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Petri Piiroinen, 2002
Department of Mechanics, Royal Institute of Technology,
100 44 Stockholm, Sweden

Abstract

The focus of this thesis is on the development of methods of analysis and control of
recurrent motions in nonsmooth dynamical systems, with particular emphasis on low-
dimensional models of two-legged walking. In particular, passive walkers—bipedal
rigid-body mechanisms that achieve sustained gait down incined planes with gravity
as the only source of energy—are analyzed to demonstrate the existence of a variety
of gait-like recurrent motions, such as periodic, quasiperiodic, and chaotic gait; and
to establish the sensitivity of such motions to changes in system parameters and to
small perturbations. As an example, the present study contains a careful analysis
of the transition between gait motions prevented from exhibiting lateral dynamics
and those of fully three-dimensional walkers. It is shown that instability mechanisms
appear for the latter mechanisms that cannot be anticipated by a study of the con-
strained models, suggesting only limited applicability of a two-dimensional analysis
to understanding actual human gait. To suggest ways to apply the present study to
the clinical context, an idea on how to expand the three-dimensional passive walkers
to include muscles is also discussed.

A control algorithm is presented that relies on the presence of discontinuities for
controlling the local stability of periodic and other recurrent motions. The method
allows one to predict the effects of the control strategy entirely from information
about the uncontrolled system. This method is applied to the passive walkers to
stabilize highly unstable periodic gait and to switch between different walking pat-
terns. Finally, a method based on the discontinuity-mapping approach is derived to
predict the characteristic changes in system behavior that occur following a grazing
intersection of a quasiperiodic attractor with a state-space discontinuity. The method
is applied to a simple model example representing a two-frequency, quasiperiodic os-
cillation of a forced van-der-Pol oscillator with a two-dimensional impact surface in a
three-dimensional state space.

Descriptors: dynamical systems, nonsmooth dynamics, recurrent motions, stability
analysis, solution continuation, Poincaré maps, passive walking, gait characteristics,
musculoskeletal modeling
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This thesis considers recurrent motions in dynamical systems with some applications
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Paperl. Petri Piiroinen, Harry Dankowicz, and Arne Nordmark., Breaking Symme-
tries and Constraints: Transitions from 2D to 3D in Passive Walkers, Accepted for
publication in Multibody System Dynamaics, 2002

Paper 2. Petri Piiroinen, Harry Dankowicz, and Arne Nordmark., On a Normal-
Form Analysis for a Class of Passive Bipedal Walkers, International Journal of Bi-
furcation and Chaos, Vol. 11, No. 9, pp 2411-2425, 2001

Paper 3. Harry Dankowicz, Petri Piiroinen, and Arne Nordmark., Low-velocity
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Paper 4. Harry Dankowicz, Petri Piiroinen, and Arne Nordmark., Grazing Bifur-
cation of Initially Quasi-periodic System Attractors, In proceedings of ASMFE 2001
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Paper 5. Harry Dankowicz and Petri Piiroinen., Exploiting Discontinuities for Sta-

bilization of Recurrent Motions., Accepted for publication in Nonlinear Dynamics,
2002

Paper 6. Petri Piiroinen and Harry Dankowicz., Low-Cost Control of Repetitive
Gait in Passive Bipedal Walkers, Submitted to International Journal of Bifurcation
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Chapter 1

Introduction

Most of us experience mechanical devices — cranes, office chairs, bicycles, and eleva-
tors — on a daily basis, often without reflecting on their presence or function. Their
relatively simple construction leads us to expect these mechanisms to operate without
complications with little or no understanding of the connection between performance,
reliability, and ease of repair and the underlying details of the engineering design. To
enhance our understanding of how these and other mechanical systems function as
well as to be able to examine possible improvements to their design, engineers usually
rely on the derivation and analysis of mathematical models, in recent times often
with the aid of computer software. There are, at least, two characteristically different
approaches to creating such mathematical models. In the development and testing
of new or redesigned mechanical products, desirable models are usually intended to
behave as closely to the actual mechanism as possible. In contrast, when there is a
need for a detailed analysis of a specific device behavior, simplified models are used
that still exhibit the same behavior as the actual mechanism. The latter approach is
also that often used in basic research.

Two fields of research in which both modes of model development are used are
biomechanics and robotics. The choice between the simplified and the comprehensive
models is very subtle and usually requires significant experience. There are, typically,
no general rules as to what approach to follow. In robotics, it is common to first
create a comprehensive computer-based model and subsequently to build an actual
mechanism. The limiting factor in this procedure is usually of a practical nature
rather than at the level of the mathematical model. In biomechanics, on the other
hand, computer-based models of one or several body parts of a living organism rely
on the use of measurements (say of bone or soft-tissue properties) on the organism for
arriving at suitable approximations. It is not hard to understand that the computer
model of the robotic device usually agrees more closely with the actual device than
the biomechanical model agrees with the biological mechanism.

The way in which the final mathematical models are used also differs significantly
between the fields of robotics and biomechanics. For instance, control algorithms de-
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veloped for the computer model of a robot can often be transferred to the real-world
robot (with some modifications) and then implemented in industrial production. In
biomechanics, on the other hand, a computer model often acts as a tool and a com-
plement to the knowledge and experience of a practicing physician. As an example,
computer-based anthropomorphic model mechanisms could be used to perform vir-
tual surgeries in order assist in preoperative evaluation of the outcome of an actual
surgery.

The focus of this thesis are mechanical systems and mathematical models that are
influenced by and have implications to both robotics and biomechanics. A primary
emphasis will be placed on a qualitative study of the dynamics of the human walk-
ing apparatus through a couple of different mathematical models. Even though the
models studied here are very simple and far from being as complicated as the human
legs, they still account for the key ingredients of the human locomotion, such as foot-
to-ground impacts and the prevension of knee hyperextension. Several of the papers
develop ways of analyzing the equations corresponding to these models establishing,
among other things, the similarities between model behaviors and characteristics of
human walking. That simple models of the walking apparatus are able to show com-
plex anthropomorphic gait has obvious implications to the construction of humanoid
robots as well as to explaining and exploring some characteristic features of human
locomotion.

Before introducing the mathematical tools needed for the analysis of the equations
describing the motion of the two-legged mechanisms modeled in this thesis a short
background on two-legged walking will be presented. This introduction will focus on
both human and artificial walking.

1.1 Two-legged walking

Humans and most legged mammals have similar locomotion strategies, namely to
move themselves from one point to another by changing the leg configurations in a
periodic-like way. There are many different characteristics and styles of locomotion
that depend on where and how fast the motion is performed. The two main subgroups
of locomotion are walking and running, distinguished primarily by the associated
speed. In this thesis we will focus on walking, although running is also an interesting
area that would be a subject for another thesis.

Another distinction between different kinds of gait is the number of legs used. Most
mammals are four-legged (quadrupedal) and their motion patterns can be rather com-
plex, at least when they are walking slowly. From a stability point of view quadrupedal
walkers have the advantage over two-legged (bipedal) animals, since they usually have
at least three feet in contact with the ground at any given moment. Bipedal walk-
ing is more simple in nature but is not typically statically stable and requires more
(neural) control to sustain a decent gait.
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1.1.1 Human walking

The development of human walking from gorilla-like gait to purely upright gait might
have been one of the reasons of the rapid expansion of the humans population, both
in size and distribution. This, of course, goes hand-in-hand with increased brain ca-
pacity, the ability to use tools, and the development of a language. At the same time,
the ability to stand, walk, and run on two legs is pretty unique among mammals.
The human walking apparatus can be seen as a very simple mechanism, an inverted
double pendulum with a moving support, but so far there is no comprehensive under-
standing of how it works. What makes human gait so hard to master and analyze is
the joint influence of the constitution of the legs, the nature of the muscles, and the
local and global control accomplished by the spinal cord and the brain, respectively.
At the same time, the complex nature of human gait makes it sensitive and an easy
target for a diversity of problems and gait pathologies.

Gait pathologies

There are numerous well-understood processes leading to pathologies in humans gait.
Some of them are caused by 'normal’ accidents — leg fractures, sprained ankles, and so
on. Other common causes of gait pathologies, and usually harder and more compli-
cated to treat than those resulting from accidents, are diseases that generate problems
of locomotion in the adult. Even more severe are problems that can be traced back
to birth or fetal development and that occur already in the infant child, such as those
of a neurological nature.

A common cause of gait problems and an illustrative example of methods used
in classifying gait dysfunction is cerebral palsy (CP). Although the cause of CP is
not completely understood, it is well-known that premature infants are more likely to
develop the disorder than full-term infants. CP is most likely caused by an injury to
the immature brain that usually occurs during or shortly after birth. It was originally
described by William John Little in 1862, and is also referred to as Little’s Disease.
The ways in which CP is expressed varies from one patient to the next and therefore
a classification of the symptoms is necessary. Cerebral palsy is usually classified by
the type of movement problem or by the body parts involved. Spasticity refers to
the inability of a muscle to relax, while athestosis refers to the an inability to control
the movement of the muscle. Hemiplegia is cerebral palsy that involves one arm and
one leg on the same side of the body, whereas diplegia primarily involves both legs.
Quadriplegia refers to a CP-related dysfunction that involves all four extremities as
well as trunk and neck muscles. A frequently used classification of CP is ataxia, which
refers to balance and coordination problems. For more information on cerebral palsy,
see Gage [15].
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Analysis of walking

A wide-spread method to analyze normal and pathologic gait is to use a video-based
motion-capture system based on a set of video cameras that track markers attached
to the various body segments of the subject of the experiment coupled with force
plates and electromyography (see Whittle [45]). There are a number of different gait-
analysis systems and associated computer software on the market (for example, the
Vicon system [44]). The typical setup for professional gait analysis consists of six
video cameras, two force plates, and electrodes for detecting neuronal activity. A
computer with suitable software performs data analysis on the signals obtained from
the video-recording devices to generate quantitative information on the positions and
orientations of the various body segments. The force plates (usually one or two)
measure the ground-reaction forces on the feet. Together with the data from the
video system, it is possible to calculate the forces and torques acting on the different
joints. Electromyography is used to measure which muscle is active at different times.
A good complement to the video system, the force plates, and electromyography is a
calorimeter that calculates the amount of energy used during gait. This is done by
measuring the amount of carbon dioxide that the subject exhales in every breath.

knee angle
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Figure 1.1: The knee angle (in degrees) during one full stride averaged from 30 subject,
where the upper and lower curves about the ideal curve show the standard deviation
for this sample. The data is from Murray M P, American J Physical Medicine, 46(1),
p-290, 1967

There are some fundamental problems that are often encountered when using
gait analysis for diagnosis and evaluation of treatment of pathologic gait. The main
problem is the great variability in gait pattern between different individuals making
it difficult to establish a 'normal’ gait. Gait characteristics for an ideal human are
instead based on averages across large sample populations. Clinical gait analysis is
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then used to see whether the subject’s gait differs significantly from normal gait.
Figure 1.1 shows the time history of the knee angle during one stride averaged over
a sample of 30 subjects. The area (formed by the thin curves) about the ideal curve
corresponds to the standard deviation of the time histories of the knee angles.
Reliable gait data is also important and needed when creating models mimicking
human or robotic gait. Here, an additional problem occurs, namely the difficulty
in correctly measuring body-segment parameters like lengths, masses, moments of
inertia, and locations of the corresponding centers of mass. These parameter val-
ues are needed for describing dynamical behaviors (deriving equations of motion) of
biomechanical models of humans. Historically, body segments of cadavers have been
weighed to find the masses and to locate the centers of mass. Moments of inertia of
body segments have been determined by finding the natural periods of oscillation, by
using both cadavers and living individuals. Another technique to find masses of body
parts is to first find their volumes and then using densities averaged over bone and
soft tissue. For more information on this issue see [9], [20], [21], [23], [24], and [12].
We conclude this discussion with a summary of some of the applications of gait
analysis, gait data, and the measurements of body-segment parameters, namely

e the analysis of the kinematics, kinetics, and energy consumption of human gait;

e pre- and postsurgical evaluation as well as long-term monitoring of the devel-
opment of gait pathologies; and

e the development of biomechanical models of humans.

1.1.2 Artificial walkers

There are almost as many ideas for how to reproduce human-like gait in an artificial
mechanism as there are researchers in the field of robotics. The ideas cover every-
thing from totally unactuated few-degree-of-freedom walkers to completely controlled,
highly complex robots. While the ultimate desire in constructing two-legged robots
capable of sustained locomotion is to mimic human gait, no perfect human-like gait
has yet been performed by a robot.

In this thesis, a distinction is made between unactuated and actuated two-legged
walkers, with primary emphasis on the former type to be discussed in greater detail
in section 3. To put this in perspective, however, let us take a glimpse into the field
of controlled walkers. There are a number of different ongoing projects dealing with
controlled two-legged robots, of which we will mention only a few.

e The MIT Leg Laboratory has a long history of constructing a variety of bipedal
robots. One of their most well-known bipeds is the Spring Turkey. This three-
dimensional mechanism is constrained by an unactuated boom, thus restricting
its motion to a two-dimensional gait pattern. The Spring Turkey is actuated in
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the hips and knees and walking algorithms are implemented to achieve a desired
gait. A successor of the Spring Turkey, the Spring Flamingo, has an increased
number of degrees of freedom, but is still constrained by a boom. For both
robots, force actuation is achieved through servo motors located in the upper
body and coupled to the body segments by elastic springs.

Current work at the Leglab focuses on the M2 robot. It is a three-dimensional,
bipedal mechanism with 12 degrees of freedom (3 in each hip, 1 in each knee,
and 2 in each ankle). To date, the mechanism has been built and gait has been
successfully simulated on a computer. For more information see [33]

e An ongoing project at Laboratoire de Mécanique des Solides and INRIA Rhone-
Alpes in France is the construction of two BIP 2000 Robots (see [4]). The first
robot, BIP1, has 8 degrees of freedom, while BIP2 has 15 degrees of freedom
including a pelvis and a 3-degrees-of-freedom trunk. BIP1 took its first steps
in March 2000.

e One of the greatest technological achievements in this area is the Honda hu-
manoid robot project, with the robots P2, P3 and ASIMO. In 1996, Honda
developed the human-like robot P2, which is 182 c¢m tall and weighs 210 kg. It
has cameras in its head, an on-board power supply and can perform a variety
of walking motions. The P3 robot is 22 cm smaller than P2 and weighs 130
kg. The P3 robot possesses 16 joints that can be individually actuated. In
2000, Honda launched their latest robot, ASIMO, which is 122 cm tall, weighs
52 kg and has 26 degrees of freedom (distributed over 16 joints). Since these
are commercial products, a fair amount of secrecy obscures the details of the
construction (see [22]).

e Two Swedish humanoid robots called Elvis and Elvina are being developed
at Chalmers Institute of Technology (see Nordin et al. [37] and [41]). Their
fundamental control algorithms are developed through a learning process, where
genetic algorithms allow optimization based on previous errors and successes.

Experimental observations on human gait suggest that almost no muscle activity
is present during the swing phase. Instead, the natural pendulum motion of the
swing leg appears to make bipedal gait energetically efficient and reasonably robust
against external perturbations. This discovery has given impetus to ideas on how
to model walking mechanisms with passive elements, such as springs and dampers,
using gravity as the only energy source. Such mechanisms are usually referred to as
passive. By allowing the passive mechanisms to descend down an incline, the energy
dissipated in ground contact and in the joints is balanced by that gained from the
descending motion. Most attempts to model passive walkers try to mimic the human
body constitution, i.e. with a torso, upper legs, and lower legs connected through
joints with varying number of degrees of freedom.
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One of the main goals in the analysis of these somewhat simplified models of
bipedal walkers is an improved understanding of human gait. As discussed above,
this could be used to construct more energy efficient two-legged robots. A separate
area of application is the design of new leg prostheses with dynamical behavior more
like human legs, and that enable faster and easier recovery after accidents.

As in the case of controlled two-legged robots, there are some projects worth
mentioning.

e Tad McGeer [31], [32] was the first to show that a passive bipedal mechanism
could walk stably down an incline with gravity as its only energy source. As
we will indicate in later sections, this was an a priori unexpected result, that
has provided a breeding ground for all subsequent work in passive walking. As
an aside, McGeer also studied passive running, differentiated from walking by
repeated flight phases. For more details see McGeer [30] and Mochon et al. [36].

e Following McGeer’s example, Andy Ruina and his group at Cornell University
has further studied the gait patters of passive bipedal walkers, both numerically
and experimentally. One of the areas of interest has been the existence of
periodic gait in the limit of zero slope (see, for instance, Chatterjee et al. [5]).
A separate focus has been on achieving stable gait in models with as few degrees
of freedom as possible and with as simple ground interactions as possible. For
instance, a Tinkertoy model has been successfully constructed that performs
stable periodic gait both in experiments and simulations (see Coleman et al. [6]
and [7]). In 2000, a passive walker with arm-like limbs was built. The inclusion
of passive arms served to reduce the side-to-side rocking by transferring some
of the associated angular momentum to an out-of-phase swinging of the arms
(see [8]).

e Another approach to the analysis of passive walkers is ballistic walking. In
ballistic walking, an impulse is given to the mechanism at each double-support
phase, such that the mechanism returns to its initial configuration after one
step with the left and right feet shifted. Ballistic walking has been studied by
Mochon et al. [35] and Formal’sky [13].

Analysis

There are significant differences between the analysis of human gait and that of
human-like models, such as passive walkers and bipedal robots. While the meth-
ods for studying human gait are mainly experimental and of a practical nature (see
section 1.1.1), the analysis of artificial walkers in general, and of computer-based
models of passive walkers in particular, is more theoretical in nature. Such analy-
sis includes mathematical modeling and approximations of biomechanical systems,
deriving equations of motion, and numerical computations. Much research is also
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devoted to active control of bipedal mechanisms, of obvious importance in robotics.
Such research is both focused on the understanding of how muscles work as well as
on creating proper control algorithms.

