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Abstract

During papermaking, the internal structure of the fibre network constituting
the paper is to a dominating extent determined in the forming zone of the
paper machine. This thesis is aimed at studying the pressure distribution in
blade forming sections, which is commonly considered to be a key quantity of
the process.

Previous work has provided insight into the physics of different devices
employed in blade forming. However, there has been a lack of models enabling
studies of the effects of the interaction between different components on the
pressure distribution. In the thesis, a model is presented for a generic blade
forming section consisting of three blades. The positions of two of the blades
are fix, and in between them is located a suction box. The third blade is
applied by a prescribed force to the opposing wire, in a position facing the
suction box. The model admits the study of the interaction between the pulses
from the different blades in the blade/counterblade configuration, and between
the pulses and one-sided suction.

The wires are modelled as tensioned and perfectly flexible Euler-Bernoulli
beams of negligible mass. The suspension is treated like an inviscid fluid.
Consideration is taken to the influence of fibre deposition on the permeability
of the fabrics. By assuming the ratio between the length scales in the thickness
direction and the machine direction to be small, a quasi one-dimensional model
is obtained.

For maximum flexibility, the model domain is divided into modules. Each
module is solved individually using a finite difference based discretisation. The
solutions for the different modules are matched with each other iteratively.

A comparison with published results for a single blade indicates that the
model can be used to obtain qualitatively correct predictions of the pressure
distribution. New results include a series of calculations showing the non-trivial
interaction between the pressure pulses when the blades are positioned succes-
sively closer together, the effects of suction on the pressure pulse generated by
a blade applied to the opposing wire, and how blades of modest curvature do
not necessarily stay in contact with the fabric along their full width and the
implication of this on the pressure gradient.

Descriptors: fluid mechanics, blade forming, pressure distribution, suction,
interaction, permeable fabric, modules
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CHAPTER 1

Introduction

1.1. Papermaking and forming

1.1.1. Outline of the process from tree to product

There is no precise definition of paper. Common to all products referred to
by that name is however that they are a nested structure of slender particles,
fibres, that are held together without the requirement of other components
than the fibres themselves. In most cases these have a biological origin, but
synthetic fibres are sometimes used as well.

After first having been developed in China in the 2nd century AD, paper-
making has evolved to the interdisciplinary high technology process it is today.
The large majority of paper products are wood based, and their production can
be divided into three significantly different parts, each of which corresponds to
an increased degree of refinement of the raw material:

• Forestry.
• Pulp production.
• Paper production.

During the pulp production, the fibres in the wood are freed through either
mechanical or chemical treatment. They are delivered to the paper mill either
as a concentrated suspension, or in dry sheets. At the mill, the pulp is trans-
formed into a dilute suspension and is then processed. Although the techniques
employed to produce different paper qualities (called grades) is more or less the
same, the characteristics of the final products differ a lot in terms of mechan-
ical and other properties. The dry mass per unit area, i.e. the ‘grammage’, of
board is e.g. about 200–400 g/m2, whereas that of tissue is only 14-25 g/m2.
The different stages of the paper production are in order:

1



2 1. INTRODUCTION

• Stock preparation.
Dissolving the pulp, Refining, Adding additives, Screening.

• Forming.
Dilution, Deaeration, Ejection onto the forming fabrics, Dewater-
ing.

• Wet pressing.
• Drying.
• Possibly calandering and/or coating.
• Rolling.

1.1.2. The forming section

The internal structure of the fibre network constituting the paper is to a dom-
inating extent determined in the forming zone of the paper machine. In the
remaining parts of the process only the structure in the thickness direction
(referred to as the ‘z-direction’) can be influenced. Consequently, the forming
zone has a critical influence on many, but not all, of the important properties of
the final product. These include the grammage distribution, called formation,
and the strength of the paper. As a result, it is of paramount importance to a
papermaker to understand the forming part of the process.

The fibre mass concentration of the thick stock entering the forming section
is 3–4%. It is then diluted with water that has been drained at positions further
downstream in the forming process, so called ‘white water’, to a concentration
of 0.1–1% depending on which grade is being produced. This diluted suspension
passes several cleaning/screening devices that removes contaminants before it
is fed into a nozzle that ejects it upon the fabric(s), where the dewatering will
take place.

The nozzle is called ‘headbox’, and plays an important role in the forming
process. A schematic illustration of its design is given in figure 1.1. The
downstream end is a narrow slit, typically about 10 mm high and 10 m wide.
It is important to have a uniform flow across the exit, and the upstream part of
the headbox is therefore usually a tapered header whose purpose is to create a
uniform pressure across the machine width (the ‘Cross Direction’). Whatever
non-uniformities remain after the tapered header is further reduced by the
pressure drop created across the tube package by the stepwise enlargement of
the channels between the header and the contraction. This part of the headbox
also has a positive influence on the distribution of the fibres in the suspension.
Although the concentration is usually low in the headbox the fibres still have a
tendency to form clusters, called flocs, which will result in bad formation in the
paper sheet (i.e. uneven local grammage distribution). The strong gradients in
the flow caused by the tube bank disrupts these flocs. Finally the suspension is
accelerated to the required speed in the contraction . The acceleration dampens
the relative turbulence levels in the flow, which is necessary to obtain a jet of
good quality. In addition, velocity non-uniformities in the Cross Direction is
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further reduced. A disadvantage of the headbox is that the elongational flow
causes anisotropy in the fibre orientation. The fibres are aligned in the direction
of flow (the ‘Machine Direction’), which for some products has a negative effect
on product quality. A recent study of the flow in the headbox was carried out
by Parsheh (2001).

Jet

Inflow

Side view:

Top view:
Tapered
header

Tube package

Contraction

Figure 1.1. A schematic illustration of a headbox and its
different parts: The tapered header, the tube bank and the
contraction.

The jet from the headbox impinges on a permeable fabric moving with a
speed of up to 30 m/s, depending on the capacity of the machine and which
grade is being produced. As instabilities in the jet might impair the homo-
geneity of the paper sheet (Söderberg 1999), the distance travelled by the jet
is kept to a minimum. When the jet hits the fabric, which is called ‘wire’,
the drainage starts. The water passes through the wire while the fibres are
left on top resulting in the build up of a fibre mat. In the rest of the forming
section, the dewatering of the suspension continues till a fibre network of a
concentration of about 4 % occupies the region between the wires. Thereafter,
a thickening process takes place in which the concentration rises till a sheet of
about 20 % fibre mass concentration has been formed. After this the sheet is
passed on to the press section.

The easiest way to achieve drainage is to move the wire horizontally and
let gravity force the water in the suspension through the fibre mat and the
wire (possibly increasing the pressure difference across the wire by applying
suction to the outside of the fabric). This method, called Fourdrinier forming,
was the one first used to produce paper in a continuous process. Fourdrinier
forming sections are still in use, also in combination with other techniques. The
machine speeds obtainable in this way are however limited by the instability
of the free surface of the suspension residing on top of the wire. To overcome
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this problem, twin-wire forming was introduced in the 1950’s and is now used
predominately. An overview of the history of forming and different machine
designs have recently been given by Malashenko & Karlsson (2000). Norman
(1989) gave a detailed overview of forming as it was undertaken and under-
stood at that time. In the latter reference, details of Fourdrinier forming are
discussed.

1.1.3. Twin-wire forming

The basic principle of twin-wire forming is that both sides of the suspension is
in contact with a wire at all times. This was not a new idea when practical
designs first showed up. However, early attempts had not been successful
due to the lack of insight that one must always (in any given position in the
machine direction) allow at least one of the wires to automatically adjust its
lateral position as a function of the current operating conditions. Drainage is
achieved by creating a positive pressure difference between the region between
the wires and the surroundings. Compared to Fourdrinier forming, twin-wire
forming yields considerably higher dewatering rates. This is due to the fibre
mats building up on both of the wires simultaneously. In addition, the flow
resistance through the mat and wire on either side is significantly less than
that of a single wire and mat after the same amount of total drainage. Another
advantage is that carefully performed twin-wire forming gives a paper whose
two sides have a more equal structure than does Fourdrinier forming.

The wires are pre-stressed and have an inner tension T which is typically
5–10 kN per metre width. As long as drainage takes place, the resistance
to flow through the fibre mat and the wire generates a pressure drop across
these layers, resulting in a local curvature 1/R of the wire. Assuming that the
bending stiffness of the fibre web and the fabric is neglected, this implies that
the pressure difference is T/R across the mat and the wire.

1.1.4. Roll forming

During roll forming, the wires are deflected over a cylindrical roll, as illustrated
in figure 1.2, and hence a dewatering pressure is generated. Early twin-wire
formers achieved drainage in this way. By using a roll with permeable surface,
two-sided dewatering can be obtained. Roll forming is a quite gentle method
in the sense that the amplitude of the dewatering pressure is rather low, of the
order 10 kPa, and in that the pressure gradients in the machine direction are
not severe. This yields a good retention of the fibres and the additives in the
suspension, which at higher pressure levels to a larger extent would follow the
water through the wires. However, as pressure gradients play an important role
in breaking up fibre flocs, their absence yields flocculation and a final paper
with bad formation. For quite some time it was generally accepted that the
local radius of curvature of the wires were well described by the radius of the
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forming roll. This is however too simplistic. The dynamics of roll forming is a
complicated problem. A recent study is the one by Holm (2002).

Forming roll    

Five  
fixed blades     

Six movable 
blades with
blade forces F    

Headbox    

Variable wrap 
angle     

Figure 1.2. The layout of a former with roll dewatering fol-
lowed by blade dewatering with adjustable blades. This design
was first applied for the STFI-former on the FEX pilot machine
in Stockholm.

1.1.5. Blade forming

During blade forming the wires follow an overall straight path. They are how-
ever locally deflected by ceramic blades, which are applied across the full width
of the wires (i.e. perpendicular to the machine direction). The principle of blade
application is illustrated in figure 1.3(c). In the figure, two wires pass a series
of three blades of which two are applied to the top fabric and one to the bottom
fabric. The deflection of the wires causes a pressure to be built up in the region
between them. The underlying mechanism is readily explained: Assume first
that the fabrics and the suspension in between them move linearly past the
blades, on the verge of touching them but without actually doing so (figure
1.3(a)). Hence the pressure in the suspension will be the same as outside the
wires. If – hypothetically – the bottom blade could be used to push the lower
wire upwards without affecting the upper wire, a situation like the one in fig-
ure 1.3(b) would occur. It is evident that the available cross section for the
flow of suspension has shrunk at the position of the middle blade. In order to
cope with this situation the suspension must either pass through the wires, so
that less of it has to pass the middle blade, or it must push the upper fabric
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outwards to create a larger cross section. In reality, both of these things hap-
pen simultaneously as illustrated in figure 1.3(c). The deflection of the flow
results in a local increase of the pressure which, at the same time, forces liquid
through the fibre mats and the wires and displaces the opposing wire. The fab-
rics, of course, oppose displacement due to their internal tension. One might
think that another option would be for the suspension to increase its velocity,
thus allowing it to pass the constriction imposed by the blade. Why this does
not happen is not a trivial issue. Without entering into the details we note,
however, that if the wires are initially parallel (as is the case if the pressure in
the gap between the fabrics equals the ambient pressure), the lower wire must
at some point curve towards the upper fabric. This implies that the pressure
in the gap at that point is higher than outside the fabrics. Consequently, the
velocity at that point is lower than far upstream of the blades, which means
that a deceleration takes place as opposed to the proposed acceleration.

MD

CD

Suspension flow

Blade Wire

Wire

a)

b)

c)

Figure 1.3. The principle of blade dewatering. Note that the
proportions of the distances in the z-direction are not correctly
reproduced. MD – Machine Direction, CD – Cross Direction.
The different figures a–c are explained in section 1.1.5.

If expelled water adheres to the outer surface of the wires, it will remain till
it is removed by centrifugal effects, or it is deflected away by the next blade or
some other slicing device. This redirection, which is called ‘doctoring’, results
in a pressure build-up close to the tip of the blade. It will influence the pressure
difference across the wire and hence also the local drainage.

Figure 1.3 focuses on the situation in the region around the middle blade.
Naturally, the positions of the fabrics at the different blades are not independent
of each other. Moving the middle blade upwards will create restrictions on the
flow at the upstream and the downstream blades as well, and, due to the same
mechanism as explained above, regions of locally high pressure will be generated
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at these blades. However, this has not been properly illustrated in the figure.
Further, one should keep in mind that, unlike in the figure, blade dewatering
is a slender problem. The distance between the wires is typically in the range
1–10 mm while the distance between the blades is an order of magnitude larger.
The extension of the blades in the machine direction is normally 10–50 mm.
All of this should also be put in relation to the width of the machine in the
cross direction, which on a large production unit can be up to 10 m.

When a volume of suspension travels past a series of blades, it will re-
peatedly be exposed to regions of high pressure resulting in dewatering. From
the point of view of the suspension volume, these regions will be experienced
as pulses in time, although they are a result of translation in the machine di-
rection. This has led to the use of the term ‘pressure pulse’ for the region of
increased pressure in connection with a blade. The pressure pulses are of a
quite different nature than the dewatering pressure achieved during roll form-
ing. Measurements by e.g. Zahrai et al. (1997) and Zhao & Kerekes (1995)
have shown that the magnitude of these pulses can be as high as 25 kPa or
more, hence significantly higher than what has been reported for roll form-
ing. Because of this, pure blade forming results in poor retention, since fibres
and additives have a tendency to pass through the fibre mat and the wire.
In addition, the pressure pulses are generally quite localised, and will there-
fore yield large pressure gradients in the machine direction. It is believed that
this causes disruption of fibre flocs in the suspension, and that it explains the
good formation of the final paper sheet that can be obtained by using blades
for dewatering (Nordström 1995). The underlying mechanism is not yet prop-
erly understood. One theory is that the elongational flow resulting from the
pressure gradients in the downstream region of a blade will stretch the flocs
and possibly tear them apart. An additional theory is that the wire-side part
of fibre flocs might get entangled in the fibre mat during the drainage, and
subsequently torn apart since the outer part of the flocs are exposed to the sus-
pension which moves with a different speed than the wire and the mat. These
are current topics of research within the Faxén Laboratory at KTH. Because
the blades are not permeable, one might suspect that the drainage through the
two wires is assymetrical. This is true to a certain extent, but as a dominating
part of the pressure pulse is found in front of the blade this is not normally a
problem. The asymmetry is of course further reduced if the blades are applied
alternately to the two wires as in figure 1.3, and, if such measures are taken,
blade dewatering usually yields a sheet with acceptable two-sidedness.

In order to get a process with high retention in the forming section and a
good formation of the final sheet, it is now common to combine roll forming
with blade forming. Such a forming section might look as in figure 1.2. The
idea is that fibre mats should be built up on the wires during the roll forming
in order to generate sufficiently thick webs to prevent low retention in the
subsequent blade section. Only partial dewatering should take place over the
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roll though, as the purpose of the following blade section is to break up fibre
flocs in the remaining suspension. This would not be possible if the drainage
has gone too far.

According to Norman (1989) twin-wire blade formers were first developed
by Beloit and Black Clawson at the end of the 1960’s. At that time it was not
understood that the blades generated pressure pulses. In the Beloit Bel Baie
design the blades were arranged not in a straight configuration as is often done
today, but instead mounted so that they described a circular arc with the tips
lying on the circumference. The arc had a radius an order of magnitude larger
than that of a conventional forming roll. Indeed, the wires were wrapped over
the blades in order to mimic roll forming with a very large roll. The good
formation that was achieved was attributed to a dewatering pressure that was
thought to be of low amplitude and long duration, hence rather the opposite
of what is actually the case. Norman (1979) was the first to give a reasonably
accurate description of the physics of pulsating blade forming.

In the early designs incorporating deflection of the wires by blades, these
were mounted in fixed positions. Whenever blades were applied to both wires,
or blades were positioned on one side and other dewatering devices on the oppo-
site side, the process got very sensitive to changes in the operating conditions.
To understand this, one can e.g. look at the blade/counterblade arrangement
illustrated in figure 1.3. It is evident that no drainage pressure is generated
in the situation described by figure 1.3(a), where the blades are not acting
on the wires. However, if the operating conditions were changed so that the
distance between the incoming wires increased, while the blades remained in
their positions, the blades would impose an obstruction to the flow and pres-
sure pulses would be generated as in figure 1.3(c). To reduce the sensitivity,
adjustable blades should be used, as suggested by Norman (1979). Baumann
(1989) described a forming section with fixed blades applied to one of the wires,
and flexible blades applied to the other side. These were pneumatically pushed
against the wire, and hence the forces by which the blades were applied could be
controlled. The forming section in figure 1.2 features such loadable blades. An
important detail of this former is that the fixed blades (instead of the loadable
ones) are applied to the wire in contact with the roll. As the position of this
wire is more or less determined by the roll anyway, this reduces the necessity
for adjustments.

1.1.6. Suction shoes

Drainage can also be achieved by lowering the pressure outside one of the
wires compared to the pressure on the opposite side (usually the atmospheric
pressure) . This is the case with e.g. a ‘suction shoe’ in the forming zone.
By creating a low pressure inside the shoe, water is sucked out through the
adjacent fibre mat and wire. To increase the control of the process, the shoe is
usually divided into several compartments (‘boxes’), with the possibility to set
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different pressures in each one of them. An illustration of this is given in figure
1.4. The edges of the boxes can generate pressure pulses in the same way as
blades do.

Low pressure Low pressure
Low
pressure

Figure 1.4. Vacuum boxes combined with blade-
counterblade dewatering.

1.2. Research on blade forming and suction shoes

1.2.1. Establishing the pressure pulses

Although pressure pulses were predicted by Norman (1979), it was not until the
work by Sims (1985) that experimental evidence (for a Beloit Bel Baie blade
former) was published. A trailing pressure transducer was inserted through the
headbox into the region between the wires, where an increased pressure was
detected at each blade. The same technique was also used by Brauns (1986).
The amplitude of the pulses were found to increase when the wire speed or
the tension in the wire opposing the blades was increased. Amplitudes of up
to 7.5 kPa were detected for some operating conditions. Brauns’ work is also
interesting because it investigates the effect of applying suction in between the
blades. Yet another experimental study using a trailing pressure probe is the
one by Bando et al. (1994). This technique is one of few available to measure
the pressure during blade forming due to the difficulty in accessing the region
between the wires. It has a drawback in that the position of the probe in
the thickness direction of the gap between the wires can be neither controlled
nor determined. The transducer might be embedded in the fibre mat or be
located in the middle of the free suspension, or anywhere in between these two
extremes. It is also unclear to what extent the presence of the probe influences
the flow of suspension, and thus the measured pressure, at narrow gap sizes.

1.2.2. Analytical results

Zhao & Kerekes (1995) performed the first rigorous theoretical analysis of blade
dewatering. A quasi one-dimensional model was developed for an isolated blade
of infinitesimal extension in the machine direction. The wires extend an infinite
distance in the upstream and downstream directions, and approach and leave
the blade parallel at prescribed angles. The problem was treated like that of
an inviscid fluid moving between thin, perfectly flexible, moving walls of con-
stant permeability. No effects of the fibre deposition on the drainage resistance
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were included. An important condition for the validity of the model is that the
characteristic length scale in the machine direction is much larger than the dis-
tance between the wires. The equations were linearised and solved analytically,
yielding pressure pulses located in front of the blade. It was noted that certain
parameter combinations yield oscillatory solutions in this region. Behind the
blade, the analysis gave zero pressure difference across the fabrics and, con-
sequently, straight wires. A comparison with experimental data showed good
agreement. It is worth mentioning that the pressure measurements by Zhao
& Kerekes (1995) were not conducted with the trailing probe technique. In-
stead, pressure holes drilled trough a blade allowed the pressure distribution
over the blade, due to the deflection of the wires at the downstream edge, to
be measured.

Moch (1995) constructed a one-dimensional model for the flow around a
single thin blade, including a variable permeability of the wires in order to sim-
ulate the effect of fibre deposition. The pressure pulses were found to become
of larger amplitude and to extend for a shorter distance in the upstream direc-
tion than when no fibres were deposited (as would be the case if the suspension
was replaced by pure water). Zhao & Kerekes (1996) performed a study of
the influence of suspension concentration on the pressure pulses by using the
model developed earlier (Zhao & Kerekes 1995), inserting different values for
the (constant) drainage resistance. They also concluded that increased resis-
tance gave pulses of larger magnitude. An attempt was made to relate the
calculated integrated velocity difference between the suspension and the wires
with experimental measurements of the formation, and a (weak) correlation
was reported.

