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Adjoint Based Control and Optimization of Aerodynamic Flows

Mattias Chevalier
Department of Mechanics, Royal Institute of Technology
S-100 44 Stockholm, Sweden

Abstract

Adjoint based optimal controls both for transitional boundary flows and
for quasi-1D Euler flow are studied in this thesis. A nonlinear optimization
problem governed by the Navier–Stokes equations is solved using the associ-
ated adjoint equations to minimize the objective function measuring the energy
of the perturbation to a laminar flow. The optimization problem is derived and
implemented in the context of direct numerical simulations of incompressible
spatially-developing three-dimensional boundary layer flows and the gradient
computation is verified with finite-differences. The nonlinear optimal control
is shown to be more efficient in reducing the disturbance energy than an op-
timal control based on the Orr–Sommmerfeld–Squire equations when nonlin-
ear interactions are becoming significant in the boundary layer. For weaker
disturbances the two methods are quite similar. Tollmien-Schlichting waves,
streamwise streaks, and cross-flow vortices have all been controlled successfully
with a nonlinear control.

The same adjoint based solution strategy is applied to another optimization
problem which is governed by the quasi-1D Euler equations and where we want
to find the optimal shape of a nozzle. The impact of the choice of boundary
conditions and discretization of the problem on the convergence rate of the
optimization algorithm is studied. Numerical experiments at subsonic and
transonic speeds, show that the gradient evaluations are accurate enough to
obtain satisfactory convergence of the quasi-Newton algorithm.

Descriptors: transition control, flow control, nonlinear optimal control, bound-
ary layer flow, Falkner–Skan–Cooke flow, quasi-1D flow, shape optimization,
adjoint equations, DNS



Preface

This thesis deals with adjoint based optimization methods applied to different
aerodynamic flows and configurations. The thesis is divided in two parts, the
first part is a short introduction to the adjoint based methodology applied to
optimal control problems and the second part contains the papers. A guide
to the papers and the contributions of different authors is included in the last
chapter of the thesis.

The three papers in part two are adjusted to comply with the present thesis
format for consistency, but their content have not been altered compared to
published versions except for minor corrections.

Stockholm 2002-05-06
Mattias Chevalier
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CHAPTER 1

Introduction

The interest in controlling complex physical phenomena has grown as the need
for and the possible benefits from this knowledge have become clearer, both
economically but also environmentally. The field of aerodynamics is no excep-
tion. For example, large amounts of money could be saved if one could lower
the fuel consumption of an airplane by just a fraction. Controlling the flow
around the aircraft might be one way to achieve that.

Interest in different aspects of flow control goes back hundreds of years and
this interest has now grown into a well-established research area. The notion
of flow control includes a wide variety of both methods and applications and a
classification of those methods is useful. The first distinction is whether energy
is fed into the flow or not. In passive control methods the flow field is altered
without any energy addition. For example by putting small pieces of metal on
a wing, so called vortex generators, the flow field around the aircraft can be
slightly altered in a way that reduces drag. Another classical example is the golf
ball that would fly shorter if it had no dimples. The dimples trigger turbulence
which in turn delay separation and drag is reduced. In active control methods,
an energy input to the flow is required. This can be done in two ways, either
in a predetermined manner, open loop, or in a closed loop form, where some
measurements are input to the control loop. The latter method is also known
as reactive control, which emanates from the fact that measurements of the
state is fed back to the controller that reacts on the basis of that information.

A few recent review articles of both experimental and numerical efforts on
the subject can be found in Bushnell & McGinley (1989), Metcalfe (1994), Moin
& Bewley (1994), Joslin et al. (1996), Gad-el-Hak (1996), Bewley et al. (1997),
Lumley & Blossey (1998). More mathematical aspects of optimization methods
for flow control can be found in the books edited by Gunzburger (1995) and
Sritharan (1998).

During the last decade, new approaches to solve flow control problems have
emerged. By formulating the flow control problems as optimization problems
where one wants to minimize or maximize some flow properties, one obtains a
problem similar to what is studied in optimal control theory. The early pub-
lications regarding optimal flow control problems, such as Abergel & Temam
(1990), Glowinski (1991), Gunzburger et al. (1989), Sritharan (1991a), Sritha-
ran (1991b), and Gunzburger et al. (1992) are mostly concerned with theoret-
ical aspects of the optimal control problem. Once the theoretical foundation
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1. INTRODUCTION 3

was built, subsequent publications present results from numerical simulations
where the optimal control for different flow configurations is computed. One
such publication is Joslin et al. (1997) where the optimal control of spatially
growing two-dimensional disturbances in a boundary layer over a flat plate is
computed. In Berggren (1998) the vorticity is minimized in an internal un-
steady flow using blowing and suction on a part of the boundary and in He
et al. (2000) two different control approaches are tested to reduce the drag
resulting from the flow around a cylinder. The first approach is to use cylinder
rotations to control the flow and the other is to use blowing and suction on
parts of the cylinder wall. In Pralits et al. (2002) convectively unstable dist-
urbances are controlled. This is done by computing the optimal wall normal
velocity distribution on the wall of a steady meanflow for a given disturbance.

A recent review of computational efforts in flow control is given in Hinze
& Kunish (2000), and e.g. Bewley (2001) and Högberg (2001) give overviews
of different flow control approaches.

In e.g. Jameson (1989) and Jameson (1995), better aerodynamic properties
of wings and air foils are computed by formulating the governing equations
of the physics and the restrictions on the geometry as a shape optimization
problem. This may be viewed as a flow-control problem in which the geometry
is the control variable. The possibility to solve the problem in an automated
fashion is a big improvement over a trial and error approach. In addition,
repeated trials give no guarantees at all whether a truly optimal design will be
found or not.

When the number of parameters to optimize are small, direct search meth-
ods such as genetic algorithms can be used, but when having many degrees
of freedom of the control, gradient based optimization algorithms are usually
much more efficient. The gradient information can be computed in many dif-
ferent ways but with many parameters to find in the optimization problem,
the most tractable approach is to solve the adjoint equations associated with
the equations modeling the physics. From the solution of the adjoint equa-
tions, we obtain information about where the process is most sensitive to small
modifications in the control. That information can also be used to compute
the gradient in a procedure that is independent of the dimensionality of the
optimization problem.

The application of adjoint based methods to various optimization problems
within the field of aerodynamics plays a central role in all included papers.
However, the main effort has been to develop tools to be able to make sensitivity
computations in three-dimensional boundary layer flows in order to find the
optimal control for the flow configurations under consideration. Paper 1 and
paper 2 contain the present status of that effort. Paper 3 contains a smaller
study of discretization issues and choice of boundary conditions and their effect
on the accuracy of the gradient. These issues are studied in the context of a
quasi-1D nozzle.



CHAPTER 2

Optimal control

2.1. Introduction

The goal of an optimal control problem is to minimize or maximize an objective
function. When formulating such a problem, three important issues need to be
settled:

• the choice of governing equation (state equation),
• how to control the flow,
• what properties of the flow to control.

For a particular flow geometry with given fluid properties, each choice has to
be made with care. The state equation should of course model the appropriate
physics. This choice also indirectly affect the choice of methods to use when
solving the optimal control problem. If we are working with nonlinear governing
equations, such as the Navier–Stokes equations, we have to use an iterative
procedure to solve the optimization problem and retrieve the optimal control,
whereas when working with linear governing equations the optimal control can
be computed in one step.

A governing dynamical system can be written on the general form
∂x

∂t
= A(x) + B(x, ϕ), x(t = 0) = x0, (2.1)

where x denotes the state variable, the operator A includes the dynamics of the
model, and operator B describes how the control ϕ forces the system. There
are numerous ways to affect and control the flow in an efficient way. Injection
and suction of fluid through small holes or distributed over an area is one
already mentioned method. Other means of control are, for example, heating
and cooling and geometry changes. If the fluid is conductive, one can also use
electric and magnetic fields to affect the flow.

To get the desired effect out of the control one needs to choose what prop-
erties of the flow to target. This choice is formulated as an objective function

J =
1
2

T∫
0

(x∗S∗Sx+ εϕ∗ϕ) dt (2.2)

where S is an operator measuring the quantity to be minimized in the flow, the
superscript ∗ denotes the complex conjugate transpose, and (0, T ) is the time
interval. A regularization term with the parameter ε is also added to put a limit
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Figure 2.1. The optimization procedure. The control is de-
noted ϕ. The gradient of the objective function with respect to
the control ϕ is denoted ∇J where J is the objective function.
The governing equations and associated adjoint equations are
denoted GE and AE respectively.

on the control. The choice of objective function is usually a non-trivial matter
due to the complicated physics present in aerodynamic flows. In paper 1 and
paper 2 the objective functions measure the flow perturbation energy over an
observation interval in time and space and the spatial extent is not restricted to
the wall surface but allowed to extend in the wall normal direction into the flow
field. In paper 3, where an optimal shape is sought, the error norm between a
desired pressure distribution and the actual pressure distribution is measured.

2.2. Nonlinear optimization

We can now formulate the nonlinear optimization problem as: find ϕ = ϕopt
such that J(ϕopt) ≤ J(ϕ) for all ϕ belonging to the set of admissible controls.
As mentioned the non-linearity in the state equation prohibits direct solution
of the nonlinear optimization problem. Instead an iterative procedure is needed
to find the optimal control. The general procedure is described in Figure 2.1.
First, the governing equations (GE) are solved with an initial guess of ϕ. From
the solution of the governing equations one can solve the corresponding adjoint
equations (AE). Once the state and adjoint state are solved, we can construct
the gradient of the objective function with respect to the control. We can
then update the control with, for example, a conjugate gradient method or a
quasi-Newton method. The whole loop is repeated until a satisfactory control
is found.

The drawback with this kind of control is that it will only work under
exactly the very conditions the control is constructed for. On the other hand, no
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Figure 2.2. Snapshot of the wall normal velocity component
in an xz-plane at y = 0.5 without control (left) and with non-
linear control (right). The control is applied in x ∈ (145, 295).
The black to white scale lies in the interval v ∈ (−0.001, 0.001).

a priori knowledge of the control is needed, and the performance obtained with
the nonlinear optimization procedure often far exceeds the result from other
simplified control finding approaches. One obvious application is to determine
an upper limit of what is possible to achieve with a certain control scheme,
something that might aid in the search for more efficient direct methods of
control.

An example of nonlinear optimal control in action is shown in Figure 2.2
where cross-flow vortices in a Falkner–Skan–Cooke boundary layer are develop-
ing downstream. In the left plot the flow is uncontrolled whereas the nonlinear
optimal control is active in the right plot. The results are taken from simula-
tions in paper 1.

2.2.1. The gradient

To derive a gradient expression of the objective function with respect to the
control ϕ, we differentiate equation (2.2),

δJ =

T∫
0

x∗S∗Sδx+ εϕ∗δϕ dt �
T∫
0

(
∂J

∂ϕ

)∗
δϕdt, (2.3)

and the state equation (2.1),

∂δx

∂t
−
[
∇xA(x) +∇xB(x, ϕ)

]
δx = ∇ϕB(x, ϕ)δϕ, δx(t = 0) = 0. (2.4)

where

∇xA(x) =
∂A(x)
∂x

, ∇xB(x, ϕ) =
∂B(x, ϕ)

∂x
, and ∇ϕB(x, ϕ) =

∂B(x, ϕ)
∂ϕ

.
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Then by defining the inner product 〈·, ·〉 as

〈p, δx〉 =
T∫
0

p∗δxdt, (2.5)

and using the adjoint identity,

〈p,N δx〉 = 〈N �p, δx〉+ boundary terms, (2.6)

where N is a differential operator, we can define the adjoint of the state equa-
tion

−∂p
∂t
−
[
∇xA(x) +∇xB(x, ϕ)

]�
p = S∗Sx, p(t = T ) = 0. (2.7)

Inserting the adjoint equation into the differentiated objective function yields
an expression for the gradient

∂J

∂ϕ
=
[
∇uB(x, ϕ)

]�
+ εϕ. (2.8)

The derivation of the adjoint equations and the gradient expression in paper 2
follows the outline given above.

2.2.2. Computational issues

The computational effort to solve the adjoint state is comparable to the solu-
tion of the state equation. Thus, the gradient can be determined by roughly
the computational cost of solving two state equations, this cost being and inde-
pendent of the number of degrees of freedom of the control parameterization.
Note that the adjoint equations are always linear equations.

For unsteady simulations where the temporal history of the state equation
is needed in the adjoint state computation the storage requirement can be
very large. However, this requirement can be lowered using a checkpointing
technique, see e.g. Berggren (1998). The price for the decreased storage demand
is increased execution time. A memory reduction from N to

√
N , increases the

computational cost with about a factor two.
Another important issue when deriving the discrete adjoint equations to

be solved numerically is in what order the discretization takes place. One
way is to discretize the expressions for the adjoint equations and the gradient
that have been derived on the “continuous” level. An alternative is to dis-
cretize the Navier–Stokes equations and the objective function and derive the
adjoint equations and the gradient expression on the discrete level. The latter
approach leads to more accurate gradient directions, but it seems difficult to
apply for the present discretizations. Issues related to the errors introduced by
the approximative (continuous) formulation are discussed in e.g. Glowinski &
He (1998) and Gunzburger (1998). The use of the continuous formulation is
motivated by the findings in Högberg & Berggren (2000) where one conclusion
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is that it is sufficient to use the approximative (continuous) formulation in or-
der to control strong instabilities. It was noted that in such cases, most of the
reduction of the objective function is achieved in the first few iterations, and
additional iterations only result in a fine tuning of the control. The drawback
is that it will require more iterations to reach the true optimal solution, if it
is even possible, than with the discrete formulation. In paper 1 and paper 2 a
continuous derivation of the gradient is performed whereas in paper 3 a discrete
gradient is derived, except for the artificial viscosity term which is not taken
into account at all.

2.3. Linear optimization

If we assume that the operators A and B in equation (2.1) are linear, the
optimization problem can be solved with a direct method, since we immediately
can identify the solution from the equations and solve it numerically. With
these assumptions, the governing equation can be written as

∂x

∂t
= Ax+ Bϕ, x(t = 0) = x0, (2.9)

and the gradient expression becomes
∂J

∂ϕ
= B�p+ εϕ, (2.10)

where again p denotes the adjoint state. If we now introduce a linear mapping
such that,

p = X (t)x, (2.11)

where X is self-adjoint and non-negative, we can find the optimal solution by
setting the gradient to zero which gives

ϕ = −1
ε
B�X (t). (2.12)

This is a feedback law for the control ϕ and by substituting the feedback law
and the linear mapping into the adjoint equation and combining it with the
state equation, we arrive at the operator Riccati equation for X(

∂X
∂t

+A�X + XA− 1
ε
XBB�X + S∗S

)
x = 0, ∀x, X(t = T ) = 0.

(2.13)

If we let T →∞ we solve for the stationary solution to the Riccati equation to
get the optimal time-independent feedback law. Note that linear feedback law
is the same regardless of what kind of disturbances that are present in the flow
and is thus computed once and for all for a certain base flow. However, in the
present work we are focusing on the situation where the governing equations are
nonlinear. See Högberg & Henningson (2001) for a more thorough derivation of
the linear feedback law and applications of it. For mathematical details about
the Riccati equation see e.g. Ito & Morris (1998). The feedback law used in
paper 1 follows the steps outlined above.



CHAPTER 3

Conclusion and outlook

In the present work, different applications of adjoint based optimization tech-
niques of nonlinear governing systems have been investigated.

A quasi-discrete form of the adjoint equations is derived for quasi-1D Euler
equations, with physically relevant boundary conditions for nozzle flow. This
was done in order to be able to solve an optimization problem where the differ-
ence between the actual pressure distribution and a target pressure distribution
was minimized. The gradient computation is shown to work well for subsonic
and transonic flows and the optimal shape for the corresponding target pressure
distributions is found.