1.2 Thesis outline

The intent of the work presented here is

e to further investigate the passive dynamics of bipedal mechanisms;

e to study the dynamics of a more general class of systems with sudden and
abrupt changes in system characteristics, such as the collisions between the feet
and the ground in the case of the passive walkers;

e and to develop means for using such sudden and abrupt changes in the design
of low-cost control of system dynamics.

The outline of the thesis is as follows. Chapter 2 introduces the mathematical
tools and concepts used in this thesis. In chapter 3, we discuss the modeling of the
passive walkers, the derivation of the equations of motion, the different gait patterns
exhibited by the walkers, and gait bifurcations under parameter variations. The prac-
tical implementation of the numerical algorithms is described briefly in chapter 3.7. In
chapter 4, a concluding discussion of the subject of the thesis is presented. A presen-
tation of the seven papers constituting the brunt of the thesis and the contributions
of the present author is given in chapter 5, which is followed by the seven papers.



Chapter 2

Analysis of motion

In this chapter we will introduce some mathematical concepts and tools used in the
analysis of motion in general and for the passive walkers discussed in detail in sec-
tion 3 in particular. Following a general discussion of dynamical systems, we turn
to the important concept of a Poincaré mapping and its use for analyzing the sta-
bility of recurrent motions in smooth as well as nonsmooth dynamical systems. We
present a useful method for locating and continuing recurrent motions under param-
eter variations, followed by a discussion about bifurcations and their analysis using
normal forms. Finally, we review a general methodology for deriving the equations
of motion of a multi-body mechanical systems as well as some fundamental notions
involving the of control of such systems. The chapter concludes with a summary of
the mathematical techniques introduced here.

2.1 Dynamical systems and Poincaré maps

Dynamical systems are convenient tools for describing systems that evolve in time.
When the emphasis is on continuous changes in time, the dynamical system is typ-
ically represented by a (system of) differential equation(s). Similarly, iterated maps
model systems with discrete time evolution. In many cases, however, such as mechan-
ical systems with impacts, the dynamical-system description incorporates both con-
tinuous and discrete states. It is convenient to differentiate between non-autonomous
systems, for which the changes depend explicitly on time, and autonomous systems
for which any changes are independent of the current time.

A continuous dynamical system can usually be represented by a system of first-
order differential equations

%x=f(x,t) x€R" (2.1)

where x is the state vector and R™ is known as the state space. The complexity of
the dynamical system depends on the dimensionality of the system and degree of
nonlinearity and smoothness of the function f. While a low-dimensional system is

9
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easier to visualize, the possible dynamics are limited relative to the high-dimensional
systems. Similarly, nonlinear systems can exhibit nontraditional behaviors, such as
sensitive dependence on initial conditions (generally known as chaos) that are not
possible for linear systems. Moreover, while general formula exists for the analysis of
linear systems, nonlinear systems are typically only analysable through perturbation
methods and numerical approximation. This will be discussed later in section 2.1.2.

Example 1 A large class of dynamical systems originates from equations of motion
of mechanical systems. For instance, the equations of motion for the forced, one-
dimensional pendulum can be written

i+ h(z,d) = f(t). (2.2)

where x represents the angle of the pendulum. This second-order ordinary differential
equation can easily be rewritten as an autonomous system of first order differential
equations:

T =y (2.3)
y = [f(0)—=h(zy) (2.4)
0 = 1. (2.5)

As shown in the example, it is always possible to reformulate a non-autonomous
system as an autonomous one, at the expense of introducing an additional state
variable. Thus, without loss of generality, we restrict attention to systems of the form

x=f(x), xeR". (2.6)

Some well-known examples with complex dynamics are the van-der-Pol oscillator,
the Lorenz attractor, the Volterra-Lotka predator-prey model and, of course, passive
walkers.

If we imagine x as representing the position of a particle in state space, then
x represents the particle’s velocity. Since Eq. (2.6) is time-independent, the size
and direction of the velocity X is given by the unique vector function f of x € R".
The trajectory followed by the particle through state space is a curve whose tangent
direction at any given point x is parallel to f(x). Now imagine that the entire
state space is filled with such trajectories, setting up a flow of particles (like in a
fluid). We may represent this collection of trajectories by a flow function ®, such that
® (xg,t — tg) corresponds to the point at time ¢ on the trajectory that passes through
X at time t5. While it is generally impossible to find an explicit representation for
the solutions of Eq. (2.6), and similarly for the flow function ®, classical theory
of ordinary differential equations guarantees the existence of the function ® with as
much smoothness as the vector field f. In particular one easily shows that

0
a@ (x,t) = £(P(x,1)) (2.7)
P (x,0) = x, (2.8)
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for all x and t.

The focus of the modern theory of dynamical systems is the exploration of the
qualitative properties of ®. In particular, emphasis is placed on the existence of re-
current motion, such as equilibria, periodic orbits, and quasi-periodic motions, their
stability properties, and their persistence under changes in the system description.
Here, recurrent motions are those trajectories that are bounded to a finite volume
of state space and that approximately revisit any arbitrary point on the trajectory
infinitely many times in forward and backward time.

Equilibria are special examples of state space trajectories that consist of a single
point. In particular, an equilibrium x* is characterized by

O (x",t) =x" (2.9)
for all ¢. It follows that
f(x*) =0, (2.10)

i.e., equilibria are zero points of the vector field. Similarly, periodic solutions are state
space trajectories that form closed curves. It follows that there exists at least one
point x*, such that

o (x*,T) =x", (2.11)
for some T" > 0. In fact, since
D (@ (x",1),T) = B (x*,t), £ € [0,7), (2.12)

any point on the trajectory may be chosen to represent x*.

The existence of a unique period T of a periodic motions shows that the time
evolution of any state variable can be written as a Fourier expansion with a single
fundamental frequency. In contrast, a quasiperiodic solution is a state space trajec-
tory for which the time evolution of any state variable is characterized by a Fourier
expansion with several incommensurable fundamental frequencies.

2.1.1 Stability analysis for fixed points and Poincaré maps

An important concept in dynamical-system analysis is that of stability of a state-space
trajectory. The stability of a reference trajectory is a measure of its sensitivity to
perturbations, i.e., the extent to which nearby trajectories will remain in the vicinity
of the original trajectory or deviate from it in forward time. Explorations of the
stability characteristics of a reference trajectory are performed by looking at the local
flow in the vicinity of the trajectory. In a first approximation, such a local analysis
is achieved by a linear approximation of the flow about the reference trajectory.
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Specifically, let x be an initial condition in the vicinity of a point x**f on the reference
trajectory. Then,

D (x,t) — @ (x", t) & 9P (x", 1) (x — x*T), (2.13)

where the Jacobian 0x® (xl'“f, t) can be shown to satisfy the linear initial-value prob-
lem

X =0 f (2 (x*,1)) X, X (0) =1, (2.14)

where the differential equation is known as the variational equation and I is an n-by-n
identity matrix.

As an example, consider the stability analysis for an equilibrium x*. It follows
that the coefficient matrix in the variational equation Oxf(x*) is a constant matrix.
From the elementary theory of linear differential equations with constant coefficients,
it follows that stability is determined by the sign of the real part of the eigenvalues
Ai, i = 1,...,n, of Of(x*). Specifically, if the real part of every eigenvalue is less
than 0, then the solution is asymptotically stable, i.e. all nearby initial conditions are
attracted to the equilibrium as ¢ — co. On the other hand, if at least one eigenvalue
has a positive real part, it is unstable. Typically, some nearby initial conditions will
deviate substantially from the equilibrium in forward time. The linear analysis falls
short, however, of predicting stability when all eigenvalues have non-positive real parts
and at least one lies on the imaginary axis. In the discussion below, we will refer to
equilibria with all eigenvalues off of the imaginary axis as hyperbolic. Non-hyperbolic
equilibria are also said to be degenerate.

Although the variational equation may be employed for the stability analysis of
periodic solutions, we will use a slightly different approach that has a more geometric
appeal, namely that of a Poincaré map. This concept allows us to treat a periodic
solution as a fixed point of an iterated map. Similarly, stability properties of the
periodic solution correspond to those of the fixed point. To facilitate the analysis, it
is convenient to introduce a codimension-one surface in state space, also known as a
Poincaré section, for example given by the zero-level surface of a scalar function h,
such that a point x lies on the section if

h(x) = 0. (2.15)

In particular, we pick h, such that the periodic solution intersects the corresponding
Poincaré section ¥, transversally at a point x*. We define the Poincaré map, P, for
points near x*, such that P maps a point on ¥, to the subsequent intersection of the
corresponding trajectory with ¥; near x*, provided such an intersection can be found
(see left panel in Figure 2.1). In particular, it follows that P (x*) = x*. The Poincaré
map is sometimes also referred to as the first return map. As with the flow mapping,
it is generally impossible to find a closed formula for P.
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Figure 2.1: Left: Three consecutive intersections (Xj, Xg.1, and Xy, o) with the
Poincaré section ¥, and a fixed point x* of a Poincaré mapping. Right: A schematic
drawing of a discontinuity jump.

The stability of a discrete trajcetory of P based at x* is given by the deviation
(cf. Eq. 2.13)

Po---oP(x)—Po---oP(x)%?XP(X)-;-GXP(X ) (x —x7). (2.16)
i times

i times i times

It follows that, to first approximation, the stability of a periodic orbit is given by
the eigenvalues of OyP (x*). Specifically, we know that for maps, fixed points are
asymptotically stable if all eigenvalues have a magnitude less than 1, and unstable if
at least one eigenvalue falls outside the unit circle. Again we refer to a fixed point
with all its eigenvalues off of the unit circle as hyperbolic and, similarly, for the
corresponding periodic solution. In the degenerate case, the linear analysis fails to
predict the local stability behavior.

To compute 0P (x*), let 7 (x) be the time of flight for the orbit through x € ¥,
to the next intersection with X, i.e.,

h(®(x,7(x))) =0. (2.17)
Then the Poincaré map can be written
P(x)=o(x,7(x)), (2.18)

where @ is the flow introduced above. In particular, 7 (x*) = T, the period of the
periodic motion. From the implicit function theorem, it follows that, for x near x*,
T is a differentiable function of x provided that

Beh (x*) 8,® (x*,T) # 0. (2.19)
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It is easy to see that this condition is satisfied provided that the intersection of the
periodic motion with Y3, is transversal. It is then possible to show that

Oxh (x*) 05 ® (x*,T)

5T (X)) = = ) 8B (. T)

(2.20)

By the chain rule, differentiating Eq. (2.18) with respect to x and evaluating at x*,
we find

OxP (x*) = 0x® (x*,T) + 0P (x*,T") O (X¥) . (2.21)
Substituting Eq. (2.20) in Eq. (2.21) yields

Oxh (x*) 05 ® (x*,T)

OP(x) = 0x®(x',T) =% (x"T) 57 ) 0,8 (x-, T) (2.22)
@ (x*,T) Och (x¥) )
- (I - axh (X*) atq) (X"‘7 T)) axq) (X ’T) : (223)

It is easy to show that at least one eigenvalue of 0x® (x*,7T") must equal 1, namely

the eigenvalue corresponding to deviations tangential to the periodic orbit. By Eq.
(2.23), this corresponds to a zero eigenvalue of 0P (x*).

The Poincaré-mapping concept is also useful in the analysis of quasiperiodic mo-
tions. Contrary to periodic solutions that result in finitely many discrete intersections
with X, quasiperiodic orbits typically intersect the Poincaré section along closed
curves. This allows for characterizing quasiperiodic solutions by invariant curves of
the Poincaré mapping and for studying the local stability of the solutions in terms of
the corresponding behavior of the Poincaré mapping near such curves although the
analysis is generally more complicated.

To numerically study the stability characteristics of quasiperiodic motions as well
as more complicated recurrent motions, it is convenient to calculate the Lyapunov
exponents (see [39], [26], and [19]). This technique is used in paper 3 for a system
that exhibits both quasiperiodic and chaotic behaviors.

2.1.2 Nonsmooth systems

So far the focus of the discussion has been on smooth dynamical systems, i.e. sys-
tems that are everywhere differentiable. If the system instead experiences sudden
changes in the state variables or the vector field, the dynamical system is said to be
nonsmooth. The most typical example in mechanics is afforded by the almost instan-
taneous change in a the relative velocity of two colliding objects, whether modelled
by a truly instantaneous jump in state space or by a discontinuous change in forcing.
Guided by this observation, Leine [27] classifies nonsmooth dynamical systems into
three different categories, namely
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1. Non-smooth continuous systems with a discontinuous Jacobian, i.e. systems
with a continuous but nonsmooth vector field. Oxf (x,t) is discontinuous.

Example: Systems with a purely elastic one-sided supports.

2. Filippov systems, i.e., systems with discontinuous vector field. f (x,t) is discon-
tinuous

Example: Systems with a visco-elastic support and dry friction. This is the
model chosen to represent ground impacts for the passive walkers studied
in this thesis.

3. Systems with jumps in the state.

Example: Impacting systems with reversing velocities, like a bouncing ball.
The hopping mechanism and the Braille printer in paper 5 fall into this
category.

In the previous section, the stability of a periodic motion of a smooth dynamical
system was determined. As seen below, a special treatment is needed to determine
the stability of a trajectory in a dynamical system including discontinuities.

Again, assume we have the dynamical system

x=f(x), x€R" (2.24)

where f is a continuous vector field and suppose that there exists a discontinuity
sur face (or event surface) given by the zero-level surface of a function h, such that
an incoming state on the surface is mapped by a jump function g to another point
in state space (see right panel in Figure 2.1). Finally, introduce a Poincaré section
Yy given by the zero-level surface of a function H, such that the periodic trajectory
intersections the section at the point x*. In particular, suppose that

h(® (X", taisc)) = 0, (2.25)

i.e., tgise 18 the time of flight along the trajectory through x* until the discontinuity
is reached and there exists a T' > tg4js., such that

Xx"= (X*, T) = (g (Q) (X*, tdisc)) ,T — tdisc) . (226)

To calculate the stability characteristics of the periodic trajectory, consider the
Poincaré map

P (X) = (g ((I) (X7 Tdisc (X))) y Tret (X)) ) (227)
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where x is a point on X5 near x*, T4 (X) is the time of flight along the trajectory
through x until the discontinuity is reached and 7., (x) is the time of flight along
the same trajectory until the next intersection with Y. From the previous section,
it follows that

0P (x*,T) O H (x*)
OxH (x*) 0,® (x*,T)

0P (x") = (1 - ) 0@ (x*,T) . (2.28)

In contrast with the smooth case, however, it is possible to show that
Ox® (x*,T) = 0x®(g (P (X, taise)) , T — taise) - C (P (X, taise)) - Ox P (X", taise ), (2.29)
where the correction term is given by
C (P (X", taise)) = 8x (P (X*, taise)) + G, (2.30)

where

(f (g (P (x*, taise))) — 8x (P (X*, Laise)) £ (P (X*, Laisc))) P (P (X*, Laise))
P (D (x*, taise)) (P (X*, taise))

(cf. Adolfsson et al. [2], Aizerman & Ganthmakher [3], and Miiller [34]). More
details on the derivation of the correction term and some applications are found in
Paper 5 and paper 6.

G = (2.31)

2.1.3 Continuation of recurrent motions

Before one can study the persistence of recurrent motions under the variation of some
system parameter it is essential to first be able to locate such motions. Consider, as
a special case, the following methodology for locating periodic trajectories.

Suppose that the periodic orbit is known to transversally intersect a Poincaré
section corresponding to the zero-level surface of a function h at some unknown point
x*. It follows that

h(x*) =0 (2.32)
and
¢ (x*,T) =x" (2.33)

for some unknown period 7. These two equations correspond to a system of n + 1
scalar equations in n + 1 unknowns, namely x* and 7. We can now formulate the
multi-dimensional Newton-Raphson method to solve Egs. (2.32 - 2.33):

e )=o) (") e
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where

b_ ( 0x® (x1, Tx) — I O, ® (x4, Ty) ) | (2.35)

8xh(Xk) 0

Given a sufficiently good initial guess xo ~ x* and Ty ~ T, we expect the above
iterations to converge at a rate quadratic in the remaining error to the correct val-
ues. Alternatively, reformulating this problem in terms of the corresponding Poincaré
mapping, (section 2.1.1), Egs. 2.34 and 2.35 can be reduced to

Xk+1 = X — HXP (Xk)_l P (Xk) s (236)

where

oy (10 (0T (i) O (@ (ox, 7 (x0))
P (%) (I Ach (P (X1, 7 (1)) 0, ® (x5, T (x1))

> Ox® (x5, T (x5)) - (2.37)

For example, if a hyperbolic periodic orbit with a transversal intersection with the
Poincaré section has been found for a given set of parameter values, then standard
persistence theory guarantees the continued presence under small variations in the
parameters of such a periodic orbit in the vicinity of the original orbit, with qualita-
tively identical stability characteristics. We can thus employ a continuation algorithm
to follow stable as well as unstable periodic solutions under parameter variations until
either hyperbolicity is lost (i.e., in a bifurcation - se further below in section 2.2) or
transversality is lost (in which case we should change to a different Poincaré section).
As with any iterative method, convergence relies on a satisfactory initial guess. In
the implementation of the Newton-Raphson scheme described here, we let the initial
guess be determined by extrapolation taking into account solutions found for nearby
parameter values. For instance, the most simple method is to use linear extrapola-
tion, in which two previously found fixed points x and x7 (for the parameters p;
and p,, respectively) are used to find an initial guess x,,, such that

Xpy = 2X, — X, (2.38)

p1?

where it is assumed that p3 — ps = ps — p1. Other, more complex extrapolation meth-
ods are certainly possible and may improve convergence when the periodic solution
changes rapidly in state space under variations of some state parameter.