Zahrai & Bark (1995) presented a two-dimensional analysis of the appli-
cation of a thin blade. The combined wire/fibre mat structure was considered
to be inertialess and of negligible thickness, with constant permeability. The
suspension was modelled as an inviscid fluid. A regular perturbation anal-
ysis, using the angle of deflection of the wires as the perturbation parame-
ter, resulted in a linear analytical solution. In front of the blade, they found
only small gradients in the z-direction, and the solution agreed well with the
one-dimensional analysis by Zhao & Kerekes (1995). The main difference was
that the one-dimensional model predicted a slightly higher pressure amplitude.
However, downstream of the blade, the two-dimensional analysis yielded quite
large gradients in the z-direction. Notably, there was a small region close to
the blade tip where the pressure was lower than that outside the wires. This is
due to the acceleration of the flow around the corner formed by the wire when
the thin blade is applied to it. A comparison between the one-dimensional and
the two-dimensional theory is reproduced in figure 1.5. In their study, Zahrai
& Bark (1995) made no assumption on the magnitude of the ratio between the
length scales in the machine direction and the z-direction. As a consequence,
they were able to include the bending stiffness of the wires in their analysis. It
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was found that it had no influence outside a very small region close to the blade
tip, and can hence be neglected. A more accurate criterion for the appearance
of oscillations in the dependent variables than that derived by Zhao & Kerekes
(1995) was given as well. Among the first two dimensional models of blade de-
watering should also be mentioned the study by Nigam & Bark (1997), where
potential flow theory was used to study blade dewatering with a single flat or
cylindrically curved blade. Linear analytical results were obtained through a
perturbation analysis.

Figure 1.5. The pressure field around a thin blade (located
at x = 0). Solid curves: Theory by Zahrai & Bark (1995),
the different curves correspond to different positions in the z-
direction. Dotted curve: Theory by Zhao & Kerekes (1995).
The pressure P is non-dimensionalised by the dynamic pres-
sure, the distance x with the initial distance between the wires.

1.2.3. Numerical results

Zahrai & Bark (1996) and Zahrai et al. (1997) developed a numerical method
for solving the non-linear equations describing the two-dimensional flow over a
blade of arbitrary shape. It was applied to a flat and to a triangular blade, and
the results were compared with experimental data obtained using blades with
pressure holes. Good and reasonable agreement was found for the triangular
and the flat blade, respectively. During the numerical simulations, the drainage
resistance was assumed to be constant.

Green & Kerekes (1998) numerically solved a one-dimensional non-linear
model for a single thin blade incorporating a variable permeability for the
wire/fibre mat. The same conclusions were drawn regarding the influence of
fibre deposition as those made by Moch (1995). In the model, the wire/fibre
mat was attributed a constant mass per unit area, giving only a small influence
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on the calculated variables. The influence of wall shear stress was accounted
for in a rudimental way. By testing viscosity values of different magnitudes, it
was concluded that this parameter had a negligible influence on the pressures
calculated with their model. An indication of the effects of doctoring of drained
water was found by prescribing a pressure distribution on the outside of the
wire in contact with the blade. It was concluded that the amplitude of the
pressure pulse increased. Green et al. (1997) developed the model to deal with
a blade of finite extension in the machine direction. Like Zahrai & Bark (1996)
and Zahrai et al. (1997) they observed that, unless the blade is of short length,
it produces two pressure pulses – one that is associated with wrap of the wires
around the front edge and one with wrap around the back edge. The model
was also used to study the effect of blade wear (Green & Roshanzamir 1997).

Roshanzamir et al. (1998) performed viscous two-dimensional simulations
with a blade of finite extension in the machine direction. The wire/fibre mat
was given a finite but constant thickness with constant flow resistance. This
was the first time viscosity was included in a rigorous way, albeit under the
assumption that the suspension behaves like a Newtonian fluid. Hence, an
estimate of the shear in the suspension was obtained. The viscosity level did
however not influence the calculated pressures. Roshanzamir et al. (1999) ex-
tended the model to include effects of doctoring of water drained upstream of
the blade. Although the pressure building up on the outside of the wire due to
the deflection of the approaching water was limited to a very short distance up-
stream of the blade, it was found that it can significantly affect the amplitude
of the pressure pulse in between the wires, thus confirming what was indicated
by Green & Kerekes (1998). More or less the same study can also be found in
the reference Roshanzamir et al. (2001).

Green (1999, 2000) presented a one-dimensional model where suction was
applied in between two thin blades. Roshanzamir et al. (2000a) presented a
viscous 2D simulation of the same problem. Downstream of the first (upstream)
blade, the pressure in the gap between the fabrics was found to rapidly decrease
to a level half way between the pressure on the suction side and the pressure
outside the opposing wire. This corresponded to the pressure in the gap being
3–5 kPa lower than the ambient pressure, which in the simulations resulted
in an increased bending of the outer wire over the blades, and consequently
pressure pulses of larger amplitude than if no suction was applied. It is, how-
ever, highly unlikely that such a pressure difference over the wire opposing the
suction device could ever occur in a real forming section.

1.2.4. Refined models

Several studies have been undertaken in which models have been used that
are more refined or complete, in regard to one or several aspects, than those
mentioned so far. Roshanzamir et al. (2000b) investigated the effect of adding
an inertial term to the permeability law of the wire. Zahrai et al. (1998)
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included the physics governing the build-up of the fibre mat in their estimation
of the drainage resistance, and then applied it to roll forming with good result1.
Although no time-dependent analyses of blade forming has been carried out,
such studies have been undertaken for roll forming by Turnbull et al. (1997)
and Chen et al. (1998). In the cases where a comparison can be made, the more
refined models yield no qualitative, and only modest quantitative, differences
compared to the studies cited in sections 1.2.2 and 1.2.3.

1.3. The purpose of the current study

Previous work has given us insight into the physics of different devices employed
in blade forming. Nevertheless, it is not possible to accurately predict the be-
haviour of important variables throughout the forming section for different
device configurations and operating conditions. Hence, design of forming sec-
tions, trouble-shooting, or tuning of the controllable parameters after changes
in the process, necessarily involves extensive use of trial and error techniques.
Especially when developing new designs, it is advantageous if theoretical anal-
ysis could replace some experimental work, at least in the early stages. As it
is prohibitively expensive to disrupt the production in a mill, one must today
resort to using pilot paper machines for trials. Although less expensive, this is
by no means a cheap solution.

A blade forming section does not consist of a single blade. Instead, as
illustrated in figure 1.4, several blades are applied in series, and often to both
of the wires and in combination with one-sided suction. Therefore, fine-tuning
models in order to better describe what happens when a single component (such
as e.g. a blade) is applied to a pair of wires, will not help us to better predict
variables such as the pressure in a real forming section. If that is our ambition,
we should focus on the interaction between different components, and try to
clarify how the configuration of the devices influences the process. Previously,
no research has been carried out that deals with fundamental questions like the
following:

• When does the pressure pulses at two blades applied to a pair of fabrics
start to interact?

• What is the result of their interaction?
• What are the implications of applying blades alternately to both wires?
• What are the effects of applying one-sided vacuum in combination with
blades/counterblades?

In order to gain insight into the interaction effects, it was decided to develop a
model of the kind illustrated in figure 1.6. It consists of three blades of arbitrary
shape, two of which are fixed and a third which can be applied to the wire with
a prescribed force. In between the fixed blades, there is vacuum application.

1A rigorous presentation of the sheet forming process can also be found in the review article

by Meyer (1971).
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The ambition was to obtain a model containing the relevant physics, but at
the same time flexible and robust enough to allow easy changes (including
major alterations of the geometry, such as e.g. applying additional blades) and
a rather free choice of operation parameters.

Flow direction

Blade

Fibre mats

Vacuum box

Low pressure

Suspension

Force

BladeBlade

Wires

Figure 1.6. Illustration of the forming section considered in
the thesis.

In chapter 2, a mathematical description of the model is derived. A numer-
ical algorithm to solve the equations is presented in chapter 3. In that chapter,
a comparison is also made with previous studies of blade forming in order to
verify the algorithm and its implementation. Chapter 4 contains results from
a number of simulations that both illustrate the capabilities of the model and
give new insight into the forming process. Finally, in chapter 5, the limitations
of the model, and possible means to neutralise them, are discussed.



CHAPTER 2

Mathematical model

2.1. The scope of the model

We start by giving a physical description of what we set out to model. A
schematic illustration of the region close to one of the wires is given in figure
2.1. As can be seen there are essentially three different regions: The domain
containing free fibre suspension, the mat of fibres deposited on top of the wire,
and the wire itself. In addition, a complete model should deal with the drained
water which has passed through the fibre webs and the wires and hence (at least
temporarily) left the forming zone. Let us briefly elaborate on each of these
regions to better understand the complications one encounters when modelling
a twin-wire forming zone.
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Suspension Flow

Figure 2.1. A schematic illustration of the different regions
in the forming zone during sedimentation type drainage.

The fibre suspension has a number of constituents, the two most important
being water and fibres. In addition, there are a number of additives, such as
fillers and retention aid chemicals. The resulting mix has a very complicated
rheology, that can either be treated as a single flowing medium, or as several

15
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components that interact with each other. The reader interested in the me-
chanical properties of fibre suspensions and how to model them can find some
useful references on the topic in the review article by Norman & Söderberg
(2001).

The fibre mat is a structure consisting of fibres entangled in each other.
Figure 2.2 shows a photograph of a fibre web starting to form on a wire. How
is the mat built up? At early stages of the forming process, when there is still
quite a lot of suspension between the wires, it is done through a sedimentation
type process. Hence the concentration of fibres is fairly constant in the bulk of
the suspension, and a rapid increase in concentration is found close to and in
the mat. Late in the forming process, when most of the dewatering has already
taken place, the fibre mat evolution is better described as a thickening process.
In that situation, the entire distance between the wires is filled by a fibre web
of varying (but high) concentration. It would no longer be meaningful to talk
about a free suspension and a fibre mat. Instead the mat fills the available
space between the wires and gradually thickens as the drainage continues.

Figure 2.2. Photograph of a fibre web starting to form on a
wire (by courtesy of Albany International AB).

The structure of the fibre mat plays a major role in determining the resis-
tance to flow through the web which, of course, influences the rate of further
drainage. The web is by no means isotropic, instead its characteristics depend
on the direction considered. Further, the interaction between the liquid and the
fibres when the former passes through the web results in compression and/or
shearing of the mat, which in turn influences the flow. Apart from fibres, the
suspension contain smaller particles, called ‘fine material’. As noted by Man-
tar et al. (1995), these particles tend to get entrapped in the fibre mat once
it reaches a certain thickness, hence reducing the pore size and altering the
permeability.

The wires constitute the outer edges of the forming zone. Typically they
have a thickness of 0.7-0.8 mm with pore sizes of about 0.1–0.2 mm, resulting



2.2. DERIVATION OF THE GOVERNING EQUATIONS 17

in a porosity of 30-40%. The distance between them changes as dewatering
takes place, from an initial value which can be as large as 10 mm, down to a
final distance of the order of the wire thickness. The liquid flowing through
the wires also experience different resistances in different directions due to
the anisotropic internal structure, the transversal direction typically yielding
less resistance than the longitudinal one. At the interface between the fibre
web and the wire, one should take into account that fibres might block the
openings of the pores, which results in lower drainage rates than would be
found if one considers the fibre mat and the wire separately. In figure 2.3 a
close-up photograph of a modern triple-layered wire has been reproduced.

Figure 2.3. Close up of a triple-layered wire (by courtesy of
Albany International AB).

At least part of the drained water adheres to the outside of the wire (unless
wire curvature causes it to be removed by centrifugal effects). When a blade
is encountered, this water has to either be deflected away from the wire, or
pushed back into the wire and the fibre mat. This, of course, influences e.g.
the fibre web structure and the pressure in between the wires.

From the outline above of the different regions in the forming zone, it is
clear that it would be a formidable task to construct a model that encompass
all details of the dewatering process.

2.2. Derivation of the governing equations

As stated in chapter 1, our ambition is to develop a simple but robust and
flexible model for the interaction between different components in the forming
section. However, the strategy will be to first derive rather complete equations,
which will subsequently be greatly simplified. In this way, a better understand-
ing of the physics involved is obtained, and it also clarifies what is being left
out of the model as well as what assumptions have to be made to allow the
simplifications.
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For the time being we content ourselves with assuming that the problem
is well described as two-dimensional. Given the large ratio between the cross
directional dimension of the forming section and the distance between the wires,
this is not likely to be a severe restriction.

Further, we will not pay any attention to the effect of doctoring of drained
water. Since it is difficult to determine how much of the drained water that
actually remains adjacent to the outside of the wires, the improvement of our
model achieved if doctoring effects are included are judged too costly in relation
to the extra effort. Although the work by Roshanzamir et al. (1999) indicates
that doctoring is of importance when quantitatively predicting the pressure
pulses, it is not likely to have a qualitative influence.

When deriving the equations, we shall consider only one of the wires. Nat-
urally, analogous equations govern the other wire.

2.2.1. The flow through the wires and fibre mats

Assume that the wires, and the fibre mats they are supporting, can be treated as
continuous media characterised by (macroscopic) permeabilities. Let Λ denote
a representative macroscopic length scale of the geometry under consideration.
In order for the assumption to be reasonable, it is necessary that there exist
a representative volume, large enough to contain a great number of pores, but
small compared to Λ3. Let λ denote a typical pore size. For both the wire
and the web, a good choice of Λ is their thickness, which for both is of the
order 1 mm. For the wire, λ is of the order 0.1 mm. Hence it is questionable
if a representative volume such as the one described above can be defined,
and the continuum hypothesis is probably not adequate. On the other hand,
considering the nature of the fibre sheet when it reaches the blade forming
section, it is safe to say that a typical pore size in the deposited fibre web
is at least ten times less than in the wire, i.e. 10−5 m. This leaves room to
define a volume Vref such that λ � V

1/3
ref � Λ, and hence a continuum

description is justified. As the ambition is to construct a fairly simple model
of the entire blade forming section, we shall ignore the shortcomings of the
continuum assumption in the case of the wire. Furthermore, the wire and the
web will be treated as a single medium, which means neglecting e.g. blockage
effects at the interface between the wire and the web.

Let up be the volume average, over the volume Vref , of the microscopic
velocities in the material. The following macroscopic momentum equation will
be used as model for the average velocity,

ρ
Dup

D t
= −∇p+ µK

−1up . (2.1)

Here, ρ and µ are the density and the dynamic viscosity of the fluid, respec-
tively, D/D t is the material time derivative, p is the volume averaged pressure
and K is the permeability tensor. The equation expresses a balance between the
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pressure gradient and viscous and inertial forces. We shall attempt to reduce
it somewhat.

The microscopic flow in the pores, represented by the pore velocity vp, can
be considered to follow the Navier-Stokes equation for the momentum,

ρ
D vp

D t
= −∇pm + µ∆vp , (2.2)

where pm is the microscopic pressure in the pores. It seems like a reasonable
assumption to say that, if the inertial or the viscous terms are negligible in
equation 2.2, they will be so in equation 2.1 as well. Let W be a measure of
the volume averaged macroscopic velocity, and n the porosity of the material,
defined as the ratio between the volume occupied by fluid and the total volume
(note that the volume concentration of solid αp is 1 − n). The magnitude
V of the pore velocity is then W/n. The magnitudes of the viscous and the
inertial terms in equation 2.2 can be estimated to µW/(nλ2) and ρW 2/(n2λ),
respectively. Let us define a Reynolds number for the microscopic flow as
Reλ = ρV λ/µ. It is clear that the inertial term is negligible in comparison to
the viscous one if Reλ � 1.

How large is Reλ in the wire and fibre mat during blade forming? The
mass concentration of fibres right before the press section is typically 0.2 (see
chapter 1). As dry cellulose has a density 1.5 times that of water, a naiv
calculation gives a volume concentration of fibres of 0.14, and hence a porosity
of 0.86. The effective porosity to be used when estimating the pore velocity
is probably less than this due to the low flow through the hollow interior of
the fibres1. Let us consider n to be 0.5. The magnitude of W can be found
by considering the blade forming process. Assuming that dewatering causes
the wires to approach each other 1 mm as they travel 1 m in the machine
direction with a speed of 15 m/s, the drainage velocity W should be of the order
0.1 m/s. As the density and viscosity of water is 1000 kg/m3 and 0.01 g/(cm s),
respectively, we have a Reλ of the order 1. Apparently the inertial term is as
important as the viscous term in equation 2.2. We shall nevertheless chose to
neglect inertia in equation 2.1 in order to gain simplicity in our model. To
justify this, we refer to the results from studies that have included inertia in
the description of the drainage, which showed that it had little effect on the
calculated pressure pulses (see e.g. Roshanzamir et al. 2000b).

Without the inertial term, equation 2.1 turns into the well known Darcy’s
law,

up = − 1
µ

K∇p . (2.3)

1This cavity is called ‘lumen’.
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The equation appears to be linear, but the permeability tensor K may of course
depend on the flow up due to effects such as e.g. compressibility and deforma-
tion due to shear. It is also influenced by the entrapment of fine material in
the web. However, we will assume the tensor to be constant. For an isotropic
material, the elements along the diagonal in K are equal, and the off-diagonal
elements are zero, which means that the flow through the material is parallel
to the direction of the pressure gradient. Introduce a co-ordinate system (ξ, ζ)
with the origin on the outer surface of the wire, the ξ-direction pointing tangen-
tially along the wire in the direction of movement, and the ζ-direction pointing
along the normal to the wire surface, away from the fibre mat (see figure 2.4).
In order to model the wires, we will assume K to be diagonal, with a finite
permeability kζ in the ζ-direction, and zero permeability in the ξ-direction. In
other words, we postulate that there is no flow of liquid inside the fibre mat or
the wire parallel to the wire. In reality, this is most likely not true. However,
this tangential flow is mainly interesting if a good description of the shear be-
tween the suspension and the fibre web is desired2 . As our ambition is not to
resolve such details, we can allow ourselves to focus on the flow in the other
direction. What remains of equation 2.3 is consequently the following relation,

wp = −kζ
µ

∂p

∂ζ
, (2.4)

where wp is the ζ-component of up. Further, assuming that the pressure varies
linearly between the value pw at the suspension side of the web, and pe on the
outer side of the wire, and denoting the combined thickness of the fibre mat
and the wire d, equation 2.4 turns into

wp =
kζ
µd

(pw − pe) . (2.5)

Note that, due to our assumptions of constant permeability and a constant
pressure gradient, wp does not vary in the ζ-direction.

Let us introduce a drainage resistance R = µd/kζ. Even though we have
assumed a constant permeability of the wire and the web, R will still vary
during the drainage process due to the increase in mat thickness as new fibres
are deposited. The rate of change of R in the ξ-direction can be related to the
speed of the wire, U , and the volume fractions of fibres, αp and αs, in the fibre
mat and the suspension, respectively. Assuming that αp and αs are constant,
and that the fibre mat does not move in relation to the wire, conservation of
fibres yield

∂d

∂ξ
=

αs

αp

wp

U
. (2.6)

2Interesting studies treating the flow over a porous wall are the ones by Taylor (1971) and

James & Davis (2001).
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Equation 2.6 can be derived by considering a control volume3 consisting of a
segment of wire and mat, as illustrated in figure 2.4. From the definition of R

Wire

Mat

Suspension

ξ

ζ ξ+∆ξ

ξ

αp

αs

d(ξ)

U

wp(ξ)

Figure 2.4. A segment, of length ∆ξ, of the wire and the
mat. Confer the text for an explanation of the notation.

and equations 2.5 and 2.6, we have that the evolution of the drainage resistance
is described by

∂R

∂ξ
=

1
U

µ

kζ

αs

αp

pw − pe
R

. (2.7)

For ease of notation, we introduce the ‘drainage coefficient’

K =
µαs

kζαp
(2.8)

for the group of constant parameters in equation 2.7. Due to the difficulty in
predicting kζ , which is not likely to be constant during actual forming, it is
hard to determine K. Zhao & Kerekes (1996) presented some experimental
data, obtained by considering the water balance around a blade, relating the
drainage resistance to the mass concentration of fibres in the web. Knowing
the density of the wet fibres, the mass per unit area of the web, and the
concentration of fibres in the suspension, these data can be used to estimate kζ.
It should be noted that these measurements were performed on a pilot paper
machine during operating conditions similar to those in the industrial process.
Experimental data obtained with special drainage testing devices have been
reported by Mantar et al. (1995), Wildfong et al. (2000) and Paradis et al.
(2002). In the last study, the drainage measurements were done while the
suspension and the mat was subject to shear.

