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Modelling of Transport Phenomena in Direct Methanol and
Proton Exchange Membrane Fuel Cells

Erik Birgersson
Department of Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden.

Abstract
This thesis deals with modelling of two types of fuel cells, namely the direct
methanol fuel cell (DMFC) and proton exchange membrane fuel cell (PEMFC).

One-phase models, comprising conservation of mass, momentum and species,
are derived and analysed for the anode of the DMFC and the cathode of the
PEMFC. The impact of hydrodynamic, electrochemical and geometrical fea-
tures on the fuel cell performance are studied. The slenderness of the fuel cells
allows the use of a narrow-gap approximation, leading to reduced models, with
benefits such as reduced computational cost and understanding of the physical
trends prior to any numerical computations.

Four different flow distributors are studied for the cathode of the PEMFC.
These are: parallel flow channels run in coflow or counterflow arrangement,
interdigitated channels and a foam. A quantitative comparison shows that the
interdigitated channels can sustain the highest current densities, followed in
descending order by the foam, the counterflow and coflow channels.

Descriptors: Hydrodynamics, DMFC, PEMFC, mass transfer, momentum
transfer, multicomponent, asymptotic analysis.



Preface

This thesis considers modelling of transport phenomena in direct methanol
and polymer electrolyte membrane fuel cells. The thesis is based on the follow-
ing papers:

Paper 1. Vynnycky, M. and Birgersson, E. 2002, ‘Analysis of a Model
For Multicomponent Mass Transfer in the Cathode of a Polymer Electrolyte
Fuel Cell’. Accepted by SIAM, Journal of Applied Mathematics.

Paper 2. Birgersson, E. and Vynnycky, M. 2002, ‘A Quantitative Study
of the Effect of Flow-Distributor Geometry in the Cathode of a PEM Fuel Cell’.
To be submitted .

Paper 3. Birgersson, E. , Nordlund, J., Ekström, H., Vynnycky, M.
and Lindbergh, G. 2002, ‘A Reduced Two-Dimensional One-Phase Model
for Analysis of the Anode of a DMFC’. Submitted to Journal of the Electro-
chemical Society.

The papers are re-set in the present thesis format.
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CHAPTER 1

Introduction

In view of ever increasing levels of environmental pollution and thus a
desire to replace the fossil-fuel-based economy with a cleaner alternative, the
fuel cell has in recent years become a prime candidate as a power source for
transport and stationary applications. The potential use of fuel cells range
from distributed power sources and portable applications, such as laptops or
even for the future dismounted soldier, to vehicles. Two such types of cells
are the proton exchange membrane fuel cell (PEMFC) and the direct methanol
fuel cell (DMFC), a schematic representation of these is shown in figure 1.
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Figure 1. A schematic of a fuel cell.
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1. INTRODUCTION 7

The basic cell consists of two porous electrodes, termed the anode and the
cathode, separated by a proton conducting membrane. The porous electrodes
are made of a composite material, containing carbon cloth and a hydrophobic
agent, such as polytetrafluorethylene. Each electrode has a thin layer con-
taining an electrocatalyst, such as platinum, that is dispersed on the carbon
cloth and is in contact with the membrane, usually a hydrated perfluorinated
sulfonic acid polymer. In addition a bipolar plate, essentially graphite into
which flow and cooling channels have been machined, is situated adjacent to
each electrode. In the course of operation, an oxidant, usually oxygen from
air which is either dry or humidified to some extent, is fed at the inlet on the
cathode side and transported to the electrolyte/cathode interface; the fuel on
the other hand, hydrogen for the PEMFC and methanol for the DMFC, is fed
at the anode inlet and is transported to the electrolyte/anode interface. The
reactions occurring at these interfaces are then for the PEMFC:

2H2 → 4H+ + 4e− at the anode, (1.1)

O2 + 4H
+ + 4e− → 2H2O at the cathode, (1.2)

and for the DMFC:

CH3OH +H2O → CO2 + 6H
+ + 6e− at the anode, (1.3)

3

2
O2 + 6H

+ + 6e− → 3H2O at the cathode. (1.4)

Thus, the protons produced at the anode are transported through the mem-
brane to the cathode, whilst the electrons can drive a load through an external
circuit.

During recent years, a number of mathematical models have been developed
in an attempt to understand the phenomena occurring in fuel cells. Since a
complete fuel cell model would have to consider mass, momentum, species and
heat transfer in gas and liquid phases in a three-dimensional geometry, as well
as the electrokinetics for the anode and cathode, most models choose to focus
on only some of these aspects at a time. This thesis addresses the cathode
of the PEMFC and the anode of the DMFC: the cathode of the PEMFC is
more limiting due to its sluggish kinetics, as compared to the fast hydrogen
oxidation at the anode, provided that the hydrogen feed stream is sufficiently
pure to avoid poisoning of the catalyst and sufficiently hydrated; the anode of
the DMFC, however, is of interest due to its complex reaction kinetics. Further
details of the above are given in the introduction of papers 1 and 3, respectively.



CHAPTER 2

Summary of papers

Paper 1
A chief factor that is thought to limit the performance of polymer elec-

trolyte fuel cells (PEFCs) is the hydrodynamics associated with the cathode.
In this paper, a 2-D model for three-component (oxygen, nitrogen, water)
gaseous flow in a PEFC cathode is derived, nondimensionalized and analyzed.
The fact that the geometry is slender allows the use of a narrow-gap approx-
imation leading to a simplified formulation. Inspite of the highly non-linear
coupling between the velocity variables and the mole fractions, an asymptotic
treatment of the problem indicates that oxygen consumption and water pro-
duction can be described rather simply in the classical lubrication theory limit
with the reduced Reynolds number as a small parameter. In general, however,
the reduced Reynolds number is O (1), requiring a numerical treatment; this is
done using the Keller-Box discretization scheme. The analytical and numeri-
cal results are compared in the limit mentioned above, and further results are
generated for varying inlet velocity and gas composition, channel width and
porous backing thickness, pressure and current density. Also, a novel, compact
way to present fuel cell performance, which takes into account geometrical,
hydrodynamical and electrochemical features, is introduced.

Paper 2
An isothermal three-dimensional model describing mass, momentum and

species transfer in the cathode of proton exchange membrane fuel cell has been
used to study four different flow distributors: interdigitated, coflow and coun-
terflow channels, and a foam. A quantitative comparison of the results shows
that the interdigitated channels can sustain the highest current densities, fol-
lowed in descending order by the foam, the counterflow and the coflow channels.
The foam yields the most uniform current density distribution at higher cur-
rents, but also induces the greatest pressure drop.

Paper 3
An isothermal 2-D liquid-phase model for the electrokinetics and the trans-

port of mass, momentum and species in the anode of a DMFC is presented
and analysed. The model is developed for the case when the geometry aspect
ratio is small, and it is shown that, under realistic operating conditions, a re-
duced model, which nonetheless still describes all the essential physics of the
full model, can be derived. The significant benefits of this approach are that

8



2. SUMMARY OF PAPERS 9

physical trends become much more apparent than in the full model, and the
considerable reduction in the time required to compute numerical solutions -
a fact especially useful for wide-ranging parameter studies. Such a study is
then performed in terms of the three nondimensional parameters that emerge
from the analysis, and we subsequently interpret our results in terms of the
dimensional design and operating parameters. In particular, we highlight the
effect of these on methanol mass transfer in the flow channel and on the current
density. The results indicate the relative importance of mass transfer resistance
in both the flow channel and the adjacent porous backing.



CHAPTER 3

Future Work

The one-phase models presented in this thesis will be extended to take the
second phase in both fuel cells into account: in the anode of the DMFC, the
low solubility of carbon dioxide in the liquid will give rise to bubbles in the
liquid phase; for the cathode of the PEMFC, the water vapour will start to
condense once its vapour pressure exceeds the saturation pressure.
In contrast to the anode of the DMFC, which we can treat as being two-phase
throughout the flow distributor and porous backing, the condensation of liquid
water in the cathode of the PEMFC is not known a priori, requiring a model,
capable of resolving both the gaseous one-phase region and the ensuing two-
phase region at sufficiently high water vapour pressures.
By applying scaling arguments, reduced models for both the DMFC and PEMFC
will be derived and analysed. Properties, such as velocity fields and local cur-
rent density distributions, will be investigated.

10
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Analysis of a Model for Multicomponent Mass
Transfer in the Cathode of a Polymer

Electrolyte Fuel Cell
Michael Vynnycky and Erik Birgersson

Department of Mechanics, FaxénLaboratoriet, KTH,
SE-100 44, Stockholm, Sweden

Abstract. A chief factor that is thought to limit the performance of polymer
electrolyte fuel cells (PEFCs) is the hydrodynamics associated with the cathode.
In this paper, a 2-D model for three-component (oxygen, nitrogen, water) gaseous
flow in a PEFC cathode is derived, nondimensionalized and analyzed. The fact that
the geometry is slender allows the use of a narrow-gap approximation leading to a
simplified formulation. Inspite of the highly non-linear coupling between the velocity
variables and the mole fractions, an asymptotic treatment of the problem indicates
that oxygen consumption and water production can be described rather simply in
the classical lubrication theory limit with the reduced Reynolds number as a small
parameter. In general, however, the reduced Reynolds number is O (1), requiring a
numerical treatment; this is done using the Keller-Box discretization scheme. The
analytical and numerical results are compared in the limit mentioned above, and
further results are generated for varying inlet velocity and gas composition, channel
width and porous backing thickness, pressure and current density. Also, a novel,
compact way to present fuel cell performance, which takes into account geometrical,
hydrodynamical and electrochemical features, is introduced.

1. Introduction

There is at present a rapidly increasing interest in improving the design
of fuel cells, that is electrochemical devices that convert the chemical energy
of a fuel with an oxidant directly into electricity. Fuel cells have a variety of
applications; for instance, the alkaline fuel cell (AFC) was mainly used in space
exploration, while the phosphoric acid fuel cell (PAFC), the solid oxide fuel
cell (SOFC) and the molten carbonate fuel cell (MCFC) are most suited to
stationary applications. Of the several types of fuel cells that are currently
under development, perhaps the one that has received the most attention,
particularly from the point of view of commercialization in the automotive
industry, has been the polymer electrolyte fuel cell (PEFC), also often referred
to as the proton-exchange membrane (PEM) fuel cell or the solid polymer fuel
cell (SPFC); the merit of this type of fuel cell over others for this particular
application is that it can generate the high current densities that are required
to power a vehicle, as well as the fact that it operates at comparatively low
temperatures (often no higher than 100◦C).