If the recurrent motion includes a discontinuity, the Jacobian 0y ® (xx, 7)) has to
be modified so that

Be® (x1, Th) = Ox® (g (B (x1,10)), T — t2) - C ( (xp, 1)) - O (30, 8),  (2.39)

where t. is the time of flight from x; to the discontinuity. The correction term

C (P (x,t.)) (cf. Eq. (2.39)) is calculated as described in section 2.1.2.
Continuation methods for quasiperiodic motions require a somewhat different ap-

proach than the one presented above for periodic motions. As suggested above, a
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quasiperiodic motion corresponds to an invariant curve for the Poincaré mapping.
The continuation algorithm will consequently have to follow closed curves under the
variation of some system parameter. One way to complete this is to make a dis-
cretization of the curve and use splines to build up the closed curve. Then the
Newton-Raphson scheme could be used for each discretization point, but instead of
trying to locate fixed points - points that are mapped onto themselves - each point
used for discretization should be mapped onto the closed curve. The number of un-
knowns for this method is significantly larger than when finding fixed points, since
large number of discretization points are necessary to ensure good accuracy.

2.2 Local bifurcations of the Poincaré map

Most dynamical systems representing mechanical systems have several parameters
affecting their behavior. Clearly, the existence and stability of the types of motions
discussed in the previous section depend on the values of the system parameters. We
are especially interested in classifying changes due to small parameter variations. In
particular, we will denote a change in the number of solutions or their stability as
a bifurcation and the corresponding point in parameter space as a bifurcation point.
A point on a particular branch of equilibria, fixed points, or periodic solutions in a
combined parameter and state space is said to be regular if no bifurcation occurs. As
an example, it is possible to show that points in this space corresponding to hyperbolic
equilibria or periodic orbits are regular.

The above conclusions are only valid for systems with a continuous vector field.
As already discussed, many dynamical systems possess state-space discontinuities, for
example, modeling impacts or friction in mechanical systems. Bifurcations can occur
due to interactions with these discontinuities, even in the presence of hyperbolicity.
For example, in the case of the walking mechanism, foot scuffing may occur during the
swing phase (see chapter 3.4), resulting in a rapid change in existence and stability
characteristics of recurrent gait and subsequent collapse.

In the vicinity of a bifurcation point, a nonlinear treatment is necessary since
the linear analysis predicts a degenerate solution at the bifurcation point. As we
will show below, it is possible to derive a reduced description of the dynamics, a
normal form, which allows a complete unfolding of the local bifurcation behavior.
The number of free parameters of the normal form is known as the codimension of
the bifurcation. In this thesis, we restrict attention to codimension-one bifurcations.
However, codimension-m bifurcations do occur for passive walkers and might be a
focus of another thesis.

2.2.1 Center manifold and normal forms for maps

Since our main concern are periodic and other recurrent motions the following dis-
cussion is limited to Poincaré maps. Similar results can be found for the continuous
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case. Given a fixed point x* of the Poincaré map, we can associate three disjoint
subspaces corresponding to direct sums of the generalized eigenspaces for eigenvalues
of 0xP(x*) inside, outside, and on the unit circle. These are denoted by

E® = span{ng generalized eigenvectors whose eigenvalue has modulus < 1},
E* = span{n, generalized eigenvectors whose eigenvalue has modulus > 1},
E¢ = span{n. generalized eigenvectors whose eigenvalue has modulus = 1},

where ng + n, + n. = n, the dimensionality of the discrete dynamical system. These
are invariant for the linearized dynamics near x*. In particular, for the linearized map,
solutions lying on E* decay exponentially (monotonically or oscillatory) to x*, since
a general solution is given by

P/ (x) = )by, (2.40)

where the p;s are vectorial polynomials in ¢, and the A;s are the corresponding eigen-
values. Similarly, solutions in E* grow exponentially in discrete time and solutions
in E£° grow at most polynomially fast in discrete time.

For hyperbolic fixed points, E¢ is empty and by the stable-manifold theorem (see
e.g. Guckenheimer & Holmes [19] and Strogatz [43]), we can guarantee the existence
of locally invariant (for the full nonlinear dynamics) manifolds W}, and W}, close to
xo. The dynamics on W}, and W}%_ are qualitatively identical to those on the linear
spaces F° and E*, respectively. From this we can conclude that the stability derived
for the linearized Poincaré map also holds for the original map in a neighborhood of
the fixed point.

In addition to local stable and unstable manifolds, for degenerate fixed points and
sufficiently smooth Poincaré maps, the center-manifold theorem ensures the existence
of an invariant manifold W}, known as a center manifold, that is tangent to the center
eigenspace E¢ at the fixed point. While W}} . and W}%. are unique, W need not be.
Since W, is a manifold and its dimension equals n., there exists a linear coordinate
transformation such that W}, is parameterized by the first n. coordinates

x = h(z, p), (2.41)

where X = (q1,---,qn), 2 = (q1,--- ,qn,), and g = (py, ..., ;). Without loss of
generality, assume that x = x* corresponds to z = 0 and the bifurcation point is
given by g = 0. Then, since W _ is tangential to £°,

x* =h(0,0) (2.42)
and

8,h(0,0) = 0. (2.43)
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We now make a Taylor-expansion ansatz, which we eventually truncate at some
low order:

1 i
X = Z Xi,... zk] |:u1 ’ '/‘Llck7 (244)
’Lk>0
where
0"h
Xiir,.. ir] (Z) = (2, 1) and m =14, +...+ . (2.45)

O puy - - - O puy,

Since x = x* for z = 0 and p = 0, it must hold that xj . (0) = x*. Since the
mamfold is invariant, we write the dynamics in z as

1 i i
Znt1 = C(Zn, pb) = Z C[il,...,ik](zn)mml R TAE (2.46)
P10 i >0 ’ ’

where

o™c(z, 1)

R i

Clig,... ,ig] (Zn) =

Since z = 0 and p = 0 is a fixed point, we must have €o,....0] (0) = 0. To find the
coefficient functions, we substitute Egs. (2.44) and (2.46) in

Xni1 = P (xn, ) (2.48)

and obtain

P (h(Zm /-'l’)v IJ’) - h(C(Zn, “)7 H/) =0. (249)

This can be Taylor expanded about p = 0 to yield the equations for the coefficient
functions.

Let us look at the following simple example (taken from Guckenheimer & Holmes
[19]) that shows how to derive the center manifold and the corresponding dynamics:

Example 2 Consider the map

Tpn+1 = xn+xnyna (250)

Yni1 = MWYn—Th, O0<pu<Ll. (2.51)

The Jacobian at the fized point (zy,yn) = (0,0) is

10
00 = ( 0 u > : (2.52)
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with the eigenvalues \y = 1 and Ay = p. The center eigenspace corresponds to the
x-axis. The center manifold is thus one-dimensional and parameterized by x, i.e.,
y = h(z,p). The tangency conditions imply that h(0, ) = h'(0, ) = 0. If we Taylor
expand h(z, p) in z we get

y=a(p)a® +b(p)a’ +O(z"), (2.53)
where a (u) = K" (0, ) and b () = K" (0, p). Substituting (2.53) into Eq. (2.51) and
using Eq. (2.50) we get

a(p) (@ +z(a(p)z® +...))2 +b(p) (@ +2(a(p) 2’ +...))°
—p(a (@) x® + b (n) 23) + 2* = O(z*) (2.54)

or
a(p)a® +b(p) 2’ — pa(p)2® — pb(p) 2° + 2° = O(a") (2.55)
so that
1
= — 2.
o) = . (2.56)
and
b(p) =0. (2.57)
Thus we obtain
2
X 4
= 2.
Y ,u_l—i—(?(x) (2.58)
for the center manifold, and
3
Tos1 = Tn + M”“"_n -+ O(x) (2.59)

for the corresponding dynamics. It is straightforward to show that for zo < /1 — p,
Tn — 0 asn — 00, i.e., the fized point (,,y,) = (0,0) is locally asymptotically stable
for the full dynamics.

While the analysis above applies to sufficiently smooth systems, many interesting
application involve singularities of some sort. For example, an interesting limit of our
walker corresponds to infinitely wide feet, for which the dynamics in certain degrees
of freedom become infinitely fast. This resembles the singularly perturbed dynamical
systems

& = f(x,y) (2.60)
ey = g(z,y), (2.61)

where for small € the changes in y occur on a time scale much shorter than the
corresponding time scale for z. Nevertheless, as discussed in great detail in paper 1
and paper 2, the center-manifold approach appears to work even near the singular
limit. For a nice paper on singular limits of dynamical systems, see Guckenheimer
[18].
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2.3 On the derivation of the equations of motion

To derive the equations of motion (EOM) of mechanical systems in general and the
passive walkers described in section 3 in particular, Kane’s method (see Kane &
Levinsson [25] and Lesser [29]) is used here. Kane’s method is based on d “Alemberts
principle of virtual work. The idea behind this is that the total power consumed by
the constraint forces during allowable motions is zero. This assumption allows the
elimination of the unknown constraint forces from the analysis through a projection
of the full Newtonian equations of motion onto the possible directions of allowable
motions.

Assume we have a mechanical system consisting of k£ rigid bodies. Then the
position vector of the center of mass, the corresponding velocity vector, and the
angular velocity vector of the ith body relative to some inertial reference frame N

can be written r¢M :Tri(q, t), viM = vOM(y q.t), and w; = w,(u, q,t), respectively.
Here ¢ = (q1,...,q,)" 1is a set of configuration coordinates collected in a column
matrix and v = (uq,... ,uq)" is a minimal set of independent velocity coordinates,

also known as generalized speeds, such that
Gg=K(q,t)u+ k(q,t). (2.62)

These equations are known as the kinematic differential equations and allow the com-
plete integration of the motion given the time-dependence of the generalized speeds.
Following the notation of Dankowicz [10], the linear and angular velocity vectors can
be collected in a column matrix v such that

cCM T
Vi

v=(vi" w Wy )

where

B=(B, -+ By)andB,= (B, - Bu) (2.64)

and the ;s are linearly independent tangent vectors to the configuration manifold.
The momentum description of the mechanical system is given by the row matrix

OM IOM .y o gy

p=( miv{ CMTM L wy ) (2.65)

where m; is the mass of the ith rigid body and I is moment of inertia dyad of the
same body. From Newton’s second law of motion it is given that

F,+F.+p=0, (2.66)

where p is the rate of change of the momentum description (2.65) relative to the
inertial reference frame and where

F, = ( | Y Tg]l” o Fog Tﬂ” ) (2.67)
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and
F, = ( F., Tg’:{” o Fep Tg,i” ) (2.68)

are force descriptions of the applied and constraint forces and torques, respectively.
d’Alemberts principle, in this context, states that

F.e(3=0, (2.69)

i.e. that the constraint force descriptions are 'perpendicular’ to the tangent vectors
B;. Here the o denotes a regular vector dot product distributed across a matrix
product. From Newton’s second law of motion (2.66) and Eq. (2.69), we get the final
form of the equations of motion

0 = (Fy+F,—p)ef (2.70)
= (Fa—p)ep. (2.71)

This form of the equations of motion of the mechanisms studied in this thesis has
been implemented numerically with great success. Other methods to derive the EOM
are certainly possible, but the final results should always be the same, regardless of
the method used.

2.4 Linear control of dynamical systems

Most interesting dynamical control systems are nonlinear and normally require non-
linear control methods. By using linearization techniques it is still possible to control
such systems, as we will se below.

Consider the continuous nonlinear control system

X = (X, U), (2.72)

where X is the state and U is the control input. Let X be a solution of (2.72)
generated by the input U. By writing

x(t) = X(t)— X (t) and (2.73)
u(t) = U@#) -0 (2.74)

the linearized control system can be written

x=At)x+B(t)u,x€R" (2.75)
where
A(t) = 5—; (X (t),0 (t)) and B (t) = % (X (t),0 (t)) (2.76)
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if X (¢) is sufficiently close to X (). The goal of the control algorithm may be to
develop a feedback law whereby u is computed in order to ensure an asymptotic
behavior arbitrarily close to X (t).

In the special case where X and U are independent of time, the matrices A and
B are constant. There are a numerous of different choices and approaches to find a
feedback u for the corresponding linearized control system (2.75). The most simple
control is given by the state feedback

u=Cx (2.77)
where C'is a constant gain matrix. Substituting (2.77) into (2.75) then yields
x = Ax + BCx = Fx, (2.78)

where F' = A + BC. As discussed in an earlier section, the stability of (2.78) is
given by the eigenvalues \; of F. Under suitable conditions on the matrices A and
B, it is possible to assign arbitrary eigenvalues to F' by choosing the elements of C
appropriately.

For a discrete nonlinear dynamical system the same approach as above can be
applied, such that

X1 = Ax, + Bu, (2.79)
and the state feedback can again be given the form
u, = Cx, (2.80)
yielding
X1 = Ax, + BCx,, = Fx,, (2.81)
The eigenvalues of F' are the given by solving
det (A + BC — AI) =0, (2.82)

and the discrete system (2.79) is stable when all eigenvalues lie within the unit circle
in the complex plane, i.e., |\;| <1 for all i.

In papers 5 and 6, a control algorithm is developed that shares some features in
common with the discrete version of the control discussed above. There, the feedback
achieves only an indirect influence on the system dynamics by affecting the timing of
subsequent impacts of a mechanism with its surrounding environment. The method

is based on the ability to calculate the stability of discontinuous systems (cf. section
2.1.2).
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2.5 Conclusions
In conclusion, we can employ the methods of dynamical-systems analysis to

e identify relevant features of the system dynamics,
e study their stability characteristics,
e evaluate their persistence under parameter variations, and

e predict local dynamics in the vicinity of bifurcations.
However, we generally have no a priori methods for

e arguing the existence of periodic orbits in the first place,
e locating them if we have reason to believe they exists, or

e evaluating the persistence of such orbits that approach grazing incidence with
discontinuity surfaces.

In light of these observations, it is quite unexpected to find periodic solutions for
the mechanisms studied in this thesis, particularly the passive walkers. Having found
one such periodic solution we can use the continuation methods discussed above to
find additional motions for nearby parameter values. Even more surprising, however,
is the persistence of periodic solutions over large parameter ranges. After all, solution
branches could terminate in saddle-node bifurcations or through foot-scuffing. In fact,
quite frequently this is the fate for many solution branches. Methods for studying
the influence of foot scuffing of periodic gait patterns can be found in the literature.
Some attempts to predict the influence of such scuffing on initially quasiperiodic gait
patterns are described in papers 3 and 4.
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Chapter 3

Passive walkers

In this chapter, we discuss aspects of the modeling of passive walkers, such as model
kinematics, forces, torques, and the derivation of the equations of motion as well as
different gait patterns and bifurcations under parameter variations for both two- and
three-dimensional passive walkers.

3.1 Terminology

Since the emphasis of this thesis is the dynamics of two-legged passive walkers, we
will here introduce some of the terminology commonly used in both medical and
engineering disciplines. Most of these terms are used by a majority of the researchers
in the field of walking but some were previously introduced by the present author and
collaborators in Adolfsson [1] and Piiroinen [40].

The term walking implies locomotion for which at least one of the two feet is in
contact with the ground at any given moment. Walking is made up from of a number
of gait cycles or steps that follow each other. A step is completed once both legs have
performed a full revolution. A gait cycle can be divided into two distinct phases,
namely, the single-support phase and the double-support phase. In the single support
phase, one leg—the stance leg—is in contact with the ground while the other leg—
the swing leg—performs a pendulum-like motion about its (moving) support. The
time interval during which both legs are simultaneously in contact with the ground is
referred to as the double-support phase. A gait is period-n if n is the smallest integer,
such that the configuration of the legs is identical to their initial configuration after
n steps. There are (at least) two different periodic gaits that need some further
explanations. In symmetric gait, the left and right legs perform the same motion
with a time shift of half a period, while in asymmetric gait or limping gait, the left
and right legs do not perform the same motion.

If the swing-leg foot hits the ground during its pendulum phase prior to the
swing-leg knee reaching its full extension, the gait experiences a foot scuff. For the
passive walkers studied here foot scuffing typically has a negative effect, resulting in

27
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a discontinued gait and subsequent collapse. Humans, on the other hand, use their
muscles to overcome the retarding action of the premature ground contact and the gait
can be continued as if nothing ever happened. The limiting case, when the swing-leg
foot barely touches the ground during its pendulum motion, is called grazing. While
humans hardly notice such light ground touches, the gait of passive walkers might
turn chaotic (see section 3.4).

Three planes are referred to repeatedly in our discussions, namely

e the ground — the inclined plane restricting the motion of the mechanism,

e the sagittal plane — the symmetry plane of the mechanism (this assumes that
the right and left legs as well as the torso are identical under reflection), and

e the nominal plane — any plane perpendicular to the ground that contains the
gravity vector.

We conclude this section by a discussion of the different walkers analyzed in this
thesis. The simplest walker model is the 2D walker, whose motion and geometry is
constrained to a nominal plane and lacks side-to-side motion. Interactions of the
walker feet with the ground are modeled through a single contact point per foot. A
relative of the 2D walker is the planar walker that has zero hip width, but infinitely
wide feet with one contact point on either end. While a planar walker is able to move
freely in space, the foot geometry effectively constrains its motion to some plane
perpendicular to the ground, i.e., the motion has constant heading relative to the
nominal plane. An extended 2D walker differs from the planar walker in that the feet
have finite width but remain symmetric about the zero-width hip. This removes the
effective planar constraint, allowing it to exhibit side-to-side motion. Because of their
design, extended 2D walkers may exhibit all the motions of the regular 2D walkers.
We have mainly studied two types of 3D walkers, namely the 3D walker with toe line
and the 3D walkers with heels. Both types have three-dimensional characteristics and
a nonvanishing hip width, but while the former type has a similar foot geometry to
the extended 2D walker, the latter type has two additional foot points on each foot
forming a heel.

