sensitive to pertur-
bations and under certain conditions these can be unstable. By multiplying
the Navier—Stokes equations (1.1) with u; and integrating over a volume V
with homogeneous boundary conditions we obtain the Reynolds—Orr equation
describing the evolution of the perturbation energy Ey ,

dEV / an 1 81141 8ui
_ iU

bl A dv — —
dt 0z; v Re | Ox; 0x;
v v

(1.2)
where Uj; is used to denote the base flow. In the derivation of this equation the
nonlinear terms have dropped out showing that the governing mechanism for
energy growth is linear. The first integral on the right hand side represents the
exchange of energy between the base flow and the perturbations and the sec-
ond integral represent the viscous dissipation. If the energy of a perturbation
reaches a sufficiently large amplitude, nonlinear effects become important and
redistribute energy between different modes and there is a possibility for tran-
sition to turbulence. The importance of linear mechanisms for energy growth
(see e.g. Henningson (1996)), motivates the use of the linearized Navier—Stokes
equations.

A particular form of the linearized Navier—Stokes equations is obtained
by linearizing around a base flow and then projecting the two dimensional
equations on a divergence free manifold eliminating the pressure. The equation
obtained through this procedure is,

0 0 v 1
—A — _ —A "= _AQ
R P I P (1.3)

v=1v"=0 at solid walls and in the far field,

where v is the normal velocity and a prime (’) is used to denote a normal de-
rivative. When wave like perturbations are considered, equation (1.3) is known
as the Orr—Sommerfeld equation. The drawback of the linearized equations is
that they are only valid if the flow is spatially invariant, meaning that it has
exactly the same characteristics no matter at what location it is considered.
If the base flow changes, e.g. in the streamwise direction of a flat plate, the
linear analysis only provides an approximation of the dynamics of the flow. Ne-
glecting the effects of viscosity in the Orr—Sommerfeld equation, the Rayleigh
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equation is obtained. Lord Rayleigh (1880) showed using this equation that
the base flow must have an inflection point to support exponential instabili-
ties. Fjortoft (1950) strengthened this necessary criterion by showing that the
inflection point must also be associated with a maximum of the spanwise mean
vorticity. Under these conditions the flow can experience what is known as an
inviscid instability. The Orr—Sommerfeld equation has for a long time been
used to analyze wave like perturbations in a viscous flow in terms of eigen-
values and eigenvectors. If an eigenvalue is unstable, a perturbation exciting
the corresponding eigenmode will grow at an exponential rate. These unstable
eigenvalues can only be found for certain velocity profiles and if the Reynolds
number is larger than a critical value.

The early focus in transition research was on growth and breakdown caused
by so called Tollmien—Schlichting (TS) waves corresponding to unstable eigen-
values of the Orr—Sommerfeld equation. The critical value of the Reynolds
number, above which unstable eigenvalues exist, has been determined for many
flows, and in some cases they were found to be infinite even though the flow can
indeed be turbulent. More conservative critical Reynolds numbers can be com-
puted from the Reynolds—Orr equation but the most reliable values are those
obtained from experiments. Morkovin (1969) noted that other mechanisms for
transition were observed in experiments and that the TS-mechanism could be
bypassed. The term bypass transition originates from this statement and basi-
cally includes all transition scenarios with perturbation growth not originating
from a two dimensional exponential instability. In experiments investigating
the turbulent bursting process, Kim, Kline & Reynolds (1971) noted that prior
to a turbulent burst, low velocity fluid was lifted up from the wall. The un-
derlying inviscid linear mechanism was analyzed by Landahl (1975) in order to
explain burst regeneration. Landahl (1980) also studied this mechanism in the
context of inviscid growth of localized disturbances, and the reported findings
are referred to as the [lift-up effect in the literature. The lift-up effect is the
physical mechanism responsible for e.g. the generation and algebraic growth of
streamwise streaks in a boundary layer.

When three dimensional perturbations are considered an additional equa-

tion is needed to describe the perturbations,
ow ,0v ow 1 5
o g A
ot v 0z U&‘x + Re™
w =0 at solid walls and in the far field,

(1.4)

where w( = (V x u) - e2) is the normal vorticity. This equation is known as
the Squire equation when wave like perturbations are considered. The eigen-
modes of the combined Orr—Sommerfeld—Squire equations are not orthogonal
and therefore a perturbation can experience transient growth even if all eigen-
values of the system are stable. The non-orthogonality allows destructive in-
terference between different eigenmodes possibly resulting in an initial pertur-
bation with low energy. If the modes then decay at different rates, the total
energy of the perturbation will increase. Once the maximum distance between
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the modes, measured in an energy like metric, has been reached the perturba-
tion energy will start to decay. In the last decade this mechanism for energy
growth has received much attention, see e.g. Gustavsson (1991); Butler &
Farrell (1992); Reddy & Henningson (1993) and Trefethen et al. (1993).

1.6. Flow control background

A complete review of all aspects of flow control would extend hundreds of years
back in time but here only an attempt to cover the last decade or so is made.
An extensive amount of work has been done in flow control in the past, and
reviews of experimental and numerical work have been written on the subject
by for example Moin & Bewley (1994), Joslin, Erlebacher & Hussaini (1996),
Gad-el-Hak (1996), Lumley & Blossey (1998) and Bewley (2001). Articles
mainly concerning the mathematical aspects of the optimization methods used
for flow control can be found in the books edited by e.g. Gunzburger (1995) and
Sritharan (1998). The focus in this section is on computational transition and
turbulence control in boundary layer and channel flow. A nice recent review of
computational efforts in flow control is also given by Hinze & Kunisch (2000)
in an issue of Flow, Turbulence & Combustion devoted to adjoint methods and
their applications.

1.6.1. Laminar flow control

The most straightforward method to eliminate growth of perturbations is to
stabilize the boundary layer by modifying the mean flow profile. This is one
of few active flow control methods that has actually been attempted in flight
experiments. The mean flow is then altered by applying distributed suction on
the wing. A review of the efforts on laminar flow control can be found in Joslin
(1998). Recently more advanced schemes using an optimized profile for the suc-
tion distribution have been developed. In Pralits, Hanifi & Henningson (2001)
the parabolized stability equations (PSE) are used coupled with the boundary
layer equations to minimize the perturbation energy through modification of
the mean flow. Balakumar & Hall (1999) performed similar optimization to
move the transition point as far downstream as possible given certain restric-
tions. Similar methods can also be used to optimize the geometry of e.g. a
wing to get the desired properties.

1.6.2. Wave cancellation

The paper by Thomas (1990) reviews the early efforts on the control of TS
waves using an anti-phase control strategy. A brief review is given also by Met-
calfe (1994). It is reported that experimental attempts to cancel TS waves have
resulted in delay of transition but complete cancellation of the perturbations
has never been obtained. One important issue in experiments is precise actua-
tion, and many papers on experimental flow control are focused on determining
the properties of a particular actuator and its effect for specific perturbations.
Actuation is no problem numerically since it is just a matter of altering the
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boundary conditions. It is difficult to find comparisons between experimental
data and computational results since an experimental actuation device is not
always properly modeled in the computations. Using direct numerical sim-
ulations, Laurien & Kleiser (1989) studied the possibilities of delaying and
accelerating transition due to TS waves in a parallel Blasius boundary layer by
local two dimensional blowing and suction. The report that the control is only
effective if applied at an early stage of transition when the perturbations are
still two dimensional, but even then complete cancellation is not obtained. A
three dimensional base flow with localized perturbations was considered in the
recent paper by Wassermann & Kloker (2000). They investigated control of
crossflow vortex packets using a phase shifted modal control scheme with actu-
ation through blowing and suction. They found that the phase shift needed to
be individually adjusted for the different modes in order to achieve substantial
reduction of perturbation energy.

1.6.3. Opposition control

One of the most popular control strategies for numerical control of turbulence
is opposition control. The term comes from the numerical investigation of Choi,
Moin & Kim (1994) where a detection plane for the velocity was introduced
in the flow at a distance y* = 10 from the walls in a channel. The detected
velocity was then phase shifted by 180° and applied as a boundary condition
on the wall. With this method the drag in a turbulent channel at Re, = 100
was reduced by as much as 25% using the normal velocity and by 30% using
the spanwise velocity. These results have inspired further research on similar
methods, and the drag reduction obtained through this simple method has
become somewhat of a benchmark for other schemes to be compared with.
The dependence on the location of the detection plane was explored by e.g.
Hammond, Bewley & Moin (1998). They investigated the control action and
its effects, explaining why the control fails when the detection plane is to close
or to far from the surface. The control strategy was also evaluated by Farrel &
Ioannou (1996) by application to a linear system with the possibility to change
the phase shift as well as the location of the detection plane. This approach
enabled them to study the linear dynamics of the closed loop system with
opposition control finding that the variance of their parameterized turbulence
could be reduced as much as by 70% near the wall. Wind tunnel experiments
were recently performed by Rebbeck & Choi (2001) using opposition control
showing the possibility for drag reduction also in practice.

The physical mechanism behind the success of opposition control is re-
lated to manipulation of near-wall streamwise vortices. The scheme effectively
moves the regions of high shear related to these vortices away from the wall
and thereby reduces drag. An alternative way of treating the near wall vortices
was reported by Koumoutsakos (1997) who applied control by prescribing the
vorticity flux at the wall. An in phase control increases the vorticity flux and
and out of phase control reduces it through cancellation of near wall vortices.



1.6. FLOW CONTROL BACKGROUND 13

This idea was applied to a turbulent channel flow at Re, = 180 by Koumout-
sakos (1999) resulting in a drag reduction of about 40% for the out of phase
control. It should also be noted that this feedback control scheme only relies
on measurements of the instantaneous pressure at the wall. In a recent paper
Gmelin & Rist (2001) evaluates the direct feedback of wall vorticity flux for
control of transition in boundary layers using direct numerical simulations and
linear stability theory.

1.6.4. Suboptimal control

Possible applications of gradient based optimal control techniques were identi-
fied and analyzed by Abergel & Temam (1990) and much of the current efforts
on optimal flow control can be traced back to the ideas in this particular pa-
per. Choi et al. (1993) introduced the concept of suboptimal control of a fluid
system and applied it to the Burgers equation. The basic idea of suboptimal
control is to avoid the large memory and computational time requirements for
optimal control by using an objective function over one time step only. The
methodology was applied to a turbulent channel flow at Re, = 100 by Bew-
ley & Moin (1994) resulting in a 17% drag reduction. Even though this was
less than what was obtained with opposition control this method was based
on optimal control theory, which is a firm foundation, and has a potential for
improvements. In practice a control scheme can only rely on measurable in-
formation that can be used to impose certain boundary conditions to the flow.
Through analysis of the governing equation one can come up with boundary
conditions that will minimize the instantaneous value of a specific objective
function. The suboptimal control of Lee, Kim & Choi (1998) uses this idea
to derive the optimal boundary conditions for minimizing a carefully designed
objective function based on wall pressure fluctuations or wall shear stress, re-
sulting in a skin friction drag reduction of up to 22%.

Lee et al. (1997) used a neural network to adaptively find a feedback law
for the local wall shear stress to control turbulence using direct numerical sim-
ulations. They achieved about 20% drag reduction using this strategy, and also
with a simple control scheme deduced from the optimized neural network drag
reduction of the same order was achieved.

1.6.5. Nonlinear control

The body of literature on this subject is huge and only work on channel and
boundary layer flow is considered here, noting that investigations for other ge-
ometries and problem formulations can be very similar, see e.g. Gunzburger &
Manservisi (2000) or Berggren (1998). The step from the suboptimal scheme
to an optimal scheme is taken by extending the time interval over which opti-
mization is performed. A particular type of objective function is the one used
for receding horizon optimization, which means that a large time interval is
divided into smaller parts, and then the control is optimized over these parts
successively with only a penalty on the final state in each interval. It is possible
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with this method to completely relaminarize a flow with turbulent initial con-
ditions and this has been done using direct numerical simulations by Bewley,
Moin & Temam (2001) and using large eddy simulations by Collis et al. (2000).
In the investigations of Bewley, Moin & Temam (2001) it was found that the
performance of the resulting control can differ widely depending on the choice
of flow properties included in the objective function, which was also indicated
by Lee, Kim & Choi (1998). A terminal measure of turbulent kinetic energy
was found to be the most suitable one to use to obtain relaminarization. Hinze
& Kunisch (2000) prefers the term sub-optimal also for the receding horizon
control, but in theory it should be possible to use a long enough time interval to
obtain relaminarization without the receding horizon technique. The increase
in memory requirement can be avoided by using a check-pointing technique
(see e.g. Berggren, Glowinski & Lions (1996)) at the expense of increased com-
putational cost. In paper 2 in this thesis a direct numerical simulation code for
solving the nonlinear optimal control problem in channel flow is developed and
tested for controlling oblique wave perturbations. The code is developed do
have a simple structure and to be suitable for extension to the spatial bound-
ary layer flow. The approximative method of using the continuous equations
to derive the control problem is also evaluated for a simple model problem in
paper 1.

A problem setup similar to the one in figure 1.1 was studied for a two
dimensional flow using direct numerical simulations by Joslin et al. (1997).
The measurement region was located downstream of the actuation and they
considered both a spatial boundary layer flow and a channel flow. The objective
was to match the shear stress in the perturbed flow to that in a laminar flow on a
portion of the wall. They reported that actuation through blowing and suction
resulted in successful delay of transition due to TS waves in both channel flow
and in the Blasius boundary layer.

1.6.6. Linear control

The focus of flow control has to a large extent been on the problems of drag
reduction and turbulence control. In many applications turbulence can be
avoided initially but eventually there is transition to turbulence. If the control
is applied during the transition process the need for turbulence control can
perhaps be avoided. Since energy growth in a fluid flow is a linear process it
makes sense that linear equations could be used to control transition. The find-
ings reported by e.g. Henningson (1996); Farrel & Ioannou (1996); Kim & Lim
(2000) about the importance of linear mechanisms for sustaining turbulence
indicate that linear controllers could also be used to control turbulence.

Using the linearized equations for flow control is a fairly new concept. One
early study was that of Bower et al. (1987) where the superposition control
concept was evaluated using the Orr—Sommerfeld equations with periodic blow-
ing and suction as boundary condition. A simple proportional control scheme
based on measurements of wall shear was used by Hu & Bau (1994). They used
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heating and cooling at the wall to modify the viscosity of the flow in order to
suppress instabilities. In the aforementioned paper by Farrel & Toannou (1996)
the linear equations are used to evaluate the opposition control strategy. In
Gmelin & Rist (2001) the performance of a wall vorticity flux feedback scheme
is quantified e.g. by computations of neutral curves for the controlled linear
system.

Classical control theory was applied to two dimensional perturbations in
a laminar channel flow by Joshi, Speyer & Kim (1997). The control problem
is based on a stream function formulation of the Orr—Sommerfeld equations.
Blowing and suction actuation was computed using feedback of wall shear. By
using a constant gain feedback integral compensator they could stabilize the
flow and modify its properties. Modern control theory was used to compute op-
timal (H2) controllers using this stream function formulation in Joshi, Speyer,
& Kim (1999). The same formulation has also been used to develop reduced
order robust controllers for the multi wavenumber case in Cortelezzi & Speyer
(1998) and Cortelezzi et al. (1998). Recently Baramov, Tutty & Rogers (2000)
used a similar approach to develop robust (H) controllers, accounting for ef-
fects of localized actuation. The two dimensional controllers were extended for
application to three dimensional flows by augmenting an ad hoc scheme in the
third dimension in Lee et al. (2001). For a turbulent channel flow at Re, = 100
this scheme resulted in a drag reduction of 17%.

Three dimensional perturbations were considered by Bewley & Liu (1998)
where both optimal and robust control strategies were evaluated for both sub-
and supercritical Reynolds numbers at isolated wavenumbers in a linearized
channel flow. A problem formulation for three dimensional perturbations is
also discussed in Kang et al. (1999) and for multiple wavenumbers in Kang,
Cortelezzi & Speyer (1999). The key property utilized in these three papers is
the decoupling of different wave number pairs when the Orr-Sommerfeld-Squire
equations are used. It was suggested in Bewley & Liu (1998) that the opti-
mal control for the full physical system could be obtained through an inverse
Fourier transform of optimal controllers computed for an array of wave number
pairs. Bamieh, Paganini, & Dahleh (2000) reports that such optimal control
laws, computed for a spatially invariant distributed system, should be spatially
localized with exponentially decaying tails. In paper 3 in the present thesis,
localized feedback laws for both control and estimation are computed using a
slightly modified version of the problem formulation in Bewley & Liu (1998).
The performance of these controllers and estimators is quantified in terms of
their ability to prevent transition in paper 4. A simple nonlinear extension
through gain scheduling is introduced together with a modification of the ob-
jective function in paper 3 and shown to be sufficient in order to relaminarize
a low Reynolds number ( Re, = 100 ) turbulent channel flow. Section 3.5.3 in
this thesis, contains recent results showing that relaminarization of the same
turbulent flow can also be obtained without gain scheduling using a fully linear
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state feedback controller. A comparison with the nonlinear optimal control is
performed in paper 5 to demonstrate consistency between the two methods.

The advantage of using control theory is that the optimization problem
can be solved off-line independently of the particular perturbation to the flow.
Unfortunately the control tools are developed for dynamical systems that can
be written in the standard form x = Ax and this is, today, only manageable
for simple flows and geometries. For spatially developing flows the iterative,
adjoint based optimization technique is more suitable even when the governing
equations used are linear. Cathalifaud & Luchini (2000) considered control
of the spatially developing laminar flow over a flat-, as well as a concave-
wall with optimal perturbations using the the boundary layer equations. They
computed distributions of blowing and suction that successfully minimized the
objective functions penalizing terminal values, or an integral over time, of the
perturbation energy. In Walter, Airiau & Bottaro (2001) a similar problem is
studied using the linear PSE focusing on TS wave perturbations. A possible
advantage of using PSE is that non-parallel effects are accounted for, and it
is also easy to extend to include weak nonlinear effects. In paper 7 the linear
controllers developed in the present work for parallel flows are shown to be
applicable also in the spatial setting. Successful suppression of exponential
instabilities as well as transiently growing perturbations is obtained even when
the perturbation amplitude is large.

1.7. Thesis outline

The main focus of the work in this thesis is the second part of the measurement
based control strategy where the information about the state of the flow is
assumed to be available. The question is then how to use this information in
the optimal way. The optimization techniques described in section 1.4 can be
applied to these flow control problems using either linear or nonlinear equations.
In order to test different strategies a simpler flow than the one depicted in
figure 1.1 is studied initially, namely the flow in a channel between two parallel
infinite walls. The results from this simple flow case is then extended to more
complicated situations. The application of nonlinear adjoint based optimization
technique to control of the Navier—Stokes equations for flow in a channel is
described briefly in chapter 2 based on the work in papers 1 and 2. The linear
control theory and its application to flow control and estimation in papers
3, 4 and 5 is discussed in chapter 3. In chapter 4 the work from paper 7
about application of the linear controller to spatially evolving flows is discussed
for different flow situations and perturbations. Implications for the secondary
instabilities studied in paper 6 are also discussed. Finally a brief discussion of
the main results and suggestions for future work is presented in chapter 5, and
quick guide to the papers included in this thesis and the contribution of the
respective authors is given in chapter 6.



CHAPTER 2
Nonlinear control

When applying the nonlinear approach to compute optimal controls an itera-
tive optimization technique must be used due to the nonlinearities in the state
equation. These nonlinearities prevent direct solution of the optimization prob-
lem since the solution cannot be identified directly from the equations. To do
iterative optimization, information about the gradient of the objective func-
tion can be used. The alternative to use an optimization approach that is not
based on gradient information is not feasible due to the high dimensionality
of the problem. An efficient method for obtaining gradient information is the
adjoint equation approach. Only two numerical simulations are then required
independently of the number of degrees of freedom. The drawback of this ap-
proach compared to other ways to compute the gradient is that information
must be saved about the whole solution of the equations in space and time.
This requires a lot of computer memory. From a practical point of view this
type of control is not very useful since it will only work for exactly the flow
perturbation that has been studied. On the other hand important details about
the nonlinear mechanisms involved could be revealed since these are accounted
for by the resulting optimal control. The approach is also easily extended to a
robust formulation accounting for the worst case disturbance as described by
Bewley, Temam & Ziane (2000). A control that is robust in this sense can be
applied in more general situations.

2.1. Control problem

Considering nonlinear control, the governing equations are the incompressible
Navier—Stokes equations in dimensionless form,

@-f—(u'V)u:—Vw—i—

2
5 Veu,
V-u=0,

Re; (2.1)

where u is the velocity vector, 7 is the pressure and Re.; denotes the Reynolds
number of the flow. The equations are complemented by boundary and initial
conditions. Consider the flow in a channel that is periodic in x and z, illustrated
in figure 2.1, driven by a condition that keeps the mass-flux constant. The al-
ternative of using a constant pressure gradient to force the flow would explicitly
determine the mean drag in the channel and applying boundary control would

17
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F1GURE 2.1. Geometry of flow domain € for channel flow simulations.

not change that. The flow is laminar and has an initial perturbation of some
kind that will cause energy growth and perhaps also transition to turbulence.

Control is applied through blowing and suction normal to the channel walls
T'y and I';, and is restricted to have a zero net mass flux. The control has a
continuous distribution over the wall and is represented by number of sinusoidal
modes. The velocity components in the horizontal directions are subject to a
no-slip condition on the walls.

The objective function describing what will be minimized by the control
contains a measure of the energy of the perturbation to the laminar flow. A
measure of the control input is also included to regularize the optimization
problem and bound the control energy used. It is also useful to allow the time
interval which the objective function covers be variable in order to be able to
modify the optimization problem. Using ¢ to denote the control the objective

function is,
5 T3
€ 2 1 2
J(p) = 5 |v|dl dt + 5 (u—ur)“dQdt, (2.2)
T¢ T T? Q

where v = eq - u, (T7,Ty) is the control time period and (17,Ty) is the ob-
servation time period. The target velocity profile is denoted ur and ¢ is the
regularization parameter. The optimization problem is then: find ¢* which
satisfies,

J(*) < J(p) Y u(p)lr € Uaa,

where U,q denotes the set of admissible controls.
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2.2. Model problem

The proper way of deriving the adjoint equations is to use the discretized
version of the equations and objective function and derive the discrete adjoint
equation from them. This can however be a much more difficult derivation
than starting from the continuous equations. By studying a model problem for
shear flow instabilities the effect of the approximation of using the continuous
equations could be investigated. By solving the same optimization problem
using a spectral method for the approximative formulation and a finite element
method (FEM) with an exact formulation, the differences could be evaluated.
The details of this study is reported in paper 1 in this thesis. Considering the

A
y Mo

u(y) 1

Y

FIGURE 2.2. The computational domain studied in the model problem.

scalar advection diffusion equation,

1
ut—l—U(y)ux—au—EAu:f in@=0x(0,T),
u=0 on Xy =T x (0,7),
U= on ¥, =T.x(0,T),
R
EU(y)u—ugC =0 on ¥ =T x (0,7),
u(t = 0) = uyo,

in a two dimensional domain €2 with the boundary I' depicted in figure 2.2.
The indices t or = denote a derivative in time or space and the velocity profile,

Uly) = (1 —e¥)/(1 — e ¥mex),

is chosen to mimic a boundary layer profile. Control is applied through the
boundary condition for u on the inflow boundary I', and the boundary condition
on the outflow boundary I'; is non-reflecting. For the optimization problem the
objective function is,

J(p) = %/¢2d2+%/u2dQ,

e Q
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where ¢ is the regularization parameter. Optimization using information about
the gradient of the objective function is then performed using a standard con-
jugate gradient method.

2.2.1. Continuous formulation

A solver for the optimization problem derived from the continuous equations
was implemented using a Chebyshev collocation method to give good accuracy.
The gradient of the objective function in the continuous formulation is,
1

Rpx Fu’

where p is the solution to the associated adjoint equation.

VJ(p) =g + (2.3)

2.2.2. Discrete formulation

A finite element discretization was made of both the state equation and the
objective function. Then the associated discrete adjoint equation was derived
based on the discrete equations. This results in an optimization problem where
the gradient is obtained to machine precision of the computer. In the fully
discrete case, the gradient is a vector VJ hAt of dimension N x M, where N is the
number of time steps and M is the number of mesh points on the I', boundary,
excluding the corner points. Each component of this vector is evaluated by
computing,

(VIR )im = E/U}i@n dF+/u”wi dn
re Q

_ Q/w KA% _ a>pn _ p"“} a0 (2.4)

1 . )
— E/an -Vw' dQ — /Up"“w;, dQ,
Q Q

wheren=1,... N,i=1,... M, and where w® are the base functions of the
FEM discretization such that it is 1 at node 7 on I'; and zero at all other nodes
of the triangulation. In expression (2.4), the fully discrete co-states {p"}_;
are obtained by solving the corresponding discrete adjoint equation.

It is clear that the gradient expression (2.4) would not be obtained by
simply discretizing the continuous expression (2.3). Also the discrete adjoint
equation differs substantially from what is obtained by discretizing the contin-
uous counterpart.

2.2.3. Comparing the formulations

Comparing the two methods was mainly performed in terms of convergence
rate. In particular the dependence on the different numbers of degrees of free-
dom, or resolution, and the parameters « and R was studied. A typical plot of
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timization. R =50 and o = 1.5

the reduction in the gradient norm shows a large drop for the first iterations us-
ing either method. The curve then flattens out and from the slope of the curve
in this region the convergence rate is computed. The fully discrete formulation
was found to have faster convergence in general, and the dependence on the
parameters and the resolution was larger for the continuous formulation. The
conclusion from this study was that using the adjoint equations derived from
the continuous formulation was sufficient to get close to the optimal solution
of the control problem. Especially when focusing on controlling strong insta-
bilities the approximate formulation was found to be sufficient. In figure 2.3 it
is shown that the strong instability is taken care of in the first few iterations of
the optimization, and the additional iterations required to reach the optimal
solution is merely a fine tuning of the control. Despite the differences in conver-
gence rate, the performance in the initial steps of the optimization was found
to be similar for both formulations. It was also observed that convergence rate
for the later iterations decreased rapidly with increasing R. This indicates that
the computational cost will increase when applying this methodology to high
Reynolds number flows since a larger number of iterations will required to find
the optimal solution.

2.3. Derivation and Implementation

Motivated by the findings from the model problem, the continuous equations
are used to derive the adjoint equations for the nonlinear optimization problem.
The drawback is that only an approximation of the true optimal solution will
be obtained. In order to decrease the sensitivity to changes in the number of
degrees of freedom in time of the control a parameterization of the control in
time was found to be useful. The full derivation of the adjoint equation and
gradient expression is given in paper 2 in this thesis.
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To facilitate efficient implementation and solution of the optimization prob-
lem the existing spectral channel flow code of Lundbladh, Henningson & Jo-
hansson (1992) was used as a template for the optimization code. The code
uses Fourier modes in the periodic directions and Chebyshev polynomials in
the wall normal direction with either a collocation or tau method. The time
stepping scheme is a four step Runge-Kutta method for the advective terms
and a Crank-Nicholson method for the viscous terms. The solver is based on
a velocity-vorticity (v — w) formulation of the Navier—Stokes equations, and
therefore the adjoint equations need to be put in that form prior to implemen-
tation as well. The Navier-Stokes equations (2.1) in v — w form are (Benney
& Gustavsson (1981)),

odv (0% 0PN, 0 (OH O 1 .,
ot \0z2 " 922)"7 oy\ oz " 9z ) Rea (25)
8_w :8H1 . 8H3 + 1 Aw,

ot 0z Ox Regy

where H = u x (V x u). Using the objective function 2.2 the gradient is,
aJ
Bor =~ /m (apf Yr — a> dr, (2.6)
'y
and
oJ
A= /wL ey +o | dr. (2.7)
dpu K
U

where 1 denotes the base functions for the control, the index L and U denotes
the lower and upper wall respectively, and ¢ denotes the adjoint pressure. The
adjoint equation in the form corresponding to v — w for the adjoint states is

OAp, (0 9\~ 0 (0H 0oH 1,
ot —<W+@ M58 ¥ 52 ) T RSP
9(Vxp) OH 0H;

1
ot 0z  Ox + ReclA (Vxp)a,

(2.8)

where p = (p1, p2, p3) denotes the adjoint states and,
= —u x (¥ x p) +2(Vp)Tu + X[T?, T¢)(u — ug).

The function x[t1, t2] is such that it is one if ¢ € [t1, t2] and zero otherwise.The
adjoint equations are solved backwards in time. Considering this, equations
(2.5) and (2.8) are identical except for the expressions for H and H, and the
same solver can be used for both equations with only small modifications.
Since the advantage of the v — w formulation is that pressure is eliminated
the adjoint pressure is not solved for explicitly. Fortunately its gradients can
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easily be evaluated on the walls through the expression,

1 ¥y op1
e W B Reg 0y? W Ua_y W7
1 &ps Ips3
UZW_Recla—yQW Ua_y W7

where W denotes either wall. From this information we can then compute the
objective function gradient by integrating to get the adjoint pressure on the
walls. Note that we cannot get the constant part of the adjoint pressure but
it is not needed since zero mass flux control is considered. A check of how
accurately the gradients of the objective function are computed can be done by
comparison with a finite difference computation. By perturbing the control at
every degree of freedom we can compute the finite difference gradient and then
it can be compared to the one computed using the adjoint equations. Testing
this for a few different cases shows that the error obtained by computing the
norm of the difference between the normalized gradients obtained from the
finite difference and adjoint computations respectively is less than 1% in the
initial iterations.

2.3.1. Optimization

When the gradient has been determined, and standard gradient based opti-
mization algorithm can be applied to solve the problem. A steepest descent
approach is not so efficient, and a conjugate gradient algorithm is not well
suited for non-linear problems. Instead a limited memory quasi Newton ap-
proach called L-BFGS-B described in Byrd et al. (1994) is used for the nonlin-
ear optimal control problem. This algorithm was downloaded from the Internet
and included in the code without modifications.

2.4. Control of oblique waves

Optimal control of transition initiated by oblique waves applying the method-
ology outlined in this chapter is attempted to evaluate the code before further
development.

2.4.1. Transition scenario

The transition scenario involving oblique waves as initial perturbation is a four-
stage process. Oblique waves force streamwise vortices that through the lift-up
mechanism creates streamwise streaks that can breakdown to turbulence thr-
ough secondary instabilities. From the linearized equations the transient energy
growth associated with the formation of the streaks is found to be due to the
non-orthogonality of the eigenmodes of the system. This mechanism for energy
growth is thoroughly studied and explained in e.g. Gustavsson (1991); But-
ler & Farrell (1992); Reddy & Henningson (1993) and Trefethen et al. (1993).
The breakdown process of the streaks due to the secondary instability is under
active investigation, the recent experimental work of e.g. Westin et al. (1994),
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Matsubara & Alfredsson (2001) and Elofsson (1998) has increased the physical
understanding and so has numerical studies by e.g. Berlin et al. (1999).
2.4.2. Control

Control is applied at the different stages of the transition scenario to investigate
how sensitive the control is to different initial conditions.
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FIGURE 2.4. solid: The energy growth without control ;
dashed: case 1 ; dotted : case 2 ; dash-dot: case 3.

Figure 2.4 shows the energy evolution of controlled flow in a channel where
the initial condition is a pair of oblique waves and Re.,; = 2000. The control
is allowed to act in all Fourier modes of the simulation and is distributed with
20 degrees of freedom in time. In all cases the observation starts at ¢ = 50 and
continues until the end of the simulation, and once the control has been turned
on it remains so until the end of the simulation.

First control is applied from ¢ = 0, denoted case 1, and the energy growth is
initially slightly larger than in the uncontrolled case, but thereafter the energy
rapidly decays. In this case the control acts on the oblique waves directly pre-
venting them from inducing strong streamwise vortices. In case 2 the stream-
wise vortices have already formed and control is applied at ¢ = 25. Initially the
energy follows the curve for the uncontrolled case but then at approximately
t = 35 it starts decaying. Finally in case 3 the control is applied at ¢ = 50
to the growing streaks. In this case the energy also follows the curve for the
uncontrolled case until ¢ = 55 before it starts decaying. It should be noted
that there is a difference between the cases in terms of how large fraction of
the control interval that is overlapping the observation interval which makes it
hard to draw specific conclusions. At least we can conclude that the control
can handle the different stages of the transition process.

In all cases about 10-15 iterations of the optimization algorithm was needed
to reach a converged solution with the criterion that the reduction of the ob-
jective function was close to zero in the last iteration. The reduction of the
gradient norm was about three orders of magnitude. These results indicate
that using the continuous formulation of the optimization problem is feasible
for this type of scenario.



CHAPTER 3

Linear control and estimation

Using the linear equations opens up for the use of modern control theory tech-
niques. With an objective function over infinite time, we can get a time in-
dependent solution of the optimal control problem. We can then apply this
control online in direct numerical simulations of different transition scenarios,
and using a gain scheduling technique also to turbulence. The need for gain
scheduling is due to that the change in the mean flow profile, which we have
used to linearize the equations, is large from a laminar to a turbulent flow.
The main drawbacks of this approach is that is neither considers the nonlinear
terms of the equations governing the flow nor the evolution of the mean flow
profile and non-parallel effects.

When designing linear controllers and estimators the starting point is the
linearized Navier—Stokes equations known as the Orr—Sommerfeld-Squire equa-
tions governing the evolution of small perturbations {v,w} to a laminar flow
U(y). These equations may be written using a Fourier representation at each
wavenumber pair {k,, k.} as

0=A""{—ik,UA+ik,U" + A(A/Rey)} 0, (3.1a)
Los
O ={-ik. U} 0+ {~iks U+ A/Req} &, (3.1b)
Lc Lsq

where A = 9%2/3y? — k2 — k? and hat (*) denotes Fourier coefficients and a
prime (') denotes a derivative with respect to y. Note that A is invertible
only if the boundary conditions are included. The Reynolds number Re. =
U.h/v parameterizes the problem, where h is the half-width of the channel,
U. is the centerline velocity, and v is the kinematic viscosity of the fluid. The
boundary conditions are &(y = £1) = 00/0y(y = £1) = 0 and o(y = £1) =
éﬂ where q@il is the control signal on the upper and lower wall. Since these
equations are linear and decoupled for different wavenumber pairs it is possible
to develop controllers and estimators using optimal control theory for each
wavenumber separately. These can then be combined into a physical space
controller or estimator through an inverse Fourier transform. Paper 3 contains
a detailed description of how this is done and the key points are summarized
in the following sections.
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3.1. Controller

To be able to apply modern optimal control theory to a dynamical system it is
first put in a standard form. In order to obtain this standard form the control
needs to be parameterized and expressed as a forcing term instead of a bound-
ary condition to the equations. Since the system is linear the superposition
principle can be utilized to lift the boundary conditions and give the desired
form. In principle this lifting can be done using any continuous function satis-
fying the boundary conditions of the problem. One possible choice, used here,
is the stationary solution to the inhomogeneous problem with the boundary
conditions to be parameterized set to unity. The system can then be written,

where,
CTan] [N NZ] o, [-7] .
x|:¢:|:1:|’ A|:O O:|7 B|:I:|; ufd)j:la (33)
and,
v _ [fos O CAE A p| . .
V= [ﬁc ESQ] ’ [(1}] - LIJJ + L{;p] =In+ 211, (3.4)

where the index h denotes the homogeneous part of the solution and p denotes
the particular solution used for lifting the boundary condition. In order to
formulate the optimization problem an energy measure is introduced such that,

1
1 sy 4 |20
B [ 10 (R10P + |5
-1

where k% = k2 + k2 and f(y) is a weighting function that allows modification
of the energy measure and that is equal to one unless otherwise stated. For
the case when the flow is divided into a homogeneous and a particular part the
energy measure becomes,

. ol )ay= [ el@|3]. @)

0= K#, (3.6)

minimizing the objective function,
J= /(me + 2 uu> dt, (3.7)
0

is given by the non-negative self-adjoint solution X of the Riccati equation,

PN A A 1 A~ A A ~
(XA—|— A*X — £—2XBB*X + Q)j: =0, V admissible Z, (3.8)
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FIGURE 3.1. Localized controller gains for Re. = 2000 with ¢? =
0.01 relating the state z inside the domain to the control forcing
u at the point {x = 0,y = —1,2z = 0} on the wall: visualized are
a positive and negative isosurface at of the convolution kernels for
(left) the wall-normal component of velocity at +£100 and (right)
the wall-normal component of vorticity at +1.

through the relation,
K=--=-B"X. (3.9)

Notice that this feedback law uses only the homogeneous part of the flow
inside the channel. It can easily be modified to be a feedback law for the full
flow field by subtracting the contribution from the ( known ) inhomogeneous
part. Optimal feedback laws can then be computed for a large number of
wave number pairs that sufficiently resolves the dynamics of the system and
combined in an inverse Fourier transform to yield a physical space control law
described by convolution kernels. The control signal in physical space can then
be computed through the convolution integral,

(i)il(x7z7t) = /(kil,v(x - j:u’ng - 2) ’U(.f,:lj,i,t) +
Q (3.10)
k:l:l,w(x - j,gv Z = 2) w(‘f?yv Z7t)) dz dy dzv

where k41, and k41, are the v and w components of the feedback law for
the upper and lower wall. In figure 3.1 feedback kernels for the control are
depicted as isosurfaces to illustrate their structure. Both the kernel for the
normal velocity and the one for normal vorticity are elongated in the upstream
direction and they also angle away from the wall. This makes sense from a
physical point of view since the kernels then account for the convective time
delay of the perturbations due to the change in the base flow velocity profile
in the normal direction. The controller then “knows” that perturbations near
the wall move slower than they do closer to the center of the channel.
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3.1.1. Properties of X

We have already seen that the Riccati equation provides the optimal solution
in section 1.4, where X was introduced as the linear mapping between the
state and the adjoint state. To get a feeling for what the solution to the
Riccati equation (3.8) represents one can look at the problem from a different
perspective. Consider the closed loop system obtained by inserting (3.9) via
(3.6) into (3.2),

5 LY VA

T = (A_EBB X) I. (3.11)
Introduce a scalar measure V' of the perturbations such that,

V=i X2,

where X is self-adjoint, positive and independent of time. By taking the time

derivative of this measure an expression for the evolution of this scalar quantity
is obtained. This can be written as,

V=3 X&+ i Xi.
Inserting (3.11) and performing some algebra results in,
. A n A 2 Aanl oA
V=23 (XA+A*X—£—2XBB*X>£. (3.12)

If X = Q this would correspond to the Reynolds-Orr equation (1.2) with
control, neglecting nonlinear terms. Notice that any self-adjoint, positive X
satisfying,

A A AA PPN
(XA+A*X — Z—QXBB*X)J% <0, V&#0,
would guarantee stability, in the sense of Lyapunov, of the system (3.11) since
V> 0and V < 0. If the energy measure operator Q would satisfy this
inequality, the resulting closed loop system would not experience any transient

growth. If X is chosen to be the solution of the Riccati equation (3.8) expression
(3.12) can be rewritten such that,

. A 1 4 A
V=z <—Q - K—QXBB*X)i'.
Inserting (3.6) we obtain,
V=-— <x 037 + e%z*a) ,

and one can conclude that V' is uniformly decaying. The optimal control ob-
tained is thus such that the objective function (3.7) can be written,

J = /(i*@iwrﬁ u,u,) dt = /—th =V(t=0) = &;Xdo, (3.13)
0 0
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where 2y denotes the initial perturbation since V' — 0 as ¢ — oo. It can also
be shown that any other stabilizing controller will give a larger value of this
objective function.

3.2. Estimator

To be able to apply these control techniques in real life situations, we must use
a method that only requires a limited amount of information about the flow. In
the nonlinear control case this would require that we knew the initial conditions
exactly and could compute the optimal control off-line and then apply this
control to the system. In most cases this is not possible and we need to rely on
measurements of different flow quantities. In the linear control framework we
can develop an estimator that can be used to reconstruct the state of the flow
at the same time as it evolves. We can then use that information to compute
the control online. The estimator is based on a model of the actual system,
and through control theory we can determine how to force this model in the
optimal way given measurements of the flow. The action of the control due to
the inhomogeneous boundary condition need not be accounted for since it is
assumed to be known, and only an estimator for the homogeneous problem is
needed. Consider the system,

JL?}L = Ni‘h + [Gl, O]Tf},

) 3.14
§=Cap + [0, ad), (3.14)

where § is a measurement of the state disturbed by a random (zero-mean white
Gaussian) process @. In the state equation the disturbance enters through the
matrix G; which should be the square root of the expected covariance of the
state disturbances. Since this is a nontrivial quantity to find, the normalized
energy measure operator Q as well as the identity I has been used as expected
covariance. The parameter « allows for some flexibility in the estimator design.
The measured quantity is the wall normal derivative of the normal vorticity at
the channel walls divided by the Reynolds number,

2
. 1 | Oy'v=tt
C.l?h =
Rea | gu
An estimator of this system can then be described by,
Jée = Ni‘e - 1&7
e = Cie, (3.15)

O =1L(G—9) =LAy,

where 1[) is a forcing term driving the estimator state Z. towards the measured
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FIGURE 3.2. Localized estimator gains relating the measurement
error (§ — Je) at the point {x = 0,y = —1,z = 0} on the wall
to the estimator forcing terms v inside the domain: visualized are
a positive and negative isosurface of the convolution kernels for
(left) the wall-normal component of velocity at £0.002 and (right)
the wall-normal component of vorticity at +0.035. The kernels are
computed using G1 G = Q, Req = 2000 and a = 100.

state Zj, through the feedback law L for the difference between the measure-
ments. When the measurement noise in the system is white, the optimal es-
timator forcing is the Kalman filter, which is computed by solving a Riccati
equation similar to the one for the control problem. From the non-negative
self-adjoint solution Y of,

~ A ~ o~ 1 A Al ~An A A
(YN* + NY — EYC*CY + GlG“{>i‘e =0, V admissible ., (3.16)

the optimal estimator forcing L is obtained through the relation,

Using the same strategy as in the control case and computing the optimal
estimator forcing for a large number of wavenumber pairs we can obtain an
estimator forcing in physical space through an inverse Fourier transform. The
physical space forcing can then be computed through the convolution integrals,

wv(xawa)t) = / |:Lv,+1(x - iaywz - 2) Ay(jay = +1727t)
z,z (3.17)
+ Ly _1(x—2Z,y,2 — 2) Ay(Z,y = —1,%,t)| dzdz,
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and,

1/@(%%2,15) = / |:Lw,+1(x - fayvz - 2) Ay(fay = +1,§,t)

.z
+ Ly 1(z—Z,y,2—2) Ay(Z,y = —1, 2, t)] dz dz,
(3.18)

where L, 41 and L 41 are the physical space convolution kernels for the es-
timator forcing exemplified in figure 3.2. The estimator forcing kernels are
elongated mainly in the downstream direction and the one for the normal vor-
ticity angles away from the wall. In a similar way as in the control case the
kernels thus account for the convective time delay due to the shape of the base
flow profile. The effect on the measurement error from perturbations closer
to the center of the channel result in a forcing further downstream than for
perturbations near the wall. In the simulations an extended Kalman filter is
used. This means that a forcing computed from the linear equations is used to
force the full nonlinear Navier—Stokes system.