We have implemented an adjoint solver to an already existing spectral
code (Lundbladh et al. (1999)) that solves the incompressible Navier–Stokes
equations for boundary layer flows where control is applied through blowing
and suction on part of the wall, and where the objective function measures
the deviation in velocity between the flow field and a laminar flow field. The
adjoint code is verified with a gradient computed with finite differences of the
objective function. The nonlinear control is computed and compared with the
linear optimal control, see Högberg & Henningson (2001).

Some conclusions that can be drawn so far from this project are:

• Tollmien-Schlichting waves, streamwise streaks, and cross-flow vortices
have all been controlled successfully with a nonlinear control.

• For weak disturbances the linear and nonlinear optimal control are quite
similar.

• For flows with nonlinear interactions the nonlinear control works better
than the linear control.

A natural continuation for the adjoint based control scheme is to investigate
the use of other, more efficient, inner products. This choice could have a large
impact on the convergence rate of the iterative process and also on how well
the “optimal control” will work, see e.g. Protas & Bewley (2002). The choice
of inner products is important for both shape optimization and flow control
problems.

There are many other interesting flow situations, not studied here, where
the nonlinear optimal control could be of interest to compute such as in a flow
with a separation bubble where nonlinear interactions and nonparallel effects
are pronounced.

9



CHAPTER 4

Quick guide to papers and authors contributions

Paper 1
Linear and nonlinear optimal control in spatial boundary layer
M. Chevalier (MC), M. Högberg (MH), M. Berggren (MB) &

D. S. Henningson(DH)

A linear and a nonlinear optimal control approach are compared when applied
to a spatially-developing three-dimensional boundary layer flow. The control
is tested for three fundamentally different disturbance types. The flow is con-
trolled through blowing and suction on part of the wall. Implementations and
simulations have been performed by MC and MH. The report was written by
MC and MH with feedback from MB and DH. Published as an AIAA paper
at the 3rd Theoretical Fluid Mechanics Meeting, St. Louis, MO (AIAA 2002-
2755).

Paper 2
Optimal control in wall bounded flows
M. Högberg, M. Chevalier, M. Berggren & D. S. Henningson

In this paper a solver for the nonlinear optimization problem, using the adjoint
equations for gradient computations, is developed and tested for both channel
and boundary layer flow. The channel flow problem has been explored by MH
and the extension to boundary layer flow was performed by MC. Derivations
of the adjoint equations and the gradient expressions were done by MH and
MC in close cooperation with MB. Implementation for solving the channel flow
problem was performed by MH and for the boundary layer flow by MC. The
report was written jointly by MH and MC with feedback from MB and DH.
The results presented for the channel flow case were previously published in the
proceedings of ETC8, Barcelona (Högberg & Berggren (2000)). Published as a
technical report at the Swedish Defence Research Agency (FOI-R--0182--SE),
2001.

10
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Paper 3
Accuracy of gradient computations for aerodynamic shape optimization prob-
lems
M. Chevalier & M. Berggren

A gradient based optimization method is applied on an aerodynamic shape
optimization problem. Issues regarding discretization and choice of boundary
conditions and their effect on the accuracy of the gradient are studied. The
problem formulation and theory was jointly derived by both authors. Simula-
tions were performed by MC and the report was written by MC and MB. Much
of the work was done for the MSc of MC (Chevalier (1999)), but postprocessing
of data and additional simulations as well as the writing of the conference pro-
ceeding were a part of the doctoral studies of MC. Published as a proceeding
to ICAS 2000 (ICA0245). A more detailed version is published as a technical
report at the Swedish Defence Research Agency (at the time Aeronautical Re-
search Institute of Sweden, FFA), Chevalier & Berggren (2000).

The papers are re-set to the present thesis format.
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Linear and nonlinear optimal control in spatial
boundary layer

By Mattias Chevalier†, Markus Högberg†, Martin
Berggren†‡§ and Dan S. Henningson∗†

Instabilities in a spatially-developing three-dimensional boundary layers are
controlled through blowing and suction at the wall. The performance of the
control is tested in direct numerical simulations (DNS) of the incompressible
Navier–Stokes equations for Tollmien–Schlichting (TS) waves, optimal tran-
siently growing streaks in a Blasius boundary layer, and cross flow vortices in
a Falkner–Skan–Cooke (FSC) flow. Two control strategies are compared.

First, a quasi-Newton optimization algorithm is applied to solve an off-
line optimal control problem. A solver for the adjoint equations has been
implemented in the spectral DNS code used. This method adapts naturally,
without modification, to nonlinearities such as a strongly varying mean flow.
However, it is computationally expensive and storage demanding, needing nu-
merous solves of the Navier–Stokes and associated adjoint equations.

Second, feed-back optimal control is applied, using a strategy designed
to operate locally on a spatially-developing flow. The feed-back operator is
constructed from the Orr–Sommerfeld–Squire equations. Assuming the flow to
be locally parallel makes it feasible to solve the associated Riccati equations for
each wave number pair in the stream- and spanwise directions. The feed-back
is applied to a DNS of the flows mentioned above. This method is much less
computationally costly than the first nonlinear method. The method performs
surprisingly well, in spite of the limitations with respect to being able to account
for strong nonlinear effects. It is demonstrated that TS waves are stabilized
and that transient growth is considerably lowered by the controller. Moreover,
the controller successfully inhibits growth of steady cross flow vortices in the
FSC flow.

1. Introduction

In flow systems where strong inherent instabilities are present, like in a tran-
sitional boundary layer flow, small perturbations can alter the flow features
∗Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden
†The Swedish Defence Research Agency (FOI), SE-172 90 Stockholm, Sweden
‡Department of Scientific Computing, Uppsala University
§Presently, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185, USA
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dramatically. In such flows, there is therefore a potential to improve the qual-
ity of the flow using small devices with a localized action and with a minimum
of energy expenditure. This is one of the main ideas behind flow control.
Such control strategies could be used, for example, to reduce drag on bodies,
increase lift on wings, increase propulsion efficiency, heat- and mass-transfer
reduction or enhancement, control of vortex shedding or to control separation
and aeroacoustic pressure fluctuations.

Generally, the different control techniques are divided into two groups.
The first group, where no auxiliary power is used, includes the passive control
methods. These methods are usually implemented through geometrical mod-
ifications. This has been the traditional way of controlling fluid mechanical
systems. The other large group of control methods is the active control meth-
ods where the control is adjusted dynamically to the state of the system. This
is what most of the work on control today is focused on. One of the first at-
tempts was, for example, to cancel TS waves by anti-phase modal suppression
to prevent transition. Early work is reviewed in Thomas (1990) and a brief,
later review is given in Metcalfe (1994). These efforts showed that instabil-
ities may indeed be significantly suppressed, but complete elimination of the
primary instability is not achieved.

As opposed to earlier attempts of controlling fluid flows, when thorough
understanding of the phenomena involved was necessary, optimal control theory
requires no a priori knowledge about the functional behavior of an effective
control. The theoretical framework is general and applies to a broad spectra of
applications where just a small selection is listed here: finding optimal shape of
wings under certain conditions (Jameson (1989)), minimizing the vorticity of
an unsteady internal flow by manipulating the inlets (Berggren (1995)), as well
as controlling boundary layer transition (Joslin et al. (1997)) and turbulence
(Bewley et al. (2001)). Optimal control based on linear theory has also been
investigated and has shown to work very well in recent applications such as in
channel flow (Joshi et al. (1997), Bewley & Liu (1998) and Högberg & Bewley
(2001)). In this approach modern linear control theory is used to construct
feedback control laws for online control.

In this paper both the linear control approach from Högberg & Bewley
(2001) and Högberg & Henningson (2001) and the nonlinear control approach
from Högberg et al. (2001) are applied to spatially evolving boundary layer flows
in cases representing three fundamentally different paths to transition. Our goal
is to measure the effectiveness of the optimal nonlinear controller versus the
linear counterpart and how much the restrictions in the linear optimal control
limits its performance. Note however that the two optimization formulations
differ in terms of objective functions. See text below for details.

In section 2 the two optimization problem formulations are briefly ex-
plained, and a short description of the numerical methods used are described
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in section 3. In section 4 the two control approaches are applied to three dif-
ferent flow scenarios and results from these simulations are presented. Finally,
a summary and conclusions follow in section 5.

2. Problem formulations

When formulating an optimal control problem, three important issues need to
be settled: the choice of state equation, how to control the flow, and what
properties of the flow to control. For a particular flow geometry and with given
fluid properties, these choices have to be made with care.

In this work, the governing equations are the incompressible Navier–Stokes
equations for the nonlinear controller and the corresponding equations lin-
earized around a base flow for the linear controller. Control is exerted through
blowing and suction on a part of the wall. In order to limit the control effects
on the mean flow, zero-mass flux is enforced on the control. Finally, we choose
an objective function that gives a measure of how close the controlled flow is
to a laminar flow and thus indicates how well the control is working.

Since no single quantity is known to tell where on the path to transition
we are, there is no obvious choice of objective function. The mean skin friction
drag could be used as an indicator, since it has a jump at transition, and can
be used to define a transition point, (Reddy et al. (1998)). On the other hand,
Bewley et al. (2001) showed that this is not a good choice of objective function
when the purpose is to relaminarize turbulence in channel flow, and concluded
that the turbulence kinetic energy was a more appropriate choice. Since we
here are interested in control of transition rather than turbulence, the energy
of the deviation from the laminar flow appears to be an appropriate quantity to
minimize. An increased physical understanding of the transition process and
the crucial mechanisms of turbulence could provide a guide to the best choice
of objective function as pointed out by Kim & Lim (2000).

The computational domain, depicted in Figure 1, is

Ω = (−xl/2, xl/2)× (0, y∞)× (−zl/2, zl/2),
Q = Ω× (0, T ).

(1)

We denote by Γ the boundary of the domain. The lower part (y = 0) of the
computational box is denoted Γl and the upper part (y = y∞) Γu. In addition
Γc represents the part of the lower boundary where control is applied. For
temporal simulations Γc usually coincide with Γl.

As already mentioned, the growing boundary layer is governed by the in-
compressible Navier–Stokes equations

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇π = λ(x)(U − u) in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(2)
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with periodic boundary conditions in the horizontal directions, that is, the x-
and z-directions,

u|x=−xl/2 = u|x=xl/2,

u|z=−zl/2 = u|z=zl/2.
(3)

The Reynolds number Re is based on the free stream velocity U∞ and the
displacement thickness δ∗, both evaluated at the streamwise location x0. To
model a pressure gradient the free-stream velocity is forced to obey

U∞ =
(
x

x0
+ 1
)m

(4)

where m is a parameter related to the strength of the pressure gradient. When
the Reynolds number is based on the local displacement thickness and freestream
velocity, the notation R is used. The pressure is denoted π. The term λ(x)(U−
u) is a forcing term used to make the flow situation sketched in Figure 1 pe-
riodic, enabling the use of Fourier discretization in simulations of the physical
flow. This is known as a fringe region technique and is described further in
Lundbladh et al. (1999) and analyzed by Nordström et al. (1999). Left to be
specified are the conditions on the wall and in the free-stream. On the wall,
the boundary condition for the horizontal velocities is a no-slip condition, and
the wall normal velocity vc is given by the control. The free-stream boundary
condition should be applied at y = yfst where y = yfst is large enough not to be
influenced by the existence of the boundary layer. However, the simulation box
has to be of reasonable height. A simple artificial boundary condition located
at y∞ is thus used to allow truncation of this large domain. Here a Neumann
condition is used at the artificial free-stream boundary. This choice allows a
smaller height of the simulation box, compared to if the free-stream condi-
tion was enforced through a Dirichlet condition. All together, the following
boundary conditions are specified:

u|y=yfst = U∞,

(
approx. by

∂u

∂n

∣∣∣∣
Γu

= 0

)
,

u|Γc
= nvc,

u|Γl\Γc
= 0.

(5)

We expand the control vc in basis functions ψl,m with zero mass flux, where
ϕl,m are time dependent coefficients for the basis functions,

vc(x, z, t) =

ϕT
l ψl =

M∑
m=1

ϕl,m(t)ψl,m(x, z) in (T c
1 , T

c
2 ),

0 otherwise,

(6)

where we have introduced the control vector ϕl defined as:

ϕl = (ϕl,1, . . . , ϕl,M )T .
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Figure 1. The computational domain. In the nonlinear opti-
mization problem the flow is observed in the region [xo1, x

o
2]×

[0, y∞]× [−zl/2, zl/2]× [T o
1 , T

o
2 ]. For both optimization prob-

lems the control region is [xc1, x
c
2]× [−zl/2, zl/2]× [T c

1 , T
c
2 ].

Furthermore, the control is restricted in time and allowed to be active only
during the time interval t ∈ (T c

1 , T
c
2 ).

2.1. Nonlinear control

In order to quantify the control objective, we introduce the objective function

J(ϕ) =
ε

2

T c
2∫

T c
1

∫
Γc

|v|2 dΓdt+ 1
2

T o
2∫

T o
1

∫
Ωo

|u− uT |2 dQ, (7)

where the deviation energy from a given target velocity distribution uT is min-
imized. Also a regularization term, including the parameter ε > 0, is added in
order to limit the control energy itself. The control is applied over the time
interval t ∈ (T c

1 , T
c
2 ) and the flow is observed over space Ω0 and over time

interval t ∈ (T o
1 , T

o
2 ).

The nonlinear optimization problem can now be formulated as: Find ϕopt ∈
Uad that satisfies

J(ϕopt) ≤ ϕ ∀v(ϕ)|Γc
∈ Uad, (8)

where Uad denotes the set of admissible controls, which is a subset of
L2((T c

1 , T
c
2 );R

M ), and where u in objective function (7) is obtained from solving
the Navier–Stokes equations (2) supplied with boundary conditions (3) and (5),
in which the control is acting on the system according to expansion (6).

Due to the nonlinearities in the state equation, we solve this optimization
problem using an “off-line” iterative procedure. That is, the Navier–Stokes
equations solved numerous times when the optimization algorithm successively
computes better and better approximations of the optimal control. In contrast,
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a feedback operator can be computed once and for all in the linear case, as de-
scribed in the next section, and the optimal control is then computed “on line”
during a single solution of the Navier–Stokes equations. In the nonlinear case,
we have chosen a gradient-based optimization algorithm and to compute the
gradient of the objective function by solving the associated adjoint equations.
With this approach, the cost of evaluating the gradient is independent of the
number of degrees of freedom for the control, a feature that is particularly
attractive for unsteady problems.

We discretize the expressions for the adjoint equations and the gradient
after that they have been derived on the “continuous” level. An alternative is
to discretize the Navier–Stokes equations and the objective function and derive
the adjoint equations and the gradient expression on the discrete level. The
latter approach leads to more accurate gradient directions, but it seems difficult
to apply for the present discretizations. Issues related to the errors introduced
by the approximative (continuous) formulation are discussed by e.g. Glowinski
& He (1998) and Gunzburger (1995). The use of the continuous formulation
for the present problem is motivated by the findings in Högberg & Berggren
(2000), where one conclusion was that it is sufficient to use the approximative
formulation in order to control strong instabilities. It was noted that in such
cases, most of the reduction of the objective function is achieved in the first
few iterations, and that additional iterations only result in a fine tuning of the
control. The drawback is that more iterations are required to reach the true
optimal control, if even possible, compared to the case when the gradient is
derived on the discrete level.

Figure 1 presents a schematic view of the computational domain. Note that
we can separate the part of the domain where we observe the flow and where
we control it, both in space and time. The observation interval is chosen to be
over the complete simulation time for all simulations, but the spatial extent is
smaller than the complete simulation box since we want to exclude the effects
from the fringe region. Also, observing the flow upstream of the control, where
it can have no effect, is not pertinent.