3.2 Model considerations

As with the modeling of an arbitrary complex mechanical system, a number of mod-
eling considerations need to be accounted for prior to actual analysis.
Choice of mechanical model for constituent bodies.

We have the option of modeling the bodies as rigid or deformable. An advantage of
using deformable elements is the possibility of estimating the growth of cracks, likeli-



3.2. MODEL CONSIDERATIONS 29

hood of failure, etc. On the other hand, the resulting mathematical model is infinite-
dimensional, requires solving PDEs, and is prohibitively hard to analyze. Since, in
the present study, any deformations are expected to be small, rigid bodies provide a
first stab at modeling the dynamics of the mechanism. In Appendix A, we have listed
the different parameters (such as masses, lengths, and inertia matrices) used in the
numerical analyses reported here.

Choice of model geometry.

The walkers discussed here consist of a torso, two upper limbs, and two lower limbs
(except in paper 7, where two articulated feet are included). Throughout this thesis,
the torso center of mass coincides with the mid-point of the line connecting the hip
joints. In addition to being symmetric about the sagittal plane, its mass properties
are chosen such that the torso has rotational symmetry about the hip line. A more
anthropomorphic torso would likely require active control, which lies outside of this
analysis. One might certainly imagine allowing the foot to move relative to the lower
legs. In this situation, however, it is unclear if gait could be sustained without active
control (cf. paper 7). As mentioned in section 3.1, we differentiate between two- (2D)
and three-dimensional (3D) walkers. While a 2D walker is constrained to move in
a nominal plane, the 3D walkers are free to move in the entire physical space. 2D
walkers are relatively easier to analyze due to their fewer degrees of freedom, but may
not capture motion exhibited by actual walkers. On the other hand, actual bipedal
walking appears to be fairly two-dimensional in nature.

Previous work on passive walkers used curved feet to allow for rolling motion of
the stance foot during the swing phase, thereby mimicking the shift of the pressure
point on the foot during human gait (cf. Coleman et al. [6]). In Dankowicz et al.
[11] and Adolfsson et al. [2], it was shown that stable gaits persisted even when the
radius of the foot was decreased to zero. In this thesis, we model each foot to be
made up of two (see illustration in paper 1) or four contact points (paper 6 and 7).
The first case mimics a human walking on her toes. Actually, many mammals (such
as cats and dogs) walk entirely on their toes.

Joint mobility.

Human joints possess a considerable number of degrees of freedom (DOF). The hip
joints each have three DOF, the knees have one DOF each, and the ankles have at
least two DOF each. Our models, however, are limited to hinge joints at the hips
and knees and completely locked ankles (except paper 7). Similar considerations as
in the choice between 2D and 3D walkers apply. Additional DOF might necessitate
active control for stabilization.
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Force interactions at joints and with the external environment.

Theoretically we could allow the joints to be totally unactuated. Of course, in the
human knee, muscles, tendons and ligaments constrain the motion to prevent hyper-
extension. In the passive walkers originally proposed by McGeer (see McGeer [32]
and Garcia et al. [17]), the knees are modeled with plastic stops. These grab on to
the leg when it reaches full extension and release the leg from its locked mode at the
beginning of the next single-support phase. In our model, we replace the plastic stops
with springs and dampers, active only during hyperextension.

The symmetry assumptions on the torso and the two-dimensional character of
the gait result in a weak coupling between the torso rotation about the hip line and
the motion of the rest of the mechanism. Thus, to avoid free rotation of the torso,
dampers are added to the hip joints.

As with the knee, the ground contact can be modeled in a number of different
ways. Impact models are easier to simulate and have fewer parameters than a model
with springs, dampers, and some kind of friction. The latter models, however, may
be better adapted to real contact. In this thesis, the ground contact is modeled with
springs and dampers, where the former try to bring the toe point back to its original
point of contact.

As the walker proceeds down the incline, the forces due to the springs and dampers
in the knees and the ground are turned on and off at discrete events triggered by
changes in the configuration. Some of these events also include discrete jumps in the
state variables. The resulting dynamical description is a hybrid system involving both
continuous and discrete dynamics. For a detailed explanation of this see Adolfsson et
al. [2] and paper 6.

3.3 Modeling - deriving the equations of motion

The modeling of passive walkers throughout this thesis is based largely on the work
by Adolfsson [1]. The implementation in papers 1 and 2 differs somewhat from this
model in order to better fit the present problem statement. A further extension to
this model is also presented in paper 7. The discussion below is more or less complete,
and should read as a complement to the Maple code given in Appendix C, containing
the derivation of the equations of motion for a 3D passive walker with heels.

The derivation of the equations of motion is done as follows. First a kinematical
description of the walker is developed. This involves the introduction of configuration
coordinates and independent velocity coordinates (generalized speeds). We continue
by establishing a description of the distribution of mass for each rigid-body segment.
This is needed for the calculation of the linear and angular momenta. The positions
of the foot contact points are also defined. Finally, the applied forces and torques are
defined and the dynamical differential equations are derived.
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3.3.1 Kinematics

In this section, we describe a standard model for a 3D passive walker. This model is a
result of the model considerations made in the previous section and based mainly on
the work presented in Adolfsson [1]. Walkers that differs significantly from the model
presented here, such as 2D passive walkers, have been discussed briefly in section 3.1
and will be treated later in section 3.4.

We begin by introducing some useful notation that will be used throughout the
thesis. Let IV be an inertial reference frame with reference point N and right-handed,
orthonormal reference basis n relative to which the ground is stationary. Specifically,
the ground is spanned by n; and ns, where n; is pointing downhill in the direction
of the largest slope, and nj3 is perpendicular to the ground in the direction opposite
to gravity. The passive walker model consists of five rigid bodies, namely a torso,
two upper limbs, and two lower limbs. Each rigid body is associated with a body-
fixed reference frame. Specifically, 7, UP), YU L) and LP) are the reference
frames corresponding to the torso, the left upper limb, the right upper limb, the left
lower limb, and the right lower limb, respectively. In a similar way as for the inertial
reference frame, each body-fixed reference frame consists of a reference point and a
reference basis, e.g., the torso-fixed reference frame 7 consists of the reference point
T and the reference basis t.

The torso is assumed to have three translational and three rotational degrees of
freedom. The position of the reference point 1" on the torso relative to the point N
can now be written

I'T = g1 + (052 45) + gsnNs. (31)

The orientation of the torso relative to the ground can be given by the sequence of sim-
ple rotations {n,t™ 1,q1}, {tM,t@ 3,45}, and {¢t?,¢,2,¢s} , where the notation
{a,b,1,0} is used to mark that the reference basis b is rotated an angle 6 relative to the
reference basis a about their common ¢-axis, i.e. a; = b;. The hip joints connecting
the torso and the upper limbs and the knee joints connecting the upper and lower limbs
are modeled as simple hinge joints. It follows that the orientation of the limbs can be
described by the sequence {t®, u®™ 2 ¢;}, {u® 1P 2 g5}, {t?P,u® 2 ¢}, and
{u(R),l(L),Q,qlo}. The 10 configuration coordinates ¢;, ¢ = 1,...,10 are necessary
and suffice to describe an arbitrary configuration of the walker. It follows that the
general 3D passive walker model discussed here has ten degrees of freedom.

Since there are no additional kinematic constraints, 10 independent velocity co-
ordinates (generalized speeds) u;, ¢ = 1,... ,10 are necessary and suffice to describe
the linear and angular velocities of all rigid-body segments of the walker. These are
introduced as follows. Let the linear and angular velocities of the torso relative to
the inertial reference frame be given by

VT = u1n1 + uoNy + uUsng (32)
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and
N(.{JT = U4t§2) + UGth) + U5tg2). (33)

Similarly, let the angular velocities of the left and right upper limbs relative to the
torso be expressed as

@ L) 2
T® U _ u7t()

(2)

@ y®)
77U = ugty’,

and the angular velocities of the left and right lower limbs relative to the upper limbs
be expressed as

u) w[:(L) _ /U/gth) (36)
um r® U1ot§2)-

It follows that the independent velocity coordinates are related to the rates of change
of the configuration coordinates by the kinematical dif ferential equations

q=K(qu (3.8)
Whereq:(ch Cho)T,q:(Ch Cho)T,U:(lh U10)T(Cf- Eq.
2.62),
cs —s5 0 0O 00O0O0O0ODO
4S5 cq4c5 —S4 0 0 0 0 O O O
S4S5 S4Cs  Ca 0O 00 O0O0O0OTO
0 0 0 1/es 00 0 0 0O
0 0 0 0O 100000
K@= 69 o 0o & o10000] (3.9)
0 0 0 0O 001000
0 0 0 0O 00O0OT1O0D0O0
0 0 0 0O 00O0O0T1D0O0
0 0 0 0O 00O0O0O0OT1

and s; = sin (¢;), ¢; = cos(g;), and t; = tan (g;).

3.3.2 Joints, foot points, and center of mass locations

The positions of the left and right hip joints relative to the torso reference point T'
(see Eq. 3.1) are given by

Tloft hip joint =  T'Inj,2t2 (3.10)

Tright hip joint — Trhj,2b2. 3.11
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Similarly, the positions of the knee joints relative to the corresponding hip joints are
given by

— (L)

Tleft knee joint —  T1kj,3U3 (3 12)
— (R)

Iyight knee joint — Trkj,3U3 . (3 13)

Recall that interactions between the lower limbs and the ground are modeled with a
number of foot contact points. Specifically, the foot points of the left and right feet
relative to the corresponding knee joints are given by

_ (L) (L) L) , _
Tleft foot point ¢  — Tlfpz’,lll + Tlfpz',212 + Tlfpz',313 y U= 17 e, M (314)
(R) (1) (R)
Tright foot point i — Trfpi,lll + Trfpi,212 + Trfpi,3l3 y L= 17 T, M. (315)

Note that m = 1 for the 2D walker, m = 2 for the 3D walkers with toe lines, and
m = 4 for the 3D walkers with heels.

Next we focus on the centers of mass (COM) of the torso and upper and lower
legs. Their positions will be given relative to the reference point N. The center of
mass of the pelvis is given by

OM - _ I'T + Tt71t1 + Tt72t2 + T‘t73t3. (316)

rtorso

Throughout the thesis (except paper 7) ry1 = 112 = 113 = 0, i.e., the torso reference
point T' coincides with the torso center of mass. The positions of the COM of the left
and right upper limbs are

cM T (L) (L) (L)
Flett upper limb T '+ Tt hip joint + Tlul,lul + Tlul,2u2 + Tlul,3u3 (317)
cM _ T (R) (R) (R)
rright upper limb r-+ rright hip joint + Trul,lul + T1'111,2u2 + Trul,3u3 . (318)
In a similar way the COM of the left and right lower limbs are given by
CM T
Tiett 1ower limb  — T + Tleft hip joint + Tleft knee joint + (319)
(L) (L) (L)
rmaly” + rmely” 4 rngsls
CM T
Tiieht lower limb — T + Tright hip joint + Iright knee joint + (320)

r 1-11,11§R) +7r 1-11,21§R) +7r 1-11,31;(3R) .
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3.3.3 Linear and angular momentum

The linear momenta of the torso, left and right upper limbs, and left and right lower
limbs relative to the inertial reference frame are given by

Pioso = mtorsovtcc’)f-,vslo ) (321)
Pleft upper limb = Tleft upper 1i1111)vg£[u1)1)e1- limb> (322)
Pright upper limb = Mlright upper limbvrci’é\}/{t upper limb» (323)
Plcft lower limb = TTeft lower liml)vl(gfl‘:[]ower limb> (324)
and
Pright lower limb = Mlright lower limbvggﬂ lower limb> (325)

where, e.g., Moo is the mass of the torso and v¢M is the velocity of the center of

mass of the torso relative to N. The angular momenta of the torso, left and right
upper limbs, and left and right lower limbs relative to the inertial reference frame are
given by

T

Htorso = Itorso o Nw ) (326)
Hleft upper limb = Ileft upper limb @ NWU(L)? (327)
Hright upper limb — Iright upper limb L4 NWU(R)a (328)
Hleft lower limb = Ileft lower limb @ NwE(L)a (329)
and
Hright lower limb — Iright lower limb @ NWL(R)a (330)

. . . L 2 2 L
where, e.g., ;o is the moment of inertia of the torso and NUE N GT® L TO U™

3.3.4 Forces and torques

As mentioned above, the only forces and torques acting on the passive walker are
those of gravity, dampers in the hips, springs and dampers in the knees, and springs
and dampers between the ground and foot contact points. Specifically, let v € [0, 7)
be the inclination of the ground relative to the local direction of gravity. Then, the
direction of gravitational acceleration can be written

~ = sin (y) n; — cos (7) ns. (3.31)

The only forces acting on the torso and the upper limbs are due to gravity, which we
can write as

Ftorso = Miorsod7, (332)
Flcft upper limb = Teft thighd7Y 5 and (333)

Fright upper limb = Mlright tllig11977 (334)
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where g ~ 9.81 ms~2 is the gravity constant. In addition to the gravitational forces
the lower limbs experience ground reaction forces whenever one or more of the foot
contact points are in contact with the ground, i.e.

Flcft lower limb =  TMeft lower limb g7 + E Flcft foot point 7 (335)
Fright lower limb — mright lower limbd7Y + § Fright foot point 7 (336)

where, e.g., the ground reaction force on the 7th foot point on the left foot is

Fictt foot point i = Fiipi, i1 + Figys 0N + Fipyi 303 (3.37)
and
_kground, ki (plfpz',j — Sl,j — QJ) - Cground,jﬁlfpi,j Difpi,3 S O;j - 1; 2
F _ _kg1'01111(1,3plfpi,3 — Cground,3Pifpi,3 Difpi,3 S Oaplfpi,3 S 07 J = 3
Ifpi,j — k < 0.7 0.i=3 "’
—Rground,3P1fpi,3 bipiz > Y, Pifpi,3 >U,7 =
0 Difpi,3 >0
(3.38)

where Egrouna, j and cgrouna,; are the spring and damper constants in the nj-direction,
respectively. The variables pis,; ; and s); ; describe the position of the present foot
point and its initial point of contact with the ground (see further Paper 1).

Let kipee and cipee be the spring and damper constants of the knee model and ¢,
be the damper constant in the hip joint models. The corresponding torques are

Ttorso = Cuip ((17 + Q9 - QQG) th)’ (339)
Tleft upper limb = Tleft knee + Chip (qG - Q7) t§2)’ (340)
Tright upper limb = Tright knee T Chip (QG - CZ9) téQ)a (341)
Tleft lower limb — _Tleft knee + Z (r0111H1fpz',j X Fleft foot point z) ) (342)
and
Tright lower limb — _Tright knee + Z (rcmérfpi,j X Fright foot point z) ) (343)

where ren iy and re,_.qpi are the position vectors of the ¢th foot point relative to
the corresponding foot COM, respectively. The torques in the left and right knees
are given by

Finceds + CinceGs)ts s < 0

Tleft knee — { ( kncefs +(fk qS) ? gz >0 (344)
k nee nee ] t(2) <0

Tright knee — { ( kneed10 +OCk QIO) 2 312 >0’ (34:5)

respectively.



36 CHAPTER 3. PASSIVE WALKERS

3.3.5 Dynamics

Using the methodology (Kane’s method) introduced in section 2.3, the dynamical
differential equations are given by

(Fa—p)-8=0, (3.46)
where the momentum description is (using Eq. (3.21-3.30))

b = [ Ptorso Htorso Plcft upper limb chft upper limb Pright upper limb """ (347)

Hright upper limb Plcft lower limb chft lower limb Pright lower limb Hright lower limb :|

and the applied force description is (from Eq. (3.32-3.45))

Fa - [ Ftorso Ttorso Fleft upper limb Tleft upper limb Fright upper limb *°° (348)
Tright upper limb Fleft lower limb Tlcft lower limb Fright lower limb Tright lower limb :| .

From Eq. (3.3-3.7) and by time differentiating Eq. (3.16-3.19), and writing, e.g.,

CM _ +CM g3 '
Vi, = Tionso, 3 is obtained from

_ cM N,,T CM N, UL oM N, U
v Viorso w Vieft upper limb w right upper limb w T (349)
CM N, ) oM N, LB
Vieft lower limb w right lower limb w
= B(q,t)u.

The dynamical differential equations (see Eq. 3.46) can be written on the form
Mu = f(q,u). (3.50)
Together with the kinematical differential equations (cf. Eq. 3.8)
q = Ku, (3.51)

and a description of the discrete jumps in the forcing, these constitute the complete
set of equations of motion for the passive walker model described here. We continue by
illustrating some typical gait motions of 2D and 3D passive walkers. Later (section
3.5), we will discuss bifurcations, existence and stability of recurrent gait motions
under variations in system parameters.

3.4 Gait patterns

A repetitive gait for a walker is built up from a sequence of discrete events. A typical
event sequence for one step of a 3D passive walker with two foot contact points per
foot is given in Table 3.1. It is possible for some events to occur in reverse order
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No. | Leg | Event Function | Phase

1 Left | outer toe release | stance leg | double-support
2 Left | inner toe release | swing leg | single-support
3 Left | knee release swing leg | single-support
4 Left | knee impact swing leg | single-support
5 Left | outer toe impact | stance leg | double-support
6 Left | inner toe impact | stance leg | double-support
7 Right | outer toe release | stance leg | double-support
8 Right | inner toe release | swing leg | single-support
9 Right | knee release swing leg | single-support
10 Right | knee impact swing leg | single-support
11 Right | outer toe impact | stance leg | double-support
12 Right | inner toe impact | stance leg | double-support

Table 3.1: A gait sequence for a 3D walker with toe lines for one step.

or simultaneously. For instance, knee release could occur before the foot is entirely
released from the ground. Suitable modifications apply in the case of 2D walkers.