3.3. Compensator

Combining the estimator and the controller gives us a compensator. We use
the measurements to reconstruct the state, and then we use the reconstructed
state to compute the control and apply it to the system we whish to control.
Since optimal (H2) control is considered rather than robust control the separa-
tion principle ( see e.g. Skelton (1988) p. 411 ) applies and the estimator and
controller can be computed separately. If instead robust (H.o) control is de-
sired a coupled system of two Riccati equations must be solved with additional
requirements on the solutions. The initial condition in the estimator used is
usually an unperturbed laminar flow, but if the measured state is partially
known a better initial guess could be provided as illustrated in paper 5.

3.4. Spatial localization

One important feature of the convolution kernels obtained is their spatial lo-
calization. This property of the optimal controllers computed for a spatially
invariant system was predicted theoretically by Bamieh, Paganini, & Dahleh
(2000), and in the present work it is demonstrated in practice. This means
that the assumption of spatial periodicity becomes redundant since only local
information is utilized. The kernels decay exponentially at a distance from
the origin and can be truncated to have truly compact support. It has been
verified in simulations that this operation does not significantly degrade the
performance as reported in paper 4. An illustration of the exponential decay is
provided in figure 3.3 where four control kernels for v have been computed with
the same parameters but for different box sizes with maintained resolution. The
square value of the kernel is integrated in y onto an x — z plane, and this plane
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FicUre 3.3. Illustration of exponential decay of control con-
volution kernel for normal velocity. a: As a function of Z b: As
a function of Z. Solid lines: box size 2w X 27 with resolution
32 X 64 in = X z, dashed lines: box size 37 x 37 with resolu-
tion 48 x 96 in z X z, dashed-dotted lines: box size 47 x 47w
with resolution 64 x 128 in z X z and dotted lines: box size
67 x 67 with resolution 96 x 192 in z X z. In all cases £ =1,
Re. = 2000 and the number of gridpoints in y was 70.

is than integrated in z or x to obtain a one dimensional representation of the
kernel as a function of x or z. It is clear that if the box size is increased, the
kernels continue to decay. This property of the kernels facilitates a physical
implementation of the system where the need for communication between ar-
rays of sensors and actuators is small compared to a global feedback system.
For more discussion about this issue see paper 3 or Bewley (2001).

3.5. Performance of controller
3.5.1. Direct numerical simulation code

The direct numerical simulations with linear control and estimation in tem-
poral channel flow have been performed using the code described and used in
Bewley, Moin & Temam (2001) with necessary modifications. The code uses
a discretization with Fourier modes in the directions parallel to the walls and
an energy-conserving second-order finite difference scheme on a stretched stag-
gered mesh for the wall normal direction. The components with derivatives
in the directions parallel to the walls are marched in time using a low-storage
third-order Runge—Kutta method. An implicit Crank—Nicholson method is
used for each sub-step of the Runge—Kutta method for all terms containing a
wall normal derivative to allow strong blowing and suction without imposing
restriction on the time step to maintain numerical stability. The control laws
are computed using the same resolution as in the simulations i all cases. The
computation of the feedback convolution integrals for both control and esti-
mation was implemented both in physical space and in Fourier space. The
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Full-state feedback ¢ = 0.1
Scenario Re Grid Lower Upper Factor

(SV) 2000 16 x 128 x 64 6.50 x 107> 6.55 x 107> 10
3000 16 x 128 x 64 1.50 x 107° 1.55x 107®> 9.6
5000 16 x 128 x 64 3.05x 107% 3.10x 107% 11.5

(OW) 2000 16 x 128 x64 2.38x107* 2.50x 107* 102
3000 16 x 128 x 64 6.50 x 107° 7.00 x 10~° 109
5000 16 x 128 x 64 1.60 x 107°> 1.70 x 10~°> 122

(N) 2000 32x128x64 500x107% 501x107% 7
3000 32x128x64 1.80x10~* 1.90x107% 6.8
5000 32 x 128 x 64 5.00x 1075 5.05x 1075 5.7

TABLE 3.1. Full information controlled transition thresholds
for the initial perturbations: (SV)-Streamwise vortex, (OW)—
Oblique wave and (N)— Random perturbation.

two methods are equivalent and result in identical control signals providing a
confirmation that implementation was correct. For the sake of computational
efficiency, the Fourier implementation was used in all simulations presented
here.

3.5.2. Transition thresholds

In order to quantify the performance of the linear controller, simulations have
been performed to determine the threshold energy for transition for certain
perturbations. The uncontrolled thresholds were determined by Reddy et al.
(1998) and the same initial conditions have been used in this study reported in
paper 4. To the streamwise vortices and oblique wave perturbations a compo-
nent of the random noise is also added, corresponding to 1% of the perturbation
energy, in order to break symmetries and trigger secondary instabilities. In ta-
ble 3.1 the resulting thresholds for the controlled system are tabulated with a
comparison to the uncontrolled threshold values in the “Factor” column. The
factor is computed by dividing the mean threshold value from the controlled
case with the one for the corresponding uncontrolled case. In summary the
threshold values indicate that the oblique wave perturbation is easy to control
compared to the random noise and streamwise vortex perturbations. One can
expect roughly about one half order of magnitude higher perturbation energies
required for transition in the controlled case with random noise.
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3.5.3. Turbulence control

During transition to turbulence there is a substantial change in the mean ve-
locity profile and the same is true for relaminarization. The linear controller is
computed for a specific mean flow profile and does not take its evolution into
account. Application of feedback control kernels computed for the turbulent
mean flow profile, using f(y) = 1 in (3.5), to a three dimensional turbulent
channel flow at Re, = 100 results in a drag reduction of about 15%. By
introducing a simple gain scheduling technique, where controllers have been
computed for the seven different velocity profiles shown in figure 3.4 ranging
from the laminar to the turbulent one, the controller can be allowed to adapt to
the current mean flow during a simulation. This gain scheduling can be viewed
as a nonlinear extension of the linear control law. The scheduling is done by
computing the energy of the difference between the current mean flow in the
simulation and the profiles used to compute feedback laws at each time-step.
The kernels corresponding to the profile with the smallest difference from the
mean flow are then used to compute the control. In addition to the gain sched-
uling, the objective function had to be modified to make the controller work.
This was discovered when testing to use the identity matrix instead of Q in
the objective function when computing the kernels. The idea was to make the
controller focus on the perturbations near the channel walls. Using the identity
matrix has this effect due to that the stretched grid obtained from using the
Gauss-Lobatto collocation points is finer near the walls. Unfortunately the re-
sulting control is then grid dependent, and to avoid the grid dependency f(y)
was introduced in the energy measure (3.5) to get a similar effect.

The direct numerical simulations were performed in a box with the dimen-
sions 47 X 2 x 4/37m and with a resolution of 64 x 64 x 64 using a Fourier,
Finite difference, Fourier discretization in x X y X z respectively. The control
kernels were computed in the same box with a resolution of 64 x 70 x 64 Fourier,
Chebyshev, Fourier modes.

In figure 3.4 the energy, normalized drag and control effort is plotted for
three different realizations of the turbulence control. To verify some robustness
of this control strategy using f(y) = (1—y?)~ /2 two different initial conditions
have been used. Notice that there is rapid decay of energy as well as drag in
all three cases. The drag has an initial transient increase of about 10% before
it decays when the controllers using the weighted energy measure are used.
Using the control computed using the identity matrix produces an increase of
up to 60% in drag initially. In the plot of the control effort one can clearly see
transient jumps when the gain-scheduling has decided to switch control kernel.
Relaminarization of a three dimensional turbulent channel flow at Re, = 100
using zero mass flux blowing and suction control has previously only been
achieved using nonlinear optimal control, see e.g. Bewley, Moin & Temam
(2001) and Collis et al. (2000). They used a receding horizon optimization
strategy in direct numerical simulations and large eddy simulations respectively.
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FIGURE 3.4. Evolution of initially fully-developed turbulence
at Re, = 100 with three different controller realizations. Top-
left: mean velocity profiles used to compute kernels for the gain
scheduling. Top-right: energy of flow perturbation. Down-left:
normalized mean drag. Down-right: mean-square value of the
control ¢. Solid is from using the identity matrix in the ob-
jective function dotted and dashed are with a weighted energy
measure using f(y) = (1 — y?)~'/2 for two different initial
conditions. Note that application of the gain-scheduled linear
feedback causes the fully turbulent 3D flows to relaminarize in
all three cases.

The need for a modification of the energy measure in order to obtain re-
laminarization indicates that there exists a better physical quantity than total
perturbation energy to use in the objective function. Kim & Lim (2000) per-
formed direct numerical simulations where they showed that the coupling term
L in (3.1b) is crucial for the maintenance of the turbulent process near the
wall. They suggested that an objective function targeting the effect of this
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FI1GURE 3.5. Evolution of initially fully-developed turbulence
at Re; = 100 when a linear controller computed using ¢ = 1
and f(y) = 1+ U'(y)? in (3.5) is applied at t = 0 (solid)
and at t7 = 300 (dot-dashed). Top-left: The velocity profile
used to compute the control kernels (solid), laminar and turbu-
lent profiles (dashed). Top-right: energy of flow perturbation.
Down-left: normalized mean drag. Down-right: mean-square
value of the control ¢. Note that application of the completely
linear feedback causes the fully turbulent 3D flow to relami-

narize in both simulations.

coupling term could result in a effective controller. Inspired by this an energy
weighting of the form f(y) =1+ U’ (y)2 was introduced. Control kernels were
then computed using only one of the intermediate velocity profiles used for the
gain scheduling described earlier. The velocity profile U(y) used to compute
the kernels can be compared to the fully turbulent and the laminar mean ve-
locity profiles in the upper left plot in figure 3.5. The control kernels computed
for this profile were then tested in two simulations. The evolution of energy
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F1GURE 3.6. Convergence of estimator for a random pertur-
bation at Re.; = 3000. Solid with Gy Af = Q and dashed with
Glé’{ = I. Left: logarithmic in vertical axis, right: logarith-
mic in horizontal axis.

and drag in these simulations are shown together with the mean square value
of the control in figure 3.5. In these cases the transient increase in drag is
about 50% when the control is applied but then there is rapid decrease. These
recently obtained results show that it is possible to relaminarize low Reynolds
number turbulence with zero mass flux blowing and suction using a completely
linear control approach.

3.5.4. Linear v.s Nonlinear optimal control

Comparing the resulting control from the linear and nonlinear methods is inter-
esting from a consistency point of view. With the linear approach the control
is computed online whereas the nonlinear method requires many optimization
iterations to obtain the control. Adjusting the objective functions and the pa-
rameters of the problems to make them comparable should result in practically
the same control signal.

In paper 5 this is verified by computing the optimal control for an oblique
wave perturbation with small amplitude using the linear approach. The re-
sulting control signal is then inserted into the nonlinear code. Computing the
gradient of the objective function using the nonlinear optimal control method
shows that the gradient norm is very small for the linear control solution. In
a case where strong nonlinearities are present the methods should differ and
such a study could provide information about the key nonlinear effects in the
transition process.

3.6. Performance of estimator

An estimator is tested by running two direct numerical simulations simultane-
ously. One simulation has an 'unknown’ initial perturbation and the other one
is the estimator. The normal derivative of the normal vorticity at the walls is
measured in both simulations and the difference is used to force the estimator
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FiGURE 3.7. Energy evolution in estimator with GGt = Q
for an oblique wave perturbation with different values on the
penalty parameter: a) Dashed— measured state. Solid— esti-
mator state with @ = 0.01. b) Estimator state for a= 0.001,
0.01, 0.05, 0.1, as dash-dot, solid, dotted, dashed respectively.

using the linear forcing kernels. The initial state in the unknown flow is a
random perturbation at an energy level below the transition threshold and the
initial guess in the estimator is an unperturbed laminar flow at Re. = 3000.
Figure 3.6 shows that the state in the estimator converges exponentially to
the unknown state after an initial transient. Using Gh AI = Q gives a small
transient during a long time whereas using GGy =1 gives a larger transient
for a shorter time. Since both the initial behavior and the convergence are
important issues there is no obvious reason why one would be better than the
other for the compensator.

In figure 3.7a the energy evolution of the unknown state (dashed) and the
estimator state (solid) is plotted. In this case an oblique wave at Re. = 2000
is the initial perturbation. The dependence on the parameter « for this case
is illustrated in figure 3.7b. It is shown that decreasing the penalty on the
measurements gives a more rapid reaction in the estimator up to a limit. The
convergence can be improved by providing a better initial guess or perhaps by
using additional measurements of the flow at the walls.

3.7. Performance of compensator

The combination of the controller and estimator where the state estimate is
used to compute the control is called a compensator. In figure 3.8 an oblique
wave is controlled at Re, = 2000 using both full information control (dashed)
and the compensator (solid). In terms of energy reduction the compensator
works almost as well as the full information controller in this case as reported
in paper 5.

To quantify the performance of the compensator with Gy G’T = @, transi-
tion thresholds are computed through direct numerical simulations for random
noise initial perturbations at Re.; = 2000, 3000,5000 and for oblique waves
and streamwise vortices at Re., = 2000. With CAv'l(A}'T = I only one case at
Re, = 2000 with random noise is tested. In some sense this is a worst case
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FIGURE 3.8. Performance of full information linear controller

(dashed) and compensator using G1 G5 = Q (solid) compared
to the uncontrolled (dotted) energy evolution.

Measurement feedback o = 0.1, £ = 0.1

Scenario Reg Grid Lower Upper Factor

G1Gi=Q
(SV) 2000 16 x 128 x 64 1.75x107° 2.00 x 107®> 2.9
(OW) 2000 16x128x64 1.25x 1075 1.50x 10> 5.8
2000 16 x 128 x 64 9.00 x 107> 1.00 x 10~*  1.31
(N) 3000 16x128x32 325x107° 3.50x107° 1.28
5000 16 x 128 x 32 1.00x 107° 1.25x107°  1.30
GG =1
(N) 2000 16x 128 x64 1.05x107* 1.10x 10~* 1.48
TABLE 3.2. Compensator controlled transition thresholds for
the initial perturbations: (SV)-Streamwise vortex, (OW)-

Oblique wave and (N)- Random perturbation. Upper part
of table with G;G% = Q and lower part with G1G3 = I.

study since the initial state in the estimator is a laminar flow without perturba-
tions. The performance is not as good as in the full information case, probably
due to that the estimator convergence is slow and has an initial transient. In
table 3.2 the results are tabulated in the same way as for the full informa-
tion control case. Again oblique waves appear to be the easiest to control and
random noise the most difficult. The increase in transition threshold for the
random noise case is only about 30% using G’lé'f = Q which is a lot less than
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in the full information case. For the case with G‘l G* = I the initial transient
in the estimator is larger. The threshold value is increased by 48% with the
compensator showing that this is a slightly better strategy. The choice of Gh
is a delicate issue and further research is needed to find the optimal choice for
transition control.



CHAPTER 4
Control of spatial boundary layer flows

Spatially evolving flows, such as the boundary layer on a flat plate, have dif-
ferent stability properties than the parallel flows such as the flow in a channel.
The methodology for computing linear controllers developed in this thesis sum-
marized in section 3.1 assumes that the flow is parallel and can be described
as periodic in the spatial directions. With small modifications to this approach
by including a two component base flow and using the Falkner—Skan—Cooke
boundary layer profiles we can apply it to boundary layer flows as well. As-
suming that the control laws developed are insensitive to small changes in
the Reynolds number and that non-parallel effects are small, we can also apply
these controllers to the spatially evolving flow to test what kind of performance
we can get. The assumption about the non-parallel effects is not true since we
can see clearly that they are significant by comparing direct numerical simu-
lations and local stability analysis. From a controls perspective the individual
eigenvalues of the system may be less important than the total dynamics. The
Reynolds number insensitivity is perhaps also not a good assumption from the
stability perspective but might be valid for the controlled system.

4.1. Linear control methodology

In the boundary layer case we still use the Orr—Sommerfeld—Squire equations
but with a freestream boundary condition in one end instead of a wall as in
the channel flow case. Also the equations are formulated for a two component
base flow, and become,

do 1

E:A*l[—(ikmU+z‘kZW)A+ika”+z‘kZW”+EAQ]f)

w fos (4.1)
Dnad . A 5 AR . . N A ~

i [ike W —ik, U o+ [—i (kU +k W)+Re(s* | @

Lo
,CSQ

where ¢ and & = i(k,4 — k@) are the amplitude functions for the normal
velocity and the normal vorticity, respectively. A prime (') denotes a derivative
in the wall-normal direction and U and W are the meanflow components in the

41
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FIGURE 4.1. Left: Isosurfaces at 25 (light) and -25 (dark) of
convolution kernel for v. Right: Isosurfaces at 0.5 (light) and
-0.5 (dark) of convolution kernel for w.

chordwise and spanwise directions respectively. The boundary conditions are

0(0) =6, §2(0) =0, &(0) =0, (4.2)
(y) = 0, §&(y) =0, O(y) — 0 as y — oo. (4.3)

Here Res« is the Reynolds number based on the velocity scale Uy, and the
displacement thickness 6*, both taken at the stream-wise location zg. The
procedure to compute the optimal control is then the same as described in
section 3.1, with the addition of a penalty parameter r2 on the control velocity
itself, for details see paper 7. Feedback convolution kernels computed for a
Falkner—Skan—Cooke base flow are shown in figure 4.1. The spatial localization
properties are also obtained for the boundary layer profiles and this is a key
property for the extension to a spatial flow. Testing the kernels in a parallel
boundary layer shows that their characteristics are similar to those observed
in the channel flow.

4.2. Application of Linear Controller

The linear controller cannot be expected to be the optimal one for a spatial
boundary layer since it is using a parallel flow assumption. Also the kernels
are based on one particular mean flow profile, so it will not be able to perform
as well when the mean flow is changing in the spatial directions. By only
applying the control in a small neighborhood of where the control kernel is
computed it should perform fairly well. Considering a Falkner—Skan-Cooke
flow we have a mean flow that changes both direction and length scale in the
downstream direction. Since the effect of these variation cannot be accounted
for with the present control method this flow serves as a good test case for
the robustness to variation in the mean flow of the controller. The success
in relaminarizing low Reynolds number turbulence in the channel using gain
scheduling indicates that there is some robustness of this type. Application of
the control is limited in the chordwise direction to be only in a strip on the
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wall. The control kernel is then computed for the position in the center of
this strip.The kernels are computed to act on perturbations to the mean flow
and in the parallel flow this means excluding only the o = = 0 mode. In
the spatial flow all § = 0 modes are used to describe the mean flow and these
components must be subtracted before computing the control. To obtain the
control signal, the convolution integral for the time derivative of the control
velocity is computed for the entire wall. The control velocity is then updated
for the next time step and filtered to remain within the specified region with
zero net mass flux.

4.3. Numerical simulations

The direct numerical simulations are performed using the spectral code for spa-
tial boundary layer flow described in Lundbladh et al. (1999). The code uses
a Fourier discretization in the spanwise and chordwise directions and a Cheby-
shev collocation- or tau-method can be used in the wall-normal direction. Time
marching is performed using a three or four stage, third order, Runge-Kutta
method for the advective terms and a second order Crank—Nicholson method
for the viscous terms. The simulation of a spatial flow with periodic bound-
ary conditions is possible through a fringe region technique where a volume
force that is nonzero only in a small part of the simulation box is added to
the Navier—Stokes equations. This forcing makes the simulated flow periodic
and thus the Fourier discretization is feasible. Note that the flow in the fringe
region is non-physical, but the upstream influence is small. The fringe region
technique was thoroughly investigated in Nordstrom, Nordin & Henningson
(1999). The computation of the control convolution integrals is implemented
in Fourier space since this is more efficient numerically, and this is equivalent
to a physical space implementation as verified in the code used for the channel
flow simulations in chapter 3. For details about box size and resolution used
in the simulations see paper 7.

4.4. Control of TS waves

One simple test case for control of spatial flows is the Blasius boundary layer
perturbed by a two dimensional TS wave. The perturbation is introduced
through an oscillating volume force just upstream of the position where it
becomes unstable (branch I). In the uncontrolled case it then grows until it
reaches the position where it becomes stable again (branch II). When control
is applied in the unstable interval the perturbation decays exponentially and
the control signal looks just like a TS wave with decaying amplitude. Figure
4.2a shows the energy evolution in the box for the uncontrolled case (dashed)
and for the case with control (solid). In figure 4.2b, the control signal as a
function of x is plotted for a few different times covering one time period of the
TS wave.
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FIGURE 4.2. a: The spatial energy growth of a TS wave per-
turbation in a Blasius boundary layer with (solid) and without
(dashed) control. The non-dimensional frequency of the per-
turbation is F' = 200. Control is applied in « € [75,225]. b:
Control signal during one time period of the TS wave.

I{eg Eo 2

0
-200 0 200 400

T

600

800

1000

=x10

-5

230

0

'
100 200 300 400 500 600 700

T

FIGURE 4.3. a: The spatial energy growth of the optimal spa-

tial perturbation at x

237.24 with Res« = 468.34 in the

Blasius boundary layer. Dotted: computed from the boundary
layer equations. Dashed: computed with DNS. Dash-Dotted:
With control applied in « € [75,225]. Solid: With control
applied in = € [75,725]. b: The control (v) distribution at
y = z = 0 for the streak mode in the case with control in
x € [75,725] (solid) and z € [75,225] (dashed).

4.5. Control of streamwise streaks

A more complicated perturbation in the Blasius boundary layer is the optimal
perturbation for forcing streamwise streaks. The spatial optimal perturbation
(Andersson, Berggren & Henningson (1999); Luchini (2000)) with maximum
growth at x = 237 is marched using the linear equations to the beginning of
the computational box. Control is then applied downstream in two different
intervals, one short (x € [75,225]) and one longer (x € [75,725]). The control
kernels are computed for the position in the center of these intervals and then

800
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FIGURE 4.4. Falkner—Skan—Cooke base flow and coordinate
system used. 1 is the angle to the streamline of the flow in
the free-stream, Uy, is the chord-wise free-stream component
and W, is the spanwise freestream component. The dashed
line is the streamline of the flow in the freestream over a flat
plate with a pressure gradient in the x direction

applied in direct numerical simulations. The energy evolution of the uncon-
trolled and the two controlled flows is plotted if figure 4.3a. Uniform decay of
the energy is not obtained in any of the two cases but the growth is efficiently
lowered by the control within the control interval. Downstream of the control
region the perturbation grows again, but does not reach the same energy as in
the uncontrolled case. The control signals are shown in figure 4.3b showing an
initial peak of the control velocity initially and then a region of slow decrease
until the end of the control interval. During the long control interval there
is a substantial evolution of the mean flow not accounted for by the control
strategy, but still the energy growth is lowered in the whole interval.

4.6. Falkner—Skan—Cooke flow

A Falkner—Skan—Cooke (FSC) flow is the solution of the boundary layer equa-
tions for the flow over a swept wedge. This flow is similar to what can be found
on a part of the wing of a commercial aircraft. Figure 4.4 shows the profiles of
the base flow in a coordinate system aligned to the direction of the freestream.
The particular base flow considered has a Reynolds number of of Res~ = 337.9
based on the local displacement thickness and chordwise freestream velocity
at the beginning of the computational box. The chordwise dependence of the
base flow is described by the relation

. m
Us = <_+1>
Zo

where m = 0.34207 and z¢p = 354.0 is used here. The normalized spanwise
freestream velocity is W, = 1.442. The Blasius flow used earlier is a special
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FIGURE 4.5. Snapshots of the normal velocity v in an zz-plane
at y = 0.5 without control (a) and with control (b). Black is
v < —4.5 x 107°% and white is v > 5.5 x 107°. The control is
applied in = C [75,225].

case of this flow with m = 0 and W, = 0. The velocity profiles are then
computed numerically using the equations described in e.g. paper 6. Notice
that this base flow is only used as an initial condition and to compute boundary
conditions on the upper part of the domain in the simulations. The base flow
was first used in simulations of control of linear instabilities in a parallel flow
to test the control kernels in the flow they are developed for, and also to verify
the implementation of the control.

4.7. Control of cross-flow vortices
4.7.1. Traveling vortices

If a perturbation with a random distribution in the spanwise direction, changes
randomly in time, traveling cross-flow vortices develop downstream. The am-
plitude of the perturbation is low enough to ensure linear development of the
vortices within the computational box. A snapshot of the normal velocity in
an r — z plane is shown in figure 4.5a. The linear feedback control is then
applied in a strip centered at x = 150 with a width of 150 inlet boundary layer
thicknesses. The kernels used are computed with ¢2 = 102 and 2> = 0. The
simulation is then run again, starting with an unperturbed flow, but now with
control. A snapshot at the same time as for the uncontrolled case is shown in
figure 4.5b and it shows that there is a significant reduction of the amplitude
of the normal velocity within and downstream of the control region. Looking
closely at figure 4.5b one can see that a light shade, indicating a positive normal
velocity leads to a dark spot in the control region, and vice versa for darker
shades, suggesting that the control is of opposition type initially. The time
averaged evolution of the perturbation energy integrated in z for the uncon-
trolled and controlled cases is plotted in figure 4.6. The positive effect of the
applied control is clearly shown and also that the decay of energy continues
even downstream of the control region. The difference between the controlled
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FIGURE 4.6. Time average of energy integrated in the z di-
rection for uncontrolled (dashed) and controlled (solid) simu-
lations of traveling crossflow vortices.
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FIGURE 4.7. Energy growth of uncontrolled perturbation and
effect of applied control in spatial DNS for 8 = 0.25. Dashed:
uncontrolled. Solid: controlled with 12 = 10? and 72 = 0 in
the interval = € [25,175] centered at z = 100. Dash-dot: con-
trolled with [ = 10% and r? = 0 in the interval z € [145, 295]

centered at x = 220.

4.7.2. Stationary vortices

Using a stationary perturbation in the beginning of the computational box,
the crossflow vortices generated are also stationary. Given that the amplitude
of the perturbation is sufficiently large the vortices will reach an amplitude
where they saturate through non-linear interactions. The energy in the § =1
mode for the uncontrolled flow, plotted as the dashed line in figure 4.7, grows
exponentially initially. Nonlinear saturation causes the growth rate to decrease
and close to the fringe it is close to zero. Studying the energy of the five lowest
beta modes shows that all the modes have similar behavior but the g = 1
mode dominates. The linear control is applied to the stationary cross-flow
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FIGURE 4.8. The normal velocity on the wall at z = 0 in the
controlled cases with stationary perturbations. a: Control at
x € [75,225], b: Control at x € [145,295].

vortices in two different strips and the resulting energy evolution is plotted
in figure 4.7. First the control is applied at a position close to where the
perturbation is generated and the amplitude of the vortices is low. The energy
of the controlled perturbation is plotted as the solid line in figure 4.7. The
perturbation energy decays in the region of the control strip, and then starts
growing again downstream. The control signal in this case, plotted in figure
4.8a for one spanwise location at z = 0, shows a regular oscillatory behavior
as expected in this linear case. Then the control strip is moved downstream to
a position, centered at x = 220, where the vortices have reached an amplitude
large enough for nonlinear effects to become apparent. The energy decay is
not as smooth as in the previous case illustrated by the dash-dotted line in
figure 4.7, but there is still a large reduction of the perturbation energy by the
control within the control strip. The control signal, plotted in figure 4.8b for
one spanwise position at z = 0, is not as regular in this case probably due to
the nonlinear effects.

4.8. Implications for the transition process

Transition in a spatially evolving boundary layer in a complicated process to
study both numerically and experimentally. It was observed in experiments by
Kohama, Saric & Hoos (1991); Malik, Li & Chang (1994) and Deyhle & Bippes
(1996) that in a FSC flow with stationary cross-flow vortices, secondary insta-
bilities appeared before transition. Both high frequency and low frequency
secondary oscillations were observed, but the low frequency was observed early
in the breakdown process whereas the high frequency one appeared just prior
to breakdown. According to Malik, Li & Chang (1994) the strong, saturated,
cross flow vortices give rise to strong shear layers that appear to be inflec-
tionally unstable. Direct numerical simulations of this transition scenario were
then performed to try to investigate the structure and the properties of these
secondary instabilities by Hogberg & Henningson (1998),( included as paper 6
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FIGURE 4.9. Growth rates. Solid: Modes with § = 1, high
and low frequency. Dotted: Based on max(t,,s), high and low
frequency. Dashed: Most unstable linear mode. Dot-Dashed:
Most unstable zero-frequency disturbance.

in this thesis ), and also by Malik et al. (1999) and Bonfigli & Kloker (2000).
Results from experiments reported by Lerche (1997) and Kawakami, Kohama
& Okutsu (1999) agree well with the findings from the numerical studies.

It was found in Hégberg & Henningson (1998) that a low frequency mode
grows on weaker vortices whereas a high frequency instability appears to require
at least a partially saturated vortex. The two instabilities are also located at
different positions on the vortex, the low frequency one in the lower shear layer
of the vortex and the high frequency on the upper one. The growth rate of
the high frequency secondary instability is found to be much larger than the
one for the low frequency mode. For the high frequency instability it is shown
in figure 4.9 that the § = 1 mode has the most rapid growth initially, but it
is later exceeded by the growth rate of the maximum u.,.,s in the spanwise
direction. The location of the secondary instabilities on the saturated vortex
from the direct numerical simulations is shown to the right in figure 4.10 and
the location of the high frequency instability is also shown on the right in
figure 4.11. Qualitative agreement with experiments regarding the location
and properties of the secondary instability is observed. These comparisons
were presented at the poster session of TUTAM 99 in Sedona, AZ, USA 1999.
The location of the high and low frequency secondary oscillations is found to
be the same in the experiment as in the direct numerical simulations in figures
4.10 and 4.11.

Since the linear controller is able to reduce the strength of the cross-flow
vortices, even when they have started to saturate, the necessary condition,
at least for the high frequency secondary instability, has been removed. The
linear controller thereby implicitly controls the secondary instability through
the primary one. One possible problem with the linear controller is that it could
actually excite secondary instabilities in a highly nonlinear flow. The reason
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FIGURE 4.10. Left: Adapted from Kawakami et al. (1999)
Top layer: Shaded contours of u,,,s of High-frequency insta-
bility. Middle layer: Shaded contours of ;s of Low-frequency
instability. Bottom layer: Contours of u.,s of cross-flow vor-
tex. Right: From DNS by Hogberg and Henningson. Top
layer: Contours of u,,s of High-frequency instability. Middle
layer: Contours of u,,s of Low-frequency instability. Bottom
layer: Contours of s of cross-flow vortex.
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FIGURE 4.11. Left: From Lerche (1997). Gray: Iso-surface
of aais = 4.0. (1,1) mode. Black-mesh: Regions of high-
frequency secondary instability. Right: From DNS by Hogberg
and Henningson. Gray: Iso-volume of mean u,,s. Black:
Regions of high-frequency secondary instability.

is that effects from the modification of the mean flow by strong perturbations
is not accounted for. Also the effect of the control on the mean flow could
be of importance if the control amplitude is sufficiently large. Many of these
issues need to be studied in more detail, but the present results are sufficiently
encouraging to motivate further research.



CHAPTER 5

Discussion

In this thesis two different approaches to optimal control of transition are stud-
ied. The nonlinear, iterative, optimization procedure is widely used within the
flow control community and is indeed a powerful tool to use when computing
optimal controls. A debated issue is whether it is sufficient to solve the approx-
imative problem by discretizing a continuous formulation of the optimization
problem or if the exact optimization problem should be derived for the dis-
cretized equations. It was found in the present work that the approximate
method of discretizing the continuous optimization problem is sufficient to use
for control of strong instabilities but that the convergence rate can be lower
that when using an exact approach. The strength of the nonlinear method
is that there is a possibility to optimize basically any properties of the flow
or the geometry just by specifying the correct objective. Another strength of
this nonlinear method is that it can be used for exploring possibilities of con-
trolling separation or manipulation of a turbulent flow where nonlinear effects
are important. For active flow control the method has the drawback that it
cannot be used online and that it requires powerful computers, but methods
like the checkpointing technique can be used together with efficient algorithms
for parallelization to overcome these problems.

The second approach tested, and partially developed in this thesis is based
on the linear Orr—Sommerfeld-Squire equations which can be used in an opti-
mization problem that can be solved off-line providing a feedback control law.
It is shown that in a comparable case the linear approach yields approximately
the same optimal control signal as the nonlinear scheme. It is also demon-
strated that such linear feedback controllers are able to increase the transition
threshold for a random perturbation in channel flow by more than 500%. A
physically motivated modification of the objective function was sufficient to
obtain relaminarization of a low Reynolds number turbulent flow. The need
for a change of the objective function indicates that the fundamental mecha-
nism of turbulence to be targeted by an efficient control strategy remains to
be identified, and the idea to focus on the near wall region and the effect of
the linear coupling term between normal velocity and vorticity is a step in this
direction.

The transition scenario in a Falkner—Skan—Cooke flow is complicated when
secondary instabilities are considered but the successful extension of the linear
controller to this spatially developing flow is very promising. The amplitude
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of the cross-flow vortices can be lowered by application of control, and thus
transition through secondary instability growth can be avoided or delayed.
The use of the linear Orr—Sommerfeld—Squire equations appear to be sufficient
for transition control in many flows, even though nonlinear and spatial effects
are neglected.

The linear framework also facilitates the development of state estimators
that can be used to reconstruct a flow field from measurements in online sim-
ulations with exponential convergence. The convergence with the current for-
mulation was found to be a bit slow, but still exponential. The main problem
is the initial transient in the estimator, which exists for all cases tested, since
the combination of an estimator and a controller relies on the performance of
the estimator. The transition thresholds could only be increased by about 48%
for random noise perturbation in a channel flow which is much less than for
the full information controller. The fact that the controller mainly relies on
information close to the walls could be utilized in the estimator design in future
studies. If the flow field near the wall can be estimated with faster convergence
the compensator performance could be improved. Also further development
by incorporation of more measurements and knowledge about flow properties
could improve the present result. Testing and evaluating linear estimation and
compensation also in the spatial flow is suggested for a future study.

Once the estimation problem has been solved resulting in good perfor-
mance of the compensator, these controllers could be tested experimentally. It
should be noted that for practical implementation an extension of all aspects
of the present work towards robust schemes is necessary. The idealized setting
considered here is not likely to exist in practice even in a laboratory. This ex-
tension is however straightforward in terms of formulating the problem both in
the linear and nonlinear setting, as outlined by Bewley, Moin & Temam (1997)
and Bewley, Temam & Ziane (2000). The price of this extension is additional
complexity in the solution of the optimization problem. Also discrete actua-
tion and sensing needs to be considered and modeled in order to take the step
into the experimental setting in order to assure that this does not substantially
affect the performance of the scheme. Both the estimator and the controller
can work online given that a sufficiently fast computer is available. This means
that they could probably be used in an experimental setup with only minor
modifications.

Utilizing the tools from control theory is a very promising approach to
flow control that has a large undeveloped potential, and the work in this thesis
provides merely a few of the initial steps in the development towards practical
implementation. In this work we have only exploited the optimal (H2) con-
trollers so there is plenty of work still to be done in the intersection of fluid
mechanics and control theory.



CHAPTER 6
Quick guide to papers and authors contributions

Paper 1

Numerical approaches to optimal control of a model equation for shear flow in-
stabilities.

M. HOGBERG (MH) & M. BERGGREN (MB)

A model equation for shear flow instabilities is used to study the effects of
using an approximate approach of the adjoint based optimization technique.
The problem formulation and derivations were performed jointly by the au-
thors. Coding and numerical simulations and also post-processing of data was
performed by MH. The report was written in close cooperation between both
authors, where MB has written the more mathematical discussions. An early
version of this paper was published as a technical report (Hogberg, Berggren
& Henningson (1999)). Published in Journal of Flow, Turbulence and Com-
bustion. 65 (3/4), 2000.

Paper 2

Optimal control in wall bounded flows.

M. HOGBERG, M. CHEVALIER (MC), M. BERGGREN & D. S. HENNINGSON (DH)

In this paper a solver for the nonlinear optimization problem, using the adjoint
equations for gradient computations, is developed and tested for both channel
and boundary layer flow. The channel flow problem has been explored by MH
and the extension to boundary layer flow was performed by MC. Derivations of
adjoint equations and gradient expressions were done by MH and MC in close
cooperation with MB. Implementation for solving the channel flow problem
was performed by MH and for the boundary layer flow by MC. The report was
written jointly by MH and MC with feedback from MB and DH. The results
presented for the channel flow case were previously published in the proceedings
of ETC8, Barcelona (Hogberg, Henningson & Berggren (2000)). Published as
a technical report of the Swedish Defence Research Agency (FOI-R-0182-SE),
2001.
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Paper 3

Spatially localized convolution kernels for decentralized control and estimation
of plane channel flow.

M. HOGBERG & T. R. BEWLEY (TB)

The derivation of the linear controllers and estimators is described and re-
sults from application to both transition and turbulence are presented. The
derivations of the optimization problems was done by MH under the supervi-
sion of TB. Implementations and simulations as well as kernel computations
were performed by MH and the paper was written by TB and MH jointly. In
particular, the discussion about spatial localization and its implications was
written by TB. An early, shorter version of this paper was published in the
proceedings of the 39th IEEE Conference on Decision and Control (Hégberg &
Bewley (2000)). Submitted to Automatica.

Paper 4

Decentralized feedback control and estimation of transition in plane channel
flow.

M. HOGBERG, T. R. BEWLEY & D. S. HENNINGSON

In this work the performance of the linear controller, estimator and compen-
sator is studied and quantified. Implementation and simulations as well as
kernel computations was performed by MH. The introduction was written by
DH and pictures were produced by MH. The implementation details and results
sections were written by MH with feedback from TB and all authors partici-
pated in writing the discussion. Submitted to Journal of Fluid Mechanics.

Paper 5

Optimal control of transition initiated by oblique waves in channel flow.

M. HOGBERG, T. R. BEWLEY, M. BERGGREN & D. S. HENNINGSON

This paper compares the performance of the nonlinear and linear control ap-
proaches applied to the growth of oblique waves in channel flow. Parametric
studies and comparisons are presented. Simulations were performed by MH
who also wrote the paper. TB, MB and DH all contributed to this paper with
suggestions for improvements and through underlying work. Published in Proc.
Turbulence and Shear Flow Phenomena 2, vol. 1, Stockholm, Sweden, 2001.
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Paper 6

Secondary instability of cross-flow vortices in Falkner-Skan-Cooke boundary
layers.

M. HOGBERG & D. S. HENNINGSON

In this paper the secondary instabilities of cross-flow-vortices in Falkner—Skan—
Cooke boundary layers is studied. Much of the work was performed for the
MSc of MH (Hogberg & Henningson (1996)), but post processing of data, pic-
tures and discussions as well as writing the journal paper was as a part of the
doctoral studies of MH. The idea for the project came from DH and simulations
were performed by MH with guidance from DH. The paper was written by MH
and DH jointly. Published in Journal of Fluid Mechanics, 368 1998.

Paper 7

Linear optimal control applied to instabilities in spatial boundary layers.

M. HOGBERG & D. S. HENNINGSON

The application of linear optimal control to spatially developing flows is pre-
sented in this paper. TS-waves, optimal perturbations and traveling as well as
stationary cross-flow vortices are considered. Kernel computations implemen-
tation and simulations were performed by MH. The paper was written by MH
with feedback from DH. Submitted to Journal of Fluid Mechanics.
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Numerical approaches to optimal control of a
model equation for shear flow instabilities

By Markus Hogberg* and Martin Berggren'?

We investigate two different discretization approaches of a model optimal-
control problem, chosen to be relevant for control of instabilities in shear flows.
In the first method, a fully discrete approach has been used, together with a
finite-element spatial discretization, to obtain the objective function gradient
in terms of a discretely-derived adjoint equation. In the second method, Cheby-
shev collocation is used for spatial discretization, and the gradient is approxi-
mated by discretizing the continuously-derived adjoint equation. The discrete
approach always results in a faster convergence of the conjugate-gradient opti-
mization algorithm. Due to the shear in the convective velocity, a low diffusivity
in the problem complicates the structure of the computed optimal control, re-
sulting in particularly noticeable differences in convergence rate between the
methods. When the diffusivity is higher, the control becomes less complicated,
and the difference in convergence rate reduces. The use of approximate gradi-
ents results in a higher sensitivity to the degrees of freedom in time. When the
system contains a strong instability, it only takes a few iteration to obtain an
effective control for both methods, even if there are differences in the formal
convergence rate. This indicates that it is possible to use the approximative
gradients of the objective function in cases where the control problem mainly
consists of controlling strong instabilities.

1. Introduction

In some fluid-mechanics systems, like boundary layers undergoing transition
to turbulence, dramatic effect on global flow parameters may be achieved by
minute local perturbations. Whereas such a fundamental instability property
is a problem in many applications, it is the basis for the vision of dramatic per-
formance improvements of fluid-mechanics systems using devices sensing and
acting only on small parts of the flow with minute energy. This is somewhat
parallel to the strategy among modern fighter-jet manufacturers to obtain supe-
rior performance by intentionally designing an unstable configuration that are
stabilized by active means. Such control devices could be used to obtain drag

*Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden

TThe Swedish Defence Research Agency ( FOI ), SE-172 90 Stockholm, Sweden
tDepartment of Scientific Computing, Uppsala University
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reduction on bodies, increased lift on wings, increased propulsion efficiency,
heat- and mass-transfer reduction or enhancement, control of combustion in-
stabilities, and control of aeroacoustic pressure fluctuations. Overviews of the
area of flow control, with emphasis on transition control, can be found in the
articles of Metcalfe (1994), Reshotko (1994), and Gad-el-Hak (1996).

Optimal control is when one selects a set of parameters of the problem, the
state equation, to be controlled. A numerical quantity, the objective function
is introduced, defining the objective of the control. Optimization methods are
then used to find parameter values that minimizes the objective function. This
off-line way of computing the optimal control for a specific flow situation can
give results that can be analyzed and used to construct control laws to be used
in on-line feedback systems.

An efficient way of computing gradients of the objective function, to be
used in the optimization process, is the adjoint-equation approach. Using this
approach, the computational cost of the gradient calculation will be indepen-
dent of the degrees of freedom for the control. The adjoint-equation approach
is therefore particularly attractive when the parameter space is large. For a
rapid convergence of the optimization algorithm, the gradient directions need
to be accurate, and discretization effects may significantly affect the accuracy.
Deriving the gradient on the discrete level yields exact gradients up to round
off. In this approach, the state equation (the governing equation for the phe-
nomenon under consideration) and the objective function are first discretized.
Then, an expression for the gradient of the discrete objective function is de-
rived. The gradient will be expressed in terms of an adjoint equation which
will be the exact transpose of the discrete linearized state equation. The word
“transpose” means that an inner-product is involved: the discrete adjoint equa-
tion will be a transpose to the linearized state equation with respect to some
particular inner products, usually the ones that are used to define the norms in
the objective function. This approach to obtain gradient expressions is followed
for the semi-discrete case in section 3 below and for the fully discrete case using
finite elements for the spatial discretization in section 4.1.