Having derived equation 2.7, the thickness d of the wire and the mat will
no longer be of any concern to us in our description of the drainage, and we

3For an example of such an analysis, see section 2.2.2 where an equation for the mass of the

wire/fibre mat is derived.
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shall think of the wire and the mat as being of infinitesimal thickness. Further,
the relation between ξ and the co-ordinate x in the system introduced in figure
2.5 is

ξ(x, t) =
∫ x√

1 + fx(x′, t)2 dx′ , (2.9)

where f(x, t) gives the position of the wire as a function of the position in the
machine direction and time. Note that the subscript x denote differentiation
with respect to x. By combining equations 2.7 and 2.9 with the relation

∂R

∂ξ
=

∂R

∂x

(
∂ξ

∂x

)−1

, (2.10)

we obtain a time-dependent expression for the evolution of the drainage resis-
tance,

Rx(x, t) =
K

U

pw − pe
R(x, t)

√
1 + fx(x, t)2 . (2.11)

Of course, the time dependency does not enter through f(x, t) alone, we may
have wp = wp(ξ, t) as well.

We shall assume that a wire passing over a blade is in contact with the
surface of the blade, thus excluding the possibility of a thin liquid film between
the two of them. Consequently, over the blade there will be no flow through
the wire and the fibre mat, yielding pw = pe, and hence

Rx(x, t) = 0 . (2.12)

2.2.2. The mass of the wires and the fibre mats

Although the combined wire and fibre mat is considered infinitely thin, we shall
continue to assume that it has a mass m per unit of length along the wire and
unit of width across the machine direction. Since the wire and the fibre mat is
treated as a single permeable medium, in what follows the term ‘wire’ or ‘fabric’
will refer to both of the components together, unless we specify otherwise.
Figure 2.5 illustrates a section of a wire in a Cartesian co-ordinate system
(x, z) whose origin is located in the gap between the wires. The x-direction
is parallel to the machine direction, and the z-direction is oriented across the
gap. The position of the wire is given by f(x, t), and its axial velocity (i.e. the
‘wire speed’) is U . By considering the wires as inelastic, it follows that U is
constant. The velocity of a particular point on the wire is uw , and the velocity
of the suspension immediately adjacent to the wire is us. The components of
uw and us in the (x, z)-system are (uw, ww) and (us, ws), respectively. The
directions of the normal and the tangent to the wire are given by n̂ and t̂,
respectively,

n̂ =
(−fx, 1)√
1 + f2

x

and t̂ =
(1, fx)√
1 + f2

x

. (2.13)
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Figure 2.5. A segment of the upper wire. The mathematical
model is expressed in the Cartesian system (x, z). Confer the
text for an explanation of the notation.

An equation for the rate of change of the mass of a wire segment between
x and x+∆x is easily obtained by considering a control volume consisting of
the volume occupied by the segment. The explicit rate of change equals the
amount of mass entering the volume, minus the amount leaving,

∂

∂t

∫ ξ+∆ξ

ξ

m(ξ′, t) dξ′ =

Um(x, t)− Um(x +∆x, t) +
∫ ξ+∆ξ

ξ

c (us − uw) · n̂dξ′ . (2.14)

The parameter c relates the build-up of the mass of the fibre mat to the amount
of drainage. An important issue is whether the mass of the water residing inside
the wire and the fibre web should be included in the mass of the ‘wire’, or not.
From the assumptions made in section 2.2.1 regarding the permeability of the
wire in different directions, it follows that when the wire is accelerated in the
axial direction, the water inside it will have to be accelerated at the same rate
as well. In that case, it would be reasonable to include the mass of the water.
However, when the wire is accelerated in the transversal direction, there can
(and will) be a relative velocity between the wire and the water. As a result,
the water does not have to be accelerated to the same extent as the wire, and
its full mass should not be included. Consequently, the effective values of both
m and c depend on the motion of the wire. For the sake of simplicity we choose
not to consider such effects, and assume that c is some suitable constant. If
no consideration at all was paid to the water in the pores between the fibres,
we would have c = αsρf , where ρf is the density of the (wet) fibres. Using the
relation 2.9, the two integrals in equation 2.14 can be transformed so that the
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variable of integration becomes x instead of ξ. Then, by employing the mean
value theorem, the term on the left hand side turns into,

∂

∂t

(
m
√

1 + f2
x

)
|x=x1∆x , (2.15)

and the integral on the right hand side into

c
(
(ws −ww)− fx(us − uw)

)
|x=x2∆x , (2.16)

where x ≤ x1, x2 ≤ x +∆x. Note that, although x1 and x2 will subsequently
be used in other equations, they do not necessarily correspond to the same
x-positions as in the equations above. They are introduced for notational
convenience, and their values depend on the equation in which they appear.
Taylor-expanding the second term on the right hand side of equation 2.14 yields

Um(x+∆x, t) = Um(x, t) + U
∂

∂x
m(x, t)∆x+O(∆x2) . (2.17)

When inserting 2.15, 2.16 and 2.17 into equation 2.14, dividing by ∆x, and
letting ∆x → 0, the following equation governing the mass of the fabric is
obtained, [

m
√

1 + f2
x

]
t
+ Umx = c

(
(ws − ww) − fx(us − uw)

)
. (2.18)

As there is no flow through the wires when they pass over a blade (see section
2.2.1), we have (us − uw) · n̂ = 0 over the blade. In that case, equation 2.18
is reduced to [

m
√

1 + f2
x

]
t
+ Umx = 0 . (2.19)

The wire does not necessarily have to pass over the entire surface of the blade,
although this is the case in most situations. At the positions where the wire is in
contact with the blade, f(x, t) is given by the position of the blade surface. The
time-derivative in equation 2.19 has been kept since the position of a loadable
blade is determined by a balance between the forces acting on the blade and its
momentum, and may consequently vary in time. This effect is however likely to
be insignificant under normal operating conditions. If it is included, the model
has to be supplemented by an equation for the position of the blade.

It is possible to relate uw to f(x, t). Let rp = (xp(t), zp(t)) be the position
of a certain part of the wire, whose velocity is uw . As zp(t) = f(xp(t), t), we
have that

uw = ẋp(t) and ww = żp(t) =
∂f

∂x
ẋp(t) +

∂f

∂t
, (2.20)

where dots denote time differentiation. So far, we have put no constraints on
f(x, t). However, the motion of the wire is not completely free. The limited
available length of the wire imposes a restriction on the possible movements,
and this has to be incorporated in the model. In order to do this, we shall
assume that there is a fix point r0 = (x0, z0) through which the wire always
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passes, i.e. f(x0, t) is constant. In a paper machine, e.g. a roll supporting the
wire can be considered as such a point. The distance along the wire from r0

to rp is ∫ xp(t)

x0

√
1 + fx(x, t)2 dx = Ut+ l0 , (2.21)

where l0 is the distance at t = 0. When differentiating equation 2.21 with
respect to time, we obtain√

1 + fx(xp(t), t)2ẋp(t) +
∂

∂t

∫ xp(t)

x0

√
1 + fx(x, t)2 dx = U . (2.22)

The first term on the left hand side of equation 2.22 expresses the fact that,
even if the position of the wire is stationary in space, the distance from the fix
point r0 to a certain point rp on the wire will increase as the wire is constantly
moving with an axial velocity U . The second term on the left hand side tells
us that, even if the point on the wire we are considering is not moving in space,
the distance between r0 and that point will still increase due to more wire
constantly passing by r0 with velocity U . By solving the kinematic expression
2.22 for ẋp and inserting the result in equation 2.20 we obtain the components
of uw,

uw =
1√

1 + fx(xp(t), t)2

(
U − ∂

∂t

∫ xp(t)

x0

√
1 + fx(x, t)2 dx

)
(2.23)

and

ww = ft(xp(t), t)+

+
fx(xp(t), t)√

1 + fx(xp(t), t)2

(
U − ∂

∂t

∫ xp(t)

x0

√
1 + fx(x, t)2 dx

)
. (2.24)

As rp is arbitrary, we can of course consider rp to be the point whose x-position
is currently x, and hence replace xp(t) with x in the equations. By doing this,
and introducing the notation l(x, t) for the distance along the wire from (x0, z0)
to (x, f(x, t)), we can write the expressions 2.23 and 2.24 as

uw =
1√

1 + f2
x

(U − lt) (2.25)

and

ww = ft +
fx√
1 + f2

x

(U − lt) . (2.26)

The equations 2.25 and 2.26 may now, if desired, be inserted into equation
2.18.
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2.2.3. The momentum of the wires and the fibre mats

Consider the fabric segment in figure 2.5. During the drainage, suspension is
approaching the fabric with some velocity normal to the wire. If the wire is
saturated, our assumption of zero permeability in the tangential direction and
constant permeability across the wire implies that the water enters and leaves
the wire with the same velocity. Hence, the water has no direct influence on the
inertia of the wire (there is of course an indirect influence due to the pressure
drop across the fabric caused by the drainage resistance). The fibres, on the
other hand, remain on the surface of the fibre mat and will thus add their
momentum to that of the wire. The time rate of change of the momentum in
the z-direction of the wire segment between x and x+∆x is

∂

∂t

∫ ξ+∆ξ

ξ

wwmdξ′ + (mUww)|x+∆x − (mUww)|x −

−
∫ ξ+∆ξ

ξ

ρfαsws(us − uw) · n̂dξ′ . (2.27)

In analogy with the analysis in section 2.2.2, Taylor-expansion and the mean
value theorem can be used to turn the expression into

∂

∂t
(wwm

√
1 + f2

x)|x=x1∆x+
∂

∂x
(mUww)|x∆x+

−ρfαsws

(
(ws − ww) − fx(us − uw)

)
|x=x2 +O(∆x2) , (2.28)

where x ≤ x1, x2 ≤ x + ∆x. Expression 2.28 should, of course, be balanced
by the forces acting on the wire. These are illustrated in figure 2.6, where
T denotes the axial force in the wire per unit width, referred to as the ‘wire
tension’, τ is the shear stress acting on the wire surface, and S and M are the
transverse force and internal moment per unit width, respectively.

Let us start by considering the pressure. The z-component of the force due
to the pressure drop across the wire is∫ x+∆x

x

(pw − pe) dx′ = {MeanValueTheorem} = (pw − pe)|x=x1∆x , (2.29)

where x ≤ x1 ≤ x+∆x.
The tension in the wire exerts a force in the z-direction that is found to be

∂

∂x

Tfx√
1 + f2

x

∆x+O(∆x2) . (2.30)

A wire has very small bending stiffness, and it is normally safe to ignore it
when studying blade forming, as was demonstrated by Zahrai & Bark (1995).
However, it is instructive to re-demonstrate this result, and hence we shall
include stiffness for the time being in our study of the momentum of the wires.
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Figure 2.6. The different forces acting on the wire. T , S
and M denote the wire tension, the transversal force and the
bending moment, respectively. pw and pe are the pressure in
the suspension adjacent to the wire and the external pressure,
respectively. τ is the shear stress acting on the wire.

The resultant in the z-direction of the transversal forces on the segment is
∂

∂x

S√
1 + f2

x

∆x+O(∆x2) . (2.31)

By assuming that the wire behaves like an Euler-Bernoulli beam, the following
classical result holds,

S =
∂M

∂ξ
. (2.32)

Employing expression 2.9, relating ξ to x, equation 2.32 is turned into

S =
Mx√
1 + f2

x

. (2.33)

Further, let us introduce the parameter χ,

χ =
fx√
1 + f2

x

. (2.34)

As χx is the curvature of the wire, beam theory tells us that

M = −Bχx , (2.35)

where B is the bending stiffness of the wire. It will be assumed constant. By
combining the equations 2.31, 2.33 and 2.35, the contribution to the vertical
forces on the wire segment from transversal forces is found to be

−B
∂

∂x

χxx

1 + f2
x

∆x+O(∆x2) . (2.36)
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If the suspension next to the fabric is accelerated or decelerated by the wire
in the t̂-direction, there will be a shear stress τ on the wire. For the segment
in figure 2.6, the vertical force per unit width due to this stress is∫ x+∆x

x

fxτ dx′ = {MeanValueTheorem} = (fxτ )|x=x1∆x , (2.37)

where we have x ≤ x1 ≤ x+∆x. The value of τ at each position depends on
the rheology of the suspension.

We now have all the pieces necessary to establish the momentum balance
in the z-direction for the wire. The time rate of change of the momentum given
by expression 2.28 equals the sum of all the forces in the z-direction. These
are given by 2.29, 2.30, 2.36 and 2.37. Writing down the balance, dividing by
∆x and letting ∆x → 0, one finds[

wwm
√

1 + f2
x

]
t
+ U [mww]x − ρfαsws

(
(ws −ww)− fx(us − uw)

)
=

pw − pe + [Tχ]x −B

[
χxx

1 + f2
x

]
x

+ τfx . (2.38)

An analysis analogous to the one undertaken above can be performed for the
momentum in the x-direction. The result would be[

uwm
√

1 + f2
x

]
t
+ U [muw]x − ρfαsus

(
(ws −ww)− fx(us − uw)

)
=

−(pw − pe) +

[
T√

1 + f2
x

]
x

−B

[
χχxx√
1 + f2

x

]
x

+ τ . (2.39)

In the equations 2.38 and 2.39, uw and ww are given by 2.25 and 2.26, respec-
tively. To get us and ws, the flow in the suspension has to be solved.

As the wire passes a blade, (us − uw) · n̂ = 0, causing the last terms on
the left hand sides in equations 2.38 and 2.39 to disappear. Also note that,
in that case, f(x, t) is given by the position of the blade surface. At a blade,
the shear stress τ should include the friction between the wire surface and
the blade. The magnitude of the friction is much larger than the viscous stress
resulting from the acceleration/deceleration of the suspension, and might cause
significant changes in the wire tension T .

2.2.4. The flow of the suspension

The flow of any continuous medium is governed by Cauchy’s equation, which,
if we neglect body forces such as e.g. gravity, has the form

ρ
Dui
Dt

=
∂Tij
∂xj

. (2.40)

Here, ui and xi denote the i-components of the velocity and the position,
respectively, and Tij are the elements of the stress tensor T. As usual, when
two indices in a term are equal, a summation over those indices is implied
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unless otherwise stated. Although a fibre suspension has several constituents
such as water, fibres, fillers and various chemicals, we will treat it as a single
flowing medium. Consequently its motion is described by equation 2.40. It
is well known that the fibre suspensions encountered in papermaking have a
rheology different from a Newtonian fluid, and a natural question is how to
chose T in equation 2.40 to model their behaviour. This is a complicated
issue, and we shall make no attempt to address it. Here, like in the only
study concerned with blade dewatering where viscous effects were included in
a rigorous way (Roshanzamir et al. 1998), we shall assume that the suspension
can be considered as Newtonian with a dynamic viscosity µs. For qualitative
predictions this might be an adequate assumption in the blade forming section,
although one should probably be careful when drawing qualitative conclusions
about shear-related issues.

Let u be the velocity of the suspension, with the components (u, w) in our
(x, z)-system. Given our assumption about the rheology, Cauchy’s equation
turns into the well known Navier-Stokes equations for the momentum,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+

µs
ρ

(
∂2u

∂x2
+

∂2u

∂z2

)
, (2.41)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+

µs
ρ

(
∂2w

∂x2
+

∂2w

∂z2

)
, (2.42)

which are supplemented by the continuity equation for an incompressible fluid,
∂u

∂x
+

∂w

∂z
= 0 . (2.43)

The drainage will determine u · n̂ at the wire. As the fabric is a permeable
medium, u · t̂ is not likely to be zero even if a viscous description of the fluid is
adopted. We shall not try to investigate the relative velocity difference between
the suspension and the wire, but refer the interested reader to e.g. Taylor (1971)
or James & Davis (2001). These conditions, together with suitable conditions
at the inlet and the outlet of the model domain, and equations 2.41, 2.42 and
2.43, could in theory be solved for the pressure and the velocity field in the
suspension. From the assumption of a Newtonian rheology follows that the
shear stress, by which the fluid acts on the wire, can be obtained by evaluating
the following expression at the surface of the fabric (see e.g. Acheson, 1990),

τ = −µs

(
2(n̂ · ∇)u + n̂× (∇× u)

)
. (2.44)

2.3. Simplifications

The dependent variables in our mathematical description are the drainage re-
sistances of the wires (governed by equations of the form of equation 2.11), the
mass per unit length and unit width of the wires (governed by equations of
the form of equation 2.18), the positions of the two wires (given by equation
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2.38 together with an analogous equation for the other wire), the tensions in
the wires (given by equation 2.39 together with an analogous equation for the
other wire), and the velocity field and the pressure in the suspension (given by
the equations in section 2.2.4). The equations in their present form are rather
complex, and we shall try to simplify them.

Our main aim is to predict the pressure distribution in a forming zone
like the one in figure 1.6. As we have assumed that the suspension behaves
like a Newtonian fluid, and the viscosity in that case has little influence on
the pressure pulses (Roshanzamir et al. 1998), we shall start by neglecting
viscous effects. This is further motivated by the fact that our final model
will be quasi one-dimensional, which does not allow us to rigorously deal with
shear phenomena anyway. We shall further assume that there is no friction
between the wires and the blade surfaces. Consequently, the wire tensions will
be constants, and we can omit the momentum balances in the x-direction for
the wires from the model.

Green & Kerekes (1998) measured the dry mass of a certain twin-wire
forming fabric to 415 g/m2. As noted in chapter 1, the grammage of the final
product varies from the order of 10 g/m2 up to 400 g/m2. Blade dewatering
is not used to produce the most lightweight grades. However, the technique is
employed for newsprint, with a grammage of 40–45 g/m2. As we are employing
twin-wire forming, and assuming we can neglect the water content in the wire
and the fibre mat when considering their grammage, a mass of about 20 g/m2

will be built up on each fabric. Normally, a blade forming section contains
more than the three blades we are modelling. In addition, when the wires
reach the blades, a sheet has usually already been formed on the fabrics. Let
us however guess that roughly 10 % of the total drainage occurs as the wires
pass through our model, which in the newsprint case means 2 g/m2/wire. This
increase in mass is clearly insignificant in comparison with the mass of the wire
and the already formed fibre mat when they reach the blades. The mass of
the ‘fabrics’ in our model can hence in this case be assumed constant. For
a heavier grade, this is not as obvious, but 10 % of 400/2 g/m2 is 20 g/m2,
which shall be compared to at least the mass of the wire. Hence, even in that
case the combined mass of the wire and the fibre mat is not too ill described
as constant. Although the analysis above is rather dubious, we shall assume
m for each fabric to be constant, and hence not make use of equation 2.18 and
its analogous counterpart for the other wire. By neglecting the mass of the
fibres depositing onto the fibre mat, it follows that we should also neglect their
influence on the momentum of the wire.

Let λx and λz denote typical length scales in the x- and z-directions, re-
spectively. As the distance between the wires is generally an order of magnitude
smaller than the distance between the blades, we expect that λz < λx. Based
on this observation, we assume that (λz/λx)2 � 1, and can consequently ne-
glect f2

x in comparison with 1 in the equations. More physical, but less direct,
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estimates of λx can be found by considering the linear analytical solution for
a single thin blade derived by Zhao & Kerekes (1995). In the case of isolated
blades, this would have been the only option. Equation 2.11 can now be sim-
plified into

Rx(x) =
K

U

pw − pe
R(x)

, (2.45)

which is the form in which it will be used in the final model. Note that the
time-dependency has been omitted. Equation 2.38 for the momentum in the
z-direction becomes

mftt + 2mUfxt +mU2fxx = pw − pe + Tfxx −Bfxxxx , (2.46)

where we have made use of the fact that now ww = ft+Ufx. An estimate of the
ratio between the term containing the wire tension T and the term containing
the bending stiffness B in equation 2.46 is

B

T

1
λ2
x

. (2.47)

The wire tension is normally of the order of 10 kN/m. Zahrai & Bark (1995)
mention the value 4.91× 10−3 Nm as the bending stiffness of a typical two-
layered wire. This suggests that we can take 10−2 Nm as an estimate of B. If
λx is somewhere in the range 0.05-0.1 m, the ratio 2.47 is of the order 10−4, and
it is hence clear that the effects of bending stiffness can be neglected. However,
if we consider a region very close to a blade edge (which is where the wire has
its largest curvature), so that λx is very small, the influence of bending stiffness
is as important as that of wire tension. This region cannot be studied using
equation 2.46, since it is based on the assumption that (λz/λx)2 � 1. As a
consequence of this lack of resolution, the slope of the fabric might appear to
change discontinuously at a blade edge. An order of magnitude analysis of the
bending stiffness and wire tension terms in equation 2.38 indicates that the
extent of the region where bending stiffness is important is of the order 1 mm,
in which case λz/λx is of the order 1. This is in accordance with the results
found by Zahrai & Bark (1995). Further, as m and U are of the order 1 kg/m2

and 10 m/s, respectively, we see that mU2 is negligible in comparison with T .
If we finally assume that the problem is stationary, we find that equation 2.46
is reduced to

pw − pe + Tfxx = 0 . (2.48)

From this we see that the excess pressure in the gap between the fabrics should
be of the order Tλz/λ

2
x, which, using the values above and λz ∼ 10−3mm,

means about 1 kPa.
Now, consider the equations 2.41–2.43 governing the flow of the suspension.