A detailed derivation of the objective function gradient can be found in
Högberg et al. (2001). Here only the solution procedure for the optimal control
problem is stated together with the final expression.

Differentiating objective function (7), state equation (2), and boundary
conditions (3) with respect to a variation of the control vector ϕl and applying
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integration by parts, we can derive the adjoint equations

−∂p
∂t

+ (∇u)T p− (u · ∇)p− 1
Re

∆p+ λ(x)p

+∇σ =

{
u− uT in (T o

1 , T
o
2 )× Ωo

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0,

(9)

along with the boundary conditions:
p|x=−xl/2 = p|x=xl/2,

p|z=−zl/2 = p|z=zl/2,

p|Γl
= 0,

p|y=yfst = 0,
(
approx. by

∂p

∂n

∣∣∣∣
Γu

= 0
)
,

(10)

where σ is the adjoint “pressure” and p the adjoint “velocity” variable. The
gradient can now be written as the M -vector

∂J

∂ϕl
=
∫
Γc

ψl

(
εϕT

l ψl − σ
)
dΓ. (11)

Note that the adjoint equations are solved backwards in time and that the
velocity u appears in the equations. This means that we have to store the
temporal history of the velocity data from the solution of the Navier–Stokes
equations.

The optimization procedure can now be summarized as follows: pick an
initial guess of the control, solve the Navier–Stokes equations, solve the adjoint
equations, compute the gradient of the objective function, update the control
and repeat as long as the optimization problem has not converged.

The nonlinear control approach is computationally expensive and storage
demanding for large simulations, even though the storage requirement can be
lowered by using a checkpointing technique, see e.g. Berggren (1998).

2.2. Linear control

By applying control theory using the Navier–Stokes equations linearized around
some mean flow, we can directly compute an on-line feedback law. In recent
studies, such linear feedback controllers have shown to be effective for both
channel and boundary layer flows.

First we assume that we are considering small disturbances so that we can
divide the flow into two parts,

(u1, v, w) = (U, 0,W ) + (u′1, v
′, w′) (12)

where U and W are base flow components in the chordwise and spanwise direc-
tions, respectively and where the primed quantities denote the disturbances.
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We have also introduced an approximation by adopting a parallel-flow assump-
tion, i.e. neglegting variations in the base flow in the chordwise direction. Now
we assume that the wave-like disturbances are of the form

v′ = v̂(y, t)ei(αx+βz), (13)

where α and β are the x and z components of the wave number vector and
ˆ denotes the complex amplitude function of the corresponding velocity com-
ponent. Applying these assumptions on the Navier–Stokes equations and lin-
earizing around the base flow, we obtain a set of evolution equations for the
amplitude functions of the velocity components. These can be reduced to the
following set of two coupled equations, where appropriate boundary conditions
have been included to allow inversion of the Laplacian (∆ = D2 − α2 − β2),

∂v̂

∂t
= ∆−1

[
− i(αU + βW )∆ + iαD2U + iβD2W +

1
Re

∆2
]

︸ ︷︷ ︸
LOS

v̂,

∂η̂

∂t
= [iαDW − iβDU ]︸ ︷︷ ︸

LC

v̂ +
[
−i(αU + βW ) +

1
Re

∆
]

︸ ︷︷ ︸
LSQ

η̂,
(14)

where η = i(βû1−αŵ) is the complex amplitude function of the normal vortic-
ity. The operator D denotes a differentiation operator with respect to the wall
normal direction. Equations (14) are referred to as the Orr–Sommerfeld and
Squire equations respectively. The base flow is taken from similarity solutions
for the different flow cases studied. Details of the theory can be found in i.e.
Schmid & Henningson (2001). The associated boundary conditions are

v̂(0, t) = ϕ̂ , Dv̂(0, t) = 0 , η̂(0, t) = 0,

v̂(y, t)→ 0 , Dv̂(y, t)→ 0 , η̂(y, t)→ 0 as →∞.
(15)

The control ϕ̂ enters the flow as the wall-normal velocity at the lower boundary.
Since the system of equations (14) is linear, we can divide the solution into

a homogeneous (v̂h, η̂h) and an inhomogeneous (v̂p, η̂p) solution such that[
v̂
η̂

]
︸ ︷︷ ︸

x̂f

=
[
v̂h
η̂h

]
︸ ︷︷ ︸

x̂h

+
[
v̂p
η̂p

]
︸ ︷︷ ︸

Ẑ

ϕ̂, (16)

where the inhomogeneous (particular) solution is such that it is the stationary
solution to (14) satisfying the boundary conditions (15) with ϕ̂ = 1. The
system of equations can now be written as

˙̂xh = N x̂h +NẐϕ̂− Ẑ ˙̂ϕ, (17)

where

N =
[
LOS 0
LC LSQ

]
, (18)
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with the boundary condition for the inhomogeneous system is as in (15). Note
that sinceNẐϕ̂ = 0, we can instead use the corresponding boundary conditions
for the homogeneous problem,

v̂(0, t) = 0 , Dv̂(0, t) = 0 , η̂(0, t) = 0,

v̂(y, t)→ 0 , Dv̂(y, t)→ 0 , η̂(y, t)→ 0 as →∞ (19)

By introducing x̂ = [x̂h, ϕ̂]T , the state equation can be described as

˙̂x = Ax̂+ B ˙̂ϕ, (20)

where

A =
[
N 0
0 0

]
, B =

[
−Ẑ
1

]
. (21)

In accordance with the previous discussion regarding the choice of objective
function, we use the following objective function for the linear optimal control
problem

Ĵ(ϕ̂) = lim
T→∞

T∫
0

(x̂∗Qx̂+ l2 ˙̂ϕ∗ ˙̂ϕ) dt, (22)

where Q is an operator such that x̂∗Qx̂ measures the perturbation energy, and
l is a penalizing parameter for the magnitude of control ˙̂ϕ. For each wave
number pair, Q can be written as

Q =
[

S SẐ
Ẑ∗S Ẑ∗SẐ

]
, (23)

where S is defined as

x̂∗fSx̂f =
1
y∞

y∞∫
0

x̂fC∗Cx̂f dy

=
1

4y∞k2

y∞∫
0

(
∂v̂

∂y

∗ ∂v̂
∂y

+ k2v̂∗v̂ + η̂∗η̂
)
dy,

(24)

with k2 = α2 + β2. The linear optimal control problem can now be stated:
Find ˙̂ϕ that minimizes the objective function (22) subject to

˙̂x = Ax̂+ B ˙̂ϕ, x̂(t = 0) = x̂0. (25)

This is a standard optimal control problem, and the optimal feedback con-
trol law ˙̂ϕ = K̂x̂ can now be found through the expression

K̂ = − 1
l2
B∗X̂ (26)
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where X̂ is the non-negative self-adjoint solution to the stationary operator
Riccati equation(

X̂A+A∗X̂ − 1
l2
X̂BB∗X̂ + C∗C

)
x̂ = 0, ∀x̂. (27)

Note that since the time horizon for the objective function is infinite we seek
the stationary solution to the Riccati equation and get a time independent feed
back law. Applying this feedback control gives us the closed loop system

˙̂x = (A+ BK̂)︸ ︷︷ ︸
Acl

x̂, (28)

where Acl describes the dynamics of the controlled system. More details on
the derivation can be found in Högberg & Henningson (2001). For details on
this type of optimal control theory the reader is referred to e.g. Ito & Morris
(1998) and Hulsing (1999).

The control problem is solved for an array of wave number pairs, corre-
sponding to a sufficient resolution for the flow of interest, and the resulting
controllers are combined into a physical space controller through an inverse
Fourier transform. The feedback law is then represented as a convolution of
this physical space control law and the velocity field.

The limitations of this approach are mainly that nonlinear as well as non-
parallel effects are neglected. The optimization is performed over an infinite
time horizon, and thus no guarantees can be made regarding instantaneous
behavior and initial transients.

3. Implementation

A pseudo-spectral method is used to solve the incompressible Navier–Stokes
equations for flow over a flat plate with or without an external pressure gra-
dient. Fourier-series expansions are used in the chordwise and spanwise di-
rections, whereas Chebyshev collocation is used for discretization in the wall-
normal direction. Time integration of the nonlinear terms for the advective
and forcing terms are handled by a third order Runge–Kutta scheme, whereas
the viscous terms are handled by a Crank–Nicolson scheme. Details about the
code can be found in Lundbladh et al. (1999).

For the nonlinear optimization problem, a limited memory quasi-Newton
method is used. The algorithm, L-BFGS-B (Byrd et al. (1994)), is available
on the Internet (the web-link is given in the reference list next to Byrd et al.
(1994)) and was used without modifications. It is an algorithm well suited for
large nonlinear optimization problems, with or without bounds on the control
variables.

The BFGS method successively computes secant approximations of the
Hessian matrix as the iterations proceed. The algorithm has been shown to
work well for many different types of optimization problems. The limited mem-
ory BFGS algorithm differs from the standard BFGS algorithm in that it does
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not construct a full matrix to approximate the Hessian. Instead only a certain
number of gradient and control updates from earlier optimization iterations are
stored. These are then used to build an approximation of the Hessian matrix.

Disturbances can be introduced to the flow by applying a forcing in the
fringe region, by an external volume forcing, or by adjusting the boundary
conditions in order to specify blowing and suction at the wall.

4. Results

Flows with three fundamentally different mechanism for disturbance energy
growth are studied: TS waves, optimal disturbances, and stationary cross flow
vortices. The TS wave and optimal disturbance are applied to a Blasius bound-
ary layer, and the cross-flow vortices to a Falkner–Skan–Cooke boundary layer.
Direct numerical simulations are performed for each one of these perturbations,
first without any control, then with linear control, and finally with nonlinear
control. The nonlinear optimization loop is initiated with the linear optimal
control. Note that the fringe region is excluded from the pictures below.

The energy measure that will be used in the following plots is

E(u(x)) =
1

y∞zl

∫
y

∫
z

(u21 + v2 + w2) dy dz. (29)

This energy measure naturally includes the control energy itself.

4.1. Tollmien-Schlichting waves

A TS wave is introduced in a Blasius boundary layer and develops as it prop-
agates downstream. The Blasius mean flow is a special case of the Falkner–
Skan–Cooke profiles without pressure gradient (m = 0) and with no mean flow
component in the z-direction.

Two different disturbances are applied, one weak TS wave, and one stronger
wave where nonlinear coupling effects start to appear. The weak TS wave is
generated by an oscillating two dimensional volume force with the dimensionless
frequency F = 200, where F = 2πfν/U2

∞ × 106. The volume force is centered
at x = 20 and decays exponentially in both the x- and y-direction.

The stronger wave is generated in the fringe region by forcing toward the
least stable Orr–Sommerfeld–Squire eigenmode computed for α = 0.30 at R =
950, a Reynolds number that corresponds to a spatial location close to the end
of the computational box. This TS wave will then be exponentially unstable
in the computational box.

Domain and resolution data for the TS wave simulations is given in Table
1, cases 1-6. The Reynolds number at x = 0 is Re = 468.34 for both the weak
and strong disturbance. In the construction of the linear feedback kernels, the
base flow profile is taken at x = 150. For the nonlinear optimization problem,
we specify the observation interval in space and time to x ∈ [75, 375] and
t ∈ [0, 750], respectively.
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Figure 2. The spatial energy growth of a linear TS wave
perturbation in a Blasius boundary layer without control from
case 1 (solid), with linear control from case 2 (dashed), and
nonlinear control from case 3 (dash-dotted). Control is applied
in x ∈ [75, 225]. The TS wave is generated as a volume force
centered at x = 20 for F = 200. The linear controller is
centered at x = 150.

In Figure 2 the streamwise disturbance energy development of weak TS
waves are plotted for cases 1-3 in Table 1. A small transient can be seen in the
beginning of the energy curve, an effect that is due to the fact that we do not
force a clean TS wave. However, as the disturbance evolves downstream, a pure
TS wave emerges. The flow is perturbed just upstream of branch I of the neutral
stability curve, which is at around R ≈ 507 (x ≈ 25), and the disturbance grows
exponentially shown, as the solid line in Figure 2. The growth ends when
branch II is reached at about R ≈ 723 (x ≈ 230). See for example Schmid
& Henningson (2001) for details. The dashed line is the disturbance energy
development with linear control active. Note that the exponential growth is
completely removed and replaced by an exponential decay. With the nonlinear
optimal control applied, the energy development follows the dash-dotted line.
Since the energy levels are very low and thus nonlinear effects negligible, we
can conclude that the deviations originate from differences in the optimization
problem and the limitations of the linear control. Analyzing the control signals
shows no major differences between the two control approaches. The nonlinear
control acts stronger in the beginning of the simulation and also stronger at
the upstream part of the spatial control interval. These effects are a direct
consequence of the limitations of the linear control problem formulation.

With no control at all, the objective function is 5.291 · 10−4, and when the
linear control is turned on the value is reduced to 5.263·10−4. The relatively low
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Figure 3. The spatial energy growth of a weakly nonlinear
TS wave perturbation in a Blasius boundary layer without
control from case 4 (solid), with linear control from case 5
(dashed), and nonlinear control from case 6 (dash-dotted).
Control is applied in x ∈ [75, 225]. The TS wave is gener-
ated at R = 950 for α = 0.30. The linear controller is centered
at x = 150.

reduction of the objective function is due to the fact that the simulation time
is only as long as is needed for the control signal and the transients it cause to
propagate out of the computational box. This means that it is only at the last
part of the simulation all transient effects are gone and the disturbance energy
is kept on a low level. The nonlinear control reduces the objective function
value to 5.260 · 10−4.

In Figure 3, the disturbance energy development in the streamwise direc-
tion for cases 4-6 from Table 1 are plotted. Again, the dashed line denotes
the disturbance energy development with linear control turned on. Also for
this much stronger TS wave, the exponential growth is completely suppressed.
The differences between the nonlinear control and the linear control is more
pronounced than for the weak wave. Initially, the nonlinear control signal is
higher over the whole control region. The downstream part of the control is
quickly dampened to the linear control levels whereas the upstream region stays
higher throughout the complete control time. Strong transients with nonlinear
interactions are produced by the upstream control. As these transients are
convected downstream there is a distinct difference in how the linear and non-
linear control behave. The nonlinear control signal becomes irregular whereas
the linear control stays more or less sinusoidal.

The objective function value is reduced from 0.564 to 0.204 by the linear
control and further down to 0.077 by the nonlinear control. The nonlinear
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Figure 4. Spatial energy growth of a linear optimal distur-
bance in a Blasius boundary layer without control from case
7 (solid), with linear control from case 8 (dashed), and non-
linear control from case 9 (dash-dotted). Control is applied
in x ∈ [75, 475]. The optimal disturbance has the maximum
growth at x = 237.24. The linear controller is centered at
x = 150. E0 is the disturbance energy at R0 = 395.4.

control was picked after 24 iterations in the optimization loop which still has
potential to decrease the value more.

4.2. Optimal disturbances

Here the performance of the controller for a transiently growing perturbation
is studied. The same base flow as for the TS wave simulations is used but now
with a larger box in the streamwise direction, see Table 1, cases 7-9, for details.

The spatial optimal perturbations in a Blasius boundary layer have been
computed by Andersson et al. (1999) and Luchini (2000). The particular op-
timal spatial perturbation used here is introduced at R0 = 395.4 and then
marched forward using the linear equations to the position where R = 468.34.
By introducing the optimal disturbance in the fringe region, we get a clean
perturbation already in the beginning of the computational box. The pertur-
bation is optimized to be the one with maximum growth at x = 237.24 in the
simulation box.