A schematic diagram of a PEFC is given in Fig. 1. Essentially, this entails a
polymer membrane sandwiched between two gas-diffusion electrodes, which are
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each adjacent to flow channels contained within bipolar plates. The oxidant,
usually oxygen from air which is either dry or humidified to some extent, is fed
in at the inlet of the channel on the cathode side, and is transported to the
electrolyte/cathode interface; the fuel on the other hand, normally hydrogen,
is fed at the anode channel inlet and is transported to the electrolyte/anode
interface.

Both interfaces contain catalyst, often platinum, to accelerate the reactions

2H2 → 4H+ + 4e− at the anode, (1.1)

O2 + 4H
+ + 4e− → 2H2O at the cathode, (1.2)

in the course of which an electric current is produced to drive a given load.

O2,
H2O,
N2

H2,
H2O,
CO2

Flow Channels

Porous Backing

Active Catalyst Layer

Membrane

O2,
H2O,
N2

H2,
H2O,
CO2

Figure 1. 2-D polymer electrolyte fuel cell.

In particular, the reaction at the cathode also produces both heat and water as
by-products, the latter of which may be present throughout the system as either
vapor or liquid, or both; the production of the former can lead to temperatures
at the catalytic layer in the order of 80-90◦C. Optimal fuel cell performance
is achieved at typical voltages of around 0.5V at current densities of about
1Acm−2.

Recent years have seen the appearance of mathematical models for some
or all of the parts of a typical fuel cell described above. Modelling proves
necessary because of an, as yet, incomplete understanding of several important
phenomena:

(1) mass transport limitations, that is to ensure that sufficient amounts of
oxygen reach the catalytic layer at the cathode in order that a desired
current is sustained;

(2) water management, that is to ensure that the water flow in the system
is great enough to keep the membrane adequately hydrated, but low
enough to prevent flooding;

(3) thermal management, that is to ensure that the cell does not over-
heat, which may well occur as the result of the heat produced by
electrochemical reactions in the catalyst layer.

Since the full problem is highly three-dimensional, non-isothermal, multi-
phase, multicomponental and most likely time-dependent in nature, numerous
simplifications have been made in existing models to ensure some element of
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tractability. Perhaps the first one-dimensional models to provide a simplified
treatment were developed by Bernardi and Verbrugge [5, 6] and Springer, Za-
wodzinski and Gottesfeld [40]; a recent contribution is due to Gurau, Barbir
and Lui [21]. One-dimensional treatments, whilst they are able to address some
aspects of the three issues related to fuel cell performance mentioned above,
are not able to address these questions at a local level: that is to say, where
oxygen depletion occurs, where there is flooding or inadequate heat removal.
Subsequent pseudo-two-dimensional models have tackled some of these issues
[13, 18, 34, 48], with varying assumptions about the nature of the flow; in
these so-called ‘along-the-channel’ models, the resulting equations are ordinary
differential equations with the coordinate along the fuel cell as the indepen-
dent variable. Most recently, techniques of computational fluid dynamics have
been used. Amongst models assuming single-phase gaseous flow, there are 2D
isothermal models for the cathode [14, 49], 2D isothermal models for the whole
cell [19, 20, 24, 39], 3D isothermal models for the whole cell [20, 16], and 3D
non-isothermal models for the whole cell [7]; generally speaking, there does not
appear to be any experimental evidence that fuel cells are isothermal, although
this assumption may indeed be valid for either small cells, or in large cells from
which heat is removed at an adequate rate. In addition, two-phase flow at the
cathode has also begun to receive attention [23, 34, 45].

This paper primarily addresses the first issue of the three given above. In
addition, one of the goals is to steer between one-dimensional models and full
computational fluid dynamics to derive a 2D formulation that does not sacrifice
too many geometrical features, yet on the other hand does not demand excessive
computing time either. We focus here on the isothermal, 3-component, gas-
phase, two-dimensional flow in a gas channel and adjacent porous gas backing
of a PEFC cathode (Fig. 2), although we note that the problem of multicompo-
nent flow is a generic one, appearing not only in both electrodes of a PEFC (the
gases are (O2, N 2, H 2O) at the cathode and (H 2,CO2,H2O) at the anode),
but also in other types of fuel cells [7, 22]. The geometry is assumed to be
slender, as is typically the case in practice.

hf

hp

L

y

x

Uin

Figure 2. The cathode of a polymer electrolyte fuel cell.

Air, possibly humidifed, is fed in at the inlet at the left (Fig. 2); oxy-
gen that reaches the catalytic layer reacts to produce water vapor, which is
transported, along with oxygen and nitrogen, out at the outlet. The approach
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used here, however, differs from previous ones, in that we use scaling argu-
ments, nondimensionalization and asymptotics to identify the main governing
parameters and, subsequently, to obtain a reduced model. The benefits of this
are the availability of closed-form analytical solutions in certain limits, as well
as a model that is cheap to compute away from those limits; this feature is
important from the point of view of extension to fuel cell stacks where trans-
port in as many as 125 such assemblies may need to be computed (see, e.g.
[29, 30, 31, 42]). The solution of this benchmark problem is useful from
several other points of view:

• as a basis for later work and comparison when two-phase flow is in-
troduced;

• to elucidate features that might not be obvious from simply solving
the full equations.

Regarding the second point, it is clear from the majority of cathode studies that
the mole fraction of O2 decreases monotonically along the channel, while the
mole fraction of H 2O increases, with the two slopes in some way dependent on
physical and operating parameters. Among the results of the present treatment
are closed-form expressions for these in certain limits.

The mathematical model is formulated in Section 2. This consists of mass,
momentum and species transport equations, and allows for the possibility of
varying mixture density, as well as the crossed diffusion of species. A nondimen-
sional analysis of the governing equations in Section 3 provides an indication of
the qualitative features one would expect in a multicomponent flow; there are
found to be similarities with classical lubrication theory, in view of the slen-
derness of the geometry, except that the reduced Reynolds number is typically
O (1) . Furthermore, transport in the porous backing is found, to a reasonable
approximation, to be one-dimensional. In Section 4, the first term in an asymp-
totic series in the reduced Reynolds number is derived: at leading order, the
mole fractions are found to be solely a function of the distance along the fuel
cell. Section 5 provides a description of a numerical scheme that is subsequently
used when the reduced Reynolds number is O (1) ; the scheme is verified in the
lubrication theory limit for which closed form solutions can be secured. Section
6 presents the results. A novel feature which we demonstrate here is that the
traditional method for evaluating fuel cell performance, namely through the use
of polarization curves, can be supplemented by the concept of a ‘polarization
surface’, whereby the average current density is plotted not as a function of
cell potential, but as a function of two dimensionless parameters which depend
on cell potential, channel geometry and inlet velocity; consequently, individual
polarization curves are then paths along a ‘polarization surface’. The implica-
tions of these results for a PEFC are also considered, in particular as regards
the limitations of the formulation with respect to liquid water formation, and
conclusions are drawn in Section 7.
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2. Mathematical formulation

2.1. Basics of multicomponent flow. We define the local mass average
velocity, v, of an n-component gas by

v =

Pn
i=1 ρiviPn
i=1 ρi

,

where vi denotes the velocity of species i with respect to stationary coordinate
axes, and ρi is the mass concentration (the mass of species i per unit of volume
of solution). For each component, the mass flux with respect to a coordinate
system fixed in space is given by

ni = ρωiv + ji, i = 1, .., n,

with

ρ =
nX
i=1

ρi,

where ωi is the mass fraction of species i, given by ωi = ρi/ρ, ji is the mass
diffusive flux relative to the mass-averaged velocity, and ρi denotes the density
of species i. If we consider just concentration diffusion for an ideal gas mixture
[8], we have

ji =
c2

ρ

nX
j=1

MiMjDij∇xj , i = 1, .., n; (2.1)

here (Mi)i=1,..,n are the molecular weights, (Dij)i,j=1,..,n are the multicompo-
nent diffusion coefficients, (xi)i=1,..,n is the mole fraction of species i and is
given by xi = ci/c, where ci is the molar concentration of species i in moles
per m3 (ci = ρi/Mi), and

c =
nX
i=1

ci.

Useful additional identities are c = ρ/M whereM =
Pn

i=1 xiMi, and a relation
between the mass and mole fractions

ωi = xicMi/ρ.

In general, (Dij)i,j=1,..,n are strongly dependent on composition, but can be
expressed in terms of the Stefan-Maxwell diffusion coefficients, (Dij)i,j=1,..,n ,

which are independent of composition. For a 3-component system, as will be
the case here, the relations are of the form [8],

Dij = Dij

½
1 +

xk [(Mk/Mj)Dik −Dij ]

xiDjk + xjDik + xkDij

¾
, i, j, k = 1, 2, 3 (i 6= j) . (2.2)

(Dij)i,j=1,..,n can in principle be measured experimentally [8, 41].
For the mixture density, we use the constitutive relation for an ideal gas,

ρ =
pM

RT
, (2.3)
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where p is the pressure, T is the temperature and R is the universal gas con-
stant (8.314 kgm2s−2mol-1K−1). We note, in addition, the possibility that the
mixture viscosity, µmix, will not necessarily be constant either, although we
treat it to be so here.

2.2. Channel. Consider the 2-D steady flow of a 3-component gas in a
channel of height hf , adjacent to a porous medium of length L and height hp
(see Figure 2). The equations of continuity of mass and momentum for the
mixture are taken as

∇. (ρv) = 0, (2.4)

∇. (ρv⊗ v) = −∇
µ
p+

2µ

3
∇.v

¶
+ µ∇2v− ρgj, (2.5)

where g is the acceleration due to gravity and j is the unit vector in the positive
y-direction; for later use, it is also convenient to define p0, the modified pressure,
given by

p0 = p+
2

3
µ∇.v.