As for the wires, viscosity is neglected and steady flow is assumed. Hence we



32 2. MATHEMATICAL MODEL

have

u
∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
, (2.49)

u
∂w

∂x
+w

∂w

∂z
= −1

ρ

∂p

∂z
, (2.50)

∂u

∂x
+

∂w

∂z
= 0 . (2.51)

Assume for a moment that the left hand side of equation 2.50 is negligibly
small (we shall verify this a posteriori). Then ∂p/∂z is essentially zero, and p
is a function of the x-position alone. From equation 2.49 now follows that the
rate of change of u when following a fluid particle is a function of only x, and
independent of z. Far upstream of the blades, the velocity in the u-direction
is independent of z (it equals the wire speed for all fluid particles). Due to
the material time-derivative of u being a function of the sole variable x, this
independence of z will be maintained throughout the blade forming section,
and hence u is also a function of x alone. Equation 2.49 turns into

u
du
dx

= −1
ρ

dp
dx

. (2.52)

We will now verify the initial assumption about equation 2.50. Let ∆u and
∆w denote typical changes in the x-direction of the u-component and the w-
component of the velocity, respectively. Note that, since the fabrics are parallel
and no drainage takes place far upstream of the blades, ∆w is also a measure
of the magnitude of w itself, and not only of a typical change. The magnitude
of the terms in equation 2.51 are as below.

Equation:
∂u

∂x
+

∂w

∂z
= 0

Magnitude: ∆u
λx

∆w
λz

From this we conclude that ∆w ∼ ∆uλz/λx. We now make use of this when
considering equation 2.50, which describes changes in w. As drainage occurs
through both of the wires, there should be some position in the gap where w is
zero. Hence, ∆w is also a measure of the change of w in the z-direction. The
magnitudes of the terms in the left hand side of equation 2.50 are consequently
as follows.

Equation: u
∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z

Magnitude: U ∆u
λx

(
λz

λx

)
∆w∆u

λx

Clearly, if we assume that λz/λx � 1, the first term on the left hand side is of
a much smaller magnitude than the pressure term in equation 2.49, which is of
the order U∆u/λx. This assumption is a more severe restriction than the earlier
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assumption that (λz/λx)2 � 1, but it is reasonable due to the slenderness of the
problem. The assumption also yields that ∆w � ∆u. Earlier in this section,
the pressure pulses were predicted to be of the order 1 kPa. If u ∼ U , the pulses
would be of the same order as the dynamic pressure of the suspension. This
is clearly not the case, and it is safe to conclude that ∆u < U and hence that
∆w � U . It follows that the second term on the left hand side of equation 2.50
is of much smaller magnitude than the pressure term in equation 2.49 as well.
Hence, in comparison with changes in the x-direction, the pressure variations
in the z-direction are insignificant, which justifies that they are neglected.

Equation 2.52 is a one-dimensional equation relating the pressure and the
velocity in the x-direction. As the velocity in the z-direction is of such small
magnitude, we shall neglect it altogether and not make use of equation 2.50.
The continuity equation 2.51 cannot be used in its present form either. By
integrating it in the positive z-direction across the distance between the wires,
one gets

w
(
x, f(x)

)
− w

(
x, g(x)

)
= − ∂

∂x

∫ z=f(x)

z=g(x)

u(x) dz =

= − d
dx

(
u(x)

(
f(x) − g(x)

))
, (2.53)

where f(x) and g(x) give the position of the two wires, and we have made use
of the fact that u is independent of z. Henceforth, we shall refer to the fabric
whose position corresponds to the largest z-value as the ‘upper wire’, and to
the other as the ‘lower wire’. Due to our assumptions of stationary flow and
(λz/λx)2 � 1, the velocity of the suspension in the z-direction at the upper
wire equals the drainage velocity, given by equation 2.5. Hence

w(x, f) =
p(x)− pe1(x)

R1(x)
, (2.54)

where the subscript 1 refer to the upper wire. Note that pw in equation 2.5
have been replaced by p, since the pressure is independent of position in the
z-direction. At the bottom wire (denoted by the subscript 2), the drainage is
directed in the negative z-direction, and thus

w(x, g) = −p(x) − pe2(x)
R2(x)

. (2.55)

Combining the equations 2.53, 2.54 and 2.55, we obtain the following equation
to replace 2.51,

[u(f − g)]x = −p

(
1
R1

+
1
R2

)
+

pe1
R1

+
pe2
R2

. (2.56)
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2.4. The model

In section 2.2 we derived equations governing one of the wires and the flow
of the suspension between the fabrics. They were subsequently simplified in
section 2.3. We are now ready to write down a complete set of equations that
describe the blade forming section. At x-positions where no blade is present,
they are as follows, where the subscripts 1 and 2 refer to the upper and the
lower wire, respectively.

R1x =
K

U

p− pe1
R1

(2.57)

R2x =
K

U

p− pe2
R2

(2.58)

[u(f − g)]x = −p

(
1
R1

+
1
R2

)
+

pe1
R1

+
pe2
R2

(2.59)

uux +
1
ρ
px = 0 (2.60)

p− pe1 + T1fxx = 0 (2.61)

p− pe2 − T2gxx = 0 (2.62)

Equations 2.58 and 2.62 are related to the lower fabric. The first one is exactly
analogous to equation 2.57, whereas equation 2.62 differs from 2.61 in that the
sign of the pressure term is reversed, which is due to the pressure acting in
the opposite direction on the lower wire. The functions pe1 and pe2 are the
pressures prevailing on the exterior of the upper and lower fabric, respectively.
Suction boxes are accounted for by specifying a low pressure outside of the wire
passing the box.

At a blade, a slightly different system of equations is used. As there is
no drainage through a fabric passing over a blade, pei = p in the equations
corresponding to that wire. Over the blade we must also drop the equation
for the position of the contacting wire (i.e. equation 2.61 or 2.62). Instead, the
position of the fabric is given by the blade surface.

The equations above are in dimensional form. We shall introduce non-
dimensional quantities (denoted by ∗) as below.

p = ρU2p∗ pei = ρU2p∗ei i = 1, 2
u = Uu∗ Ri = ρUD

h0
R∗
i i = 1, 2

f = h0f
∗ g = h0g

∗

x = Dx∗
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Here, h0 is the distance between the wires far upstream of the blades, and D is
some convenient length which, unless otherwise specified, will be taken as the
length along the x-axis of the first blade. This is often a good indication of the
reach in the machine direction of the pressure pulse generated by the blade.
When the new variables are inserted into the equations 2.57 – 2.62 the result
is as below. Note that the superscripted stars have been left out. For ease of
notation we shall continue to do so, and adopt the convention that we always
refer to dimensionless quantities unless we specify otherwise.

R1x = κ
p− pe1

R1
(2.63)

R2x = κ
p− pe2

R2
(2.64)

[u(f − g)]x = −p

(
1
R1

+
1
R2

)
+

pe1
R1

+
pe2
R2

(2.65)

uux + px = 0 (2.66)

p− pe1 + ε1fxx = 0 (2.67)

p− pe2 − ε2gxx = 0 (2.68)

The following dimensionless groups have appeared,

κ =
Kh2

0

ρUD
, (2.69)

ε1 =
T1h0

ρU2D2
, (2.70)

ε2 =
T2h0

ρU2D2
. (2.71)

As ρU2h0 is a measure of the inertial force of the suspension approaching the
blades, and Th0/D is a measure of the force exerted on the suspension as a
result of the tension in the fabrics, we can define a Weber number for each wire
as

Wei =
ρU2D

Ti
i = 1, 2 . (2.72)

The parameters ε1 and ε2 can consequently be regarded as the product of the
inverse Weber number and a slenderness ratio for the problem,

εi =
1

Wei

(
h0

D

)
i = 1, 2 . (2.73)

In order to solve the equations 2.63–2.68, conditions must be imposed on
the solution. As we have some liberty of choice regarding which conditions to
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specify, we shall defer this issue to chapter 3, where we discuss the details of
the solution algorithm.



CHAPTER 3

Numerical algorithm

3.1. A module strategy

Before the full problem (as illustrated in figure 1.6) was solved, a test-problem
of less complexity was considered. It consisted of two tensioned fabrics be-
tween which a liquid flows, like in figure 3.3(a). A robust numerical solver was
developed for a partly integrated system of the governing equations (confer
section 3.2.1 below). In order to obtain maximum flexibility, the model for the
full problem was then made up of elementary modules resembling the initial
test-problem. Each module acts like a black box with respect to its environ-
ment. Given certain parameters as input, it gives as output the evolution of
the dependent variables of the model throughout its interior, as well as other
key information. By adopting such an approach, structural changes of the full
model, such as e.g. adding another blade, is easily undertaken.

Let us consider an assembly of n modules that together constitute a model
of a certain blade forming section. Each module can be represented as in figure
3.1. The superscript i will subsequently be used to refer to the ith module. Out

M i

c i
k

c i
u

c i
c

Ωi

Figure 3.1. The ith module (arbitrary type). cik and ciu are
vectors containing input parameters. cic is a vector of param-
eters passed on to the next module. Ωi is the evolution of the
dependent variables throughout the module.

of the parameters necessary to solve the governing equations for the moduleM i,
certain are known from the full model and are grouped together in the vector
cik. Others, denoted by ciu, are not known a priori, and must be determined
as part of the solution process. Apart from the evolution of the dependent
variables throughout the module, symbolically given by Ωi, the module also

37
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delivers a group of parameters cic, based on Ωi, that are used as input for the
neighbouring module M i+1. The unknown parameters for the whole assembly
of modules can be put together in a vector cu = (c1

u, . . . , c
n
u). Assume that we

guess cu and calculate the dependent variables throughout all modules. Most
likely we did not manage to give the correct values for the components of cu, and
the evolution of the dependent variables throughout the whole model will be
unphysical. The real solution must fulfil certain matching criteria that ensures
that the solution obtained in one module fits in a physically correct manner with
the solutions from the neighbouring modules. For a well-posed problem, the
number of such criteria equals the total number of unknown parameters. Let ∆j

be a quantitative measure of how well criterion j is fulfilled (j = 1, . . . , r), the
value zero corresponding to exact compliance. An outline of the trial procedure,
from specifying the components of cu to obtaining quantitative values for the
degree of fulfilment of the different ∆j, is given in figure 3.2. In the figure,
Ω symbolises the evolution of the process variables obtained by combining the
output of all the modules.

M i

c i
k

c i
u

c i
c

Ωi

cu

c1
c

Ω1

ck
1

1

M 1 M n

ck
n

cu
n

Ωn

c i-1
c c n-1

c

Ω

∆1 ∆ j ∆r

Figure 3.2. Outline of how the known and guessed parame-
ters (the cik and ciu, respectively) result in a description Ω of
how the process variables varies along the machine direction.
Ω is then used to give quantitative values ∆j of how well the
solutions from the different modules complies with the match-
ing criteria.

Now, assume that the ∆j are continuous functions of the components of cu.
The procedure described above can then be considered a continuous function
Z, taking the vector cu as input and yielding a vector (∆1, . . . ,∆r) as output.
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Solving for the dependent variables in the blade forming section, modelled by
the assembly of modules, then turns into finding the roots of Z. Any algorithm
for non-linear root-finding that does not demand explicit knowledge of the
function is a candidate to perform this task. In the present study, both the
Gauss-Newton and the (more robust) Levenberg-Marquardt methods have been
used, neither showing any advantage over the other for the model at hand. Both
of these methods are traditionally applied to non-linear least-squares problems.
However, by using them to minimise the sum

S∆ =
r∑

j=1

[∆j(cu)]
2
,

they can also be employed to find the roots of Z. The main difference between
the least-squares problem and the root-finding problem is that, for the for-
mer, the model-functions and hence also the function to minimise are known,
whereas in our case we cannot give Z explicitly. Information about the com-
ponents of the gradient of Z, which are necessary to implement the above
methods, must therefore be generated numerically. Routines for employing
these methods in the fashion described is conveniently provided in MATLAB,
which is also the reason why they were chosen. Details about the methods
can be found in e.g. Press et al. (1986). In each iteration, the Gauss-Newton
method minimises a local quadratic approximation of S∆, in which the con-
tributions of the second derivatives to the Hessian of S∆ are neglected1 . The
Levenberg-Marquardt method is a blend of the steepest descent method and
the Gauss-Newton method. The former is used far from the minimum, but as
the extremum is approached, the Levenberg-Marquardt method turns into the
latter in a continuous fashion.

3.2. The modules

By using the three basic types of modules schematically illustrated in figure 3.3,
we can model any blade forming section of interest to us, including the appli-
cation of suction. Since the system of equations required to analyse these
‘fundamental modules’ are different from each other, they constitute a suitable
division of the full problem. In the following sections, we shall in turn consider
each kind of fundamental module. In figure 3.3, we have also indicated what
parameters are necessary to solve the systems of equations, i.e. the components
of the vectors ck and cu. Inside the ith module, a local co-ordinate system x̃
is used, whose origin is located at the inlet. x̃iout is the position of the out-
let. The subscripts in and out refer to the inlet and the outlet respectively.
Consequently, f iin means the position of the upper wire at the inlet, etc.

1It is hence an inverse-Hessian method, which is also how it is referred to in Press et al.

(1986).
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Figure 3.3. The fundamental modules, and the information
that needs to be specified in order to calculate the dependent
variables throughout the modules. x̃ is a local co-ordinate
system. The subscripts in and out refer to the inlet and the
outlet, respectively. Confer the text for an explanation of the
rest of the notation.

In order to reduce the size of the vector cu containing the unknown parame-
ters, we shall in section 3.5 build ‘composite modules’ based on the fundamental
modules. These will then be used in the model of the forming section.

3.2.1. Modules of type WW – An upper and a lower wire

Modules of type WW, outlined in figure 3.3(a), are used for parts of the forming
section where no blades are present. Consequently, it consists of two permeable
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wires between which the suspension flows, and it is described by equations 2.63
to 2.68.

Due to the non-linear nature of the governing equations, we have little
hope that the dependent variables can be obtained by an analytical solution
procedure, and we have to resort to numerical methods. Nevertheless, it is
possible to partly integrate our system of equations analytically in order to re-
duce the number of equations. In what follows, Ci

l denote integration constants
(l = 1, . . . ). Equation 2.66 is easily integrated into

p+
u2

2
= Ci

1 . (3.1)

Subtracting equation 2.68 from equation 2.67, one finds

ε1fxx + ε2gxx = pie1 − pie2 . (3.2)

Introducing

k =
ε1f + ε2g

ε1 + ε2
, (3.3)

and integrating equation 3.2 twice, it follows that

k =
∫ x̃

0

∫ x̃′

0

pie1(x̃′′) − pie2(x̃′′)
ε1 + ε2

dx̃′′ dx̃′ + Ci
2x̃+ Ci

3 . (3.4)

Note that, if ε1 = ε2, then k is the position of the centreline between the two
wires. We shall let F i(x̃) denote the known function defined by the double
integral in equation 3.4. Now, by combining equation 2.67 and 2.68, we obtain
the following equation for the distance between the fabrics,

hxx +
ε1 + ε2

ε1ε2
p =

pie1
ε1

+
pie2
ε2

, (3.5)

where h = f − g. By combining equations 2.63, 2.64 and 2.65, and integrating
once, it is found that

uh = −R1 +R2

κ
+Ci

4 . (3.6)

Using equation 2.63 to eliminate p in equation 3.5, and then integrating, yields

R2
1

2
+ κ

ε1ε2

ε1 + ε2
hx = −κ

ε1

ε1 + ε2

∫ x̃

0

(
pie1(x̃′)− pie2(x̃′)

)
dx̃′ + Ci

5 . (3.7)

Let Gi(x̃) denote the known function defined by the integral on the right hand
side of equation 3.7. The same procedure, but using equation 2.64 instead of
2.63 to eliminate the pressure, yields

R2
2

2
+ κ

ε1ε2

ε1 + ε2
hx = κ

ε2

ε1 + ε2
Gi(x̃) + Ci

6 . (3.8)
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By adding equation 3.7 and equation 3.8, it follows that

R2
1 +R2

2 = 2
(

κ

ε1 + ε2

(
(ε2 − ε1)Gi(x̃)− 2ε1ε2hx

)
+ Ci

5 + Ci
6

)
. (3.9)

From the difference between the equations 3.7 and 3.8, one finds

R1 −R2 =
2

R1 +R2

(
Ci

5 −Ci
6 − κGi(x̃)

)
. (3.10)

If the denominator on the right hand side of equation 3.10 were to take the
value zero somewhere in the solution domain, the analysis would no longer be
valid. However, as physical drainage resistances are always finite and positive,
this is of little concern to us. Noting that

R2
1 + R2

2 =
(R1 + R2)2

2
+

(R1 −R2)2

2
,

we can combine the equations 3.6, 3.9 and 3.10 into an expression relating h
and u,

κ2(Ci
4 − uh)2

(
κ2(Ci

4 − uh)2 + 8κ
ε1ε2

ε1 + ε2
hx +

+4
(
κ
ε1 − ε2

ε1 + ε2
Gi(x̃)− Ci

5 − Ci
6

))
+ 4
(
κGi(x̃) + Ci

5 −Ci
6

)2

= 0 . (3.11)

Another equation containing only h and u is readily obtained by using equation
3.1 to eliminate p from equation 3.5,

hxx +
ε1 + ε2

ε1ε2

(
Ci

1 −
u2

2

)
− pie1

ε1
− pie2

ε2
= 0 . (3.12)

It would be easy to use this equation to eliminate the velocity from equation
3.11, hence obtaining one single differential equation for h. Nevertheless, we
shall refrain from doing so. Albeit a rather complex appearance, the system
consisting of equations 3.11 and 3.12 has the nice feature that the highest
derivative, i.e. hxx, appears linearly. This would be lost if we were to eliminate
u. The other dependent variables are easily expressed in terms of u, h and k.
For the positions of the wires, we have

f = k +
ε2

ε1 + ε2
h and g = k − ε1

ε1 + ε2
h . (3.13)

The pressure is directly given by equation 3.1, and the drainage resistances are
obtained by combining equations 3.6 and 3.10,

R1,2 =
κ

2
(Ci

4 − uh)± Ci
5 −Ci

6 − κGi(x̃)
κ(Ci

4 − uh)
. (3.14)

The following boundary conditions are specified in order to determine the
integration constants Ci

1–Ci
6:
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• The position of the upper wire at the inlet and the outlet, f iin and f iout,
respectively.

• The position of the lower wire at the inlet and the outlet, giin and giout,
respectively.

• The drainage resistances at the inlet for the upper and the lower wire,
Ri

1in and Ri
2in, respectively.

• The pressure at the outlet, piout.
• The velocity at the outlet, uiout.

Other choices of conditions are possible. To reduce the size of the vector of
unknown parameters, cu, it would be preferable to specify the conditions on
R1 and R2 at the same position as the conditions on p and u. Therefore, it
was considered to specify all these variables at the inlet. It turns out, however,
that if the module extends towards infinity in the upstream direction, p always
tends asymptotically to the pressure of the surrounding atmosphere when the
upstream end is approached, regardless of what is specified at the outlet of the
module. The atmospheric pressure will subsequently be set to zero, without
loss of generality. In the same way, u always tends to 1 at the far upstream
end. Consequently, specifying the physically correct conditions p = 0 and
u = 1 at the upstream end of an infinitely long module does not introduce any
information into the problem. As infinity cannot be represented numerically,
it is replaced by a very large value. Due to this, the numerical algorithm
will find a solution anyway, albeit erroneous. This can be seen by comparing
the numerical solution with an analytical solution to a linearised version of
the equations (such a comparison is done in order to verify the algorithm in
section 3.7). As one sometimes needs an infinitely longWW-module (e.g. at the
upstream end of the model domain), the boundary conditions on R1, R2, p and
u were moved to the downstream end to avoid this problem. This yield correct
solutions. However, when several modules were used together to form a larger
problem, it turned out that the overall solution algorithm managed to find the
unknown parameters in cu with less iterations if the drainage resistances were
specified at the upstream end. This advantage was found to outweigh the larger
size of cu.