The linear control kernels are computed from the base flow at position x =
150. Furthermore, the spatial and temporal observation region is x ∈ [75, 975]
and t ∈ [0, 1500] respectively. The solid line in Figure 4 shows the disturbance
energy growth without any control. In the same figure, the dashed line marks
the evolution of the disturbance energy when linear control is applied, and
the dash-dotted line shows the nonlinear control after ten iterations in the
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optimization loop. In these controlled cases, we still have transient growth,
although substantially weaker. Cathalifaud & Luchini (2000) have computed
the optimal control over the whole wall using the linearized boundary layer
equations as state equation. Their optimal control is similar in shape as to
what we have obtained.

After the disturbance energy reduction in the beginning of the control
domain, the nonlinear control casuses the energy to start growing earlier than
the linear control does. This is an effect of our choice of spatial observation
region. To keep the disturbance from growing to fast behind the control region,
stronger control has to be applied, especially at the downstream part of the
control region.

No control, for the current observation region, gives an objective function
value of 8.955 · 10−4. Linear control lowers the objective function to 8.695 ·
10−4. After six optimization iterations for the nonlinear control, the objective
function reaches 8.531 · 10−4. The small reduction of the objective function
value is due to the fact that the observation time interval captures not only
the results at the end of the simulation but also the transient process when the
disturbance, already present in the flow, is acted on by the control. The energy
curves are just snapshots of the streamwise energy distribution in the flow at
the end of the simulation (T = 1500).

4.3. Cross flow vortices

In a three dimensional boundary layer flow, where the direction of the base
flow is a function of the wall normal coordinate, the velocity profile usually has
an inflection point. This in turn means that there usually exists an inviscid
inflectional instability, see e.g. Gregory et al. (1955). This primary instability
may result in amplification of oblique travelling waves and of stationary vor-
tices. Local linear stability theory predicts nonstationary modes to be more
amplified than stationary modes. In the present work, we have chosen to study
a stationary disturbance due to the somewhat smaller computational require-
ments in such a flow.

If large enough amplitude of the disturbance is used, stationary nonlinearly
saturated cross flow vortices will develop downstream. These instabilities have
been thoroughly investigated both experimentally, by e.g. Lerche (1997) and
Kawakami et al. (1999), and numerically, by Högberg & Henningson (1998)
and Malik et al. (1999). In the present paper only results from lower amplitude
disturbance simulations are reported. To mimic a base flow prone to the above
behavior, a Falkner–Skan–Cooke boundary layer for an infinitely swept wing
with a positive pressure gradient is modeled. Stationary perturbations are
introduced in the beginning of the simulation box at Re = 337.34 with m =
0.34207 andW∞ = 1.442. The same flow case is studied numerically in Högberg
& Henningson (1998).

The box size, resolution, and other details are given in Table 1 as cases
10-12. The linear control kernels are constructed from the base flow profile
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Figure 5. Spatial energy growth in the β = 1 mode of
cross flow vortices in a Falkner–Skan–Cooke boundary layer
(m = 0.34207 and W∞ = 1.442) without control from case 10
(solid), with linear control from case 11 (dashed), and nonlin-
ear control from case 12 (dash-dotted). Control is applied in
x ∈ [145, 295]. The linear control kernels are computed with
base flow from position x = 220.

at x = 220. For the nonlinear optimization problem, we have chosen the
observation interval in space as x ∈ [145, 335] and in time as t ∈ [0, 800].

In Figure 5, the solid line shows the growth of the disturbance energy in the
β = 1 mode. As expected from linear stability theory, it grows exponentially.
When applying linear control, the energy growth is efficiently stopped which is
shown with the dashed line. However, immediately after we stop controlling the
flow, new cross flow vortices begin to form, which is natural due to the presence
of an inflectional instability. The nonlinear control, shown as the dash-dotted
line in Figure 5, reduces the disturbance growth even further.

When no control is used the objective function is 5.593 and with linear
control on it reduces to 0.644. The nonlinear control then decreases it to 0.635
after two iterations.

As for the TS waves and optimal disturbances cases, transient effects linger
in the flow until the very last part of the simulation. Therefore, the reduction
in objective function is not as large as one might expect from the disturbance
energy plot, which again is a snapshot at simulation end time.

5. Summary and conclusions

Direct numerical simulations for three different flow cases have been performed
without any control, with an optimal control obtained through a linear feedback
loop, and with an optimal control computed from the full nonlinear Navier–
Stokes equations in an iterative procedure. The nonlinear optimization problem
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Case Flow Perturbation Amp. Control
1 A TS wave none
2 A TS wave 0.0002 [75, 225]
3 A TS wave 0.0002 [75, 225]
4 A TS wave none
5 A TS wave 0.01 [75, 225]
6 A TS wave 0.01 [75, 225]
7 B Optimal none
8 B Optimal 0.00001 [75, 425]
9 B Optimal 0.00001 [75, 425]
10 C Cross flow none
11 C Cross flow 0.0002 [145, 295]
12 C Cross flow 0.0002 [145, 295]

Type Flow Resolution Box
A Blasius 576× 65× 4 500× 20× 12.83
B Blasius 576× 65× 4 1128× 20× 12.83
C FSC 576× 65× 24 500× 10× 25.14

Table 1. Summary of different simulations. For all simula-
tions the linear control parameter equals l = 100. The non-
linear control parameter equals ε = 10−5. The two different
amplitudes for the TS wave simulations correspond to linear
and weakly nonlinear disturbances.

is initiated with the linear control in order to speed up the convergence process.
Some of the smaller simulations have also been initiated from zero control and
they converged to the same control.

The results show that the nonlinear control improves the performance over
the linear control markedly in cases where nonlinear effects are significant. Also
for perturbations with a linear development there are differences, but a fine
tuning of the parameter l in the linear control problem could possibly reduce
the difference.

The linear controller results are computed with the same tools as used in
Högberg & Henningson (2001) and works well for the studied cases despite its
limitations.

The nonlinear control has not been fully converged in any of the simulated
cases indicating that one would expect small adjustments to the disturbance
energy growth curves. However, the big changes in the control appear in the
first few iterations.



38 M. Chevalier, M. Högberg, M. Berggren & D. S. Henningson

For all cases studied the nonlinear control acts more quickly both in space
and time. Also the control keeps the disturbance energy levels lower at a
downstream location behind the control interval.

Simulations with disturbance amplitudes high enough so that nonlinear
effects are more pronounced, will be studied in future work, both for the optimal
disturbances and the cross flow vortices.

For nonlinear optimization simulations over larger time intervals and for
larger domains, the checkpointing technique mentioned in section 2.1 needs to
be applied.

Another important part of the nonlinear optimization problem, is the for-
mulation of the optimization problem itself and the choice of inner products
involved. This could have a large impact on the convergence rate of the iter-
ative process and also on how well the “optimal control” will work (see e.g.
Protas & Bewley (2002)).

For the linear optimization problem the next natural step is to attempt
to reduce the amount of information necessary when computing the control by
estimating the state of the flow based on realizable measurement data.
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Högberg, M. & Henningson, D. S. 1998 Secondary instability of cross-flow vortices
in falkner-skan-cooke boundary layers. J. Fluid Mech. 368, 339–357.
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Optimal control of wall bounded flows

By Markus Högberg∗, Mattias Chevalier∗†, Martin
Berggren†‡ and Dan S. Henningson∗†

Optimal control of transition in channel flow and boundary layer flow is at-
tempted. First the optimization problem is stated and the corresponding ad-
joint equations used to compute the gradient of the objective function are de-
rived for both the channel flow and boundary layer flow problems. Implementa-
tion and numerical issues are discussed, and some details of the implementation
are explained. The governing equations used are the incompressible Navier–
Stokes equations with appropriate boundary conditions for the two cases. The
boundary condition on the wall normal velocity at the walls of the channel, or
at the single wall in the boundary layer case, is used as control and is deter-
mined in the iterative optimization procedure. The objective function used for
the optimization problem contains the perturbation energy and a regularization
term on the applied control. The optimization problem is formulated using a
continuous formulation in space and time using the primitive variables, velocity
and pressure, and is then rewritten in a formulation containing only the wall
normal velocity and the wall normal vorticity. An existing solver for the incom-
pressible Navier–Stokes equations using this formulation can then also be used
to solve the associated adjoint problem. Implementation is straightforward us-
ing this formulation and the efficiency of the original solver is maintained. To
test the performance of the solver of the optimization problem, the derived
formulation is applied on different stages of the oblique transition scenario in
the channel flow case. In a parallel Falkner–Skan–Cooke flow successful control
of an inviscid instability is reported, and in the spatial Blasius flow the energy
growth of a Tollmien–Schlichting wave is efficiently inhibited.

1. Introduction

In the last decade, one topic in fluid mechanics that has been subject to an
increasing interest is flow control. The explosive development in computer
technology has made it possible to approach these problems from a numerical
point of view, and also to construct small devices to be used for measurements
and actuation in experiments. The numerical approach to flow control can for
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44 M. Högberg, M. Chevalier, M. Berggren & D. S. Henningson

example be used to design the shape of a wing to minimize drag or to solve
some other optimization problem. Mathematical aspects of the flow control
problem is the topic of the books edited by Gunzburger (1995) and Sritharan
(1998). Computational approaches to flow control are reviewed in the paper by
Hinze & Kunish (2000). Optimal control of channel flow using direct numerical
simulations was previously considered using by Bewley et al. (2001) and using
large eddy simulations by Collis et al. (2000). In addition to channel flow Joslin
et al. (1997) also considered the boundary layer case with a two dimensional
flow in direct numerical simulations.

In this work we consider the problem of control of transition from laminar
to turbulent flow in a channel and a boundary layer. In many applications
there is a large potential benefit from the ability to prevent transition whereas
in other applications the turbulent state is the desired one. Our objective is
to delay or prevent transition at low Reynolds numbers, particularly focusing
on the bypass transition (Morkovin (1969)) scenarios, not originating from an
exponential instability. The problem of bypass transition is important in many
practical applications, and considerable amounts of research has been done on
this subject see e.g. the recent book by Schmid & Henningson (2001).

2. Optimization problem formulations

The formulation of an optimal control problem is based on three important
decisions. The choice of governing equations, determining what means of actu-
ation to use, and what properties of the flow to control. For a particular flow
geometry and with given fluid properties, these choices have to be made with
care.

In this work the governing equations are the incompressible Navier–Stokes
equations. In a recent study, successful application of feedback controllers com-
puted from the linearized Navier–Stokes equations was performed by Högberg
& Bewley (2001) in temporal channel flow. Changes in the mean flow is not
easily taken into account using this formulation. Thus, a proper treatment of
problems where this is important, such as a flow with local separation, requires
the use of the full Navier–Stokes equations.

Since no particular quantity is known that establishes where we are on
the path to transition the choice of objective function is difficult. The mean
skin friction drag could be used as an indicator, since it has a jump at tran-
sition, and can be used to define a transition point, as for example in Reddy
et al. (1998). On the other hand, Bewley et al. (2001) showed that the mean
drag was not a good choice for the objective function when the purpose was
to relaminarize turbulence in a channel flow, and concluded that the turbulent
kinetic energy was a more appropriate choice. Since we are interested in con-
trol of transition rather than turbulence, the energy of the deviation from the
mean flow appears to be an appropriate quantity to minimize. An increased
physical understanding of the transition process and the crucial mechanisms
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of turbulence could provide a guide to the best choice of objective function as
pointed out by Kim & Lim (2000).

It is important to choose the properties of the control in such a way that
it is able to do its task in an efficient way. For our study, we have chosen to
use blowing and suction at the wall during a specified period in time. The
state of the flow is observed during another, possibly overlapping, period in
time. When a spatially rather than a temporally evolving flow is considered
it is physically meaningful to specify also the spatial extent of the control and
observation regions. The control is restricted to have zero mass flux, in order
to limit the ability to affect the mean flow and focus the control effort on the
perturbations.

The gradient of the objective function may be expressed in terms of the so-
lution of an adjoint equation. Here, we discretize the expressions for the adjoint
equations and the gradient that have been derived on the “continuous” level.
An alternative is to discretize the Navier–Stokes equations and the objective
function and derive the adjoint equations and the gradient expression on the
discrete level. The latter approach leads to more accurate gradient directions,
but it seems difficult to apply for the present discretizations. Issues related to
the errors introduced by the approximative (continuous) formulation are dis-
cussed in e.g. Glowinski & He (1998) and Gunzburger (1998). The use of the
continuous formulation is motivated by the findings in Högberg & Berggren
(2000) where one conclusion was that it is sufficient to use the approximative
(continuous) formulation in order to control strong instabilities. It was noted
that in such cases most of the reduction of the objective function is achieved in
the first few iterations, and additional iterations only result in a fine tuning of
the control. The drawback is that it will require more iterations to reach the
true optimal solution, if it is even possible, than with the discrete formulation.

2.1. Governing equations

In this section we consider the channel flow problem and the details of the
method used to solve the optimization problem. The boundary layer problem
is basically an extension of the channel flow case. The differences are outlined
in section 2.3, and a full description is provided in Appendix A.

Our computational domain depicted in Figure 1 is

Ω = (−xL/2, xL/2)× (−1, 1)× (−zL/2, zL/2),

in x, y, z, and we define

ΓL = Ω(y = −1), ΓU = Ω(y = 1) and Q = Ω× (0, T ).
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Figure 1. Geometry of flow domain Ω for channel flow simulations.

The non-dimensional, incompressible Navier–Stokes equations with a Reynolds
number, Re, based on the centerline velocity and half the channel height are,

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇π = −∇P in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(1)

where u = (u1, v, w) is the velocity vector, π is the pressure and ∇P represents
the pressure gradient driving the flow and can either be constant or used to
ensure constant mass flux. Periodic boundary conditions in x and z, and control
through blowing and suction together with a no-slip condition for the directions
parallel to the wall gives the complete set of boundary conditions,

u|x=−xL/2 = u|x=xL/2,

u|z=−zL/2 = u|z=zL/2,

ei · u|y=−1 =

{
ϕT
LψL =

∑ML

m=1 ϕL,m(t)ψL,m(x, z) in (T c
1 , T

c
2 ) for i = 2,

0 otherwise,

ei · u|y=1 =
{
ϕT
UψU =

∑MU

m=1 ϕU,m(t)ψU,m(x, z) in (T c
1 , T

c
2 ) for i = 2,

0 otherwise,
(2)

where ei are unit basis vectors in the coordinate directions, and ψ are basis
functions for the control designed to have zero net mass flux. We can now
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introduce the control variable ϕ defined as:

ϕ = (ϕL, ϕU )T ,

{
ϕL = (ϕL,1, . . . , ϕL,ML

)T ,
ϕU = (ϕU,1, . . . , ϕU,MU

)T .

To completely specify the optimal control problem we also need an objective
function. If we choose to minimize the energy of the deviation from a target
velocity distribution, the objective function is:

J(ϕ) =
ε

2

T c
2∫

T c
1

∫
Γ

|v|2 dΓdt+ 1
2

T o
2∫

T o
1

∫
Ω

|u− uT |2 dQ, (3)

where (T c
1 , T

c
2 ) is the control time period and (T o

1 , T
o
2 ) is the observation time

period. The target velocity profile is denoted uT . The optimization problem is
then: find ϕ∗ which satisfies

J(ϕ∗) ≤ J(ϕ) ∀ v(ϕ)|Γ ∈ Uad

where Uad has been used to denote the set of admissible controls which is a
subset of L2((T c

1 , T
c
2 );R

ML+MU ).