The continuity equation for each of the species,

∇.ni = 0, i = 1, .., 3 (2.6)

can be recast as, for the cathode of a fuel cell, with n = 3, in the form of two
transport equations

∇.
µ
ρv

M

·
xO2

xH2O

¸¶
= ∇.

µ
ρ

M2
M

· ∇xO2

∇xH2O

¸¶
, (2.7)

where

M =MN2

µ
DO2,N2 DO2,N2

DH2O,N2 DH2O,N2

¶
−
µ

0 MH2ODO2,H2O

MO2DH2O,O2 0

¶
.

Here, use has been made of the relation xO2+xN2+xH2O = 1 to eliminate xN2 ,
with the diffusion coefficients DO2,H2O, DH2O,O2 ,DH2O,N2 and DO2,N2 given
by (2.38) .

2.3. Porous backing. For the porous region, volume-averaging of (2.1-
2.7) along the lines of DeVidts and White [14] or Whitaker [47] is required. We
present this at a moderate level of detail in order to sketch how the transport
equations that are normally used, (2.23) below, can be arrived at; fuller details
of analogous equations can be found elsewhere [14, 47]. First, let B be a
quantity (either scalar, vector, or tensor) associated with the gas phase, and
let the quantity hBi be the local volume (or superficial) average of B,

hBi ≡ 1

V
Z
V(g )

BdV, (2.8)

and hBi(g) be the intrinsic volume average of B in the gas phase

hBi(g) ≡ 1

V(g)
Z
V(g )

BdV, (2.9)
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Also, let γ be the porosity, given by γ = V(g)/V. A comparison of equations
(2.8) and (2.9) shows that the local and intrinsic volume average for the gas
phase is given by

hBi = γ hBi(g) . (2.10)

Taking the superficial average of (2.4) gives

h∇. (ρv)i = 0, (2.11)

whilst the superficial average of (2.5) gives (cf. [46])

hvi = −K
µ
.
³
∇ hp0i(g) + hρi(g) gj

´
+K.∇2

µhvi
γ

¶
− F. hvi , (2.12)

where K is the Darcy Law permeability tensor, and F is the Forchheimer
correction tensor. Writing eDij = c2Dij/ρ, we have

∇. hcivi+ 1V
Z
Ags

cings.vdA+
nX
j=1

MiMj∇.
ÃD eDij

E"
∇ hxji+ 1

V
Z
Ags

xjngsdA

#!

+
1

V
nX
j=1

MiMj
eDij

Z
Ags

ngs.∇xjdA = 0, (2.13)

where ngs represents the unit normal vector pointing from the gas phase to
the solid phase, and Ags represents the area of the gas-solid interface contained
within V. In the absence of surface reactions and zero normal velocity (passive
dispersion), this reduces to

∇. hcivi+
nX
j=1

MiMj∇.
ÃD eDij

E"
∇ hxji+ 1

V
Z
Ags

xjngsdA

#!
= 0, (2.14)

and then

∇. hcivi+
nX
j=1

MiMj∇.
ÃeDij

"
∇
³
γ hxji(g)

´
+
1

V
Z
Ags

xjngsdA

#!
= 0, (2.15)

where we have used the fact that eDij changes slowly with temperature and
mole fraction within the representative elementary volume in order to be able
to write

∇.
D eDij∇xj

E
= ∇.

³ eDij h∇xji
´
. (2.16)

To ascertain this, we generalise the reasoning given byWhitaker [47], as follows.
With eDij =

pDij

RTM

=
pDij

RTM

½
1 +

xk [(Mk/Mj)Dik −Dij ]

xiDjk + xjDik + xkDij

¾
,
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we require

lγeDij

 ∂ eDij

∂p

%
hpi(g )

∇ hpi(g) + ∂ eDij

∂T

%
hT i(g )

∇ hT i(g) +
nX
l=1

∂ eDij

∂xl

%
hxli(g )

∇ hxli(g)


¿ 1,

where lγ is the pore length scale. Also, for later use, we need to be able to
justify that within the representative elementary volume

∇. hcivi = ∇.
³ p

RT
hxivi

´
= ∇.

³ ρ

M
hxivi

´
= ∇.

µ hρi
hMi hxivi

¶
;

this would be justified if

lγ
Dγ

Ã
∂Dγ

∂p

º
hpi(g )

∇ hpi(g) + ∂Dγ

∂T

º
hT i(g )

∇ hT i(g)
!
¿ 1,

where Dγ = p/RT . Thus, we would require

lγ

Ã
∇ hpi(g)

p
− ∇ hT i

(g)

T

!
¿ 1; (2.17)

we verify that this relation is indeed satisfied in Section 3.2.
Now, decomposing according to

φ = hφi(g) + φ0,

where φ = (xj , cj ,v, ρ) and the primed quantities denote spatial fluctuations,
(2.11) and (2.15) can be shown to become, respectively,

∇.
³
hρi(g) hvi

´
= −∇. (hρ0v0i) , (2.18)

∇.
Ã
γ hρi(g) hxii(g) hvi(g)

hMi(g)
!

+
nX
j=1

MiMj∇.
ÃeDij

"
∇
³
γ hxji(g)

´
+
1

V
Z
Ags

x0jngsdA

#!

−∇.
Ã
hρi(g)
hMi(g)

hv0x0ii
!
= 0, (2.19)

where we again use analysis due to Whitaker [47] (cf. pp. 14-20). To keep the
ongoing discussion simple, we assume henceforth that γ is constant. Eventually,
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we arrive at

∇.
Ã
γ hρi(g) hxii(g) hvi(g)

hMi(g)
!
+

nX
j=1

MiMj∇.
³h
Deff
ij + γDhyd

j δij

i
∇ hxji(g)

´
= 0,

(2.20)
where Deff

ij is an effective diffusivity tensor given by

Deff
ij = γ eDij

Ã
1 +

1

V(g)
Z
Ags

ngsbgdA

!
,

and δij is the Kronecker delta; here, bg is referred to as the closure variable and
is found from the so-called closure problem. Dhyd

j is called the hydrodynamic
dispersion tensor and is defined by

Dhyd
j := − hρi

(g)

hMi(g)
­
v0x0j

®(g)
.

For gas diffusion electrodes, the following is often used [3, 5, 6, 49]:

Deff
ij = eDijγ

3
2 ;

this would imply Ã
1 +

1

V(g)
Z
Ags

ngsbgdA

!
= γ

1
2 .

For the cathode, with i = O2, N2 andH2O, we have in more expedient form,
on assuming the permeability to be isotropic and constant, and neglecting the
Forchheimer correction term in (2.12) and dispersion terms in (2.18) and (2.19)
(see Section 3.4),

∇.
³
hρi(g) hvi

´
= 0, (2.21)

hvi = −κ
µ

³
∇ hp0i(g) + hρi(g) gj

´
+

κ

γ
∇2 hvi , (2.22)

∇.
Ã
hρi(g) hvi
hMi(g)

"
hxO2i(g)
hxH2Oi(g)

#!

= ∇.

 γ
3
2 hρi(g)³
hMi(g)

´2 hMi(g)
"
∇ hxO2i(g)
∇ hxH2Oi(g)

# , (2.23)

where

hMi(g) = MN2

Ã
hDO2,N2i(g) hDO2,N2i(g)
hDH2O,N2i(g) hDH2O,N2i(g)

!

−
Ã

0 MH2O hDO2,H2Oi(g)
MO2 hDH2O,O2i(g) 0

!
,
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with

hDiji(g) = Dij

(
1 +

hxki(g) [(Mk/Mj)Dik −Dij ]

hxii(g)Djk + hxji(g)Dik + hxki(g)Dij

)
;

(2.21)-(2.23) are then akin to the governing equations for the porous backing
used by most authors, although with more attention having been paid here
to the distinction between intrinsic and superficial variables, the possibility of
non-constant diffusion coefficients and the inclusion of crossed diffusion terms.

2.4. Boundary conditions.
2.4.1. Inlet, outlet, upper wall, vertical walls. For boundary conditions in

the channel, we prescribe inlet velocity and gas composition at x = 0, 0 ≤ y ≤
hf , so that

u = U in, v = 0, xO2 = xinO2
, xH2O = xinH2O, (2.24)

where v = (u, v). At the upper channel wall (0 ≤ x ≤ L, y = hf ), there is no
slip, no normal flow and no componental flux, so that

u = v =
∂xO2

∂y
=

∂xH2O

∂y
= 0. (2.25)

At the outlet at x = L, 0 ≤ y ≤ hf , we have constant pressure and no diffusive
componental flux, so that

p = pout,
∂v

∂x
=

∂xO2

∂x
=

∂xH2O

∂x
= 0. (2.26)

At the vertical walls of the porous electrode (x = 0, L,−hp ≤ y ≤ 0), we
prescribe no normal flow, no tangential shear and no mass flux for the gas
components, so that

hui = ∂ hvi
∂x

=
∂ hxO2i(g)

∂x
=

∂ hxH2Oi(g)
∂x

= 0, (2.27)

where hvi = (hui , hvi).
2.4.2. Channel/porous backing interface. In addition, matching conditions

are required for the fluid-porous interface at y = 0, 0 ≤ x ≤ L. The conditions
for continuity of normal velocity and normal stress are given respectively as

v = hvi , (2.28)

p− µ
∂v

∂y
= hpi(g) − µeff

∂ hvi
∂y

, (2.29)

where µeff (= µ/γ) is termed the effective viscosity of the porous medium. The
remaining two conditions that are required have been the subject of longstand-
ing debate ever since the work of Beavers and Joseph [4]; a recent contribution
is due to Jäger and Mikelíc [25]. A summary of possible options for the mo-
mentum equation is given by Alazmi and Vafai [1], of which the most relevant
for this application, and indeed most consistent in view of our use of the full
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Navier-Stokes equations for the fluid and a Darcy/Brinkman/Forchheimer for-
mulation for the porous medium, is one due to Ochoa-Tapia and Whitaker [35]
when inertial effects are important:

u = hui , (2.30)
µ

γ

∂ hui
∂y
− µ

∂u

∂y
=

β1µ

κ
1
2

u+ β2ρu
2, (2.31)

respectively. Here, β1 and β2 are O (1) constants which would need to be
determined experimentally, although it turns out here that the leading order
problem is dictated more by (2.30) than by (2.31) .