From the conditions above follows that

Ci
1 = piout +

uiout
2

2
, (3.15)

Ci
2 =

1
x̃iout

(
ε1(f iout − f iin) + ε2(giout − giin)

ε1 + ε2
− F i(x̃iout)

)
, (3.16)

Ci
3 =

ε1f
i
in + ε2g

i
in

ε1 + ε2
. (3.17)

The constants Ci
4, Ci

5 and Ci
6 must be determined as part of the solution

process. As h and u are known at the outlet, the discretised versions of the
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equations 3.11 and 3.12 need not be applied at x̃iout. Instead, the discretisation
of equation 3.11 at the outlet is used to determine Ci

4. Discretisations of the
equations 3.7 and 3.8 at the inlet are used, together with Ri

1in and Ri
2in, to

determine Ci
5 and Ci

6, respectively. The details are given in section 3.4.

3.2.2. Modules of type UB and LB – A blade and a wire

Modules of type UB (see figure 3.3(b)) consist of an upper fabric to which a
blade is applied, and an opposing permeable free wire. Correspondingly, in
a module of type LB (illustrated in figure 3.3(c)) the blade is applied to the
lower fabric, whereas the upper fabric is free. As explained in chapter 2, when
a blade is applied, the fabric is assumed to follow the surface of the blade,
which corresponds to f = f i(x̃) or g = gi(x̃) being given. If the wire is in
perfect contact with the blade, no drainage occurs. Consequently, the drainage
resistance of a wire will not change as long as it is in contact with a blade, but
remain at the same level it was at the leading edge of the blade.

For an UB-module, the equations 2.63–2.68 reduce to

R2x = κ
p− pie2

R2
, (3.18)

[uh]x = −p − pie2
R2

, (3.19)

uux + px = 0 , (3.20)

p− pie2 − ε2gxx = 0 . (3.21)

Like the equations governing the WW-module, the equations 3.18–3.21 can be
integrated into a system for h and u,

κ2(Ci
4 − uh)2 + 2κε2(hx − f ix)− Ci

6 = 0 , (3.22)

hxx +
1
ε2

(
Ci

1 −
u2

2

)
− pie2

ε2
− f ixx = 0 , (3.23)

whose solution is then used to obtain the other dependent variables through
p = Ci

1 − u2/2, g = f i − h and R2 = κ(Ci
4 − uh). In order to solve equation

3.22 and 3.23, and to determine the integration constants, one must specify the
following:

• The position of the blade surface, f i.
• The position of the free fabric at the inlet and the outlet, giin and giout.
• The drainage resistance of the free wire at the inlet, Ri

2in.
• The pressure at the outlet, piout.
• The velocity at the outlet, uiout.
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Having done this, Ci
1 can be determined directly. Ci

4 and Ci
6 must be deter-

mined together with the dependent variables in the same way as for a WW-
module.

A module of type LB is treated in a completely analogous fashion.

3.3. The matching criteria

We shall now define the criteria ∆j, introduced in section 3.1, that will enable
us to match the solutions from different modules with each other. Apart from
criteria of the kind derived in this section, modelling considerations might de-
mand that special ∆j are introduced in order to deal with particular features
such as e.g. loadable blades. Examples of this can be found among the criteria
introduced in section 3.6 for the forming zone considered in this study.

Assume that an interface between two modules is located at xb. For obvious
reasons, the position of the wires must be continuous across the interface, but
what about the other variables? Let x−

b and x+
b denote the upstream and

downstream side of the interface, respectively. By integrating equation 2.66
across the interface, we find

[
u2

2

]x+
b

x−
b

+ [p]x
+
b

x−
b

= 0 . (3.24)

Hence, if there is a discontinuity in e.g. p, then there must be one in u as well,
and vice versa. Let us assume a discontinuity in the pressure. The consequent
discontinuity in the velocity, and the fact that the suspension is incompressible,
would demand either a discontinuity in h, or that a finite volume of liquid is
expelled from, or sucked into, the gap between the wires at the position xb.
The former alternative has already been ruled out, and the latter would require
infinite dewatering velocities (positive or negative). The conclusion is that both
the pressure and the velocity are continuous across the interface. From the
necessity that the dewatering velocities are finite also follows that the drainage
resistances are continuous.

Our choice of modules implies that xb corresponds to the position of a
blade edge. Without loss of generality we assume that it is the edge of a blade
applied to the lower wire. Equation 2.67 is then valid across the interface, and
an integration like the one above yields

[fx]
x+

b

x−
b

= 0 , (3.25)

which tells us that the derivative of the position of a free wire must be contin-
uous. The equation for the lower fabric is however not valid at the point xb.
This is due to the edge acting as a point force Qb on the fabric, a possibility
that was not included in the derivation of equation 2.68. In the following form,
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however, it is valid,

p − pe2 − ε2gxx −Qbδ(xb) = 0 , (3.26)

where δ(x) is a Dirac-function. Integration across the interface yields

[gx]
x+

b

x−
b

= −Qb

ε2
, (3.27)

and a discontinuity is hence permissible as a result of us having neglected the
bending stiffness of the wires.

The requirements of continuity of the dependent variables, and of the deriv-
ative of the position of a free fabric, are all candidates for matching criteria ∆j

at an interface. Nevertheless, not all of them will be needed at each interface.
For example, at each iteration performed by the algorithm that is employed
to find the root to Z, the module furthest downstream will be solved first (see
section 3.6). The solution obtained for this module will, owing to the continu-
ity of the variables, give the boundary conditions on p and u at the outlet of
the next module upstream. Hence there is no need to formulate criteria ∆j in
order to match these variables at the interface. Other criteria may, depending
on the circumstances, also be naturally fulfilled.

It is easy to quantify the degree of compliance of the different criteria.
If some quantity φ must be continuous across the interface at xb, a natural
measure of the discrepancy is φ(x+

b ) − φ(x−
b ).

Continuity criteria on the dependent variables themselves are straightfor-
ward to employ. When derivatives are involved, as in e.g. the criterion 3.25, the
derivatives on both sides of the interface must be calculated numerically from
values of the variable at the mesh points introduced in section 3.4. This is done
by using finite difference approximations of the derivative. Downstream of the
interface, a discretisation analogous to 3.37 is used, upstream a discretisation
analogous to 3.38.

3.4. A finite difference solver for the modules

In this section, we discuss how to numerically solve the equations for the WW-
module. The procedures for the other module types are analogous.

Let us discretise the x̃-axis of the module by replacing it by a set of discrete
mesh points x̃l (l = 1, . . . , N), where x̃1 corresponds to the inlet and x̃N to
the outlet. The discretisation, which is illustrated in figure 3.4, is such that the
distance between the points equals the constant ∆x̃. At the mesh point x̃l, h
and u take the values hl and ul, respectively, and our ambition is to determine
those values as well as the constants Ci

4, Ci
5 and Ci

6. The unknowns can be
grouped together in a column vector q,

q = (h1, u1, . . . , hl, ul, . . . , hN , uN , Ci
4, C

i
5, C

i
6)

T . (3.28)
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Figure 3.4. The discretisation of the x̃-axis in the ith mod-
ule. The positions of the mesh points x̃l (l = 1, . . . , N) are
indicated by ×.

The boundary conditions immediately yield the trivial equations

h1 = f iin − giin , (3.29)
hN = f iout − giout , (3.30)

uN = uiout . (3.31)

To obtain algebraic equations for the other components in q, we shall replace
the equations 3.11 and 3.12 by second order finite difference approximations.
At the mesh points x̃l, l = 2, . . . , N − 1, this is done by making the following
substitutions in the two equations,

x̃ → x̃l , (3.32)
u → ul , (3.33)
h → hl , (3.34)

hx → hl+1 − hl−1

2∆x̃
, (3.35)

hxx → hl+1 − 2hl + hl−1

∆x̃2
. (3.36)

The truncation errors in the discretisations of hx and hxx are ∆x̃2hxxx/6 and
∆x̃2hxxxx/12, respectively. The resulting algebraic equations can be considered
related to hl and ul for l = 2, . . . , N − 1.

Equations for u1 and Ci
4 are obtained by discretising equation 3.11 at the

mesh points x̃1 and x̃N . The same substitutions as above are used, with the
exception of the one for hx. The derivative is at the inlet replaced by

hx → −3h1 + 4h2 − h3

2∆x̃
, (3.37)

and at the outlet by

hx → 3hN − 4hN−1 + hN−2

2∆x̃
. (3.38)

The truncation error is in both cases −∆x̃2hxxx/3.
The equations used to determine Ci

5 and Ci
6 are the discretised versions of

the equations 3.7 and 3.8 at the inlet. They are obtained through the following
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substitutions,

x̃ → x̃1 , (3.39)
R1 → Ri

1in , (3.40)

R2 → Ri
2in , (3.41)

hx → −3h1 + 4h2 − h3

2∆x̃
. (3.42)

We now have as many equations as unknowns, and together they form a
non-linear algebraic equation system σ(q) = 0. Since it is straightforward to
explicitly form the (sparse) Jacobian matrix Jσ of σ(q), we solve the system by
the damped Newton method. The algorithm can be outlined in the following
way:

i) q0 = initial guess
ii) until stopping criterion fulfilled

Solve Jσ(qk)sk = −σ(qk) ⇒ sk
qk+1 = qk + βsk

end

We are interested in finding a good approximation to the root of σ(q), rather
than to minimise the residual. For this reason, the iterations are carried out as
long as the ratio between the norm of the correction and the norm of the old
approximate solution, i.e. ∆qrel = ‖sk‖/‖qk‖, is larger than a chosen tolerance.
β is the damping factor. At the first iteration it is set to 1, and it is kept at
that value as long as ∆qrel decreases monotonously. If, however, this quantity
increases at some point, β is reduced by some factor (typically 10). The al-
gorithm then returns to the approximate solution obtained before the faulty
update, and performs iterations with the lower β. If this is done successfully
a certain number of iterations, then β is augmented by the same factor again.
If not, β is further reduced, until the monotonously decreasing behaviour of
∆qrel is re-established. At each damping level, a certain number of successive
iterations must be succesful before β is augmented. The upper limit of β is 1.
Naturally, the algorithm may fail to converge when started too far from the
solution. Nevertheless it has proved robust when employed to find the roots of
the different σ(q) encountered so far. Even when quite naive choices of q0 are
made, a solution is obtained.

The linear equation system appearing in step ii of the algorithm is solved
through LU-factorisation with partial pivoting, by a method that takes into
account the sparse structure of the coefficient matrix. Prior to the factorisation,
the columns of Jσ is permuted through minimum degree ordering, in order to
yield sparser factors. The algorithms employed by MATLAB to perform these
tasks are described by Gilbert et al. (1992).
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3.5. Composite modules

The more modules that are involved in the complete model of the forming
section, the larger the size of the vector cu that contains the parameters that
are a priori unknown to us. At each interface between modules, new unknown
parameters are introduced. Although causing no problems so far, this might
potentially be a problem for models involving many modules, due to the in-
creased demand on the algorithm in charge of determining the root of Z.

We note that a UB-module, or a LB-module, is always preceded on the
upstream side by a WW-module. Consequently, we can reduce the total num-
ber of interfaces between modules, without loss of flexibility, by constructing
modules which consist of an upstream part with an upper and a lower fabric,
and a downstream part with a fabric on one side and a blade on the oppos-
ing side. This is easily done by employing the fundamental modules already
developed. A module obtained by combining an upstream WW-module with
a downstream UB-module will be termed a WUB-module. The corresponding
composite module obtained by using a LB-module instead of the UB-module
will be referred to as a WLB-module. In what follows, we present only the
WUB-module, as the WLB-module is derived in the same way.

Let the ith module be a downstream UB-module, and the (i+1)th module
be an upstream WW-module2. Denote the vectors containing the unknowns
in the two modules qi and qi+1, respectively (see section 3.4 for their compo-
nents). At the outlet of the WW-module, we should specify f i+1

out , gi+1
out , pi+1

out

and ui+1
out , whereas, at the inlet of the UB-module, we should give giin and Ri

2in.
When the modules are combined into a WUB-module, these become “inter-
nal” parameters, and should no longer be part of the input to the composite
module. Instead, they have become new unknowns. The purpose of specifying
pi+1
out is to introduce information to determine the constant Ci+1

1 . However, as
p and u are continuous across the interface between the modules, it follows
that Ci+1

1 = Ci
1. Thus we can remove pi+1

out from the list of unknown internal
parameters that has to be determined iteratively. The vector qc containing all
the unknowns for the WUB-module hence becomes

qc = (qi+1, f i+1
N , gi+1

N , ui+1
N , gi1, R2

i
1, q

i)T ,

where integer subscripts on dependent variables refer to mesh points in the
module indicated by the superscript.

By formulating equations through which the new unknowns can be ob-
tained, we can form a system σc(qc) = 0 consisting of these equations, together
with the algebraic equations for the ith and the (i+ 1)th module. Solving the
system by the algorithm introduced in section 3.4 yields qc.

2The module numbering starts at the downstream end of the full model, since this is the

order in which they are solved for the dependent variables. See section 3.6.
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The equations below follow immediately from continuity,

f i+1
N = f i(0) , (3.43)

gi+1
N = gi1 , (3.44)

ui+1
N = ui1 , (3.45)

where f i(x̃) is the position of the surface of the blade. It remains to derive
equations for gi1 and R2

i
1. Recalling the relation between g, k and h given by

equation 3.13, the condition that gx should be continuous across the interface
between the modules turns into[

kx −
ε1

ε1 + ε2
hx

]x+
b

x−
b

= 0 . (3.46)

Here, like in section 3.3, it has been assumed that the interface is located at
xb, and that − and + refer to the upstream and downstream side, respectively.
Since

kx =
Gi(x̃)
ε1 + ε2

+ Ci
2 , (3.47)

the condition 3.46 can be rewritten as

−ε1

(
hx(x+

b )− hx(x−
b )

)
+ (ε1 + ε2)(Ci

2 −Ci+1
2 ) +

+Gi(0)−Gi+1(x̃i+1
out ) = 0 . (3.48)

An equation for gi1 is obtained by discretising the equation above and inserting
hi1 = f i(0) − gi1. By discretising equation 3.8 at x−

b , and inserting R2
i+1
N =

R2
i
1, the result will serve as an equation for R2

i
1. To discretise hx(x+

b ), the
substitution 3.37 is used, and, to discretise hx(x−

b ), the substitution 3.38.
If necessary, one could of course construct composite modules containing

more than two fundamental modules in exactly the same way as above. Even a
single algebraic equation system for the full problem can be obtained, making
the root-finding algorithm discussed in section 3.1 redundant.

3.6. The considered forming section

Using the modules developed in this chapter, the forming section in figure 1.6
can be divided into four modules, as illustrated in figure 3.5. Note that the
problem domain extends an infinite distance upstream and downstream of the
blades. Infinity must, of course, numerically be replaced by a (sufficiently)
large number. In the figure are also indicated what parameters are specified
at the outset of the solution procedure, including the force per unit width Q
by which the middle blade is applied to the fabric. Q is non-dimensionalised
by the wire tension in the lower fabric. The numbering of the modules (the
encircled integers) starts at the downstream end of the section. The position of
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Figure 3.5. The division of the forming section into modules.
Confer the text for an explanation of the notation.

the three internal interfaces between modules are denoted x1
b, x

2
b and x3

b . The
upstream edge of the middle blade is denoted xu. The only external pressure
functions not identically zero (corresponding to pressures different from that of
the atmosphere) are p2

e1 and p3
e1. For them, we have p2

e1 = p3
e1 = pv, where pv

is the pressure in the vacuum box between the upper blades (pv is a a negative
constant).

The parameters that are not known a priori, and that are not supplied by
a neighbouring module during the calculations following the choice of a trial
cu, are the following (note that they constitute the components of cu):

Module 1: R1
1in, R

1
2in g1

in, g
1
out

Module 2: R2
1in, R

2
2in f2

in, g
2
in

Module 3: R3
1in, R

3
2in g3

in

They are determined by requiring that the quantities ∆j below, which are
functions of cu, are zero:

∆1 = [R1]
x1+

b

x1−
b

∆2 = [R2]
x1+

b

x1−
b

∆3 = [gx]
x1+

b

x1−
b

∆4 = hx(+∞)

∆5 = [R1]
x2+

b

x2−
b

∆6 = [R2]
x2+

b

x2−
b

∆7 = [fx]
x2+

b

x2−
b

∆8 = gx(x−
u ) − gx(x2+

b )− QD
h0

∆9 = [R1]
x3+

b

x3−
b

∆10 = [R2]
x3+

b

x3−
b

∆11 = [gx]
x3+

b

x3−
b

We recall that − and + refer to the upstream and downstream side, respec-
tively. Criterion ∆4 corresponds to the condition that the fabrics are parallel at
downstream infinity, and the quantity ∆8 is necessary to determine the position
of the loadable blade. It is derived by assuming that the blade force is balanced
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by the tension in the fabric. The pressure takes no part in the balance, since
there is no pressure drop across the wire when no dewatering takes place.

The middle blade in figure 3.5 has a slightly curved shape, hence symbol-
ically indicating that the present study has not been limited to flat blades. If
blades of large curvatures are employed, the wires do not necessarily stay in
contact with the blades along their full length, which was one of the assump-
tions made in chapter 2. In situations where the contact between the wire
and the “physical” blade is unnatural, the extent of the “model” blade in the
upstream or downstream direction (or both) is introduced as an additional un-
known parameter in the vector cu. The new parameter(s) is then determined
by requiring that the slope of the wire is tangential to the blade surface at the
leading or trailing edge of the blade (or both). Thus, in a way, the algorithm
determines how much of the “physical” blade would have to be cut off, if the
slope of the wire was to equal that of the blade at the leading and/or trailing
edge. The need to introduce the extension of the blade in the upstream or
downstream direction as an unknown is easily recognised by considering the
change in the slope of the contacting wire at the upstream or downstream edge
of the blade. Physically, the wire must either be tangential to the blade surface
at the point of contact, or be wrapped over the edge of the blade. Consequently,
at a blade edge xb, the slope of the wires must fulfil the following conditions in
order for the contact with the blade not to be abnormal:

[fx]
x+

b

x−
b

≥ 0

[gx]
x+

b

x−
b

≤ 0

If these criteria are violated, the wire will first (or last) contact the blade at
some point downstream (or upstream) of the edge, and the position of the edge
of the “model” blade must be introduced as an unknown.

The first step of the solution process is to provide the algorithm in charge
of determining the root of Z (see section 3.1) with an initial guess for cu.
This guess is then iteratively improved till all |∆j| are smaller than a chosen
tolerance. During the solution process, the algorithm calculates Z(cu) several
times. Each time, all the modules are solved, starting with the module at
the downstream end of the section, i.e. module 1 in figure 3.5. The necessary
parameters that are not a priori known are taken from the input cu. The
solution obtained for module 1 then supplies the pressure and the velocity at
the downstream end of module 2, which is calculated next, again taking the
unknown parameters from cu. The modules 3 and 4 are subsequently calculated
in the same way. Once all the modules have been solved, the quantities ∆1–
∆11 are calculated, which constitute the output from Z. The evolution of the
dependent variables throughout the forming section obtained during the final
iteration constitutes the solution.
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Although finding the solution implies calculating each module several times,
the time required to obtain a converged solution when the above algorithm is
implemented in MATLAB on an ordinary desktop computer, is of the order
1 minute for a reasonably good initial guess. Apart from increased flexibility,
an advantage of the module approach is that solving only one module at a
time requires less computer memory. If speed, and not computer memory, is
an issue, all four modules can be solved simultaneously as described in section
3.5.

3.7. Verification

Prior to employing the algorithm presented in this chapter, we shall verify
that it behaves in a correct manner, and that it has been correctly imple-
mented. This includes both checking numerical characteristics, such as grid
independence and convergence rate, as well as certifying that the output is
in reasonable accordance with physical reality. When considering numerical
properties, we can limit our attention to the variables h and u, as they are the
ones we calculate numerically.

In order to confirm that grid independence can be achieved, the dependent
variables were calculated throughout a forming section like the one in figure 3.5.
Several different calculations were carried out, each with a different number of
mesh points. The results, as well as the details of the input parameters, are
presented in figure 3.6. The positions of the blade edges are indicated by �
in the figure. Clearly grid independence has been achieved when ∆x (non-
dimensionalised with the length of the blade in the machine direction, which
is also called the blade ‘width’) is 0.025, which corresponds to 40 mesh points
along each blade. This is a better indication of the coarseness of the mesh than
the total number of points, as the pressure pulses, which is driving the changes
in the other variables, usually extends a couple of blade widths upstream of the
blade. Apparently, grid independence is achieved earlier for h than for u, which
is to be expected since h is in a way an integrated quantity (its value is related
to the integral of the dewatering velocities along the machine direction), and as
such rather insensitive. Indeed, one cannot see the individual curves in figure
3.6(a).