2.2. Derivation of objective function gradient

The gradient of the objective function ∇J is defined by

δJ(ϕ) = lim
s→0

J(ϕ+ s δϕ)− J(ϕ)
s

= 〈∇J, δϕ〉

=
〈

∂J

∂ϕL
, δϕ

〉
+
〈

∂J

∂ϕU
, δϕ

〉
,

(4)

where δϕ is the first variation of the control. The functional δJ is the first
variation of J with respect to δϕ. To find an expression for ∇J we start by
differentiating the objective function (3) to get,

δJ(ϕ) = ε

T c
2∫

T c
1

∫
Γ

δv v dΓdt+

T o
2∫

T o
1

∫
Ω

δu · (u− uT ) dQ, (5)

where δv = e2 · δu and δu is the first variation of u with respect to δϕ. To
find an expression for the relation between δu and δϕ we differentiate state
equation (1),

∂δu

∂t
+ (δu · ∇)u+ (u · ∇)δu− 1

Re
∆δu+∇δπ = 0 in Q,

∇ · δu = 0 in Q,

δu|t=0 = 0,

(6)
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and boundary conditions (2),

δu|x=−xL/2 = δu|x=xL/2,

δu|z=−zL/2 = δu|z=zL/2,

ei · δu|y=−1 =

{
δϕT

LψL =
∑ML

m=1 δϕL,m(t)ψL,m(x, z) in (T c
1 , T

c
2 ) for i = 2,

0 otherwise,

ei · δu|y=1 =
{
δϕT

UψU =
∑MU

m=1 δϕU,m(t)ψU,m(x, z) in (T c
1 , T

c
2 ) for i = 2,

0 otherwise.
(7)

Now we introduce a vector function p = p(x, y, z, t) such that ei · p = pi and
require p to satisfy the boundary conditions:

p|x=−xL/2 = p|x=xL/2,

p|z=−zL/2 = p|z=zL/2,

p|y=−1 = p|y=1 = 0.
(8)

The boundary conditions may be chosen during the derivation but in order to
simplify the presentation they are introduced already at this point. Taking the
dot product between p and equation (6) and integrating over Q yields

∫
Q

p ·
(
∂δu

∂t︸︷︷︸
1

+(δu · ∇)u︸ ︷︷ ︸
2

+(u · ∇)δu︸ ︷︷ ︸
3

− 1
Re

∆δu︸ ︷︷ ︸
4

+∇δπ︸︷︷︸
5

)
dQ = 0. (9)

Then, step by step, we apply integration by parts to move derivatives from
δu to p. We start with the first term in the integral (9), containing the time
derivative:

∫
Q

p · ∂δu
∂t

dQ =
∫
Ω

(p(T ) · δu(T )− p(0) · δu(0)) dΩ−
∫
Q

δu · ∂p
∂t

dQ

=
∫
Ω

p(T ) · δu(T ) dΩ−
∫
Q

δu · ∂p
∂t

dQ,
(10)
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where we have used that δu(t = 0) = 0. Then consider the fourth and fifth
terms in integral (9), involving ∆δu and δπ:

− 1
Re

∫
Q

p ·∆δu dQ+
∫
Q

(p · ∇)δπ dQ

= − 1
Re

T∫
0

[∫
Γ

∂δu

∂n
· pdΓ−

∫
Ω

∇p : ∇δu dΩ
]
dt

+

T∫
0

[∫
Γ

n · p δπ dΓ−
∫
Ω

δπ(∇ · p) dΩ
]
dt

=

T∫
0

∫
Γ

p ·
(
n δπ − 1

Re

∂δu

∂n

)
dΓdt

+
1
Re

T∫
0

[∫
Γ

δu · ∂p
∂n

dΓ−
∫
Ω

δu ·∆pdΩ
]
dt−

∫
Q

δπ(∇ · p) dQ

=
1
Re

T c
2∫

T c
1

[
δϕT

L

∫
ΓL

ψL
∂p2
∂n

dΓ + δϕT
U

∫
ΓU

ψU
∂p2
∂n

dΓ
]
dt

− 1
Re

∫
Q

δu ·∆pdQ−
∫
Q

δπ(∇ · p) dQ.

(11)

where : denotes a complete contraction; that is,

∇p : ∇δu =
3∑

i,j=1

∂(ei · p)
∂xj

∂(ei · δu)
∂xj

. (12)

In the third equality of (11), we use the boundary condition on δu from (7)
and on p from (8).

We can simply rewrite the second term in (9):

∫
Q

p · (δu · ∇)u dQ =
∫
Q

δu · (∇u)T pdQ. (13)
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For the third term in (9), we use Gauss theorem, the boundary condition on p
in (8) and the incompressibility condition,∫

Q

p · (u · ∇)δu dQ

=

T∫
0

∫
Γ

(p · δu)(n · u) dΓ dt

−
∫
Q

(p · δu)(∇ · u) dQ−
∫
Q

δu · (u · ∇)pdQ

= −
∫
Q

δu · (u · ∇)pdQ,

(14)

Then by inserting (10), (11), (13) and (14) into (9) we get:∫
Ω

p(T ) δu(T ) dΩ

+
1
Re

T c
2∫

T c
1

[
δϕT

L

∫
ΓL

ψL
∂p2
∂n

dΓ + δϕT
U

∫
ΓU

ψU
∂p2
∂n

dΓ
]
dt

+
∫
Q

δu ·
(
−∂p
∂t
− 1
Re

∆p+ (∇u)T p− (u · ∇)p
)
dQ

−
∫
Q

δπ (∇ · p) dQ = 0.

(15)

If we then require p to satisfy the adjoint equations:
−∂p
∂t
− 1
Re

∆p+ (∇u)T p− (u · ∇)p+∇σ =

{
u− uT in (T o

1 , T
o
2 )

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0,
(16)

with the boundary conditions from (8) and where σ is a scalar field (the “adjoint
pressure”). Then (15) becomes

T o
2∫

T o
1

∫
Ω

δu · (u− uT ) dQ−
∫
Q

δu · ∇σ dQ = 0, (17)
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since ∂p2/∂n is zero at the boundaries y = ±1. This follows from the fact that
the no-slip condition implies

∂p1
∂x

=
∂p3
∂z

= 0

on the walls and from the condition requiring p to be divergence-free. Also,
note that the initial condition for the adjoint equations (16) is set at t = T and
that the equations are integrated backwards in time.

Integrating the second term in the integral (17) by parts yields

−
∫
Q

δu · ∇σ dQ = −
T∫
0

∫
Γ

n · δu σ dΓdt+
∫
Q

σ∇ · δu dQ

= −
T∫
0

∫
Γ

n · δu σ dΓdt,

(18)

since ∇ · δu = 0. Inserting the boundary condition on δu from (7) into (18) we
get,

−
T∫
0

∫
Γ

n · δu σ dΓdt

=

T c
2∫

T c
1

∫
ΓL

δϕT
LψLσ dΓdt−

T c
2∫

T c
1

∫
ΓU

δϕT
UψUσ dΓdt.

(19)

If we now insert (18) and (19) into (17) we get,

T c
2∫

T c
1

[
δϕT

L

∫
ΓL

ψLσ dΓ− δϕT
U

∫
ΓU

ψUσ dΓ
]
dt

+

T o
2∫

T o
1

∫
Ω

δu · (u− uT ) dQ = 0.

(20)
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Figure 2. Geometry for boundary layer flow simulations.

Finally we can now insert (20) into (5) using (2) to eliminate δu

δJ(ϕ) =
〈

∂J

∂ϕL
, δϕ

〉
+
〈

∂J

∂ϕU
, δϕ

〉

=

T c
2∫

T c
1

{
δϕT

L

[ ∫
ΓL

ψL

(
εϕT

LψL − σ
)
dΓ
]

+ δϕT
U

[ ∫
ΓU

ψU

(
εϕT

UψU + σ
)
dΓ
]}

dt.

(21)

¿From expression (21) we can identify the gradient of the objective function
(3),

∂J

∂ϕL
=
∫
ΓL

ψL

(
εϕT

LψL − σ
)
dΓ, (22)

and

∂J

∂ϕU
=
∫
ΓU

ψU

(
εϕT

UψU + σ
)
dΓ. (23)

2.3. Extension to boundary layer

Only minor changes are needed to rephrase the channel flow problem to the
boundary layer flow depicted in Figure 2. A complete derivation of the bound-
ary layer counterpart of the channel flow optimization problem can be found
in Appendix A. In this section only the key differences will be pointed out and
commented.

The growing boundary layer is modeled by
∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇π = λ(x)(U − u) in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(24)



Optimal control of wall bounded flows 53

with periodic boundary conditions in the horizontal directions, that is, the x-
and z-directions,

u|x=−xl/2 = u|x=xl/2,

u|z=−zl/2 = u|z=zl/2.
(25)

The term λ(x)(U−u) is a forcing term used to make the flow situation sketched
in Figure 2 periodic, enabling the use of Fourier discretization in simulations of
the physical flow. This is known as a fringe region technique and is described
further in Lundbladh et al. (1999) and analyzed by Nordström et al. (1999).
Left to be specified are the conditions on the wall and in the free-stream.
On the wall the boundary condition for the horizontal velocities is a no-slip
condition and the wall normal velocity vc is given by the control. The free-
stream boundary condition should be applied at y = yfst where the flow is
not influenced by the existence of the boundary layer, but the simulation box
has to be of reasonable height. An artificial boundary condition modeling the
existence of the free-stream is thus used to allow truncation of this large domain.
Here a Neumann condition is used at the artificial free-stream boundary. This
choice requires that the simulation box is high enough for the perturbations in
the boundary layer not to influence the flow at the upper boundary.

u|y=yfst = U∞

(
which is approximated by

∂u

∂n

∣∣∣∣
Γu

= 0
)
,

u|Γc
= nvc,

u|Γl\Γc
= 0,

(26)

where Γu and Γl represent the upper and lower part of the boundary respec-
tively. The part of the boundary where control is applied is denoted Γc.

As for the channel flow case we expand the control vc in basis functions
ψl,m with zero mass flux, where ϕl,m are time dependent coefficients for the
basis functions,

vc(x, z, t) =

ϕT
l ψl =

M∑
m=1

ϕl,m(t)ψl,m(x, z) in (T c
1 , T

c
2 ),

0 otherwise.

(27)

Where we have introduced the control vector ϕl defined as:

ϕl = (ϕl,1, . . . , ϕl,M ).

Comparing with the corresponding equation for channel flow, equation (1) and
the associated boundary conditions, there are two differences. The boundary
condition at the upper wall is now replaced by a free-stream velocity condition.
Also the aforementioned fringe forcing term which is needed only for spatial
simulations is added to the right hand side. The scalar function λ = λ(x) is
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nonzero only in the fringe region and is defined as follows:

λ(x) = λmax

[
S

(
x− xstart
∆rise

)
− S

(
x− xend
∆fall

+ 1
)]

where λmax, xstart, xend, ∆rise and ∆fall are parameters used to specify the
strength, extent and shape of the fringe forcing. The S-function is defined as

S(r) =


0 r ≤ 0,

1
1 + exp(1/(1− r) + 1/r)

0 < r < 1,

1 r ≥ 1.

Another difference from the channel flow problem formulation appears in
the second term of the objective function J , equation (3), where the observation
of state can now be limited in space as well as in time which yields,

J(ϕl) =
ε

2

T c
2∫

T c
1

∫
Γc

|vc|2 dΓdt+
1
2

T o
2∫

T o
1

∫
Ωo

|u− uT |2 dQ, (28)

where (T c
1 , T

c
2 ) is the control time period and (T o

1 , T
o
2 ) is the observation time

period and Ωo is the part of the spatial domain Ω where the state of the flow
is observed. This is only used for spatial simulations.

As for the channel flow derivation, we get to the stage where the adjoint
equations with the variables p and σ are introduced:

−∂p
∂t

+ (∇u)T p− (u · ∇)p

− 1
Re

∆p+ λ(x)p+∇σ =

{
u− uT in (T o

1 , T
o
2 )× Ωo

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0.

(29)

along with the boundary conditions:

p|x=−xl/2 = p|x=xl/2,

p|z=−zl/2 = p|z=zl/2,

p|Γl
= 0,

p|y=yfst = 0,
(
which is approximated by

∂p

∂n

∣∣∣∣
Γu

= 0
)
.

(30)

As with the free-stream boundary condition in (26) we have introduced an
artificial boundary, to truncate the adjoint domain, where the adjoint “free-
stream” is modeled.

Due to the fringe forcing, the additional term λ(x)p has to be included in
the adjoint equations. The forcing u−uT is now confined to the spatial domain
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Ωo due to the variable spatial extent of the observation. These adjustments
lead to following the expression for the gradient:

∂J

∂ϕl
=
∫
Γc

ψl

(
εϕT

l ψl − σ
)
dΓ. (31)

3. Adapting to the simulation codes

3.1. Reformulation of the adjoint equations

To be able to use existing spectral channel flow and boundary layer flow codes
by Lundbladh et al. (1992) and Lundbladh et al. (1999) respectively, we need
to reformulate the adjoint equations into a similar form to the one used there.
The simulation code for the boundary layer problem is based on the channel
flow code and the solution procedure is identical. The Navier–Stokes equations
are implemented in a v − ω formulation, where linear and nonlinear terms are
treated separately. We can write the adjoint equations (16) or (29) as,

−∂p
∂t
− 1
Re

∆p−H +∇(u · p) +∇σ = 0,

∇ · p = 0,

p|t=T = 0,

(32)

with the boundary conditions (8) or (30), and where H in the following de-
notes either Hch or Hbl corresponding to the forcing terms in the channel and
boundary layer cases respectively. In order to avoid derivatives of u in the ad-
joint equations, terms involving such derivatives are reformulated. Using the
identity

u× (∇× p)− 2(∇p)Tu+∇(u · p) = (∇u)T p− (u · ∇)p
the forcing in the channel flow case is given by

Hch = −u× (∇× p) + 2(∇p)Tu+
{
u− uT in (T o

1 , T
o
2 ),

0 otherwise,

and in the boundary layer case we use

Hbl = −u× (∇× p) + 2(∇p)Tu− λ(x)p+

{
u− uT in (T o

1 , T
o
2 )× Ωo,

0 otherwise,

but apart from this, the procedure is the same in both cases. If we take the
divergence of equation (32) we get a Poisson equation for the adjoint pressure:

∆σ = ∇ ·H −∆(u · p). (33)

We can then apply the Laplace operator to equation (32), take the second
component, and combine with (33) to get:

−∂∆p2
∂t

− 1
Re

∆2p2 −
(
∂2

∂x2
+

∂2

∂z2

)
H2 +

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
= 0. (34)
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Then we take the second component of the equation obtained by taking the
curl of equation (32) and again making use of (33) to get,

−∂(∇× p)2
∂t

− 1
Re

∆(∇× p)2 −
(
∂H1

∂z
− ∂H3

∂x

)
= 0. (35)

We can write equation (34) as a system of two second order equations:
−∂φ
∂t

= hp2 +
1
Re

∆φ,

∆p2 = φ,

p2(y = ±1) = ∂p2
∂y

(y = ±1) = 0,

(36)

where

hp2 =
(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
. (37)

Written on the same form equation (35) reads: −∂(∇× p)2
∂t

= h(∇×p)2 +
1
Re

∆(∇× p)2,

(∇× p)2(y = ±1) = 0,
(38)

where

h(∇×p)2 =
(
∂H1

∂z
− ∂H3

∂x

)
. (39)

Equations (36), (37), (38) and (39) are identical to those solved by the spectral
channel flow and boundary layer codes with slight changes to H and a negative
time derivative. Since the adjoint equations are solved backwards in time, we
can in practice use the same solver.