As suggested in chapter 2.5, there is no reason to expect that recurrent gait will
exist for a given choice of system parameters. That parameter choices (resembling
those for an actual human) can nevertheless be found for which natural gait patterns
are exhibited is an intriguing observation.

3.4.1 2D walkers

Figure 3.1 shows a typical period-1 gait. The hip angle (as well as all other state
variables) can be mapped onto itself with a time shift of one period, approximately
1.5 seconds. In fact, for the majority of period-1 gaits observed in our analysis the
period lies within 10 % of 1.5 seconds. In Figure 3.2, we illustrate a typical period-2
gait. In the upper panel it is almost impossible to see that the motion is not period-1,
while the blow-up in the lower panel displays this clearly. This shows that we have
to be careful when concluding from visual observation alone that a gait has a certain
periodicity.

Figure 3.3 shows the time evolution of the left and right hip angles for a period-1
gait over one period. Since, the two curves can be mapped onto each other with a
time shift of half the period, the gait is symmetric. In contrast to this, an asymmetric,
limping period-1 gait is shown in Figure 3.4. The time evolutions of the hip angles
can clearly not be mapped onto each other.

As indicated in the previous chapter, solution branches may terminate as a result
of foot scuffing. Indeed, it is possible to show that the initial onset of foot scuffing,
a grazing contact, may result in dramatic changes in stability and persistence of
periodic solutions under further parameter variations. As an example of this, consider
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Figure 3.2: The hip angle as a function of time for a period-2 gait over four consecutive

strides.



3.4. GAIT PATTERNS

0.6 T

0.4

0.2

hip angle (rad)
o
T

1.4

1.6

39

Figure 3.3: The left and right hip angles as a function of time for a symmetric period-1

gait over one stride.
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Figure 3.4: The left and right hip angles as a function of time for a asymmetric

period-1 gait over one stride.
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Figure 3.5: A delay plot for the hip angle g9 showing an attractive chaotic motion
with near-grazing impacts.

the limping gait (upper stable branch of Figure 3.8) at slope v = 0.0609 and change
the slope slightly to v = 0.06087. Figure 3.5 is a delay plot of the hip angle at
subsequent intersections with a Poincaré section. The almost vertical branch of the
chaotic attractor corresponds to strides that include moments of foot scuffing. This
type of diagram is characteristic of discontinuous dynamical systems near grazing,
for example mechanical systems with impacts (Fredriksson et al. [14]). For such a
system, Nordmark [38] shows that if the largest eigenvalue A for the grazing motion
is greater than 2/3, but less than 1, then the subsequent attractor is chaotic. In our
case, the largest eigenvalue ) is 0.93644, confirming this prediction. We also note that
the presence of two diagonal non-impacting branches of the attractor characterizes a
system with several degrees of freedom (Fredriksson et al. [14]).

The different gaits presented above exemplify the majority of gaits in a 2D walker.
Under different modeling choices, such as for the ground contact and in the knee joints,
it may be possible to find chaotic gaits without foot scuffing, see e.g. Garcia et al.
[16].

3.4.2 3D walkers

The inclusion of additional degrees of freedom naturally increases the complexity of
the observed motion. While the gaits may be mainly 2D, 3D walkers can exhibit
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Figure 3.6: The vertical projection of the center of the hip line on the ground plane
for two different 3D gaits.

side-to-side swaying and changes in gait heading.Figure 3.6 shows two different 3D
gaits where the oscillations are largely due to side-to-side swaying. The motion in the
right panel deviates from a nominal plane by approximately 1 degree.

An example of a quasiperiodic motion is shown in Figure 3.7. The figure also
includes transient dynamics from an initial condition near an unstable periodic orbit
at the center of the diagram.

3.5 Bifurcations and their effect on periodic gaits

In section 2.2, we introduced the concept of bifurcations in dynamical systems. Here
we use the insights gained there together with the discussion about gait patterns in
section 3.4. It is convenient to summarize the different changes in gait types that we
observe under parameter variations.

When exploring the dynamical system of the passive walker, we have encountered
five different bifurcations. The bifurcations that occur when one or more eigenval-
ues become one in magnitude are saddle-node/fold, pitchfork, period doubling/flip,
and Hopf bifurcations. Sudden changes may also appear near grazing. Figure 3.8
is a projection of a bifurcation diagram for a 2D walker under varying inclination,
illustrating a family of periodic solutions. This diagram will be discussed in detail in
paper 1, but it gives a clear picture of some of the bifurcations.
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Figure 3.7: Motion towards a quasi-periodic solution at a Poincaré section.

In Table 3.2 and in the corresponding explanations 1. - 7., we have gathered
the different bifurcation scenarios corresponding to variations in a parameter v and a
bifurcation at v = vy. Notice also the references to the Roman numerals (bifurcations)
I -1V in Figure 3.8.

Eigenvalue Bifurcation 2D-gait | 3D-gait

+1 Saddle-node/Fold see 1. see 1.

+1 Pitchfork see 2. see 2. and 3.
-1 Period doubling/Flip | see 4. see 4.

et3* Lk #£1,...,4 | Hopf see 5. see 6.

any Grazing see 7. see 7.

Table 3.2: An overview of the different bifurcations and their impacts on bipedal
passive walking. See also the explaining text labeled 1.- 8.

1. Two solutions, one stable and one unstable, exist for v < v and no solutions
exists for v > vy. Compare with bifurcation I, where the solutions are symmet-
ric.

2. For v < vy, there is one symmetric solution, and for v > v, there are three
solutions. The symmetric solution changes stability in the bifurcation. The
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Figure 3.8: A projection of the bifurcation diagram for a 2D walker. The following
bifurcations are represented: I - saddle-node/fold, II - pitch-fork, and III & IV -
period-doubling/flip. The letters A and C indicate unstable symmetric gait and the
letter B indicate stable limping gait.

two new branches correspond to asymmetric gait and have opposite stability
from the symmetric motion. The two asymmetric solutions are mirror images
of each other under a time shift of half a period. For symmetric 2D gaits, the
asymmetric solution may still remain 2D. Compare with bifurcation II.

3. New solutions are born as in 2., but here an asymmetric gait straight down
the plane exists for v < vy and two new asymmetric gaits walking on an angle
relative to a nominal plane are born in the bifurcation.

4. As for the pitchfork bifurcation, three solutions become one or vice versa. The
solution that exists alone always shows asymmetric walking and changes sta-
bility in the bifurcation. The new solution has twice the periodicity and the
opposite stability of the original solution. Compare with bifurcations IIT and
IV.

5. This type of bifurcation has not been reported.

6. A periodic solution changes stability as v goes through ry. On one side of the
bifurcation a branch of quasiperiodic solutions appears. Compare with Figure
3.7.
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7. A periodic orbit impinges tangentially on a discontinuity surface in state space
as v reaches vg. Depending on the type of discontinuity, a further change in
v typically results in a rapid, and possible non-smooth, change in eigenvalues.
The periodic solution may cease to exist or experience a quick succession of
standard bifurcations. In the walker, this corresponds to one of the foot contact

points just touching the ground prior to knee-locking. Compare with Figure
3.5.

Other combinations of the bifurcations above are certainly possible, but have not
been observed.

As seen in this section, passive walkers can undergo a variety of different bifur-
cations where stability is lost. This lack of robustness under parameter variations
suggest that additional control would need to be included in a robotic implementa-
tion of a passive walker to ensure a desirable recurrent motion. Some ideas for how
to achieve this are presented in the following section.

3.6 Control of passive walkers

The whole idea with passive walkers is that they are able to exhibit sustained (stable
or unstable) anthropomorphic gait in spite of being unactuated and relying only on
gravity for energy input. It would be desirable to design a feedback-based control
actuation that could affect the stability of a recurrent gait in a passive walker while
involving no exchange of energy with the mechanism. One approach would be to make
discrete changes to the foot contact point positions relative to the lower limb once
every revolution whenever the corresponding foot is not touching the ground. This
is very similar to introducing discrete changes in the orientation of a foot about an
ankle joint keeping the ankle rigid at all other times. This has the effect of indirectly
changing the timing and state of the mechanism at the subsequent impact of a foot
contact point with the ground, thereby affecting the stability of the gait. This idea is
successfully implemented in paper 6 (and derived in paper 5) where heavily unstable
2D and 3D walkers are stabilized.

One drawback with the control introduced in papers 5 and 6 is that it is very
local and can only control for sufficiently small perturbations away from a reference
trajectory. To overcome this, a model is developed in paper 7 involving the inclusion
of muscles to the passive walker in order to achieve global stability and also to make
it even more anthropomorphic.

3.7 Numerics

The following numerical methods have been used to produce the results described in
this thesis:
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e Direct numerical integration — useful only for locating asymptotically stable
gait.

e Parameter continuation — a technique for mapping out solution branches inde-
pendently of stability.

e Variational equations — a mathematical tool for studying linear stability prop-
erties of periodic solutions and for implementing Newton-Raphson schemes for
location periodic solutions.

e Numerical approximations of derivatives — finite difference methods used in the
normal-form calculations. (see appendix B)

The practical implementation is as follows.

Software The equations of motion (EOM) of the mechanisms studied in this thesis
were derived using the Maple package Sophia, developed at the Department of Me-
chanics, KTH, originally by Martin Lesser and then extended by Anders Lennartsson
(see Lesser [29], [42], and Lennartsson [28]). Sophia implements Kane’s method (cf.
Kane et al. [25]), which is based on d’Alemberts principle of virtual work (cf. section
2.3). Sophia also includes procedures for exporting the EOM as well as auxiliary func-
tions for internal and external forces into C-code. This allows the user to interface
with other applications.

In particular, simulations of the mechanisms have been carried out using Matlab.
Matlab’s built-in mex function, which uses a standard C-compiler, compiles the C-
code for further use within the Matlab environment. For the stability calculations
and parameter continuations we have used the possibility to export variational equa-
tions (VE) from Sophia to compatible C-code. See Appendix C for the maple code
generating the EOM and VE.

All simulations, continuation algorithms, and normal-form calculations are pro-

grammed in and carried out with Matlab.
Typical sizes of C-files used here are about 240 kB for the EOM and 1400 kB for
the variational equations including the EOM, while the sizes of the compiled files
corresponding to the EOM and variational equations are about 195 kB and 850 kB,
respectively.

Hardware The numerical computations in this thesis are performed on a Dell Di-
mension XPS 400 with a 400 MHz Pentium II processor 192 MB RAM and on a EV6
500 MHz processor with an available memory of 3GB RAM.

Cpu time While no detailed analysis has been carried out to determine the effi-
ciency of the employed algorithms, for reference we mention that a bifurcation dia-
gram, such as that in Figure 3.8 takes on the order of one day to compute.
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Chapter 4

Discussion and outlook

This thesis describes the analysis of a number of nonsmooth dynamical systems
orginating in mechanical systems. From a mathematical perspective, the focus is
on the development of tools for finding and studying certain motion characteristics,
primarily the existence and robustness of recurrent motions. As an immediate appli-
cation, we consider the study of two-legged passive walkers that exhibit a variety of
recurrent gait-like motions. Specifically, we categorize the differences and similarities
between two- and three-dimensional walkers, thereby verifying that even simple two-
legged models may be used to investigate fundamental characteristics of human gait.
The knowledge gained from the analysis of two-legged passive walkers could thus be
used in many areas in industry and medicine.

To robotics, the passive component of sustained human gait—as exemplified by
the model passive walkers—should be taken into account when studying the stabil-
ity of walking as well as when developing more energy efficient control algorithms.
One idea for such a control algorithm is to actively switch between control yielding
static stability and that yielding dynamic stability, depending on the desired motion
characteristics. A separate idea is to design the overall control strategy for a walking
robot in a hierarchical structure, where the goal of low-level control could be the
local stabilization of an already existing gait as suggested in this thesis, while next
level of control could focus on global control, e.g., trajectory planning, avoiding ob-
stacles, preventing the robot from falling, and so on. This would also be reflected in
a distribution of actuators mimicking muscle activity.

The passive nature of the human gait apparatus is familiar to most physicians and
others working with gait pathologies and gait analysis. In the biomedical industry,
e.g., in the design of artificial leg prostheses, in analyzing gait data, and in creating
computer-based models of human gait, this insight is of great importance.

Looking ahead, there are obvious benefits to be reaped to the areas of robotics,
biomechanics, and medicine from finding a common ground from which to study
bipedal walking. It is very likely that the aim for parts of the robotics community
will be to construct robots that behave as closely to humans as possible and thereby
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make their appearance more acceptable. For that purpose, it is necessary to under-
stand the subtleties of human walking, considering the overall dynamics and the un-
derlying muscular activity. For those working in biomechanics it will be (and already
is) a significant challenge to overcome the differences between scientist working in
mechanics and medicine. The differences have many layers, everything from different
vocabulary to mathematical skills and understanding. It is, for example, reasonable
to expect that great value is to be found in conveying to scientists in the medical sci-
ences an understanding of how scientists and engineers working in mechanics model
the world around us in general, and motion in particular.

Whatever the goals for the future are, there are still a great number of more
specific, although quite ambitious, problems to be addressed. For instance, the topic
of the present thesis—the analysis of nonsmooth dynamical systems—will be an even
more important field in the future. The computational and analytical tools that will be
the products of further study in this field will yield insight into the expected dynamical
behavior of such systems and will generate new engineering intuition enabling a cost-
and time-effective usage of more and more complex and comprehensive computer-
based models of every-day mechanical systems.



Chapter 5

Summary of papers and authors
contributions

Paper 1

Breaking Symmetries and Constraints: Transitions from 2D to 3D in Passive Walkers
Petri Piiroinen (PP), Harry Dankowicz (HD), Arne Nordmark (AN)

The inherent dynamics of bipedal, passive mechanisms are studied to investigate
the relation between motions constrained to two-dimensional planes and those free to
move in a three-dimensional environment. In particular, we develop numerical and an-
alytical techniques using dynamical-systems methodology to address the persistence
and stability changes of periodic, gait-like motions due to the relaxation of configu-
ration constraints and the breaking of problem symmetries. Symmetry properties of
such mechanism are discussed and a few special symmetries are defined. Using these
symmetries, we classify a number of different gaits. The results indicate the limita-
tions of a two-dimensional analysis to predict the dynamics in the three-dimensional
environment. For example, it is shown how the loss of constraints may introduce
characteristically non-2D instability mechanisms, and how small symmetry-breaking
terms may result in the termination of solution branches.

Implementations and computations are carried out by PP. The paper is written
by PP with feedback from HD and AN.

Accepted for publication in Multibody System Dynamics, 2002

Paper 2

On a Normal-Form Analysis for a Class of Passive Bipedal Walkers
Petri Piiroinen (PP), Harry Dankowicz (HD), Arne Nordmark (AN)

Paper 2 continues the work done in paper 1 and implements a center-manifold tech-
nique to arrive at a normal-form for the natural dynamics of a passive, bipedal rigid-
body mechanism in the vicinity of infinite foot width and near-symmetric body geom-
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etry. In particular, numerical schemes are developed for finding approximate forms
of the relevant invariant manifolds and the near-singular dynamics on these mani-
folds. The normal-form approximations are found to be highly accurate for relative
large foot widths with a range of validity extending to widths on the order of the
mechanisms’ height.

Implementations and computations are carried out by PP. The paper is written
by PP with feedback from HD and AN.

Published in International Journal of Bifurcation and Chaos, Vol. 11, No. 9, pp
2411-2425, 2001

Paper 3

Low-velocity Impacts of Quasi-periodic Oscillations
Harry Dankowicz (HD), Petri Piiroinen (PP), Arne Nordmark (AN)

In this paper a method to predict the characteristics of system attractors that follow
grazing intersections with a two-dimensional impacts surface is derived, where the
original motion is a two-frequency quasiperiodic oscillation in a three dimensional
state space. The alghorithm is based on the idea of discontinuity mappings and it
is applied to an example model (the van-der-Pol oscillator) to illustrate the power of
the method.

PP made all the figures in the paper, carried out all the implementations and
numerics, and gave feedback throughout the work.

Published in Chaos, Solitons and Fractals 14, pp 241-255, 2002

Paper 4

Grazing Bifurcation of Initially Quasi-periodic System Attractors
Harry Dankowicz (HD), Petri Piiroinen (PP), Arne Nordmark (AN)

Paper 4 further discusses the discontinuity mappings approach, rigorously derived in
paper 3, to predict the characteristics of system attractors that undergo low-velocity
impacts. Numerical observations from passive walkers are described and the method
is applied to a circle mapping.

PP made all the figures in the paper, carried out all the implementations and
numerics, and gave feedback throughout the work.

Published in proceedings of ASME 2001 DETC’01, Pennsylvania, 2001

Paper 5

Exploiting Discontinuities for Stabilization of Recurrent Motions
Harry Dankowicz (HD), Petri Piiroinen (PP)
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In paper 5 a method is analytically derived to locally control dynamical system in-
cluding discontinuities, by using the fact that it is possible to calculate the stability
characteristics (Floquet multipliers) of periodic motions of such systems. When a
periodic solution has been found the method makes it possible not only to stabilize
heavily unstable dynamical systems but also to destabilize stable systems. The main
advantage with this method is that the exact stability characteristics for the con-
trolled system can be found, even without simulating it once, but only by using the
local stability for a reference solution. The method is applied on a hopping robot and
a Braille printer, where it is shown how the stability changes under variations of a
control parameter. Numerical results are presented showing the basin of attraction
for a specified set of control parameters as well as switching between different periodic
motions.

PP made all the figures in the paper, carried out all the implementations and
numerics, and gave feedback and suggestions on improvements throughout the work.