The derivation of a fully discrete gradient is often straightforward in prin-
ciple, although it can be tedious; an example for the unsteady Navier—Stokes
equation is given by Berggren (1998). For complicated numerical schemes,
it can be difficult, or even impossible, to obtain exact, discrete adjoint equa-
tions. For instance, when using spectral collocation, it is not clear that the
discrete approach is meaningful. A simpler approach is to discretize directly
the expressions for the “continuous” adjoint equation and the gradient, as is
done in section 4.2 below. This will in general introduce errors in the gradient
directions. How much this will affect the convergence of the optimization al-
gorithm is not clear a priori; it will most certainly depend on the application.
Glowinski & He (1998) discuss this issue and argue that state equations that
are relatively insensitive to changes in the control parameters are particularly
sensitive to discretization errors in gradients.
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The current work is a case study in which we compare the performance
of the “discrete” and “continuous” approach. The model problem, presented
in section 2, is chosen to resemble the behavior of exponential disturbance
growth in shear flows. We have chosen this as a platform to compare these ap-
proaches before applying optimal control to transition phenomena in channel
and boundary-layer flows. In particular, we would like to evaluate under which
conditions we can get a decent performance of the continuous approach, since
the Navier—Stokes solver we are considering uses spectral collocation. Gradient
expressions in the semi-discrete case—discretized in time only—are given in
section 3. Two different spatial discretizations, using finite-element and spec-
tral methods, are presented in section 4. Expressions for the exact, discrete
gradient and adjoint equation, associated with the finite-element discretiza-
tion, are presented in section 4.1.1. Expressions for the approximate gradient,
based on discretization, using spectral methods, of corresponding semi-discrete
expressions are presented in section 4.2. For brevity, we have chosen not to
include any derivations of gradients and adjoint equations in this article; full
details are contained in an accompanying technical report (Hogberg, Berggren
& Henningson (1999)). The optimization procedure is presented in section 5,
the numerical studies is reported in section 6, which leads to conclusions pre-
sented in section 7.

2. The control problem

The equation considered here is a linear model problem, with advection and
diffusion plus a single exponential instability term. Our main interest in this
work is to control the exponential instability; the current equation is suitable
for this purpose. The computational domain €2 is depicted in figure 1, and the
state equation is

1
ut—i—U(y)um—au—F@Au:f in@Q@=Qx(0,T),
u=0 on Yy =T x (0,7),
U= on ¥, =T.x(0,T),
Re
7U(y)u—um =0 on ¥ =11 x (O,T),
u(t = 0) = ug (1)

The velocity profile, U(y) = (1 — e ¥)/(1 — e ¥max), is chosen to mimic a
boundary layer profile. An energy analysis of this equation shows that it is
stable when

(1 1
< (- 4L = 2
aRe<412+h2)’ @)
where | and h are the length and the height of the box €, respectively. For
large values of «, the equation will be unstable with an exponential disturbance

growth. This is the case when it is interesting to apply a control to prevent
disturbances from growing.
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FIGURE 1. The computational domain studied.

The control problem consists of using the boundary condition ¢ to damp
out the disturbance w as much as possible in the domain, still keeping the
“size” of the control within reasonable limits. We therefore define an objective
function (or cost function) J(¢) that quantifies our aim. The objective function
used for the present study is the functional

J(@)z%/@QdEH—%/quQ, 3)

e Q
where u is calculated from ¢ by solving equation (1); the regularization param-
eter € > 0 serves the purpose of controlling the “size” of the control.

Our control problem may be formulated mathematically as:

find ¢* € L*(2,) such that

J(*) < J(@) ¥V p € LA(Z.). (4)

Thus, the admissible controls is in our case the space L?(X.), that is, functions
that are square integrable in X..

2.1. Well-posedness

The choice of admissible controls as well as the choice of measure of the dist-
urbances (L%(Q) in our case) is indeed a choice. There are many other pos-
sibilities. Choosing the admissible controls to be merely square integrable is
a quite weak requirement; it is also possible, for instance, to limit norms on
derivatives in space and/or time. We have chosen L?(T..) for two main reasons.
First, L2-like norms are the the most-used measure of disturbances in the tran-
sition community. Second, it is easier to evaluate gradients of J if the norm on
the control does not involve derivatives. Some choices of admissible controls
that are “natural” from a mathematical point of view would complicate the
gradient evaluation considerably, requiring the evaluation of fractional powers
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of operators on the manifold T'¢, or the solution of a boundary-value problem
in time on X, just to compute the derivative.

Whatever choice is made, it is clearly desirable that state equation (1)
is a well-posed problem for each admissible control. Within the standard
(“H'”) theory for parabolic initial-boundary-value problems (Dautray & Li-
ons (1992)), it is not sufficient that inhomogeneous Dirichlet boundary con-
ditions, such as the one on T, is merely in L?(T'.). However, by the Lions &
Magenes (1972) technique of transposition, one can weaken the requirement
on the boundary data and obtain a continuous dependence of u € L?(Q) on
controls ¢ € L?(X.). It has to be stressed that the solution ¢* to problem (4),
as well as corresponding solution u to state equation (1) may be smooth any-
way, even if this is not required a priory. In fact, the solutions we compute in
section 6 turn out to be quite smooth. Also note that the terminal control case
raises additional concerns. For instance, if the objective function involves the
term

/u(x,T)QdQ, (5)

Q

it is not sufficient to work with admissible controls within L?(Q), since the
mapping ¢ — u|i—r is not continuous from L?(Q) into L?(£2). To obtain a well-
posed terminal control problem, the norm on the control can be strengthened,
or the L2(£2) norm on the observation in (5) can be weakened. For an example of
the latter, we refer to Berggren, Glowinski & Lions (1996). Other options could
be to average the observation over a narrow time interval (T'— 7,7 + 7), or to
exclude a portion around the control boundary from the observation, that is,
replace the region  in expression (5) with w C €2, where distance(w,T'.) > 0.
The last approach uses the fact that a nonsmooth control only can produce
nonsmooth states locally in the vicinity of the control boundary due to the
parabolic nature of the state equation.

2.2. Gradient expression

The conjugate-gradient algorithm, which will be used to solve the discrete
version of problem (4), requires the gradient of the objective function. We
compute the gradient by the adjoint-equation approach. This section states
relevant expressions for the “continuous” case, that is, before discretization.

The gradient of the objective function (3) is defined through the directional
derivative

J(p+sdp) — J(p)

dJ =(VJ(p),dp) = lim

)
s—0

where d¢p is a variation of the control.
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A perturbation technique together with integration by parts in space and
time yields

1
V() = —Dz| 6
(p) =ep+ 5opm| (6)
where the co-state p = p(z,t) is the solution to the adjoint equation
1
= UY)pe —op—5-Ap=u  inQ,

p=20 on Yo U,

Re
TU(y)p +p:,=0  onXy,
pt=T)=0 (7)

Thus, the gradient of J is computed as follows. Given ¢, obtain corresponding
state u by solving equation (1). From this u, compute corresponding co-state
p by solving the adjoint equation (7). The gradient is then obtained by expres-
sion (6).

3. Temporal discretization and the semi-discrete gradient
We start by discretizing in time and obtain expressions for the gradient that
corresponds to the ones given in section 2.2.

For the temporal discretization of state equation (1), we use u; ~ (u"*! —
u™)/At, implicit treatment of diffusion term, and explicit advection. This gives,

forn=20, ..., N —1, the time discrete equations,
untl —yn 1
AL +U(y)ul — au™t — F@Aun—’_l = fn+1 in Q,
u" =0 on I,
u"tt ="t on T, (8)
Re n n+1
7U(y)u —uy =0 on Ty,
uo = Up-

We approximate the objective function J in (3) with

N N
At _ € n|2 1 n|2
J 7§At2/|gp | dr+5AtZ/|u | dQ. (9)

n:lrc n=1 Q

Note that the gradient expression (6) is a function defined in ¥, = T’ x
(0,T). The gradient of the time discrete functional (9), derived by integration
by parts in time and partial summation in time, is an N-vector with each

component being a function on I,

N

, 10
o (10)

n=1

1
VJA = {6(,0" + —py
Re
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where p" is the solution to the problem

N+1 N
PP 1 .

— AL —ap” — EApN =uY in Q
pY =0 on ToUT,, (11)

piv =0 on I'y,

pVtl=0 in Q,

whereas p™, forn =, N — 1, ..., 1, solves problem
pn—i-l _pn 1 )
—T—Up;”'l—ap"—EAp”:u” in  Q

p"=0 on TIgUT,, (12)

R
—TeU(y)p"Jrl —pr=0 on TIy.

Note that the semi-discrete adjoint equations (11) and (12) are not ob-
tained by a discretization of equation (7). Once the time-discrete state equa-
tion (8) and the objective function (9) are introduced, the gradient of the time-
discrete objective function is uniquely defined; it is just a matter of deriving an
expression for it. Also note that the first step of the semi-discrete adjoint (11)
is different than the rest; this is a consequence of the explicit treatment of the
advection term in state equation (8).

4. Spatial discretizations
4.1. Finite-element discretization

First we consider the discretization of the semi-discrete state equation (8). We
use the standard uniform triangulation K of Q depicted in figure 2. Let V"
denote the space of continuous, piecewise linear functions, that is,

Vh={w|weQ),w|r, € P, VI €K}

Let V) denote the subspace of V" consisting of functions with zero trace on
' uTy,

Voo = {w | we V" wlr,ur, =0}
The space of traces on I', of functions in V" will be denoted ~.V", that is,
YV ={ | p=mwlr,, forsome weV"}.
Given p € 7.V", we also define,

Vi) ={w|we V" w

r.=p and wlp, =0}.

At each time step, the discrete controls will belong to 'yCVh, the discrete states
to V' (i), and the test functions to Viy.
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FIGURE 2. Schematic triangulation of the domain €.

From the weak formulation of equation (8), we obtain the following fully
discrete approximation to the state equation (1),

uy € Vi such that

/u%wdQ: /uowdQ Yw € Vs

Q Q
forn=0,..., N—1,uft € V"(¢}) such that,
(1—aAt)/ up T wdQ + —/VUZH VwdQ (13)
Q

/uhwdQ—l—At/Uuhwde —/UuhwdF
/f"“wdQ Yw € Vi,

where ¢ € vV, n=1,..., N are given.
We use the following discrete objective function:

“(on) =—At2/|¢h|2dr+ At2/| P2 de, (14)
n= 1F
and the fully discrete optimal control problem is:
find 7, € v.V" n=1,..., N, such that
JUerdn=n) < J{eitnzy), Ve €7V

4.1.1. Gradient expression

For the finite-element discretization, we follow the same route as in section 3.
That is, we do not directly discretize the expressions for the adjoint equation
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and the gradient given in section 3. Rather, we observe that once we have
defined the discrete state equation (13) and the objective function (14), the
gradient is uniquely defined, and we derive an expression for the gradient.

Recall that the gradient (10) of the time-discrete objective function is an
N-vector with each component being a function on I'.. In the fully discrete
case, the gradient is a vector of dimension N M, where My is the number of
mesh points on the I'. boundary, excluding the corner points. Each component
of this vector is evaluated by computing

(VIRr)im = E/wigon dF—i—/u”wi 4o

r. Q
I

1 X )
" T / Vp™ - Vw' dQ — /Up"“w; dQ,
e
Q Q
wheren =1,... N,i=1,... My, and where w’ € V" such that it is 1 at node
i on I'. and zero at all other nodes of the triangulation. In expression (15), the

fully discrete co-states {p”}g=1 are computed as follows. First, pI¥ € V& is the
computed as the solution to

PNt =0,

N N+1 At N _ N
/[(1—aAt)p —p ]wdQ—l—E/Vp deQ—At/u wd)
Q Q Q

Yw € Vi,
then, forn =N —1, ..., 1, p" € V{Jf} is the solution to *
/[(1 —aAt)p" — p"THwdQ + % / Vp™ - Vwd2
Q Q
—l—At/p”'HUw dQ — at Up"hwdl = At/u”wdQ (16)
‘ 2
Q 'y

Yw € Vgp.

4.2. Spectral discretization

When applying the finite-element discretization in section 4.1, we defined the
discrete objective function (14) and the discrete state equation (13). Then
we derived a discrete adjoint equation that yields the exact gradient of the

*Expression (15) is not derived directly as an approximation to expressions (6) or (10), and
the relation between these expressions might appear non-obvious. However, expression (15)
is indeed the correct variational approximation of the gradient (10); see the discussion by
(Glowinski 1984, App. I A 5) or Berggren, Glowinski & Lions (1996).
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objective function (in exact arithmetics). We consider an alternative approach
for the spectral Chebyshev discretization. The semi-discrete state equation (8)
and corresponding adjoint equation (11)—(12) are discretized similarly using
Chebyshev collocation in both the xz and y direction. Using this discretized
adjoint in the gradient expression (10), we expect, even in exact arithmetic, to
obtain an error in the gradient direction. The question is how much this will
affect the performance of the optimization algorithm.

We consider approximations to solutions of the semi-discrete state equa-
tion (8), which at each time level will be of the form

Nm My
uelwy) =Y D um T (@) T (y),
n=0m=0
where T™ is the Chebyshev polynomial of degree n. We use spectral collocation
at the Gauss—Lobatto points

:cj:(:osj—ﬂ, 7=0,... N,
Ny
lor (17)
= — k=0,... N,
Yk Cos Nya ) Yo
to compute the coefficients u!™, or, equivalently, the the value of u. at the
collocation points. (For simplicity, we assume here that the domain is Q =
(—1,1) x (—=1,1).) The semi-discrete state equation (8) is enforced exactly at
the collocation points for j =1,... , Ny—land k=1, ..., N,—1, whereas the
boundary conditions are enforced for j = 0, N, and & = 0, IV,. This yields a
system of the type Au™"1 = b(u™) which is solved using Gaussian elimination.
The elements of the matrix .4 are computed using simple recursion formulas for
the derivatives. Consult the book by Canuto et al. (1988) for a full account
on the implementation of pseudo-spectral methods. Note that the matrix A
will be dense, as opposed to the sparse, block-diagonal matrices obtained in
the FEM case; the accuracy is on the other hand much higher. The same
approach is used to approximate the semi-discrete adjoint equation (11)—(12).
The co-state approximations p.(z,y)™ for time level n =1, ..., N, are used to
obtain the spectral approximation of the objective-function gradient,

vt~ Legny + 220 )V (18)
¢ v Re 0z > 777 ), )’

for y € T'...
In the optimization algorithm described in section 5, we need to evaluate
inner-products and norms in the form of integrals over the control boundary

I'.. From the values of a function at the collocation points, we can evaluate
the integral of the function through the quadrature formula

1 Ny

/U(y) dy~ ) u(y;)w;,

—1 Jj=0
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where the following weights (Hanifi, Schmid & Henningson (1996)) are used:
N, ,
b { ~  (+ (=D nﬂr}
= =<2+ Cp~———5+— COS —— o,
Ny ;::2 (1-n?) Ny
bj_{1/2 j=0,N, Cn_{1 n=0,N,

1 1<j<N, -1 2 1<n<N, -

The value of the objective function is also evaluated using the same quadrature
formula,

E N M,y N Nz,M,y
) = 5SS o 4§D S i
n=1k=0 n=1 j=0,k=0

(19)
where z; and y, are the Gauss-Lobatto points (17).

5. Solving the control problem
5.1. Algorithm

For a problem, such as the one studied here, with a quadratic objective function
and a linear state equation, a well-suited minimization algorithm is an adap-
tation to the current context of the conjugate gradient method of Hestenes
& Stiefel (1952). This algorithm was originally developed to solve a system
of linear equations Ax = b with a symmetric and positive definite matrix A.
The algorithm is stated in Golub & Van Loan (1989), for instance. To sim-
plify the notation, we here discuss the algorithm as if it was applied at the
differential-equation level. In practice, we of course use approximations: finite
differences for the temporal discretization, as described in section 3, and either
a finite-element (section 4.1) or a spectral discretization (section 4.2) in space.

We apply the conjugate-gradient algorithm to solve minimization prob-
lem (4). As in the linear-algebra case, this means that a “linear system” is
solved, namely the equation

(eI + A" A)p™ =0, (20)

where A4 is the mapping ¢ — u obtained by solving a homogeneous version of
state equation (1) (that is, with f = 0 and up = 0; the inhomogeneities are
all collected in the right-hand side b). Moreover, A* denotes the adjoint (or
transpose) of operator A. The operator A* is the mapping

dp
u+— —-—

ozlr
where p is obtained from w by solving the adjoint equation (7).
The conjugate-gradient algorithm requires symmetry of the operator

AY (T + A Q) (21)
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which occurs in the left-hand side of (20), otherwise the algorithm cannot be
expected to converge. In the discrete case, corresponding operator will be sym-
metric when using exact gradients, as we do for the finite-element discretiza-
tion in section 4.1.1. Approximating the gradient, as we do for the spectral
discretization in section 4.2, does not yield a symmetric operator in general.
Thus, there is no guarantee that the algorithm converges in the latter case.

5.2. Convergence properties

The conjugate-gradient algorithm has linear convergence properties except for
the first few iterations (and the last few ones, for problems with a small num-
ber of degrees of freedom). This motivates the model |V J(¢™)|| ~ CK™ for
studying the convergence properties. The classical estimate (Axelsson (1996))
of K is

K:\/E_l,
VE+1

where x = || A LA~ is the condition number of the operator A as defined in
expression (21). In our case k = S\nafl, where A, is the largest eigenvalue of
A. Equivalently, x = 1+ 02¢~! where 0, = ||A| is the largest singular value
associated with the mapping A, see Glowinski & Lions (1994). If o,, is well
separated from the other singular values, this estimate can be improved. In
this case, the “effective” condition number is kg ~ 1+ U%_ls_l where o,,_1 is
the next-largest singular value of \A. The number of iterations will depend on
Keft plus one extra iteration for the separated singular value. This is of interest
in our case, since it is expected that the exponential instability associated with
a will result in a well separated, large singular value of A.

The conjugate gradient algorithm offers a simple way of estimating the
extremal eigenvalues of A by computing the eigenvalues of the matrix

1 _X
Po Po
__Jo 1 Jo _n
PO P1 + Po P1
_n 1 Jy 02
Tn = P1 p2 P1 P2 R (22)

where v, = ||VJ(on)||/I|VJ (¢n—1)]|| is the coeflicient which is used to blend the
old search direction with the new gradient to compute the new search direction,
and where p,, is the step length, used to update the control, the state, and the
gradient at each iterate. Consult chapter 10 of Golub & Van Loan (1989) for
more details.
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FiGure 3. Convergence behavior with a least-squares esti-
mate of the linear convergence rate.

For comparison of convergence properties of the conjugate gradient algo-
rithm, the K factor describes the convergence rate. After the initial steps of
optimization the convergence rate is linear. A least-squares fit of a straight
line in a logarithmic scale gives the slope of the convergence curve. Figure 3
shows the approximation of the linear part of the convergence curve. The
slope of this line is equal to log K. A low value of K indicates fast convergence
whereas a high value corresponds to slow convergence. A K value of 1 implies
no convergence.

To obtain comparable results for the two discretization methods, we must
use comparable resolutions as well. The spectral method uses a discretization
in space that is not uniform, whereas we use a uniform mesh for the FEM dis-
cretization. In the discrete objective functions J(¢), expressions (14) and (19),
the control boundary is accounted for twice, since it is a part of second integral
as well as of the first. This means that we for coarse discretization get an
extra, implicit regularization of the optimization problem. This regularization
is greater for the FEM case, since the cells at the control boundary typically
are coarser. As the number of grid points increases, the effect of this implicit
regularization decreases.

6. Numerical studies
6.1. Test problem

As an initial condition for the computation, consider a disturbance in the do-
main of the form u(z,y) = 0.1(y? — 2y)(2? — 2z) (figure 4). This disturbance
will develop in different ways depending on the parameters o and Re. High
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Uy(X,Y)

FIGURE 4. Typical initial disturbance used in computations presented.

values of a give a strong instability, and the value of Re decides the diffusivity
of the problem. The convective velocity profile U(y) = (1 — e ¥)/(1 — e~ ¥max)
is used, and the domain is Q = (0,2) x (0, 2) for most simulations.

6.2. Critical value of a

To investigate for which values of « there is an instability, we choose a value
of Re and compute the evolution of an initial disturbance using the discrete
versions of state equation (1). The results from the FEM code and from the
spectral code were practically identical, and the critical value of a agreed with
the estimate (2), plotted as a crossed circle in figure 5. The growth rate of the
disturbance is the logarithm of the time derivative for the disturbance energy.
The exponential growth rate is proportional to « as can be seen in figure 5.
For other values of Re than Re =1 (as in this case) this curve is shifted up or
down.

6.3. Convergence dependence on «

To study if the map A in (21) actually has a well separated singular value
we calculate the eigenvalues of the matrix 7, in (22). For different values
of a we noted that there are a few eigenvalues that are separated from the
others. Ideally we would get only one separated eigenvalue, but probably due
to round-off errors in the conjugate-gradient algorithm we get a few extra large
eigenvalues. Figure 6 shows the eigenvalues for different values of a.

If we study the K dependence on «, we expect it to be approximately
constant. In figure 7, we see that there is a small increase in K as « increases.
This increase is small compared to what would be obtained if the condition
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FIGURE 5. Growth rate of disturbance versus oo. Here Re = 1.
Crossed circle is from estimate (2).
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FIGURE 6. Spectra of T;,, n = 20 for a = {1.7,1.8,1.9,2.0},
Re =30, and € = 10710,

number grew as fast as the largest singular value for increasing «. This verifies
the expected behavior of the algorithm, discussed in section 5.2, for a well-
separated largest singular value of A. The small increase in K can be explained
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FiGURE 7. K dependence on a. Solid: FEM, Re = 1 and
¢ = 1075, Dashed: Spectral, Re = 1 and ¢ = 1075. Dash-
dotted: FEM Re = 30 and ¢ = 10710,
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FIGURE 8. Energy growth in box at different stages of opti-
mization. Re =50 and a =1.5

by contamination due to accumulation of round-off errors in the conjugate-
gradient algorithm.
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Most of the decrease of the objective function is obtained in the first few
steps of the optimization; additional iterations only slightly improves the re-
sults. Figure 8 shows the energy growth in the box at different stages of opti-
mization. The exponential growth of the disturbance is gone already after one
iteration and the energy decays after two.

6.4. Dependence of problem size on convergence

If the degrees of freedom of the problem are increased, the convergence rate of
the conjugate-gradient algorithm usually decreases. However, the dependence
on the degrees of freedom differs between the two methods. Since the spectral
method is based on a derivation of the gradient for the semi-discrete problem,
it is not expected to perform as well as the FE method, which is based on an
exact derivation of the discrete objective-function gradient.

In figure 9 we see the dependence for the convergence factor K on degrees of
freedom in time for an unstable case with Re = 100 and o = 1.5. The difference
between the methods is large, and performance of the spectral method degrades
with increasing number of time steps whereas it does not for the FE method.
If the number of degrees of freedom of the control is increased in space rather
than in time, figure 10, both methods seem rather independent in terms of
convergence rate. However, if the resolution is much too small, the spectral
method actually did not converge at all.

A stable case is studied in figure 11. Here a = 0 and Re = 10. Convergence
here is fairly good for both methods. As the number of degrees of freedom is
increased, K grows for both methods, but faster for the spectral method.

6.5. Diffusivity dependence

There is also a dependence on the diffusivity of the state equation. A high
Re yields a problem that is dominated by convection in the upper part of the
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F1GURE 11. Convergence factor vs. degrees of freedom in time.
Stable case with a = 0 and Re = 10.

domain and by diffusion close to the lower boundary; this follows from the shape
of the convection velocity U(y). If the final time T is sufficiently large, this
means that the control is very effective throughout the domain, except close to
the lower boundary. This yields a complicated control with strong gradients in
both the wall-normal coordinate y and in time, which requires many iterations
to fully resolve by the conjugate-gradient algorithm. At low values of Re this
effect is less clear, since the control is obtained mainly through the diffusion
term. Note also that if the final time T is not long enough for a disturbance to
propagate through the domain, we obtain a control that does not have much
effect close to the outflow.

Figure 12 shows K for different values of Re with & = 1 kept constant. The
problem is unstable for all values of Re used. For low values of Re both methods
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perform well. As Re is increased both methods have slower convergence rate,
and the spectral method is more sensitive to this decrease in diffusivity. The
methods appear to approach a high K value as Re is increased. This value is
close to 1 for the spectral code. Finally, for Re = 150, the conjugate-gradient
algorithm fails to converge when using the spectral approximations, see figure
13.

6.6. Objective function

The value of the objective function after optimization is a measure of how
well the optimization method performed. Since the same initial disturbance
and the same parameters have been used for both methods the values are
comparable. The objective function is minimized to approximately the same
value for both methods, and the resulting controls are almost identical. As
long as the conjugate-gradient algorithm converges, and the resolution is not
too crude, we find that the higher accuracy of the spectral code gives lower
values of the discrete objective function than is obtained for the same number
of points with the FEM code, see table 1. The values of the objective function
in the table are taken after 20 optimization steps. This is a case with a strong
instability but a high diffusivity, so the control is fairly simple. The reduction
in the objective function is computed by comparing with the value obtained
without any control.

The conjugate gradient algorithm should produce monotonically decreas-
ing values of the objective function. This is also observed when using exact
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FEM Spectral
N, Cost Red. % N, Cost Red. %
8 0.2005 99.93 8 0.2149  99.90
16 0.1892  99.92 16 0.1900 99.91
24 0.1871  99.92 24 0.1864  99.92
32 0.1867  99.92 32 0.1855  99.92

TABLE 1. Values of the objective function and objective func-
tion reduction for the two different methods at a number of
resolutions. Final time T' =5, Re = 10, and o = 2.0. The =
resolution was 255 for FEM and 31 for the spectral method.

gradients in the FEM discretization. For the most complex cases, there is not
a monotonic decrease of the objective function with the spectral method, even
when the optimization converges. This is most likely due to the fact that the
gradients are not exact, and therefore we do not find the actual minimum of
the discretized objective function.

7. Discussion and conclusions

We have compared two different discretization approaches for optimal control of
a model problem selected in order to resemble the behavior of instability growth
in shear flows. We always obtained a faster convergence of the finite-element
version which uses exact gradients than the spectral one using approximate
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gradients. This is particularly noticeable in demanding cases when convergence
can be expected to be slow with any method. For example, when Re is high,
the system is dominated by diffusion close to the wall y = 0 but by advection
in the rest of the domain. This results in a complicated control and requires
many iterations to resolve it numerically. The slower convergence when using
approximate gradients makes a large difference in this case and the conjugate
gradient algorithm may even fail to converge. When reducing the time step,
the degrees of freedom for the control increases, and we noted that convergence
degraded when using approximate gradients, but convergence degraded to a
much lower degree, or not at all, when exact gradients were used.

When a strong instability is present in the system, this increases vastly the
value of the objective function. It also increases the condition number of the
optimization problem, but the convergence rate of the optimization algorithm
is not much affected as explained in section 5.2. This phenomenon was also
verified numerically. Only a few iteration were needed to control the strong
instability and drastically reduce the value of the objective function. This was
observed whether exact or approximate gradients were used. Note that this
also holds for cases when the linear convergence is slow, that is, when the
value of K, as defined in section 5.2, is close to one. In this case, we can
successfully control the instability only after a few iterations, but to obtain full
convergence of the optimization algorithm requires many iterations. However,
full convergence may not be of much interest for this case.

Our results indicate that it would certainly be desirable to use exact gra-
dients for optimal control of shear flows. However, when adding routines that
solve the adjoint equations to a given code that was not designed with this in
mind, it will be hard, if not impossible, to obtain exact gradients due to the
complexity of the code. The current investigations suggests that approximate
gradient can be used at least when controlling a dominating instability. One
way of improving the convergence rate could be to parameterize the control,
especially the temporal development, in order to reduce the degrees of free-
dom. Fixing the degrees of freedom, the accuracy of the gradient direction
may improve when the numerical resolution of the simulation is increased.
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Optimal control of wall bounded flows

By Markus Hogberg*, Mattias Chevalier*!, Martin
Berggren't and Dan S. Henningson*f

Optimal control of transition in channel flow and boundary layer flow is at-
tempted. First the optimization problem is stated and the corresponding ad-
joint equations used to compute the gradient of the objective function are de-
rived for both the channel flow and boundary layer flow problems. Implementa-
tion and numerical issues are discussed, and some details of the implementation
are explained. The governing equations used are the incompressible Navier—
Stokes equations with appropriate boundary conditions for the two cases. The
boundary condition on the wall normal velocity at the walls of the channel, or
at the single wall in the boundary layer case, is used as control and is deter-
mined in the iterative optimization procedure. The objective function used for
the optimization problem contains the perturbation energy and a regularization
term on the applied control. The optimization problem is formulated using a
continuous formulation in space and time using the primitive variables, velocity
and pressure, and is then rewritten in a formulation containing only the wall
normal velocity and the wall normal vorticity. An existing solver for the incom-
pressible Navier—Stokes equations using this formulation can then also be used
to solve the associated adjoint problem. Implementation is straightforward us-
ing this formulation and the efficiency of the original solver is maintained. To
test the performance of the solver of the optimization problem, the derived
formulation is applied on different stages of the oblique transition scenario in
the channel flow case. In a parallel Falkner—Skan—Cooke flow successful control
of an inviscid instability is reported, and in the spatial Blasius flow the energy
growth of a Tollmien—Schlichting wave is efficiently inhibited.

1. Introduction

In the last decade, one topic in fluid mechanics that has been subject to an
increasing interest is flow control. The explosive development in computer
technology has made it possible to approach these problems from a numerical
point of view, and also to construct small devices to be used for measurements
and actuation in experiments. The numerical approach to flow control can for
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example be used to design the shape of a wing to minimize drag or to solve
some other optimization problem. Mathematical aspects of the flow control
problem is the topic of the books edited by Gunzburger (1995) and Sritharan
(1998). Computational approaches to flow control are reviewed in the paper by
Hinze & Kunisch (2000). Optimal control of channel flow using direct numerical
simulations was previously considered using by Bewley, Moin & Temam (2001)
and using large eddy simulations by Collis et al. (2000). In addition to channel
flow Joslin et al. (1997) also considered the boundary layer case with a two
dimensional flow in direct numerical simulations.

In this work we consider the problem of control of transition from laminar
to turbulent flow in a channel and a boundary layer. In many applications
there is a large potential benefit from the ability to prevent transition whereas
in other applications the turbulent state is the desired one. Our objective is
to delay or prevent transition at low Reynolds numbers, particularly focusing
on the bypass transition (Morkovin (1969)) scenarios, not originating from an
exponential instability. The problem of bypass transition is important in many
practical applications, and considerable amounts of research has been done on
this subject see e.g. the recent book by Schmid & Henningson (2001).

2. Optimization problem formulations

The formulation of an optimal control problem is based on three important
decisions. The choice of governing equations, determining what means of actu-
ation to use, and what properties of the flow to control. For a particular flow
geometry and with given fluid properties, these choices have to be made with
care.

In this work the governing equations are the incompressible Navier—Stokes
equations. In a recent study, successful application of feedback controllers com-
puted from the linearized Navier—Stokes equations was performed by Hogberg
& Bewley (2001) in temporal channel flow. Changes in the mean flow is not
easily taken into account using this formulation. Thus, a proper treatment of
problems where this is important, such as a flow with local separation, requires
the use of the full Navier—Stokes equations.

Since no particular quantity is known that establishes where we are on the
path to transition the choice of objective function is difficult. The mean skin
friction drag could be used as an indicator, since it has a jump at transition,
and can be used to define a transition point, as for example in Reddy et al.
(1998). On the other hand, Bewley, Moin & Temam (2001) showed that the
mean drag was not a good choice for the objective function when the purpose
was to relaminarize turbulence in a channel flow, and concluded that the tur-
bulent kinetic energy was a more appropriate choice. Since we are interested in
control of transition rather than turbulence, the energy of the deviation from
the mean flow appears to be an appropriate quantity to minimize. An increased
physical understanding of the transition process and the crucial mechanisms
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of turbulence could provide a guide to the best choice of objective function as
pointed out by Kim & Lim (2000).

It is important to choose the properties of the control in such a way that
it is able to do its task in an efficient way. For our study, we have chosen to
use blowing and suction at the wall during a specified period in time. The
state of the flow is observed during another, possibly overlapping, period in
time. When a spatially rather than a temporally evolving flow is considered
it is physically meaningful to specify also the spatial extent of the control and
observation regions. The control is restricted to have zero mass flux, in order
to limit the ability to affect the mean flow and focus the control effort on the
perturbations.

The gradient of the objective function may be expressed in terms of the so-
lution of an adjoint equation. Here, we discretize the expressions for the adjoint
equations and the gradient that have been derived on the “continuous” level.
An alternative is to discretize the Navier—Stokes equations and the objective
function and derive the adjoint equations and the gradient expression on the
discrete level. The latter approach leads to more accurate gradient directions,
but it seems difficult to apply for the present discretizations. Issues related to
the errors introduced by the approximative (continuous) formulation are dis-
cussed in e.g. Glowinski & He (1998) and Gunzburger (1998). The use of the
continuous formulation is motivated by the findings in Hogberg & Berggren
(2000) where one conclusion was that it is sufficient to use the approximative
(continuous) formulation in order to control strong instabilities. It was noted
that in such cases most of the reduction of the objective function is achieved in
the first few iterations, and additional iterations only result in a fine tuning of
the control. The drawback is that it will require more iterations to reach the
true optimal solution, if it is even possible, than with the discrete formulation.

2.1. Governing equations

In this section we consider the channel flow problem and the details of the
method used to solve the optimization problem. The boundary layer problem
is basically an extension of the channel flow case. The differences are outlined
in section 2.3, and a full description is provided in Appendix A.

Our computational domain depicted in figure 1 is

Q= (—ar/2,2./2) x (=1,1) X (=21/2,21/2),

in x,y, z, and we define
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Upper control surface I'yy

/4 X
;

Lower control surface I'y,

FI1GURE 1. Geometry of flow domain 2 for channel flow simulations.

The non-dimensional, incompressible Navier—Stokes equations with a Reynolds
number, Re, based on the centerline velocity and half the channel height are,

ou 1 .
E—i—(u-V)u—EAu—l—Vﬂ——VP in Q,
V-u=0 inQ, (1)
u|t:O = Uo,

where u = (u1, v, w) is the velocity vector, 7 is the pressure and VP represents
the pressure gradient driving the flow and can either be constant or used to
ensure constant mass flux. Periodic boundary conditions in x and z, and control
through blowing and suction together with a no-slip condition for the directions
parallel to the wall gives the complete set of boundary conditions,

u|x:71L/2 = u|x:zL/27
u|z:7,zL/2 = U’|z:zL/25

eroulyy = JPEVE = TE ern Yrm(@,2) in (T7,T5) fori =2,
e 0 otherwise,

_ Jetvu = Yoy QU (t) Yum(x,2) in (Tf,T§) for i =2,
0 otherwise,

(2)

where e; are unit basis vectors in the coordinate directions, and 1 are basis
functions for the control designed to have zero net mass flux. We can now
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introduce the control variable ¢ defined as:

o = (Pras-- L)’
¥ = (@LaSOU)Tv r T
SOU:(QOU,D"' 7<)0U,MU) .

To completely specify the optimal control problem we also need an objective
function. If we choose to minimize the energy of the deviation from a target
velocity distribution, the objective function is:

T T3
1
s =35 [ frravars s [ [l ae. 3)
Te T T Q

where (TF,T%) is the control time period and (T7,T%) is the observation time
period. The target velocity profile is denoted ur. The optimization problem is
then: find ¢* which satisfies

J(*) < J(p) Y u(p)lr € Uaa
where U,qs has been used to denote the set of admissible controls which is a
subset of L2((T¢,Ts); RMe+Mu),
2.2.  Derivation of objective function gradient.

The gradient of the objective function V.J is defined by
J(p+5dp) = J(p)

0J(p) = lim = (VJ,dp)
s—0 S 4)
_<8J5>+<8J5> (
880[,, 2 aSOU7 ©® ),

where d¢p is the first variation of the control. The functional dJ is the first
variation of J with respect to dp. To find an expression for VJ we start by
differentiating the objective function (3) to get,

Ts 7
(5J(sa):6//(5UUdth+//5’U,'(u—UT)dQ7 (5)
T T Ty Q

where dv = es - du and du is the first variation of u with respect to dp. To
find an expression for the relation between du and dp we differentiate state
equation (1),

0du 1

—+(5u-V)u+(u-V)(5u—Re

5 Adu+ Vor =0 in Q,

V-du=0 inQ, (6)
(5u|t:0 = 0,
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and boundary conditions (2),

6u|x=—xL/2 = 6u|x=xL/2a
6u|z=—zL/2 = 57-’f|z=zL/27

o1 Sul = SoTr = Yome) 0oL m()rm(z,2) in (T¢,T§) fori=2,
’ y="1 0 otherwise,

e uly_1 = 3ol = Yomly 80um(Dum (@, 2) in (Tf,T§) fori=2,
! v= 0 otherwise.

(7)

Now we introduce a vector function p = p(z,y, z,t) such that e; - p = p; and
require p to satisfy the boundary conditions:

p|9c=—:cL/2 :p|;c=9cL/2a
p|z:7zL/2 :p|Z:ZL/2) (8)
p|y=—1 = p|y=1 = 0.

The boundary conditions may be chosen during the derivation but in order to
simplify the presentation they are introduced already at this point. Taking the
dot product between p and equation (6) and integrating over @ yields

Odu 1
/p <W + (ou-Vu+ (u-V)ou — EA&U + V§7r> d@ = 0. (9)

Q 1 2 3 “’—‘4 5

Then, step by step, we apply integration by parts to move derivatives from
du to p. We start with the first term in the integral (9), containing the time
derivative:

/p c%udQ

—p(0) - 6u(0)) dQ2 — /5u . % dQ

Q/ Q
/ p(T) - 6u(T) dQ) — / Su 8p - do,
Q

(10)
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where we have used that du(t = 0) = 0. Then consider the fourth and fifth
terms in integral (9), involving Adu and 7

—é/p-AéudQ—k/(p-V)éwdQ
Q Q

[ / 0u L dr — / Vp : V&udﬂ]
on
T
+/{/n pomdl — /57TV p)dﬂ}d
0 T
r o)
1 U
:/ D- (néﬂ—E%) drdt (11)
0T
T
—l—é/[/éu —dF /5u Ade}dt /677Vp
0 T Q
TS
/{ soL/wL dl' +6 T/wu%dF}dt
Ty

I'r

1

€

O\ﬂ

_E/éu.Ade—/&r(V'p)dQ.
Q

Q
where : denotes a complete contraction; that is,

3
Vp:Viu = Z

ij=1

d(e; - p) O(e; - ou)
8$j 81‘]' '

(12)

In the third equality of (11), we use the boundary condition on du from (7)
and on p from (8).

We can simply rewrite the second term in (9):

[p-Gu-9puaQ = [ su- (VapaQ. (13)
Q Q
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For the third term in (9), we use Gauss theorem, the boundary condition on p
in (8) and the incompressibility condition,

/p' (u-V)oudQ

Q
T

://(p-éu)(n-u)dfdt

0T (14)

—/<p-6u><vu>d@—/6u-<u-V>de
Q Q

= —/5u- (u-V)pdQ,
Q
Then by inserting (10), (11), (13) and (14) into (9) we get:

/ p(T) du(T) d2

Q
T3

L T [, 9P2 T Op2

+Re/{5%/wan dr+5¢U/¢Uan dr|dt
Tr T 'y

+/5- _op L + (Vu)"p— (u-V)p ) dQ
Y\Tor T Re P TV PP

Q

—/67r(V-p)dQ:0.

Q

If we then require p to satisfy the adjoint equations:

w1 . Cfu—ur i (T7,T3)
ot EAP—'_ (Vu)'p = (u-V)p+ Vo = { 0 otherwise in Q,
V.p=20 in Q,
p|t:T = 07
(16)

with the boundary conditions from (8) and where o is a scalar field (the “adjoint
pressure”). Then (15) becomes

T3

//5u-(u—uT)dQ—/éu-VUszo, (17)
Q

Te Q
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since Opa/0n is zero at the boundaries y = +1. This follows from the fact that
the no-slip condition implies

Op _ Ops _
dr 9z

on the walls and from the condition requiring p to be divergence-free. Also,
note that the initial condition for the adjoint equations (16) is set at t = T and
that the equations are integrated backwards in time.

Integrating the second term in the integral (17) by parts yields

T
—/6u-VUdQ:—//n-éuadfdt—i—/aV-éudQ
Q or Q

T
= —//n-éuadfdt,
or

since V- du = 0. Inserting the boundary condition on du from (7) into (18) we
get,

(18)

T
—//n-éuadth
or

s s (19)
= //w%wmdr dt — //w{,wm drdt.
T¢I T¢Iy
If we now insert (18) and (19) into (17) we get,
5
/ [&pf / Yrodl — dp}, / andP] dt
c r r
H " v (20)

T3

—|—/Q/5u-(u—uT)dQ:O.

Ty
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, (o}
U — LU (2,y)

Y
i

FIGURE 2. Geometry for boundary layer flow simulations.

Finally we can now insert (20) into (5) using (2) to eliminate du

oJ oJ
8J(p) = <@75§0> + <%75¢>

j{égp{ L[ Ur (eprtr — o) dr] (21)

+5s05{ /wU (epttu + ) dFHdt.
T'u

From expression (21) we can identify the gradient of the objective function (3),

aJ
Dor /wL (epLtr — o) dI, (22)
Iy
and
s = [ (et + o) ar. (23)
1N

2.3. Extension to boundary layer

Only minor changes are needed to rephrase the channel flow problem to the
boundary layer flow depicted in figure 2. A complete derivation of the boundary
layer counterpart of the channel flow optimization problem can be found in
Appendix A. In this section only the key differences will be pointed out and
commented.