Calculations with different number of mesh points were also used to cal-
culate the convergence rate of the implemented algorithm. The results are
presented in figure 3.7. The input parameters were those given in the caption
of figure 3.6. A calculation on a very fine grid, for which ∆x divided by the
blade width was 0.003125, was taken as an estimate of the exact solution. The
quantities considered were the distance between the wires far downstream of
the blades, and the minimum value of the velocity in the forming section. The
latter was determined by fitting a 4th order polynomial to the data around
the node yielding the lowest u, and then determining the minimum of that
polynomial. By inspection of figure 3.7, we conclude that the convergence rate
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Figure 3.6. Grid independence. In all the figures: (—)
∆x/blade width = 0.2. (· · · ) ∆x/blade width = 0.1. (- · -)

∆x/blade width = 0.05. (- - -) ∆x/blade width = 0.025. Flat
blades, width 10 mm. Blade spacing 10 mm. Blade force
450 N/m. Suction pressure -1 kPa. Wire speed 25 m/s. Wire
tensions 11 kN/m. Initial drainage resistances 34 kNs/m3.
Drainage coefficient 9.0×106 kg/(m3 s). Density 1000 kg/m3.

is quadratic, as it should be given the second order discretisation introduced
previously in this chapter.

Zhao & Kerekes (1995) undertook a one-dimensional linear analysis of two
wires that were wrapped over a thin blade (see section 1.2). According to their
analytical solution, the wires downstream of the blade are moving parallelly
along straight paths, hence implying zero pressure and a constant velocity
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Figure 3.7. Convergence rates for the dependent variables.
The results from a simulation where ∆x/blade width =
0.003125 were taken as estimates of the exact values. The
parameter set is the same as in figure 3.6.

(equal to that far upstream of the blade) in that region. As it is only the
solution upstream of the blade that is non-trivial, the same problem can hence
be studied by employing a single WW-module, and the obtained (non-linear)
solution should agree well with the results of Zhao & Kerekes (1995), provided
that the wrap of the wires over the blade is small enough not to seriously violate
their linearity assumption. In figure 3.8, such a comparison is presented. The
boundary conditions needed to solve the WW-module were obtained from the
linear solution. 2000 uniformly spaced mesh points were used to discretise
the WW-module, whose length (non-dimensionalised with h0) was 150. The
analysis by Zhao & Kerekes (1995) assumes that the drainage resistance is
constant. In order to mimic this, the drainage coefficient K was set to a very low
value in order to prevent significant changes of the resistance along the module.
The value chosen was roughly 1 % of the value which should have been used if a
fibre suspension of normal consistency (about 0.5 %) was simulated. As can be
seen in figure 3.8, the agreement between the linear and the non-linear pressure
predictions is excellent. This is an important observation as Zhao & Kerekes
(1995) found good agreement between their results and measurements of the
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Figure 3.8. (- - -) The linear solution by Zhao & Kerekes
(1995) for the pressure distribution in front of a thin blade
at x = 0. (—) The non-linear solution from a WW-
module. Total wrap angle 0.01 rad (corresponding to a
blade force of 70 N/m). Wire speed 25 m/s. Wire tensions
7 kN/m. Initial gap size 2 mm. Initial drainage resistances
34 kNs/m3. Drainage coefficient in the non-linear calculation
9.0×104 kg/(m3s). Density 1000 kg/m3.

pressure pulse generated by the deflection of two wires over the downstream
edge of a flat blade. The pressure was measured through pressure holes drilled
through the blade, and one of their result plots have been reproduced in figure
3.9. The pressure pulse obtained through a non-linear calculation (using a
LB-module), for the set of parameters corresponding to the solid line in figure
3.9, is plotted in figure 3.10. The linear solution, which was used to obtain
the necessary geometrical input parameters for the LB-module, is also plotted.
The agreement between the linear and the non-linear solution in figure 3.10 is
not as good as in figure 3.8, which is not surprising as the deflection of the
wires is several times larger in the former case. Nevertheless, both the linear
and the non-linear results are supported by the pressure measurements.

Zahrai et al. (1997) performed a two dimensional simulation of a single flat
blade applied to a pair of fabrics, and made a comparison with experimental
results. The pressure distribution next to the wire in contact with the blade
is reproduced in figure 3.11. The pressure measurements were performed with
the same technique employed by Zhao & Kerekes (1995). Applying the model
developed in this study to the same problem yields the results presented in
figure 3.12. From the study by Zahrai et al. (1997), it is clear that the pressure
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Figure 3.9. A reproduction of one of the comparisons be-
tween the linear theory and the experimental measurements
presented by Zhao & Kerekes (1995). No deflection of the wires
at the leading edge. The wrap over the trailing edge is 2◦. Wire
speed 10 m/s. (—) and (�): Wire tensions 5 kN/m. Initial
gap size 0.8 mm. Estimated drainage resistance 39.5 kNs/m3.
(- - -) and (�): Wire tensions 3 kN/m. Initial gap size 1.0 mm.
Estimated drainage resistance 23 kNs/m3. Density 1000
kg/m3.

gradients in the z-direction are very small over the blade3. Hence, it is justi-
fiable to compare the pressure distribution in figure 3.12, which is an average
over the gap between the wires, and the one in figure 3.11. Considering that we
are comparing a one-dimensional and a two-dimensional simulation, the agree-
ment is fairly good. The pressure pulses, and especially the downstream one,
are slightly overestimated. This is in accordance with the results presented
in figure 1.5, where a comparison is made between a linear one-dimensional
and a linear two-dimensional analysis of the pressure distribution caused by a
thin blade deflecting a pair of wires. In both figure 3.11 and figure 3.12, one
can see that the pressure is locally negative, which means that the pressure in
the gap is predicted to be lower than that of the surroundings. The negative
peaks in the pressure distribution from the two-dimensional simulation, located
immediately downstream of the blade edges, are due to strong acceleration of

3Note that this supports the conclusion in chapter 2 that the pressure gradients in the z-

direction are of negligible magnitude.
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Figure 3.10. (—) Non-linear calculation of the pressure over
a flat blade for the parameter set that corresponds to the solid
line in figure 3.9. (- - -) The corresponding linear analytical
solution. ∆x = 0.15 mm.

the fluid around the sharp corners caused by the edges. The negative pressure
observed in other regions are due to stationary waves forming on the wires
under conditions of high drainage resistances. Criteria for determining when
this is expected to occur have been given by Zhao & Kerekes (1995) and, in a
more accurate form, by Zahrai & Bark (1995). Indeed, waves should appear
for the parameter set given in the caption of figure 3.11. However, there are
good reasons to believe that the pressure in the gap cannot become significantly
lower than that of the surroundings, an issue which we will comment on in the
subsequent chapters. For now we content ourselves with the observation that
the present model yields roughly the same output as the one by Zahrai et al.
(1997) for a single blade.

In view of the outcome of the different tests and comparisons made in
this section, we conclude that the algorithm seem to be correctly implemented,
and that the model will most likely serve well as a tool for obtaining at least
qualitatively correct results.



3.7. VERIFICATION 59

25

20

15

10

5

0

-5

-10
-50 0 50 100x [mm]

p
[kPa]

Figure 3.11. The pressure distribution next to the contact-
ing wire when a flat blade is applied to a pair of fabrics (Zahrai
et al. 1997). (—) 2D simulation. (+) Experimental measure-
ments. The leading and trailing edges of the blade are located
at x = 0 mm and x = 50 mm, respectively. Fabric tensions
5 kN/m. Wire speed 20 m/s. Initial gap size 3 mm. Con-
stant drainage resistances 31 kNs/m3. The slopes of the wires
upstream and downstream of the blades were 0.035 and -0.07,
respectively.
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Figure 3.12. The pressure distribution when the model de-
veloped in this study is employed to solve the same problem
as in figure 3.11. ∆x = 0.15 mm. The edges of the blade are
indicated by �.



CHAPTER 4

Results

This chapter contains the results obtained from a number of different numerical
simulations. The focus will be on the pressure distribution in the forming
section for different sets of parameters. Given the nature of our model, and our
ambition to obtain qualitative rather than quantitative results, the numerical
details concerning the calculations are not given, unless they are found to be of
special interest. The number of mesh points have been chosen well above the
limit for grid independence. Typically the mesh is such that a blade is resolved
with 100 points or more. The tolerances for the Newton iterations, and the
algorithm that determines the root to the system function Z, have been set
low enough not to yield errors larger than the discretisation errors.

In chapter 2 it was seen that the equations governing the model are defined
by the three non-dimensional numbers ε1, ε2 and κ, together with the non-
dimensional suction pressures. However, instead of giving these parameters
for each simulation, we will specify the set of input parameters used in each
calculation in dimensional form. Hence we hope to make the results more
intuitively accessible to readers having practical experience of papermaking.

According to Zhao & Kerekes (1995), the drainage resistance of a newsprint
stock, dewatered to a fibre mat of basis weight 10 g/m2, is about 20 kNs/m3.
Assuming that the mat has a fibre mass concentration of 4 % and that the
density of the fibres is 1.5 times that of water, the permeability kζ of the mat
can be estimated to 1.25× 10−11 m2. Employing this permeability, and taking
the fibre mass concentration in the free suspension to be 0.5 %, the drainage
coefficient K is 9.0×106 kg/(m3s). This value is used for the simulations unless
otherwise specified. The density was always taken to 1000 kg/m3. If a suction
pressure is applied in between the two upper blades, this is explicitly stated.
The default is that no such pressure is used.

The geometry of the model is, unless something else is specified, such that
the locations in the z-direction of the upper wire at the inlet of the model
domain, of the two blades in contact with that wire, and of the upper wire
at the outlet of the model, are the same. In other words, they are positioned
at the same level. If curved blades are used, the lowest points of the surfaces
of the blades are located at the same position as the wire at the inlet and
outlet. The position of the lower blade and the lower wire (apart from at the

60
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inlet far upstream) is determined as part of the solution process. The term
‘blade spacing’ refers to the distance between the trailing edge of one blade,
and the leading edge of the next blade downstream, which is normally applied
to the opposing wire. When the wire is not able to remain in contact with the
blade along its full length, the numerical algorithm reduces the extension of
the blade–wire contact length in the machine direction until the wire attaches
smoothly to the blade (see chapter 3). Nevertheless, the ‘blade spacing’ is the
distance between the true trailing edge of one blade and the true leading edge
of the next. The ‘blade force’ specified in connection with the simulations is
the force by which the lower blade is applied to the lower wire.

When applicable, the symbols � indicate the positions of blade edges in
the figures.

4.1. The magnitude of non-linear effects

A non-linear solution is more demanding to obtain than a linear solution. It
is interesting to see how large the differences are between a linear and a non-
linear solution for the forming section in figure 3.5. Therefore, a linear solver
was developed. Due to the presence of the blades, the same system of equations
cannot be used throughout the whole model domain. Hence, like in chapter 3,
the forming section was divided into WW-, LB- and UB-parts, and a separate
linear solution was obtained in each part. The different solutions were then
matched with each other. Although the matching procedure could in principle
be carried out analytically, thus yielding a fully analytical solution, the same
iterative procedure as in the non-linear case was performed for practical reasons.

Figure 4.1 contains a comparison between the two kinds of solutions. The
compared quantity is the amplitude of the pressure in front of the first blade.
The relative difference between the two solutions is seen in figure 4.1(a). When
we are approaching industrially relevant magnitudes of the blade force, the rel-
ative difference is larger than 15 %, which is not insignificant if quantitative
values are of interest. Naturally, if other quantities are considered, the differ-
ence might be either larger or smaller. Figure 4.1(b) is a logarithmic plot of the
absolute difference. The result is a straight line with slope 2, which confirms
that the linear solution has been correctly calculated.

4.2. The position of the blades

In figure 4.2, a series of calculations are presented in which the blade spacing
is increased successively, starting from a very low value. Note that the scales
in the different subfigures are not the same.

In figure 4.3 are seen the paths of the wires in the simulation giving rise
to the pressure distribution in figure 4.2(c). It is qualitatively representative
of all the simulations presented in figure 4.2.
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Figure 4.1. The difference between the amplitude of the
pressure peak in front of the first blade. plinmax and pmax are the
linear and non-linear values, respectively. Flat blades, width
14 mm. Blade spacing 25 mm. Initial gap size 2 mm. Wire
speed 25 m/s. Wire tensions 7 kN/m. Initial drainage re-
sistances 20 kNs/m3. Drainage coefficient 3.0×107 kg/(m3s).
(+) Calculated values.

It was found by Zhao & Kerekes (1995) that a linear solution yields zero
pressure downstream of a deflection of the wires, if no further deflections occur.
This result carries over to the non-linear case, which is seen if one attempts to
find the non-linear solution through an infinite series of subsequent linearisa-
tions in the region downstream of the deflection. As there is no deflection of
the wires at the trailing edge of the third blade (which is flat), the pressure is
zero downstream of the leading edge of the third blade in the figures 4.2(a)–(f).
Although the first blade is flat, there is a deflection of the wires at the leading
edge, caused by the pressure pulse in front of the trailing edge. This pulse
extends in the upstream direction past the leading edge of the blade, hence
causing a deflection at that edge. However, the interaction between the corre-
sponding pulse and the one causing the deflection is such that the influence on
the total pressure distribution can only bee seen as a change in the gradient of
the pressure at the blade edge.
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When the blades are positioned close together, the pressure pulses merge,
and the resulting pressure distribution is of larger magnitude. The pressure
pulses in front of the trailing edge of the first blade, and the leading edge of the
second blade, are the ones of largest magnitude, even in figure 4.2(f) where the
blades are located so far apart that the pulses no longer merge. It is interesting
to see that the two last pulses almost disappears when the distance between
the blades is very small.

Figure 4.4 contains the pressure pulses obtained in two situations of very
large blade spacing. In both cases, the distance between the inlet of the model
domain and the first blade (expressed in terms of blade widths) was 14.3. It
is clear that the blade distance continues to have an influence on the pressure
pulses, albeit a small one, even when the pressure pulses do not merge. This
is of course due to the influence of the blade distance on the angles with which
the wires approach and leave the blades. For example, by inspection of figure
4.4 it is clear that positioning the blades further apart has increased the wrap
over the leading edge of the third blade. Intuitively, one would expect the wrap
over the trailing edge of the first blade to increase as well, when the distance
between the blades is larger. Nevertheless, the results presented in figure 4.4
indicates that this is not the case here.
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(b) Blade spacing 14 mm.
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(c) Blade spacing 25 mm.
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(d) Blade spacing 36 mm.
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(e) Blade spacing 47 mm.
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(f) Blade spacing 58 mm.

Figure 4.2. The influence of the blade spacing on the pres-
sure pulses. Flat blades, width 14 mm. Blade force 300 N/m.
Wire tensions 7 kN/m. Initial gap size 2 mm. Wire speed
25 m/s. Initial drainage resistances 34 kNs/m3.
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Figure 4.3. The paths of the wires corresponding to the pres-
sure distribution in figure 4.2(c). The filled areas indicate the
positions of the blades.
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(a) Blade spacing 58 mm.

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x / blade width

p 
/ ρ

U
2

(b) Blade spacing 120 mm.

Figure 4.4. The pressure pulses in two cases of large blade
spacing. The parameters are the same as for the calculations
presented in figure 4.2.
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4.3. The curvature of the blades

Figure 4.5 shows the difference between the pressure distributions in the form-
ing section when flat blades, and blades with constant radius of curvature, are
used. The curved blades are such that the blades are symmetric with respect
to an axis normal to the blade surface at the midpoint of the blade. In other
words, they extend the same distance upstream and downstream of the top of
the blade. Blades of this kind will be referred to as (symmetrical) ‘circular’
blades. Although the blades are short, the pressure distribution is influenced
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Figure 4.5. The pressure distribution when blades of differ-
ent curvature are used. (—) Flat blades. (- - -) Circular blades,
radius 1 m. (· · · ) Circular blades, radius 0.6 m. Initial gap
size 2 mm. Blade width 14 mm. Blade spacing 25 mm. Blade
force 300 N/m. Wire speed 25 m/s. Wire tensions 9 kN/m.
Initial drainage resistances 20 kNs/m3.

already when the blades have the rather modest radius of 1 m. This corre-
sponds to the blade surface protruding a distance equivalent to 1.2 % of h0

with respect to the level at the edges of the blade. For the blade of radius
0.6 m, the corresponding value is 2.0 % of h0. Due to their curvature, the
circular blades are not necessarily in contact with the wires along their full
width. An example of this is seen in figure 4.6, which illustrates how the fabric
leaves the circular middle blade of radius 0.6 m tangentially, before it reaches
the trailing edge. Table 4.1 presents the fraction of the blades, upstream and
downstream of the middle, that has contact with the fabric in the simulations.
The early departure of the wire from the middle blade, when it is circular,
explains the disappearance of the pulse in front of the trailing edge, which is
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Figure 4.6. The path of the lower wire, g, as it wraps the
middle circular blade of radius 0.6 m. Parameters as given in
the caption of figure 4.5.

Radius 1 m Radius 0.6 m
Blade 1, upstream 94 % 69 %
Blade 1, downstream 100 % 98 %
Blade 2, upstream 100 % 100 %
Blade 2, downstream 46 % 31 %
Blade 3, upstream 90 % 62 %
Blade 3, downstream 0 % 0 %

Table 4.1. The fraction of the blades, upstream and down-
stream of the middle, that is in contact with the fabric. The
values correspond to the calculations presented in figure 4.5.
The radii in the column headers refer to the curvature of the
blades.

present when flat blades are used. As the blade surface at the middle of the
third blade is at the same level as the upper wire at the outlet of the model
domain, it is inevitable that the fabric leaves the blade at the middle when it
has a finite radius of curvature.

In figure 4.7, the pressure gradients in the machine direction are plotted
for the distributions in figure 4.5. When flat blades are used, the negative
gradients are clearly dominant, corresponding to large accelerating forces on
the suspension when the pressure decreases at the end of the pulse. The build
up of the pressure at the beginning of the pulse is a much more gradual process.
Circular blades yield less severe negative gradients, but, as is discussed below,
sometimes also positive gradients of larger amplitude.

Consider the pressure distribution for the flat blades in figure 4.5. The
first blade generates a single pressure pulse. The reason is that, for the present
parameter set, the wrap of the wires over the leading edge is only about half
of the wrap over the trailing edge. A suspension particle approaching the
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first blade will therefore feel the presence of the leading edge as an increase
in the pressure, but where the pressure would start to decrease if there were
no further deflections of the fabrics, the pressure instead continues to increase
due to the large pulse generated by the trailing edge. However, the pressure
gradient right before the leading edge is that seen at the late stages of a pulse
(due to the leading edge), whereas the gradient right downstream of the leading
edge is that at an earlier stage of another pulse (that generated by the trailing
edge). This explains the change of the slope in the pressure distribution at
the leading edge of the flat blade in figure 4.5, and also the positive peak seen
at the leading edge of the first blade in figure 4.7(a). At the middle blade,
the situation is different. The wrap of the fabrics is larger over the leading
edge than over the trailing edge, and a decrease in the pressure is observed
at the end of the pulse generated by the leading edge, albeit interrupted at
a very late stage by the pulse from the trailing edge. At the third blade,
there is a single pulse generated by the deflection of the wires at the upstream
edge. At the downstream end there is no fabric wrap, and hence no pressure
pulse. The features of the pressure distribution that we just discussed can be
seen whenever three flat blades are used in the configuration employed so far.
The same comments therefore applies to the pressure distribution seen in figure
4.4(b), where the blades are positioned very far apart. Consequently, the pulses
at the three blades can be looked upon from right to left as a series, describing
the situation around a single blade, when the wrap over the leading edge is
finite and the wrap of the fabrics over the trailing edge is first zero, then finite
but less than at the upstream edge, and last finite and of larger magnitude
than at the leading edge.

Now, let us consider the pressure gradients in the case of circular blades,
seen in the figures 4.7(b)–(c). We note in table 4.1 that the fabrics are not in
full contact with the upstream side of the first and the third blade. The large
positive gradients in front of these blades are a consequence of the formation
of a high pressure that deflects the wire, so that it can make contact with
the blades tangentially. This also explains why their is no such peak at the
middle blade, where the wires are wrapped over the blade edge and hence
do not need to adjust to the inclination of the surface of the blade. At the
positions where the fabrics first make contact with the blade, the pressure
gradient changes discontinuously to modest negative values and remains there
for a short distance downstream. This corresponds to the relatively (with
respect to flat blades) gradual decrease of the pressure over the circular blades
that can be seen in the corresponding pressure distributions in figure 4.5.