Finally, analogous volume-averaging techniques at the interface to those
used for heat transfer by [36] are required for the mole fraction transport
equations. We do not pursue the details, but simply assume the point values
for the mole fractions of O2 andH2O in the channel to be equal to their intrinsic
values in the porous backing, so that

hxO2i(g) = xO2 , hxH2Oi(g) = xH2O, at y = 0, (2.32)

and in addition that the point values for the mole fraction fluxes of O2 and
H2O are equal to their superficial values in the porous medium, so that,

nO2
.n = hnO2

.ni , nH2O.n = hnH2O.ni ;
using (2.28) and (2.32) , we arrive at

γ
3
2
∂

∂y

"
hxO2

i(g)
hxH2Oi(g)

#
=

∂

∂y

·
xO2

xH2O

¸
, (2.33)

respectively.
2.4.3. Catalyst/porous backing interface. At y = −hf , we would expect

hui , hvi , hxO2i(g) and hxH2Oi(g) to match to their counterparts in the catalytic
layer, although naturally this approach would require us to model the catalyst
layer, and then by extension the membrane and the corresponding regions on
the anode side. This has been done to varying degrees by various authors
[5, 6, 20, 18, 19, 20, 21, 24, 34, 7, 39, 40]. An alternative approach, often
adopted when the flow field in the porous backing and gas channels rather than
the electrochemistry in the catalyst and the membrane is of interest [14, 33,
49, 45], is to prescribe a current density, I, at this interface. Using Faraday’s
Law, the superficial mass flux of oxygen is given as a function of current density,
so that

hnO2 .ni = −
MO2I

4F
, (2.34)

where F is the Faraday constant. The corresponding expression for water is
then taken to be

hnH2O.ni =
MH2O(1 + 2α)I

2F
, (2.35)

where α is a parameter accounting for the water transport by electro-osmosis in
the membrane; typical values encountered in the literature are α =0.3 [45] and
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0.5≤ α ≤ 1.7 [33, 48, 49]. Furthermore, since nitrogen does not participate in
the reaction at the catalyst layer,

hnN2 .ni = 0. (2.36)

This leads to the following boundary conditions for hvi, hxO2i(g) and hxH2Oi(g):

hρi(g) hvi = I

4F
(2(1 + 2α)MH2O −MO2

) , (2.37)

and

hρi(g) hvi
hMi(g)

"
hxO2i(g)
hxH2Oi(g)

#
− γ

3
2 hρi(g)³
hMi(g)

´2 M̄ ∂

∂y

"
hxO2i(g)
hxH2Oi(g)

#
=

I

4F

· −1
2(1 + 2α)

¸
.

3. Analysis

3.1. Nondimensionalization. Writing

x̃ =
x

L
, ỹ =

y

L
, ev = v

U in
, hevi = hvi

U in
, ρ̃ =

ρ

[ρ]
, heρi(g) = hρi(g)

[ρ]
,

p̃ =
p− pout

[ρ] (U in)2
, hp̃i(g) = hpi(g) − pout

[ρ] (U in)2
, p̃0 =

p0 − pout

[ρ] (U in)2
, hp̃0i(g) = hp0i(g) − pout

[ρ] (U in)2
,

eI = I

[I]
, M =

M

[M ]
, hMi(g) = hMi(g)

[M ]
, c̃ =

c

[ρ] / [M ]
,

Mi =
Mi

[M ]
, i = 1, .., 3, D̃ij =

Dij

[D]
, i, j = 1, .., 3, D̃eff

ij =
Deff
ij

[D]
, i, j = 1, .., 3,

Re =
[ρ]U inL

µ
, Sc =

µ

[ρ] [D]
, Da =

κ

L2
, Fr =

U2

gL
,

M̃=
M

[M ] [D]
,
D
M̃
E(g)

=
hMi(g)
[M ] [D]

,

where [ρ] is a density scale, [D] is a diffusion scale, [I] is a current density
scale and [M ] is a molecular weight scale (all to be either determined or spec-
ified shortly), and Re, Sc, Da and Fr are the Reynolds, Schmidt, Darcy and
Froude numbers, respectively, we drop the tildes and arrive at the following
nondimensionalised forms. For the channel (0 ≤ x ≤ 1, 0 ≤ y ≤ 1),

∇. (ρv) = 0, (3.1)

∇. (ρv ⊗ v) = −∇
µ
p+

2δ2

3
∇.v

¶
+ δ2∇2v−Fr−1ρj, (3.2)

∇.
µ
ρv

M
·

xO2

xH2O

¸¶
=

δ2

Sc
∇.
µ

ρ

M2
M

· ∇xO2

∇xH2O

¸¶
, (3.3)



M. Vynnycky and E. Birgersson 27

where δ2 = Re−1, and for the porous medium (0 ≤ x ≤ 1, −hp/L ≤ y ≤ 0),
∇.
³
hρi(g) hvi

´
= 0, (3.4)

δ2

�2
hvi = −∇ hp0i(g) + δ2∇2

µhvi
γ

¶
− Fr−1 hρi(g) j,

∇.
Ã
hρi(g) hvi
hMi(g)

"
hxO2

i(g)
hxH2Oi(g)

#!

=
δ2

Sc
∇.

γ
3
2

hρi(g)³
hMi(g)

´2 hMi(g)
"
∇ hxO2i(g)
∇ hxH2Oi(g)

# , (3.5)

where �2 = Da. The boundary conditions are now

u = 1, v = 0, xO2 = xinO2
, xH2O = xinH2O, at x = 0, 0 ≤ y ≤ hf/L;

(3.6)

u = v =
∂xO2

∂y
=

∂xH2O

∂y
= 0, at 0 ≤ x ≤ 1, y = hf/L; (3.7)

p = 0,
∂v

∂x
=

∂xO2

∂x
=

∂xH2O

∂x
= 0, at x = 1, 0 ≤ y ≤ hf/L; (3.8)

(3.9)

hui =
∂ hvi
∂x

=
∂ hxO2i(g)

∂x
=

∂ hxH2Oi(g)
∂x

= 0, at x = 0, 1, − hp/L ≤ y ≤ 0.
The boundary conditions for 0 ≤ x ≤ 1, y = −hp/L are now:

hui = 0, hρi(g) hvi = Λ
½
I

4
(2(1 + 2α)MH2O −MO2)

¾
, (3.10)

hρi(g) hvi
hMi(g)

"
hxO2i(g)
hxH2Oi(g)

#
− δ2γ

3
2 hρi(g)

Sc
³
hMi(g)

´2 hMi(g) ∂

∂y

"
hxO2i(g)
hxH2Oi(g)

#
(3.11)

=
ΛI

4

µ −1
2(1 + 2α)

¶
,

where Λ = [I] [M ] /FU in [ρ] . Finally, the boundary conditions along the fluid-
porous interface on y = 0 reduce to

v = hvi , (3.12)

p− δ2
∂v

∂y
= hpi(g) − δ2

∂ hvi
∂y

, (3.13)

u = hui , (3.14)
1

γ

∂ hui
∂y
− ∂u

∂y
=

µ
β1
ε

¶
u+

µ
β2
δ2

¶
ρu2. (3.15)

and
hxO2i(g) = xO2 , hxH2Oi(g) = xH2O, (3.16)
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γ
3
2
∂

∂y

"
hxO2i(g)
hxH2Oi(g)

#
=

∂

∂y

·
xO2

xH2O

¸
. (3.17)

3.2. Parameters. Typically, U in ∼ 1 ms−1, hf ∼ 10−3 m, hp ∼ 3×10−4
m, L ≥ 10−2 m, [I] ∼ 104 Am−2, pout ∼ 1 atm ∼ 105kgm−1s−2, T ∼ 300− 350
K, 0.1 ≤ γ ≤ 0.5, 0.3 ≤ α ≤ 1.7, µ ∼ O(10−5) kgm−1s−1. In addition, MO2 =
0.032 kgmol−1, MH2O = 0.018 kgmol−1, MN2 = 0.028 kgmol−1, F = 96487
Asmol−1, from which we note that Mmin ≤M ≤Mmax, where

Mmin = M |xH2O=1,xO2=0 = 0.018 kgmol−1,
Mmax = M |xH2O=0,xO2=1 = 0.032 kgmol−1.

Further, we use the constitutive relation for an ideal gas in order to obtain the
density scale [ρ]; with p ∼ pout, we have ρ ∼ 1 kgm−3, so that [ρ] ∼ 1 kgm−3
seems appropriate. For [D], we take O

¡
10−5

¢
m2s−1 from available literature,

e.g. [5, 6]. Note also that the relation (2.17) is satisfied, since the smallest
length on the macroscale in the porous backing, hp, is still much larger than the
scale for lγ , 10−5−10−6m, suggested by the electrochemical literature [17, 43].

Thence, for the nondimensional parameters Re, Sc,Da,Fr,Λ, we arrive at

Re ∼ 104, Sc ∼ 1, Da ≤ 10−6, Fr ∼ 1, Λ ≤ 10−2,
so that δ ∼ 10−2 and � ≤ 10−3. We note here that some of these parameters
have been encountered before in conjunction with the modelling of flow in
solid oxide fuel cells [7, 11]: in particular, the Reynolds number, Re, which
represents the ratio of inertial to viscous forces, and the product Schmidt ReSc,
which is the ratio of gas flow rate to the rate of diffusion (in fact ReSc in our
formulation corresponds to the parameter Q in [7, 11]). Furthermore, the
parameter Λ is a measure of the ratio of the electrochemical flux of oxygen to
the gas flow rate, and thus corresponds to the combination E/Q in [7, 11].
For compeleteness, we mention that the Froude number, Fr, is the ratio of
inertial to gravitational forces, whereas the Darcy number, Da, is the ratio of
the porous medium permeability to the square of the length scale of the entire
geometry.