The growing boundary layer is modeled by

@—F(U-V)u—é

5 Au+Vr=Az)(U —u) in Q,

V-u=0 in Q, (24)

u|t:O = Uop,
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with periodic boundary conditions in the horizontal directions, that is, the z-
and z-directions,

u|9c=—:cl/2 = u|x=xz/2’ (25)

u|z=—zl/2 = u|z=zl/2-
The term A(z)(U —u) is a forcing term used to make the flow situation sketched
in figure 2 periodic, enabling the use of Fourier discretization in simulations of
the physical flow. This is known as a fringe region technique and is described
further in Lundbladh et al. (1999) and analyzed by Nordstrém, Nordin &
Henningson (1999). Left to be specified are the conditions on the wall and
in the free-stream. On the wall the boundary condition for the horizontal
velocities is a no-slip condition and the wall normal velocity v. is given by the
control. The free-stream boundary condition should be applied at y = ysst
where the flow is not influenced by the existence of the boundary layer, but the
simulation box has to be of reasonable height. An artificial boundary condition
modeling the existence of the free-stream is thus used to allow truncation of
this large domain. Here a Neumann condition is used at the artificial free-
stream boundary. This choice requires that the simulation box is high enough
for the perturbations in the boundary layer not to influence the flow at the
upper boundary.

0
Uly=ye: = Uso <which is approximated by 8—2 = 0),
F’U/
ulr, = nve, (26)
U’le\Fu =0,

where I';, and I'; represent the upper and lower part of the boundary respec-
tively. The part of the boundary where control is applied is denoted T'..

As for the channel flow case we expand the control v, in basis functions
Y1,m with zero mass flux, where ¢; ,,, are time dependent coefficients for the
basis functions,

M
SolTwl = Z @l,m(t)whm(x’ Z) in (TlchQC)v
m=1

ve(x, 2,t) = (27)

0 otherwise.

Where we have introduced the control vector ¢; defined as:

o1 = (@115 > P1,0)-

Comparing with the corresponding equation for channel flow, equation (1) and
the associated boundary conditions, there are two differences. The boundary
condition at the upper wall is now replaced by a free-stream velocity condition.
Also the aforementioned fringe forcing term which is needed only for spatial
simulations is added to the right hand side. The scalar function A = A(z) is
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nonzero only in the fringe region and is defined as follows:

T — Tstart T — Tend
A = Amax S| ———— ) -S|———+1
(x) |: ( Arise ) < Afall ) :|

where Apax, Tstart, Tend, Arise and Agy are parameters used to specify the
strength, extent and shape of the fringe forcing. The S-function is defined as

0 r <0,
1
SOV =\ Trepa/a=n+i/my °<"<h
1 r>1.

Another difference from the channel flow problem formulation appears in
the second term of the objective function J, equation (3), where the observation
of state can now be limited in space as well as in time which yields,

Ts 7
c 1
o) = 5//|vc|zdrdt+5//|u—uT|2dQ, (28)
T¢ Te TP Qo

where (TF,TS) is the control time period and (T7,T%) is the observation time
period and €, is the part of the spatial domain 2 where the state of the flow
is observed. This is only used for spatial simulations.

As for the channel flow derivation, we get to the stage where the adjoint
equations with the variables p and o are introduced:

dp T
T (Vu)'p—(u-V)p
1 u—ur in (T7,79) x Q.
_ﬂAp +A@)p+ Vo = { 0 otherwise inQ, (29)
V-p=0 in Q,
pli=r = 0.

along with the boundary conditions:

p|x:711/2 :plz:xl/27
p|z=—zl/2 :p|z=zl/27
p|F1, =0, (30)

0
Ply=yee =0, (Which is approximated by e - 0).
on|r,
As with the free-stream boundary condition in (26) we have introduced an
artificial boundary, to truncate the adjoint domain, where the adjoint “free-
stream” is modeled.

Due to the fringe forcing, the additional term A(z)p has to be included in
the adjoint equations. The forcing u — ur is now confined to the spatial domain
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Q, due to the variable spatial extent of the observation. These adjustments
lead to following the expression for the gradient:

oJ T
8—()01 f/l/)l (€gol Q/Jl 0’) dr'. (31)

3. Adapting to the simulation codes
3.1. Reformulation of the adjoint equations

To be able to use existing spectral channel flow and boundary layer flow codes
by Lundbladh, Henningson & Johansson (1992) and Lundbladh et al. (1999)
respectively, we need to reformulate the adjoint equations into a similar form
to the one used there. The simulation code for the boundary layer problem is
based on the channel flow code and the solution procedure is identical. The
Navier—Stokes equations are implemented in a v — w formulation, where linear
and nonlinear terms are treated separately. We can write the adjoint equations
(16) or (29) as,

Op 1
SN - -
2% ReDP +V(u-p)+Vo=0,
V.p=0, (32)
p|t:T:07

with the boundary conditions (8) or (30), and where H in the following de-
notes either H.j, or Hyp; corresponding to the forcing terms in the channel and
boundary layer cases respectively. In order to avoid derivatives of u in the ad-
joint equations, terms involving such derivatives are reformulated. Using the
identity

ux (V% p)=2(Vp)'u+V(u-p) = (Vu)'p—(u-V)p
the forcing in the channel flow case is given by

u—up in (T7,Ty),

Hep=—-ux (Vxp)+ Q(Vp)Tu + { 0 otherwise

and in the boundary layer case we use

= - () Tt — A u—up in (T7,T5) X Q,,
n=—ux (Vxp)+2(Vp) u—Ma)p+ 0 otherwise,

but apart from this, the procedure is the same in both cases. If we take the
divergence of equation (32) we get a Poisson equation for the adjoint pressure:

Ac=V-H—A(u-p). (33)
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We can then apply the Laplace operator to equation (32), take the second
component, and combine with (33) to get:
0Aps 1 ., 0? 0? 0 (0H, O0Hj
——=—NANp— | =+ |Ho+—|—+—— ] =0. 34
ot Re 2 ox? + 072 2+ Oy \ Oz + 0z (34)
Then we take the second component of the equation obtained by taking the
curl of equation (32) and again making use of (33) to get,

8(V X p)g 1 8H1 8H3 N
o AV \G %) =0 (35)
We can write equation (34) as a system of two second order equations:
0 1
e h 4+ A
at hpz + Re ¢a
Apz = ¢, (36)
Ip2
p2(y ) 9y (y )=0,
where
0? 0? 0 (0H, OHsj;
= —_— —_— H —_—— [ [— .
v (83:2 * 822> 2 8y< oz | 2 > (37)
Written on the same form equation (35) reads:
IV xp)2 1
A AAR A
ot hewsm R AV X P2, (38)
(V xp)a(y =+£1) =0,
where

OH, OHj;
]’L(vxp)2 == (W - W) . (39)

Equations (36), (37), (38) and (39) are identical to those solved by the spectral
channel flow and boundary layer codes with slight changes to H and a negative
time derivative. Since the adjoint equations are solved backwards in time, we
can in practice use the same solver.

3.2. Gradient evaluation

In the gradient of the objective function we need the adjoint pressure at the
wall. This is not available directly since we have eliminated the adjoint pressure
term from the equations, and thus the pressure is not computed explicitly. If
we evaluate equation (16) or (29) at the walls, we get

.| = L& 0m

e e Oy Oy (40)
B N ps

lw Re 0y? |y Oy |y




Optimal control of wall bounded flows 105

where W denotes the value at the wall and v is the wall normal velocity at the
wall, or rather the control input. Note that in the channel flow case there are
two walls and in the boundary layer flow there is only one. Since the constant
part of the adjoint pressure disappears in the integral over the basis functions
in (22) and (23) we can compute the objective function gradient by integration
of these adjoint pressure gradients at the wall.

4. Implementation issues
4.1. Simulation codes

The implementation of the adjoint solver is based on existing direct numerical
simulation codes for channel and boundary layer flow. These codes have been
extensively used and are thoroughly verified. The channel flow code is described
in Lundbladh, Henningson & Johansson (1992) and the boundary layer code in
Lundbladh et al. (1999). The time marching is performed with a Runge-Kutta
method for advective terms and a Crank—Nicolson scheme for the viscous terms.
A spectral method described in Canuto et al. (1988) is used with a Fourier
discretization in z and z, and a Chebyshev method in y. The discretization
of, and the solution procedure for, the Navier—Stokes equations is described in
Lundbladh, Henningson & Johansson (1992). The adjoint equation is solved
in exactly the same way, with the formulation of the equations described in
section 3.1. For the boundary layer case the code described in Lundbladh et al.
(1999) is used and since it is based on the channel flow code the implementation
is similar.

The solution of the adjoint equations require knowledge about the full
state in space and time from the solution of the Navier—Stokes system. This
is achieved by saving a large number of velocity fields equidistant in time and
interpolating linearly in time when the adjoint equations are solved. This
introduces an error, but if the time step between saved field is small enough,
we expect a sufficiently accurate approximation. The number of saved velocity
fields can become large especially if the time domain is long. An efficient way of
reducing the memory requirement is to use a check-pointing technique, see for
example Berggren (1998). This decreases the memory requirement at the cost
of increased computational time. For the simple test cases presented in this
paper check-pointing has not been necessary, but for larger cases, especially
simulations requiring high spatial resolution, it will be needed.

4.1.1. Implementation of control

The control is implemented as the Fourier coefficients of the v velocity at the
wall(s). The control function is discretized in time with a fixed time step that
can be used to change the time resolution of the control and there is one set of
coefficients for each control time. Linear interpolation is used for the control in
times between the discrete control times. The control always starts and ends
with zero velocity, and has zero mass flux. The time step in the solution of
both the forward and adjoint equations is adjusted to be small enough to at
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least resolve the control in time, even if the time step allowed for numerical
stability is larger.

When simulating a spatial boundary layer the control is applied only on
I'. which extends over the interval (x§,z§) in the chordwise direction. In the
code a filtering is added to handle this, and to ensure that the zero mass flux
condition on the control is enforced,

/vc dr = 0. (41)
I

The control is then modified to have zero velocity outside I,

/ Ty dr = / (T + (a5, 25) dT = 0 (42)
Iy Iy

which yields,
[ tunatapar

c= -1 : (43)
[ xagapar
r
and where x(r1,7r2) = x[r1,72](r) is defined as:
1 ifr e (ry,re),
= 44
Xlr1,2)(r) { 0  otherwise. (44)

The procedure for modifying the control can be summarized as follows:

. inverse FFT Filtering and mass flux correction _ FFT :
14 Pl Pl Y1

assuming that we denote the original Fourier space control with ¢; and the final
control in Fourier space with ;. This final control constitutes the boundary
condition in the simulation when the spatial extent of the control is limited.

4.1.2. Computing the objective function gradient

The gradient of the objective function is evaluated from the adjoint pressure
on the walls as described in section 3.2. When the adjoint equations are solved,
the adjoint pressure on the walls must also be computed simultaneously in the
control interval. Since the p; and p3 velocities are available at each time step we
can compute the pressure gradients o, and o, using (40). The corresponding
pressure is then computed by integrating these gradients with the constant
part of the adjoint pressure set to zero, since it does not enter the gradient
computation. The adjoint pressure is then projected onto the basis functions
of the control using (22), (23) or (31). In the spatial boundary layer case the
gradient (31) is computed in Fourier space, but we should only integrate over
I'.. The gradient is transformed to physical space and there a step function
which cuts out the region I'. is applied. This filtering procedure is similar to
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that for the control. The resulting gradient is then transformed back to Fourier
space.

4.2. Optimization routine

Optimization is performed with a limited memory quasi-Newton method. The
algorithm, L-BFGS-B (Byrd et al. (1994)), is available on the Internet (the
web-link is given in the reference list next to Byrd et al. (1994)) and was
downloaded and compiled without modifications. It is an algorithm well suited
for large non-linear optimization problems, with or without bounds on the
control variables. The BFGS method uses an approximation of the Hessian
matrix of the objective function, instead of the full matrix. The algorithm has
been shown to work well for many different types of optimization problems.
The flow of the optimization process is described in figure 3. The limited
memory BFGS algorithm differs from the standard BFGS algorithm in that it
never stores the Hessian matrix. Instead only a certain number of gradient and
control updates from earlier optimization iterations are stored. These are then
used to build an approximation of the Hessian matrix. Consult Byrd et al.

Initial guess
for .

2]

Compute objective- Pi+1
function and -t

gradient.

J, VJ, ¢

Check convergence.

Compute new

search direction

(L-BRGSB) Not converged

Converged l J, @«

Write results

F1GURE 3. The flow in the optimization with L-BFGS-B.
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(1994) for details. The inputs to the optimization routine are the control, the
gradient of the control and the value of the objective function. A new control is
then obtained as output and applied in the next iteration until the convergence
criterion has been met. There are a few different convergence criteria that can
be used simultaneously or separately such as the norm of the gradient and the
relative reduction of the objective function between iterations.

5. Results
5.1. Gradient accuracy

To verify that the implementation is correct as well as that the problem has
been formulated correctly, one can check the accuracy of the gradient of the
objective function. By perturbing one degree of freedom of the control and
computing the resulting change in the objective function the gradient with
respect to that degree of freedom can be approximated. Performing this proce-
dure for all degrees of freedom gives the complete objective function gradient.
The gradient so computed can then be used to verify that the gradient obtained
from the adjoint equation approach is correct. This has been done at different
stages of the optimization process for a number of different cases, varying the
flow perturbation as well as the initial guess for the control. The accuracy of
the gradient direction is quantified by normalizing the two gradients and com-
puting the norm of the difference between them. This difference is less than
1% for all channel and boundary layer flow cases tested when the optimization
routine is in the initial iterations. When the gradient accuracy is computed
for solutions close to the optimal solution, the accuracy is degraded and the
error can be as large as 10% — 20%. This degraded accuracy slows down the
convergence of the optimization routine and makes it difficult to reach the true
optimal solution.

5.2. Control of oblique transition in channel flow

As a first test case, we study the oblique transition scenario. Oblique waves are
introduced in the flow, where they grow and induce streamwise vortices. The
vortices then produce streamwise streaks that grow until they finally break
down and transition occurs. The threshold energies for this type of bypass
transition are studied in Reddy et al. (1998). The initial stage of this scenario
is the growth of oblique waves. If the amplitude is low, this is all that happens
before the flow returns to the laminar state. With a higher amplitude, the
oblique waves induce enough streamwise vorticity to generate streaks. The
streaks grow to a much higher amplitude than the oblique waves. If the initial
disturbance is large enough, we get transition to turbulence.

Testing the optimal control on this scenario is done at three different stages
and with different time resolution. First control is applied at the very beginning
where only the oblique waves are present, secondly the control is applied in
the beginning of the streak growth, where both streaks and oblique waves
are present. The last case application of the control to the growing streaks.
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FIGURE 4. [a] Solid: the energy growth without control ;
dashed: case la ; dotted : case 2 ; dash-dot: case 3. [b]
solid: case la ; dashed: case 1b ; dotted: case lc.

The results in this section were previously reported in Hogberg, Henningson &
Berggren (2000).

Five different simulations are performed using the same initial condition.
The objective is to minimize the integral of the deviation from the laminar
flow profile from time 77 to T = 100. The Reynolds number is 1500 and the
box size is 2w X 2 X 27w in x,y, 2. In case la,b,c the control is applied from
time 77 = 0 until 7% = 50 in a,b and 7% = 25 in c¢. The objective function is
measured from 77 = 50 in case la and from 77 = 0 in cases 1b and lc. For
cases 2 and 3 the control is applied from 77 = 25 and T} = 50 respectively,
and the objective function from 77 = 50. The resulting control velocity in all
cases is of the order 2% of the centerline velocity. The reduction of the gradient
norm is about three orders of magnitude after 10-15 optimization iterations.

The energy evolution of the controlled flows is shown in figure 4a. The
growth of the oblique waves is efficiently hindered by the control formulation
in la,b,c and the growth of streaks is eliminated also in cases 2 and 3. In case 2
the control is applied during the formation of the streaks. Initially the energy
is allowed to grow but then the growth is hindered by the control and energy
decays as. In case 3 the streaks have formed and are growing when control is
applied.

In figure 4b the differences between the controlled flows in cases 1a,b and
¢ are shown. In case la the energy is not penalized by the objective function
initially as it is in 1b, and this results in lower energy after ¢ = 50 than in case
1b. A higher temporal resolution of the control is applied during a shorter time
in case 1c. The result is a smoother energy curve but not as low energy at a
later time as in the other two cases.

5.3. Control in a parallel boundary layer flow

In order to evaluate this type of control strategy for a parallel boundary layer
flow we consider an inviscid instability. Inviscid instabilities can exist only if
the velocity profile has an inflection point. In a boundary layer flow with a
three-dimensional velocity profile, there is always a direction in which such an



110 M. Hégberg, M. Chevalier, M. Berggren € D. S. Henningson

inflection point exists. In this direction an unstable eigenvalue to the linearized
problem was found. The corresponding eigenmode is added to an undisturbed
base flow, and the sum is then used as the initial velocity field for the simula-
tions. The base flow is chosen as a Falkner—Skan—Cooke (FSC) flow with the
same parameters as are used in the investigation by Hogberg & Henningson
(2001) where the Reynolds number is Res; = 337.9. The spatial variation of
the chordwise mean flow is given through,

where g = 354.0. Furthermore, the cross-flow velocity was W, = 1.44232 and
m = 0.34207. The box dimensions for our simulations are 25.14 x 20 x 25.14
measured in §* with a resolution of 4 x 129 x 4 in & X y X z respectively. The
resolution in the y-direction is chosen fairly large to ensure high accuracy for
the y-derivatives needed in the adjoint computation.

For the temporal simulation we use the Falkner—Skan—Cooke flow at z = 0.
The eigenvalue of the mode used in the simulation is w = (—0.15246 +i0.0382),
for the parameter choice a = 0.25, 3 = —0.25. The control is applied from
TY = 0 to Ty = 150 and over the entire boundary (I'c = I';). The objective
function is measured from 77 = 0 to T3 = 150 and over the whole spatial
domain (Q, = Q).

Figure 5 shows the disturbance energy growth due to the eigenmode and
also the result when the optimal control is applied. As we can see from the
figure the exponential energy growth is stopped almost immediately by the
control. The first energy peak is mostly due to the energy expenditure to exert
control. The maximum magnitude of the control is of the order of 0.02% of
the free-stream velocity. The gradient norm is reduced about two orders of

t

FI1GURE 5. Solid: the disturbance energy growth with optimal
control ; dash-dot: the disturbance energy growth for temporal
FSC flow without control.

magnitude after 5-10 optimization iterations.
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5.4. Control in a spatial boundary layer flow

A more general flow case to study is when we let the boundary layer grow in
the chordwise direction. For this case we have chosen to study a Tollmien-
Schlichting (TS) wave in a Blasius boundary layer. The dimensions of the
simulation box are 200 x 20 x 10 measured in g with a resolution of 96 x 129 x 4
in x Xy X z respectively. The TS wave is triggered by an oscillating volume force
at x = 10 which is slightly upstream of branch I, located at = ~ 40 where it
becomes unstable. The volume forcing does not introduce a pure TS-eigenmode
into the flow and this will result in a varying growth of the total energy of the
perturbation.

The control is allowed to be active between T7 = 0 and T5 = 400 and is
located on I'. = (20,70) x (—5,5). The control is localized in space to give us
a region to observe its action downstream of the control area.

The observation time interval is also limited to give the control enough
freedom to act initially since we are more interested in the final results. Thus,
the objective function is measured from 77 = 380 to T5 = 400 over the do-
main {2, = (20, 150) x (0,20) x (—5,5) that includes only the physical solution
meaning that the fringe region is omitted.

0.8t e

0.67

Energy

0.2

/Y

0 50 100 150
T

FIGURE 6. Solid: the disturbance energy growth with optimal
control ; dash-dot: the disturbance energy growth for a spatial
Blasius boundary layer flow without control.

Without the control we can see how the disturbance energy grows in fig-
ure 6, whereas with the optimal control applied on ', the energy growth is
efficiently interrupted.

6. Summary and conclusions

First we conclude that optimal control of transition appears to be possible to
compute with the approximative discretized adjoint technique used in this work.
This was also what the preliminary study by Hogberg & Berggren (2000) sug-
gested. In addition, the optimization problem was derived using the primitive
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variables velocity and pressure but solved using a velocity—vorticity formula-
tion. This made it easy to implement a solver for the adjoint equations using
already developed codes as templates. The adjoint solver thus benefited from
the efforts put into making the existing codes computationally efficient.

The optimization routine BFGS by Byrd et al. (1994) was found to perform
well for the present optimization problems. No modification of the code was
necessary.

The test cases for the boundary layer code provide confirmation that we can
solve an optimization problem. From the simple parametric study of control of
oblique waves in channel flow we can draw a few conclusions.

e The temporal extent of the control appears to be more important
than the resolution.

e Allowing a higher energy initially can result in lower energy at a
later time.

e It appears that there is enough control authority using blowing
and suction on the wall to handle all the different stages of the
oblique transition scenario.

e The choice of objective function in terms of time intervals is very
important for the performance of the resulting control.

The simple flow cases studied to test the code can now be replaced with
more complicated flows. In particular flows where non-linear effects are domi-
nating are of interest, and so are flows with spatial variations in the mean flow
profile.

Appendix A. Derivation of gradient for boundary layer
Appendix A.1. The governing equations
The domain where we solve the governing equations, given 0 < T < +o0, is
Q= (—x/2,21/2) x (0,y1) X (—21/2, z1/2),
Q=0x(0,T).
The boundary of €2 is denoted I", and
I[1=T(y=0), Tu=T(y=uw), (46)

and ', C I'; represents the part of the lower boundary where control is applied.
For temporal simulations I'. coincide with I';.

(45)

The governing equations for boundary layer flow are the same as for the
channel flow except for an extra term which is added to enforce periodicity of
the physical flow in the streamwise direction. This is only needed for spatial
simulations.

ou 1
T (u-Vu— —
+( ) Re

5 Au+Vr=Az)(U —u) in Q,

Vou=0 in Q, (24)

u|t:O = Uop,
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with periodic boundary conditions in the horizontal directions, that is, the z-
and z-directions,

u|x:711/2 = U’lz:xl/Qa

Ulzm—zy 2 = Ulo=zy /2 (25)
Left to be specified are the conditions in the free-stream and on the wall,
U|y=yes = Uso (which is approximated by 8_Z . = 0),
ulr, = noe, ) (26)
ulppr, = 0.

In equation (24), U = U(z,y) is the velocity field that we force the solution
towards in the fringe region. Pressure is denoted 7 and the Reynolds number
Re is defined based on the free-stream velocity and the displacement thickness
0*. The scalar function A = A(z) is nonzero only in the fringe region and is
defined as follows:

T — Tstart T — Tend
A - )\max S| ———— -S| — + 1 5
(x) |: ( A1rise ) < Afall ) :|

where Amax, Tstart; Tend, Arise and Ag,) are parameters used to specify the
strength, extent and shape of the fringe forcing. The S-function is defined as,

0 r <0,
1
SO =\ Trepma=n+im °<r<h
1 r>1.

As for the channel flow case we expand the control v, in basis functions
Y1,m with zero mass flux, and where ¢; ,,, are time dependent coefficients for
the basis functions,

M
QOZT wl = Z @l,M(t)wl,m(x7z) in (TlcaT2c)’
m=1

ve(z,2,t) = (27)
0 otherwise.

Where we have introduced the control vector ¢; defined as:

o1 = (@115 > P1,0)-

Appendix A.2. The objective function

We minimize the deviation energy from a given target velocity distribution up
and add a regularization term including an € > 0:

Ts 7
c 1
o) = 5//|vc|zdrdt+5//|u—uT|2dQ, (28)
T¢ Te TP Qo
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where (T7,Ts) is the control time period and (T7,Ty) is the observation time
period and €2, is the part of the domain 2 where the state of the flow is
observed. The control problem can now be defined as:

Find ¢* € Uaq such that
J(SO*) < J(@l) v UC(SDI) € Uaa,

where ¢* is the optimal control. The set of admissible controls is denoted Uaq
and is a subset of L2((T¢,Ts); RM).

(47)

Appendix A.3. Derivation of the objective function gradient
We begin by differentiating the objective function (28)

TS TS

5J(gol):5//5vcvcdfdt+//§u-(u—uT)dQ, (48)
T¢ Te Ty Qo

where the gradient of J is defined through the directional derivative of J in the

dypy-direction as done in (4). The differentiated Navier—Stokes equations have
the form

1] 1
% + (bu-V)u+ (u-V)ou — ﬁAéu +Vir = -A(z)du inQ,
V.du=0 inQ, 49
5U|t:0 = O,

with the boundary conditions
5u|x=—xl/2 = 6u|x:xl/2a
5u|z=—zl/2 = 6u|z=zl/27
uly—yg, =0, (50)
dulp, = ndv,
dulpar, =0,

where

M
ol =" Sprm(t)um(z,2) in (T1,T5),

m=1

ve(z, z,t) = (51)

0 otherwise.

Now, let us consider the adjoint variable p = p(z,y, 2,t) and the adjoint
pressure 0 = o(z,y, z,t) and require p to satisfy the boundary conditions:

Plo=—a/2 = Ple=z,/2;
p|z:—z,,/2 = p|z:zl/27
plr, =0,

Ply=ye. = 0.

(52)
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The boundary condition at y = yg can be approximated with the artificial
boundary condition

dp
on |

u

in the numerical simulations. With a sufficiently high box not only this condi-
tion will hold but also p and ¢ will approach zero.

By multiplying the first equation in (49) with p and then integrating over
@ we obtain

ot

1

/p (@H(su V)u+ (u- V)ou
Q 2 3 (53)

1
——Adu+ Vor + A(x)éu) d@ =0.
Re N—_——
N—_— —————

A 5

We apply integration by parts in space and time to move the derivatives from
u to the adjoint variable p. For clarity we perform this step by step for each
term. The first term gives

/ ~85udQ / — p(0) - 5u(0)) Q2

9
/ P sudQ (54)
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where we have used the fact that du(t = 0) = 0. Next, we consider the fourth
term

—Ri/eréudQ—i—/p-V&rdQ

T
/ / @dF—F/Vp:VéudQ dt
0
T
+/[/p-n57Tdth—/V-p57rdQ dt
o Lr Q

T

1 9du D
. - £ 55
/p (n om e on ) dr* dt + /8 -oudl dt (55)

or,,

—L/Ap-éudQ—/V-péﬂdQ
Re
Q

T Ty
1 dp
:E//a 6udth+R—/ 5<pl /lepg ndl'| dt
0T, Te

1
——/Ap-éudQ—/V-péﬂdQ,
Re
Q Q

where p = (p1, p2, p3). In the second equality we used the boundary condition
(30) for p at y = 0 and enforced symmetry. In the third equality the condition
for du at y = 0 in (50) was used. We also assumed that p goes to zero at the
artificial boundary y = y;. The : denotes a complete contraction defined as in
(12).

The next term to rewrite, in relation (53), is the second term

/p- (0u - V)udQ = /(Vu)Tp <oudQ. (56)
Q Q
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Finally, we rewrite the third term in (53)

/ (u-V)oudQ

T
/péunudI‘dt

(57)
Q/péuVu )d@ — /(uV)péudQ

://(p.5u)(n-u)drdt—/(u-v)p-éudQ,

0T, Q

where we have used the continuity condition on w and the boundary conditions
(30) for p. The fifth term needs no rewriting.

Substituting (54), (55), (56) and (57) into (53) yields

/ p(T) - 6u(T) dQ + é 7

Q Te

+ /§u . (—% +(Vu)T'p — (u-V)p— %Ap—k A(x)p) dQ

5<plT/lep2 -ndF] dt

Iy

Q
(58)
—/57rV-de+ //— oudl'dt
Q
T
+ //(n ~u)(p - du)dl dt = 0.
or,
Now, require p to satisfy the adjoint equations:
dp
% + (Vu)T'p— (u-V)p
u—up in (T7,75) x Qp
_EAP +AM@)p+ Vo = { 0 otherwise in @, (29)

V-p=0 in Q,
p|t:T:Oa
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with the boundary conditions (30). With these assumptions equation (58)
becomes

Ty

//5u-(u—uT)dQ—/5u-VUdQ
Q

TeQ,
1 i 0
D
A T . . Tdt =
+Re // " dud dt+//(n u)(p - du)dl'dt = 0,
0T 0T

since p and Opa/On is zero on the boundary y = 0 due to the no-slip and
continuity conditions. The second term in (59) can be rewritten

(59)

T
—/5u-VUdQ=—//5u-nadth+/V-5uadQ
Q or Q

T
:—//5u~nadfdt,

or

(60)

since V - du = 0. The final step is now to substitute the terms involving du.
When that is done the second term in the perturbed objective function (48)
can be replaced with terms involving d¢. Since du is known on parts of the
boundary we can proceed as follows

T
—//5u-nadfdt

or

. . (61)
:—//5u-nadrdt+/ 5¢f/wladr dt.
0T T¢ r.
Combining equation (60) and (61) and inserting that into (59) yield
TS T
//6u (u—u )dQ+//6u L@—Un—i—(n w)p | dI'd¢
T Re On b
e Q, 0T 9
. (62)

+/ 5¢f/¢ladr dt = 0.
e

Ty
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Applying the fourth boundary condition (30) for p together with the assumption
that also p = 0 and 0 = 0 (see the beginning of the section) at y = y; we get

5 5
//5u-(u—uT)dQ = —/ 5¢7/¢ladr dt. (63)
TP Qo Ty e

Remains only to substitute (63) into (48) which yields

75
6ﬂw=/&f/m@ﬁw—@ﬂw (64
Te r.

where the gradient of the objective function can be identified as:
— = — o) dI. 31
lem@%m(ﬂ (31)

This is exactly the same expression for the gradient as for the channel flow case,
equation (22) and (23), except that this gradient is restricted to information
from I',.
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Spatially localized convolution kernels for
decentralized control and estimation of plane
channel flow

By Markus Hogberg* and Thomas R. Bewley!

Effective physical-space convolution kernels are determined for the control and
estimation of incompressible plane channel flow. The kernels are derived di-
rectly from the linearized 3D Navier-Stokes equation and a mathematical state-
ment of the control objective. As a canonical example of the channel-flow con-
trol problem, a continuous distribution of blowing and suction on the walls is
used as the control and a continuous distribution of skin friction sensing on the
walls is used as the measurement. An Hs control design is first accomplished for
the linearized Navier-Stokes system (in the form of the Orr-Sommerfeld /Squire
equations) for an array of wavenumber pairs {k;, k. }, then the resulting set of
feedback gains are inverse-transformed to the physical domain. The optimal
physical-space convolution kernels so determined exhibit localized spatial sup-
port with exponential decay, thus facilitating truncation and application in an
approximate fashion with spatially compact feedback rules in a completely de-
centralized setting on a massive array of identical, interconnected MEMS tiles
integrating sensing, actuation, and the control logic.

The compact feedback control convolution kernels so computed are then
implemented in constant-mass-flux direct numerical simulations of the nonlin-
ear Navier-Stokes equation. For initially laminar flows at Re. = 2000 with both
random and oblique-wave initial flow perturbations, the ability of the constant-
gain linear control feedback to stabilize the nonlinear flow system is demon-
strated for initial flow perturbations with magnitudes well above the threshold
which induces transition to turbulence in the uncontrolled system. When the
linear control feedback is applied to fully turbulent flows at Re, = 100, via a
gain scheduling approach which tunes the linear feedback gains to the instan-
taneous mean flow profile, complete relaminarization of the turbulent flow is
attained.

1. Introduction
The process of transition of a laminar flow to turbulence is only partially un-

derstood. Recent reviews of this active research topic can be found in Trefethen

*Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden
fDynamic Systems & Control Group, Dept. of MAE, UC San Diego, La Jolla, CA 92093,USA
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et al. (1993), Berlin, Wiegel, & Henningson (1999), and Schmid & Henning-
son (2001). Feedback control strategies designed to delay or eliminate transi-
tion which have been based on this limited physical understanding have been
largely unfruitful. The present work is one in a series of several investigations
to derive transition control strategies directly from first principles, bypassing
phenomenological descriptions of transition which are still incomplete. Other
investigations in this vein include Joshi, Speyer, & Kim (1997), Cortelezzi &
Speyer (1998), Cortelezzi, Lee, Kim, & Speyer (1998), and Bamieh & Dahleh
(2000); a recent survey of research in this area is given in Bewley (2001).

After the introduction (§1), the three main chapters of this paper outline
the three main contributions of the present work:

§2: Demonstration that optimal control theory applied to the linearized
partial differential equations governing fluid flow in a plane channel, when
solved in Fourier space and then inverse-transformed to physical space, can in-
deed yield feedback kernels with localized support and exponential decay. Care
must be taken both in the numerical discretization and in the formulation of
the control problem itself in order to achieve this result. The physical struc-
ture, extent, and symmetries of the resulting convolution kernels coincide with
intuition derived from reasonable hypotheses about the dynamics of the flow
structures.

§3: Demonstration of the effectiveness of linear full-state feedback with
fixed, spatially compact feedback kernels (given by truncation of the localized
structures computed in §2) for the prevention of transition to turbulence in per-
turbed laminar channel flows at Re. = 2000. It is shown that the linear control
feedback prevents transition in perturbed laminar flows that would otherwise
quickly become turbulent due to nonlinearities in the system. Both random
and oblique-wave initial perturbations to the laminar flow are considered, per
the cases of particular physical significance enumerated by Reddy et al. (1998).

§4: Demonstration of the effectiveness of linear full-state feedback with
scheduled controller gains (with a novel gain-scheduling strategy based on the
fullness of the mean flow profile) for the problem of minimizing a weighted
energy measure of fully developed, constant-mass-flux turbulent channel flow
at Re, = 100. It is shown that fully developed turbulent flow can be completely
relaminarized if the gains are scheduled appropriately, though only modest drag
and TKE reductions are achieved with fixed-gain linear feedback.

In the concluding discussion (§5), an approach is presented for the imple-
mentation of the compensation rules derived in the present work on a massive
array of identical, interconnected Micro-Electro-Mechanical-Systems (MEMS)
tiles, each of which integrating the functions of sensing, actuation, and the
decentralized control logic. Further implications of the spatial localization
achieved in the present work are also discussed.

For space considerations, extension of the present work to higher Reynolds
numbers and numerical implementation and testing of the estimation kernels
and the LQG compensator which combines the estimator and the full-state
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controller will be deferred to a separate article (Hogberg, Bewley, & Henningson
2001).

1.1. Model system: spatially periodic plane channel flow

FIGURE 1. Geometry of flow domain.

Small perturbations to an incompressible laminar flow in a channel (Figure

1) are governed by the Orr-Sommerfeld/Squire equations. These equations are

derived from the Fourier transform (in the streamwise and spanwise directions,

x and z) of the Navier-Stokes equation linearized about some mean flow profile
U(y), and may be written at each wavenumber pair {k,, k.} as

Ao ={—ik, UA+ik, U" +vA(A)} 0 (1a)

O ={—ik U} 0+ {=ik, U +vA} &, (1b)

where v is the Fourier transform of the velocity component normal to the walls,

w is the Fourier transform of the vorticity component normal to the walls, and

A2 0?/0y? — k2 — k2. In the present work, ¢ is the channel half width, p is the

density, and v = p/p is the kinematic viscosity. Lengths are scaled such that

the upper and lower walls are located at y = £1 (i.e., § = 1). All variables

associated with the Fourier representation of the system will be distinguished

with hats (7).

Control is applied via time-varying boundary conditions on ¢ on the walls.

A “no-slip” condition is also enforced, which implies homogeneous boundary

conditions on @w on the walls. The no-slip condition together with the continuity

equation further imply homogeneous boundary conditions on 99/dy on the
walls. The k, = k., = 0 component of © is constrained to be zero at each wall.

For the purpose of computational simplicity, periodic boundary conditions
are assumed on v and w (the inverse Fourier transforms of ¢ and @) in the
x and z directions when computing the feedback kernels. The implications of
this modeling assumption can be both significant and nonphysical. Spatially-
localized feedback kernels, obtained directly from the equations governing fluid
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motion for the first time in the present work, are uniquely positioned to effec-
tively relax this nonphysical assumption, as discussed in some depth in §5.

The extent of the computational domain in the x and z directions, denoted
L, and L,, is chosen to be significantly larger than the size of the resulting
localized convolution kernels. Adequate streamwise and spanwise extent of the
computational domain is verified a posteriori.

Note the spatially-invariant structure of the geometry depicted in Figure 1;
statistically speaking, every point on each wall is identical to every other point
on that wall. Canonical problems with this sort of spatially-invariant structure
in one or more directions form the backbone of much of the literature on flow
transition and turbulence.

1.2. Parameterization characterizing channel-flow system

The Reynolds number parameterizes present problem. There are primarily
three definitions of the Reynolds number which are relevant for channel flow:

e The centerline Reynolds number Re. = 7.6 /v based on the mean centerline
velocity 4. (averaged in z and z and, when the flow is statistically stationary,
time). The Reynolds number so defined is commonly used to characterize
laminar flows.

e The skin-friction Reynolds number Re, £ 4,6 /v based on the mean “skin-
friction velocity” @, £ \/7w/p, where 7, £ 1(0U/0y)wan is the mean skin
friction on the walls (averaged in = and z and, when the flow is statistically
stationary, time). The Reynolds number so defined is commonly used to char-
acterize turbulent flows.

e The bulk Reynolds number Rep ) /v based on the “bulk” velocity up £
% fQ u1dV, where V = 2L, L,. The Reynolds number so defined is useful in
characterizing flows which are not statistically stationary, as it is the only one
of the three Reynolds numbers discussed here that remains exactly constant as
the full nonlinear constant-mass-flux channel flow system evolves in time.

Uncontrolled turbulent flow at Re, &~ 100, such as that considered in the
present work, corresponds to a bulk Reynolds number of Rey ~ 1430 and a
centerline Reynolds number of Re. =~ 1710; once relaminarized by the action of
control feedback, such a flow has a centerline Reynolds number of Re. ~ 2140
and a skin friction Reynolds number of Re, ~ 65. Note that the laminar
and turbulent flows considered in the present work have nearly the same bulk
Reynolds number; to facilitate comparison with other work in both transition
control and turbulence control, we have picked round numbers for Re.(= 2000)
in the transition control simulations and round numbers for Re,(= 100) in the
turbulence control simulations.

Constant-mass-flux turbulent channel flow at Re, ~ 100 is a standard
benchmark problem in low-Reynolds number turbulent channel flow simula-
tions for the development and testing of control strategies for wall-bounded
turbulence, and is considered in numerous recent references on this topic. See,
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e.g., Choi, Moin, & Kim (1994), Lee et al. (1997), and Bewley, Moin, &
Temam (2001) for further discussion of the flow physics which relate to the
present problem.

1.3. Prior work leading to the present

The present work builds directly, though with certain important modifications,
on the methodology laid out by Bewley & Liu (1998), hereafter referred to
as BL98. This article describes the Fourier-space representation of the present
problem. Spatial localization of the convolution kernels given by inverse Fourier
transform of BL98-type control strategies (computed in Fourier space) was an-
ticipated at the outset of this effort based on physical arguments. Specifically:

a) The controller feedback kernels relating the state estimate inside the
domain to the control forcing at some point on the wall should decay quickly
as a function of distance, as the control authority of any blowing/suction hole
drilled into the wall on the surrounding flow decays rapidly with distance in a
distributed viscous system.

b) Similarly, the estimator feedback kernels relating measurement error at
some point on the wall to the estimator forcing on the system model inside the
domain should decay quickly as a function of distance, as the correlation of any
two flow perturbation variables are known to decay rapidly with distance in a
distributed viscous system.

The work of Bamieh, Paganini, & Dahleh (2001) established analytically
that spatial localization with exponential decay far from the origin should be
expected for Ha/Ho control and estimation kernels for a broad class of dis-
tributed parameter systems with spatially-invariant structure. This work lays
an important theoretical foundation for the present study, which is a focused
application of Hs control theory to a distributed parameter system with this
type of spatially-invariant structure.

Several fundamental questions remained unanswered, however, by previous
numerical and analytical efforts. Careful numerical investigations such as the
present promise to shed light on several of these open questions, including;:

1) the spatial extent and structure of the localized feedback gains necessary
to effectively estimate and control the important dynamics of the channel flow
system,

2) the effectiveness of the resulting feedback gains when applied to the non-
linear Navier-Stokes equation (both for inhibiting transition and for mitigating
the effects of turbulence), and

3) the specific requirements on the formulation of the control problem itself
necessary to achieve both localization of the kernels (i.e., the proper behavior
of the gains at low wavenumbers) and to prevent “ringing” (i.e., to achieve
adequate roll-off of the gains at the high wavenumbers).

Due to the complexity of the governing equation and the high dimension
of the problem at hand, obtaining effective, well behaved, spatially-localized
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kernels is not as straightforward as it might seem, and does not follow directly
from all controller formulations and numerical discretizations (Bamieh & Miller,
private communication, 1999). §2 of the present paper describes both the
careful numerical treatment and the reformulation of the control problem from
that presented in BL98 which were found to be effective in these regards in the
present work.

As documented by BL98 in a closely related controller formulation, the
feedback computed in the present work is effective at minimizing both tran-
sient energy growth and the relevant input-output transfer function norms in
the controlled linear system representing small perturbations to a laminar chan-
nel flow. Note that the linear problem is best studied in Fourier space due to
the complete decoupling of the control problem at distinct wavenumber pairs
when the control problem is formulated correctly, as noted by Bewley & Agar-
wal (1996) and discussed in detail in BL98. When nonlinearities are introduced,
the system dynamics at all wavenumber pairs are coupled, and analysis is more
difficult; the present article characterizes the behavior of the linearly-controlled
nonlinear system by direct numerical simulation (DNS) of the nonlinear equa-
tion governing the controlled flow.

In subcritical flows which are linearly stable, the non-self-adjoint nature of
the linear operator governing the evolution of small perturbations to the lami-
nar flow leads to highly nonorthogonal system eigenvectors and, thereby, linear
mechanisms for very large transient energy growth (Gustavsson 1991; Butler &
Farrell 1992; Reddy & Henningson 1993) and disturbance amplification (Far-
rell & Ioannou 1993; BL98; Bamieh & Dahleh 2000). These linear phenomena
can lead to nonlinear instability even for fairly small initial flow perturbations
or external system disturbances. In this paper, we show how such nonlinear
instability may be inhibited by the application of decentralized linear feedback
control in the physical domain.

The mechanisms for energy growth in the uncontrolled system are strictly
linear, as the nonlinear terms in the equation governing the system only re-
distribute the energy between different modes of flow perturbations. It was
demonstrated in BLI8 that a notable feature of closed-loop systems with ef-
fective control feedback applied is that the closed-loop system eigenvectors are
made closer to orthogonal by the application of the control, thereby weakening
the linear mechanisms for transient energy growth and disturbance amplifi-
cation in the controlled system. This observation motivates the application of
linear control feedback to the finite but small perturbations leading to nonlinear
instability in transitional flows; if the linear control feedback alters the closed-
loop system eigenmodes in the correct way, linear transient energy growth and
disturbance amplification are reduced, and thus both large flow perturbations
and nonlinear instability may be avoided. Indeed, this expected result is ob-
tained in the present work (see §3).