Figure 4.8 contains the pressure distributions in five simulations where the
first and the third blades are flat, whereas the radius of curvature of the middle
blade is varied. By positioning the blades far apart, the effects of the curvature
on the pressure distribution at the middle blade can be studied with minimal
interference from the pulses at neighbouring blades. As the distance between
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the blades is very large, it is easier for the wires to wrap the middle blade along
its full width than was the case in figure 4.5. Only on the downstream side of
the blade of radius 0.4 m is the fabric forced to leave the blade surface before
reaching the trailing edge. In that case 69 % of the downstream side remains
in contact with the wire. At the trailing edge of the blade of radius 0.6 m,
the wire leaves very near tangentially to the blade surface. In figure 4.8 it is
very clear how the second pulse disappears as the magnitude of the deflection
of the wires over the trailing edge is made smaller by decreasing the radius of
curvature of the blade. At the same time the maximum value of the pressure
increases. It is also interesting to see that even the blade of radius 3 m exhibits
a small but noticeable difference with respect to the flat blade. The pressure
distributions in figure 4.8 are consistent with the linear results by Roshanzamir
(2000) for a single curved blade applied to a pair of fabrics. In that study, the
blade surface was given by a second order polynomial. The pressure gradients
corresponding to the simulations in figure 4.8 are plotted in figure 4.9. The
magnitude of the gradients in the regions where the pressure is building up is
about the same for the different radii. This is a consequence of the fabrics being
wrapped over the upstream edge of the blade. If the situation was such that
the lower fabric made contact with the blade downstream of the leading edge,
a pressure would have to be built up to adjust the slope of the wire to that
of the blade surface, hence generating large positive gradients as seen in front
of the points of first contact in figure 4.7(b)–(c). In figure 4.9 the magnitude
of the negative gradients are reduced as the radius of curvature is decreased.
This is a result of the pressure immediately downstream of the leading edge
becoming of larger magnitude. Note especially, in figure 4.8, how the gradual
decrease of the pressure over the surface of the blade with radius 0.4 m starts
without the pressure from the pulse at the leading edge having fallen at all.

Figure 4.10 illustrates the influence of the radius of curvature on the pres-
sure distribution around the middle blade for a different set of parameters than
in figure 4.8. The main differences are that the width of the blades and the
initial gap size are several times larger, 50 mm and 8 mm, respectively, and
that the wire speed is only 10 m/s. In the simulations where the radius of the
middle blade was 1 m and 0.6 m, the fabric only wraps 53 % and 34 % of the
downstream half of the blade, respectively. The pressure events in figure 4.10
and figure 4.8 clearly show similarities. The effects of the curvature is however
stronger in figure 4.10, which is not surprising since the middle blade is more
than three times wider than in figure 4.8.

An interesting question is whether the decrease in the pressure distribu-
tions, after the wire has made contact with the circular blade, bear any re-
semblance with the pressure distributions generated during roll forming, right
before the fabrics are taken off the roll. Especially when the fabrics leave
tangentially to the blade surface, there might be some similarities. In the
experimental study of roll forming by Holm (2002), it was observed that a
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suction pressure is generated where the wires are taken off the roll. Such a suc-
tion should occur also during blade forming using curved blades, if the fabric
leave the blade surface before the trailing edge1. Although the ratio between
the wire tension and the radius of the roll is a far to simplistic description of
the pressure distribution during roll forming, it is tempting to calculate the
corresponding ratios for the circular blade with radius 1 m in figure 4.8, and
the circular blade with radius 3 m in figure 4.10. The corresponding pressure
distributions seem to have a plateau right downstream of the leading edge, and
it is imaginable that this plateau corresponds to the pressure level that would
prevail at the last part of the pressure pulse during forming with a roll of the
same radius as the blade. The ratio (non-dimensionalised with ρU2) is 0.01
for the blade of radius 1 m, and 0.02 for the blade of radius 3 m. This is in
fairly good agreement with the magnitude of the pressure at the flat part of
the distributions, and does at least not contradict that similarities might exist.

1The same phenomena was made use of in the past when table rolls and foils were employed

to drain fibre suspensions (see e.g. Norman, 1989).
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(a) Flat blade.
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(b) Circular blade, radius of curvature

1 m.
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(c) Circular blade, radius of curvature

0.6 m.

Figure 4.7. The dependence of the pressure gradient in the
machine direction on the curvature of the blades. The param-
eters are the same as in the caption of figure 4.5. Note that
the scales on the vertical axes of the subfigures are not the
same.
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Figure 4.8. The effect of blade curvature on the pressure
pulses. Enlargement of the situation at the middle blade. (—)
Flat middle blade. (· · · ) Middle blade radius 3 m. (- · -) Mid-
dle blade radius 1 m. (- - -) Middle blade radius 0.6 m. (+)
Middle blade radius 0.4 m. The first and the third blades are
flat. Blade width 14 mm. Blade spacing 100 mm. Blade force
300 N/m. The tension in the wires are 7 kN/m. The initial
drainage resistances are 34 kNs/m3. Initial gap size 2 mm.
Wire speed 25 m/s.
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(a) Flat middle blade.
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(b) Middle blade radius 3 m.
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(c) Middle blade radius 1 m.
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(d) Middle blade radius 0.6 m.
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(e) Middle blade radius 0.4 m.

Figure 4.9. The gradients in the machine direction corre-
sponding to the pressure distributions in figure 4.8. Note that
the scales on the vertical axes of the subfigures are not the
same.
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Figure 4.10. The effect of blade curvature on the pressure
pulses. Enlargement of the situation at the middle blade. (—)
Flat middle blade. (· · · ) Middle blade radius 3 m. (- · -)

Middle blade radius 1 m. (- - -) Middle blade radius 0.6 m.
The first and the third blades are flat. Blade width 50 mm.
Blade spacing 280 mm. Blade force 300 N/m. The tension
in the wires are 6 kN/m. The initial drainage resistances are
15 kNs/m3. Initial gap size 8 mm. Wire speed 10 m/s.
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4.4. The blade load

Figure 4.11 illustrates how the force by which the middle blade is applied to
the lower wire influences the pressure distributions for one case involving flat
blades, and one case involving circular blades of radius 0.6 m. Like we have
seen in section 4.3, employing curved blades sometimes means that the fabrics
are not in contact with the blades along their full length. Table 4.2 contains
the fractions of the upstream and downstream halves of the blades in figure
4.11(b) that are in contact with the wire. Naturally, a higher blade load implies
that the portions of the blades wrapped by the fabrics increase. From figure

200 N/m 275 N/m 350 N/m
Blade 1, upstream 48 % 53 % 58 %
Blade 1, downstream 98 % 100 % 100 %
Blade 2, upstream 100 % 100 % 100 %
Blade 2, downstream 47 % 63 % 78 %
Blade 3, upstream 81 % 100 % 100 %
Blade 3, downstream 0 % 0 % 0 %

Table 4.2. The fraction of the blades in figure 4.11(b), up-
stream and downstream of the middle, that is in contact with
the fabric for the different blade forces.

4.11(a) it is clear that a higher force in the case of flat blades does little more
than increase the amplitude of the pressure pulses. This increase is of course
due to larger wrap angles at the blade edges. Very little happens to the over-
all shape of the pressure distribution. However, the situation is slightly more
complex when circular blades are considered. In figure 4.11(b) we note that
the magnitude of the pressure over the middle blade is affected only slightly
by the increased load, in comparison with the pulse in front of the blade. The
explanation is that the wrap angle of the fabrics at the leading edge is changed
quite a lot when a higher blade load is employed, whereas, at the trailing edge,
the effect is that the position where the wire separates from the blade surface
is moved downstream along the blade, which does not correspond to a large
change in the slope of the wires. Instead, it merely yields a small additional
distance for the pressure to develop along the blade. As a consequence, the
pressure distribution over the middle blade seizes to be of the same amplitude
as the pressure pulse generated in front of the leading edge, when the load is
increased. The same thing does not happen at the first blade, since the fabric
regains contact with the trailing edge when the blade force is made larger.
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(a) Flat blades.
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(b) Circular blades, radius 0.6 m.

Figure 4.11. The influence of the magnitude of the blade
force for flat blades and circular blades of radius 0.6 m. (—)
F = 200 N/m, (· · · ) F = 275 N/m, (- - -) F = 350 N/m. Blade
spacing 25 mm. Blade width 14 mm. Wire tensions 7 kN/m.
Initial gap size 2 mm. Wire speed 25 m/s. Initial drainage
resistances 34 kNs/m3.
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4.5. The wire tension

Changing the tension in the fabrics naturally has an effect on the pressure
distribution. An example of this is seen in figure 4.12, where the distributions
are given for a case of high wire tensions, a case of low wire tensions, and two
cases where different tensions are used in the two wires.
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(a) (—) T1 = T2 = 6 kN/m,

(- - -) T1 = T2 = 10 kN/m
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(b) (—) T1 = 10 kN/m T2 = 6 kN/m,

(- - -) T1 = 6 kN/m T2 = 10 kN/m

Figure 4.12. The influence of the wire tension on the pres-
sure distributions. Flat blades, width 14 mm. Blade spacing
25 mm. Blade force 300 N/m. Initial gap size 2 mm. Wire
speed 25 m/s. Initial drainage resistances 34 kNs/m3.

In the linear solution by Zhao & Kerekes (1995) for the deflection of a
pair of fabrics over a thin blade, the length scale of the term that determines
the extent of the (single) pressure pulse is reduced when the wire tension is
decreased. This agrees with the results seen in figure 4.12(a), where a smaller
tension clearly yields pressures pulses that extend a shorter distance in the
upstream direction. A vertical force balance tells us that the blade load must be
balanced by the vertical components of the wire tension immediately upstream
and downstream of the edges of the middle blade. As the blade load is the
same in the simulations, a lower wire tension hence implies a larger deflection
of the wires, and consequently a pulse of larger amplitude. This is also seen in
figure 4.12(a). As the wires are horisontal far downstream of the blades, and
almost horizontal far upstream, the sum of the forces from the first and the
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third blade approximately equals the load from the middle blade. Although
there is probably some redistribution of the force between the upper blades
when the parameters are changed, the blade forces are likely to be roughly the
same in the two simulations presented in figure 4.12(a). The same reasoning
that was applied for the middle blade is therefore also valid for the first and
the third blade.

Let us now consider figure 4.12(b), and comment on what is seen by com-
paring with the case of equal wire tensions of 6 kN/m in figure 4.12(a). The
tension in the wire in contact with the middle blade is the same as the tension
in the wire opposing the first and the third blade, and vice versa. When dis-
cussing the results we shall therefore limit our discussion to the middle blade,
and merely note that the inverse reasoning applies to the other blades. As the
forces by which the first and the third blade pushes against the upper wire is
smaller than the load at the middle blade, the effects are however less clearly
seen at the upper blades.

Using a higher tension in the upper wire enhances the amplitude of the
pressure pulses upstream of the edges of the middle blade. Green (1997) noted
that the integrated pressure distribution at a blade equals the product of the
total wrap angle and the tension in the wire opposing the blade. Although
the integrated pressure can change either as a result of a different width of
the distribution, or a different amplitude, the result highlights the importance
of the tension in the opposing wire for the pressure pulses. It is hence not
surprising that the amplitude of the pulses at the middle blade increases when
the tension in the upper wire is given the value 10 kN/m, instead of 6 kN/m.
This is what is seen when comparing the solid curves in the figures 4.12(b) and
4.12(a). On the other hand, when the lower wire has a tension of 10 kN/m,
instead of 6 kN/m, the middle blade does not have to displace the lower fabric
as much before a balance is reached between the wire tensions and the load.
Consequently, the wrap decreases, and according to the result by Green (1997),
the integrated pressure as well. This is seen as pulses of reduced magnitude
when the solid curve in figure 4.12(a) is compared with the dashed curve in
figure 4.12(b).

4.6. The drainage resistance

The thickness and characteristics of the fibre mat when it arrives at the blade
forming section determines the initial resistance to dewatering. This resistance
influences the rate of thickening of the fibre mat (a process which of course
changes the drainage resistance), and the pressure distribution throughout the
blade forming zone. Results from some calculations demonstrating the influence
of the initial resistance on the development of the pressure can be seen in figure
4.14. An example of how the resistances varies during the forming process is
seen in figure 4.13. It corresponds to the dash-dotted curve in figure 4.14(a).
Note how the resistances remain constant when the corresponding wire passes
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over a blade surface, where, by assumption, no dewatering takes place. At
the end of the model domain, the resistance of the lower wire has increased
more than that of the upper wire. The presence of the first blade prevents
the drainage through the upper wire that would otherwise result from the
large pressure at that blade. In the same way, the middle blade prevents
drainage through the lower wire. However, as the pressure at the middle blade
is considerably lower than at the first blade, the resistance of the upper wire
remains lower even after the middle blade.
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Figure 4.13. The evolution of the drainage resistances
throughout the forming section. D is the blade width. (—) Re-
sistance of the upper wire. (- - -) Resistance of the lower wire.
The initial drainage resistances are 30 kNs/m3. Flat blades,
width 14 mm. Blade spacing 25 mm. Blade force 100 N/m.
Wire tensions 9 kN/m. Initial gap size 1 mm. Wire speed
25 m/s.

We observe in figure 4.14 that the pressure pulses become more narrow,
and of larger amplitude, for higher values of the drainage resistance. This is in
accordance with the study by Zhao & Kerekes (1996). The narrowing of the
pulses can also be predicted by considering the linear theory by Zhao & Kerekes
(1995), which we have already made use of to explain the results in section 4.5.
In their solution for the pressure pulse upstream of a thin blade, the length scale
of the dominating term is reduced when the dewatering resistance increases. It
is also reasonable that the pressure pulses should be of less amplitude for low
drainage resistances, since a low resistance makes it more difficult to create a
large pressure drop across the fabric.
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The two pressure distributions in figure 4.14(b) correspond to very high
values of the initial drainage resistance. In such situations, damped waves
might appear on the fabrics upstream of the blades, as was found in the one-
dimensional analysis by Zhao & Kerekes (1995), and the two-dimensional anal-
ysis by Zahrai & Bark (1995). In these (linear) studies, the authors assume
a constant drainage resistance, and in both of them are given a criterion for
when oscillating solutions occur. The critical value of the drainage resistance
for the parameters in the caption of figure 4.14 is 67 kNs/m3 according to the
criterion by Zhao & Kerekes, and 66 kNs/m3 if calculated with the criterion by
Zahrai & Bark. Although the drainage resistance varies along the machine di-
rection during our simulations, which is exemplified in figure 4.13, these values
are likely to serve well as estimates of the limit which must not be surpassed if
oscillating solutions are to be avoided. The oscillations seen in figure 4.14(b)
are a result of the initial drainage resistances being above the critical value.

From the point of view of the model, the regions of negative pressure in
figure 4.14(b) correspond to positions where the pressure is locally lower in the
gap between the wires than outside of the fabrics. In chapter 5 we will discuss
whether such regions actually exist in the forming zone. The issue is related to
what would happen if a pressure drop across the wire was to generate a flow
from the outside into the suspension between the fabrics, an event which could
be termed ‘reversed drainage’.

In figure 4.15 the pressure gradients in the machine direction are plotted for
the distributions in figure 4.14(a). It is evident that the negative gradients can
be of quite large magnitude when the dewatering resistances are low. As the
corresponding fibre mats are thin, and most likely fragile, this could perhaps
inflict damage on the fibre web.
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(a) (—) R0 = 10 kNs/m3, (· · · ) R0 = 20 kNs/m3,
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(b) (—) R0 = 70 kNs/m3, (−−−) R0 = 90 kNs/m3.

Figure 4.14. The influence of the initial drainage resistance.
In the graphs, R10 = R20 = R0. Flat blades, width 14 mm.
Blade spacing 25 mm. Blade force 100 N/m. Wire tensions
9 kN/m. Initial gap size 1 mm. Wire speed 25 m/s.
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(a) R10 = R20 = 10 kNs/m3
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(b) R10 = R20 = 20 kNs/m3
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(c) R10 = R30 = 30 kNs/m3
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(d) R10 = R50 = 50 kNs/m3

Figure 4.15. The influence of the initial drainage resistance
on the pressure gradients. The graphs correspond to those seen
in figure 4.14(a). Note that the scales on the vertical axes of
the different subfigures are not the same.
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4.7. The gap size far upstream

Different paper grades correspond to different distances between the wires when
they reach the blade forming section. In order to illustrate the influence of the
gap size far upstream of the blades on the pressure distribution, a series of
calculations were undertaken with different values of h0. The results from
four such simulations are found in figure 4.16. As the wire speed is the same
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Figure 4.16. The influence of the initial wire distance h0

on the pressure pulses. (—) h0 = 1 mm, (· · · ) h0 = 2 mm,
(− · −) h0 = 5 mm, (−−−) h0 = 10 mm. Flat blades, width
14 mm. Blade spacing 25 mm. Blade force 300 N/m. Wire
speed 25 m/s. Wire tensions 9 kN/m. Initial drainage resis-
tances 20 kNs/m3.

in all calculations, an increase in h0 means that the amount of momentum
flowing between the fabrics is augmented. The blade force, which has the value
300 N/m in all cases, must hence have less influence on the flow at large gap
sizes, which explains the decrease in the amplitude of the pressure. We also
note that the pressure pulses have a more rounded shape for the larger values
of h0, and the gradients in the machine direction are consequently smaller in
these cases. A word of caution should be raised against the calculation were
h0 = 10 mm, and perhaps also against the case where h0 = 5 mm. We recall
that our model depends upon the assumption that the characteristic length
scale in the machine direction is much larger than the characteristic scale in
the z-direction (see chapter 2). The two largest values of h0 are not small in
comparison with the width of the blades, here 14 mm, which can often be taken
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as an indication of the order of the reach of the pressure pulses in the machine
direction.

Simulations were also undertaken with circular blades of radius 1 m and
0.6 m. The same trends were observed as in figure 4.16.

4.8. The drainage coefficient

The drainage coefficient K, defined by the relation 2.8, depends on the con-
centration of fibres in the suspension, the viscosity of the liquid phase of the
suspension, and the characteristics of the fibre mat. Figure 4.17 illustrates the
effect of changing K from the value 9.0×106 kg/(m3s) to 1.9×107 kg/(m3s).
The former value have been used for the major part of the calculations in this
thesis, and at the beginning of this chapter it is explained how we came to this
value. Among other things, we assumed the mass concentration of fibres in the
suspension to be 0.5 %. The latter value is obtained if one instead assumes the
mass concentration to be 1 %. Obviously, changing the value of K does not
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Figure 4.17. The influence of the drainage coefficient.
(—) K = 1.9×107 kg/(m3s), (−−−) K = 9.0×106 kg/(m3s).
Flat blades, width 14 mm. Initial gap size 2 mm. Blade spac-
ing 25 mm. Blade force 300 N/m. Wire speed 25 m/s. Wire
tensions 9 kN/m. Initial drainage resistances 20 kNs/m3.

have a great effect on the calculated pressure distribution. Looking at the two
upstream pulses, we note that the higher value of K yields pressure pulses that
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extend slightly less in the upstream machine direction, and that are of some-
what larger amplitude. As for the downstream pulses, the slope of the dashed
curve compared to the slope of the solid curve suggests that the same trend
would have been observed if the pulses had been allowed to extend further in
the upstream direction. As the higher value of K results in a faster increase
in the drainage resistances, the mechanisms behind the trend are probably the
same that causes the pressure pulses to be more narrow and of larger magnitude
when the initial drainage resistance is higher (see section 4.6).

4.9. Applying a suction pressure

In this section are presented some results from calculations where the effects
of applying a suction box were simulated. This was done by specifying a low
pressure outside of the upper wire between the first and the third blade. Using
the notation introduced in section 3.6, this corresponds to setting pv < 0.

We mentioned in connection with figure 4.14(b) in section 4.6, that results
yielding reversed drainage are dubious, and referred the discussion of this to
chapter 5. In most simulations presented in this chapter, there are regions
between the first and the third blade where the pressure is quite low. Applying
realistic suction in these situations results in pressures substantially below the
atmospheric pressure, i.e. where p < 0. If this happens at positions where the
wire opposing the suction box is not in contact with a blade, reversed drainage
will take place. In order not to obtain corrupt data when realistic amounts
of suction is applied, a slightly different configuration of the blades were used
for the simulations in this section than was described at the beginning of the
chapter. It is illustrated in figure 4.18. The difference with respect to the
original configuration is that the third blade is no longer positioned at the same
level as the first blade. Instead it has been given a position in the z-direction
closer to the middle blade. The distance between the trailing edge of the third
blade and the outlet, which in the earlier simulations was of no importance due
to the trivial nature of the solution downstream of the last blade, is also taken
to be quite short (2.14 when non-dimensionalised with the blade width). As the
fabrics have the same vertical positions at the inlet and the outlet of the model
domain as before, the combined effect is that the wrap of the wires over the
leading edge of the third blade is increased, and, more important, that a large
wrap is achieved at the trailing edge. The corresponding pressure pulses are of
large magnitudes and merge with the pulses from the upstream blade, so that
the minimum level of the pressure between the two upper blades is quite high
when the suction pressure is zero (an example of this is the solid curve in figure
4.19). This leaves room for employing quite large amounts of suction before
the validity of the corresponding solutions is questionable. Although the blade
arrangement in figure 4.18 may seem quite strange, the corresponding pressure
distribution in figure 4.19 is likely to be reasonably typical for the region around
the first three blades in a forming section containing more blades than employed
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Figure 4.18. The blade configuration used to study the in-
fluence of the suction pressure. The filled areas indicate the
blades. The suction box is outlined on top of the upper wire.
The parameters yielding the wire positions in this figure are
given in the caption of figure 4.19. pv = 0. The computational
domain extends upstream to x = -14.3, where f and g are 1
and 0, respectively. The vertical position of the third blade is
0.78.

here. In such a section the wrap at the downstream edge of the third blade
would be caused by the deflection of the wires by the second loadable blade.