Accepted for publication in Nonlinear Dynamics, 2002

Paper 6

Low-Cost Control of Repetitive Gait in Passive Bipedal Walkers
Petri Piiroinen (PP), Harry Dankowicz (HD)

In this paper, the control algorithm introduced in paper 5 is dereived and implemented
for 2D and 3D passive walkers. The method is used to switch between different types
of gait and also to stabilize heavily unstable motion.

All implementations and computations were carried out by PP, who also wrote
the paper with feedback from HD.

Submitted to International Journal of Bifurcation and Chaos, 2002

Paper 7

Musculoskeletal Modeling of Two-Legged Bipedal Walkers
Petri Piiroinen (PP)

This paper gives an idea on how the 3D passive walkers could be made more anthro-
pomorphic by the addition of muscles and by increasing the total number of degrees
of freedom. All sufficient parameters used for the upper and lower limbs, the different
joints, the muscles, and the foot points are thoroughly introduced. Some thoughts
on how to use an implementation of the extended walker is also given as well as
possibilities for future development are suggested.

PP wrote the paper.
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Appendix A

Physical quantities

The values of the parameters presented here are mainly used in paper 1 and 2. In
the other papers some modifications have been done.

Constants
Gravity — 9.81 m/s?

Incline — varied

Masses
Torso — 0.8 kg
Upper legs — 2.354 kg/each
Lower legs — 1.013 kg/each

Toe point — 0 kg/each

Lengths
Torso (width) — 0 m
Upper legs — 0.35 m

Toe line — varied

29
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Positions of mass center
Torso — in the midpoint between the hip joints.
Upper legs — (0, 0, -0.09)upper 1e¢ relative the hip joints
Lower legs — (0.0432, 0, -0.1663)1,0wer 1eg relative the knee joints
Toe points — (0.105 , varied, -0.3132)1ower 1eq relative the shank center of mass

The triplets correspond to the body fixed reference frame in which they are written.
All values are given in meters.

Moments of inertia
Torso — (2, 2.2, 2.2, 0, 0, 0)Torso
Upper legs — (0.008, 0.001, 0.01, 0, 0, 0)upper 1eg
Lower legs — (0.0393, 0.001, 0.01,0, 0, 0)Lower leg

The numbers in the parentheses correspond to (I1, Ing, I3, 12, Iy3, Ing) kgm?.

Spring constants
Knee joints — 50 N/m

Ground — 50 N/m

Damper constants
Hip joints — 0.04 Ns/m
Knee joints — 20 Ns/m

Ground — 500 Ns/m



Appendix B

Numerical schemes

General formulas for the numerical differentiations in paper 2.

ou 1

5 (X0: €0, Ho) = o [U(x0, €0 + oy 1) — (X0, €0 = By )] (B.1)
ou 1
P X0: €0, Ho) X1 = 5 [u(Xo + hiXa, €0, 11g) — u(Xo — hixy, €0, )] (B.2)

d0*u 1
@(Xm €0, MO) = ﬁ [U(X, o + h, MO) - 211(X0, €0, MO) + U(Xo, g0 — h, MO)] (B3)

0*u Hu - 1 u(xg + hix; + haXa, €0, i) — u(Xo + hxo — hxy, €0, o) —
e %0, €0, Ho 4hihy | u(xo — hix1 + haXa, €0, 11y) + u(x0 — hxo — hx1, €9, f1)
(B.4)
@(X c )X X0 — 1 u(X,€0+h1,M0+h2)—U(Xo,e’fo—i—hl,/,bo—hg)—
Bxz 00 0 Ho)HiXa = 4hihy | (X0, €0 — ha, pig + ha) +u(xo, €0 — ha, ptg — ha)
(B.5)
8311 1 u(xo, €o + hl, Ho + hg) — 211(X0, Eo + hg, M0)+
W(X()’EO’ o)Xy = BYETN u(xg, €0 — ha, po + he) —u(xq, €0 + 1, pg — ha)+
a B 2u(xo, €0, g — h2) — u(xq, €0 — ha, g — ha)
(B.6)
[ u(xo + hixi, €0 + ho, g + hg)— ]
u(xo + hixi, g0 + ho, ptg — hs
u(xg + h1X1,€0 - hg,,uo + h3 +
d*u 1 u
(B.7)

c

ax&e@u (XO, <0; MO)Xl - 8h1h2h3

T

X — hixi, €0 + ho, pg —
u(xo — hixy, g9 — ha, pg + hs
u(xg — hixi,e0 — ha, pg —

c

( )—
( )—
( )
(%0 + hix1,€0 — ha, g — h3)—
(XO — hlxl, o + hQ, Ho + hg)
( hs)
( )—
( hs)
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Appendix C
Maple/Sophia code

This Maple code is used for generating the equations of motion and variational equa-
tions for a passive 3D walker with knees.

Load Sophia library
> restart;
> read ‘sophiaV5¢;

Kinematical differential equations
> &kde(10);

> dependsTime(seq(p.k,k=1..16));

> dependsTime (seq(theta.k,k=1..6));

Frame relations
Rotation from inertial body N to upper body B
> chainSimpRot([N,T1,3,96],[T1,T2,2,951, [T2,B,1,94]1):

Rotation from intermeditiary frame T2 to upper leg UL1 to lower leg LL1
> chainSimpRot([T2,UL1,1,q97], [UL1,LL1,1,98]):

Rotation from intermeditiary frame T2 to upper leg UL2 to lower leg LL2
> chainSimpRot([T2,UL2,1,q99], [UL2,LL2,1,q10]):

Rotation from lower leg LL1 foot F1
> chainSimpRot ([LL1,T3,3,thetall, [T3,T4,2,theta2], [T4,F1,1,theta3]):

Rotation from lower leg LL2 foot F2
> chainSimpRot ([LL2,T5,3,thetad], [T5,T6,2,thetab] , [T6,F2,1,theta6]):

Geometry

rbody_hip_center:=N &ev [ql,92,93];

r_torso_cm_rel:=B &ev [rx,ry,rz];

rlegl_jointpos:=T2 &ev [r111,0,0];

rleg2_jointpos:=T2 &ev [r121,0,0];

rlegl_upper_cm_rel:= UL1 &ev [rliul,rliu2,rliu3];

rleg2_upper_cm_rel:= UL2 &ev [rl2ul,rl2u2,rl2u3];

rlegl_upper_jointpos_rel:= UL1 &ev [0,11u,0];

rleg2_upper_jointpos_rel:= UL2 &ev [0,12u,0];

rlegl_lower_cm_rel:= LL1 &ev [r1111,r1112,r1113];

rleg2_ lower_cm_rel:= LL2 &ev [r1211,r1212,r1213];

rbody_cm:=mkc (rbody_hip_center,r_torso_cm_rel);
rleglupper_cm:=mkc(rbody_hip_center,rlegl_jointpos,rlegl_upper_cm_rel):

rleg2upper_cm:=mkc (rbody_hip_center,rleg2_jointpos,rleg2_upper_cm_rel):
rlegllower_cm:=mkc(rbody_hip_center,rlegl_jointpos,rlegl_upper_jointpos_rel,rlegl_lower_cm_rel):
rleg2lower_cm:=mkc (rbody_hip_center,rleg2_jointpos,rleg2_upper_jointpos_rel,rleg2_lower_cm_rel):

VVVVVVVVVVYVYVYVYVYV

New kde’s

v_body_hipcenter:= T2 &ev [ul,u2,u3];

> omega_body:=T2 &ev [u4,u5,u6];

> v_body_hipcenter_qt:= diffFrameTime(rbody_hip_center,N);
> omega_body_qt:=N &aV B;

v

Note that the kde for toe contact points are included
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64 APPENDIX C. MAPLE/SOPHIA CODE

> ikde:={seq((T2 &to v_body_hipcenter &c i) = (T2 &to v_body_hipcenter_qt) &c i,i=1..3),
seq((T2 &to omega_body &c i) = (T2 &to omega_body_qt) &c i,i=1..3),
seq(p.(2*i-1).t=-qlt,i=1..8),
seq(p.(2*i).t=-q3t,i=1..8),
seq(theta.i.t=0,i=1..6):

> kde_new := simplify(solve(ikde, {seq(q.i.t,i=1..
seq(p.i.t,i=1..
seq(theta.i.t,i=1..6)}) union

{seq(q.i.t=u.i,i=7..10)}):

Velocities and angular velocities

> v_body_cm := ccpt(map(Esimplify,subs(kde_new,cdft(rbody_cm,N)))):

> vleglupper_cm ccpt (map(Esimplify, subs (kde_new,cdft(rleglupper_cm,N)))):
> vleg2upper_cm := ccpt(map(Esimplify,subs(kde_new,cdft(rleg2upper_cm,N)))):
> vlegllower_cm := ccpt(map(Esimplify,subs(kde_new,cdft(rlegllower_cm,N)))):
> vleg2lower_cm := ccpt(map(Esimplify,subs(kde_new,cdft(rleg2lower_cm,N)))):
>
>
>
>

omega_leglupper &simp subs(kde_new,N &aV UL1):
omega_leg2upper &simp subs(kde_new,N &aV UL2):
omega_legllower &simp subs(kde_new,N &aV LL1):
omega_leg2lower &simp subs(kde_new,N &aV LL2):

Momentum and angular momentum

> pbody:=csm(m_body, v_body_cm):

> pleglupper:=csm(mliu,vleglupper_cm):
> pleg2upper:=csm(ml2u,vleg2upper_cm) :
> plegllower:=csm(mlil,vlegilower_cm):
> pleg2lower:=csm(ml2l,vleg2lower_cm):

I_body:=EinertiaDyad(I_B11,I_B22,I_B33,I_B12,I_B13,I_B23,B):
hbody:=I_body &o omega_body:

Vv Vv

> I_leglupper:=EinertiaDyad(I_LU111,I_LU122,I_LU133,I_LU112,I_LU113,I_LU123,UL1):
> hleglupper:=I_leglupper &o omega_leglupper:

> I_leg2upper:=EinertiaDyad(I_LU211,I_LU222,I_LU233,I_LU212,I_LU213,I_LU223,UL2):
> hleg2upper:=I_leg2upper &o omega_leg2upper:

> I_legllower:=EinertiaDyad(I_LL111,I_LL122,I_LL133,I_LL112,I_LL113,I_LL123,LL1):
> hlegllower:=I_legllower &o omega_legllower:

> I_leg2lower:=EinertiaDyad(I_LL211,I_LL222,I_LL233,I_LL212,I_LL213,I_LL223,LL2):
> hleg2lower:=I_leg2lower &o omega_leg2lower:

Timediff of Mom and ang. mom

> ptbody :=map (Esimplify, subs(kde_new, cdft (pbody,N))):
> ptleglupper :=map(Esimplify, subs(kde_new,cdft(pleglupper,N))):
> ptleg2upper :=map(Esimplify, subs(kde_new, cdft (pleg2upper,N))):
> ptlegllower:=map(Esimplify, subs(kde_new,cdft(plegllower,N))):
> ptleg2lower:=map(Esimplify, subs(kde_new,cdft (pleg2lower,N))):
> htbody:=mkc( &simp subs(kde_new,N &fdt hbody) ):

> htleglupper:=mkc( &simp subs(kde_new,N &fdt hleglupper) ):

> htleg2upper:=mkc( &simp subs(kde_new,N &fdt hleg2upper) ):

> htlegllower:=mkc( &simp subs(kde_new,N &fdt hlegilower) ):

> htleg2lower:=mkc( &simp subs(kde_new,N &fdt hleg2lower) ):

Assembly of K velocity vector and tangent vector creation

> vK:=[ v_body_cm, vleglupper_cm, vleg2upper_cm, vlegllower_cm, vleg2lower_cm,
> mkc (omega_body) , mkc(omega_leglupper), mkc(omega_leg2upper),

> mkc(omega_legllower), mkc(omega_leg2lower) ]:

> tauK:=Kctau(vK, [seq(u.i,i=1..10)]):

Toe forces

Common stuff
Procedure for finding out what variables an expression depends on given a list of possible variables
> check_args:=proc(expr,args)
> local temp_args,i;
temp_args:=[]:
for i in args do
if depends(expr,i) then temp_args:=[op(temp_args),il; fi;

od;
RETURN (op(temp_args));
end:

VVVVV VYV

args:=seq(q.i,i=1..10),seq(theta.i,i=1..6),seq(u.i,i=1..10);

First foot first toe 11



Position and velocity of toell

> rtoell:=&
>
> vtoell:=&

simp (N &to (rbody_hip_center &++ rlegl_jointpos &++ rlegl_upper_jointpos_rel &++
(LL1 &ev [0,111,0]) &++ (F1 &ev [xtl1l,ytll,zt11])) ):
simp (N &to subs(kde_new,N &fdt rtoell)):

Find the variables that each coord. & vel. of the toepos depends on

> x11_args:
> yl11_args:
> z11_args:
> vx11_args
> vyll_args
> vzll_args

Torque calc
> toell_cml
>

>
>
>

Common sube
> toell_lis

VVVVVYVYV

Substitutio

> dset1l:=[
D[2] (to
toefx
D[3] (to
toefx
D[2] (to
toefy
D[3] (to
toefy
D[2] (to
toefz
D[3] (to
toefz
D[6] (to
toefx
D[6] (to
toefz
seq(di
seq(di
x11(x1
vx11 (v
seq(di
seq(di
y11(y1
vyll(v
seq(di
seq(di
z11(z1
vzl1l (v

VVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYV

irst foot
x12_args:
yl12_args:
z12_args:
vx12_args
vyl2_args
vz12_args

from_toel

VVVVVVVVVVVVVYVYVHT

=check_args((rtoell &c 1)-qi,[args]):
=check_args(rtoell &c 2, [args]):
=check_args((rtoell &c 3)-q3, [args]):
:=check_args(vtoell &c 1,[args]):
:=check_args(vtoell &c 2, [args]):
:=check_args(vtoell &c 3, [args]):

ulated as vector from cm of lower leg to contact point cross applied force
11_cross_f:=&simp ((N &to ((LL1 &ev [0,111,0]) &++ (F1 &ev [xtll,ytll,zt11]) &--
(LL1 &ev [r1111,r1112,r1113]))) &xx
(N &ev [toefx(statll,x11(x11l_args),vxll(vxll_args),kX,dX,pl),
toefy(statll,y11(yll_args),vyl1(vyll_args),kY,dY),
toefz(statll,z11(z11_args),vzl1(vzll_args),kZ,dZ,p2)]1)):

xpression used later in calculations

t:=[x11=(rtoell &c 1)-ql,yll=rtoell &c 2,z11=(rtoell &c 3)-q3,
vxll=vtoell &c 1,vyll=vtoell &c 2,vzll=vtoell &c 3,
fxll=toefx(stat11l,x11(x11_args),vx11(vx1ll_args),kX,dX,pl),
fyli=toefy(statill,y11(yll_args),vyli(vyll_args),kY,dY),
fzll=toefz(statl1l,z11(z11_args),vz11(vzll_args),kZ,dZ,p2),
tx11=toell_cmlll_cross_f &c 1,
tyll=toell_cmlll_cross_f &c 2,

tzll=toell_cmlll_cross_f &c 3]:

ns used in stability calculations

efx) (stat1l,x11(x11_args),vx11(vx1l_args),kX,dX,pl)=
_x(stat1l,x11,vx11,kX,dX,pl),

efx) (stat1l,x11(x11_args),vx11(vxll_args),kX,dX,pl)=
_vx(stat11l,x11,vx11,kX,dX,pl),

efy) (stat1l,y11(y1l_args),vyll(vyll_args),kY,dY)=
_y(statl1,y11,vyl1,kY,dY),

efy) (stat1l,y11(y1l_args),vyll(vyll_args),kY,dY)=
_vy(statil,yl11,vyll,kY,dY),

efz) (stat11,z11(z11_args),vzi1(vzll_args),kZ,dZ,p2)=
_z(stat11,z11,vz11,kZ,dZ,p2),

efz) (stat1l,z11(z11_args),vz11(vzll_args) ,kZ,dZ,p2)=
_vz(statll,z11,vz11,kZ,dZ,p2),

efx) (stat1l,x11(x11_args),vx11(vx1l_args),kX,dX,pl)=
_p(stati1l,x11,vx11,kX,dX,pl),

efz) (stat1l,z11(z11_args),vz11(vzll_args) ,kZ,dZ,p2)=
_p(statil,z11,vz11,kZ,dZ,p2),
ff(x11(x11_args),i)=dx11d.i,i=x11_args),
ff(vx11(vx1l_args),i)=dvx1id.i,i=vx1l_args),
1_args)=x11,

x11_args)=vxll,
ff(y11(yll_args),i)=dylid.i,i=y11_args),
ff(vyll(vyll_args),i)=dvylid.i,i=vyll_args),
1_args)=yi1,

yl1l_args)=vyll,
ff(z11(z11_args),i)=dz11d.i,i=z11_args),
ff(vz11(vzll_args),i)=dvzlid.i,i=vz1l_args),
1_args)=z11,

z11_args)=vzi11];

second toe 12
=x11_args:
=yll_args:
=z11_args:
:=vx1ll_args:
:=vyll_args:
:=vzll_args:

1_to_toel2_sset:={
xtll=xt12,ytl11=yt12,zt11=2t12,
r1111=r1111,r1112=r1112,r1113=r1113,
toefx(statll,x11(x11_args))=toefx(statl2,x12(x12_args)),
toefy(statll,y11(yll_args))=toefy(statl2,y12(y12_args)),
toefz(statll,z11(z11_args))=toefz(statl2,z12(z12_args)),
x11=x12,vx11=vx12,
yli=y12,vyll=vyl2,
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> z11=z12,vz11=vz12,

> statli=statl2,

> p1=p3,p2=p4,

> seq(dx11d.x11_args[i]=dx12d.x12_args[i] ,i=1..nops([x12_args])),

> seq(dvx11d.vx1l_args[i]=dvx12d.vx12_args[i],i=1..nops([vx12_args])),
> seq(dyl1ld.y11_args[i]=dyl12d.y12_args[i] ,i=1..nops([yl12_args])),