The observation that energy growth is explained strictly by linear mecha-
nisms in this system has also motivated some researchers to speculate about the
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possible application of blowing/suction controls computed with linear feedback
rules to subdue the large-amplitude flow perturbations present in turbulent
flows (Farrell & Toannou 1996; Kim & Lim 2000). Indeed, when applied cor-
rectly (see §4), linear control feedback is found to be remarkably effective on low
Reynolds number turbulent channel flow in the present work. A warning about
possible shortcomings of linear controllers for application to nonlinear chaotic
fluid systems is given in Bewley (1999); such shortcomings might become sig-
nificant when attempting to apply the present strategy at greater feedback
magnitudes or at higher Reynolds numbers.

2. Derivation of convolution kernels
2.1. Objective: reduce energy of flow perturbations

The objective of the present study is to minimize the flow perturbation energy
in a channel flow which is excited by both external disturbances and initial con-
ditions of possibly deleterious structure, while accounting for a finite amount of
noise in the flow measurements. To simplify the present study, all disturbances
acting on the system are assumed to be zero-mean white Gaussian processes,
and the feedback is computed in the Hs framework; the extension to unstruc-
tured disturbances and the robust (H) control of channel flows driven by such
disturbances is straightforward, as discussed in BL98. Loop Transfer Recovery
(LTR), an alternative strategy for achieving closed-loop system robustness, is
applied in a related (2D) controller formulation by Cortelezzi, Lee, Kim, &
Speyer (1998); further comments about the suitability of LTR for highly non-
normal systems, such as the channel flow problem considered here, are deferred
to Bewley (2001).

The energy density of the flow perturbation at any instant is measured by
the integral of the square of the velocities over the flow domain © (in physical
space) divided by the volume of the domain V. In the present work, we gener-
alize this quantity a bit and define a weighted measure which scales the energy
density by a function f(y), which may be selected as part of the control de-
sign. Rewriting this weighted energy measure in ¥ — @ form and incorporating
Parseval’s theorem leads to

& =gy [ H) 0wty av =
Q

1 90 ®
1 2152 4 |92

> o [ W) (k ol +| 5
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+ |@|2> dy2 Y E,
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where k? = k2 + k2. The objective function for the present work is defined as
the integral in time of a linear combination of the weighted energy measure of
the flow perturbation, defined above, and some measure of the “control effort”.
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In the present paper, we define this objective function as

s 2
J:/ 5+£2/(%) as| dt2 > J, (3)
0 ko ke

T3

where FQi denotes the upper and lower walls. Note that ¢? is used as an
adjustable parameter to scale the control feedback via a penalty on the “control
effort” in the objective function, and that this penalty term is a function of
(0v/0t)? on the walls in the present formulation. Excursions of v? on the
walls are penalized naturally in the term of the cost function related to &,
as the flow velocities near the wall are continuous and smoothly varying; no
additional penalty on the integral of the boundary value of v2 was found to be
necessary in the present work in order to keep this quantity small.

The kernels plotted later in this chapter and applied to the transition prob-
lem in §3 take f(y) = 1. This choice is natural, as the transition control problem
generally targets system perturbations which fill the entire width of the chan-
nel. However, the kernels which we found to be most effective in the turbulence
control problem of §4 used a weighting function of f(y) = (1 — y?)~'/2 (which
so happens to be the weighting w(y) in the Sturm-Liouville problem that leads
to the Chebyshev polynomials). This choice is also natural, as it places ex-
tra emphasis in the control formulation on flow perturbations near the wall,
which are known to be of important dynamical significance for sustaining the
turbulence cascade (see, e.g., Jimenez 1999). Other choices for f(y) (of those
which we tested) were not as effective; specifically, the choice f(y) = 1 failed
to relaminarize the turbulent flow in all cases tested.

2.2. Transformation of control problem to state-space form

A state vector at each wavenumber pair {k;, k.} may be defined by discretiza-
tion of the wall-normal velocity ¢ and the wall-normal vorticity @ on several
gridpoints in the y direction. A Chebyshev collocation technique is used in the
y direction with differentiation matrices obtained from the Matlab Differenti-
ation Matrix Suite of Weideman & Reddy (1999). Boundary conditions are
handled in the construction of the differentiation matrices in such a way that
spurious eigenvalues are eliminated, as suggested by Huang & Sloan (1993),
thereby overcoming the chief numerical difficulty reported by BL98. Invoca-
tion of the homogeneous boundary conditions on §¢/dy allows inversion of the
Laplacian on the LHS of (1a) and expression of (1) in matrix form:

v L 0\ (¥

. = ~ ~ N s 4

(2)-( 5) () W
e N X

where boldface is used to distinguish discretized vectors from their correspond-

ing continuous (non-boldfaced) counterparts. The control is applied via the
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time-varying boundary conditions on ©. A lifting technique is used to account
for these boundary controls in the discretization of the system in the standard
state-space form. To accomplish this, the flow perturbation is decomposed such
that

X =X; + Xp. (5)

The inhomogeneous part X; is taken at each instant to satisfy the nonzero
boundary conditions on ¥;, homogeneous boundary conditions on 99;/dy and
w;, and a numerically convenient equation on the interior of the domain; in the
present case, we define the lifting via the equation N%; = 0 on the interior of
Q. Assembling the controls (i.e., the values of the 9 at the upper and lower
walls) into a control vector (Ab, this system may easily be solved for arbitrary
¢ = ¢(t) and written as

¢

X

and (6)

(1),
)A(’L' (t)a

and Z is a constant matrix relating the blowing/suction distribution (}5 to the
lifting x; at each instant. The equation governing X; may therefore be found
by substitution of (5) into (4) and imposing homogeneous boundary conditions
on ¥, 00p/0y, and w,. Noting (6), the result may be written in standard
state-space form:

% = 2, where ¢ = (f)(—l)

>

_|_

—_

S~—
N——

B¢ 0E @ o

Note that the control <Ab is the time derivative of the normal velocity on the
walls, and the state vector X includes the normal velocity on the upper and
lower walls, (Ab, appended to the homogeneous vector X;. Note also that, for
the convenient lifting we have defined and used here, we may take NZ=0in
the above expression, since N%; = ]\ATZ&S =0.

The contribution to the weighted energy measure coming from each wavenum-
ber pair (see (2)) is easily written in matrix form as E = x* Q %, where Q is
defined as in BL98 to account for numerical integration over the stretched grid
used in the Chebyshev discretization. Note by (2) that the total weighted en-
ergy measure of the flow perturbation, £, may be minimized by minimizing
the weighted energy measure of each (decoupled) Fourier mode, E, separately.
Noting the decomposition (5) and the definition of X, in (7), £ may be written
in terms of the state vector x, as

~ A% ) QZ ) A~ A ~x A~
E=x,{ .58 2. Xs = X, QX
) ( Q )
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2.3. Control strategy

Recall the standard state-space form (7) of the discretized equation governing
the Fourier-space representation of flow perturbations in our system. We now

seek the feedback control rule (}5 = K%, at each wavenumber pair {ky,k.}
which, with limited control effort, minimizes the weighted flow perturbation
energy at that wavenumber pair, E ,ont € [0,00). This is a standard optimal
control problem. Defining the objective function J in physical space as in
(3), it is seen that the control problem decouples into several constituent linear
quadratic minimization problems at each wavenumber pair independently. The
cost function to be minimized at each wavenumber pair is given in matrix form

by

jz/(fc;‘QAfcs—i—éQ{bﬁS é/ OOy %o+ & DiyDio @) dt
0 0

R 1/2 . 0
C, & <Q > and D12A<€I>'

The feedback control rule (25 = K%, which minimizes J is given by

where

~ 1 - .
K:—%B;X’, where X’—Ric( AA . _ﬁBiQB2>
¢ Cr&y —A

and Ric(-) denotes the solution of the associated algebraic Riccati equation
(Laub 1991), in accordance with standard linear optimal control theory applied
to the complex system (7) at each wavenumber pair {k,,k.}. Note that ¢2,
which scales the penalty on the control effort in the cost function, is used as
an adjustable parameter to scale the control feedback.

Decomposing c?) =K%, and %; = Z qAb according to

(1?(—1—1)) (’C-i-lvh /§+1 on ’? +1,6(+1) /C+1 o(— 1)) Wh
ICIV}, Iclw;, ’Clv(+1) ’Clv( 1)

(V) _ <?m<+1> ?mu)) (ﬁ(+1>)
wi Zoio(+1) Zaowo-1)) \0(=1))’

it is convenient to rearrange the gain matrix K into a form K with which the

simple control feedback rule (}5 = Kx may be employed. Decomposing this new
feedback rule such that

()= (o k) @) :
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and defining
Kitoen) = Kiro) = Ker9, Zo,001) — K10, Zo,o+1)
Ril,ﬁ(—l) = ’Cil,ﬁ(—l) - ’éil,thAo,‘,,@(—n - Kil,&;hZAcb,;,ﬁ(—l)a
it follows that

Ril,\? = (R:tl,ﬁ(+1) K:I:I,\“/h Rim(q))
Kito = (0 Kire, 0).

The feedback control rule ¢ Kx effectlvely performs a discrete integration
in y across the channel, with the gains K:I:lv and K:I:lw as weights. As a
cosine stretching function is used for the distribution of gridpoints in the y
direction in this formulation (see BL98), it is necessary to scale the control
gains appropriately (by the inverse of the cosine stretching function) in order
to convert the gain K in (8) to a grid-independent weighting function K on a
continuous integral of the form

1
iy =£1) = [1Rars@5(0) + Karo0o(0))dy )

1
at each wavenumber pair {k,,k.}. We denote the necessary (and straightfor-
ward) transformation symbolically as K =E271K. Incorporation of the weights
K into a nonlinear DNS code, in turn, requires scaling of the control gains by
the grid stretching function used in the nonlinear simulation code in a similar

fashion.

The optimal control problem described above has been derived for each
wavenumber pair {k,, k,} independently. The inverse Fourier transform of the
Fourier-space control feedback rule (9) is given by the following convolution
sum in physical space:

O(xay_:t]-vzvt)_/(K:tl,v(x_jagvz_z) ( gz )+

Koz —2,9,2— 2)w(T, §, Z, t)) dzdydz,

where K11 ,(z,y,2) and K11, (z,y,2) are the inverse Fourier transforms of
Kil}{;(km,y,kz) and Kil,d,(k'm,y,kz) respectively. Physical-space interpreta-
tion of the structure of K is straightforward when one considers the above
expression for x = z = 0. In this setting, one sees directly how the kernel
weights the velocity field as a function of (Z,7, Z) in order to give the control
input o(z = 0,y = —1, 2z = 0), as shown in Figures 2 and 3.

2.4. FEstimation strategy

We now seek the estimator feedback at each wavenumber pair {k,, k,} which,
while accounting for both state disturbances and measurement noise, minimizes
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FIGURE 2. Controller gain K_; , relating the state v inside the
domain to the control forcing term o(z = 0,y = —1,z = 0) on the
wall. Contours in an Zy plane at Z = 0 (top) and a zy plane at
Z = 0 (bottom) are shown on the left, and two isosurfaces (one
positive and one negative) of the convolution kernel are shown on
the right. Gains computed with ¢ = 1 and a mean-flow profile of
U(y) =1 —y? at Re. = 2000 for a 27 x 2 x 27 box at a resolution
of 128 x 72 x 128 Fourier, Chebyshev, Fourier modes in Z, g, Z re-
spectively.

FIGURE 3. Controller gain K_; ., relating the state w inside the
domain to the control forcing term o(z = 0,y = —1,z = 0) on the
wall. Contours in an Zg plane at Z = —0.24 (top) and a zj plane
at £ = 0 (bottom) are shown on the left, and two isosurfaces of the
convolution kernel are shown on the right.

the energy of the state estimation error on ¢ € [0,00). This is a standard
Kalman filter problem.

In order to develop the Kalman filter for the present problem, we must
first model the disturbances to the state equation and the noise in the available
measurements. Following Bewley (2001), we now model the state equation (7)
and the skin-friction measurements of our system as disturbed by a random
(zero-mean white Gaussian) process w such that

%= Nxp+ Biw— 26
Vi = CoXp, + Doy W,
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where
o0
. . A GV oy | _ -
B, = (G1 0) ) Coxp, = ﬁ % y=+1 s and Doy = (0 aI) ,
dy y=—1

where G is defined as the square root of the expected covariance of the state
disturbances and oGy is defined as the square root of the expected covariance
of the measurement noise. We assume that these covariances are time invariant
and that the covariance of the measurement noise is nonsingular. The problem
is scaled such that 5(G3) = 1, and a is selected such that a(G3) = 1. Any
known structure of the disturbance covariances entering the problem should
thus be accounted for in the selection of the matrices G; and Go (both with
unity maximum singular value) during the compensator design, retaining the
quantity a to reflect the balance between the magnitude of the measurement
noise and the magnitude of the state disturbances. This scaling of the distur-
bances is particularly convenient, and is a natural choice for problems of this
sort because it retains the dual structure of the control and estimation prob-
lems. The scalar knob « on the estimation problem, analogous to the scalar
knob ¢ on the control problem, affords a sufficient but not excessive degree of
flexibility in the compensator design. This is important when working with
high-dimensional discretizations of infinite-dimensional systems, as it is not
feasible when designing dynamic compensators for such systems to conduct a
parametric variation on the individual elements of G‘l and GQ.

Given that the blowing/suction distribution ¢ and the lifting function Z
are known, the (noisy) measurements ¥, of the quantity CoXp, may easily be
extracted from the available (noisy) wall measurements of the streamwise or
spanwise drag, via (5) and (6). Only the field x; needs to be estimated in
order to construct an estimate of the complete state vector X5 (or, indeed, to
estimate X itself); we will denote our estimate of X as X., and our estimate of
Vi as ye. The model of the system which we will use in our estimator is

ko = N%, - 2,
e = Coke, (10)
¥ =LAy 2 L(yn = ¥e).

Note that the (unknown) effects of the disturbances w are not included in

the estimator model. The estimator feedback rule ¢ = LAy minimizing the
expected value of the L2-norm of the estimation error is given by

N 1 ~. 4

n 1 ~ 4 R * _ *

L=-=YC5, where Y:Ric< N a2 CBCQ>,
o —B, B; -N
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in accordance with standard Kalman filter theory. Note that a2, which models
the assumed quality of the measurements, is used as an adjustable parameter to
scale the estimator feedback. Note that the estimator feedback rule ¢ = LAy
decomposes according to

(w) _ <L ) (36)
b, Lo.+1 Loo,—1/) \A9(=1)

Unlike the control feedback R, the estimator feedback L represents the
estimator model forcing per unit length in the y direction. Thus, simple in-
terpolation of the discrete quantity L is sufficient to determine a continuous

weighting function L by which a continuous analog of the discrete estimator
(10) may be forced via feedback of the form

b, (y) = Lo, 11 (1) AJ(+1) + L, 1 (y) Aj(—1)]
Vo, (y) = Lo, 11(0)AG(+1) + Lo, 1 (y)Ag(=1)).

The Kalman filter problem described above has been derived for each
wavenumber pair {k,, k,} independently. The inverse Fourier transform of the
Fourier-space estimator feedback rule (11) is given by the following convolution
sums in physical space:

(11)

N

)

wve(xvya Zat) = /[Lveci-l(x - i‘,y,Z - E)Ay 7+17

Rl

( )+
L’Umfl(x_i.vyaz_z)Ay( ,—1 t)]djdz
( +

t
1/@@ (xvya Zat) = /[LweHrl(x - i.vya Z = Z)Ay Ev +17 Zat)
Ly, —1(z—2Z,y,z — 2)Ay(Z, -1, z,t)|dz dz

where Ly, +1(x,y,2) and L, +1(x,y,2) are the inverse Fourier transforms of

Ly, +1(kg,y,k.) and L, +1(ks,y, k) respectively. The structure of L rep-
resents the forcing of the model equation in the estimator as a function of
a measurement error at a single point. Using Ay(z,—1,z) = Ay,06(Z)0(2)
in the convolution integral results in v, (x,y,2) = Ly, —1(z,y, 2) - Ay, and
Yo, (2,Y,2) = Ly, —1(x,y, 2) - Ay,, which facilitates this interpretation. Typi-
cal kernels are shown in Figures 4 and 5.

The LQG compensator for boundary control of transition via feedback of
wall skin-friction measurements is constructed by combining the full-state LQR
feedback of §2.3 with the Kalman filter of §2.4 in the standard fashion. The fact
that the usual separation rule of LQG applies in the present case may be seen
immediately in the physical-space representation of the present problem (i.e.,
the system shown in Figure 1, governed by the linearized spatially periodic
Navier-Stokes equation, together with the quadratic objective function (3)).
This problem is a completely standard LQG problem to which the separation
principle applies directly, though numerical discretizations of this control prob-
lem have such high dimension that they are computationally intractable. Thus,
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FIGURE 4. Estimation gain L,, 1 relating the wall measurement
Ay(x =0,y = —1,z = 0) to the forcing term 1), inside the domain.
Contours in an xy plane at z = 0.45 (top), a zy plane at z = 0
(middle), and an zz plane at y = —0.56 (bottom) are shown on the
left, and two isosurfaces of the convolution kernel are shown on the
right. Gains computed with a = 100, G1 = C1/|C1], (o 1G2) = I,
and a mean flow profile of U(y) = 1 — y? at Re. = 2000 for a
81 X 2 x 6m box at a resolution of 170 x 70 x 84 modes.
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FIGURE 5. Estimation gain L., ,—1 relating the wall measurement
Ay(x =0,y = —1,z = 0) to the forcing term )., inside the domain.
Contours in an zy plane at z = 0 (top), a zy plane at * = 1.47
(middle), and an zz plane at y = —0.76 (bottom) are shown on the
left, and two isosurfaces of the convolution kernel are shown on the
right. Note that the aspect ratio of the xy contour plot is scaled to
better reveal its structure.

in this work, the decoupled control and estimation problems are transformed
to Fourier space and solved there, where further decoupling (of each Fourier
mode) may be leveraged. Finally, the resulting feedback gains are transformed
back to physical space for further analysis and implementation.

2.5. Spatial localization of convolution kernels

As shown in Figures 2 through 5, the feedback convolution kernels for both the
control and estimation problems, as derived above, are spatially localized. The
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kernels so computed are independent of the box size in which they were com-
puted, so long as the computational box is sufficiently large. Further, the feed-
back gains in the present work are well behaved at high spatial wavenumbers;
the physical-space convolution kernels are well resolved on a computational
grid which is appropriate for the simulation of the physical system of interest.
As the feedback convolution kernels have localized spatial support, they can be
truncated with a prescribed degree of accuracy at a finite distance from each
sensor and actuator, arriving at spatially compact feedback rules that can be
computed and applied in a decentralized fashion on arbitrarily large arrays of
sensors and actuators, as discussed further in §5.

Note that the control convolution kernels angle away from the wall in the
upstream direction. Coupled with the mean flow profile indicated in Figure 1,
this accounts for the convective delay required to anticipate flow perturbations
on the interior of the domain with actuation at the wall somewhere downstream.
The estimation gains, on the other hand, extend well downstream of the mea-
surement point, accounting for the convective delay between the motion of flow
structures on the interior of the domain and their eventual influence on the drag
profile on the wall; during this time delay, the flow structures responsible for
these motions convect downstream. For space considerations, further analysis
of these kernels in a fluid-mechanical context will be deferred to a future paper
(Hogberg, Bewley, & Henningson 2001).

3. State feedback control of transition

Direct numerical simulations of the nonlinear Navier—Stokes equation (using
the code benchmarked by Bewley, Moin, & Temam 2001) were first used to
confirm the results from linear analysis, showing good agreement in terms of
the reduction of the maximum transient energy growth for infinitesimal initial
perturbations in the controlled linear system. For the “random” and “oblique-
wave” initial conditions of particular physical significance enumerated by Reddy
et al. (1998), hereafter referred to as RSBH98, at perturbation energy densi-
ties well above the transition thresholds reported by RSBH98, the controller
prevents transition and brings the flow back to the laminar state, as shown in
Figure 6. The simulations reported here have been performed at Re. = 2000
subject to the following;:

a. The perturbation energy density of the initial conditions in the “oblique-
wave” perturbation case is 2.4 - 1074 plus 1% in random noise, which is
102 x the threshold value reported by RSBH98 which leads to transition
in the uncontrolled flow for initial perturbations of this structure.

b. The perturbation energy density of the initial conditions in the “ran-
dom” perturbation case is 5 - 1074, which is 7x the threshold value
reported by RSBH98 which leads to transition in the uncontrolled flow
for initial perturbations of this structure.

The box size used is 27 x 2 x 2w with sufficient resolution — the same as that
used to compute the transition thresholds by RSBH98 — to resolve the flows
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FIGURE 6. Evolution of oblique waves (left) and an initially ran-
dom flow perturbation (right) added to a laminar flow at Re. =
2000, with and without decentralized linear control feedback. The
magnitude of the initial flow perturbations in these simulations
greatly exceed the thresholds reported by Reddy et al. (1998) that
lead to transition to turbulence in an uncontrolled flow (by a factor
of 102 for the oblique waves and by a factor of 7 for the random ini-
tial perturbation). Solid lines indicate the energy evolution in the
controlled case, dashed lines indicate the energy evolution in the
uncontrolled case. Both of the uncontrolled systems lead quickly
to transition to turbulence whereas both of the controlled systems
relaminarize. For the controlled cases, initial perturbations with
greater energy fail to relaminarize, whereas initial perturbations
with less energy relaminarize earlier.

under consideration. In the uncontrolled simulations with initial perturbations
at these relatively high perturbation energy densities, system non-normality
quickly leads to energetic flow perturbations and transition to turbulence,
whereas in the controlled simulations the flows are driven back to the lami-
nar state.

4. State feedback control of turbulence

When designing controllers based on the linearized equation (1), it is necessary
to select a base flow profile U(y) about which to linearize the equations. How-
ever, during both the latter stages of transition and the relaminarization of a
fully turbulent flow, there is a significant evolution of the mean flow profile.
Using information about the instantaneous mean-flow profile @(y) (averaged in
x and z only) to tune the controller gains via a gain scheduling approach is
thus warranted. By choosing a set of suitable test profiles U;(y) covering the
range between the laminar and turbulent flows (Figure 7), and computing the
corresponding feedback convolution kernels for each such profile, we can select
the gains that most closely correspond to those appropriate for the particular
mean flow profile 4(y) at each instant.
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The gains were scheduled in the present work simply by selecting at each
timestep those gains which were computed from the mean profile U;(y) in Figure
7 which most closely matched (in the L? sense) the instantaneous mean flow
profile 4(y) in the simulation. More sophisticated scheduling approaches were
also investigated, such as performing a least-squares fit of the instantaneous
mean flow profile with the test profiles, and then using the coefficients of this
fit to perform a weighted linear combination of the feedback gains determined
for each test profile. The performance obtained with this more sophisticated
approach was comparable with the simpler approach of simply selecting the
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FIGURE 7. Test profiles U;(y) used for the scheduling of the gains,
computed via a constant-mass-flux 1D flow simulation of a fully-
developed turbulent mean flow profile relaxing to the parabolic lam-
inar flow profile.
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FIGURE 8. Evolution of initially fully-developed turbulence at
Re,; = 100 with three different controller realizations. Left: en-
ergy of flow perturbation. Center: drag. Right: mean-square value
of the control ¢. Note that application of the gain-scheduled linear
feedback causes the fully turbulent 3D flows to relaminarize in all
three cases.

precomputed feedback gains computed from the nearest mean flow profile.
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The same DNS code as that used in §3 was then used to test the linear
control feedback applied to a turbulent flow at Re, = 100, using the gain
scheduling approach described above. As shown in Figure 8, this resulted in
relaminarization of the turbulent flow. The DNS code, resolution, and ini-
tial conditions used in this test were those benchmarked by Bewley, Moin, &
Temam (2000).

It is notable that fixed feedback gains, computed either for the laminar
profile or for the uncontrolled mean turbulent profile, were much less effective
than the gain scheduling approach described above, and failed to relaminarize
the flow, achieving at best 15% drag reduction. Thus, adjusting the linear
feedback gains to compensate for the evolving mean flow profile is identified
to be a crucial step in the successful application of the linear compensators
computed herein to the fully nonlinear problem of turbulent channel flow.

5. Discussion
5.1. Localized kernels naturally relax nonphysical assumptions

Transition phenomena in physical systems, such as boundary layers and plane
channels, are not spatially periodic, though it is often useful to characterize
the response of such systems with Fourier modes. Application of Fourier-space
controllers which assume spatial periodicity in their formulation to physical
systems which are not spatially periodic, as proposed by Cortelezzi & Speyer
(1998), will be corrupted by Gibbs phenomenon, the well-known effect in which
a Fourier transform is spoiled across all frequencies when the data one is trans-
forming is not itself spatially periodic. In order to correct for this phenomenon
in formulations which are based on Fourier-space computations of the control,
windowing functions such as the Hanning window are appropriate. Windowing
functions filter the measured signals such that they are driven to zero near
the edges of the physical domain under consideration, thus artificially impos-
ing spatial periodicity on the non-spatially periodic measurement vector. In
essence, such windowing functions impose a degree of spatial localization (of
a width equal to some fraction of the full width of the spatial domain under
consideration) on control feedback rules which are not themselves naturally
spatially localized.

As noted previously, the spatially localized (once truncated, spatially com-
pact) convolution kernels computed in the present work are independent of the
box size in which they were computed, so long as this computational box is
sufficiently large. The feedback kernels computed here for finite, spatially peri-
odic computational domains are unchanged when the size of the computational
box in which these kernels were determined is increased. Thus, the box size
may (hypothetically) be extended to infinity in the x and z directions. Such
an extension models the physical situation of spatially-evolving flow pertur-
bations in a spatially invariant geometry and mean flow. Spatial localization
of the kernels thus relaxes the nonphysical assumption of spatial periodicity
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of the computational domain used in the their derivation, and facilitates im-
plementation of these kernels in physical systems with spatially evolving flow
perturbations.

5.2. Localized kernels facilitate decentralized control

Though the windowing approach suggested above somewhat alleviates the cor-
ruption due to Gibbs phenomenon in the application of Fourier-space feedback
control to non-spatially periodic systems, application of such control strategies
(via on-line FFTs of the complete measurement vector and inverse FFTs of
the complete control vector) still require centralized computations. For mas-
sive arrays of sensors and actuators in distributed spatially-invariant systems,
it is highly desirable to localize the computation of the estimator feedback to
functions of nearby measurements only, and to localize the computation of the
control feedback to functions of nearby state variables only, rather than requir-
ing centralized coordination of the entire system. Physical-space convolution
kernels with compact spatial support lend themselves naturally to decentral-
ized control. Fourier-space feedback computations, which require on-line FFTs
and inverse FFTs, do not.

Figures 9 and 10 illustrate the important distinction between the central-
ized and decentralized methods of implementing control strategies for the dis-
tributed flow system. The main bottleneck suffered by the centralized approach
when extended to a massive array of sensors and actuators is the communica-
tion of the signals to and from the centralized signal processing equipment.
The decentralized approach does not suffer from this bottleneck.

In the decentralized approach, several MEMS tiles are fabricated, each
with sensors, actuators, and an identical logic circuit (for a review of MEMS
fabrication issues, see Ho & Tai 1998). The computations on each tile are
limited in spatial extent, with the individual logic circuit on each tile responsible
for the (physical-space) computation of the state estimate only in the volume
immediately above that tile. Each tile communicates its local measurements
and state estimates with its immediate neighbors, with the number of tiles over
which such information propagates in each direction depending on the tile size
and spatial extent of the truncated convolution kernels. By replication, we can
extend such an approach to arbitrarily large arrays of sensors and actuators.
Though additional truncation of the kernels will disrupt the effectiveness of this
control strategy near the edges of the array, such edge effects are limited to the
edges in this case (unlike Gibbs phenomenon), and should become insignificant
as the array size is increased.

5.3. Conclusions

Spatially-compact convolution kernels for the decentralized feedback control
and estimation of transitional flows have been determined. These kernels
have been found via inverse Fourier transformation and truncation of a set
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FIGURE 10. Decentralized approach to the control of plane chan-
nel flow in physical space.

of optimal control and estimation feedback matrices determined for the Orr-
Sommerfeld/Squire system on an array of wavenumber pairs {k;,k.}. The
full-state feedback control kernels have been shown to effectively prevent tran-
sition in 3D direct numerical simulations of the nonlinear Navier-Stokes equa-
tion at Re. = 2000 for initial conditions which rapidly lead to transition to
turbulence when feedback control is not applied. Using a novel gain scheduling
approach, the full-state feedback control kernels have also been shown to effec-
tively subdue perturbations in a fully turbulent 3D channel flow at Re, = 100,
completely relaminarizing the turbulent flow.
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The importance of the spatial localization (or, upon truncation, the spa-
tial compactness) of the present kernels can not be over-emphasized. This
is the critical link which connects feedback controllers designed for artificial,
spatially-periodic model systems to implementation-ready feedback strategies
appropriate for the decentralized control of physical systems with spatially-
evolving flow perturbations via tiled arrays of MEMS devices.

The derivation of control and estimation schemes utilizing more practi-
cal actuation and measurement strategies should follow from this work as a
straightforward extension. It is hoped that this research, in addition to pro-
viding direct information about how the processes of transition and turbulence
may be effectively estimated and controlled, will also provide indirect evidence
about the fundamental nature of these physical phenomenon by identifying the
fluid motions targeted by effective control strategies. Analysis of the structure
of the resulting convolution kernels should provide a powerful new method
of analysis of these classical but only partially understood problems in fluid
mechanics.
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Decentralized feedback control and estimation
of transition in plane channel flow

By Markus Hogberg*, Thomas R. Bewley! and Dan S.
Henningson™ !

Modern linear control theory has recently been established as a viable tool for
developing effective, spatially localized convolution kernels for feedback control
and estimation of linearized Navier-Stokes systems. In the present work, the
localized kernels computed with this approach are shown to eventually decay
exponentially with distance, facilitating physical-space truncation and imple-
mentation in a decentralized setting. It is demonstrated that such truncation
to spatially compact kernels with finite support does not significantly degrade
the effectiveness of this approach.

The effectiveness of these kernels for significantly expanding the domain of
stability of the nonlinear channel flow system is quantified using direct numer-
ical simulations. This quantification is done in terms of transition thresholds
which is proposed as a relevant performance measure for transition control
schemes. Initial flow perturbations with streamwise vortices, oblique waves,
and random excitations over an array of several Fourier modes are consid-
ered over a range of Reynolds numbers (Re., = 2000, 3000, and 5000). It is
shown that the minimum amplitude of these initial flow perturbations which
is sufficient to excite nonlinear instability, and thereby promote transition to
turbulence, is significantly increased by application of the localized linear con-
trol.

Exponential convergence of a decentralized physical-space state estimator
with wall measurements is demonstrated. In addition we combine the estimator
and the full-state feedback controller to obtain a wall-information-based linear
compensator. The compensator performance is also quantified, and key issues
related to improving the performance of this compensator, which is degraded
as compared with the full-state feedback controller, are discussed.
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1. Introduction
1.1. Stability and transition in shear flows

The process of laminar-turbulent transition is of importance in many engineer-
ing applications as well as an active research area within the field of fundamen-
tal flow physics. Laminar flows typically exhibit much less drag, mixing, and
heat transfer than their turbulent counterparts, and are often more prone to
separate in the presence of an adverse pressure gradient. Understanding the
process of laminar-turbulent transition is therefore a key issue when prediction
and control of drag, mixing, heat transfer, and/or separation is of interest, and
effective strategies both to delay and to accelerate the transition process are
needed.

The transition process most often starts with the growth of small distur-
bances on a laminar base flow. It can therefore be characterized, at least in its
initial stages, by solutions of the linearized Navier-Stokes equation.

Traditionally, such solutions have been characterized in terms of the expo-
nential growth or decay rates of its individual eigenmodes. In particular, for
boundary-layer and channel flows, the Fourier-transformed linearized Navier-
Stokes equations may easily be manipulated into the Orr—Sommerfeld and
Squire equations. The least stable eigenmodes of this system of equations vary
in the streamwise direction only, and are referred to as Tollmien-Schlichting
(TS) waves. For laminar base flows without inflection points, these waves are
two-dimensional and grow on a viscous time scale. In the past, the Reynolds
number at which one of these waves becomes linearly unstable, the so-called
critical Reynolds number, has been a key feature. The calculation of exponen-
tial growth rates and critical Reynolds numbers for a wide variety of flows has
been the object of numerous efforts by researchers investigating flow stability
over the last century; key results are compiled in Drazin & Reid (1981). One
common path to transition is the exponential growth of two-dimensional T'S-
waves, followed by a secondary instability of these finite-amplitude waves to
small-amplitude three-dimensional disturbances and the rapid evolution of the
flow towards a fully turbulent state (see, e.g., Herbert (1988)).

In many shear flows, disturbance growth ensues and transition takes place
well below the critical Reynolds number predicted by linear theory. During the
last decade, several researchers have investigated the mechanisms responsible
for such subcritical transition. It has been shown that the key feature respon-
sible is the non-orthogonality of the eigenmodes of the Orr—Sommerfeld /Squire
operator (Butler & Farrell (1992); Reddy & Henningson (1993); Henningson &
Reddy (1994)). The subcritical growth in the solution to the linearized equa-
tions is associated with a superposition of non-orthogonal, decaying modes;
as the individual decay rates of the several superposed modes are different,
destructive interference of the various modes can decrease as time evolves,
leading to the possibility for transient energy growth which is sometimes quite
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FIGURE 1. Geometry of flow domain and coordinate system used.

large. Such “non-modal growth” is often easily excited by external disturban-
ces (Trefethen et al. (1993)). The disturbances that grow the most, which we
label as “worst-case” disturbances, are disturbances which vary in the span-
wise direction only, initially appearing as streamwise vortices and eventually
evolving into streamwise streaks. These disturbances are fundamentally dif-
ferent than Tollmien-Schlichting waves, which vary in the streamwise direction
only. Worst-case disturbances, sometimes labeled “optimal” disturbances (de-
pending on one’s viewpoint), were, for boundary layer and channel flows, first
calculated by Butler & Farrell (1992). Several transition scenarios initiated
by disturbances experiencing non-modal growth have been investigated; for
a recent review of subcritical transition scenarios, see Schmid & Henningson
(2001). In the present paper, we will discuss the application of modern flow
control techniques to the problem of subcritical transition in plane channel flow;
to set the stage, we first describe in greater detail some relevant background
on the subcritical transition process.

1.2. Canonical subcritical transition problem: plane channel flow

Small perturbations {u,v, w} to a laminar flow U(y) in a channel (Figure 1)
are governed by the Orr-Sommerfeld/Squire equations. These equations are
derived from the Fourier transform (in the = and z directions) of the Navier-
Stokes equation linearized about a mean flow profile U(y), and may be written
at each wavenumber pair {k;, k.} as

Ab={-ik, UA+ik,U" + A(A/Reu)} o (1a)
& ={—ik,U'} o+ {~iky U+ A/Req} @, (1b)

where & is the wall-normal vorticity, A = 92/0y® — k2 — k2, hats (°) de-
note Fourier coefficients, and primes (") denote wall-normal derivatives. The
Reynolds number Re. = U.h/v parameterizes the problem, where h is the
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half-width of the channel, U, is the centerline velocity, and v is the kinematic
viscosity of the fluid. Without loss of generality, we assume the walls are located
at y = 1.

Assuming modes with exponential time dependence, the above system be-
comes an eigenvalue problem with two distinct solution families. The first
family of solutions contains the Orr—Sommerfeld modes, which involves eigen-
solutions of the equation for the wall-normal velocity. The least stable Orr—
Sommerfeld mode is the Tollmien-Schlichting wave mentioned earlier. For the
plane channel-flow problem under consideration here, there are no exponen-
tially growing solutions for Reynolds numbers Re. < 5772 (Orszag (1971)).
The second family of solutions contains the Squire modes and have zero wall-
normal velocity. It can be shown that the Squire modes are always stable.

Transition experiments show that plane channel flows typically undergo
transition to turbulence at Reynolds numbers as low as Re.; = 1000 (Patel &
Head (1969); Carlson, Widnall & Peeters (1982)). The discrepancy between
the critical Reynolds number for linear instability and the Reynolds number
at which transition is actually observed is a direct consequence of the non-
normality of the Orr—Sommerfeld/Squire operator for the plane channel flow
problem, as mentioned previously. As a result, there is a possibility for tran-
sient disturbance energy growth, which scales as O(Reﬁl) and has a maximum
magnitude of about a factor of 200 at Re,, = 1000 (Reddy & Henningson
(1993)). In addition, there is an enhanced sensitivity of such a system to ex-
ternal disturbance forcing: the response of the output energy can be up to
O(Re?)) greater than the input disturbance energy (Trefethen et al. (1993) ).
This heightened system sensitivity is mainly associated with the evolution of
streamwise vortices into streamwise streaks.

1.3. Characterizing nonlinear instability: transition thresholds

Two transition scenarios starting with disturbances experiencing non-modal
growth have been investigated by Reddy et al. (1998), and involve the growth
of primarily streamwise structures to finite amplitude followed by their subse-
quent secondary instability. These scenarios are initialized with a) a pair of
superimposed oblique waves, and b) streamwise vortices with an antisymmetric
v component across y = 0, as illustrated in Figures 2a and b. Notice that 1%
random noise is added to all transition scenarios tested in order to break the
symmetries. Note also that the streamwise vortices with maximum transient
growth actually have a v component which is symmetric across y = 0; how-
ever, similar transition scenarios starting with symmetric streamwise vortices
have higher threshold energies for transition (Reddy et al. (1998)). The energy
evolution in various wavenumber components of the flow are exemplified in
Figures 3a and b for these transition scenarios. We see in Figure 3(a) that the
oblique waves induce streamwise vortices that efficiently generate streamwise
streaks. In Figure 3(b) the scenario is similar, but the streamwise vortices are
introduced directly without the presence of the oblique waves. The streamwise
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FIGURE 2. Velocity fields for initial conditions: a) Oblique
waves showing isosurfaces at half the maximum value of the
normal velocity (light) and at half the minimum value (dark).
The slices show the distribution of normal velocity where light
is positive and dark is negative. b) Streamwise vortices show-
ing contours of v, solid contours for positive velocity and
dashed for negative, and velocity vectors of v, w in a z-y plane
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FIGURE 3. Energy evolution in different (k,, k,) modes for a)

the oblique wave transition scenario b) the streamwise vortex

transition scenario.
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streaks grow to finite amplitudes and eventually secondary instabilities cause
the breakdown to turbulence.

To quantify the transition process, Reddy et al. (1998) defined a transition
time and determined the dependence of this time with respect to the energy of
the initial perturbation. The transition time T is given as the time by which
the friction coefficient ¢y reaches its mean value, i.e.

1
Cf(T) = 5 (Cfmax + Cfmin) .
If the turbulent state is never reached, we define T to be infinite. The lowest
perturbation energy density resulting in a finite value of T is defined to be the

transition threshold for that perturbation.

Figure 4 shows the threshold energy for transition in plane Poiseuille flow
for the two scenarios described above as well as for Tollmien-Schlichting waves
and “random” perturbations introduced into the lowest wavenumbers of the
flow. The symbols represent results from direct numerical simulations, and
the lines represent a least-squares fit to the data points. For Reynolds num-
bers below the data points, the flow relaminarizes, and for Reynolds numbers
above the data points, the flow becomes turbulent. As is evident in the figure,
the transition scenario based on Tollmien-Schlichting waves requires a much
larger initial energy density to result in the onset of turbulence than the three
other transition scenarios. Such transition thresholds can be viewed as indica-
tors of how sensitive the nonlinear evolution of the flow is to different initial
flow perturbations, and therefore provide an excellent means of quantifying
the nonlinear performance of a transition control strategy. In this paper, we
will develop and test full-state-feedback controllers as well as wall-information-
based compensators in order to stabilize the nonlinear flow system. We will
quantify the effectiveness of these control strategies in terms of how well they
can increase these transition thresholds.

1.4. Flow control background

Using linear control theory for controlling flow instabilities is a fairly new con-
cept. Early work on controlling instabilities in laminar flows has been mostly
devoted to using the wave superposition principle for anti-phase modal suppres-
sion. The paper by Thomas (1990) reviews the early efforts on the control of
Tollmien-Schlichting (TS) waves using an anti-phase control strategy. A brief
review is given also by Metcalfe (1994). Other reviews on flow control can be
found in e.g. Moin & Bewley (1994), Gad-el-Hak (1996), Lumley & Blossey
(1998) and Bewley (2001). Here we briefly review earlier work related to the
present paper.

Much of the focus of flow control has been on the problem of turbulence
control and drag reduction. One of the most popular control strategies for
numerical control of turbulence is opposition control introduced by Choi, Moin
& Kim (1994). A detection plane for the velocity was introduced in the flow
at a distance y™ &~ 10 from the walls in a channel. The detected velocity was



Feedback control and estimation of transition in plane channel flow 155

10
10°F
10°F
107 (TS)
107

(N)

10°F
(sV)

Initial energy density

107 (ow)

10
10°

Reynolds number 10

FIGURE 4. Transition threshold energy versus Reynolds num-
ber (based on centerline velocity and channel half-height) for
plane Poiseuille flow. Shown are four curves obtained from
direct numerical simulations starting with various initial con-
ditions: optimal streamwise vortices, a pair of optimal oblique
waves, Tollmien-Schlichting waves, and divergence-free low-
wavenumber noise. Adapted from Reddy et al. (1998).

then phase shifted by 180° and applied as a boundary condition on the wall.
With this method the drag in a turbulent channel was reduced by as much as
25% using the normal velocity and by 30% using the spanwise velocity. The
control strategy was also evaluated by Farrell & Ioannou (1996) by application
to a linear system, studying the linear dynamics of the closed loop system with
opposition control finding that the variance of their parameterized turbulence
could be reduced as much as by 70% near the wall.

The physical mechanism behind the success of opposition control is re-
lated to manipulation of near-wall streamwise vortices. An alternative way of
treating the near wall vortices is used in Koumoutsakos (1999) resulting in a
drag reduction of about 40% in a turbulent channel flow at Re, = 180. This
feedback control scheme only relies on measurements of the spanwise vorticity
flux at the wall. Lee et al. (1997) used a neural network to find adaptively a
feedback law for the local wall shear stress achieving about 20% drag reduc-
tion, also with a simple control scheme deduced from the results of the neural
network.

Possible applications of gradient based optimal control techniques were
identified and analyzed by Abergel & Temam (1990) and much of the current
efforts on optimal flow control can be traced back to that particular paper. Choi
et al. (1993) introduced the concept of suboptimal control and this methodol-
ogy was applied to a turbulent channel flow at Re, = 100 by Bewley & Moin
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(1994) resulting in a 17% drag reduction. The suboptimal control of Lee, Kim
& Choi (1998) also uses this idea to derive the optimal boundary conditions
for minimizing a carefully designed objective function based on wall pressure
fluctuations or wall shear stress, resulting in a skin friction drag reduction of
up to 22%. Receding horizon optimization means that a large time interval is
divided into smaller parts, and then the control is optimized over these parts
successively. It is possible with this method to completely relaminarize the flow
in a channel with turbulent initial conditions at Re, = 100, and this has been
done using direct numerical simulations (DNS) by Bewley, Moin, & Temam
(2001) and using large eddy simulations (LES) by Collis et al. (2000).