3.2. Gradient evaluation

In the gradient of the objective function we need the adjoint pressure at the
wall. This is not available directly since we have eliminated the adjoint pressure
term from the equations, and thus the pressure is not computed explicitly. If
we evaluate equation (16) or (29) at the walls, we get

σx

∣∣∣∣
W

=
1
Re

∂2p1
∂y2

∣∣∣∣
W

+ v
∂p1
∂y

∣∣∣∣
W

,

σz

∣∣∣∣
W

=
1
Re

∂2p3
∂y2

∣∣∣∣
W

+ v
∂p3
∂y

∣∣∣∣
W

,

(40)

where W denotes the value at the wall and v is the wall normal velocity at the
wall, or rather the control input. Note that in the channel flow case there are
two walls and in the boundary layer flow there is only one. Since the constant
part of the adjoint pressure disappears in the integral over the basis functions ψ
in (22) and (23) we can compute the objective function gradient by integration
of these adjoint pressure gradients at the wall.
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4. Implementation issues

4.1. Simulation codes

The implementation of the adjoint solver is based on existing direct numerical
simulation codes for channel and boundary layer flow. These codes have been
extensively used and are thoroughly verified. The channel flow code is described
in Lundbladh et al. (1992) and the boundary layer code in Lundbladh et al.
(1999). The time marching is performed with a Runge–Kutta method for
advective terms and a Crank–Nicolson scheme for the viscous terms. A spectral
method described in Canuto et al. (1988) is used with a Fourier discretization
in x and z, and a Chebyshev method in y. The discretization of, and the
solution procedure for, the Navier–Stokes equations is described in Lundbladh
et al. (1992). The adjoint equation is solved in exactly the same way, with the
formulation of the equations described in section 3.1. For the boundary layer
case the code described in Lundbladh et al. (1999) is used and since it is based
on the channel flow code the implementation is similar.

The solution of the adjoint equations require knowledge about the full
state in space and time from the solution of the Navier–Stokes system. This
is achieved by saving a large number of velocity fields equidistant in time and
interpolating linearly in time when the adjoint equations are solved. This
introduces an error, but if the time step between saved field is small enough,
we expect a sufficiently accurate approximation. The number of saved velocity
fields can become large especially if the time domain is long. An efficient way of
reducing the memory requirement is to use a check-pointing technique, see for
example Berggren (1998). This decreases the memory requirement at the cost
of increased computational time. For the simple test cases presented in this
paper check-pointing has not been necessary, but for larger cases, especially
simulations requiring high spatial resolution, it will be needed.

4.1.1. Implementation of control

The control is implemented as the Fourier coefficients of the v velocity at the
wall(s). The control function is discretized in time with a fixed time step that
can be used to change the time resolution of the control and there is one set of
coefficients for each control time. Linear interpolation is used for the control in
times between the discrete control times. The control always starts and ends
with zero velocity, and has zero mass flux. The time step in the solution of
both the forward and adjoint equations is adjusted to be small enough to at
least resolve the control in time, even if the time step allowed for numerical
stability is larger.

When simulating a spatial boundary layer the control is applied only on
Γc which extends over the interval (xc1, x

c
2) in the chordwise direction. In the

code a filtering is added to handle this, and to ensure that the zero mass flux
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condition on the control is enforced,∫
Γl

vc dΓ = 0. (41)

The control is then modified to have zero velocity outside Γc,∫
Γl

ϕ̃T
l ψl dΓ =

∫
Γl

(ϕT
l ψl + c)χ(xc1, x

c
2) dΓ = 0 (42)

which yields,

c = −

∫
Γl

ϕT
l ψl χ(xc1, x

c
2) dΓ∫

Γl

χ(xc1, x
c
2) dΓ

, (43)

and where χ(r1, r2) = χ[r1, r2](r) is defined as:

χ[r1, r2](r) =

{
1 if r ∈ (r1, r2),
0 otherwise.

(44)

The procedure for modifying the control can be summarized as follows:

ϕ̂l
inverse FFT−−−−−−−−−→ ϕl

Filtering and mass flux correction−−−−−−−−−−−−−−−−−−−−−−−−−−→ ϕ̃l
FFT−−−→ ˆ̃ϕl

assuming that we denote the original Fourier space control with ϕ̂l and the final
control in Fourier space with ˆ̃ϕl. This final control constitutes the boundary
condition in the simulation when the spatial extent of the control is limited.

4.1.2. Computing the objective function gradient

The gradient of the objective function is evaluated from the adjoint pressure
on the walls as described in section 3.2. When the adjoint equations are solved,
the adjoint pressure on the walls must also be computed simultaneously in the
control interval. Since the p1 and p3 velocities are available at each time step we
can compute the pressure gradients σx and σz using (40). The corresponding
pressure is then computed by integrating these gradients with the constant
part of the adjoint pressure set to zero, since it does not enter the gradient
computation. The adjoint pressure is then projected onto the basis functions
of the control using (22), (23) or (31). In the spatial boundary layer case the
gradient (31) is computed in Fourier space, but we should only integrate over
Γc. The gradient is transformed to physical space and there a step function
which cuts out the region Γc is applied. This filtering procedure is similar to
that for the control. The resulting gradient is then transformed back to Fourier
space.
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4.2. Optimization routine

Optimization is performed with a limited memory quasi-Newton method. The
algorithm, L-BFGS-B (Byrd et al. (1994)), is available on the Internet (the
web-link is given in the reference list next to Byrd et al. (1994)) and was
downloaded and compiled without modifications. It is an algorithm well suited
for large non-linear optimization problems, with or without bounds on the
control variables. The BFGS method uses an approximation of the Hessian
matrix of the objective function, instead of the full matrix. The algorithm has
been shown to work well for many different types of optimization problems.
The flow of the optimization process is described in Figure 3. The limited
memory BFGS algorithm differs from the standard BFGS algorithm in that it
never stores the Hessian matrix. Instead only a certain number of gradient and
control updates from earlier optimization iterations are stored. These are then
used to build an approximation of the Hessian matrix. Consult Byrd et al.

Initial guess

for ϕ.

ϕ0

ϕi+1Compute objective-

function and

gradient.

J , ∇J , ϕi

Check convergence.

Compute new

search direction

( L-BFGS-B )

Converged J , ϕ∗

Not converged

Write results

Figure 3. The flow in the optimization with L-BFGS-B.

(1994) for details. The inputs to the optimization routine are the control, the
gradient of the control and the value of the objective function. A new control is
then obtained as output and applied in the next iteration until the convergence
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criterion has been met. There are a few different convergence criteria that can
be used simultaneously or separately such as the norm of the gradient and the
relative reduction of the objective function between iterations.

5. Results

5.1. Gradient accuracy

To verify that the implementation is correct as well as that the problem has
been formulated correctly, one can check the accuracy of the gradient of the
objective function. By perturbing one degree of freedom of the control and
computing the resulting change in the objective function the gradient with
respect to that degree of freedom can be approximated. Performing this proce-
dure for all degrees of freedom gives the complete objective function gradient.
The gradient so computed can then be used to verify that the gradient obtained
from the adjoint equation approach is correct. This has been done at different
stages of the optimization process for a number of different cases, varying the
flow perturbation as well as the initial guess for the control. The accuracy of
the gradient direction is quantified by normalizing the two gradients and com-
puting the norm of the difference between them. This difference is less than
1% for all channel and boundary layer flow cases tested when the optimization
routine is in the initial iterations. When the gradient accuracy is computed
for solutions close to the optimal solution, the accuracy is degraded and the
error can be as large as 10% − 20%. This degraded accuracy slows down the
convergence of the optimization routine and makes it difficult to reach the true
optimal solution.

5.2. Control of oblique transition in channel flow

As a first test case, we study the oblique transition scenario. Oblique waves are
introduced in the flow, where they grow and induce streamwise vortices. The
vortices then produce streamwise streaks that grow until they finally break
down and transition occurs. The threshold energies for this type of bypass
transition are studied in Reddy et al. (1998). The initial stage of this scenario
is the growth of oblique waves. If the amplitude is low, this is all that happens
before the flow returns to the laminar state. With a higher amplitude, the
oblique waves induce enough streamwise vorticity to generate streaks. The
streaks grow to a much higher amplitude than the oblique waves. If the initial
disturbance is large enough, we get transition to turbulence.

Testing the optimal control on this scenario is done at three different stages
and with different time resolution. First control is applied at the very beginning
where only the oblique waves are present, secondly the control is applied in
the beginning of the streak growth, where both streaks and oblique waves are
present. The last case application of the control to the growing streaks. The
results in this section were previously reported in Högberg et al. (2000).

Five different simulations are performed using the same initial condition.
The objective is to minimize the integral of the deviation from the laminar
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Figure 4. [a] Solid: the energy growth without control ;
dashed: case 1a ; dotted : case 2 ; dash-dot: case 3. [b]
solid: case 1a ; dashed: case 1b ; dotted: case 1c.

flow profile from time T o
1 to T o

2 = 100. The Reynolds number is 1500 and the
box size is 2π × 2 × 2π in x, y, z. In case 1a,b,c the control is applied from
time T c

1 = 0 until T c
2 = 50 in a,b and T c

2 = 25 in c. The objective function is
measured from T o

1 = 50 in case 1a and from T o
1 = 0 in cases 1b and 1c. For

cases 2 and 3 the control is applied from T c
1 = 25 and T c

1 = 50 respectively,
and the objective function from T o

1 = 50. The resulting control velocity in all
cases is of the order 2% of the centerline velocity. The reduction of the gradient
norm is about three orders of magnitude after 10-15 optimization iterations.

The energy evolution of the controlled flows is shown in Figure 4a. The
growth of the oblique waves is efficiently hindered by the control formulation
in 1a,b,c and the growth of streaks is eliminated also in cases 2 and 3. In case 2
the control is applied during the formation of the streaks. Initially the energy
is allowed to grow but then the growth is hindered by the control and energy
decays as. In case 3 the streaks have formed and are growing when control is
applied.

In Figure 4b the differences between the controlled flows in cases 1a,b and
c are shown. In case 1a the energy is not penalized by the objective function
initially as it is in 1b, and this results in lower energy after t = 50 than in case
1b. A higher temporal resolution of the control is applied during a shorter time
in case 1c. The result is a smoother energy curve but not as low energy at a
later time as in the other two cases.

5.3. Control in a parallel boundary layer flow

In order to evaluate this type of control strategy for a parallel boundary layer
flow we consider an inviscid instability. Inviscid instabilities can exist only if
the velocity profile has an inflection point. In a boundary layer flow with a
three-dimensional velocity profile, there is always a direction in which such an
inflection point exists. In this direction an unstable eigenvalue to the linearized
problem was found. The corresponding eigenmode is added to an undisturbed
base flow, and the sum is then used as the initial velocity field for the simula-
tions. The base flow is chosen as a Falkner–Skan–Cooke (FSC) flow with the



62 M. Högberg, M. Chevalier, M. Berggren & D. S. Henningson

same parameters as are used in the investigation by Högberg & Henningson
(2001) where the Reynolds number is Reδ∗0 = 337.9. The spatial variation of
the chordwise mean flow is given through,

U∞ =
(
x

x0
+ 1
)m

,

where x0 = 354.0. Furthermore, the cross-flow velocity was W∞ = 1.44232 and
m = 0.34207. The box dimensions for our simulations are 25.14 × 20 × 25.14
measured in δ∗ with a resolution of 4× 129× 4 in x× y × z respectively. The
resolution in the y-direction is chosen fairly large to ensure high accuracy for
the y-derivatives needed in the adjoint computation.

For the temporal simulation we use the Falkner–Skan–Cooke flow at x = 0.
The eigenvalue of the mode used in the simulation is ω = (−0.15246+ i0.0382),
for the parameter choice α = 0.25, β = −0.25. The control is applied from
T c
1 = 0 to T c

2 = 150 and over the entire boundary (Γc = Γl). The objective
function is measured from T o

1 = 0 to T o
2 = 150 and over the whole spatial

domain (Ωo = Ω).
Figure 5 shows the disturbance energy growth due to the eigenmode and

also the result when the optimal control is applied. As we can see from the
figure the exponential energy growth is stopped almost immediately by the
control. The first energy peak is mostly due to the energy expenditure to exert
control. The maximum magnitude of the control is of the order of 0.02% of
the free-stream velocity. The gradient norm is reduced about two orders of
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Figure 5. Solid: the disturbance energy growth with optimal
control ; dash-dot: the disturbance energy growth for temporal
FSC flow without control.

magnitude after 5-10 optimization iterations.
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5.4. Control in a spatial boundary layer flow

A more general flow case to study is when we let the boundary layer grow in
the chordwise direction. For this case we have chosen to study a Tollmien-
Schlichting (TS) wave in a Blasius boundary layer. The dimensions of the
simulation box are 200×20×10 measured in δ∗0 with a resolution of 96×129×4
in x×y×z respectively. The TS wave is triggered by an oscillating volume force
at x = 10 which is slightly upstream of branch I, located at x ≈ 40 where it
becomes unstable. The volume forcing does not introduce a pure TS-eigenmode
into the flow and this will result in a varying growth of the total energy of the
perturbation.

The control is allowed to be active between T c
1 = 0 and T c

2 = 400 and is
located on Γc = (20, 70)× (−5, 5). The control is localized in space to give us
a region to observe its action downstream of the control area.

The observation time interval is also limited to give the control enough
freedom to act initially since we are more interested in the final results. Thus,
the objective function is measured from T o

1 = 380 to T o
2 = 400 over the do-

main Ωo = (20, 150)× (0, 20)× (−5, 5) that includes only the physical solution
meaning that the fringe region is omitted.
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Figure 6. Solid: the disturbance energy growth with optimal
control ; dash-dot: the disturbance energy growth for a spatial
Blasius boundary layer flow without control.

Without the control we can see how the disturbance energy grows in Fig-
ure 6, whereas with the optimal control applied on Γc the energy growth is
efficiently interrupted.

6. Summary and conclusions

First we conclude that optimal control of transition appears to be possible to
compute with the approximative discretized adjoint technique used in this work.
This was also what the preliminary study by Högberg & Berggren (2000) sug-
gested. In addition, the optimization problem was derived using the primitive
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variables velocity and pressure but solved using a velocity–vorticity formula-
tion. This made it easy to implement a solver for the adjoint equations using
already developed codes as templates. The adjoint solver thus benefited from
the efforts put into making the existing codes computationally efficient.

The optimization routine BFGS by Byrd et al. (1994) was found to perform
well for the present optimization problems. No modification of the code was
necessary.

The test cases for the boundary layer code provide confirmation that we can
solve an optimization problem. ¿From the simple parametric study of control
of oblique waves in channel flow we can draw a few conclusions.

• The temporal extent of the control appears to be more important
than the resolution.

• Allowing a higher energy initially can result in lower energy at a
later time.

• It appears that there is enough control authority using blowing
and suction on the wall to handle all the different stages of the
oblique transition scenario.

• The choice of objective function in terms of time intervals is very
important for the performance of the resulting control.

The simple flow cases studied to test the code can now be replaced with
more complicated flows. In particular flows where non-linear effects are domi-
nating are of interest, and so are flows with spatial variations in the mean flow
profile.

Appendix A. Derivation of gradient for boundary layer

A.1. The governing equations

The domain where we solve the governing equations, given 0 < T < +∞, is
Ω = (−xl/2, xl/2)× (0, yl)× (−zl/2, zl/2),

Q = Ω× (0, T ).
(45)

The boundary of Ω is denoted Γ, and

Γl = Γ(y = 0), Γu = Γ(y = yl), (46)

and Γc ⊂ Γl represents the part of the lower boundary where control is applied.
For temporal simulations Γc coincide with Γl.

The governing equations for boundary layer flow are the same as for the
channel flow except for an extra term which is added to enforce periodicity of
the physical flow in the streamwise direction. This is only needed for spatial
simulations.