3.3. Narrow-gap approximation. Typically, hf/L, hp/L ¿ 1, which
leads us to further rescaling as follows. Writing

X = x, Y =
y

σ
, U = u, V =

v

σ
, hUi = hui , hV i = hvi

σ
,

P = p, P 0 = p0, hP i = hpi , hP 0i = hp0i ,
where σ = hf/L, we simplify further by neglecting terms in O (σ) or lower,
although we retain for the time being terms which contain multiples of σ and the
other dimensionless parameters. We introduce the dimensionless parameters
∆,Σ and Ω, given by

∆ = δ2/σ2, Σ = σ2/ε, Ω = Λ/σ,
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and that an alternative expression for ∆ is ∆ =
¡
Reσ2

¢−1
, i.e. the reciprocal

of the reduced Reynolds number. We have now, for the channel,

∂

∂X
(ρU) +

∂

∂Y
(ρV ) = 0, (3.18)

ρ

µ
U
∂U

∂X
+ V

∂U

∂Y

¶
= −∂P

0

∂X
+∆

∂2U

∂Y 2
, (3.19)

0 = −∂P
0

∂Y
, (3.20)µ

ρU
∂

∂X
+ ρV

∂

∂Y

¶·
1

M
xO2

xH2O

¸
=
∆

Sc

∂

∂Y

µ
ρ

M2
M

∂

∂Y

·
xO2

xH2O

¸¶
, (3.21)

and for the porous medium,

0 =
∂

∂X

³
hρi(g) hUi

´
+

∂

∂Y

³
hρi(g) hV i

´
, (3.22)

hUi = − �

∆Σ

∂ hP 0i(g)
∂X

+
ε

Σγ

∂2 hUi
∂Y 2

, (3.23)

hV i = − 1

∆Σ2
∂ hP 0i(g)

∂Y
+

ε

Σγ

∂2 hV i
∂Y 2

, (3.24)

µ
hρi(g) hUi ∂

∂X
+ hρi(g) hV i ∂

∂Y

¶Ã
1

hMi(g)
"
hxO2i(g)
hxH2Oi(g)

#!

=
∆

Sc

∂

∂Y

 γ
3
2 hρi(g)³
hMi(g)

´2 hMi(g) ∂

∂Y

"
hxO2

i(g)
hxH2Oi(g)

# . (3.25)

Note also that

P 0 = P +O
¡
δ2
¢
, hP 0i(g) = hP i(g) +O

¡
δ2
¢
,

and since δ2 ¿ 1, henceforth, we use the actual pressure rather than the
modified pressure. In addition, the gravitational terms in (3.20) and (3.24) are
O
¡
Fr−1σ

¢
and have therefore been dropped. The boundary conditions are:

for 0 ≤ X ≤ 1, Y = 1,

U = V =
∂xO2

∂Y
=

∂xH2O

∂Y
= 0; (3.26)

for 0 ≤ X ≤ 1, Y = 0,

V = hV i , (3.27)

P = hP i(g) , (3.28)

U = hUi , (3.29)
1

γ

∂ hUi
∂Y

− ∂U

∂Y
=

µ
β1σ

ε

¶
U +

µ
β2σ

δ2

¶
ρU2, (3.30)

hxO2i(g) = xO2 , hxH2Oi(g) = xH2O, (3.31)
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γ
3
2
∂

∂Y

"
hxO2i(g)
hxH2Oi(g)

#
=

∂

∂Y

·
xO2

xH2O

¸
; (3.32)

for 0 ≤ X ≤ 1, Y = −H (= hp/hf ),

hUi = 0, hρi(g) hV i = Ω
½
I

4
(2(1 + 2α)MH2O −MO2)

¾
, (3.33)

hρi(g) hV i
hMi(g)

"
hxO2i(g)
hxH2Oi(g)

#
− ∆γ

3
2 hρi(g)

Sc
³
hMi(g)

´2 hMi(g) ∂

∂Y

"
hxO2i(g)
hxH2Oi(g)

#

=
ΩI

4

· −1
2(1 + 2α)

¸
, (3.34)

The neglect of streamwise diffusion terms will of course imply that not all
of the original boundary conditions at X = 0 and 1 in this reduced formulation
can be satisfied and those terms would need to be reinstated for X ∼ O (σ) and
1−X ∼ O (σ) . This is beyond the scope of interest here and for a consistent
formulation we simply retain

U = 1, xO2 = xinO2
, xH2O = xinH2O, at X = 0, 0 ≤ Y ≤ 1; (3.35)

hUi = ∂ hxO2
i(g)

∂X
=

∂ hxH2Oi(g)
∂X

= 0, at X = 0, −H ≤ Y ≤ 0. (3.36)

For the initial discussion, we proceed under the assumption that Σ,∆,Ω ∼
O (1) ; later, we will require Ω À 1 also. Further simplification is now pos-
sible by noting from (3.23) that hUi = 0 to leading order, which reduces
(3.22) , (3.24) and (3.25) still further. Turning to the porous region near Y =
0−, there is no reason a priori to suppose that the porous core flow should
satisfy (3.27)− (3.30) ; if it did, we would arrive at U = ∂U

∂Y = 0 at Y = 0, and
there would be too many boundary conditions for (U, V, P ) in the channel.
Instead, we require a porous boundary layer for which Y ∼ ε

1
2 , hUi ∼ ε

1
2 ;

writing

Y = ε
1
2 eY , hUi = ε

1
2

DeUE , hP i(g) = D ePE(g) , hV i = DeV E ,
we have, to leading order, in this layer

∂

∂ eY
³
hρi(g)

DeV E´ = 0, (3.37)

DeUE =
∂2

∂ eY 2


DeUE
γ

 , (3.38)

0 = −
∂
D ePE(g)
∂ eY , (3.39)

subject to the matching conditions as eY −→ −∞
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DeV E −→ hV i (X, 0) ,
DeUE −→ 0,

D ePE(g) −→ hP i(g) (X, 0) ,

where

hV i (X, 0) = lim
Y→0−

hV i , hP i(g) (X, 0) = lim
Y→0−

hP i(g) .

At Y = eY = 0, we have

V =
DeV E , (3.40)

P = hP i(g) , (3.41)

U = ε
1
2

DeUE , (3.42)

1

γ

∂
DeUE
∂ eY − ∂U

∂Y
=

µ
β1σ

ε

¶
U +

µ
β2σ

δ2

¶
ρU2. (3.43)

These equations are then used in the following order. First, the channel flow
is determined with boundary conditions, to leading order,

U = 0, V =
DeV E .

This gives P (X) which serves a boundary condition for hP i(g), and finallyDeUE can be computed, the boundary condition for this being, at leading order,
simply

∂
DeUE
∂ eY = γ

µ
∂U

∂Y

¶
Y=0

at eY = 0.

As for the species equations, no such boundary layer in ε is necessary, with
(3.25) being valid all the way up to Y = 0−. In addition, we note that the
leading order equations are independent of β1 and β2.

3.4. Further simplifications and observations. Invoking the consti-
tutive relation for an ideal gas in dimensionless variables, with

ρ =M+

Ã
[ρ]
¡
U in

¢2
pout

!
P, hρi(g) = hMi(g)+

Ã
[ρ]
¡
U in

¢2
pout

!
hP i(g) (3.44)

for the channel and porous medium respectively, which can be reduced to just
ρ = M, hρi(g) = hMi(g) , respectively, for the pressures and velocities being
considered here. The reduced system of equations is now, for 0 ≤ X ≤ 1,
0 ≤ Y ≤ 1,

∂

∂X
(ρU) +

∂

∂Y
(ρV ) = 0, (3.45)

ρ

µ
U
∂U

∂X
+ V

∂U

∂Y

¶
= − dP

dX
+∆

∂2U

∂Y 2
, (3.46)
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∂

∂X

µ
U

·
xO2

xH2O

¸¶
+

∂

∂Y

µ
V

·
xO2

xH2O

¸¶
=
∆

Sc

∂

∂Y

µ
M

M
∂

∂Y

·
xO2

xH2O

¸¶
, (3.47)

for 0 ≤ X ≤ 1, −H ≤ Y ≤ 0,

hρi(g) hV i = Ω

½
I

4
(2(1 + 2α)MH2O −MO2

)

¾
,

hV i = − 1

∆Σ2
∂ hP i(g)
∂Y

, (3.48)

hV i
"
hxO2

i(g)
hxH2Oi(g)

#
− ∆γ

3
2

Sc hMi(g)
hMi(g) ∂

∂Y

"
hxO2

i(g)
hxH2Oi(g)

#

=
ΩI

4

· −1
2(1 + 2α)

¸
. (3.49)

Note here that (3.48), as well a consideration of the physical parameters, now
helps to justify neglecting inertia terms between (2.12) and (2.22) , as well as
dispersion terms in (2.18) and (2.19) . First, the Forchheimer correction term
(see Whitaker [46]) will be of the order of magnitude of the Reynolds number,
Reγ , based on lγ , loosely defined by

Reγ =
hρi(g) hvi(g) lγ

µ
; (3.50)

it is justified to use hvi(g) for the velocity scale since the foregoing analysis
indicates that flow in the porous backing will be unidirectional. Consequently,
using (2.37) ,

Reγ ∼ I

4Fµ
(2(1 + 2α)MH2O −MO2) lγ ¿ 1,

as required. In addition, considerations based on this length scale provide some
justification for neglecting dispersion effects in the porous backing, as compared
to molecular diffusion. Experimental results for one-dimensional flows (e.g. [2,
pp. 606-9]) indicate that dispersion will be negligible if the Peclet number of
molecular diffusion, Peγ , in the porous medium, defined here by

Peγ =
hvi(g) lγ
[D]

,

is much smaller than one; using the parameters given in Section 3.2, this indeed
turns out to be the case.