> seq(dvylld.vyll_args[i]=dvy12d.vyl2_args[i],i=1..nops([vyl2_args])),
> seq(dz11d.z11_args[i]=dz12d.z12_args[i] ,i=1..nops([z12_args])),

> seq(dvzlld.vzll_args[i]=dvz12d.vz12_args[i],i=1..nops([vz12_args])),
> fx11=£fx12,fy11=£fy12,fz11=£z12,

> tx11=tx12,tyl1=tyl12,tz11=tz12}:

>

> rtoel2:=subs(from_toell_to_toel2_sset,rtoell):

> vtoel2:=subs(from_toell_to_toel2_sset,vtoell):

> toel2_cmlll_cross_f:=subs(from_toell_to_toel2_sset,toell_cmlll_cross_f):

> toel2_list:=subs(from_toell_to_toel2_sset,toell_list):

> dset12:=subs(from_toell_to_toel2_sset,dsetll):

First foot third toe 13

Position & velocity of toel3

> rtoel13:=g&simp (N &to (rbody_hip_center &++ rlegl_jointpos &++
rlegl_upper_jointpos_rel &++
(LL1 &ev [0,111,0]) &++
(F1 &ev [xt13,yt13,zt13]1))):

> vtoel3:=&simp (N &to subs(kde_new,N &fdt rtoel3)):

Find the variables that each coord. & vel. of the toepos depends on
> x13_args:=check_args((rtoel3 &c 1)-qi, [args]):

> y13_args:=check_args(rtoel3d &c 2, [args]):

> z13_args:=check_args((rtoel3 &c 3)-q3, [args]):

> vx13_args:=check_args(vtoel3 &c 1, [args]):

> vyl13_args:=check_args(vtoel3 &c 2, [args]):

> vz13_args:=check_args(vtoel3 &c 3, [args]):

Torque calculated as vector from cm of lower leg to contact point cross applied force
> toel3_cmlll_cross_f:=&simp ((N &to ((LL1 &ev [0,111,0]) &++
(F1 &ev [xt13,yt13,zt13]) &—-
(LL1 &ev [rl1l11,r1112,r1113]))) &xx
> (N &ev [toefx(stat13,x13(x13_args),vx13(vx13_args),kX,dX,p5),
> toefy(stat13,y13(y13_args),vyl3(vyl3_args),kY,dY),
> toefz(stat13,z13(z13_args) ,vz13(vz13_args),kZ,dZ,p6)])):

Common subexpression used later in calculations

> toel3_list:=[x13=(rtoel3 &c 1)-ql,yl3=rtoeld &c 2,

z13=(rtoel3 &c 3)-q3,vx13=vtoeld &c 1,

vyl3=vtoeld &c 2,vz13=vtoeld &c 3,
fx13=toefx(stat13,x13(x13_args),vx13(vx13_args),kX,dX,p5),
fyi13=toefy(stat13,y13(yl3_args),vyl3(vyl3_args),kY,dY),
fz13=toefz(stat13,z13(z13_args) ,vz13(vz13_args) ,kZ,dZ,p6),
tx13=toel3_cmlll_cross_f &c 1,

tyl3=toel3_cmlll_cross_f &c 2,

tz13=toe13_cmlll_cross_f &c 3]:

V VVV VYV

Substitutions used in stability calculations

> dset13:=[

> D[2] (toefx) (stat13,x13(x13_args),vx13(vx13_args),kX,dX,p5)=toefx_x(stat13,x13,vx13,kX,dX,p5),
D[3] (toefx) (stat13,x13(x13_args),vx13(vx13_args) ,kX,dX,p5)=toefx_vx(stat13,x13,vx11,kX,dX,p5),
D[2] (toefy) (stat13,y13(y13_args),vyl3(vyl3_args),kY,dY)=toefy_y(stat13,y13,vy13,kY,dY),
D[3] (toefy) (stat13,y13(y13_args),vyl3(vyl3_args),kY,dY)=toefy_vy(stati3,y13,vy13,kY,dy),
D[2] (toefz) (stat13,z13(z13_args),vz13(vz13_args) ,kZ,dZ,p6)=toefz_z(stat13,z13,vz13,kZ,dZ,p6),
D[3] (toefz) (stat13,z13(z13_args),vz13(vz13_args),kZ,dZ,p6)=toefz_vz(stat13,z13,vz13,kZ,dZ,p6),
D[6] (toefx) (stat13,x13(x13_args),vx13(vx13_args),kX,dX,pb)=toefx_p(stat13,x13,vx13,kX,dX,p5),
D[6] (toefz) (stat13,z13(z13_args),vz13(vz13_args),kZ,dZ,p6)=toefz_p(stat13,z13,vz13,kZ,dZ,p6),
seq(diff (x13(x13_args),i)=dx13d.i,i=x13_args),

seq(diff (vx13(vx13_args),i)=dvx13d.i,i=vx13_args),

x13(x13_args)=x13,

vx13(vx13_args)=vx13,

seq(diff (y13(y13_args),i)=dy13d.i,i=y13_args),

seq(diff (vy13(vyl3_args),i)=dvyl3d.i,i=vyl13_args),

y13(y13_args)=y13,

vy13(vyl13_args)=vyl3,

seq(diff (z13(z13_args),i)=dz13d.i,i=z13_args),

seq(diff (vz13(vz13_args),i)=dvz13d.i,i=vz13_args),

z13(z13_args)=z13,

vz13(vz13_args)=vz13]:

VVVVVVVVVVVVVVYVYVYVYVYV

First foot second toe 14
> x14_args:=x13_args:



yl14_args:=y13_args:
z14_args:=z13_args:
vx1l4_args:=vx13_args:
vyld_args:=vyl3_args:
vzl4_args:=vzl3_args:

from_toel3_to_toeld_sset:={
xt13=xt14,yt13=yt14,zt13=zt14,
r1111=r1111,r1112=r1112,r1113=r1113,
toefx(stat13,x13(x13_args) )=toefx(stat14,x14(x14_args)),
toefy(stat13,y13(y13_args))=toefy(statld,yl4(yl4_args)),
toefz(stat13,z13(z13_args))=toefz(statl4,z14(z14_args)),
x13=x14,vx13=vx14,
y13=y14,vyl13=vyl4,
z13=z14,vz13=vz14,
stat13=stati4,
p5=p7,p6=p8,
seq(dx13d.i=dx14d.i,i=x14_args),
seq(dvx13d.i=dvx14d.i,i=vx14_args),
seq(dy13d.i=dy14d.i,i=y14_args),
seq(dvy13d.i=dvyl4d.i,i=vyl4_args),
seq(dz13d.i=dz14d.i,i=z14_args),
seq(dvz13d.i=dvz14d.i,i=vz14_args),
fx13=fx14,fy13=£fy14,fz13=fz14,
tx13=tx14,ty13=ty14,tz13=tz14}:

rtoeld:=subs(from_toel3_to_toeld_sset,rtoel3d):
vtoeld:=subs(from_toel3_to_toeld_sset,vtoel3d):
toel4_cmlll_cross_f:=subs(from_toel3_to_toeld_sset,toel3_cmlll_cross_f):
toeld_list:=subs(from_toel3_to_toeld_sset,toel3_list):
dset14:=subs(from_toel3_to_toeld_sset,dset13):

VVVVVVVVVVVVVVVVVVVYVVVVVVVVVVVYV

econd foot first toe 21
from_legl_to_leg2:={q7=q9,98=q10,u7=u9,u8=ul0, thetal=thetad, theta2=thetab,theta3=theta6:

x21_args:=seq(subs(from_legl_to_leg2, [x11_args]) [i],i=1.
y21_args:=seq(subs(from_legl_to_leg2, [yll_args]) [i],i=1.
z21_args:=seq(subs(from_legl_to_leg2, [z11_args]) [i],i=1.

.nops ([x11_args])):
.nops([yl1_args])):
.nops ([z11_args])):
vx21_args:=seq(subs(from_legl_to_leg2, [vxll_args]) [i],i=1.
vy21_args:=seq(subs(from_legl_to_leg2, [vyll_args]) [i],i=1.
vz21_args:=seq(subs(from_legl_to_leg2, [vzll_args]) [i],i=1.

.nops([vx1l_args])):
.nops([vyll_args])):
.nops([vzll_args])):

from_toell_to_toe2l_sset:={
xt11=xt21,yt11=yt21,zt11=2zt21,
r1111=r1211,r1112=r1212,r1113=r1213,
r111=r121,
11u=12u,
111=121,
toefx(statl1l,x11(x11_args))=toefx(stat21,x21(x21_args)),
toefy(statll,yl11(yll_args))=toefy(stat21,y21(y21_args)),
toefz(statll,z11(z11_args))=toefz(stat21,z21(z21_args)),
x11=x21,vx11=vx21,
yli=y21,vyll=vy21,
z11=z21,vz11=vz21,
statli=stat21,
p1=p9,p2=p10,
seq(dx11d.x11_args[i]=dx21d.x21_args[i],i=1..nops([x21_args])),
seq(dvx11d.vx1l_args[i]=dvx21d.vx21_args[i],i=1..nops([vx21_args])),
dx11dq7=dx21dq9,dx11dq8=dx21dq10,
dvxlldg? dvx21dq9,dvx11dq8=dvx21dq10,
dx11du7=dx21du9,dx11du8=dx21du1o0,
dvx11du7= dvx21du9 dvx11du8= dvx21du10,
seq(dylld.yll_args[i]=dy21d.y21_args[i],i=1..nops([y21_args])),
seq(dvylid.vyll_args[i]=dvy21d.vy21_args[i],i=1..nops([vy21_args])),
dy11dq7=dy21dq9,dyl1dq8=dy21dq10,
dvy 11dg7 dvy21dq9,dvyl11dq8=dvy21dqi0,
dylidu dy21du9 dy11du8=dy21dulo,
dvylidu7=dvy21du9,dvylidu8=dvy21dulo,
seq(dz11d.z11_args[i]=dz21d.z21_args[i] ,i=1..nops([z21_args])),
seq(dvzilld.vzll_args[i]=dvz21d.vz21_args[i],i=1..nops([vz21_args])),
dz11dq7=dz21dq9,dz11dq8=dz21dq10,
dvz11dq7=dvz21dq9,dvz11dq8=dvz21dq10,
dz11du7=dz21du9,dz11du8=dz21dulo0,
dvzi11du7=dvz21du9,dvz11du8=dvz21duilo,
fx11=£fx21,fy11=£fy21,fz11=£z21,
tx11=tx21,tyl1=ty21,tz11=tz21}:

rtoe21:=subs(from_legl_to_leg2,subs(from_toell_to_toe2l_sset,rtoell)):
vtoe2l:=subs(from_legl_to_leg2,subs(from_toell_to_toe2l_sset,vtoell)):

toe21_list:=subs(from_legl_to_leg2,subs(from_toell_to_toe21_sset,toell_list)):
dset21:=subs(from_legl_to_leg2,subs(from_toell_to_toe2l_sset,dsetil)):

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVVYVYVVQR

toe21_cmll2_cross_f:=subs(from_legl_to_leg2,subs(from_toell_to_toe2l_sset,toell_cmlll_cross_f)):
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Second foot second toe 22
x22_args:=x21_args:
y22_args:=y21_args:
z22_args:=z21_args:
vx22_args:=vx2l_args:
vy22_args:=vy2l_args:
vz22_args:=vz2l_args:

from_toe21_to_toe22_sset:={
xt21=xt22,yt21=yt22,zt21=2zt22,
r1211=r1211,r2112=r1212,r1213=r1213,
toefx(stat21,x21(x21_args))=toefx(stat22,x22(x22_args)),
toefy(stat21,y21(y21_args))=toefy(stat22,y22(y22_args)),
toefz(stat21,2z21(z21_args))=toefz(stat22,z22(z22_args)),
x21=x22,vx21=vx22,
y21=y22,vy21=vy22,
z21=222,vz21=vz22,
stat21=stat22,
p9=p11,p10=p12,
seq(dx21d.x21_args[i]=dx22d.x22_args[i] ,i=1..nops([x22_args])),
seq(dvx21d.vx21_args[i]=dvx22d.vx22_args[i],i=1..nops([vx22_args])),
seq(dy21d.y21_args[i]=dy22d.y22_args[i] ,i=1..nops([y22_args])),
seq(dvy21d.vy21_args[i]=dvy22d.vy22_args[i],i=1..nops([vy22_args])),
seq(dz21d.z21_args[i]=dz22d.z22_args[i] ,i=1..nops([z22_args])),
seq(dvz21d.vz21_args[i]=dvz22d.vz22_args[i],i=1..nops([vz22_args])),
£x21=£fx22,fy21=£y22,£2z21=£z22,
tx21=tx22,ty21=ty22,tz21=tz22}:

rtoe22:=subs(from_toe21_to_toe22_sset,rtoe21):
vtoe22:=subs(from_toe21_to_toe22_sset,vtoe2l):
toe22_cmll2_cross_f:=subs(from_toe21_to_toe22_sset,toe21_cmll2_cross_f):
toe22_list:=subs(from_toe21_to_toe22_sset,toe2l_list):
dset22:=subs(from_toe21_to_toe22_sset,dset21);
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econd foot second toe 23
x23_args:=seq(subs(from_legl_to_leg2, [x13_args]) [i],i=1..nops([x13_args]));
y23_args:=seq(subs (from_legl_to_leg2, [y13_args]) [i],i=1..nops([y13_args])):
z23_args:=seq(subs(from_legl_to_leg2, [z13_args]) [i],i=1..nops([z13_args])):
vx23_args:=seq(subs(from_legl_to_leg2, [vx13_args]) [i],i=1. .nops([vx13_args])):
vy23_args:=seq(subs(from_legl_to_leg2, [vyl3_args]) [i],i=1..nops([vyl3_args])):
vz23_args:=seq(subs(from_legl_to_leg2, [vz13_args]) [i],i=1..nops([vz13_args])):

from_toel3_to_toe23_sset:={
xt13=xt23,yt13=yt23,zt13=zt23,
r1111=r1211,r1112=r1212,r1113=r1213,
rlii1=rl21,
11u=12u,
111=121,
toefx(stat13,x13(x13_args) )=toefx(stat23,x23(x23_args)),
toefy(stat13,y13(y13_args))=toefy(stat23,y23(y23_args)),
toefz(stat13,z13(z13_args) )=toefz(stat23,z23(z23_args)),
x13=x23,vx13=vx23,
y13=y23,vy13=vy23,
z13=z23,vz13=vz23,
stat13=stat23,
p5=p13,p6=pl4,
seq(dx13d.x13_args[i]=dx23d.x23_args[i] ,i=1..nops([x23_args])),
seq(dvx13d.vx13_args[i]=dvx23d.vx23_args[i],i=1..nops([vx23_args])),
seq(dy13d.y13_args[i]=dy23d.y23_args[i] ,i=1..nops([y23_args])),
seq(dvy13d.vyl13_args[i]=dvy23d.vy23_args[i],i=1..nops([vy23_args])),
seq(dz13d.z13_args[i]=dz23d.z23_args[i] ,i=1..nops([z23_args])),
seq(dvz13d.vz13_args[i]=dvz23d.vz23_args[i],i=1..nops([vz23_args])),
dx13dq7=dx23dq9, dx13dq8=dx23dq10,
dvx13dg7=dvx23dq9,dvxlqu8=dvx23dq10,
dx13du7=dx23du9,dx13du8=dx23du10,
dvx13du7=dvx23du9,dvx13du8=dvx23duio,
dy13dq7=dy23dq9,dy13dq8=dy23dq10,
dvy13dg7=dvy23dq9,dvylqu8=dvy23dq10,
dy13du7=dy23du9,dy13du8=dy23dulo,
dvy13du7=dvy23du9,dvy13du8=dvy23dulo,
dz13dq7=dz23dq9,dz13dq8=dz23dq10,
dvz13dq7=dvz23dq9,dvz13dq8=dvz23dq1l0,
dz13du7=dz23du9,dz13du8=dz23du10,
dvz13du7=dvz23du9,dvz13du8=dvz23duilo,
fx13=£fx23,fy13=£fy23,£fz13=£z23,
tx13=tx23,ty13=ty23,tz13=tz23}:

rtoe23:=subs(from_legl_to_leg2,subs(from_toel3_to_toe23_sset,rtoel3)):
vtoe23:=subs(from_legl_to_leg2,subs(from_toel3_to_toe23_sset,vtoel3)):
toe23_cmll2_cross_f:=subs(from_legl_to_leg2,subs(from_toel3_to_toe23_sset,toel3_cmlll_cross_f)):
toe23_list:=subs(from_legl_to_leg2,subs(from_toel3_to_toe23_sset,toel3d_list)):
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> dset23:=subs(from_legl_to_leg2,subs(from_toel3_to_toe23_sset,dset13)):