In many applications turbulence can be avoided initially but eventually
there is transition to turbulence. By trying to control the transition process
the need for turbulence control can be avoided at least to some extent. Since
energy growth in a fluid flow is a linear process it makes sense that linear equa-
tions could be used to control transition. Based on the findings reported by
e.g. Henningson (1996); Farrell & Toannou (1996); Kim & Lim (2000), the im-
portance of linear mechanisms for sustaining turbulence, especially the coupling
between normal velocity and vorticity, indicate that linear controllers could also
be used to control turbulence. Using the linearized equations for flow control
was investigated by Hu & Bau (1994), where they used proportional control
based on wall shear measurements to stabilize a laminar plane channel flow
through heating or cooling at the walls in order to change the viscosity of the
flow. They also suggested that the influence of the applied control on the do-
main of attraction for the laminar flow should be quantified, and this is similar
to what is attempted in the present work for more advanced controllers. In the
paper by Joshi, Speyer, & Kim (1997), classical linear control theory is applied
to stabilize the flow in a two dimensional channel using blowing and suction
on the channel walls with measurements of wall shear. The control problem
was formulated using a streamfunction approach suitable for two dimensional
problems. Extension of this work using modern control theory and employ-
ing model reduction for the compensator is presented in Joshi, Speyer, & Kim
(1999), and the corresponding multi wavenumber case is treated in Cortelezzi
et al. (1998). In Lee et al. (2001) extension of the two dimensional controller to
a three dimensional one by augmenting an ad hoc scheme in the third direction
is suggested and tested in a turbulent flow. The streamfunction formulation
was also used by Baramov, Tutty & Rogers (2000) to apply robust (H ) control
to the two dimensional fluid system with multi-wavenumber control, account-
ing for effects of localized actuation and sensing. A problem formulation for
proper treatment of three dimensional perturbations is presented in Bewley &
Liu (1998) and in Kang et al. (1999).

The present paper builds on the work by Bewley & Liu where both optimal
(H2) and robust (Hs) control strategies were applied to isolated wavenumber
pairs in a linearized channel flow with three-dimensional perturbations. The
‘Ho problem was extended, using a slightly modified formulation of the problem,
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to handle multiple wavenumbers by Hogberg & Bewley (2000%%) resulting in a
control law localized in physical space. It was shown that these controllers can,
with a slightly modified objective function, be used in a simple gain scheduling
scheme to relaminarize turbulence at Re, = 100 in a channel. Application
of these linear controllers to instabilities in spatial boundary layer flows is
performed in Hogberg & Henningson (2001) for stationary as well as time
varying perturbations in Blasius and Falkner—Skan—Cooke boundary layers.

In the current paper the ability of these linear controllers, without gain
scheduling, to prevent transition in channel flow is investigated and quantified.
Transition thresholds are proposed as a relevant performance measure that
allows for qualitative comparisons of different control schemes in terms of how
well they work in the presence of nonlinearities.

We also introduce a state estimator in the form of an extended Kalman
filter that can be used to reconstruct the flow field from wall measurements with
exponential convergence. The state estimator is combined with the controller,
and the ability of the resulting compensator to prevent transition in channel
flow is also quantified using the transition thresholds.

1.5. Outline of paper

The remainder of this paper is organized as follows. In section 2, the govern-
ing equations and the formulation of the control and estimation problem is re-
viewed. Properties of the resulting control and estimation kernels are discussed
and a short description of the numerical methods used is given. In section 3,
the results of the many simulations required to determine transition thresholds
are presented for both the full-state-feedback and the wall-measurement-based
feedback control strategies. An effort is also made to try to explain the action
of the control and its response to certain perturbations. Section 4 contains a
discussion of the results and also outlines possible extensions of the approach
from the perspectives of both fluid mechanics and control theory.

2. Approach

The initial stages of transition are accurately described by the linearized Navier—
Stokes equations. Straightforward manipulation of these equations results in
the Orr—Sommerfeld/Squire equations for small perturbations to a mean flow.
These equations can be transformed into Fourier space, where the equations
for different wavenumber pairs completely decouple and can be treated sepa-
rately, (equations (1a) and (1b)). Bewley & Liu (1998) suggested to compute
optimal control rules and estimator feedback rules for each wavenumber pair
separately in Fourier space, and then to combine them in an inverse Fourier
transform, resulting in physical space convolution kernels describing the con-
trol and estimation feedback rules. It was predicted by Bamieh, Paganini, &
Dahleh (2000) that such kernels should be spatially localized with exponen-
tially decaying tails. Truncation results in truly compact kernels, relaxing the
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assumption of spatial periodicity imposed by utilizing the Fourier representa-
tion. In practice this enables the convolution kernels so computed to be used
in physical, non-spatially-periodic flows. In section 2.3.2 it is demonstrated
that the current approach indeed yields such localized kernels with exponen-
tial decay. The issue of controlling and estimating infinite dimensional systems
based on a finite dimensional model is discussed in e.g. Ito & Morris (1998)
where details on the mathematical properties of the Riccati equations are also
presented.

2.1. Abbreviated summary of linear compensation

In this section, we give an abbreviated summary of the derivation of the control
and estimation problem; for further details, the reader is referred to Hogberg
& Bewley (2000%) and Hogberg & Henningson (2001). As a first step, the gov-
erning equations need to be put in a form suitable for application of standard
control theory. The Orr—Sommerfeld/Squire equations (1a) and (1b) are usu-
ally written with a Laplacian operator on the left hand side. Fortunately, this
Laplacian operator can, with care, be inverted if the boundary conditions are
taken into account properly, thus resulting in the desired form of the governing
equations:

0=A"Y =ik, UA+ik, U" +A(A/Rey)} © (2a)
Los
© ={—ik U} o+ {—iks U+ A/Req} &. (2b)
Le Lsq

Writing these equations in operator form, we get

Xy = N%y, (3)

. Los 0 .
N = A - d =(.].
( Le LSQ> me <w)

In order to formulate an objective function we need an expression for the energy
E of the flow perturbations.

where

>

_ L 2.2, .2 _
E72V/(u +of+w?)dV =
Q
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For each wave number pair, F can be written as f(’}@)“{ ¢ where Q is an operator
containing the operators needed to describe the energy measure. Due to the
separation principle of optimal control theory, see e.g. Skelton (1988) p. 411,
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the estimation and control problems can be treated separately in the derivation
that follows.

2.1.1. Control strategy

In order to obtain the standard state-space form for the boundary control of the
Orr—Sommerfeld /Squire equations, the non-homogeneous boundary conditions
need to be treated properly. By lifting the boundary conditions they can be
represented as a volume forcing in the homogeneous equations. Using the
principle of superposition the non-homogeneous boundary conditions can be
represented by a particular solution to the non-homogeneous equations v =
Un + 0; and similarly for w such that Xy = %; + %;. This particular solution
is then parameterized such that it has only one degree of freedom represented
by the normal velocity on the wall. Since there are two walls in a channel two
particular solutions are used. The resulting form of the system of equation is
then,

% = A% + Ba

o . o R
. (N NZ s (2N L) (ka
i=(o W) e (7)== (=)= (3)

and Z is the representation of the particular solutions and u contains the time

derivative of the normal velocity on the walls (¢). The particular solutions can

where

be chosen such that NZ = 0, which results in a simple structure. The energy
measure is now
ez (% 97 Vxegx0x
7*Q Z*QZ

Defining an objective function,
o0
J= /(x* O% + (2u*a) dt,
0

the control @ minimizing J is according to standard control theory given by,

= K%, where K = —%B*X’

o>

and where X is the positive self-adjoint solution to the operator Riccati equa-
tion,
~ A PN PP PN A
(AX + XA* - XB£—23*X + Q))“( =0, V admissible %. (5)
Notice that £2 is an adjustable parameter regulating a penalty on the integral

of the square of the time derivative of the control velocity at the walls. The
integral of the square of the control velocity itself is naturally penalized through
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the lifting terms in Q; though additional control penalties on this term could
be imposed, this was not found to be necessary in the present work. The
feedback rule K (kz, k) obtained is for feedback of the homogeneous part of
the flow only. By modifying K (kz, k) to incorporate the effect of the feedback
of the inhomogeneous part of the flow, kernels for the total flow are obtained.
Feedback rules are computed for an array of wavenumber pairs and then inverse
Fourier transformed to physical space to give the feedback law as a convolution
integral of the form,

’D(:L‘,y = :|:].,Z) = /<K:t1,v(x —Z,Y, 2 — Z)U({f,gj,z) +
@ (6)
Kil,w(l‘ - ‘ia ga z— Z)W(jh@a Z)) dz dgdza

where K11 . denotes the physical space feedback convolution kernel for the up-
per and lower walls of the wall-normal velocity or wall-normal vorticity respec-
tively. The integral representation in the y direction is obtained by normalizing
the gains with respect to the particular integration weights of the Chebyshev
discretization used in the computation. Typical control kernels are shown in
Figure 5. For kernels computed for the Falkner—Skan—Cooke boundary layer
profiles see Hogberg & Henningson (2001).

2.1.2. Estimator strategy

Estimating the state of the flow based on measurements at the wall is a dual
problem to that of controlling the flow with wall actuation in the sense that the
same procedure is used to solve the problems. In this case an equation for the
error of the state estimate is formulated and a volume forcing feeding back the
measurement error minimizing the integral of the state error is sought. The
non-homogeneous terms cancel, since they are identical in the state equations
and the estimator equations; thus, in the equation for the error of the state, only
the homogeneous equations need to be considered. An estimator of this type is
known as a Kalman filter, and is a standard problem. The single wavenumber
case was considered in Bewley & Liu (1998) with a problem formulation similar
to the one used in the present paper. Following Hogberg & Bewley (2000°),
we now model the state equation (3) and the skin-friction measurements of our
system as disturbed by a random (zero-mean white Gaussian) process w such
that

%h = N, + Biw— 26 (7)
¥ = CoXp, + Dorw, (8)
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where
Owp,
o N A
Bi=(Gy 0), Coxp= Rz ; &gh v=t1l, and Do = (0 al),
Dl

where G is defined as the square root of the expected covariance of the state
disturbances and aGs is defined as the square root of the expected covariance
of the measurement noise. We assume that these covariances are time invariant
and that the covariance of the measurement noise is nonsingular. The problem
is scaled such that 5(G?) = 1, and « is selected such that o(G2) = 1. Any
known structure of the disturbance covariances entering the problem should
thus be accounted for in the selection of the characteristics of Gy and Go
(both with unity maximum singular value) during the compensator design,
retaining the quantity « to reflect the balance between the magnitude of the
measurement noise and the magnitude of the state disturbances. Given that
the blowing/suction distribution QAS and the lifting function Z are known, the
(noisy) measurements yp of the quantity Coxp, may easily be extracted from
the available (noisy) wall measurements of the streamwise or spanwise drag.
Only the field X needs to be estimated in order to construct an estimate of the
complete state vector X, (or, indeed, to estimate X itself); we will denote our
estimate of X, as X., and our estimate of y, as y.. The model of the system
which we will use in our estimator is

%, = N%. = 26— 1,
e = Coxke, (9)
=LAy 2 L(gn —Fe)-

Note that the (unknown) effects of the disturbances W are not included in

the estimator model. The estimator feedback rule ¢ = LAY minimizing the
expected value of the L2-norm of the estimation error is given by

~ 1 ~ A

L=-—=YCj

ag 2>

where Y is the positive self-adjoint solution to the Riccati equation,
~ A ~ A PN BN A oA
(N*Y +YN — YC’;—QCQY + Ble)f(e =0, V admissible %,
@

in accordance with standard Kalman filter theory. Note that a2, which models
the assumed quality of the measurements, is used as an adjustable parameter
to scale the estimator feedback. The Kalman filter problem described earlier
has been derived for each wavenumber pair {k,, k,} independently. The inverse
Fourier transform of the Fourier-space estimator feedback rule is given by the
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following convolution sums in physical space:

Uy, (x,y,2) = /(Lve#l(x —T,y,z — Z) Ay(z,+1,2z) +

Ly, —1(z —Z,y,2 — 2) Ay(z, —1, Z)) dzdz
b9 = [ (Lo = = 2 Agta +1,2) 4

Lo, —1(z—2Z,y,2 — Z) Ay(z, -1, z)) dzdz

where the estimator forcing kernels L, 11(z,y, z) and Ly, +1(z,y, 2) are the
inverse Fourier transforms of i/@e,il (kz,y, k) and i/@mil (kz,y, k) respectively.
The structure of L represents the forcing of the model equation in the estimator
as a function of a measurement error at a single point. Using Ay(z,—1,z) =
Ay,6(Z)d(Z) in the convolution integral results in ¢, (z,y, 2) = L, —1(x,y, 2) -
Ay, and ¢, (z,y, 2) = Ly, ,—1(x, y, 2)-Ay,, which facilitates this interpretation.
Typical estimator forcing kernels are shown in Figure 6.

2.2. Computation of linear feedback kernels

The control and estimator feedback for each wavenumber pair is computed us-
ing MATLAB. The Orr—Sommerfeld /Squire system is discretized in the normal
direction using Chebyshev collocation such that,

F =15 I, an () 91 = cos T,

where {T,,(y)}2_; are the Chebyshev polynomials. The Differentiation Matrix
Suite by Weideman & Reddy (2000) is used to create the differentiation ma-
trices and then the matrix operators for the equation are compiled. Since a
lifting technique is used the matrices for the homogeneous problem can be used
utilizing the clamped boundary conditions suggested by Huang & Sloan (1993).
The problem with spurious eigenvalues and eigenvectors is then avoided. The
integration weights W (y;) for the Chebyshev grid with the Gauss-Lobatto
collocation points is computed using an algorithm from Hanifi, Schmid & Hen-
ningson (1996),

1

N N n ni
[ 1= ww, W) = {2 > e S el
-1 J=0 n=2

where b; and ¢, are found from,

N b
j:0
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FIGURE 5. Localized controller gains relating the state x in-
side the domain to the control forcing u at the point {z =
0,y = —1,z = 0} on the wall: visualized are a positive (light)
and negative (dark) isosurface of the convolution kernels for
(left) the wall-normal component of velocity and (right) the
wall-normal component of vorticity. (Hogberg & Bewley
2000%)
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FIGURE 6. Localized estimator gains relating the measure-
ment error (y — y) at the point {z = 0,y = —1,2z = 0} on
the wall to the estimator forcing terms v inside the domain:
visualized are a positive (light) and negative (dark) isosurface
of the convolution kernels for (left) the wall-normal component
of velocity and (right) the wall-normal component of vorticity.
(Hogberg & Bewley 2000%)

These weights provide spectral accuracy of the integration and are used to
assemble the energy measure matrix (). The Riccati equation (5) is solved using
an algorithm from Skelton (1988) p. 350 which mainly involves computation of
eigenvectors. More efficient methods for solving Riccati equation can be found
in e.g. Laub (1991). The kernel computations are performed on an ordinary
workstation and take about 2-3 hours for the kernels presented here.

2.3. Localized convolution kernels
2.3.1. Kernel structure

The convolution kernels computed using the approach described above are de-
picted in Figures 5 and 6. The control convolution kernels shown in Figure 5
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angle away from the wall in the upstream direction. Considering the shape of
the mean flow profile indicated in Figure 1, this accounts for the convective
delay which requires us to anticipate flow perturbations on the interior of the
domain with actuation on the wall somewhere downstream. The estimation
convolution kernels shown in Figure 6, on the other hand, extend well down-
stream of the measurement point. This accounts for the delay between the
motions of the convecting flow structures on the interior of the domain and
the eventual influence of these motions on the local drag profile on the wall;
during this time delay, the flow structures responsible for these motions con-
vect downstream. Note that the upstream bias of the control kernels and the
downstream bias of the estimation kernels, though physically tenable, were not
prescribed in the problem formulation. A posteriori study of the streamwise,
spanwise, and wall-normal extent, the symmetry, and the detailed shape of
such control and estimation kernels provides us with a powerful new tool with
which the fundamental physics of this distributed fluid-mechanical system may
be characterized.

The localized convolution kernels illustrated in Figures 5 and 6 are approx-
imately independent of computational box size in which they were computed,
so long as this box is sufficiently large. Thus, when implementing these ker-
nels, we may effectively assume that they were derived in an infinite-sized box,
relaxing the non-physical assumption of spatial periodicity used in the prob-
lem formulation and modeling the physical situation of spatially-evolving flow
perturbations in a spatially-invariant geometry and mean flow.

The localized convolution kernels illustrated in Figures 5 and 6 are also
approximately independent of the computational mesh resolution with which
they were computed, so long as this computational mesh is sufficiently fine.
Indeed, a computational mesh which is sufficient to resolve the flow under
consideration also adequately resolves these convolution kernels.

2.3.2. Ezxponential decay

The kernels have a structure with exponential decay at a finite distance away
from the origin. In order to illustrate this decay, control kernels for the normal
velocity have been computed for Re, = 2000 and ¢ = 1 with high resolution
for four different sizes of the computational box. This is a representative case
for showing the behavior of the kernels at a distance from the origin, and the
other kernels show a similar behavior. The squared value of the kernels is first
integrated in the y direction to obtain a representation of the kernel weights
in the zz plane. This planar representation is then integrated in z to show
the behavior as a function of x, and integrated in x to show the behavior as
a function of z. The results are normalized with the maximum value of the
result from the smallest box and shown in Figure 7.

Due to the imposed periodicity, the exponential decay of the kernels is
interrupted for small box sizes. However, by increasing the size of the com-
putational box, we clearly see that the decay of the magnitude of the tails is
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FiGurg 7. Illustration of exponential decay of control convo-
lution kernel for normal velocity. a: As a function of x b: As
a function of z. solid lines: box size 27 x 27 with resolution
32 x 64 in x X z, dashed lines box size 37 x 37 with resolution
48 x 96 in x X z, dash-dot is box size 47 x 47 with resolution
64 x 128 in x X z and dotted is box size 67 x 67 with resolution
96 x 192 in x X z. In all cases £ = 1, Re, = 2000 and the
number of gridpoints in y was 70.

significantly extended, while the shape of the kernel in the vicinity of the ori-
gin remains unchanged. In a sufficiently large box, we should see decay of the
kernel magnitude over several orders of magnitude as we move away from the
origin. However, computation of the kernel over such a large domain is diffi-
cult, as it is computationally expensive. Plots such as Figure 7 are sufficient
to illustrate that the kernels we seek are converged in the region of interest
near the origin. Motivated by the apparent exponential decay of these kernels
away from the origin, we can perform truncation in the physical domain, thus
obtaining spatially compact control and estimation kernels with support only
over a finite region.

3. Simulations
3.1. Simulation of nonlinear system

The direct numerical simulation code used in Bewley, Moin, & Temam (2001) is
used to perform the simulations of temporal channel flow with constant mass-
flux. The code uses Fourier series with 3/2 dealiasing in the spanwise and
streamwise directions and second order accurate finite differences in the wall-
normal direction. The treatment of the derivatives in the wall-normal direction
is implicit to enhance stability of the code when blowing and suction bound-
ary conditions are applied. (An explicit treatment would result in extremely
small timesteps required for stability of the simulation when blowing/suction
controls are applied due to the clustering of gridpoints near the walls). Time
advancement is performed with a third-order accurate Runge-Kutta method
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Uncontrolled ( Reddy et al.)

Scenario Reg; Grid Lower Upper
(SV) 2000 16 x81x64 6.32x107% 6.64 x 107°
3000 16 x81x64 1.46x107% 1.52x 1076
5000 16 x 81 x 64 2.56 x 10~7 2.65 x 1077
(OW) 2000 16 x 81 x64 2.33x1076 243 x 1076
3000 16 x 81 x64 5.03x1077 5.53x 1077
5000 16 x 81 x64 1.14x 107 1.19x 1077
(N) 2000 32x81x64 7.00x10"% 7.50x 107°
3000 32x81x64 250x107° 2.75x 1075
5000 40 x 97 x 80 8.50 x 1079 8.75 x 106

TABLE 1. Transition thresholds for streamwise vortices (SV),
oblique waves (OW) and random noise (N) determined by
Reddy et al. using a Fourier, Chebyshev, Fourier discretiza-
tion.

by Aksevoll & Moin (1995). A fractional step method is used to update the
pressure and to enforce a divergence free flow. The transition thresholds for
the uncontrolled flow are verified for the present code using the same routines
as in Reddy et al. (1998) to generate initial conditions. More details about the
simulation code can be found in Bewley, Moin, & Temam (2001).

To make comparisons easier the thresholds obtained by Reddy et al. (1998)
are tabulated in Table 1. The initial conditions for oblique waves and stream-
wise vortices used are such that they have the optimal shape in the y direc-
tion that maximizes their transient growth and are contained in the lowest
wavenumbers in the simulations. In addition, random noise in the form of
Stokes modes with 1% of the energy of the primary perturbation is added
distributed over all combinations of the wavenumbers k, = (0, £1, +2) k.o and
k. = (0,£1,+2) k,o. In the random noise case all the energy is distributed over
these wavenumbers. The box size in the streamwise vortex case is 2w X 2 X 7
in z X y X z with the fundamental wavenumbers k.o = 1 and k.o = 2. For both
the oblique wave and random noise cases the box size is 2r X 2 X 2w in x X y X z
having the fundamental wavenumbers k.o = 1 and k,o = 1. The threshold
values are found by starting with a large interval containing the threshold and
then this interval is successively shortened until it is acceptably small. The
final values are then verified using a different resolution. This requires many
simulations and a condensed presentation of the results such as is Table 2 has
required many hundreds of hours of computer time.
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Full-state feedback

Scenario Reg Grid Lower Upper Imp];;);/f OI? ent
(SV) 2000 16 x 128 x 64 6.50 x 107° 6.55 x 10~° 10
3000 16 x 128 x 64 1.50 x 107° 1.55 x 10~5 9.6
5000 16 x 128 x 64 3.05 x 107% 3.10 x 106 11.5
(OW ) 2000 16 x 128 x 64 2.38 x 107* 2.50 x 10~* 102
3000 16 x 128 x 64 6.50 x 1075 7.00 x 10~° 109
5000 16 x 128 x 64 1.60 x 107° 1.70 x 10~5 122
(N) 2000 32x128x64 5.00x10~* 5.01x 1074 7
3000 32x128x64 1.80x10"* 1.90x 10~* 6.8
5000 32 x 128 x 64 5.00 x 1075 5.05 x 107° 5.7

TABLE 2. Controlled transition thresholds using a Fourier, Fi-
nite difference, Fourier discretization. Verified using lower res-
olution 12 x 128 x 42 and 28 x 128 x 58

3.2. Modification of transition thresholds with full state feedback

Direct numerical simulations of the fully nonlinear Navier—Stokes equations
with linear feedback control are performed at three different subcritical Rey-
nolds numbers, Re, = 2000, 3000 and 5000. Control kernels are computed
using the same resolution and box size as in the simulations with ¢ = 0.1 in
all cases. Through an iterative procedure the transition thresholds have been
determined for the three different perturbations, streamwise vortices, oblique
waves and random noise, as reported in Table 2 and Figure 8. The “Improve-
ment Factor” column in Table 2 shows the relation between the average of the
upper and lower threshold for the controlled and the uncontrolled cases. If this
Factor is two, it means that the initial energy density threshold value is approx-
imately two times higher in the controlled case than in the uncontrolled case.
The transition threshold for the streamwise vortex perturbation is increased up
to 11.5 times the uncontrolled value, corresponding to more than a threefold
increase in perturbation amplitude. Oblique wave perturbations, which in the
uncontrolled case have the lowest threshold energy, appear to be the easiest to
control since the threshold energy is increased up to 122 times the uncontrolled
value. One reason for this might be that the control of the linear growth of the
oblique waves efficiently prevents the nonlinear generation of strong streamwise
vortices, which in turn has an effect on the generation of streamwise streaks.
In the controlled case the streamwise vortex perturbations have the lowest val-
ues of the transition thresholds, about one order of magnitude lower than the
two other perturbations, suggesting that the underlying transition mechanism
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FI1GURE 8. Transition threshold energy versus Reynolds num-
ber for feedback controlled plane Poiseuille flow. Shown are
the curves obtained from direct numerical simulations with
control compared with the uncontrolled cases. One plot for
each case starting with various initial conditions: a) optimal
streamwise vortices, b) a pair of optimal oblique waves, and
¢) divergence-free low-wavenumber noise. The open circles are
the values obtained with full information state feedback control
and the stars are the values for the uncontrolled case computed
by Reddy et al. (1998). The solid lines are least square fits to
the data.

in the streamwise vortex scenario is the most powerful one in the controlled
flow. The smallest factor for the increase in transition threshold is obtained for
the random perturbation and is approximately 7 times the uncontrolled value.
This indicates that the random noise transition scenario is the most difficult to
control, meaning that the effect of the controller is smallest. In summary the
controller increases the transition threshold by roughly one order of magnitude
for streamwise vortices, a little bit less for random noise and about two orders
of magnitude for oblique waves.
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3.3. Effectiveness of truncated kernels

Performing truncation of the kernels by setting their values to zero at a certain
distance away from the origin (smaller than the box size in which they were
computed) results in truly compact kernels. To test the effectiveness of a trun-
cated kernel, the kernel used for the threshold computations was truncated by
setting it to zero outside a box with the limits Z € (—3,1) and z € (—2.5,2.5) us-
ing a smoothed step function. Compare with Figure 7 to see approximately how
much of the kernel information is ignored through this operation. The method
of truncation might seem rather abrupt, but more sophisticated schemes for
performing the truncation were not found to be necessary. Applying such a
truncated kernel in the direct numerical simulation of a random noise pertur-
bation at Re. = 2000 reproduces the interval for the threshold values as for
the untruncated kernels in Table 2. This interval is fairly tight and this shows
that the truncation did not significantly degrade the performance of the con-
trol despite the significant reduction in the kernel extent resulting from the
truncation.

3.4. Analysis of feedback structure

In order to try to understand how the controller acts, the oblique wave and
streamwise vortex cases with control are studied in some more detail. In Fig-
ure 9 the velocity fields, a short time after the full information control is applied,
are shown for the oblique wave (a) and streamwise vortex (b) cases. The action
of the control has be studied with the help of animations in order to understand
how the control acts on the perturbations. In the oblique wave case the iso-
surfaces in Figure 9a are elongated in the streamwise direction, compare with
Figure 2a, and move down to the wall where they shrink again. New, almost
stationary, oblique waves are formed in the center of the channel and these are
then controlled in an out-of-phase fashion while accelerating. There is then a
rapid reduction of the perturbation amplitude and only a streaky perturbation
remains. Even with the help of animations it is difficult to explain the action
of the control in detail. The process is complicated and non-intuitive, and the
advantage of using control theory, which does not require a priori knowledge of
the “dominant mechanisms” of the transition process, is readily apparent. It is
clear that the growth of the oblique wave is efficiently lowered by the control by
comparing Figure 10 and Figure 3a. It is interesting to note that the control
energy is shifted from one set of wavenumbers to another set of wavenumbers
as the flow evolves in time, as shown in Figure 11. Initially the oblique wave
mode is the focus of the control effort, but when this mode has decayed to a
level lower than the streak modes, the control focuses its effort on the streak
modes instead. It should be noted that the contour levels are not the same in
the different frames in Figure 11. The largest energy is used initially before
the oblique wave mode has its maximum and then it rapidly decays. Thereby
the streaks are not forced so efficiently by the oblique waves and the streak
amplitude is much lower than in the case without control. When the oblique
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SO 7<

FIGURE 9. Velocity field showing the reaction of the control to
the initial conditions in Figure 2: a) Control of oblique waves
showing isosurfaces at half the maximum value of the normal
velocity (light) and at half the minimum value (dark). The
slices show the distribution of normal velocity where light is
positive and dark is negative. b) Control of streamwise vortices
showing contours of v, solid contours for positive velocity and
dashed for negative, and velocity vectors of v, w in a z-y plane
at x=0.

waves have decayed a streaky structure appears and then the control acts in a
way similar to the streamwise vortex control case.

In the streamwise vortex case the wall normal velocity is of opposition
type. Figure 9b shows the reaction of the control to the streamwise vortex
initial condition. Where the flow is going towards the wall blowing is applied
and vice versa. In the animation one can see that the vortices are pushed
away from the wall by buffer vortices created by the blowing and suction and
virtual walls , using the terminology of Hammond et al. (1998), are created near
the center of the channel. Streamwise streaks rapidly develop in the regions
between the real walls and the virtual walls as a result of the blowing and
suction applied. The virtual walls then move slowly towards the real walls as
the blowing and suction decrease, and the vortices reappear between the virtual
walls in the center of the channel. The streaks in the near-wall region decay as
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F1GURE 10. Energy evolution in different modes for control of
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t = 100.
3 3 3
) t=1 ) t=43 ) t =47
1 =>>> NG NS
m o mo Mo
- - -
-2 -2 -2
2 1 2 2 % 1 2 s % 1 2 3
n n n
3 3 3
) t =50 ) t=>54 ) t =100
1 <> 1 1
m o mo mo
-1 < -1 -1
-2 27 -2
% 1 2 3 o 1 2 s % 1 2 3
n n n

FIGURE 11. Contour plot of ¢2(k,,k.) for control of oblique
waves at t = [1,43,47,50,54,100]. where k, = nk,o and k, =
mk,o. Notice that the contour levels are not equal in the
different plots but decreases with time.

the blowing and suction weaken, and since a low-speed streak is located where
the vortices in the center of the channel move momentum from the inner part
of the channel towards the virtual wall a high speed streak is created above the
low speed streak, and vice versa for the high speed streak. These streaks in
the interior of the channel merge slowly, probably through diffusion, with the



172 M. Hégberg , T. R. Bewley & D. S. Henningson

ones directly above or below resulting in streaks that fill the whole region in
between the virtual walls. These streaks then decay slowly and the blowing and
suction on the walls decreases at the same time. The virtual walls slowly move
towards the center of the channel again as the streaks decrease and eventually
disappear.

3.5. Conwvergence of estimator with feedback from measurements

Estimating the state of the flow from available measurements is a crucial step
towards practical implementation of this type of controller. Possible measure-
ments are, e.g., the components of the shear stress and pressure fluctuations
on the wall. Many different independent measurements give more information
about the state of the flow. In the present study we have focused on the use
of a measurement of the wall normal derivative of the wall-normal vorticity
component. This appears to be sufficient to get exponential convergence of
the state estimate, but it is rather slow. The estimator forcing kernels are
computed as described in section 2.1.1 with @ = 0.1 and then used to force
the flow in a fully nonlinear simulation. This is known as an extended Kalman
filter. Estimation of a nonlinear system using a linear estimator is discussed
in, e.g., Bewley (1999). The initial state in the estimator is an unperturbed
laminar flow at the same Reynolds number as the measured flow in all cases
presented here. In Figure 12 the energy of the difference between the state
in the measured flow and in the estimator is plotted versus time. The initial
state in the unknown flow is a random perturbation at an energy level below
the transition threshold. The initial guess in the estimator is an unperturbed
laminar flow at Re. = 3000. Estimator forcing kernels are computed for both
Glé’{ = Q and Glé’{ = I. Using either estimator, there is an initial transient
increase in the error after which it decays at an exponential rate. The transient
is due to the fact that it is not possible to get uniform decay of the state error
using only the current measurements, as the system representing the estimator
error is non-normal, just like the controlled closed loop system. For more dis-
cussion about the closed loop properties of the linear system see Bewley & Liu
(1998). Using Gh AT = Q gives a small transient during a long time whereas
using G’lé'{ = I gives a larger transient for a shorter time. Since both the
initial behavior and the convergence are important issues there is no intuitive
reason why one would be better than the other. The amplitude of the initial
transient could be of importance when the perturbation energies are large and
nonlinear effects are strong. If the estimator state undergoes transition due to
this transient the compensator cannot be expected to work particularly well.
For this reason the estimator with Glé’{ = Q that has a lower amplitude of
the transient is the primary choice for the estimator-based control studies that
follow.
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FiGure 12. Convergence of estimator computed with o =
0.1 for a random perturbation with an energy just below the
transition threshold at Re. = 3000. Solid with élé’{ = Q
and dashed with G1G% = I. Left: logarithmic in vertical axis,
right: logarithmic in horizontal axis.

3.6. Modification of transition thresholds with estimator-based control

In the case of measurement based control we run two different nonlinear direct
numerical simulations simultaneously. One with the initial perturbation we
wish to control and one estimator with no initial perturbation. Measurements
are taken in both simulations and the difference between the two is used to
force the estimator using the forcing kernels. The state in the estimator, which
as shown in the previous section for the uncontrolled case converges exponen-
tially to the correct state, is then used to compute the update of the control
which is then applied in both simulations simultaneously. This combination of
estimator and controller is called a measurement-based dynamic compensator.
The control kernels are the same as used for the full information case and the
estimation kernels are computed with the same box size and resolution as the
simulations with o = 0.1.

The compensator was first tested for an oblique wave at Re. = 2000 and a
comparison of the perturbation energy with the full information controller and
for the uncontrolled flow is plotted in Figure 13. In this case the initial energy
density was 1.25 x 10~° but the perturbation did not have the optimal shape
in y and no additional random noise was added. The total energy reduction
for the full information controller and the compensator appears to be of the
same order. The compensator performance was even closer to that of the full
information controller if a good initial guess for the state in the estimator was
provided. This demonstrates that the compensator is successful in reducing
the energy growth of an oblique wave perturbation, but the question is what
happens when the amplitude of the perturbations are large and noise is present.
In order to test the compensator performance the “worst-case” situation when
the initial state in the estimator is an unperturbed flow is considered.
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F1GURE 13. Performance of full information linear controller
(dashed) and compensator using G1GF = @ (solid) compared
to the uncontrolled (dotted) energy evolution.

Measurement feedback

. . I t
Scenario Regy Grid Lower Upper mpﬁ:;gf;len
CiGr=Q

(SV) 2000 16 x 128 x 64 1.75x 10~° 2.00 x 10~° 2.9
(OW ) 2000 16 x 128 x 64 1.25x 1075 1.50 x 1075 5.8

2000 16 x 128 x 64 9.00 x 10~® 1.00 x 10~* 1.31
(N) 3000 16x128x32 3.25x 107° 3.50 x 107° 1.28
5000 16 x 128 x 32 1.00 x 107° 1.25 x 10~° 1.30
GG =1
(N) 2000 16x128x64 1.05x 10~* 1.10 x 1074 1.48

TABLE 3. Compensator controlled transition thresholds using
a Fourier, Finite difference, Fourier discretization, for the ini-
tial perturbations: (SV)-Streamwise vortex, (OW)- Oblique
wave and (N)— Random perturbation. Upper part of table
with Glé{ = Q and lower part with Glé{ =1.

Simulations are performed at Reynolds number 2000 for all three types of
initial perturbations; Table 3 contains the resulting transition thresholds from
these simulations. With G’l AI = I only one case at Re, = 2000 with ran-
dom noise is considered. The transition threshold for the streamwise vortex
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perturbation is increased 2.9 times the uncontrolled value. Oblique wave per-
turbations appear to be the easiest to control using the compensator (as with
the full-state feedback controller), and the threshold energy is increased 5.8
times the uncontrolled value. In the compensator-controlled case the oblique
wave perturbations, as opposed to streamwise vortices in the full information
control cases, have the lowest values of the transition threshold. This is just as
in the uncontrolled case but the transition threshold energies in the compen-
sator controlled case are approximately of the same order for the streamwise
and oblique wave perturbations and about one order higher for the random
noise.

As for the full information case the smallest factor for the increase in tran-
sition threshold is obtained for the random perturbation and is only 1.3. For
the case with él Af = I the initial transient in the estimator is larger but the
improvement factor is increased to 1.48 with the corresponding compensator.
The conjecture that the large transient in the estimator would degrade the
performance of the compensator was thus not correct. The choice of Gy is a
delicate issue and further research is needed to find the optimal choice for tran-
sition control. Remember also that the results can be improved by providing
a good initial guess in the estimator, suggesting an alternative route to better
performance. The small increase in threshold values for the random noise also
in the compensator case further suggests that this is the most difficult pertur-
bation to control. For the random noise perturbation simulations at the higher
Reynolds numbers 3000 and 5000 are performed at to verify that the factor is
kept approximately constant also in the compensator case as seen in Table 3.

4. Discussion

The effectiveness of the strategy for control and estimation of transitional flows
from Hogberg & Bewley (2000”) has been quantified for three significant types
of perturbations in subcritical channel flow studied in Reddy et al. (1998). A
large number of direct numerical simulations have been performed in order
to determine the transition threshold energies for the controlled flows both in
the full information and measurement based settings. The localization of the
kernels with exponentially decaying tails and the small effect on their efficiency
from truncation compared to the untruncated kernels has been demonstrated.

In the full information control case, we have shown that the controller can
increase the threshold energies for transition as much as 122 times the uncon-
trolled value for oblique wave perturbations and approximately 10 and 7 times
for the streamwise vortex and random noise perturbations respectively. The
lowest threshold value is obtained for the streamwise vortices in the controlled
case indicating that the transition mechanism involved in this scenario is the
most powerful one. The factor of increase in the threshold energies is approx-
imately constant for different Reynolds numbers for all types of perturbations
considered. This results in lower threshold values for higher Reynolds numbers.
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The measurement based state estimator was implemented as an extended
Kalman filter and shown to give exponential convergence of the estimated state
to the measured state. This convergence was found to be rather slow and fur-
ther research is necessary in order to improve the results. Additional indepen-
dent measurements such as pressure fluctuations and spanwise and streamwise
drag can perhaps be used to speed up the convergence. Another way of getting
faster convergence is to try to construct a good initial guess for the estimator.
It should be noted that for the estimator, as well as the compensator cases, the
box size used in the simulation are not large enough to fit the estimation ker-
nels depicted in Figure 6. This is however not a problem here since truncated
estimation kernels are not used, but future studies should test the estimation
in a sufficiently large box in order to motivate the use of this type of estima-
tor in a decentralized scheme. The box sizes used in the present studies was
motivated by allowing for comparison with the results of Reddy et al. (1998).

In the compensator case we have not quantified the performance to the
same extent as in the full information case. The reason is that the results were
not as good as expected with the current approach due to the slow conver-
gence of the estimator, and also because these simulations are twice as costly
compared to the full information case since two flow fields have to be marched
in time simultaneously. A rule of thumb when designing compensators is that
the estimator should converge faster than the controller in order to achieve
good and robust performance. Incorporation of the existing knowledge about
the physics and the mechanisms of transition and turbulence could also be
beneficial for the compensator design. The development of more efficient es-
timators is needed and hopefully such estimators will provide means to raise
these threshold values for the compensator to levels close to those obtained
with the full information controller. The results are however of interest since
we can draw the conclusion that the most difficult problem to control is the one
with random noise perturbations, and that the reason in the compensator case
is mainly the slow convergence of the estimator, and this will help in focusing
the future efforts.

Since the problem we are studying in this paper is highly idealized it should
be clarified how these results will lead to practical feedback compensators to be
used in engineering applications. The advantage of the current approach is that
truncation in physical space results in kernels that have compact spatial sup-
port with maintained performance and this facilitates a convenient strategy for
decentralized physical space implementation. For a thorough discussion about
the implication of this property of the kernels and practical implementation
issues the reader is deferred to Bewley (2001).

4.1. Extensions
4.1.1. Heo control

In more realistic situations, where we cannot assume perfect measurements and
precise actuation, robustness is necessary. The present formulation can with
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small modifications also be used to compute robust (He,) compensators. In
the case of H, control the problems of control and estimation are coupled and
the separation principle no longer applies. This is described in detail in Doyle
et al. (1989). In Bewley & Liu (1998) Hoo compensation was performed for
one wavenumber pair and shown to have some different characteristics than the
optimal Hs compensator. A similar approach was also used in the recent paper
by Baramov, Tutty & Rogers (2000). Robustification with respect to changes
in the mean flow profile is motivated by the success of the gain scheduling
technique in Hogberg & Bewley (2000°), and robustness to the nonlinearities
not included in the Orr—Sommerfeld/Squire equations could also improve the
present results.

4.1.2. Spatially-developing flows

The extension to spatially evolving flows is straightforward. The modification
necessary is to include the base flow from Blasius, Falkner—Skan or Falkner-
Skan-Cooke flows and then proceed as described in the present paper to com-
pute the control and estimation kernels. Assuming that the flow is locally paral-
lel, a number of kernels computed using the Orr—Sommerfeld /Squire equations
with the local mean flow profiles can then be applied at different streamwise
positions to cover a large control domain. This is done using one control kernel
in one streamwise interval in Hogberg & Henningson (2001) for stationary as
well as time varying perturbations. Application of measurement based control
in this case is a natural next step.

4.1.3. Reduced order compensation

The current system has very large dimensions and could be difficult to realize
in real time applications. One solution to this problem is to do model reduction
of the closed loop system and achieve a low dimensional compensator. Model
reduction for robust control of transition in two dimensional channel flow is
evaluated in e.g.Cortelezzi & Speyer (1998) and Joshi, Speyer, & Kim (1999),
and the three dimensional problem is discussed in Kang et al. (1999). This is
an active are of research and many possibilities remain to explored.
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Optimal control of transition initiated by
oblique waves in channel flow

By Markus Hégberg*, Thomas R. Bewley!, Martin
Berggreni$, and D. S. Henningson*!

Using two different approaches to optimal control in channel flow an effort is
made to try to identify differences and similarities. One approach is to use the
Navier—Stokes equations and apply a gradient based optimization technique to
find the optimal control. The other approach is to make use of the linearized
equations known as the Orr—Sommerfeld—Squire equations to compute the op-
timal control. Limiting ourselves to look only at oblique wave perturbations
we compare the resulting energy evolution from application of the respective
control strategies. Qualitatively the performance of the two approaches are
similar, at least when they work under comparable conditions. The non-linear
control can be more aggressive initially since there is no direct limitation on the
time derivative of the control even though the discretization implicitly enforces
some degree of penalty. Adjusting the parameters properly we can show that
the control from the two approaches are very similar. Also we try to quantify
the performance of the estimator based control, or compensation, using only
measurements on the wall, compared to the full-state information control. The
performance of the compensator is found to be good for small perturbations,
especially if a good initial guess can be provided.