The boundary conditions are: for 0 ≤ X ≤ 1, Y = 1,

U = V =
∂xO2

∂Y
=

∂xH2O

∂Y
= 0; (3.51)
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and for X = 0, 0 ≤ Y ≤ 1,
U = 1, xO2

= xinO2
, xH2O = xinH2O, at X = 0, 0 ≤ Y ≤ 1; (3.52)

no boundary conditions as such prove to be necessary for X = 0, −H ≤ Y ≤ 0
since only ordinary differential equations are solved for −H ≤ Y ≤ 0. At Y = 0
for 0 ≤ X ≤ 1, porous and fluid quantities are matched through

U = 0, V = hV i , P = hP i , (3.53)

hxO2
i(g) = xO2

, hxH2Oi(g) = xH2O, (3.54)

γ
3
2
∂

∂Y

"
hxO2

i(g)
hxH2Oi(g)

#
=

∂

∂Y

·
xO2

xH2O

¸
. (3.55)

In general, I will not be constant; even more generally, it cannot be de-
scribed a priori, but is determined by considering the transport of species in
the catalyst, membrane and the anode side also. However, a common practice
in studies which emphasize the investigation of flow in the porous backing and
the gas channel is simply to prescribe a current density as a function of mole
fraction. For example. if we use the dimensional form of the Tafel law given
by He, Yi and Nguyen [23],

I =
aρ

M
exp

µ
αcFη

RT

¶
,

where αc (= 2) is the transfer coefficient of the oxygen reduction reaction (1.2),
η is the overpotential for the oxygen reaction and a

¡
= 10−6 Am mol−1

¢
is a

constant related to the exchange current density and oxygen reference concen-
tration for the oxygen reaction, we obtain the appropriate scale for [I] as

[I] =
a [ρ]

[M ]
exp

µ
αcFη

RT

¶
; (3.56)

consequently, in dimensionless form,

I
³
hρi(g) , hxO2

i(g) , hxH2Oi(g)
´
=
hρi(g) hxO2i(g)
hMi(g)

= hxO2
i(g) . (3.57)

A dimensional quantity of importance for the determination of polarization
curves is the average current density, Iav, which is then given by

Iav = [I]

Z 1

0

IdX.

This completes the formulation and necessary definitions. As a next step,
we consider the possibility of finding analytical soluton in certain parameter
ranges; an obvious choice, in view of the geometry, would be the lubrication
theory limit

¡
∆−1 ¿ 1

¢
. The data given in Table 1 for the base case physi-

cal parameters indicates that ∆−1 ∼ O (1). Obviously, taking channels with
smaller aspect ratio, or operating the fuel cell at lower inlet gas velocity would
reduce ∆−1, motivating us to then consider the lubrication theory limit, since
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it provides qualitatively useful analytical solutions, as well as a quantitative
comparison with our numerical method (see Section 6).

Table 1: Parameters for the base case
Geometry and operating parameters
xinO2

0.21
xinH2O

0
hf 10−3m
hp 3×10−4m
L 0.1 m
κ 10−12 m2

γ 0.3
U in 1 ms−1

pout 1 atm
T 353 K
µ 10−5kgm−1s−1

Scales for nondimensionalization
[ρ] 1 kgm−3

[M ] [ρ]RT/pout

[I] 104 Am−2

Physical parameters
MO2 0.032 kgmol−1

MH2O 0.018 kgmol−1

MN2
0.028 kgmol−1

DO2,H2O 3.749[M ] /RT
DO2,N2

2.827[M ] /RT
DH2O,N2 3.923[M ] /RT

4. Asymptotics for
[ρ](Uin)

2

pout ¿ ∆−1 ¿ 1

Assume
[ρ](Uin)

2

pout ¿ ∆−1 ¿ 1, and rescale according to

hP i(g) = ∆ hP i(g) , P = ∆P ;
note here that we require a lower restriction on ∆−1 for the following develop-
ment to hold, otherwise the simplifications following (3.44) will not apply and ρ
will depend on P ; in practice, the restriction is not unreasonable. Introducing
the following asymptotic series

χ = χ0 +∆
−1χ1 +O

¡
∆−2

¢
, where χ = (U,V, P, ρ) ,

hχi = hχ0i+∆−1 hχ1i+O
¡
∆−2

¢
, where χ = (V, P ) ,

χ = χ(0) +∆−1χ(1) +O
¡
∆−2

¢
, where χ = (xO2 , xH2O,M) ,
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hχi(g) = hχ0i(g) +∆−1 hχ1i(g) +O
¡
∆−2

¢
, where χ = (ρ) ,

hχi(g) =
D
χ(0)

E(g)
+∆−1

D
χ(1)

E(g)
+O

¡
∆−2

¢
, where χ = (xO2 , xH2O,M) ,

we observe that, at leading order, the governing equations permit a solution of
the form

x
(0)
O2

=
D
x
(0)
O2

E(g)
= FO2 (X) ,

x
(0)
H2O

=
D
x
(0)
H2O

E(g)
= FH2O (X) ,

with FO2 (0) = xinO2
, FH2O (0) = xinH2O

. Then

U0 (X,Y ) =
1

2

dP0
dX

¡
Y 2 − Y

¢
,

whereupon, writing Φ = (2(1 + 2α)MH2O −MO2
) (NB: Φ > 0) and using,

d

dX

µZ 1

0

ρ0U0dY

¶
=
ΩΦI (FO2 (X))

4
,

where

ρ0 (X) =MN2 + (MO2 −MN2)FO2 (X) + (MH2O −MN2)FH2O (X) ,

we have Z 1

0

ρ0U0dY =
ΩΦ

4
J (X) + ρ0 (0) ,

where

J (X) =

Z X

0

I (FO2 (X
0)) dX 0.

Hence
dP0
dX

= − 12

ρ0 (X)

·
ΩΦ

4
J (X) + ρ0 (0)

¸
,

and so

U0 (X,Y ) =
6

ρ0 (X)

·
ΩΦ

4
J (X) + ρ0 (0)

¸ ¡
Y − Y 2

¢
,

V0 (X,Y ) = −3ΩΦ
2

I (FO2
(X))

ρ0 (X)

µ
Y 2

2
− Y 3

3
− 1
6

¶
,

hV0 (X)i = ΩΦ
I (FO2

(X))

4 hρ0 (X)i
,

hP0 (X,Y )i = −Σ2Ω
½
ΦI (FO2 (X))

4 hρ0 (X)i
¾
Y − 12

·
ΩΦJ (X)

hρ0 (X)i
+X

¸
.

At this stage, FO2 (X) and FH2O (X) (and hence U0, V0, hV0i , hP0i , ρ0) remain
undetermined, indicating that the problem at O (1) is degenerate; this appears
to be because the boundary conditions for xO2 and xH2O at Y = −H, 1 at this
order are both of Neumann-type. This indeterminacy is remedied, however, at
O
¡
∆−1

¢
, as follows.
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At O
¡
∆−1

¢
, (3.47) gives

∂

∂X

µ
U0

·
FO2 (X)
FH2O (X)

¸¶
+

∂

∂Y

µ
V0

·
FO2 (X)
FH2O (X)

¸¶
= (4.1)

1

Sc

∂

∂Y

Ã
M(0)

ρ0 (X)

∂

∂Y

"
x
(1)
O2

x
(1)
H2O

#!
;

for 0 ≤ X ≤ 1, −H ≤ Y ≤ 0,

ΩΦI (FO2 (X))

4 hρ0 (X)i
·

FO2
(X)

FH2O (X)

¸
− γ

3
2

Sc

­
M(0)

®(g)
hρ0 (X)i

∂

∂Y


D
x
(1)
O2

E(g)D
x
(1)
H2O

E(g)
 = (4.2)

ΩI (FO2 (X))

4

· −1
2(1 + 2α)

¸
.

(4.1) can be rewritten as

U0

·
F 0O2

(X)
F 0H2O

(X)

¸
+

µ
∂U0
∂X

+
∂V0
∂Y

¶·
FO2 (X)
FH2O (X)

¸
=
1

Sc

M(0)

ρ0 (X)

∂2

∂Y 2

"
x
(1)
O2

x
(1)
H2O

#
,

and then, on using
∂

∂X
(ρ0U0) +

∂

∂Y
(ρ0V0) = 0,

we have

U0

½·
F 0O2

(X)
F 0H2O

(X)

¸
− 1

ρ0 (X)

∂ρ0
∂X

·
FO2 (X)
FH2O (X)

¸¾
=
1

Sc

M(0)

ρ0 (X)

∂2

∂Y 2

"
x
(1)
O2

x
(1)
H2O

#
.

Integrating once with respect to Y, we have

λ0 (X)

½·
F 0O2

(X)
F 0H2O

(X)

¸
− 1

ρ0 (X)

∂ρ0
∂X

·
FO2 (X)
FH2O (X)

¸¾µ
Y 2

2
− Y 3

3
− 1
6

¶
=
1

Sc

M(0)

ρ0 (X)

∂

∂Y

"
x
(1)
O2

x
(1)
H2O

#
, (4.3)

where we have written U0 =
λ0(X)
ρ0(X)

¡
Y − Y 2

¢
, with

λ0 (X) = 6

·
ΩΦ

4
J (X) + ρ0 (0)

¸
,

and have already implemented (3.51) at O
¡
∆−1

¢
. Requiring now, at Y = 0,

γ
3
2
∂

∂Y


D
x
(1)
O2

E(g)D
x
(1)
H2O

E(g)
 = ∂

∂Y

"
x
(1)
O2

x
(1)
H2O

#
,
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we combine (4.2) and (4.3) to give

− 2λ0 (X)

3Ωρ0 (X) I
¡
F 0O2

(X)
¢ ½· F 0O2

(X)
F 0H2O

(X)

¸
− 1

ρ0 (X)

∂ρ0
∂X

·
FO2

(X)
FH2O (X)

¸¾
=

Φ

ρ0 (X)

·
FO2 (X)
FH2O (X)

¸
−
· −1
2(1 + 2α)

¸
.

Note that this has led to the elimination of x(1)O2
and x

(1)
H2O

and has instead led
to a pair of non-linear ODEs for FO2

(X) and FH2O (X) .
Next, defining

ζO2
(X) = FO2 (X) /ρ0 (X) , ζH2O (X) = FH2O (X) /ρ0 (X) ,

we simplify to

−4
ΩI (FO2

(X))

·
ΩΦ

4
J (X) + ρ0 (0)

¸
∂

∂X

·
ζO2

(X)
ζH2O (X)

¸

= Φ

·
ζO2

(X)
ζH2O (X)

¸
−
· −1
2(1 + 2α)

¸
,

with initial conditions

ζO2
(0) =

xinO2

MN2 + (MO2 −MN2)x
in
O2
+ (MH2O −MN2)x

in
H2O

,

ζH2O (0) =
xinH2O

MN2 + (MO2 −MN2)x
in
O2
+ (MH2O −MN2)x

in
H2O

.