Second foot second toe 24
x24_args:=x23_args:
y24_args:=y23_args:
z24_args:=z23_args:
vx24_args:=vx23_args:
vy24_args:=vy23_args:
vz24_args:=vz23_args:

from_toe23_to_toe24_sset:={
xt23=xt24,yt23=yt24,zt23=2zt24,
r1211=r1211,r2112=r1212,r1213=r1213,
toefx(stat23,x23(x23_args))=toefx(stat24,x24(x24_args)),
toefy(stat23,y23(y23_args) )=toefy(stat24,y24(y24_args)),
toefz(stat23,2z23(z23_args))=toefz(stat24,z24(z24_args)),
x23=x24,vx23=vx24,
y23=y24,vy23=vy24,
z23=2z24,vz23=vz24,
stat23=stat24,
p13=p15,pl14=pi6,
seq(dx23d.i=dx24d.i,i=x24_args),
seq(dvx23d.i=dvx24d.i,i=vx24_args),
seq(dy23d.i=dy24d.i,i=y24_args),
seq(dvy23d.i=dvy24d.i,i=vy24_args),
seq(dz23d.i=dz24d.i,i=224_args),
seq(dvz23d.i=dvz24d.1i,i=vz24_args),
£x23=£fx24,fy23=£fy24,fz23=£z24,
tx23=tx24,ty23=ty24,tz23=tz24}:

rtoe24:=subs(from_toe23_to_toe24_sset,rtoe23):
vtoe24:=subs(from_toe23_to_toe24_sset,vtoe23):
toe24_cmll2_cross_f:=subs(from_toe23_to_toe24_sset,toe23_cmll2_cross_f):
toe24_list:=subs(from_toe23_to_toe24_sset,toe23_list):
dset24:=subs(from_toe23_to_toe24_sset,dset23):
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Knee & Hip for leg 1 & 2
> kneel_list:=[Tlegll=knee(statkl,q8,u8,knee_k,knee_d,knee_d_reb)]:
> knee2_list:=[Tleg2l=knee(statk2,q10,ul0,knee_k,knee_d,knee_d_reb)]:

dset_knees:=[

diff (knee(statk1l,q8,u8,knee_k,knee_d,knee_d_reb),q8)

= knee_q(statk1,q8,u8,knee_k,knee_d,knee_d_reb),
diff (knee(statkl,q8,u8,knee_k,knee_d,knee_d_reb) ,u8)

= knee_u(statk1l,q8,u8,knee_k,knee_d,knee_d_reb),
diff (knee(statk2,q10,u10,knee_k,knee_d,knee_d_reb),q10)

= knee_q(statk2,q10,ul0,knee_k,knee_d,knee_d_reb),
diff (knee(statk2,q10,ul10,knee_k,knee_d,knee_d_reb),ul0)

= knee_u(statk2,q10,ul0,knee_k,knee_d,knee_d_reb)]:

hipl_list:=[Tlegl=hip(q4,q7,ud,u?,hip_k,hip_delta,hip_d)]:
hip2_list:=[Tleg2=hip(q4,q9,u4,ud,hip_k,hip_delta,hip_d)]:

dset_hips:=[
diff(hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d),q4)
diff(hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d),q7)
diff (hip(q4,q7,ud,u7,hip_k,hip_delta,hip_d),u4)
diff(hip(q4,q7,u4,u7,hip_k,hip_delta,hip_d),u7)
diff (hip(q4,q9,ud,ud,hip_k,hip_delta,hip_d),q4)
diff(hip(g4,q9,u4,ud,hip_k,hip_delta,hip_d),q9)
diff (hip(q4,99,ud,ud,hip_k,hip_delta,hip_d),ud)

hip_q_1(q4,q7,u4,u7,hip_k,hip_delta,hip_d),
hip_q_2(q4,q7,u4,u7,hip_k,hip_delta,hip_d),
hip_u_1(g4,q7,u4,u7,hip_k,hip_delta,hip_d),
hip_u_2(q4,q7,u4,u7,hip_k,hip_delta,hip_d),
hip_q_1(g4,99,u4,u9,hip_k,hip_delta,hip_d),
hip_q_2(q4,99,u4,ud,hip_k,hip_delta,hip_d),
hip_u_1(g4,99,u4,u9,hip_k,hip_delta,hip_d),
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orces and torques
Fbody:=N &ev [0, -m_body*g*cos(theta), -m_body*g*sin(theta)]:
Tbody:=T2 &ev [Tlegl+Tleg2,0,0]:

F

>

>

>

> Fleglupper:=N &ev [0,-mllu*g*cos(theta),-mlluxg*sin(theta)]:
> Tleglupper:=T2 &ev [-Tlegl+Tlegll,0,0]:
>
>
>
>
>

Fleg2upper:=N &ev [0,-ml2u*g*cos(theta),-ml2u*g*sin(theta)]:
Tleg2upper:=T2 &ev [-Tleg2+Tleg2l,0,0]:

Flegllower:=N &ev [fx11+fx12+fx13+fx14,
fyl1+fy12+fy13+fyl4-ml1l*g*cos(theta),
fz11+£fz12+fz13+fz14-m111*g*sin(theta)]:

> Tlegllower:=(UL1 &ev [-Tlegll,0,0]) &++ (N &ev [tx11l+tx12+tx13+tx14,
tyll+tyl12+ty13+tyl4,
tz11+tz12+tz13+tz14]):
> Fleg2lower:=N &ev [fx21+fx22+fx23+fx24,

diff(hip(q4,99,ud,u9,hip_k,hip_delta,hip_d),u9) = hip_u_2(q4,q9,u4,ud,hip_k,hip_delta,hip_d)]:
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fy21+fy22+fy23+fy24-m121*g*cos (theta),
£221+£222+f223+fz24-m121*g*sin(theta)]:
> Tleg2lower:=(UL2 &ev [-Tleg2l,0,0]) &++ (N &ev [tx21+tx22+tx23+tx24,
ty21+ty22+ty23+ty24,
tz21+t222+t223+t224] ) :

Kanes method
> pKt:=[ptbody, ptleglupper, ptleg2upper, ptlegllower, ptleg2lower,
htbody, htleglupper, htleg2upper, htlegilower, htleg2lower]:
> RKt:=[mkc(Fbody) ,mkc(Fleglupper) ,mkc(Fleg2upper) ,mkc(Flegllower) ,mkc(Fleg2lower),
mkc (Tbody) ,mkc(Tleglupper) ,mkc(Tleg2upper) ,mkc (Tlegllower) ,mkc(Tleg2lower)]:
> kane_eq:=map(simplify, ckane(tauk,pKt,RKt)):

Export of dyn egs to Mathlab
Common
Common subexpressions

> cse:=[op(toell_list),op(toel2_list),op(toel3_list),op(toeld_list),

> op(toe21_list),op(toe22_1list),op(toe23_list),op(toe24_list),
> op(kneel_list),op(knee2_list),
> op(hipl_list),op(hip2_list)]:

Translating differentiated functions into the appropriate c-function calls
> dset:=[op(dset11),op(dseti2),op(dset13),op(dsetid),
op(dset21),op(dset22) ,op(dset23),op(dset24),
op(dset_knees),op(dset_hips)]:
> uts := [ult,u2t,uldt,udt,ubt,ubt,u’t,ust,udt,ulot]:
> kde_new_ordered:=[seq(q.i.t=subs(kde_new,q.i.t),i=1..10),
seq(p.i.t=subs(kde_new,p.i.t),i=1..16),
seq(theta.i.t=0,i=1..6)]:
> qts := [qlt,q2t,q3t,q4t,q5t,q96t,q7t,q8t,q9t,ql0t,
plt,p2t,p3t,p4t,p5t,p6t,p7t,p8t,p9t,p10t,pllt,p12t,pl13t,pl4t,plbt,pl6t,
thetalt,theta2t,theta3t,thetadt,thetabt,theta6t]:
> vars:=[ql,q92,93,94,95,96,97,98,99,q10,
pl,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,
thetal,theta2,theta3,thetad,thetab,thetat,
ul,u2,u3,u4,ub,u6,u7,u8,ud,ull]:

Parameters

para:=[

IrX,ry,rz,

rlil,r121,

rliul,rliu2,r11u3,

rl12ul,rl2u2,r12u3,

11u,12u,

r1111,r1112,r1113,

r1211,r1212,r1213,
I_B11,1_B22,T_B33,I_B12,I_B13,I_B23,
I_LU111,I_LU122,T_LU133,I_LU112,I_LU113,I_LU123,
I_LU211,I_LU222,I_LU233,I_LU212,I_LU213,I_LU223,
I_LL111,7 LL122,T_LL133,I_LL112,T_LL113,I_LL123,
I_LL211,I_LL222,I_LL233,I_LL212,I_LL213,I_LL223,
m_body,mliu,ml2u,ml11,ml121,g, theta,
kX,dX,kY,dY,kZ,dZ,

knee_k,knee_d,knee_d_reb,

hip_k,hip_delta,hip_d,

statkl,statk?2,

xt1l,yt11,zt11,statll,

xt12,yt12,zt12,stat12,

xt13,yt13,zt13,statl3,

xt14,yt14,zt14,statl4,

xt21,yt21,zt21,stat21,

xt22,yt22,zt22,stat22,

xt23,yt23,zt23,stat23,

xt24,yt24,zt24,stat24,

poinl,poin2,

111,1217:

b:=[

[yli=rtoell &c 2,yl2=rtoel2 &c 2,yl13=rtoel3 &c 2, yld=rtoeld &c 2,
y21=rtoe2l &c 2,y22=rtoe22 &c 2,y23=rtoe23 &c 2, y24=rtoe24 &c 2],
[y11,y12,y13,y14,y21,y22,y23,y24,98,q10,97,99]
1,
[1,1,1,1,1,1,1,1,1,1,1,1],
[stat11l,stat12,stat13,stat14,stat21,stat22,stat23,stat24,statkl,statk2,poinl,poin2]

inc:=‘includes‘=[*’ *walker_3D_external.c’’‘]:
path:=‘*:
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Simulation

> exmex(‘walker_3D_8_ankle2‘,path, [ [op(kde_new_ordered)]], [kane_eq,uts], [op(subs(dset,cse))],
> [op(qts) ,op(uts)],vars,parameters=para,’v5’=[’events’=b],inc);



Toeposfunc

> toell := matrix(1,3,[rtoell &c 1, rtoell &c 2, rtoell &c 3]):
> toel2 := matrix (1,3, [rtoel2 &c 1, rtoel2 &c 2, rtoel2 &c 3]):
> toel3 := matrix (1,3, [rtoel3 &c 1, rtoel3 &c 2, rtoel3 &c 3]):
> toeld := matrix(1,3,[rtoeld &c 1, rtoeld &c 2, rtoeld &c 3]):
> toe21 := matrix (1,3, [rtoe21 &c 1, rtoe21 &c 2, rtoe2l &c 3]):
> toe22 := matrix (1,3, [rtoe22 &c 1, rtoe22 &c 2, rtoe22 &c 3]):
> toe23 := matrix (1,3, [rtoe23 &c 1, rtoe23 &c 2, rtoe23 &c 3]):
> toe24 := matrix(1,3,[rtoe24 &c 1, rtoe24 &c 2, rtoe24 &c 3]):

> exmat(’da_toell_8_toe’,path,toell,vars,para,’matlab’);
> exmat(’da_toel2_8_toe’,path,toel2,vars,para, ’matlab’);
> exmat(’da_toel3_8_toe’,path,toel3,vars,para,’matlab’);
> exmat(’da_toeld_8_toe’,path,toel4d,vars,para,’matlab’);
> exmat(’da_toe21_8_toe’,path,toe2l,vars,para,’matlab’);
> exmat (’da_toe22_8_toe’,path,toe22,vars,para, ’matlab’);
> exmat (’da_toe23_8_toe’,path,toe23,vars,para, ’matlab’);
> exmat(’da_toe24_8_toe’,path,toe24,vars,para,’matlab’);

Export

> exmat (’da_T2toN_8_toe’ ,path,Rmx(N,T2),vars, matlab’);

exmat (’da_UL1toT2_8_toe’,path,Rmx(T2,UL1),vars, ’matlab’);
exmat (’da_UL2toT2_8_toe’,path,Rmx (T2,UL2),vars, ’matlab’);
exmat (’da_LL1toUL1_8_toe’,path,Rmx(UL1,LL1),vars, ’matlab’);
exmat (’da_LL2toUL2_8_toe’,path,Rmx(UL2,LL2),vars, ‘matlab’);
exmat (’da_F1toLL1_8_toe’,path,Rmx(LL1,F1),vars, ’matlab’);
exmat (’da_F2toLL2_8_toe’,path,Rmx (LL2,F2),vars, matlab’);
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Export of dynamical and variational eqs to matlab

> exmex(‘walker_3D_8_ankle2_stab‘,path, [[op(kde_new_ordered)]], [kane_eq,uts],
[op(cse)], [op(qts) ,op(uts)],vars,variationaleqs,parameters=para,
diffset=dset,’v5’=[’events’=b],inc);

Other stuff
Constructing the mapping matrices for discontinous forces
> qus:=[seq(q.i,i=1..10),seq(p.i,i=1..16),
seq(theta.i,i=1..6),seq(u.i,i=1..10)];
mxtoell := matrix(42,1,[]);
mxtoel2 matrix(42,1,[]);
mxtoel3 matrix (42,1, []
mxtoeld matrix (42,1, []
mxtoe21 matrix (42,1, []
mxtoe22 matrix (42,1, []
mxtoe23 matrix (42,1, []
mxtoe24 matrix (42,1, []
i:=1;
for ii in qus do
mxtoell[i,1] :=diff(rtoell &c
mxtoel2[i,1] :=diff(rtoel2 &c
mxtoel3[i,1] :=diff(rtoel3 &c
mxtoeld[i,1] :=diff(rtoeld &c
mxtoe21[i,1] :=diff(rtoe21 &c
mxtoe22[i,1] :=diff(rtoe22 &c
mxtoe23[i,1] :=diff(rtoe23 &c
mxtoe24[i,1] :=diff(rtoe24 &c
i:=i+1;
od:
exmat (’Ntoell_8_toe_p’,path,mxtoell,qus,para,’matlab’);
exmat (’Ntoel2_8_toe_p’,path,mxtoel2,qus,para, 'matlab’);
exmat (’Ntoel3_8_toe_p’,path,mxtoel3,qus,para, 'matlab’);
exmat (’Ntoel4_8_toe_p’,path,mxtoeld,qus,para,’matlab’);
exmat (’Ntoe21_8_toe_p’,path,mxtoe21,qus,para, 'matlab’);
exmat (’Ntoe22_8_toe_p’,path,mxtoe22,qus,para, ’matlab’);
exmat (’Ntoe23_8_toe_p’,path,mxtoe23,qus,para, ‘'matlab’);
exmat (’Ntoe24_8_toe_p’,path,mxtoe24,qus,para, ’matlab’);
G11:=[seq(q.i,i=1..10),(rtoell &c 1)-qi,(rtoell &c 3)-93,p3,p4,p5,p6,p7,p8,
p9,p10,p1l,p12,p13,p14,p15,p16,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:
> G12:=[seq(q.i,i=1..10),p1,p2, (rtoel2 &c 1)-qi,(rtoel2 &c 3)-q3,p5,p6,p7,ps,
p9,p10,pi1l1,p12,p13,p14,p15,p16,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:
> G13:=[seq(q.i,i=1..10),p1,p2,p3,p4, (rtoel3 &c 1)-q1, (rtoel3d &c 3)-q93,p7,ps8,
p9,p10,pil,p12,p13,p14,p15,p16,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:
> Gl4:=[seq(q.i,i=1..10),p1,p2,p3,p4,p5,p6, (rtoeld &c 1)-ql, (rtoeld &c 3)-q3,
p9,p10,p11,p12,p13,p14,p15,p16,seq(theta.i,i=1..6) ,seq(u.i,i=1..10)]:
> G21:=[seq(q.i,i=1..10),p1,p2,p3,p4,p5,p6,p7,p8, (rtoe21 &c 1)-qi,(rtoe21 &c 3)-q3,
pl1l,p12,p13,p14,p15,p16,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:
> G22:=[seq(q.i,i=1..10),p1,p2,p3,p4,p5,p6,p7,p8,p9,p10, (rtoe22 &c 1)-qi,
(rtoe22 &c 3)-q3,p13,pl4,pl5,pl16,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:

'
'
'
)
)
)

ii);
ii);
ii);
ii);
ii);
ii);
ii);
ii);
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> G23:=[seq(q.i,i=1..10),p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12, (rtoe23 &c 1)-qi,
(rtoe23 &c 3)-q3,pl15,p16,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:
> G24:=[seq(q.i,i=1..10),p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,

(rtoe24 &c 1)-qi,(rtoe24 &c 3)-q3,seq(theta.i,i=1..6),seq(u.i,i=1..10)]:
qus:=[seq(q.i,i=1..10),seq(p.i,i=1..16),seq(theta.i,i=1..6),seq(u.i,i=1..10)];

Gx11 := matrix(42,42,[1);
Gx12 := matrix(42,42,[]);
Gx13 := matrix(42,42,[]);
Gx14 := matrix(42,42,[1);
Gx21 := matrix(42,42,[]);
Gx22 := matrix(42,42,[]);
Gx23 := matrix(42,42,[]);
Gx24 := matrix(42,42,[]);

for i from 1 to 42 do
for j from 1 to 42 do
Gx11[i,j]:=diff(G11[i], qus[j1):
Gx12[i,j]:=diff(G12[i], qus[j1):
Gx13[i,j]:=diff(G13[il, qus[j1):
Gx14[i,j]:=diff(G14[i], qus[j1):
Gx21[i,j]:=diff(G21[i]l, qus[j1):
Gx22[1i,j]:=diff(G22[i], qus[j1):
Gx23[i,j]:=diff(G23[il, qus[j1):
. Gx24[i,j]:=diff(G24[il, qus[j1):
od:
od;
xport
exmat (’Gx11_8_toe_p’,path,Gx11,qus,para, ’matlab’);
exmat (’Gx12_8_toe_p’,path,Gx12,qus,para, ‘matlab’);
exmat (’Gx13_8_toe_p’,path,Gx13,qus,para, ‘matlab’);
exmat (’Gx14_8_toe_p’,path,Gx14,qus,para, ‘matlab’);
exmat (’Gx21_8_toe_p’,path,Gx21,qus,para, ‘matlab’);
exmat (’Gx22_8_toe_p’,path,Gx22,qus,para, ‘matlab’);
exmat (’Gx23_8_toe_p’,path,Gx23,qus,para, ‘matlab’);
exmat (’Gx24_8_toe_p’,path,Gx24,qus,para, ‘matlab’);
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