Figure 4.19 contains a comparison between one simulation where no suction
is applied, and another where the suction pressure is -5 kPa. Note that there is
no position where the pressure is less than zero. The pressure peak at the first
blade is of larger amplitude for the case where a suction pressure is applied.
This is a consequence of a larger wrap of the fabrics over the trailing edge. If
the middle blade was not present, the model would still predict a large wrap
over the downstream edge of the first blade, due to the lower wire being sucked
up into the vacuum box together with the upper fabric. However, this would
imply a considerable amount of reversed drainage through the lower wire, and
is hence not likely to happen in a real paper machine (see chapter 5). Hence,
the presence of a middle blade that applies a load to the lower wire is most
probably crucial to obtaining the augmented wrap and the effects this implies.
Since the pressure pulse upstream of the trailing edge of the first blade extends
past the leading edge, the wrap of the fabrics over that edge will increase as
well. The pressure pulses generated at the middle blade have decreased as a
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Figure 4.19. The influence of suction on the pressure distri-
bution. (—) No suction. (- - -) Suction pressure -5 kPa. Flat
blades, width 14 mm. Blade spacing 14 mm. Blade force
400 N/m. Initial gap size 2 mm. Wire speed 25 m/s. Wire
tensions 11 kN/m. Initial drainage resistances 34 kNs/m3.

result of the suction. This is natural. When the underlying mechanisms of
blade dewatering were discussed in chapter 1, it was concluded that the high
pressures observed in the forming section are a result of the necessity to reduce
the amount of suspension that has to pass the constriction created by a blade
when it is applied to the wire. The path of the suspension is slightly deflected
by the blade, and the resulting pressure pushes the opposing fabric outwards
and forces liquid through the wires. If a low pressure prevails outside one of
the fabrics, the increased drainage through that wire will reduce the need to
deflect the suspension, and the generated pressure will be lower. This will of
course result in less drainage through the fabric in contact with the blade.

Figure 4.20 shows the effect of employing a suction pressure of -10 kPa,
while the rest of the parameters are the same as in the simulations in figure
4.19. As can be seen, there is a region where p is significantly below zero.
Nevertheless, since this occurs over the middle blade, no reversed drainage
occurs. Actually, a careful inspection of figure 4.20 reveals that the region of
negative values of p extends a very short distance upstream of the leading edge
of the middle blade. This is a consequence of the need of a finite distance
for the pressure pulse located upstream of the leading edge to re-establish a
positive pressure. However, as the distance is extremely short, the implications
of the reversed drainage are so local that they do not significantly affect the
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Figure 4.20. The pressure distribution for a suction pressure
of -10 kPa. The other parameters are the same as in figure
4.19.

overall solution (see chapter 5). Thus the pressure distribution is reasonably
trustworthy. The same conclusions can be drawn from figure 4.20 as from figure
4.19.

The purpose of suction boxes is to increase the drainage. We just concluded
that employing them increases the drainage through the fabric on the side of
the suction box, but at the same time reduces the amplitude of the pressure
pulses generated by an opposing blade. A natural question to ask is how the
total amount of drainage is affected. When no suction was used, the non-
dimensional distance between the wires was 0.46 at the downstream end of
the model domain. When the suction pressure was -5 kPa and -10 kPa, the
corresponding value was 0.40 and 0.34, respectively. The total dewatering was
thus augmented by 13 % and 26 %.

Another interesting issue is to what extent the asymmetry of the drainage
changes when suction is employed. Let us consider the change in the drainage
resistances between the inlet and the outlet. When no suction is applied, R1

increases with 13 % and R2 with 16 %. When the suction is -5 kPa, the
corresponding values are 16 % and 16 %, respectively. And finally, when the
suction is -10 kPa, the values are 19 % and 16 %, respectively. Hence, about
the same amount of fibre mat growth takes place on the lower wire in all three
cases. Apparently, the lower drainage through the fabric at the middle blade
is compensated by the higher drainage at the first blade. Unsurprisingly, the
growth is enhanced on the upper wire. However, due to the short length of the
forming section, the changes are quite small.
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The influence of the suction on the pressure gradients in the machine di-
rection are presented in figure 4.21, where the case of zero suction pressure is
compared with the situation when -10 kPa is used. Clearly, the suction en-
hances the magnitude of the negative gradients, whereas the positive gradients
remain at about the same level.
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(b) Suction -10 kPa.

Figure 4.21. The influence of the suction on the pressure
gradients. The cases presented here correspond to the pressure
curves in figure 4.19.



CHAPTER 5

Discussion and summary

5.1. Discussion

The focus of this thesis is on the pressure distribution in the model domain,
since this is truly a key quantity. The integral of the pressure along the machine
direction is closely related to the total drainage achieved in the forming section,
whereas the amplitude of the pressure is related to the retention of fibres, fines
and fillers. A third very interesting characteristic of a pressure distribution is
the magnitude of the gradients in the machine direction. It is believed that
they play a principal part in the mechanisms underlying the positive effects
that blade dewatering has on the formation in the paper sheet. Most likely,
too large gradients can also inflict mechanical damage on the fibre web during
its forming. Hence, it is extremely valuable to be able to predict the pressure.

5.1.1. Limitations of the model

Our model has one serious weakness. When considering the equations 2.63–
2.71, we note that our model is not concerned with the direction of the flow
through the wires. It follows from the equations that if, somewhere in the
model domain, p falls below pe1 or/and pe2, the curvature of the corresponding
wire/wires changes signs, and the centre of curvature moves from the suspension
side of the wire (the fabric is curved ‘inwards’) to the exterior side (the fabric is
curved ‘outwards’). At the same time, due to the flow through the fabric/fabrics
being directed from the outside towards the suspension, the drainage resistance
decreases. This is the process we have referred to as ‘reversed drainage’ in the
previous chapters, and it is not likely to take place as described by our model
in a real paper machine. One objection one can pose is that the drainage
resistance would probably not decrease in the way predicted, if indeed there
was a flow from the outside. This is however only a detail. The real issue
is whether p actually can fall substantially below pe1 or pe2, and whether the
wires actually can have large curvatures directed outwards. To understand why
this is probably not possible, we shall consider what would happen if, perhaps
hypothetically, the pressure in the suspension was to become lower than the
pressure prevailing outside one of the wires.

We assume for practical reasons that the region between the wires can be
divided into two fibre mats of high fibre concentration, separated by a free
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suspension of lower concentration (see figure 2.1). This is perhaps the case in
the early part of the forming section. In the downstream part, the fibre mats
completely occupy the available space between the wires, and the drainage is
best described as a thickening process. The presence of a free fibre suspension is
however not crucial for the discussion below, and the conclusions drawn apply
to the latter case as well.

The hypothetical pressure drop across the wire and the corresponding fibre
mat can only exist under two different circumstances. Firstly, there could be
a flow through the wire and the fibre mat, i.e. reversed drainage. In that
case the pressure difference would be maintained by the pressure loss created
by viscous and inertial effects in the pores of the wire and the fibre mat (see
chapter 2). Secondly, surface tension could create menisci in the pores of the
wire or the fibre mat, across which the pressure drop would take place, in this
case without the need for a flow. Let us start by pursuing the consequences of
the first scenario.

Holm (2002) gave the value 2.6–3.6×10−10 m2 for the permeability of a
triple layer wire. A typical thickness of a fabric is 0.7–0.8 mm. Assuming
water, the corresponding drainage resistance for the fabric is about 2.4 kNs/m3,
according to the definition in chapter 2. This value is very low in comparison
with the combined resistance of the fabric and the fibre mat during drainage of
water (see chapter 4). We can thus conclude that the major part of the pressure
drop occurs over the fibre mat. It is hence not the flow of water through the
wire that generates the pressures necessary to deflect it when water is expelled
from the gap during normal drainage. Instead, the fibre mat, which creates
most of the pressure drop, push the fabric outwards. When fluid is moving
in the other direction, from the exterior into the gap, as we have assumed for
the sake of discussion, the fibres can no longer exercise a force on the wire by
pushing it. In fact, if the wire was to be significantly curved outwards, the
fibres would actually have to pull the fabric, since we cannot count on the
pressure drop over the fabric to do the work. However, it is highly unlikely
that the fibres are attached to the wire in such a way that a distributed force
of the order of 1–10 kPa could be transmitted to the fabric. Instead, what
would happen, if the flow velocity is not very small, is that the fibre mat lets
go of the wire, and fluid enters the region between the fabric and the fibre mat.
This fluid would not generate a significant pressure drop across the wire. Our
conclusion must be that the pressure on the suspension side of the wire cannot
be significantly lower than on the exterior side if there is a flow through the
wire. Thus the fabric will never, to any large degree, be curved outwards due
to a flow through the wire. One should also remember that we have assumed
water to be the fluid passing through the wire. Since at least part of the
drained water remains as a liquid layer on the outside of the fabric, this might
be a valid assumption in many regions. However, the liquid film is doctored
off at the upstream edges of the blades, and downstream we cannot count on



92 5. DISCUSSION AND SUMMARY

the presence of water that can be sucked back through the wire, and neither,
probably, outside the wire opposing a vacuum box after a long distance of
applied suction. In those situations, the fluid passing through the wire, and
also perhaps the fibre mat, would have to be air. Due to its lower viscosity,
the viscous resistance air makes when passing through a permeable material is
only about 1/50 of that of water. The ratio between the inertial effects is even
smaller. Hence, if air is involved in the reversed drainage process, the pressure
drop across the wire would surely not be enough to give it a curvature directed
outwards. Instead, air would enter into the gap between the fabrics.

We now turn to the surface tension scenario. First we note that if previously
expelled water is present on the exterior of the wire, this water must be pulled
back through the wire in a process like the one described above, before menisci
can form in the pores of the fabric. In a study of the effects of doctoring on the
pressure pulse generated by a blade, Roshanzamir et al. (2001) calculated the
thickness of the adhering water layer upstream of the blade to about 0.5 mm,
which should be put in relation to the initial distance between the wires, in that
case 3.5 mm. Hence, the process of reversed drainage can probably in some
situations take place over a considerable distance along the machine direction
before the menisci appears, during which we would not see any significant
deflection of the wire. The wire usually consists of strands of polyester and
polyamide, which are both hydrophilic materials. The wetting angles for water
are 43◦ and 46◦, respectively (Holm 2002). When the menisci have formed,
they can consequently maintain a certain pressure difference and prevent a
flow of air into the gap region. As a typical pore size in the wire is about
0.2 mm, the pressure drop across the menisci must not exceed about 1 kPa.
Above that value, the menisci cannot withstand the pressure, the pores open,
and air enters into the gap. Possibly, menisci yielding large pressure differences
could form in the small pores of the fibre mat. However, for the same reasons
as when a flow occurs through the wire and the mat, the capillary pressures
corresponding to the menisci cannot be transmitted to the wire.

Having considered these two scenarios, we conclude that the maximum
pressure drop available across a fabric to give it a curvature outwards is about
1 kPa. This pressure difference is only created after reversed drainage has made
the liquid adhering to the exterior surface of the wire return into the gap. If,
even only briefly, the pressure exceeds the limit of the capillary pressure, the
menisci disappears and no pressure drop remains. In a real paper machine, the
fabrics are hence never substantially sucked towards the suspension, not even
the fabric on the opposite side of a suction box.

The issues discussed above limit the applicability of all models for the
forming section developed up to date, including the one presented in this the-
sis. Any solution yielding pressures in the suspension region more than about
1 kPa lower than on the outside of either fabric must be considered unrealistic.
Solutions not violating this general criteria could arguably be correct, provided
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that it is clear that there is no water adhering to the fabric causing reversed
drainage. If this condition cannot be fulfilled, the pressure difference across
the fabric and the fibre mat must be of such small magnitude that the reversed
drainage does not cause the fibre mat to separate from the fabric. One should
also pay attention to the development of the drainage resistance. If menisci
have formed in the pores of the wire, it should remain constant as there is
no change in the thickness or porosity of the fibre mat. In situations yielding
reversed drainage of small magnitude, the resistance might perhaps decrease
somewhat due to fibres breaking lose from the suspension side of the fibre mat,
or due to an increase of the permeability. However, most likely the mat is
separated from the wire before such phenomena come into effect. Although it
would be easy to implement using our concept of modules, the model in the
thesis does not include a feature that prevents the drainage resistance from
decreasing when reversed drainage occurs.

It is not sure that reversed drainage (causing the fibre sheet to separate
from the wire), or even air breaking into the gap between the fabrics, is a source
of problems in the industrial process. Given the large suction pressures often
employed in the forming section (of the order -10 kPa), these situations perhaps
occur frequently. The significance of the phenomena stems from our desire to
predict the pressure distribution in the forming section. Without appropriate
models for reversed drainage and for the breakthrough of air, many important
situations cannot be simulated. These include the production of grades of large
basis weights (as the current models yield oscillating solutions, see section 4.6
of chapter 4), and many forming section designs involving suction shoes.

5.1.2. Modelling reversed drainage

The rigorous modelling of reversed drainage, and the breakthrough of air, is
a complex task. However, it is possible that the module concept introduced
in this thesis in some situations can be employed to simplisticly incorporate
the effects of these phenomena on the pressure distribution. We shall give an
outline of how this might be done for the forming section in figure 1.6 in one
special case.

Assume that the pressure in the vacuum box is of such magnitude that
present models would predict a pressure in the suspension region upstream
and downstream of the middle blade that is lower than the atmospheric pres-
sure outside the bottom fabric, despite the load applied by the middle blade.
Assume further that there are no menisci in the pores of the fabric that can
maintain a pressure drop of that kind across the bottom wire. Hence, either
the capillary pressure is of inadequate magnitude, or there is a layer of water
adhering to the outside of the fabric. The intruding fluid1 which then enters

1We shall use this label for the fluid entering from the outside, since it is not clear whether

we are dealing with water or air.
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from the exterior of the bottom wire into the region between the fabrics is
assumed to cause the fibre mat to separate from the wire, and the mat will
be considered to function as a delimiter between the intruding fluid and the
suspension. We shall consider the new fluid as inertialess and, as it makes only
very small resistance when passing through the wire, it will easily return to the
outside of the bottom wire when it is forced to do so for geometrical reasons.
We also count on the load from the middle blade to ensure that the pocket
of intruding fluid is limited to a region beginning downstream of the trailing
edge of the first blade, and ending upstream of the leading edge of the third
blade. The situation is illustrated in figure 5.1, where we have also divided the
forming section into modules. The pocket of intruding fluid is illustrated (un-
realistically) by the dashed line. The WW-module and the WUB-module were
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Figure 5.1. The division of the forming section into modules
in a situation where fluid has passed through the bottom wire
into the region between the fabrics. The intruding fluid is con-
tained in the pocket illustrated (unrealistically) by the dashed
line. In addition to the module types developed in chapter
3, a new AF-module is introduced. Confer the text for an
explanation of the notation.

thoroughly discussed in chapter 3. In addition to these we have introduced the
AF-module, the extension of which exactly coincides with the pocket of intrud-
ing fluid. It is schematically illustrated in figure 5.2. We need a description of
the new module, and for this we turn to the equations 2.63–2.71, that describe
the WW-module.

We start by observing that, as the intruding fluid only generates small
pressure drops when passing through the fabric, the pressure in the AF-module
does not significantly differ from the atmospheric pressure. This allows us to
make the approximation p ≡ 0 for the module. We get a system of equations
for the AF-module if we insert this in the equations 2.63–2.71, and replace
f − g in equation 2.65 by the distance between the upper wire and the pocket
of intruding fluid, denoted hs. Note that for the AF-module in figure 5.1, pe1
equals the suction pressure, and pe2 is zero. The height of the pocket, ha, can
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of course be obtained from the relation hs + ha = f − g. The resulting system
of equations is easily solved analytically, and the integration constants can be
determined provided that the parameters in figure 5.2 are known. As p ≡ 0,
the lower wire moves along linear paths. The upper wire is curved as a result
of the suction. The velocity and the drainage resistance of the lower wire will
be constant throughout the module. An important difference with respect to
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Figure 5.2. An illustration of the AF-module together with
the information that needs to be specified in order to calcu-
late the dependent variables throughout the module. gb is
the vertical position of the blade. The rest of the notation is
equivalent to that of figure 3.3.

the modules introduced previously, is that the position of the lower wire at the
inlet does not need to be specified – it is determined by requiring that ha is
zero at x̃ = 0.

The evolution of the dependent variables throughout the forming section
in figure 5.1 can now be obtained by employing the algorithm presented in
chapter 3. The position of the inlet and the outlet of the AF-module, denoted
xu and xd in figure 5.1, are not known apriori. Instead, they are included in the
vector cu and determined as part of the solution process. The corresponding
matching conditions are that there should be no discontinuity in the pressure
at the interface between the modules 2 and 3 in figure 5.1, and that gx should
be continuous across the interface between the modules 3 and 4. Of course,
p should be continuous across the latter interface, and gx across the former,
as well. However, this is naturally taken care of by the algorithm when the
modules in the section are solved, and need not be enforced by the matching
process.

There are many similarities between the procedure outlined above for treat-
ing the intrusion of fluid in the forming section in figure 5.1, and how we have
already handled situations where the fabric does not stay in contact with a
blade along its full width (see chapters 3 and 4). Neither in that case are the
positions of all the interfaces between the modules known a priori.
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The reason for choosing the forming section in figure 5.1 to illustrate the
possibilities of the module-based algorithm was motivated by the fact that
we could predict the approximate location of the pocket, and hence include
an appropriate module in the model. Before the algorithm can be extended
to more general situations, a careful analysis must be undertaken of when
intrusion of fluid occurs, and where the pockets are located.

5.1.3. A comment on future research

Detailed models have been developed for the application of a single blade to
a pair of fabrics, exemplified by e.g. the studies by Zahrai et al. (1997) and
Roshanzamir et al. (1998). The present work has resulted in a simple and
flexible tool by which the interaction between different components in the blade
forming section can be investigated at low computational cost. Nevertheless,
before we can say that we have a good idea about the pressure distributions in
general blade forming sections, future research must solve the issues discussed in
section 5.1.1 that impose restrictions on which configurations of the dewatering
devices and which parameter combinations that we can simulate. In parallel
with this work, we must fill the large gaps that exist in our knowledge of the
coupling between the pressure distributions and their effect on fibre flocs and
the fibre web. Before this is done, we will not be able to benefit from accurate
simulations of the pressure.

5.2. Summary

In chapter 2 and 4 of this thesis we have presented a model for quite gen-
eral blade forming sections, allowing us to study the interaction between the
pressure pulses generated by several blades positioned alternately to the two
fabrics and one sided suction. The model has been employed to study the par-
ticular generic section illustrated in figure 1.6. In chapter 3 we performed tests
to verify the implementation of the model, and made comparisons with some
previously published simulations of a single blade applied to a pair of fabrics.
The agreement was found to be good, which is very important as the numerical
results used as reference have been found to be in reasonable accordance with
experimental measurements. Our conclusion is that we can probably employ
the model in order to obtain at least qualitatively correct results under many
circumstances. The exceptions have been discussed in section 5.1.1.

In chapter 4, results are presented which illustrate the potential of the
model to be used as a tool in the design of blade forming sections, and for
troubleshooting in the industrial process. Some not previously documented
observations connected to the pressure distributions in blade formers are made.
Among them, the following deserve particular attention:
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• Reducing the distance between the blades leads to non-trivial interac-
tion between the pressure pulses. Some pulses are amplified, some are
reduced.

• A suction box positioned opposite a blade reduces the amplitude of the
pressure pulse generated by the blade.

• Curved blades do not necessarily stay in contact with the fabrics along
their full width, even when the degree of curvature is modest.

• If the fabric establish contact with the blade downstream of the leading
edge, a large positive pressure gradient occurs in the machine direction.
The negative pressure gradients are reduced when curved blades are
employed.
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