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇π = λ(x)(U − u) in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(24)
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with periodic boundary conditions in the horizontal directions, that is, the x-
and z-directions,

u|x=−xl/2 = u|x=xl/2,

u|z=−zl/2 = u|z=zl/2.
(25)

Left to be specified are the conditions in the free-stream and on the wall,

u|y=yfst = U∞

(
which is approximated by

∂u

∂n

∣∣∣∣
Γu

= 0
)
,

u|Γc
= nvc,

u|Γl\Γc
= 0.

(26)

In equation (24), U = U(x, y) is the velocity field that we force the solution
towards in the fringe region. Pressure is denoted π and the Reynolds number
Re is defined based on the free-stream velocity and the displacement thickness
δ∗. The scalar function λ = λ(x) is nonzero only in the fringe region and is
defined as follows:

λ(x) = λmax

[
S

(
x− xstart
∆rise

)
− S

(
x− xend
∆fall

+ 1
)]

,

where λmax, xstart, xend, ∆rise and ∆fall are parameters used to specify the
strength, extent and shape of the fringe forcing. The S-function is defined as,

S(r) =


0 r ≤ 0,

1
1 + exp(1/(1− r) + 1/r)

0 < r < 1,

1 r ≥ 1.

As for the channel flow case we expand the control vc in basis functions
ψl,m with zero mass flux, and where ϕl,m are time dependent coefficients for
the basis functions,

vc(x, z, t) =

ϕT
l ψl =

M∑
m=1

ϕl,m(t)ψl,m(x, z) in (T c
1 , T

c
2 ),

0 otherwise.

(27)

Where we have introduced the control vector ϕl defined as:

ϕl = (ϕl,1, . . . , ϕl,M ).

A.2. The objective function

We minimize the deviation energy from a given target velocity distribution uT
and add a regularization term including an ε > 0:

J(ϕl) =
ε

2

T c
2∫

T c
1

∫
Γc

|vc|2 dΓdt+
1
2

T o
2∫

T o
1

∫
Ωo

|u− uT |2 dQ, (28)
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where (T c
1 , T

c
2 ) is the control time period and (T o

1 , T
o
2 ) is the observation time

period and Ωo is the part of the domain Ω where the state of the flow is
observed. The control problem can now be defined as:

Find ϕ∗ ∈ Uad such that

J(ϕ∗) ≤ J(ϕl) ∀ vc(ϕl) ∈ Uad,
(47)

where ϕ∗ is the optimal control. The set of admissible controls is denoted Uad
and is a subset of L2((T c

1 , T
c
2 );R

M ).

A.3. Derivation of the objective function gradient

We begin by differentiating the objective function (28)

δJ(ϕl) = ε

T c
2∫

T c
1

∫
Γc

δvc vc dΓdt+

T o
2∫

T o
1

∫
Ωo

δu · (u− uT ) dQ, (48)

where the gradient of J is defined through the directional derivative of J in the
δϕl-direction as done in (4). The differentiated Navier–Stokes equations have
the form

∂δu

∂t
+ (δu · ∇)u+ (u · ∇)δu− 1

Re
∆δu+∇δπ = −λ(x)δu in Q,

∇ · δu = 0 in Q,

δu|t=0 = 0,

(49)

with the boundary conditions

δu|x=−xl/2 = δu|x=xl/2,

δu|z=−zl/2 = δu|z=zl/2,

δu|y=yfst = 0,

δu|Γc
= nδvc,

δu|Γl\Γc
= 0,

(50)

where

δvc(x, z, t) =

 δϕT
l ψl =

M∑
m=1

δϕl,m(t)ψl,m(x, z) in (T c
1 , T

c
2 ),

0 otherwise.

(51)

Now, let us consider the adjoint variable p = p(x, y, z, t) and the adjoint
pressure σ = σ(x, y, z, t) and require p to satisfy the boundary conditions:

p|x=−xl/2 = p|x=xl/2,

p|z=−zl/2 = p|z=zl/2,

p|Γl
= 0,

p|y=yfst = 0.

(52)
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The boundary condition at y = yfst can be approximated with the artificial
boundary condition

∂p

∂n

∣∣∣∣
Γu

= 0,

in the numerical simulations. With a sufficiently high box not only this condi-
tion will hold but also p and σ will approach zero.

By multiplying the first equation in (49) with p and then integrating over
Q we obtain

∫
Q

p ·
(
∂δu

∂t︸︷︷︸
1

+ (δu · ∇)u︸ ︷︷ ︸
2

+(u · ∇)δu︸ ︷︷ ︸
3

− 1
Re

∆δu+∇δπ︸ ︷︷ ︸
4

+λ(x)δu︸ ︷︷ ︸
5

)
dQ = 0.

(53)

We apply integration by parts in space and time to move the derivatives from
u to the adjoint variable p. For clarity we perform this step by step for each
term. The first term gives

∫
Q

p · ∂δu
∂t

dQ =
∫
Ω

(p(T ) · δu(T )− p(0) · δu(0)) dΩ

−
∫
Q

∂p

∂t
· δu dQ

=
∫
Ω

p(T ) · δu(T ) dΩ−
∫
Q

∂p

∂t
· δu dQ,

(54)
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where we have used the fact that δu(t = 0) = 0. Next, we consider the fourth
term

− 1
Re

∫
Q

p ·∆δu dQ+
∫
Q

p · ∇δπ dQ

= − 1
Re

T∫
0

∫
Γ

p · ∂δu
∂n

dΓ +
∫
Ω

∇p : ∇δu dΩ

 dt

+

T∫
0

∫
Γ

p · n δπ dΓdt−
∫
Ω

∇ · p δπ dΩ

 dt

=

T∫
0

∫
Γu

p ·
(
n δπ − 1

Re

∂δu

∂n

)
dΓdt+

1
Re

T∫
0

∫
Γ

∂p

∂n
· δu dΓdt

− 1
Re

∫
Q

∆p · δu dQ−
∫
Q

∇ · p δπ dQ

=
1
Re

T∫
0

∫
Γu

∂p

∂n
· δu dΓdt+ 1

Re

T c
2∫

T c
1

δϕT
l

∫
Γl

ψl∇p2 · ndΓ

dt
− 1
Re

∫
Q

∆p · δu dQ−
∫
Q

∇ · p δπ dQ,

(55)

where p = (p1, p2, p3). In the second equality we used the boundary condition
(30) for p at y = 0 and enforced symmetry. In the third equality the condition
for δu at y = 0 in (50) was used. We also assumed that p goes to zero at the
artificial boundary y = yl. The : denotes a complete contraction defined as in
(12).

The next term to rewrite, in relation (53), is the second term

∫
Q

p · (δu · ∇)u dQ =
∫
Q

(∇u)T p · δu dQ. (56)
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Finally, we rewrite the third term in (53)

∫
Q

p · (u · ∇)δu dQ

=

T∫
0

∫
Γ

(p · δu)(n · u) dΓ dt

−
∫
Q

(p · δu)(∇ · u) dQ−
∫
Q

(u · ∇)p · δu dQ

=

T∫
0

∫
Γu

(p · δu)(n · u) dΓ dt−
∫
Q

(u · ∇)p · δu dQ,

(57)

where we have used the continuity condition on u and the boundary conditions
(30) for p. The fifth term needs no rewriting.

Substituting (54), (55), (56) and (57) into (53) yields

∫
Ω

p(T ) · δu(T ) dΩ +
1
Re

T c
2∫

T c
1

δϕT
l

∫
Γl

ψl∇p2 · ndΓ

dt
+
∫
Q

δu ·
(
−∂p
∂t

+ (∇u)T p− (u · ∇)p− 1
Re

∆p+ λ(x)p
)

dQ

−
∫
Q

δπ∇ · pdQ+
1
Re

T∫
0

∫
Γu

∂p

∂n
· δu dΓdt

+

T∫
0

∫
Γu

(n · u)(p · δu) dΓ dt = 0.

(58)

Now, require p to satisfy the adjoint equations:



−∂p
∂t

+ (∇u)T p− (u · ∇)p

− 1
Re

∆p+ λ(x)p+∇σ =

{
u− uT in (T o

1 , T
o
2 )× Ωo

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0,

(29)
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with the boundary conditions (30). With these assumptions equation (58)
becomes

T o
2∫

T o
1

∫
Ωo

δu · (u− uT ) dQ−
∫
Q

δu · ∇σ dQ

+
1
Re

T∫
0

∫
Γu

∂p

∂n
· δu dΓdt+

T∫
0

∫
Γu

(n · u)(p · δu) dΓ dt = 0,

(59)

since p and ∂p2/∂n is zero on the boundary y = 0 due to the no-slip and
continuity conditions. The second term in (59) can be rewritten

−
∫
Q

δu · ∇σ dQ = −
T∫
0

∫
Γ

δu · nσ dΓdt+
∫
Q

∇ · δu σ dQ

= −
T∫
0

∫
Γ

δu · nσ dΓdt,

(60)

since ∇ · δu = 0. The final step is now to substitute the terms involving δu.
When that is done the second term in the perturbed objective function (48)
can be replaced with terms involving δϕ. Since δu is known on parts of the
boundary we can proceed as follows

−
T∫
0

∫
Γ

δu · nσ dΓdt

= −
T∫
0

∫
Γu

δu · nσ dΓdt+
T c

2∫
T c

1

δϕT
l

∫
Γc

ψlσ dΓ

dt.
(61)

Combining equation (60) and (61) and inserting that into (59) yield

T o
2∫

T o
1

∫
Ωo

δu · (u− uT ) dQ+

T∫
0

∫
Γu

δu ·
(

1
Re

∂p

∂n
− σn+ (n · u)p

)
dΓdt

+

T c
2∫

T c
1

δϕT
l

∫
Γc

ψlσ dΓ

dt = 0.

(62)
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Applying the fourth boundary condition (30) for p together with the assumption
that also p = 0 and σ = 0 (see the beginning of the section) at y = yl we get

T o
2∫

T o
1

∫
Ωo

δu · (u− uT ) dQ = −
T c

2∫
T c

1

δϕT
l

∫
Γc

ψlσ dΓ

dt. (63)

Remains only to substitute (63) into (48) which yields

δJ(ϕl) =

T c
2∫

T c
1

δϕT
l

∫
Γc

ψl

(
εϕT

l ψl − σ
)
dΓdt (64)

where the gradient of the objective function can be identified as:
∂J

∂ϕl
=
∫
Γc

ψl

(
εϕT

l ψl − σ
)
dΓ. (31)

This is exactly the same expression for the gradient as for the channel flow case,
equation (22) and (23), except that this gradient is restricted to information
from Γc.
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Accuracy of gradient computations for
aerodynamic shape optimization problems

By Mattias Chevalier∗ and Martin Berggren∗

Applying nonlinear optimization techniques such as quasi-Newton methods to
aerodynamic shape optimization problems requires the calculation of gradients
of a given objective function. An effective way of calculating such gradients is
through the use of the so-called adjoint equations. To achieve fast convergence
in the optimization algorithm, accurately computed gradients are needed. In
the computation of such gradients the discretization of the problem and the
choice of boundary conditions are two important aspects. These issues are
studied in the context of shape optimization of a quasi-1D nozzle using physi-
cally relevant boundary conditions. Isentropy is enforced at the inlet boundary,
and the static pressure is specified at the outlet boundary for subsonic flows.
A cell-centered finite-volume discretization with a standard implementation of
the boundary conditions is applied, and the corresponding numerical scheme
and numerical boundary conditions for the adjoint equations are derived in a
fully discrete sense.

Numerical experiments at subsonic and transonic speeds, show that the
gradient evaluations are accurate enough to obtain satisfactory convergence of
the quasi-Newton algorithm.

1. Introduction

As more and more powerful computers develop, the range of problems possible
to solve numerically increases. One class of such problem is aerodynamic shape
optimization using the Euler or Navier–Stokes equations as the flow model.

Discretization issues in connection with aerodynamic shape optimization
are discussed in this article. A simple model for nozzle flow is the quasi-1D
Euler equations, in which the nozzle geometry is represented as a scalar function
occurring in the coefficients of the equation. This is a standard model problem
for transonic flow sharing many features with more complicated models, but
having a known solution in terms of an implicit formula for the Mach number
and the area function. An objective (or cost) function is introduced to measure,
in a least-square sense, how far from the optimal design we are. To improve

∗FFA, The Aeronautical Research Institute of Sweden†.
†Former FFA now sorts under The Swedish Defence Research Agency (FOI) as the Aeronau-
tics Divsion, SE-172 90 Stockholm, Sweden
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the geometry, we use optimization methods that utilize the objective function
gradient, computed with the aid of the adjoint equations.

We will state the adjoint equations, derived from the state equation and
objective function using physically relevant boundary conditions. A quasi-
discrete form of the adjoint equations will also be stated. That is, the precise
form of the discretization of the Euler equations as well as the precise way in
which the boundary conditions are implemented are taken into account when
the adjoint equations are derived. However, the precise form of the coefficients
in the artificial dissipation terms is not reflected in the adjoint equations.

This approach is just one among several ways of finding the gradient to the
objective function. Using finite differences on each of the design variables is
another alternative. A third alternative is to compute so-called flow sensitivities
by repeatedly solve linearized versions of the equations. These alternatives are
easier to implement but are computationally costly. The cost of computing the
gradient from the adjoint equations has the advantage of being independent of
the number of design variables.

Several authors, such as Iollo et al. (1993), Narducci et al. (1995), Ibrahim
& Oktay (1994), and Cliff et al. (1997), have published works on shape opti-
mization for the quasi-one-dimensional nozzle flow. In a very recent article,
Giles & Pierce (2001) also derive analytical expressions for solutions to the ad-
joint equations. Most of these articles concentrate on the particular difficulties
that are associated with embedded shocks in the flow. In contrast to this, we
limit ourselves to the case of smooth flow when deriving expressions for the
gradient of the objective function. This is done to highlight the distinct fea-
tures of the current investigation: the choice of boundary conditions together
with the use of the quasi-discrete form of the adjoint equations.

The article is organized as follows. Section 2 introduces the governing equa-
tions and the shape optimization problem. Section 3 describes the numerical
treatment of the equations involved. Section 4 presents computational results
and is followed by the final discussion of section 5.

2. Theory

2.1. The shape optimization problem

The quasi-1D Euler equations for steady flow are (references Hirsch (1990) and
Anderson (1990))

fx + ξg = 0, (1)

where the following vector notation is introduced

f =

 ρu
ρu2 + p
(ρe+ p)u

, g =

 ρu
ρu2

(ρe+ p)u

. (2)
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The equation of state,

p = (γ − 1)
(
ρe− ρ

u2

2

)
, (3)

closes the system. Here, x is the streamwise coordinate, ρ is the density, u is
the fluid velocity, p is the pressure, e is the total energy per unit mass, and
A is the area function. We use γ = 1.4 (air and standard conditions) for all
simulations.

Perhaps the physically most natural choice of inlet boundary conditions
for nozzle flow is to specify constant stagnation conditions. When the flow
is subsonic at the outlet, we also need to supply a boundary condition there.
That is done through the back pressure, a given constant static pressure at the
outlet. With this choice of boundary conditions, the state equation reads

fx + ξg = 0 in (0, 1),

p

(
1 +

γ − 1
2

M2

)γ/γ−1
= ps at x = 0,

T

(
1 +

γ − 1
2

M2

)
= Ts at x = 0,

If M < 1 p = pout at x = 1,

(4)

where ξ = A/Ax and where M = u/c is the Mach number; the speed of sound
is given by the relation c2 = γp/ρ. The constants ps and Ts are the given
values of the stagnation pressure and stagnation temperature respectively, and
pout is the given static pressure at the outlet.

Two independent set of variables, conservative, w, and primitive, v, will
be used:

w =

 ρ
ρu
ρe

 , v =

 ρ
u
p

 . (5)

To exert control on the nozzle flow, the shape of the nozzle will be adjusted.
The shape enters the Euler equations through ξ and the most obvious choice
of design parameter is ξ. Note however that we could also have used the area,
A, and computed ξ from A.