1. Introduction

The goal of this work is to develop methods to prevent transition to turbu-
lence. We determine how to do control in the optimal way given the method
of controlling the flow, and an objective function describing the features of the
flow to be controlled. The method of actuation chosen here is blowing and
suction at the walls, since it is a fairly simple way of acting on the flow, and
also because it is a technique that is widely used. Blowing and suction has suc-
cessfully been used for similar problems, namely control of turbulence, where
complete relaminarization was obtained in Bewley et al.(2001). The blowing
and suction is applied to flow in a channel, where we can find many of the
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interesting bypass transition scenarios. We use two different approaches to op-
timal control, one based on the non-linear Navier—Stokes equations and one on
the 3D Orr—Sommerfeld—Squire equations.

In the non-linear case, we use the adjoint equation to compute objective
function gradients. It is an efficient method in the sense that only two compu-
tations are required for each optimization iteration independent of the number
of degrees of freedom of the control. First the state equation ( Navier—Stokes
) is solved and then this solution is used as input to the adjoint equation that
is solved next and gives the gradient of the objective function. Optimization
is performed with a limited memory quasi Newton method described in Byrd
et al.(1994). The resulting control will be optimal for the specific perturbation
and time domain studied.

In the linear case, optimal (Hs2) controllers and estimators are developed
for the 3D Orr-Sommerfeld—Squire equations at a large array of wavenumber
pairs {k;, k. }, using a technique closely related to that described by Bewley
& Liu (1998) , and transformed to the physical domain. The feedback gains
for both the control and estimation problems are shown to be represented by
well-resolved, spatially-localized convolution kernels, see Hogberg and Bewley
(2001). The resulting control kernels represent the optimal feedback strat-
egy for an arbitrary perturbation to minimize the energy over the infinite time
domain. The physical-space controller, estimator, and compensator which com-
bines them are then applied in (nonlinear) direct numerical simulations of flow
in a channel with oblique wave perturbations. The different transition scenarios
in channel flow have been bench-marked by Reddy et al. (1998).

2. Control problem

An adjoint direct numerical simulation (DNS) code has been developed based
on an existing spectral channel flow code by Lundbladh et al. (1992) to perform
the non-linear as well as the linear control computations. Temporal DNS are
performed. Fourier modes are used for the span-wise and stream-wise directions
and Chebyshev collocation in the wall normal direction. The modification
necessary to solve the adjoint equations involves a change in what corresponds
to the non-linear terms for the Navier—Stokes solver to forcing terms depending
on the choice of objective function. Solution of the adjoint equation requires
full information about the solution of the Navier—Stokes equation in space and
time. Based on previous findings we have used a discretization of the continuous
equations instead of an exact discrete adjoint, see Hogberg & Berggren (2000).
For simulation with an estimator or compensator a similar code bench-marked
by Bewley et al. (2001) with finite differences in the wall normal direction is
used.

The flow geometry is the one in figure 1 with blowing and suction applied
at both walls of the channel and periodic boundary conditions on the stream-
wise and span-wise directions. For the non-linear optimization the objective
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F1GURE 1. Geometry for control of channel flow.

function J,; is,

Tcr 1 Ter
€
T = 3 / <p2(a:, z,t)dl' + 3 / (u(z,y,z,t) — Ulam (1))? dQ
Tco Tro

where the control ¢ is applied from time ¢ = T¢g to Top on the boundary T’
and the energy of the deviation from the laminar profile uj,y, is measured from
time t = Tgo to Tgr in the computational domain 2. The spatial resolution
of the control is the same as for the simulation and temporally the control is
linearly interpolated in time. In the linear case the objective function J; is,

e [0p(x ) 1 [ ,
Jp = 2/ 5 dr + 5 /(u(x,y,z,t)) dQ
0 0

and the controllers are computed by solving an optimal control problem for
each wavenumber pair separately. In short a Riccati equation containing the
Orr—-Sommerfeld—Squire matrices, the energy measure matrix and the forcing
matrix is solved to find the optimal controller. For further details see Hogberg
and Bewley (2001). The estimator used is an extended Kalman filter and
is computed in a way similar to that of the linear controller. The objective
function in this case measures the energy of the state error and of the forcing
used. The penalty parameter for the forcing is denoted . A low value of alpha
should be used when the measurements are expected to be free from noise and
a high value for noisy measurement data. Notice that the linear controllers and
estimators are computed off-line once and for all and then applied online in the
simulations.
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3. Simulations, results and discussion

All simulations are performed at Re = U.h/v = 2000 where the Reynolds
number is based on the half channel height A and the centerline velocity U..
The resolution is 8 x 65 x 8 Fourier x Chebyshev x Fourier modes in x x
y X z respectively. For the code with finite differences in the wall normal
direction 81 points are used. In all simulations the same particular oblique
wave perturbation is used as initial condition at ¢ = 0. Control is applied in
all Fourier modes on both the upper and lower wall of the channel, and for
the estimator case measurements are done in all Fourier modes at both walls.
The control is parameterized in the non-linear case to a specific number of
degrees of freedom with equispaced distance At while in the linear case it is
free to change arbitrarily at every time step. For the non-linear optimal control
computations about 200 velocity fields are saved during the solution of the flow,
and these are then linearly interpolated when used in the solution of the adjoint
equations. The penalty parameter € is zero in the non-linear computations since
the corresponding objective function for the linear controller does not add extra
penalty on the control velocity.

3.1. Non-linear control

We have computed linear controls and corresponding non-linear controls for
comparison in terms of performance to investigate how close the optimal linear
control is to the optimal non-linear control, with a similar objective function.
To allow for comparison between the two different controls we need to make
sure that the time interval is long enough to be considered as infinite by the
non-linear controller. We also need to adjust the time resolution of the control
to get a comparable penalty on the time-derivative. Even if we adjust the pa-
rameters to give similar objective functions the non-linear controller still has
the advantage of being able to adjust to the particular perturbation and make
use of non-linear effects. In figure 2 the energy evolution of the perturbation is
plotted for different values of the penalty on the time-derivative of the linear
control. A similar restriction can be put on the non-linear controller by chang-
ing the time resolution of the control. In figure 3 the effect of changing this
resolution for the non-linear controller is plotted. One can say that there is a
qualitative correspondence between the penalty on the time-derivative in the
linear case and the time-resolution of the control in the non-linear case. Notice
that the resolution of the controller in time is not related to the time step in
the simulations. Two cases, one with linear control and one with non-linear,
with similar behavior initially are compared in terms of the energy evolution
if figure 4. Except for the small difference initially it is hard to distinguish
one curve from the other. It seems as the linear controller does an almost as
good job as the non-linear one in this case. Evaluating the objective functions
gives a 2% higher value for the linear controller in this case. A quantitative
agreement is obtained by inserting the linear control solution into the nonlinear
optimization and computing the gradient norm for this solution. In this case
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FIGURE 2. Energy evolution of controlled cases with linear
control for different values of the penalty parameter ¢ =
0.01,0.05,0.1,0.2,0.5 as solid, dash, dash-dot, dash-dot-dot,

dot respectively.

the gradient norm is close to zero and satisfies the optimization criteria for the
nonlinear optimization.

Energy
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FI1GURE 3. Energy evolution of optimally controlled cases with
non-linear control for different time resolution of the control.
Using 300,150,75,37 degrees of freedom in time as solid, dash,
dash-dot, dot respectively.

3.2. Linear control

In the linear case we have pre-computed convolution kernels that are applied
online in the DNS. The controller, utilizing full information of the flow-field, can
prevent transition at perturbation levels well above the uncontrolled transition
thresholds computed by Reddy et al.(1998), see Hogberg and Bewley (2001).
The estimator converges exponentially to the correct state of the flow as shown
in figure 5. Unfortunately the rate of this convergence is somewhat low, and
there was no way of speeding it up further using the present formulation of the
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FIGURE 4. Energy evolution of optimal linear control case
with & = 0.05 ( solid ) and optimal non-linear control with
150 degrees of freedom in time ( dash ).

estimation problem. In figure 6 the effect of changing the penalty parameter o
is shown. It turns out that it is favorable to decrease it to obtain speedup of
the convergence, but only up to a certain limit. Estimation of the oblique wave
perturbation with o = 0.01 is illustrated in figure 7. There is a time lag in the
energy evolution of the estimator compared to the true state, but eventually
the estimator gets closer and closer.
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FIGURE 5. Energy of state error in estimation for a = 0.01.

Combining the estimator and controller into a compensator where the flow
is controlled based only on wall measurements is the next step. With perfect
initial data for the estimator the performance would be the same as for full
information control. Starting with an unperturbed flow in the estimator is more
of a challenge, and the result from this is plotted in figure 8. The compensator
is able to lower the energy growth substantially but not as much as the full
information controller. In a spatial case one could imagine having the estimator
upstream of the controller. Here that would correspond to giving the estimator
a head start before applying control. Estimating the flow until £ = 50 and then
applying the compensator and comparing it to the full information controller
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FIGURE 6. Energy evolution in estimator with different values
on the penalty parameter o= 0.001, 0.01, 0.05, 0.1, as dash-
dot, solid, dotted, dashed respectively.
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FIGURE 7. Energy evolution of the estimator with a = 0.01
(solid ) and the true uncontrolled state ( dash ).

applied at t = 50 shows that the compensator performance is now close to that
of the full information controller. In figure 9 the energy evolution for the full
information control case is compared to that of the “head started” compensator
and the regular compensator with zero perturbation as initial guess at ¢ = 50.

3.3. Conclusions

The action of the optimal linear controller is very similar to that of the op-
timal non-linear control. A comparison with a nonlinear optimal controller,
based on iterative adjoint computations, shows only small differences to the
controllers based on the linearized equations. The perturbation evolution can
be reproduced from wall measurements online, using an estimator with expo-
nential convergence rate after some initial transients. When basing the control
on wall measurements only the performance is not as good, but still energy
growth is reduced. Giving the compensator a better initial guess improves the



190 M. Hégberg, T. R. Bewley, M. Berggren, D. S. Henningson

x10°

Energy
*

0 100 200 300 400 500

time

FIGURE 8. Full information linear controller ( dashed ) and
compensator ( solid ) performance compared to the uncon-
trolled ( dotted ) energy evolution.
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FI1GurE 9. Full information controller ( dash ) and “head
started” compensator ( solid ) and regular compensator (dash-
dot ) performance compared to the uncontrolled ( dot) energy

evolution.

performance substantially. One future focus for linear compensation should be
development of better estimators with fast convergence.
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Secondary instability of cross-flow vortices in
Falkner-Skan-Cooke boundary layers

By Markus Hogberg* and Dan Henningson*!

Linear eigenvalue calculations and spatial direct numerical simulations (DNS)
of disturbance growth in Falkner-Skan-Cooke (FSC) boundary layers have been
performed. The growth rates of the small amplitude disturbances obtained
from the DNS calculations show differences compared to linear local theory,
i.e. non-parallel effects are present. With higher amplitude initial disturbances
in the DNS calculations, saturated cross-flow vortices are obtained. In these
vortices strong shear layers appear. When a small random disturbance is added
to a saturated cross-flow vortex, a low frequency mode is found located at the
bottom shear layer of the cross-flow vortex and a high frequency secondary
instability is found at the upper shear layer of the cross-flow vortex. The
growth rates of the secondary instabilities are found from detailed analysis of
simulations of single frequency disturbances. The low frequency disturbance is
amplified throughout the domain, but with a lower growth rate than the high
frequency disturbance, which is amplified only once the cross-flow vortices have
started to saturate. The high frequency disturbance has a growth rate that is
considerably higher than the growth rates for the primary instabilities, and it
is conjectured that the onset of the high-frequency instability is well correlated
with the start of transition.

1. Introduction

A disturbance in an unstable laminar flow often results in transition to a tur-
bulent state, but in some cases it takes the flow into another laminar more
complicated state. If the disturbances are small, compared to the base flow,
the analysis can be simplified by using linearized equations for the disturbance
evolution. If the disturbances reach a higher level, nonlinear effects become im-
portant. Traditionally, transition prediction in two-dimensional flows has been
based on the study of the evolution of so called Tollmien-Schlichting (T-S)
waves. The growth of these waves is governed by the Orr-Sommerfeld equa-
tion. For flows where this exponential instability is weak, recent work by Butler
& Farrell (1992); Reddy & Henningson (1993); Trefethen et al. (1993) have
shown the importance of transiently growing three-dimensional disturbances .
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Typically, this growth results in streaky structures rather than two-dimensional
waves. For an overview of results regarding transient growth, see Henningson
(1995).

In three-dimensional boundary layer flows, there are additional processes
that can lead to transition. Examples of such flows are, flow over swept wings,
rotating discs, cones and spheres and cones at an angle of attack. More about
these flows can be read in Reed & Saric (1989). In a three-dimensional flow
the direction of the base flow is a function of the normal coordinate, and the
velocity profile usually has an inflection point. This means that there usually
exists an inviscid inflectional instability, see e.g. Gregory, Stuart, & Walker
(1955). This primary instability may result in amplification of oblique traveling
waves and of stationary vortices. Local linear stability theory predicts non-
stationary modes to be more amplified than stationary modes. However in
most experiments the stationary ones are preferred Reed & Saric (1989). The
reason may be that the effective receptivity of stationary cross-flow modes
to surface roughness is stronger than that for traveling waves to free-stream
fluctuations, see Choudhari (1994), Morkovin (1969) and Morkovin (1977)
for receptivity issues. Another reason may be related to phase averaging in
the experimental measuring techniques. Only recently has measurements been
made where the traveling modes have been introduced in three-dimensional
boundary layer flow in a repeatable manner, see e.g. Lingwood (1996), Lerche
(1997).

Effects of transient growth have also been seen in three-dimensional bound-
ary layers, see Breuer & Kuraishi (1994), although it may here be of less im-
portance due to the large growth rates of the primary exponential instabilities
present.

In addition to the convective instabilities discussed so far, there is evidence
that three-dimensional boundary layers may experience so called absolute in-
stabilities. These are instabilities which grow at a fixed location, without being
swept downstream by the base flow. In a rotating disc boundary layer a true
absolute instability has been found by Lingwood (1995), whereas in for infinite
swept plate boundary layers a chordwise absolute instability has been found,
see Lingwood (1997). The disturbances associated with the latter absolute
instability are still swept away in the spanwise direction and it is not clear
that they would have any greater chance of causing transition than traditional
convective instabilities.

When stationary cross-flow modes are initiated they grow according to
linear theory until nonlinear effects cause saturation, and strong so called cross-
flow vortices develop. There are two types of secondary instability of stationary
cross-flow vortices that have been observed in simulations and experiments by
Kohama, Saric & Hoos (1991); Malik, Li & Chang (1994); Deyhle & Bippes
(1996) and reported in a thesis of Lerche (1997), one low frequency and one
high frequency instability. The low frequency oscillations appear earlier in the
breakdown process than the high frequency one. The high frequency oscillations
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have been detected just prior to breakdown. At this point, the strong cross-flow
vortices contain sharp shear layers that appear to be inflectionally unstable, see
Malik, Li & Chang (1994).

A slightly different scenario has been found by e.g. Miiller & Bippes (1988),
who found that is was the traveling modes which dominated the transition
process. The reason this occurred is the higher level of free-stream turbulence
that was present in their experiment, which caused a stronger forcing of time-
dependent disturbances. Although the amplitude of the stationary modes was
smaller in this scenario, compared to flows with lower free-stream turbulence,
the transition occurred earlier.

In this investigation we use direct numerical simulations (DNS) to obtain
a physical understanding of the breakdown process of stationary cross-flow
vortices. Direct numerical simulations have been used previously to study the
stability and transition associated with cross-flow vortices, e.g. Miiller, Bestek
& Fasel (1993); Spalart, Crouch & Ng (1994); Wintergerste & Kleiser (1996).
However, none have concentrated on the secondary instability of cross-flow
vortices, which is the main aim of the present investigation. In a computational
environment it is straight forward to generate a base flow including strong cross-
flow vortices, and then add a desired disturbance. We use a base flow from
an experiment made at DLR, Gottingen by Bippes (1991), that is suitable
for investigations of cross-flow vortices and their stability features. Linear
stability calculations are made as well as DNS, and the results are analyzed
and compared. In addition results of secondary instability of cross-flow vortices
are also reported.

2. Background
2.1. Falkner-Skan-Cooke Profiles

We consider an infinite swept flat plate where % = 0. For this case the
dimensional boundary layer equations according to Schlichting (1979) become:
ou* ow* dU: 0%u*
* * _ U* o0 1
Y v oy* ° da* +V8y*2 (1)
ow* ow* O*w*
* * _ v 2
Yo T Oy* oy @)
ou*  Ov*
= 0 3
ox* + oy* (3)
with the boundary conditions:
uv=v"=w"=0 at y*=0 (4)
ut = UL, w" - Wi as y"— o0 (5)

where u*, v*, w* are the chordwise (x), normal (y) and spanwise (z) velocity
components, respectively, and * denotes dimensional quantities. See figure 1 for
a definition of the coordinate system. We assume that the chordwise base flow
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at the boundary layer edge obeys a power law according to, UX = Uj(z* /x§)™
and that W2 = constant. A self-similar solution may be found if we select

0= {(m+ 1)UL/ 2va"}' /2y (6)
Introducing the stream-function
Ut = (2U"vz" fm+1)Y2 f(n) (7)
with u* = 90¥*/9y* and v* = —9U*/Jz* and w* = WZg(n) reduces the

boundary layer equations to a function of the single variable 1, we have

Frff A+ Bu— %) = 0 8)
9"+fg =0 (9)

where the Hartree parameter is 8y = 2m/(m + 1) and the boundary conditions
are

f=f=9g=0 if n=0 (10)
ff—=1,9g—1 as n— oo (11)

f" and g can then be combined into the Falkner-Skan-Cooke velocity profiles,
see Cooke (1950), as

Uly) = fn) (12)
W) = =g (13
with y = y* /5. Note that
§* = {(m+ 1)U% J2va*} /2 /(1 — fNdn (14)
0
which implies that
5 = {(m+1)Ug J2vxi}y 120 (15)

where
c=[a-fan (16)
/

Then we have
Uss 1/2
n==C ﬁ} y (17)
where zfj is a fixed position. The profiles (12) and (13) will be used as a
base flow in the stability investigations and as initial conditions in the direct
numerical simulations presented.
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FiGUrE 1. Coordinate system used in this report.  is the
angle to the streamline of the flow in the free-stream, U is the
chordwise component and W is the spanwise component. The
dotted line is the streamline of the flow in the freestream over
a flat plate with a pressure gradient in the x direction

2.2. Linear Theory

The most common way of investigating the stability of a flow to small distur-
bances, is to assume that the flow can be divided into two parts,

(u,v,w) = (U,0, W) + (u/, 0", w") (18)

where U and W are the base flow components in the chordwise and spanwise

directions, respectively. It is here assumed that the parallel flow assumption
holds, i.e. the base flow components only varies with the normal coordinate.
The primed quantities represent a small perturbation. We also assume wave-
like disturbance of the form

’LL/ _ ﬁei(aerﬁszt) (19)

where o and 3 are the z and z components of the wave number vector and
w is the frequency and @ is the complex amplitude function for the chordwise
velocity. Inserting these assumptions into the Navier-Stokes equations and
linearizing, we find the resulting disturbance equations that can be reduced to
the following set of two coupled equations

D? = (o + B0 = iR[(U +0W —w)[D? = (o + )]
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T Re P (deg.)

0 337.9 59.3
20.59 351.2 54.7
209.5 461.6 50.9
220.0 467.3 50.7
261.9 490.0 50.0
500 694.1 44.98

TABLE 1. Relations between different parameters at different
locations on the flat plate. Rs« is the Reynolds number based
on the displacement thickness and the local free-stream veloc-
ity and 9 is the angle of the external streamline.

(aD?U + BD*W)]o (20)
(aDW — BDU)o = [%(DQ — (0 + %) —i(aU + W —w)]i (21)

where ¢ and 7) = (84— aw) are the amplitude functions for the normal velocity
and the normal vorticity, respectively. D stands for the differential operator in
the wall-normal direction. The boundary conditions are

5(0) =0, Da(0) =0, 7(0) =0 (22)
o(y) — 0, Di(y) — 0, 7i(y) — 0 asy — oo (23)

Here R is the Reynolds number based on the velocity scale Uy and the dis-
placement thickness 6*, both taken at the streamwise location x.

Equation (20) is referred to as the Orr-Sommerfeld equation, and the equa-
tion (21) is known as the Squire equation. The base flow used in this investiga-
tion is found from the Falkner-Skan-Cooke (FSC) velocity profiles given in the
previous section. The equations, considered as a spatial eigenvalue problem,
are solved using a spectral collocation technique with Chebyshev polynomials
in the normal direction, and a companion matrix technique. The technique is
explained e.g. in Lundbladh et al. (1994).

Results from the spatial eigenvalue problem will be compared to results
from the Parabolic Stability Equations (PSE). This extended approximation of-
fers an effective way to take non-parallel effects into account using an advanced
multiple scales technique, first developed by Bertolotti, Herbert & Spalart
(1992). In this paper we present results by Hanifi (private communication)
as a check on the direct numerical simulation results. The PSE code used is
described in Hanifi et al. (1994).
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2.3. Description of the laminar base flow

The computations model an experiment made by Bippes (1991) at DLR in
Gottingen, where the flow over a swept flat plate has been designed to ap-
proximate Falkner-Skan-Cooke flow. In the experiment small discs were placed
periodically close to the front of the plate, in order to excite well defined cross-
flow vortices. Their spanwise spacing was chosen to be approximately the same
as that of the most growing stationary cross-flow disturbance. We will use the
flow conditions of this experiment as the laminar base flow in the present in-
vestigation.

It is important to note that we are not primarily concerned with the details
of the numerical modeling of the experiment. For us it suffices to know that we
have chosen a test case which is of practical interest and can be realized in an
experiment. In addition, the previous investigations of Bippes (1991) did not
address the secondary instability of the cross-flow vortices, which are the em-
phasis of the present paper, but rather their interaction with traveling waves.
Unfortunately, the later work dealing with the high-frequency secondary insta-
bility by Lerche (1997), a student of Hans Bippes, was done at slightly different
flow conditions. Thus a detailed quantitative comparison of the present results
with that of Lerche (1997) cannot be made, and we have to be content to
compare the qualitative features.

In all of the simulations presented here the inflow position in the com-
putational domain will be at x = 0, corresponding to a Reynolds number of
R = 337.9. Unless otherwise stated, the calculations presented will be scaled
with the displacement thickness and the free-stream velocity at this position.
With this scaling the distance from the leading edge to the start of the com-
putational box can be found using equation (15) and is found to be

m+1

202
and the distance between the small discs generating the cross-flow vortices
are about 25.14, corresponding to a spanwise wavenumber of about +0.25.
The outflow position in the computations is located 500 initial displacement
thicknesses downstream, which corresponds to Rs+ = 694.1. Note that when
Rs+ rather than R is used, we assume that the Reynolds number is based on
the local displacement thickness and free-stream velocity. The base velocity
at the boundary layer edge in the experiment by Bippes (1991) can now be
written

T = R = 354.0, (24)

Uy, = (x% 4 1)0-84207 (25)
W = 1.442 (26)

See Hogberg & Henningson (1996) for a further discussion of issues relating to
the computational modeling of the experiment and table 1 for the relationships
between the coordinates used in the computational box, the Reynolds number
and the angle of the external streamline of the Falkner-Skan-Cooke flow.
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FIGURE 2. Growth rates for 3 = 0.25 at x = 261.9. a) Growth
rate v/s. frequency. b) Growth rate v/s. angle of wave number
vector. Solid line: w = 0.0 ; dashed : w = —0.04835

2.4. Linear stability characteristics of the base flow

In figures 2 (a,b) the behavior of the unstable modes with a wavenumber
B8 = —0.25 is shown at a chordwise position z

= 261.9, corresponding to
Rs« = 490.0. This chordwise position is about halfway between the inflow
and the outflow of the computational domain used in the numerical simula-

tions, and should thus give a good idea of the typical behavior of the unstable
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modes expected in the calculations. The results are found by use of the Orr-
Sommerfeld and Squire equations derived in section 2.2.

Figure 2(a) shows the growth rate vs. the frequency, and it is clear that
traveling modes are more unstable than the stationary one. In figure 2(b) the
growth rates of the stationary mode and the traveling mode with largest growth
rate (w = —0.04835) is shown vs. the angle of the wavenumber vector. It is
seen that the traveling modes are unstable for a broad range of angles, whereas
the stationary mode is only unstable for waves with a wave angle of about 45°.
This implies that the phase lines of the unstable stationary modes, and thus
the direction of the resulting cross-flow vortices are about 45°. This angle is
close to the angle of the Falkner-Skan-Cooke free-stream velocity vector at that
chordwise position.

2.5. Direct Numerical Simulations

The incompressible Navier-Stokes equations, for flow over a flat plate, are dis-
cretized using a spectral method. For spatial simulations, a fringe region tech-
nique is used to allow a streamwise inflow and outflow of the computational do-
main, retaining the periodic boundary conditions. At a constant distance from
the flat plate an artificial boundary is introduced and a free-stream bound-
ary condition applied. The horizontal directions are discretized using Fourier
series and the normal direction using Chebyshev series. Time integration is
performed using a third order Runge-Kutta method for the advective and forc-
ing terms and a Crank-Nicolson for the viscous terms. More about the code
can be found in Lundbladh, Henningson & Johansson (1992); Lundbladh et al.
(1994). The disturbances in the flow field are generated using localized volume
forces,

ou

E:NS(u)—l—)\(x)(u—uA)—l-F, (27)
where u = (u,v,w). The term A(z)(u — uy) is the fringe forcing, where u, is
the desired flow solution in the fringe and A(x) is a non-negative fringe function
which is non-zero only in the fringe region. The localized disturbance forcing is
given by the vector F' = (F, Fy, F3). It is possible to generate different kinds
of disturbances, both random and harmonic.

The random forcing is constructed by randomly distributing the amplitude
among a given number of spanwise Fourier components at each time interval.
The random forcing, which is directed normal to the wall, has the form

Fy = Frng = e\~ (@=00)/@scare)® = (/vscare)®) (1) (28)

where

F(2,1) = tampsg(2) + tampe (1 = b(#))A (2) + b(£)h ™ (2)] (29)
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and

i = int(t/ta) (30)
b(t) = 3p®—2p° (31)
p = t/ta—i (32)

g(z) and h'(z) are Fourier series of unit amplitude with random coefficients, and
tampt, tamps is the time dependent and the stationary disturbance amplitude,
respectively. The number of random coefficients in each Fourier series is given
by a parameter named n,,04es. Random values are generated for hl(z) with
the spacing t4; in time and then the ramp function b(¢) is used to interpolate
this to a smooth forcing. The frequency spectrum for the random part of the
forcing is almost constant in the range w = 0 to w = 1/tg; and then decays
quickly to zero outside, see figure 3.

The harmonic disturbance is constructed as an exponentially decaying func-
tion centered at y = 0 and x = ;0. It is also possible to give a relationship
between the x and z component of the disturbance to align the disturbance to
a streamline. The harmonic forcing has the form

Fy = Fharm = ampy e ¢/t g o 2) f (1) (1) (33)

where

]2

g(z,z) = cos(2m(z — xlskew)/zscale)e*[(“’7“0“0)/””“““ (34)
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Case Box Resolution
1 A 384 x 49 x 4
2 A 384 x 49 x 4
3 B 192 x 49 x 48
4 B 192 x 49 x 48
5 A 384 x 49 x 16
6 A 576 X 65 x 24
7 A 576 x 49 x 24
8 A 576 X 65 x 24
9 A 768 X 65 x 24
10 A 768 x 65 x 24
11 A 768 x 65 x 24

Forcing
A
B
C
D

Stationary forcing

Time-dependent forcing

Pos.
20.59

20.59

20.59
20.59
20.59
20.59
20.59
20.59
20.59

Type
A

w

= e

tamps Pos. Type
107°
20.59 C
1073
20.59 D
3.6 x 1072
3.6 x 1072

3.6 x 107°  20.59
3.6 x107%  209.5
3.6 x 1072 209.5
3.6 x 107°  20.59
3.6 x 107%  220.0

oNoRvAvAv)

Type:

Stationary-local,

Tscale = 10, Yscale = 1, Zscale = —25.14
lskew = 1, tscate = —400

Stationary-trip,

Tscale = 6, Yscale = 1 5 Mmodes = 45

Harmonic -local,

Tscale = 10, Yscale = 1, Zscale = —25.14
lskew = 1, tscate = —400

Random. -trip,
e = 10, Yscale = 1,

Tsca

Nmodes = 9, tar = 1.

tampt w

5%107%  0.04835

1073

1076 0.0957
1073 0.957

TABLE 2. Summary of the different simulations where Box A
denotes 500 x 8 x 25.14 and Box B denotes 500 x 8 x 251.4.
Lower table shows the type of forcing.

and

where

S(x)

and

f(t) = S(_t/tscale)

<0

[l+em1Ts] 0<az<1

r>1

hi1(t) = cos(wpt)

(36)

The function f(¢) must be used to give a smooth turn on of the forcing to
avoid problems with transients that may grow and cause transition in the flow.
For stationary disturbances wy, is chosen as zero, otherwise it is the w given in
table 2. In the simulations presented in this paper amp, is designated tqmps for
stationary disturbances or tgmpt for time-dependent (oscillating) disturbances.
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Table 2 contains information about the different flow cases that have been
simulated. Cases 1-4 have small enough amplitudes such that the disturbance
evolution is linear, with the latter two simulations having a computational box
width ten times the former and a random disturbance generation. Cases 5-11
all have the smaller spanwise box size and have disturbances for which non-
linear effects are significant. The resolution has been checked in several ways.
Comparing the results from cases 5 and 6, 8 and 9, and 7 and 10 confirmed
that the resolution is sufficient in our simulations. The growth rate curves from
cases 5 and 6 were the same, and so were they for cases 8 and 9.

3. Results
3.1. Comparison between Linear Theory and DNS

As a check on the numerics we start with a comparison between results of
linear stability theory, PSE and direct numerical simulations. We consider
the exponential amplification of disturbances in a spatially growing bound-
ary layer. First a start field is generated, using the FSC profiles, and then
a stationary or time-dependent disturbance is generated using a volume force
at x = 20.95, Rs» = 351.2 see Table 2, to obtain the cross-flow vortices or the
traveling waves. The Navier-Stokes equations are then solved until a stationary
or periodic state is achieved.

First we will verify that the spanwise spacing of the disturbance generators
in the experiments corresponds to a mode of maximum growth rate. We use a
computational domain in the spanwise direction which is ten times greater than
that associated with a single mode and introduce random stationary disturban-
ces along a line parallel to the leading edge. In figure 4, which is labeled as
case 3 in table 2, the normal velocity associated with the cross-flow eigenmode
is shown viewed from below. The disturbances grow downstream and appear
to be inclined at about 45 degrees. This corresponds to the most unstable
direction in figure 2(b) for the zero-frequency disturbance. At the end of the
box in figure 4 there are ten vortices, corresponding to a wave length in the z
direction that is equivalent to the width of the computational box used in the
rest of the direct numerical simulations presented. Thus, the spacing of the
roughness elements used in the experiments by Bippes (1991) to generate the
vortices is indeed close to the wavelength of the most unstable zero-frequency
mode. In case 4, a small amplitude random disturbance was introduced at the
same location as in case 3. This disturbance gave oblique, unsteady, traveling
waves similar to what Miiller & Bippes (1988) found in a study with higher
free-stream forcing. In their case the transition process was dominated by the
traveling modes.

The growth rate is the complex part of the chordwise wave number, —ca;.
In figure 5 this is compared to the chordwise derivative of the disturbance mag-
nitude and results from cases 1,2,6 shown. Here the disturbance is generated
with a stationary or time-dependent (harmonic) forcing. Note that due to the
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F1GURE 4. Contour lines of the disturbance velocity in the
normal direction at y = 0.5. The spacing between the contours
is 0.00005 ; The vortices are generated by random stationary
disturbances at = = 20.95.

presence of non-parallel effects the correspondence is poor between linear the-
ory and DNS. This is also true for the non-stationary disturbance which is
chosen to correspond to the one with maximum spatial growth rate. The good
agreement between PSE results and DNS is a verification of the validity of the
DNS results. The dips in the growth rate curves obtained from the DNS results
from the fact that the local forcing does not input pure eigenmodes.

3.2. Base Flow - Saturated Vortices

When the amplitude of the initial disturbance in the DNS is increased, the
cross-flow vortices reach a saturated state, where the exponential disturbance
growth is suppressed by nonlinear effects. For the flow with saturated vortices
we have to increase the number of spectral modes as has been done in cases 5
and 6. The saturation can be seen in the decrease of the spatial growth rate of
the stationary higher amplitude disturbance, also shown in figure 5. Contours
of the chordwise velocity in an z-y plane is shown in figure 6(a), where the
strong saturated vortices can be clearly seen.

As a starting point of the investigations of the interaction between traveling
and stationary cross-flow modes a base flow with saturated cross-flow vortices
can be used. To this base flow it is possible to add disturbances at different
locations and with different structures. The saturated vortices contain strong
shear layers, as seen in figure 6(a), which can be expected to support secondary
instabilities. The shear layer at the bottom of the vortex is a result of fluid
moving at a high velocity coming down with the vortex towards the wall into a
region with a lower velocity. The layer on the side and at the top of the vortex
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FIGURE 5. Growth rates v/s. z. Solid lines: Results from
DNS calculations w = 0 (lower) and w = —0.04835 (upper) ;
dashed : results of local eigenvalue computation for the same
frequencies ; dotted : DNS calculation for flow with saturated
cross-flow vortices ; filled circle : results from nonlocal PSE
calculations (A. Hanifi, private communication)

is the result of that low velocity fluid is carried by the vortex into a region with
fluid moving at a higher velocity.

3.3. Secondary instabilities

Figures 6(b,c) shows the response of the vortex to time-dependent random
forcing at two different positions. These results will be described in some
detail in the next two sections.

3.3.1. Low Frequency Mode

When a random time-dependent disturbance is located at the same x value as
the stationary disturbance, a low frequency oscillation develops downstream in
the box. In figure 6(b) the rms values of the flow in the vortices are shown.
It seems that the disturbance growth is supported mainly in the shear layer at
the bottom of the vortex.

Figure 7 shows the instantaneous chordwise disturbance velocity in a field
where the stationary time averaged mean flow, t,,cqn, is subtracted. The levels
of the disturbance are low compared to the vortex. In the frequency spectrum
from case 7 in figure 8, taken in the center of one of the vortex rms contours
(x =337,y = 2.5 and z = 0), there is a peak at a frequency in the region of
the most amplified traveling wave. If we study figure 2(a), we can see that this
frequency is unstable from linear analysis, but has a lower growth rate than it
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FIGURE 8. Frequency spectrum at x = 337,y = 2.5 and z = 0,
which is located at the point where the maximum rms of the
disturbance occurs.

has in figure 13. If this frequency only is superimposed on the vortex, which
is done in the simulations in case 10, we essentially reproduce figures 6(c) and
7. However, by integrating the solution far enough in time we can obtain a
periodic solution and easily calculate its growth rate. The growth rate of this
low frequency mode is compared to the primary instabilities in figure 13. It is
clear that the low frequency mode grows faster than the primary ones if the
vortices are strong. To obtain the growth rate for the low frequency secondary
instability, smoothing was used on the original data.

These results indicate that the low frequency mode can be viewed as an
interaction between the zero-frequency and amplified traveling modes, since the
presence of vortices modifies an already existing primary instability into what
Fischer & Dallmann (1991) calls a secondary instability. The main changes
in the primary traveling mode due to the presence of the finite amplitude
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cross-flow vortex, are the increased growth rate and the modification of the
eigenfunction to have a local maximum at the lower shear layer of the stationary
vortex.

3.3.2. High Frequency Secondary Instability

In experiments by Kohama, Saric & Hoos (1991); Deyhle & Bippes (1996),
a high frequency instability has been observed just prior to transition. The
frequency of this instability has been found to be about one order of magnitude
higher than that of the most amplified traveling wave, as was also found in
calculations by Malik, Li & Chang (1994).

To trigger this instability in our base flow the random disturbance gen-
eration was moved downstream to a position where the vortex was close to
saturation. The most unstable frequencies supported by the saturated vortex
was found by adding a random disturbance to the base flow at = 209.5. This
disturbance triggered both low and high frequency instabilities. See figure 6(c)
for contours of the rms of the chordwise velocity. If this is compared to figure
6(b) it is apparent that the extent of the rms-fluctuations increases when the
random disturbance generator is moved downstream, particularly towards the
top of the vortex. The frequency spectra in figure 9 show both a peak for a
high and for a low frequency at different locations in the cross-flow vortex. The
high frequency is found in the upper part of the vortex and the low frequency
at the bottom.

From analysis of the frequency spectra it was found that a frequency of
about w = 0.957 was the most unstable in the upper part of the vortex. In
the calculations labeled case 10, a small amplitude harmonic oscillation at this
frequency was introduced centered at x = 220. A smooth turn on of the forcing
was used to avoid big transients that could lead to a transition in the flow. This
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FiGURE 11. Contours of 4 — Umean at y = 3 , spacing=0.00005

disturbance grew mainly in the upper shear layer of the cross-flow vortex, see
figure 10. In the thesis by Lerche (1997) the location of growing high-frequency
disturbances is also found to be in the upper shear layer of the vortex.
Viewed from below in figure 11, where the time averaged flow is subtracted,
it is evident that the high frequency oscillation is superimposed on the vortex.
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FIGURE 13. Growth rates for the secondary instabilities.
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Note that the wavelength of the disturbance is about one fourth of that corre-
sponding to the low frequency secondary instability seen in figure 7.

The frequency spectra in figure 12 shows a clean peak at the frequency of
the generated disturbance. This is clearly a frequency that is highly amplified
by the vortex.

The growth rate for this frequency is considerably higher than the growth
rates of the primary instabilities, see fig 13. It is also higher than the growth
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rate of the low frequency mode. This indicates that the high-frequency sec-
ondary instability, when the conditions are favorable, dominate the transition
process making it very rapid. One interesting aspect of the high frequency
instability is that the neutral point is located quite far downstream (z = 270).
At that point the cross-flow vortex is almost saturated and the corresponding
growth rate is close to zero, see figure 5. Note that to obtain the growth rate
of the high frequency secondary instability smoothing was used on the original
data.

4. Summary and discussion

Linear eigenvalue calculations and direct numerical simulations of the evolu-
tion of disturbances in Falkner-Skan-Cooke boundary layers have shown that
the non-parallel effects on growth rates are present. This has been confirmed
using non-parallel calculations based on the parabolic stability equations. The
non-parallel effects are larger for traveling waves compared to stationary dist-
urbances.

When stationary disturbances with higher amplitudes are introduced in the
direct numerical simulations, saturated cross-flow vortices are obtained. The
secondary instability of these vortices are considered by superimposing small
random disturbances on the cross-flow vortices. A low frequency mode is found
located at the bottom shear layer of the cross-flow vortex, and a high frequency
secondary instability is found at the upper shear layer of the cross-flow vortex.
In agreement with the findings of Fischer & Dallmann (1991),the low frequency
mode can be viewed as an interaction between the zero-frequency and amplified
traveling waves. Introducing a high frequency harmonic disturbance results in
a high frequency oscillation in the upper part of the vortex. The high-frequency
disturbances appear only once the cross-flow vortices have saturated and have
considerably higher growth rates than the low-frequency secondary instability.

The results of the present investigation confirms that the high-frequency
oscillations found in the experiments of Deyhle & Bippes (1996); Kohama,
Saric & Hoos (1991), Lerche (1997) is a result of a secondary instability of the
shear layer located on top of the cross-flow vortex, something also suggested
by the results of Malik, Li & Chang (1994). This is the first time that this
instability has been seen in direct numerical simulations. In particular it is
interesting that both the low and the high-frequency instability appeared as a
result of a forcing by random noise. Thus both instabilities can be expected to
exist in a real flow situation, and it is the nature of the disturbance environment
in the flow of interest which determines which instability will appear. In a
low noise environment one may expect the high-frequency instability to cause
transition, since it has so much higher growth rate, whereas in a flow with
higher levels of free-stream turbulence transition may be caused by the low-
frequency instability, since it has an onset further upstream. The latter scenario
was found in an experiment of Miiller & Bippes (1988) using a wind tunnel
with rather high free-stream turbulence level. The dominant transition route
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may of course also be determined by the receptivity of the boundary layer to
particular frequencies of disturbances in the freestream turbulence.

For flows with low free-stream turbulence levels, the results of the present
investigation indicate that the streamwise location of the start of transition
should be well correlated with the neutral point of the high-frequency insta-
bility, since the turn on of the instability is quite rapid and high values of the
growth rate are reached quickly.
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flows were used as a guide in the choice of numerical and physical parameter
values. We also thank Ardeshir Hanifi for performing the PSE calculations
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checking the results.
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Linear optimal control applied to instabilities in
spatial boundary layers

By Markus Hogberg® and Dan S. Henningson*!

The work presented extends on previous research on linear controllers in tem-

poral channel flow to spatially evolving boundary layer flow. The flows studied
are the ones on an infinite swept wedge described by the Falkner—Skan—Cooke
(FSC) velocity profiles, including the special case of the flow over a flat plate.
These velocity profiles are used as the base flow in the Orr—Sommerfeld—Squire
equations to compute the optimal feedback control through blowing and suc-
tion at the wall utilizing linear optimal control theory. The control is applied
to a parallel FSC flow with unstable perturbations. Through an eigenvalue
analysis and direct numerical simulations (DNS), it is shown that instabilities
are stabilized by the controller in the parallel case. The localization of the
convolution kernels for control is also shown for the FSC profiles.

Assuming that non-parallel effects are small a technique is developed to
apply the same controllers in a DNS of a spatially evolving flow. The per-
formance of these controllers is tested in a Blasius flow with both a Tollmien-
Schlichting (TS) wave and an optimal spatial transiently growing perturbation.
It is demonstrated that TS waves are stabilized and that transient growth is
lowered by the controller. Then the control is also applied to a spatial FSC
flow with unstable perturbations leading to saturated cross-flow vortices in the
uncontrolled case. It is demonstrated that the linear controller successfully
inhibits the growth of the cross-flow vortices to a saturated level and thereby
delays the possibility for transition through secondary instabilities. It is also
demonstrated that the controller works for relatively high levels of nonlinearity,
and for stationary as well as time varying perturbations.

1. Introduction

In many fluid-mechanics systems, like boundary-layers undergoing transition
to turbulence, dramatic effect on global flow parameters may be achieved by
minute local perturbations. Whereas such a fundamental instability property
is a problem in many applications, it is the basis for the vision of dramatic
performance improvements of fluid-mechanics systems using devices sensing
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Sweden
TThe Swedish Defence Research Agency ( FOI ), SE-172 90 Stockholm, Sweden
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and acting only on small parts of the flow with minute energy. Such control
devices could be used to obtain drag reduction on bodies, increased lift on
wings, increased propulsion efficiency, heat- and mass-transfer reduction or
enhancement, control of combustion instabilities, control of vortex shedding
and aeroacoustic pressure fluctuations.