Replacing the partial derivative, we can simplify to

dζO2

dζH2O

=
ΦζO2

+ 1

ΦζH2O − 2(1 + 2α)
,

whence, on applying the inlet conditions,£
ΦζO2

(0) + 1
¤
ζH2O (X)−

£
ΦζH2O (0)− 2(1 + 2α)

¤
ζO2

(X) = (4.4)

2(1 + 2α)ζO2
(0) + ζH2O (0) .

Note, in addition, that this result holds regardless of the expression used for
the current density.

Returning now to

−4
ΩI (FO2 (X))

·
Ω

4
ΦJ (X) + ρ0 (0)

¸
dζO2

dX
= ΦζO2

+ 1,

this too can be integrated regardless of the form of I.We have, since J (0) = 0
for any current density we care to choose,

ζO2
(X) =

1

Φ

½¡
ΦζO2

(0) + 1
¢µ 4ρ0 (0)

4ρ0 (0) +ΩΦJ (X)

¶
− 1
¾
, (4.5)
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which is effectively an integral equation for ζO2
(X) .More convenient is a first-

order ODE for ζO2
(X) , which is obtained after rearranging and differentiating,

as

I

µ MN2ζO2
(X)

1− (MO2 −MN2) ζO2
(X)− (MH2O −MN2) ζH2O (X)

¶
= −4ρ0 (0)

Ω

¡
ΦζO2

(0) + 1
¢¡

ΦζO2
(X) + 1

¢2 dζO2

dX
,

and then

I

µ
ζO2

(X)

A+ BζO2
(X)

¶
= −4ρ0 (0)

Ω

¡
ΦζO2

(0) + 1
¢¡

ΦζO2
(X) + 1

¢2 dζO2

dX
, (4.6)

where

A =
1

MN2

Ã
(MH2O −MN2)

Ã
2(1 + 2α)ζO2

(0) + ζH2O (0)£
ΦζO2

(0) + 1
¤ !

− 1
!
,

B =
1

MN2

Ã
(MO2 −MN2) + (MH2O −MN2)

£
ΦζH2O (0)− 2(1 + 2α)

¤£
ΦζO2

(0) + 1
¤ !

.

Note that (4.6) implies that if oxygen is fully depleted, at which point (say

X = X0) ζO2
= I = 0, then we will necessarily have

dζO2
dX = 0 there also.

As an example, and for later use, we note a closed-form solution when
I ≡ hxO2i(g) ; in this case,

ζO2
(X)

A+ BζO2
(X)

= −4ρ0 (0)
Ω

¡
ΦζO2

(0) + 1
¢¡

ΦζO2
(X) + 1

¢2 dζO2

dX
,

which can be integrated exactly to give

A log
Ã
ζO2

(X)
¡
ΦζO2

(0) + 1
¢

ζO2
(0)
¡
ΦζO2

(X) + 1
¢!−(AΦ− B)Ã ζO2

(X)− ζO2
(0)¡

ΦζO2
(X) + 1

¢ ¡
ΦζO2

(0) + 1
¢!

=
ΩX

4ρ0 (0)
¡
ΦζO2

(0) + 1
¢ . (4.7)

This formula suggests that for Ω ∼ O (1) there is no possibility for oxygen
depletion

¡
ζO2

= 0
¢
, since the first-term on the left-hand side of (4.7) could

not then be balanced by either of the other two terms. In addition, for ΩÀ 1
(and noting that A < 0),

A log
Ã
ζO2

(X)
¡
ΦζO2

(0) + 1
¢

ζO2
(0)
¡
ΦζO2

(X) + 1
¢! ∼ ΩX

4ρ0 (0)
¡
ΦζO2

(0) + 1
¢ ,

whence

ζO2
(X)¡

ΦζO2
(X) + 1

¢ ∼ ζO2
(0)¡

ΦζO2
(0) + 1

¢ expÃ ΩX

4Aρ0 (0)
¡
ΦζO2

(0) + 1
¢! ,
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and thus

ζO2
(X) ∼ 1³

Φ+ 1
ζO2 (0)

´
exp

µ
−ΩX

4Aρ0(0)(ΦζO2 (0)+1)

¶
− Φ

;

in this regime, we also have

ζH2O (X) ∼
2

Φ
(1+ 2α) +

ζH2O (0)− 2
Φ (1 + 2α)¡

ΦζO2
(0) + 1

¢− ΦζO2
(0) exp

µ
ΩX

4Aρ0(0)(ΦζO2 (0)+1)

¶ .
Note also that, this far, the results are independent of whether or not crossed
diffusion is assumed, or if non-linear diffusion coefficients are used or not.

As a corollary, we observe that the solution at O
¡
∆−1

¢
, i.e. for x(1)O2

,

x
(1)
H2O

,
D
x
(1)
O2

E(g)
,
D
x
(1)
H2O

E(g)
still remains undetermined, since consideration of

the field equations and boundary conditions at O
¡
∆−1

¢
merely leads to the

solution being fully determined at O (1) . By analogy, to determine the solutions
at O

¡
∆−1

¢
completely, we would need to consider the field equations and

boundary conditions at O
¡
∆−2

¢
; by this stage, however, the algebra becomes

lengthy and in the interests of brevity we omit further discussion. In fact, one
does not really gain so much by finding these solutions anyway, since there is
no compact solution as there is at O (1), and we proceed instead to a numerical
solution for the general case when ∆−1 ∼ O (1) .

5. Numerical method and results

To complement the asymptotics for ∆−1 ¿ 1, so as to account for regimes
when ∆−1 ∼ O (1) , the simplified parabolized equations were solved numer-
ically using the Keller-Box discretisation scheme and Newton iteration (see,
for example, Cebeci and Bradshaw [10]). The system of partial differential
equations to be solved in the channel is of 8th order, and this is coupled to a
6th order system of ordinary differential equations in the porous region. As is
well-known, the scheme is second-order accurate in both time-like and space-
like variables, and we omit any further details here. As an indication of the
speed of the computations, we note that a typical run with 500 points across,
and 200 points along, the channel required around 100 CPU seconds on a 500
MHz Compaq Alphaserver with 3GB RAM.

Results are presented for the Tafel law given in dimensionless form by
(3.57), and used previously for PEFC studies by [23, 14, 33, 49]. Throughout,
we keep γ = 0.3, T = 353K, and concentrate more on the effect of changes in
channel height and length, porous backing thickness and permeability, pressure,
inlet speed and composition. Physically realistic and implementable changes
in any of these will result in, at most, an order of magnitude change in the
relevant dimensionless parameter. The most sensitive parameter is Ω, which
varies over several orders of magnitude as the cell voltage Ecell decreases; note
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here that we revert to using the cell voltage rather than the overpotential, η,
with the two being related by

Ecell = E0 − η,

where E0(= 1.1V ) is termed the open circuit voltage of the fuel cell.

5.1. Effect of ∆ and Ω. We show first results for Ecell = 0.75V, cor-
responding to Ω = 10.2, ranging over several orders of magnitude in ∆, and
compare these with the analytical results in the lubrication theory limit. Fig-
ures 3 and 4 are for intrinsic oxygen and water mole fraction at Y = −H,
respectively, and demonstrate that the lubrication solution works well for ∆−1

as high as O
¡
10−2

¢
.
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Figure 3. Comparison of analytical solution for hxO2i(g) at Y = −H with
numerical solutions for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.75V ) .

On the other hand, the base case physical values given in Table 1 corre-
spond to ∆ = 1.89. Figure 5 shows the streamwise velocity U at Y = 1

2 , and
illustrates the extent of deviation from the classical value 3

2 . An interesting
limit occurs as Ecell is decreased.
In this case, Ω increases although the quantity Ω hxO2

i(g) at Y = −H remains
O (1) ; this corresponds to the attainment of the limiting current and the cor-
responding plots are given in Figures 6-8; observe that in Figures 6 and 7 the
limiting values for intrinsic oxygen and water mole fraction for the analytical
solution are reached very rapidly, so that in Figure 6 the curve for hxO2i(g)
effectively lies on the X-axis.
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Figure 4. Comparison of analytical solution for hxH2Oi(g) at Y = −H with
numerical solutions for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.75V ) .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

X

U

∆ =1.89
∆ =1.89x10 1

∆ =1.89x10 2

analytical

Figure 5. Comparison of analytical solution for U at Y = 1
2 with numerical

solutions for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.75V ) .



42 Analysis of a model for the cathode of a PEMFC

As regards the numerics, it was found that considerably more outer loop it-
erations for the density were required as Ω was increased. For instance, whereas
4 iterations sufficed for Ecell = 0.75V, it was common for 20-30 to be necessary
for Ecell = 0.65V. In addition, there were difficulties in initiating the marching
scheme at X = 0 for higher values of Ω; we surmise this to be due to increased
non-linearity near X=0, since x_O2 changes more abruptly for higher values of
Omega. Whilst setting the channel inlet values as an initial guess for the first
step along the channel was adequate for lower values of Ω, this was found not
be sufficient for Ecell lower than 0.71V ; for those cases, the first-step solution
for Ecell = 0.71V had to be used instead, then enabling numerical solutions to
be obtained for higher and higher values of Ω until the limiting current was
reached.
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Figure 6. Comparison of analytical solution for hxO2i(g) at Y = −H with
numerical solutions for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.65V ) .