The aim of the optimization is to force the nozzle to mimic a target dis-
tribution of some flow quantity, in our case, the pressure. To quantify this
constraint we introduce an objective function

I(ξ) =
1
2

1∫
0

(p− pt)2 dx, (6)

where pt is the target pressure distribution and p is the pressure distribution
computed from ξ by solving the state equation.
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The shape optimization problem corresponds to finding the design ξ, which
minimizes the objective function I in (6). Given a target pressure distribution
pt = pt(x), the problem is

Find ξ∗ ∈ Uad such that

I(ξ∗) ≤ I(ξ) ∀ξ ∈ Uad.
(7)

The set of admissible designs is denoted Uad and is a subset of bounded func-
tions on [0, 1]. That choice for Uad leads to a well-posed problem for the Euler
equations. Cliff et al. (1997, § 3) give an example of a closed and convex set of
this kind.

2.2. The gradient

Most minimization algorithms, such as steepest descent, conjugate-gradient,
and (quasi-)Newton methods, utilize gradient information. The gradient ∇I of
the objective function (6) is defined through taking the directional derivative
in the δξ direction:

δI = 〈∇I, δξ〉 = lim
s→0

∣∣∣∣I(ξ + sδξ)− I(ξ)
s

∣∣∣∣ , (8)

where δξ is an arbitrary variation of the shape. To supply gradient information
to a quasi-Newton algorithm, we use the adjoint equation approach.

In Chevalier & Berggren (2000) we derive, by use of standard perturbation
analysis applied on the objective function (6) and the state equation (4), an
expression for the gradient in terms of the solution to an auxiliary problem,
the adjoint equations. Here we only state the final expressions for the gradient
and the adjoint equations for subsonic in- and outlet conditions:

∇I(ξ) = ψTg in L2(0, 1), (9)

where ψ is the solution to the adjoint equations

−JT ψx +KT ψξ + θ(p− pt) = 0, in (0, 1),

lT J̃
T
ψ = 0, at x = 0,(

jT1
jT2

)
ψ = 0, at x = 1.

(10)

Here, l is a vector consisting of data computed from flow quantities on the
boundary and total quantities assuming isentropic process. The vector θ is
the pressure differentiated with respect to w,

θ =
(
∂p

∂w

)T

.

The matrices J, K, and J̃ are defined as

J =
∂f
∂w

, K =
∂g
∂w

, J̃ =
∂f
∂v

,

and j1, j2, and j3 are the column vectors of J̃.
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Note that in the case of subsonic in- and outlet conditions, the Euler equa-
tions have two downstream and one upstream characteristics. For the adjoint
equations we have the opposite situation: one downstream and two upstream
characteristics due to the negative sign on the Jacobian. This is consistent with
the boundary conditions in (10); there are two conditions supplied at x = 1
and one at x = 0.

This all summarizes into the following procedure to compute the gradient
of I:

1. Solve the state equation (4) given a design ξ.
2. Solve the adjoint equations (10) using the solution obtained above.
3. Compute the gradient from expression (9).

Note that to compute the gradient we basically have to solve only two equally
expensive, measured in computer time, systems of equations regardless of how
many design parameters we are using.

3. Discretization

A cell-centered finite-volume scheme is applied for the spatial discretization.
The step size is constant and denoted ∆x = 1/Nx where Nx is the number
of cells in the domain. The stationary problem is solved by marching the
corresponding non-stationary problem to steady state using a five step Runge–
Kutta scheme.

The solution vectors, for the whole domain, for conservative and primitive
variables are denoted {wi}Nx

i=1 and {vi}Nx
i=1, respectively. We also define

fi = f(wi),

fi±1/2 =
1
2
(fi + fi±1),

gi = g(wi),

(11)

where f and g are the functions of (2). Integer index i denotes cell-centered
values and i± 1/2 denotes node-centered values.

The discrete state equation is

fi+1/2 − fi−1/2
∆x

+ ξigi = d i = 1, ..., Nx, ρ0
u0
p0

 =

 2ρ1/2 − ρ1
2u1/2 − u1
2p1/2 − p1

 ,

 ρNx+1

uNx+1

pNx+1

 =

 ρNx

uNx

2pout − pNx

 ,

(12)

where the vector ξh = {ξi}Nx
i=1 now is our design variable.
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Data for the boundary conditions are supplied through the back pressure
pout and through ρ1/2 and p1/2, which are computed from the isentropic as-
sumptions:

ρ1/2

(
1 +

γ − 1
2

M2
1

)1/γ−1
= ρs, (13)

p1/2

(
1 +

γ − 1
2

M2
1

)γ/γ−1
= ps, (14)

where ρs and ps are the given stagnation density and pressure respectively. The
symbol d on the right-hand side of equation (12) represents artificial dissipation
which is needed to stabilize central schemes of this kind. We use the Jameson-
style combined second- and fourth-order dissipation.

Solving equation (12), we obtain grid functions like the pressure pi, i =
1, . . . , Nx. Therefore, it is reasonable to approximate the objective function (6)
with

Ih(ξ) =
1
2
∆x

Nx∑
i=1

(pi(ξ)− pti)
2, (15)

where {pi}Nx
i=1 is obtained from the finite-volume solution below and pti ≈ pt((i−

1/2)∆x) approximates the target pressure.
The discrete counterpart to optimization problem (7) is

Find ξ∗i ∈ Uad, i = 1, . . . , Nx, such that

I({ξ∗i }Nx
i=1) ≤ I({ξi}Nx

i=1) ∀ξi ∈ Uad.
(16)

3.1. Gradient computations in the discrete case

One approach to compute the objective-function gradient is to directly dis-
cretize the adjoint equations (10) and the gradient expression (9). However,
once discretizations of the Euler equations and the objective function are se-
lected, this implicitly defines the discrete adjoint equations from which we
obtain the expression for the exact gradient of the discretized objective func-
tion. This “discrete” adjoint equation may not coincide with a straight-forward
discretization of equation (10), particularly not in the implementation of the
boundary conditions. Using this discrete gradient minimizes numerical errors
in the gradient directions. This may be important since highly accurate gra-
dient directions are typically needed in the quasi-Newton algorithm. However,
note that artificial dissipation needs to be added in the adjoint equation for
stability and these effects are not taken into account in the derivation.

The discretized equations are derived in detail in Chevalier & Berggren
(2000); here we merely state the results. The discrete gradient is

∇Ih = ∆x{ ψT
i gi}Nx

i=1, (17)



Accuracy of gradient comp. for aerodynamic shape optim. problems 81

where { ψi}Nx
i=1 is the solution to the discrete adjoint equations

−JTi
( ψi+1 − ψi−1)

2∆x
+ ξiKT

i ψi = − θi(pi − pti),

Tl ψ0 =Ml ψ1,

Tr ψNx+1 =Mr ψNx
,

(18)

where i = 1, . . . , Nx. The matrices T andM, defined and derived in Chevalier
& Berggren (2000), consist of surprisingly complicated algebraic combinations
of flow data at and around the boundaries.

4. Numerical experiments

For the optimization we used the limited-memory quasi-Newton algorithm of
Byrd et al. (1994), publicly available at Netlib/toms/778. Two flow cases
are considered, defined by the boundary data in Table 1. These correspond to
a fully subsonic and a shock-free transonic case, respectively, using the area
function of Figure 1. This particular area function is obtained from a cubic
polynomial in ξ = A/Ax using the coefficients in the second column of Table 2.
A 200 grid-point mesh is used in all reported experiments.

Table 1. Boundary data for the simulated flow types. All
quantities are given in SI-units.

Flow ps Ts ρs pout
Subsonic 200000 300 2.32 174488
Transonic 200000 300 2.32 51159

Table 2. Initial and final values of the polynomial coefficients
α defining ξ. Here, k denotes the degree of corresponding
monomial.

k Initial α Target α
0 -0.9474 -0.8574
1 1.1376 1.2376
2 1.7380 1.5980
3 -1.4525 -1.3525

As a first test, we define a target pressure from solving the Euler equation
with the area function of Figure 1 and the subsonic data of Table 1. Then
the coefficients in the polynomial defining ξ are perturbed (Table 2), and we
attempt to recover the target area function by solving the optimization prob-
lem (16). This problem is solved using two different parameterizations of the
design variable ξ: (i) the coefficients in a cubic polynomials, and (ii) the value
of ξ at each grid point. The dimension of the design space is 4 in the first
case and 200 in the second. Note that the computational effort needed for
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Figure 1. Target functions for the area (upper) and ξ (lower).

each quasi-Newton iteration is essentially the same in the two cases, since the
adjoint-equation approach is used.

Figure 2 shows the value of the objective function and the norm of the
gradient versus iteration number. The convergence behavior for the two differ-
ent parameterizations of the design are similar for about the 25 first iterations,
after which the 4-degrees-of-freedom case appears to enter a region of superlin-
ear convergence for the quasi-Newton method. Figure 3 compares the pressure
distribution using the different parameterizations at a few stages in the opti-
mization.

The second test is the same as the first, except that the transonic bound-
ary data of Table 1 are used instead. Figure 4 shows the convergence behavior
for the different parameterizations and Figure 5 compares the pressure distri-
butions at different stages in the optimization. The convergence behavior is



Accuracy of gradient comp. for aerodynamic shape optim. problems 83

similar to the subsonic case, but the superlinear convergence appears later,
after about 35 iterations.

The tests above may give the impression that parameterizing with low-
order polynomials is better than using many degrees of freedom for the design
variables. That this is not at all the case in general is demonstrated in the
next test. Note that the cases above use target pressures that are reachable
by a cubic ξ, that is, one particular cubic yields exactly the target pressure.
(This means also that the objective function is zero at the optimum.) In a
third test, we picked a target pressure distribution which is (most likely) not
reachable by any ξ, cubic or not. Figure 7 shows the convergence behavior when
using 4 and 200 design variables, respectively. Note that both the convergence
behavior and the final value of the objective function is better when using a
higher degree of the design space. Figure 8 depicts the target pressure and the
pressure distribution at different stages in the optimization.

In a last test case, using data from the first test problem above with 200
design variables, we test the influence of the boundary conditions at x = 0 for
the adjoint equation. We compare the use of the “exact” form (18), derived by
exact transposition of corresponding boundary conditions of equation (12) with
one implementation in which the boundary condition at x = 0 in equation (10)
are supplemented with “numerical” boundary conditions: extrapolation of two
of the variables in ψ. From Figure 6, we see that the difference in the con-
vergence between using these approaches is surprisingly small, considering the
elements of arbitrariness in the second approach (which variables should be
extrapolated, e.g.?). Inaccuracies in the gradient direction will certainly be in-
troduced in the second approach. That this does not degrade the convergence
rate more than indicated in Figure 6 somewhat contradicts the experience of
the authors from other studies (Högberg et al. (1999)), in which the conver-
gence rate of a related optimization problem was sensitive to small inaccuracies
introduced in the gradient directions.

There are at least three possible reasons for this. The cases in which
we have formerly noted significant effects on the accuracy of the gradient by
changes in the implementation have all concerned parabolic or elliptic state
equations. The objective function in such cases is often quite insensitive to
small changes in the control (or design), which means that precise gradient in-
formation is crucial since the objective function will hardly decrease otherwise.
In the present case, the state equation is hyperbolic, and the objective function
is quite sensitive to small changes in the design. Thus, precise gradient infor-
mation may be less important in this case, since even a slightly off gradient
direction may greatly reduce the objective function.

A second reason could be that other inaccuracies dominate. For instance,
we do not consider the exact form of the artificial dissipation of the state
equation when deriving the adjoint equations.

A third reason could be effects of the zeroth-order extrapolation used for the
Mach number in defining the pressure and density at x = 0 (expression (14)).
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Figure 2. The objective function (upper) and the gradient
(lower) as functions of iteration number for both polynomial
(green/dash-dotted) and full (blue/solid) description of ξ for
subsonic flow.

This affects the solution in the form of small, local “kinks” close to x = 0.
We observed no spread of these disturbances downstream in the solution to
the state equation. However, since the boundary conditions for the adjoint
equation are derived from the actual boundary conditions used in the state
equation, it may well be that the effects on the adjoint equations of the zeroth-
order extrapolation in the state equation is significant. Evidence for this claim
is that we noted oscillations in the solution of the adjoint equations originating
at the boundary x = 0. This could cause an increase of the conditioning of the
discrete optimization problem (16) of purely numerical origin.
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Figure 3. Pressure distributions for polynomial (upper)
and full (lower) descriptions of ξ at 1 (blue/solid), 3
(green/dashed), and 10 (red/dash-dotted) iterations for sub-
sonic flow.

5. Conclusions and outlook

We have derived, implemented and tested a quasi-discrete form of the adjoint
equations to the quasi-1D Euler equations for nozzle flow in order to compute
gradients in a shape optimization procedure. Physically relevant boundary
conditions are used. For the adjoint equations, we apply corresponding bound-
ary conditions, derived by transposing the exact form in which the boundary
conditions for the Euler equations are implemented.
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Figure 4. The objective function (upper) and the gradient
(lower) as functions of iteration number for both polynomial
(green/dash-dotted) and full (red/solid) description of ξ for
transonic flow.

The gradient computed in this way could be successfully used in an op-
timization procedure to recover a reachable pressure distribution as well as
finding area functions that yield a pressure distribution that well approximates
a nonreachable pressure distribution. We demonstrated this in the subsonic as
well as the transonic, shock-free regime. Numerical experiments, not reported
here, were also performed for cases with embedded shocks. These cases worked
surprisingly well, considering that the important effects of the artificial dissi-
pation in the vicinity of the shock were not considered at all in the gradient
derivation. However, the convergence rate of the optimization algorithm was
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Figure 5. Pressure distributions for polynomial (upper)
and full (lower) descriptions of ξ at 1 (blue/solid), 3
(green/dashed), and 10 (red/dash-dotted) iterations for tran-
sonic flow.

not as good as in the reported cases. To implement a dissipation mechanism
in the adjoint equations in a similar “discrete” way as the boundary conditions
studied here is an obvious, but nontrivial candidate for a next stage in the
development.

As discussed in section 4, we noted some oscillations in the solution to the
adjoint equations originating at the boundary x = 0. We conjecture that the
cause of this is the zeroth-order extrapolation used for the Mach number in the
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Figure 6. The objective function as a function of iteration
number for the case when using “exact” boundary conditions
(green/dash-dotted) and when using “numerical” boundary
conditions (red/solid) for the adjoint equations.

state equation at x = 0. Using instead a first-order extrapolation of the Mach
number, the local “kinks” in the vicinity of the boundary can be avoided alto-
gether. It would be interesting to see if this also improves the smoothness of the
adjoint solution and the conditioning of the optimization problem. However,
the derivation of the corresponding adjoint boundary condition is complicated
and tedious.



Accuracy of gradient comp. for aerodynamic shape optim. problems 89

0 5 10 15 20 25 30 35 40
10

0

10
2

10
4

10
6

10
8

10
10

Iteration number

O
bj

ec
tiv

e 
fu

nc
tio

n

0 5 10 15 20 25 30 35 40
10

−6

10
−4

10
−2

10
0

10
2

Iteration number

G
ra

di
en

t r
ed

uc
tio

n

Figure 7. The objective function (upper) and the gradient
(lower) as functions of iteration number for both polynomial
(green/dash-dotted) and full (red/solid) description of ξ for a
nonreachable target pressure distribution.
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Figure 8. Pressure distributions for polynomial (upper)
and full (lower) descriptions of ξ at 1 (blue/solid), 3
(green/dashed), and 10 (red/dash-dotted) iterations for a non-
reachable target pressure distribution. The target pressure
distribution is also plotted (light blue/thin solid).
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