Recent advances in computer capacity, sensor development and systems
control for fluid dynamics have opened new perspectives for the design and con-
trol of flow systems (see for instance the review articles of Gad-el-Hak (1996),
Lumley & Blossey (1998) and Bewley (2001)). Internationally this area has
seen a strong expansion over the last few years.

Traditionally passive control, i.e. design or flow alteration not dynamically
dependent on the state of the flow, has been used to control fluid mechanical
systems. Active control of boundary layers is a more recent development, where
e.g. transition has been delayed by cancelling TS waves by anti-phase modal
suppression. Early work is reviewed by Thomas (1990) and a brief, later
review is given by Metcalfe (1994). These studies show that the instabilities
may indeed be significantly suppressed, but complete elimination of the primary
disturbances are not obtained.

Researchers have only recently attempted to apply optimal-control ideas
to flow control problems. A main feature with such an approach is that no a
priori knowledge of the functional behavior of an effective control is needed.
Also, the method is general; it can be used for such disparate tasks as finding
the optimal shapes of wings (Jameson (1989)), minimizing the vorticity of an
unsteady internal flow by manipulating the inlets (Berggren (1995)), as well
as controlling boundary-layer transition (Joslin et al. (1997)) and turbulence
(Bewley, Moin & Temam (2001)). In addition, optimal control based on the
linearized equations has shown great success in recent applications to channel
flow (see Joshi, Speyer & Kim (1997), Bewley & Liu (1998) and Hogberg
& Bewley (2000)). In this approach modern linear control theory is used to
construct feedback control kernels as well as estimator forcing kernels, which
can be used together as an on-line compensator.

Control of transition in boundary layer flows has numerous application
areas, and so far there has been little use made of active control strategies in
practice. Experimentally control has been applied to boundary layer flows using
both passive and active strategies, utilizing many different means of actuation.
A complete review is not given here but rather a few examples to give a taste
of the activities in this field. Passive strategies include using riblets and surface
roughness to modify the flow. A thorough study on the use of riblets to suppress
the intensity of streamwise vortices in boundary layers is summarized by Kozlov
& Grek (2000). Using passive control, Saric, Carrillo & Reibert (1998) showed
that it was possible to use leading edge roughness for transition control in order
to delay transition by exploiting the non-linear nature of the flow. To be able
to use this method in a general case an actuation method was developed by
White & Saric (2000) who introduced a variable surface roughness at the
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leading edge of a swept wing to actively control transition initiated by cross-
flow vortices. The success of generalizing the passive control scheme into an
active relies on a better understanding of the transition process, especially
the role of secondary instabilities. The breakdown of a localized disturbance
into a turbulent spot in a flat plate boundary layer was successfully delayed
using active wall bumps by Breuer, Haritonidis & Landahl (1989). An active
strategy to control streamwise vortices and streaks in boundary layers was
applied by Jacobson & Reynolds (1998). They developed an actuator that
produces a high- and a low-speed streak that was used to delay transition. The
use of these active control strategies in a practical feedback control scheme
relies, in addition to a good physical understanding of the transition process,
on development of accurate sensors and actuators.

As an alternative to experiments, computations can be used to investigate
what is possible to achieve under ideal conditions, as well as to test new strate-
gies. Active control of cross-flow vortices related to the aforementioned work by
Saric, Carrillo & Reibert (1998) has been studied numerically by Wassermann
& Kloker (2000) where an out of phase type control was applied to cross-flow
vortex packets using DNS. They found that a modal control, where the phase
shift of the control was adjusted individually for different modes was neces-
sary to achieve an effective total amplitude reduction. Cathalifaud & Luchini
(2000) applied an optimal control technique to the boundary layer equations
to control optimal spatially developing perturbations in the boundary layer on
a flat or concave wall. They used the adjoint equations to perform a gradient
based optimization with the objective to minimize the perturbation energy in
different spatial intervals. Mughal (1998) used the compressible parabolized
stability equations (PSE) to investigate the effect of simple feedback boundary
conditions for the wall normal velocity to control for example T'S-waves and
Gortler vortices. In recent work Pralits, Hanifi & Henningson (2001) have
developed a method to couple the boundary layer equations and the PSE in
order to optimize a steady mean-flow modifying suction in order to minimize
growth of perturbations in boundary layer flows. In the paper by Walther,
Airiau & Bottaro (2001) the PSE are used to compute the optimal zero mass
flux control for a TS wave in a developing boundary layer. A slightly different
approach was investigated by Balakumar & Hall (1999) where an optimiza-
tion problem coupling the boundary layer equations and the linear stability
equations was solved with the objective to move the transition point instead of
minimizing the perturbation energy. The numerical approaches to flow control
many times assumes ideal conditions that are not present in practice. Robust
control schemes are vital to be able to take the step from the computers to the
experimental setting and to practical applications.

In the present paper the linear control approach from Hogberg & Bew-
ley (2000) is applied to spatially evolving boundary layer flows. In section
2 the Falkner—Skan—Cooke (FSC) boundary layer profiles are introduced and
then the formulation of the linear control problem is presented in section 3.
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Fi1GURE 1. Falkner—Skan—Cooke base flow and coordinate sys-
tem used in this report. 1 is the angle to the streamline of the
flow in the freestream, U, is the chordwise freestream com-
ponent and W, is the spanwise freestream component. The
dashed line is the streamline of the flow in the freestream over
a flat plate with a pressure gradient in the x direction

The numerical simulations performed and the methods used is summarized in
section 4. In section 5 the linear optimal control is applied in a parallel FSC
flow in order to explain some features of the control and then the extension
to spatial boundary layers is done in section 6. Results from simulations with
and without control in spatial boundary layers is presented in section 7 for
the Blasius boundary layer and in section 8 for the FSC boundary layer for
non-stationary as well as stationary perturbations. Finally a discussion and
conclusions follows in section 9.

2. Falkner—Skan—Cooke boundary layers.

The Falkner—Skan-Cooke boundary layer profile family includes a large variety
of flows. It includes the Blasius boundary layer as a special case, and the
effect of sweep and favorable/adverse pressure gradients can be added. These
different flows have been studied previously and are known to exhibit different
types of primary instabilities. In order to test the control strategy for different
types of instabilities we need to examine its effectiveness in a few different flows.
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Consider an infinite swept flat plate where 9/9z = 0. The dimensional
boundary layer equations according to Schlichting (1979) become:

ou* ow* AUz 0%u*
Y T oy* < da* +V8y*2 1)
ow* ow* 0*w*
* * — v 9
Yo Ty T Vo ®
Ju*  Ov*
or* + oy* 3)
with the boundary conditions:
uv=v"=w"=0 at y*=0 (4)
= UL, w' - WL as y*— o0 (5)

where u*, v*, w* are the chordwise (x), normal (y) and spanwise (z) velocity
components, respectively, and * denotes dimensional quantities. See figure 1 for
a definition of the coordinate system. We assume that the chordwise base flow
at the boundary layer edge obeys a power law according to, U% = Uj(x* /x§)™
and that W = constant. A self-similar solution may be found if we select

0= {(m+ 1)UL /2va"}' 2y (6)
Introducing the stream-function
U = (U va" /m+1)2 f(n) (7)
with u* = 90¥*/9y* and v* = —9U*/Jz* and w* = WZg(n) reduces the

boundary layer equations to a function of the single variable 7, we have

S L B (= ) =0 (8)

g9"+fgd =0 (9)

where the Hartree parameter is 8 = 2m/(m + 1) and the boundary conditions
are

f=f=9g=0 if n=0 (10)
ff—=1,9g—1 as n— oo (11)

f" and ¢ can then be combined into the Falkner-Skan-Cooke velocity profiles,
see Cooke (1950), as

Uy = 1) (12)
W) = =) (13

with y = y*/d5. Note that
5 = {(m+ VUL 20"} 2 [0 = (14)

0
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which implies that
& = {(m + 1)U J2vay} ~1/2C (15)

where
C= [(1—f)dy (16)
/

Then we have
U x§
— C 000 1/2 17
U {—ng* Py (17)
where zfj is a fixed position. The profiles (12) and (13) will be used as a
base flow in the control computations and as initial conditions in the direct
numerical simulations presented.

3. Linear control theory.
3.1. Problem formulation

To investigate the stability of a flow to small disturbances, one assumes that
the flow can be divided into two parts,

(ur,v,w) = (U,0,W) + (u}, v, w') (18)

where U and W are the base flow components in the chordwise and spanwise
directions, respectively. It is here assumed that the parallel flow assumption
holds, i.e. the base flow components only varies with the normal coordinate.
The primed quantities represent a small perturbation. We also assume wave-
like disturbance of the form

v = o(t)el T i) (19)

where o and (§ are the z and z components of the wave number vector and
@(t) is the complex amplitude function for the chordwise velocity. Inserting
these assumptions into the Navier-Stokes equations and linearizing, we find
the resulting disturbance equations that can be reduced to the following set
of two coupled equations where appropriate boundary conditions have been
included to allow inversion of the Laplacian ( A = (D? — o2 — 3%) ).

3 1

% = A‘l[—(iaU+zﬂW)A+iaD2U+iﬁD2W+EAQ]z) (20)
Los

dn _ . R . I, .

T - [zaDW—zﬁDU]v+[—z(aU+ﬁW)+EA]77 (21)

L
c Lso

where ¢ and 7) = (84— a) are the amplitude functions for the normal velocity
and the normal vorticity, respectively. A D denotes the derivative operator the



Linear optimal control in spatial boundary layers 227

wall-normal direction. The boundary conditions are
8(0) =4, Do(0) =0, 7(0) =0

@(y) — 0, D@(y) — 0, ﬁ(y) —0asy — o0 (22)

Here R is the Reynolds number based on the velocity scale Uy and the dis-
placement thickness §*, both taken at the stream-wise location xy. The normal
velocity on the wall ¢ is our control input to the system. To denote the Rey-
nolds number based on local displacement thickness and freestream velocity Re
will be used.

Equation (20) is referred to as the Orr-Sommerfeld equation, and the equa-
tion (21) is known as the Squire equation. The U(y) and W (y) profiles used
in this investigation is taken from (12) and (13) in the previous section. Since
(20) and (21) is a linear system of equations we can divide the solution into

two parts one homogeneous (p,, 7j,) and one inhomogeneous (0y, 7j,) such that,
0= in+ b

oy (23)

= "h + @ Mp,

where the conditions on the particular solution are such that it satisfies (22)
with ¢ = 1. Finding a particular solution with non-zero normal velocity on the
wall allows us to parameterize the inhomogeneous part of the solution with the
time derivative of the wall normal velocity.

do . .. Y
d—th = Los(0n+0p0) —0p¢ (24)
dp . N . Y
= Loln+0,0)+Lsq (in+1p @) =y &, (25)
with the boundary conditions,
0,(0) =0, DoR(0) =0, 7,(0) =0 (26)
on(y) — 0, Dip(y) — 0, Mr(y) — 0 as y — oo. (27)

Now control theory can be used to determine ¢ from (O, 7). Introducing
X = [0, n, @7 and @ = ¢ we can write,

x = Ax + B, (28)
where
ﬁos 0 ﬁOS@p _@;D
A= Lo Lsg Lctp+Lsonp |, B=| - |- (29)
0 0 0 1

Looking for the optimal controller we need to specify an objective function,

J= / (x*Ox + 2ati)dt, (30)
0
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F1cURE 2. Control convolution kernel for the normal velocity
computed at R = 337.9 with £ = 102 and r? = 0 with a resolu-
tion of 192 x 65 x 96 Fourier, Chebyshev, Fourier modes in an
T Xy X z box with the dimensions 100 x 10 x 125.7 respectively.
a: Contour plots of xy- and xz-plane. Solid contours are neg-
ative values and dashed contours are positive. b: Isosurfaces
at 25 (light) and -25 (dark).

where @) is a measure of the energy of the perturbation and £ is a parameter
penalizing the magnitude of ¢. For each wavenumber pair @ can be written,

QU 0 QU’[}P
Q - 0 Qn Qnﬁp ’ (31)
0,Qu 0,9y (1+ 72)(@; Qulp + 7l Qu'ilp)



Linear optimal control in spatial boundary layers 229

2

sf -7 S RN a

1R -

zy-plane

|

0 w2

F1cUre 3. Control convolution kernel for the normal vorticity
computed at R = 337.9 with £ = 102 and r? = 0 with a resolu-
tion of 192 x 65 x 96 Fourier, Chebyshev, Fourier modes in an
T Xy X z box with the dimensions 100 x 10 x 125.7 respectively.
a: Contour plots of xy- and xz-plane. Solid contours are neg-
ative values and dashed contours are positive. b: Isosurfaces
at 0.5 (light) and -0.5 (dark).

where,
171 067 00 171
v v
A% ’UA:_ Bl A*Ad, A% N — — —A*Ad, 2
9*Qy 0 8/(k23y3y+vv)y 7" Qnf 8/(k2nn)y (32)
0 0

with k? = o2 + 32. The parameter r2 adds an extra penalty on ¢2.
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3.2. Discretization and solution procedure

The equations are discretized in y using a Chebyshev collocation technique
utilizing the Gauss—Lobatto collocation points such that,

N .
F= 1@ P Fi) = D2 FaTulws), yo = cos <
n=1

where {T,(y)}N_; are the Chebyshev polynomials. The operators mapped
to the Chebyshev interval —1 < y < 1 and then the discrete operators are
compiled using the spectral MATLAB Differentiation Matrix Suite of Weideman
& Reddy (2000). The discrete form of the homogeneous evolution equation, (
¢ =01in (22) ), can then be written,

d [on] o [on - [Los O ]

-— | = = N =~ 5 N = = = . 33
dt [WJ {”h] [EC Lsq (%)
The discrete form of (28) is,

X = AX + B, (34)

and analogously the discrete form of @ is denoted Q. The optimal discrete
feedback control law & = KX can now be found by solving the Riccati equation
(see e.g. Skelton (1988) ),

XA+A*X—X€%BB*X+Q:O, (35)

_ 1 -
where K = _Z_QB*X . Applying this feedback control gives us the closed loop
System

x = (A+ BK)x, (36)

where A, describes the dynamics of the controlled system. Dividing K into
three parts such that Kx = K; v, + K;; 7, + K $, the contribution from the
normal velocity and the normal vorticity can be studied separately. To get the
feedback law for the inhomogeneous flow we need to remove the contribution
from inhomogeneous part of the flow from the feedback law using a discrete
form of (23),

U= Ksop + Kyip + Kp p= K50+ K+ (K — Ks0p — Kyijp.) 4. (37)

To get a representation of the feedback law as an integral in y instead of a sum
the integration weight of the feedback law at each grid-point must be removed
since it has been included implicitly in the discrete formulation of the control
problem. The integration weights W for the Chebyshev grid with the Gauss—
Lobatto collocation points is computed using an algorithm described in the
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appendix of Hanifi, Schmid & Henningson (1996),

/ N b & njmw i dy
f)dy=> flyp)Wly;), Wly;)=-2) cpcos|—— T, (y)==dy,
/1 y) dy ; y))W(y y an:;) (N)/ (y)dyy

where ) is the physical normal coordinate in the boundary layer mapped to the
Chebyshev interval —1 <y < 1. The coefficients b; and ¢,, are found from,

N B N N b
F@) =D FaTaly) = Y enTu(®) D 25 1) Ta(y))-
n=0 n=0 7=0

These weights provide spectral accuracy of the integration. We can then intro-
duce the diagonal matrix © such that,

Oi; = 6i;W (y;),
where d;; is the Kronecker delta. We can now define,
K(a,B) = [0 'Ky, 071Ky, Kyl (38)

By solving for all wave number pairs (o, §) and combining these together we
can inverse Fourier transform the combined controllers and get physical space
convolution kernels k,, k, and k, describing the feedback law,

oz, 2,t) = /(kv(m - %,9,2—2)V(Z,7, 2, t)+
k’f](x_jagvz_z) n'(:ﬁ,g,i,t))d:ﬁdgjdz—i—

/k@(x — I,z —Z)p(x,z,t) dz dzZ, (39)
r

where ) denotes the inner part of the domain and I'" is the wall. In figure 2b iso
surfaces the convolution kernel in physical space for the v velocity can be seen,
and in figure 2a there are contour plots of the same kernel. The convolution
kernel for 7 is visualized in figures 3a and 3b. These kernels are computed
at * = 50 in a box with the dimensions 100 x 10 x 125.7 in X y X z and
resolution 192 x 65 x 96 Fourier; Chebyshev; Fourier modes respectively. The
Reynolds number is R = 337.9 with £ = 10? and the cross-flow velocity W, =
1.44232 U (x = 0) and m = 0.34207. These particular kernels were computed,
at high resolution, for the purpose of visualization and are not used in the
simulations presented here. They are however representative for all the kernels
used in terms of their shape and structure. Notice that the kernels show that
the control mainly relies on upstream information, and that the convective time
delay of the mean flow profiles is taken into account automatically. Turning
and twisting the kernel one can see that it is skewed in a way corresponding to
the direction of the mean-flow streamline varying with y. Another important
property of the kernels is their spatial localization, which is crucial for being
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able to move on to the spatially developing flow in section 6. To solve the
Riccati equations an algorithm based on an eigenvector calculation taken from
Skelton (1988) p. 350 was implemented in MATLAB. A study of Riccati
equations and methods to find their solutions can be found e.g. in Laub (1991).

4. Direct numerical simulation

A spectral method is used to solve the incompressible Navier-Stokes equations
for flow over a flat plate with a pressure gradient. The equation solved is

ou _ NS(u) 4+ A(z)(u —uy) +F,

ot
V-ou=0, (40)

where NS represents the Navier—Stokes equations. To retain the periodic
boundary conditions and allow a stream-wise inflow and outflow of the com-
putational domain, a fringe region technique ( see e.g. Nordstréom, Nordin &
Henningson (1999) ) is used in the spatial simulations. This is implemented
in the term A(z)(u — uy), where A(x) is a positive function that is non-zero
only in the end of the computational domain and u, is the desired solution in
this region. The term F represents additional forcing used to introduce per-
turbations in the flow. An artificial boundary is introduced and a freestream
boundary condition applied at a constant distance from the flat plate. In the
temporal case the boundary condition Du = Dv = Dw = 0 is used at the upper
boundary, in the spatial simulations Du+ku = DU+ kU, Dv+kv = DV +kV,
Dw = DW + kW is used. The normal direction is discretized using Chebyshev
polynomials and in the horizontal directions Fourier series are used. Time inte-
gration is performed using a third order Runge-Kutta method for the advective
and forcing terms and a Crank-Nicholson for the viscous terms. More about
the code can be found in Lundbladh et al. (1999). The disturbances in the
flow field are generated by forcing to a particular perturbation in the fringe
region or by applying an external volume force. To make sure that changes
of forcing and boundary conditions in the x or ¢ directions are smooth a step
function is used. It has the form,

0 r<0
S(ry=1{ 1/[l+e7t7] 0<r<1 , (41)
1 r>1

where r = (z — z¢)/Ax is used to be able to change the slope, position and the
extent of the S function. It is used for example to construct the fringe forcing
function A\(x) as well as smooth time varying random perturbations. In table
1 there is an overview of all the simulations reported on in this article.

5. Control in a parallel boundary layer

In order to examine the properties of the computed control, the parallel bound-
ary layer flow is studied. This simple case allows us to illustrate the effect of
the control and the parameters of the objective function in terms of temporal
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Case Flow Perturbation Control
r2 14 T €

1 A Eigenmode none

2 A Eigenmode 0 10° all

3 A Eigenmode  10° 10° all

4 A Eigenmode 0 102 all

5 B TS wave none

6 B TS wave 0 10% [75,225]

7 B Optimal none

8 B Optimal 0 102 [75,225]

9 B Optimal 0 10% [75,725]

10 C  Random none

11 C  Random 0 10% [75,225]

12 D  Stationary none

13 E  Stationary 0 10% [25,175)

14 E  Stationary 0 102 [145,295]

Letter Flow Resolution Box

A Temporal FSC 4x49x4 2514 x 10 x 25.14
B Spatial Blasius 576 x 65 x4 1128 x 20 x 12.83
C Spatial FSC 192 x 49 x 48 500 x 8 x 251.4
D Spatial FSC 576 x 65 x 24 500 x 8 x 25.14
E Spatial FSC 384 x 49 x 16 500 x 8 x 25.14

TABLE 1. Overview of simulations performed. The control
kernels are always computed using velocity profiles from the
center of the control interval and at the same resolution as
the simulation or higher. The rise and fall scale of the control
region is Az = 5 in all cases. The Reynolds number is R =
337.9 for the FSC cases and R = 468.34 for the Blasius cases.
The fringe region in the spatial simulations starts at = 1028
in the Blasius cases and at = = 350 for the FSC flows

eigenvalues and eigenvectors. In a boundary layer flow with a three dimensional
velocity profile one can always find a direction in which an inviscid instability
will exist due to inflection points in the velocity profile. In this direction there
will be an unstable eigenvalue with a corresponding eigenmode. We will focus
on the flow investigated in Hogberg & Henningson (1998) where the Reynolds
number was R = 337.9 at the beginning of the simulation box with a cross-flow
velocity of Wy, = 1.44232 and m = 0.34207 and the width of the box was
z1 = 25.14. This flow was studied in spatial simulations and in section 8 the
control will be applied to a few of those cases. A study of the effect on eigen-
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FiGURE 4. Effect of control on unstable eigenvalue and cor-
responding eigenvector. The parameters are o = 0.25, § =
—0.25 with 90 collocation points in y. Uncontrolled eigenval-
ues and eigenvectors are for N from (33) and controlled ones
are for the closed loop system A.; in (36). a: The uncontrolled
eigenvalues are represented by the symbol ’0’ ,the controlled
ones with x’ is for £ = 10%, r = 0 and with ’0° is for ¢ = 10°,
r?2 = 105. b: The absolute value of the uncontrolled unstable
eigenvector, solid is 7 and dashed v. ¢: The absolute value of
the corresponding controlled eigenvector with ¢ = 10°, solid is

7 and dashed v. This eigenvector is identical for both values
of 2.

values and eigenvectors from the control is shown in figure 4. The uncontrolled
eigenvalues are those of N in (33) shown with the open circles in figure 4a,
and the controlled eigenvalues are those of the closed loop system A, in (36).
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FIGURE 5. Controlled eigenvalues of A.; in (36) for a controller
with ¢ =102, r = 0.

The unstable eigenvalue (—0.15315 4+ ¢0.037782) is moved by a controller with
¢ =10% and r = 0 to (—0.15315 — i0.037783), where the closed loop eigen-
values are plotted using crosses in figure 4a. The corresponding eigenvector
also is modified by the control, compare figure 4b and c. The high penalty on
the control parameter results in that only the unstable eigenvalue is moved.
Actually it is just reflected in the real axis. An additional eigenvalue appears
with the value 0.000001 — 40.000602 and is due to the extra degree of free-
dom introduced to apply the control. This will in fact be the most unstable
eigenvalue in the controlled system. Using the extra penalty term (r?) on ¢? in
the objective function will move this eigenvalue down the imaginary axis. With
72 = 105 this eigenvalue will move to (108 —40.190367), shown with the closed
loop eigenvalues denoted by an open square in figure 4a. With a lower penalty
£ the unstable eigenvalue would move more and other eigenvalues would also
be moved in order to get the system dynamics that minimizes the objective
function as shown in figure 5. This is also true for the extra eigenvalue due
to the application of control. The movement of eigenvalues and modifications
of eigenvectors is discussed in Bewley & Liu (1998) in terms of channel flow.
They show that the application of the control makes the eigenvectors ‘more or-
thogonal’” and thereby lowers the transient energy growth. Also in the paper by
Joshi, Speyer & Kim (1997) the effect of controllers on eigenvalues is studied
for channel flow.

In a direct numerical simulation the eigenvector in figure 4b is used as

initial perturbation with exponential growth at a low initial energy. Then
feedback control is applied first with £ = 10%, 2 = 0 and then with ¢ = 105,
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FIGURE 6. Energy growth of uncontrolled unstable eigenvec-
tor perturbation and effect of applied controls. dash-dot: un-
controlled energy growth from case 1, dotted: controlled with
¢ =10% and r? = 0 from case 2, solid: controlled with ¢ = 10°
and 72 = 10° from case 3, dashed: controlled with ¢ = 10? and
r2 =0 from case 4.

r? = 0 and finally with £ = 102, 72 = 0. In figure 6 the energy growth for
these different simulations in cases 1-4 in table 1 is shown. The decay of the
perturbation after control has been applied is different for the different values
of the penalty parameters ¢ and . The slope in the cases where £ = 10° and
the uncontrolled case corresponds to the largest eigenvalue of the dynamical
system. In summary the application of the linear control strategy to parallel
boundary layers show results analogous to those obtained for channel flow in
previous studies.

6. Extension to spatial boundary layers

Moving on to a spatial boundary layer flow we need to remember what as-
sumption we make that will allow the controller to work. The key properties
necessary for this to work are that the controller only utilizes local information
about the flow and that non-parallel effects are small. Assuming that non-
parallel effects are small is not really a good assumption for many flows since
the growth of the boundary layer can have a substantial effect on the eigenval-
ues of the system. This can however be of less significance for the application
of control since the precise eigenvalues are not as important as the overall dy-
namics. In the case with cross-flow there is also a change in the direction of
the outer streamline in the chordwise direction that is not accounted for with
the parallel assumption. Some robustness of the controller performance with
respect to a varying mean-flow is expected based on the success in controlling
turbulence via a gain scheduling technique in Hégberg & Bewley (2000). Ounly
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a few different mean-flow profiles were needed to cover the range from a fully
turbulent profile to a laminar one. This indicates that the controller can handle
finite deviations of the mean-flow from that for which it was computed. The
localization of the convolution kernels implies that only information of the flow
field close to the actuation region is used. The property of spatial localization
also extends from the channel to the boundary layer flows as demonstrated in
figures 2 and 3.

The control kernel is computed in the spatial case in the same way as in the
temporal case using a base flow profile at some position where the control will
be centered. Then this kernel is used to compute the control over the whole
wall of the spatial domain. The resulting control is then filtered with a hat
function to act only in a small part of the domain and adjusted to give zero net
mass flux. To ensure zero mass flux after the filtering of the control a constant
is added to the control,

[ [, oz, 2) H(z)dz dz
S . (42)

and H(z) is a hat function consisting of a combination of two step functions
described by equation (41) such that,

H(x)_s(x—(xz;xl/%)_S<x—(ch;—xl/2)>’ (45)

where z. is the position where the control is computed, z; is the length of the
control interval and Az is the rise and fall distance. Since a spectral method
is used we can compute the convolution integral as a sum in Fourier space. In
the parallel flow only the o = 3 = 0 mode contains the mean flow, but in a
spatial simulation the mean flow is contained also in the other 3 = 0 modes,
and we must subtract this before we compute the convolution so that only
perturbations to the mean flow are reacted upon by the controller. One can
expect that the controller will work as well as in the temporal case locally near
the position where the mean-flow corresponds to that for which the optimal
controller was computed. Further away from this position the computed control
is not expected to be as good.

&(z,z) = (p(z,2) + ¢)H(x) where c¢=

7. Control in a Blasius boundary layer

To test the strategy on a simple case the Blasius boundary layer is studied. One
case with a TS wave and one case with the optimal perturbation for spatial
transient growth. The Blasius mean flow profile is a special case of the Falkner—
Skan profiles with m = 0 and no mean-flow component in the z direction. A TS
wave is generated by an oscillating two dimensional forcing at the dimensionless
frequency F' = 200, where F' = 27 fv /U2 x 106, in the beginning of the box and
allowed to develop downstream. The domain and resolution for the simulation
is given in table 1 denoted as case 5. The flow is perturbed just upstream
of branch I of the neutral stability curve which is at about Re = 507 and
the perturbation grows exponentially, shown as the dashed line in figure 7a,
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in the uncontrolled case until it reaches branch II at about Re = 723. The
small transient in the beginning is due to that we do not force to a pure TS
eigenmode. In case 6 in table 1 the controller applied between Re = 568.4 and
Re = 729 corresponding to x € [75,225]. The solid line in figure 7a shows that
the exponential growth is completely removed by the controller in the control
region and instead there is exponential decay. These results are similar to those
obtained by Walther, Airiau & Bottaro (2001) where the application of control
resulted in exponential decay of the perturbation energy in the unstable region.
In figure 7b the control signal on the wall is plotted at different times during a

log(Energy)

FI1GURE 7. a: The spatial energy growth of a TS wave per-
turbation in a Blasius boundary layer with control from case
6 (solid) and without control from case 5 (dashed). The non-
dimensional frequency of the perturbation is F' = 200. Control
is applied in x € [75,225]. b: Control signal during one time
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F1GURE 8. a: The spatial energy growth of the optimal spatial
perturbation at x = 237.24 with R = 468.34 in the Blasius
boundary layer. Dotted: computed from the boundary layer
equations. Dashed: computed with DNS for case 7. Dash-
Dotted: With control applied in z € [75,225] from case 8.
Solid: With control applied in = € [75,725] from case 9. b:
The control (v) distribution at y = z = 0 for the streak mode
in case 8 with control in z € [75,725] (solid) and case 9 with
control in z € [75,225] (dashed).

period of the T'S wave. The control signal looks like a T'S wave with decaying
amplitude and is periodic in time.

Next the performance of the controller for a transiently growing perturba-
tion is studied. The spatial optimal perturbations in a Blasius boundary layer
have been computed by Andersson, Berggren & Henningson (1999) and Luchini
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(2000). The particular optimal spatial perturbation used here is computed us-
ing the technique from Andersson, Berggren & Henningson (1999) introduced
at Reg = 395.4 and then marched forward using the linear equations to the
position where Re = 468.34. The perturbation is optimized to be the one with
maximum growth at x = 237.24 in the simulation box. This perturbation is
then used in DNS with and without control. The domain and resolution is
given in table 1 for case 7 which is the uncontrolled flow. In figure 8a the dot-
ted line shows the energy evolution as the perturbation is marched using the
linear equations. The dashed line then shows the result for the uncontrolled
perturbation using DNS. The energy measure is defined as,

27 /B oo

Bu(z)) = / /(u2 40?4 w?)dydz,

0 0

and Fj is the energy of the perturbation at the initial position.

In case 8 the same controller and control interval as in the TS wave case (
case 6 ) is used. In figure 8a the dash dotted line shows the perturbation energy
for this case. In this case the simulation is run until a stationary state has been
obtained. Immediately when the perturbation reaches the control interval its
energy is reduced and then the energy is kept almost constant throughout the
control interval. The control velocity for this case is plotted as the dashed
line in figure 8b showing an initial peak and then a slowly decaying amplitude.
Downstream of the control interval the perturbation grows again, but does not
reach the same energy level as in the uncontrolled case.

In case 9 a controller computed further downstream, still with [ = 10? and
7?2 = 0, is applied in a longer region centered at x = 400 and for x € [75, 725].
There is substantial growth of the boundary layer in this longer interval and
the parallel assumption is truly challenged. Even though there is a larger
difference in this case between the mean flow used to compute the control
kernel and the one at the position where the control interval starts, the solid
line in figure 8a shows that the energy decays rapidly and is maintained at a
low, slightly increasing, level by the control throughout the control interval.
The control signal, solid line in figure 8b, is similar to the one obtained in the
shorter interval initially and then there is a slow decay in amplitude in the long
interval. Again the perturbation grows downstream of the control interval but
now even less than with the short control interval.

In these cases we still have some transient growth where control is applied
and downstream, but the total growth is substantially lowered by the control.
Comparisons with some of the results of Cathalifaud & Luchini (2000) where
optimization is performed to minimize the perturbation energy with control
over the whole plate show that the control velocity has a similar distribution
and that similar effect on the perturbation energy is obtained. In the cases
where they apply control over only a small part of the plate, they found a
slightly different shape of the control velocity distribution with a peak also at
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FI1GURE 9. Time average of energy integrated in the z direc-
tion for uncontrolled (dashed) and controlled (solid) simula-
tions of traveling cross flow vortices from cases 10 and 11 re-
spectively.

the end of the interval. This is probably due to that the optimization problem
is slightly different in their case, accounting for the effects of the localization
of the control, which is not the case for the optimization problem solved here.

The performance of the control over the longer control interval in case 9
is surprisingly good considering that the change of the mean flow profile is
fairly large in this interval. It seems that the controller is indeed robust to
finite variations of the mean flow profile and our assumption thereby appear
justified.

8. Control in a Falkner—Skan—Cooke flow
8.1. Traveling vortices

The flows cases for testing the controller in the FSC flow are taken directly
from Hogberg & Henningson (1998). Traveling cross-flow vortices appear in
experiments with high levels of freestream turbulence for example in Miiller
& Bippes (1988) and in the simulation of case 10 a perturbation, randomly
varying in time and in space, is applied in the beginning of the box. A low
amplitude ensures that non-linear effects are small and traveling cross-flow
vortices then develop downstream. The box size, resolution and other details
are given in table 1. The time average of the perturbation energy, plotted as
the dashed line in figure 9, shows the growth of these traveling vortices. The
vortices merge and split and form a complicated pattern. A gray-scale image
of a snapshot of the normal velocity at y = 0.5 is shown in figure 10a where
whiter shades indicate positive velocity and darker shades negative velocity.
In this case the control will have to react quickly in order to respond to the
variation in the perturbation.
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FIGURE 10. Snapshots of the normal velocity v in an zz-plane
at y = 0.5 for (a) case 10 without control and (b) case 11 with
control. Black is v < —4.5 x 10~° and white is v > 5.5 x 107°.
The control is applied in z € [75,225].

Control kernels have been computed at the same resolution and box size
as in case 10 and 11, given in table 1, with £ = 10% and 72 = 0 at = = 150
where 1 = 51.96 degrees and 6* = 1.1232. The control is then allowed to
act in the interval & € [75,225]. The simulation is run long enough to get
stationary statistics of the controlled flow and the time average of the energy
in the box with control is plotted as the solid line in figure 9. The controller
successfully changes the growth into decay of the energy and it is notable that
this decay continues even downstream of the control region and all the way to
the start of the fringe. The difference between the controlled and uncontrolled
perturbation energy where the fringe region starts is about four decades. A
snapshot of the normal velocity in case 11 is shown in figure 10b at the same
y plane and time as in the uncontrolled case shows that the control action is



Linear optimal control in spatial boundary layers 243

log(Energy)

0 100 200 " 300 400 500

FIGURE 11. Energy growth of uncontrolled perturbation and
effect of applied control in spatial DNS for 8 = 0.25. Dashed:
case 12 - uncontrolled. Solid: case 13 - controlled with ¢ = 102
and 72 = 0 in the interval = € [25,175] centered at z = 100.
Dash-dot: case 14 - controlled with ¢ = 102 and 72 = 0 in the
interval a € [145,295] centered at x = 220.

strongest in the beginning of the control region and that the vortices almost
completely disappear downstream. Looking closely at figure 10b one can see
that a light shade, indicating a positive normal velocity leads to a dark spot
in the control region, and vice versa for darker shades, suggesting that the
control is of opposition type initially. In the study of Wassermann & Kloker
(2000) an opposition type control using blowing and suction in a strip where
the optimal phase shift of the control signal was computed for each spanwise
mode separately was applied to a cross-flow vortex packet. This strategy was
also successful in reducing the perturbation energy, and the importance of the
individually computed phase shift for different modes was emphasized. Using
the present control strategy the optimal phase shift comes naturally which is a
great advantage.

8.2. Stationary vortices

If stationary perturbations are introduced in the beginning of the box at an
large enough amplitude, stationary non-linearly saturated cross-flow vortices
will develop downstream. The instability properties of these vortices have
recently been thoroughly studied both experimentally by e.g. Kawakami, Ko-
hama & Okutsu (1999) and Lerche (1997), and numerically by e.g. Hogberg
& Henningson (1998) and Malik et al. (1999). If we consider stationary per-
turbations at a finite amplitude applied in the beginning of the box in case 12,
box size and resolution is given in table 1, the vortices will reach a saturated
level where nonlinearities dominate in the end of the physical region of the box.
The energy in the 6 = 1 mode, the dashed line in figure 11, grows exponentially
initially and then the nonlinear saturation causes the growth rate to decrease
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FIGURE 12. The energy in the five lowest 8 modes from simu-
lations with a strong stationary perturbation for (a) case 12 -
uncontrolled, (b) case 13 - control in z € [25,225] and (c) case
14 - with control in x € [145, 295].

and close to the fringe the growth is close to zero. The energy of the five lowest
beta modes are shown in figure 12a where one can see that all these modes
have similar behavior but the § = 1 mode dominates. Control is first applied
in case 13 far enough upstream for linear effects to dominate. Kernels have
been computed for the mean-flow at = 100 where 1» = 52.95 degrees and
5% = 1.085 with £ = 10? , r?> = 0 and with the box size and resolution given
in table 1 for case 12. The simulations of the controlled flow are performed at
a lower resolution than in the uncontrolled case with 384 x 49 x 16 and uses
kernels with the same resolution. The control is allowed to act in the interval
x € [25,175] which starts just downstream of where the perturbations are in-
troduced in the flow. The initial flow field for the simulation was one with fully
developed cross-flow vortices where the control was turned on instantaneously
and after some transient behavior of the flow and the control a steady state was
obtained. The stationary flow is well resolved with the present resolution since
the perturbation levels are substantially lower than in the uncontrolled case.
The solid line in figure 11 shows the energy in the 8 = 1 mode for this case.
The perturbation is efficiently reduced by the control but new cross-flow vor-
tices start to develop downstream of the control region as could be expected for
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F1GURE 13. The normal velocity on the wall at z = 0 in the
controlled cases with stationary perturbations. a: Case 13
with control in « € [25,175] using a controller computed with
¢ =10% and r? = 0 b: Case 14 with control in = € [145,295]
using a controller computed with ¢ = 10% and r? = 0

this type of inflectional instability. Studying the five lowest 8 modes in figure
12b shows that the controller efficiently reduces the energy of all these modes.
The control velocity on the wall is plotted for one spanwise location at z = 0
in figure 13a showing a regular sinusoidal signal with a maximum amplitude
in the beginning of the control interval. The control region is then, in case 14,
moved further downstream centered at x = 220 where ¥ = 50.72 degrees and
0* = 1.1723. The control is allowed to act in the interval z € [145,295]. In the
simulation a laminar flow with the stationary perturbation in the beginning of
the domain was used as initial flow field. Then when the perturbation reaches
the control region the controller reacts to stabilize the flow. This is easier than
starting with the fully developed perturbation since the transients when the
control is turned on are strong in this case and the time-step in the simulation
will be short. At the region where control is applied, the vortices will have
reached a higher amplitude than in the previous case and the nonlinear effects
are stronger. The simulation is run until a stationary state is obtained and
the resulting energy curve is the dash dotted line in figure 11. Despite the
nonlinearity the controller reduces the energy of the perturbation within the
control interval. The energy curve has some wiggles initially where the pertur-
bation is strongest indicating that nonlinear effects are influencing the control.
The normal velocity on the wall is plotted for one spanwise position at z = 0
also for case 14 in figure 13b. The control signal in this case is distorted and
has no apparent deterministic structure which probably is due to the effect of
nonlinearities. The maximum amplitude, which is larger than in the upstream
interval, of the control appears in the beginning of the control interval and after
a few strong oscillations it decays rapidly. The control affects all wave-numbers
0 and a plot of the effect of the controller on the five lowest values of § in the
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simulation is shown in figure 12¢. In this case the higher modes appear to be
amplified in the beginning of the control region before they rapidly decay. The
higher energy levels in these modes is related to the shape of the control signal
with the nonlinear behavior.

9. Discussion and conclusions

It was expected that the optimal controller could stabilize unstable temporal
eigenvalues based on previous work. The changes of eigenvalues and eigenvec-
tors for control applied to TS waves and the effect of controllers on transient
growth is studied by for example Bewley & Liu (1998) for channel flow. The
main question here was if these methods were transferable to the spatially evolv-
ing flow. Even though we have made some assumptions about the physics, we
have shown that the controller works very well also in this case. The growth
of TS waves could be turned into decay by applying control over the unstable
interval also in the spatial case. When we have a spatial optimal perturbation
for transient growth in the Blasius boundary layer, the controller could not
make the perturbation decay but only lower the growth. In this case it was
also shown that the control is effective also over a long spatial interval and not
only locally where it is computed. The complicated flow with inflectional insta-
bility in the FSC boundary layer was stabilized by the controller for random as
well as stationary perturbations. The additional spatial property of a changing
direction of the meanflow did not have a significant effect on the effectiveness of
the controller in this case. Even higher amplitude perturbations where nonlin-
ear effects are present were stabilized resulting in energy decay in the controlled
interval indicating some robustness of the controller to nonlinearities, as well
as to changes of the meanflow.

In summary it is demonstrated that the three main mechanisms for en-
ergy growth in boundary layers can be controlled, exponential instabilities,
non-modal transient energy growth and inflectional instabilities triggered by
both stationary and time varying perturbations. It appears that it is suffi-
cient to make use of the Orr—Sommerfeld-Squire equations when designing
controllers for most types of primary instability transition scenarios. In fact
the importance of linear processes for transition as well as turbulence has been
emphasized by several authors investigating these processes see e.g. Henning-
son (1996); Kim & Lim (2000). The strength and advantage of the present
formulation of the control problem is that there is no dependence on what
type of perturbation the flow is subject to and transition due to secondary
instabilities should not be an issue if one can control the primary ones. One
question is how effective the controllers are for preventing transition to turbu-
lence. The present study indicates that the controllers can handle some degree
of nonlinearity, and quantification of the controller performance for transition
in channel flow is work in progress ( Hogberg, Bewley & Henningson (2001)).
It should be mentioned that there are also important types of instabilities not
considered here, namely the absolute and global instabilities. A controller for
global instabilities must probably incorporate non-parallel effects since these
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are crucial for their existence and this can not be obtained using the present
formulation of the control problem.

To be able to make use of this type of feedback controller in practice there
is need for a good way of estimating the state of the flow based on realizable
measurement data. An estimator forcing can be computed from the linear
equations as described in Hégberg & Bewley (2000) and then applied to force
a model of the flow using wall measurements only. The combination of an
estimator and a controller is called a compensator, and provides means to
control the flow based on these wall measurements. The effectiveness of the
estimator and the compensator for transition in channel flow is also studied in
ongoing work (Hogberg, Bewley & Henningson (2001)), and once this has been
done, a natural next step is to extend also these ideas to the spatial boundary
layer flows. To be able to obtain a control system usable in practice there might
be a need to utilize robust control H, design to improve the robustness of the
compensator. This was studied for the linear system in Bewley & Liu (1998)
and showed some different properties compared to the optimal control design
which could improve the behavior of the compensator when e.g. nonlinearities
are present. In future work this possibility should be explored further and
tested also in the nonlinear setting.

The authors wish to thank professor Thomas Bewley for pointing us in the
direction of using linear control techniques, and for cooperation in creating the
foundation for the present work.
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