M. Vynnycky and E. Birgersson 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

X

<x
H

2O
>(g

)

∆ =1.89
∆ =1.89x10 1

∆ =1.89x10 2

analytical

Figure 7. Comparison of analytical solution for hxH2Oi(g) at Y = −H with
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5.2. ‘Polarization surfaces’. It is customary for fuel cell performance
to be given in terms of a polarization curve where the cell potential, Ecell, is
given as function of the average current density, Iav. Generally speaking, if
the analysis is done dimensionally, this leads to a vast number of graphs for
each alteration made in one of the physical parameters. However, a major
benefit of the nondimensional analysis carried out here is that the results can
be expressed considerably more compactly by plotting polarization ‘surfaces’;
individual polarization curves will therefore be curves lying on those surfaces.
We explain this as follows. From the nondimensionalization given above, the
emergent nondimensional parameters were ∆,Σ,Ω and Sc. In addition, there
is γ, which we hold fixed in this study, and xinO2

,xinH2O
and H, whose effect on

fuel cell performance one would like to explore. First, we observe that, in the
parameter range of interest, Σ has no effect on Iav, since the dimensionless
density is independent of pressure and the pressure in the channel serves as
a boundary condition for the pressure in the porous medium. In addition, a
change in Sc can only be effected by changes in [ρ] , which only occurs if the
cathode is run at a different pressure. Consequently, a tidy representation of
Iav is to plot it as a function of ∆ and Ω, for fixed Sc, xinO2

,xinO2
and H, the

benefit of this being that the effect of four parameters, hf , L, U in and Ecell, are
displayed on one graph; since Ω can vary over several orders of magnitude, it
proves more convenient to use log (Ω) as a variable. Examples of this are given
below.

Figure 9. Polarization surfaces for pout = 1, 3 atm (H = 0.3) .
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Figure 10. Polarization surfaces for H = 0.15, 0.6 (pout = 1 atm) .

Figure 11. Polarization surfaces for pout = 1 atm with: (a) xinO2
= 1,

xinH2O
= 0; (b) xinO2

= 0.21, xinH2O
= 0; (c) xinO2

= 0.13, xinH2O
= 0.36.

Figure 9 gives polarization surfaces forH = 0.3, with the pressure at 1 and 3
atmospheres. The limiting current phenomenon is observed as Ω increases, and
its value is observed to increase moderately with increasing∆, but strongly with
increasing pressure. Figure 10 shows a similar plot, except with computations
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now for pout = 1 atm, for H = 0.15 and H = 0.6. Average current densities
are found to be higher for the thinner porous backing, and in both cases a
limiting value is evident as Ω is increased. Figure 11 compares the base case
for pout = 1 atm and xinO2

= 0.21 with two other cases at 1 atm which have
differing inlet compositions: dry oxygen

¡
xinO2

= 1
¢
and partially humidified

air, for which xinO2
= 0.13 and xinH2O

= 0.36 (corresponding to 76% relative
humidity) [20, 18, 7]. As is evident, increased oxygen content at the inlet
raises the average current density; for xinO2

= 1, convergence difficulties were
experienced for quite low values of Ω, which explains the rather narrow range
of values presented for this case, but nonetheless the average current density is
much higher than that for the other two cases.

6. Conclusions

In this paper, we have considered a 2-D model for three-component gaseous
flow in the cathode of a polymer electrolyte fuel cell. Assuming a slender
geometry, we have derived analytical solutions where possible, and comple-
mented these with a numerical study. By choosing to perform the study
nondimensionally, we have identified several features that are not evident from
earlier work done dimensionally. In summary, we identify four main dimen-
sionless parameters (∆,Ω,Σ, Sc; see Sections 2 and 3 for definitions); other
parameters that are present in this model are the porous backing porosity, γ
(held fixed at 0.3 in this study) , the temperature T (held fixed at 353K), the
ratio of channel and porous backing heights (H), the inlet oxygen and water
content (xinO2

and xinH2O
respectively) and the number of water molecules affili-

ated to each proton that passes across the membrane to the cathode (α) . We
find that the flow in the porous backing is essentially unidirectional, although
it interacts with a fully 2-D flow in the gas channel. Furthermore, Σ is found to
play a secondary role, having next to no effect on the gas mole fraction distri-
bution in the porous backing; physically, this implies an insensivity to porous
backing permeability. The fact that the cathode is more or less isobaric gives
that the density is a multiple of the molecular weight. In addition, the Schmidt
number, Sc, can only be affected by variations in the operating pressure, and
we find that a convenient and compact way to understand fuel cell performance
is to plot average current density as a function of ∆ and Ω for different values
of Sc and H; this gives a surface which implicitly contains an infinite family
of polarization curves, which is the customary way to assess cell performance.
These surfaces have been generated numerically, and in comparatively rapid
fashion, using the Keller Box scheme for systems of parabolic partial differen-
tial equations, to provide a rather comprehensive parameter study.

The present work was, needless to say, limited in several respects. To begin
with, and has often been stated before, at higher current densities two-phase
flow can be expected as water droplets form at the catalytic layer; this will be
the starting point for future work. Also, we limited ourselves here to prescribing
an often-used Tafel law for the current density relation at the catalytic layer, for
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one temperature value and one value of porosity; in addition, α was assumed
to be constant along the length of the cell. Naturally, the question arises as to
whether more sophisticated modeling would lead to a qualitative change in the
results. Essentially, such an approach would involve attempting to represent the
catalytic layer more faithfully, e.g as has been attempted for molten carbonate
fuel cells [37]. A characteristic of this approach would be that a Tafel law is
used for reactions across this layer, which would be treated as consisting of the
material of which the gas-diffusion electrode, as well as polymer electrolyte.
Combined with the fact that this layer is much thinner than the gas-diffusion
electrode, it is likely that the functional form for the current density would not
be much different from what we have used here. On the other hand, if the
overpotential and/or temperature are no longer treated as constant, then the
exponential term involving these quantities in the expression for the current
density could indeed affect the results significantly. Needless to say, this also
is the subject of future work.
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A quantitative study of the effect of
flow-distributor geometry in the cathode of a

PEM fuel cell
Erik Birgersson and Michael Vynnycky

Department of Mechanics, FaxénLaboratoriet, KTH,
SE-100 44, Stockholm, Sweden

Abstract. An isothermal three-dimensional model describing mass, momentum
and species transfer in the cathode of a proton exchange membrane fuel cell has been
used to study four different flow distributors: interdigitated, coflow and counterflow
channels, and a foam. A quantitative comparison of the results shows that the inter-
digitated channels can sustain the highest current densities, followed in descending
order by the foam, the counterflow and the coflow channels. The foam yields the most
uniform current density distribution at higher currents, but also induces the greatest
pressure drop.

1. Introduction

In view of ever increasing levels of environmental pollution and thus a
desire to replace the fossil-fuel-based economy with a cleaner alternative, the
fuel cell has in recent years become a prime candidate as a power source for
transport and stationary applications. The potential use of fuel cells range
from distributed power sources and portable applications, such as laptops [1]
or even for the future dismounted soldier [2], to vehicles.

One such type of cell is the proton exchange membrane fuel cell (PEMFC),
a schematic representation of which is shown in figure 1. The basic cell consists
of two porous electrodes, termed the anode and the cathode, separated by a
proton conducting membrane. The porous electrodes are made of a composite
material, containing carbon cloth and a hydrophobic agent, such as polyte-
trafluorethylene. Each electrode has a thin layer containing an electrocatalyst,
such as platinum, that is dispersed on the carbon cloth and is in contact with
the membrane, usually a hydrated perfluorinated sulfonic acid polymer. In ad-
dition a bipolar plate, essentially graphite into which flow and cooling channels
have been machined, is situated adjacent to each electrode. In the course of
operation, an oxidant, usually oxygen from air which is either dry or humidified
to some extent, is fed at the inlet on the cathode side and transported to the
electrolyte/cathode interface; the fuel on the other hand, normally hydrogen,
is fed at the anode inlet and is transported to the electrolyte/anode interface.
The reactions occurring at these interfaces are then

2H2 → 4H+ + 4e− at the anode, (1.1)

O2 + 4H
+ + 4e− → 2H2O at the cathode, (1.2)

which are termed the hydrogen oxidation reaction (HOR) and the oxygen re-
duction reaction (ORR), respectively. Thus, the protons produced at the anode
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are transported through the membrane to the cathode, whilst the electrons can
drive a load through an external circuit.

Bipolar plate
with flow field
and cooling
channels
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Figure 1. Schematic of a proton exchange membrane fuel cell.

During recent years, a number of mathematical models have been developed in
an attempt to understand the phenomena occurring in a PEM fuel cell. Since
a complete fuel cell model would have to address mass, momentum, species
and heat transfer in gas and liquid phases in a three-dimensional geometry,
as well as the electrokinetics for the ORR and HOR, most models choose to
focus on only some of these aspects at a time. The first models to appear were
one-dimensional followed by two-dimensional, see [11] for a list of these models;
lately three-dimensional models, based on computational fluid dynamics, have
also begun to appear [5-9]. Dutta, Shimpalee and van Zee considered first
a straight channel flow under isothermal conditions [5], followed later by a
model for flow in a serpentine channel [6]; most recent work extends [5] to
take into account heat transfer for a straight channel flow [7]. Costamagna
considers non-isothermal conditions and treats the flow distributor as a porous
material [8]. Berning [9] introduces a non-isothermal two-phase model for a
straight channel, with a simplified two-phase treatment in the porous backings,
neglecting the interaction between the liquid and gaseous phase and assuming
one-phase flow in the flow channel. However, none of the above consider in a
quantitative and comparative way the effect of flow distributor geometry on
fuel cell performance.
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To extend the work on three-dimensional modelling, we have conducted a
quantitative comparison of the performance of four common flow distributors:
parallel channels, run in both coflow and counterflow, interdigitated channels
and a porous distributor, such as a foam. To limit the computational require-
ments, we assume that the anode side is run at such conditions that it is able
to fully sustain any current created at the cathode, i.e. a fully moisturized
anode that is run at high stoichiometry. In addition, we assume that sufficient
cooling is provided to keep the cathode isothermal, a not unreasonable prelim-
inary assumption in view of the temperature distributions obtained by [7, 9],
which show that the temperature only varies by a couple of degrees in the cath-
ode. These assumptions enable us then to consider isothermal, 3-component,
gas-phase, three-dimensional laminar flow in the flow distributor and adjacent
porous backing on the cathode side only.

The mathematical model, consisting of mass, momentum and species trans-
port equations, as well as the geometries of the flow distributors considered, are
introduced in Section 2. We focus also on how a rather detailed agglomerate
model for the electrochemical aspects of the active layer, derived by [3], can
be simply implemented into the present formulation. Details of the numerical
solver used, CFX-4.4 [10], followed by its verification against an asymptotic
solution obtained previously [11], are given in Section 3. The results from
different flow distributors are then compared and discussed in Section 4. We
finish with conclusions in Section 5.

2. Model description

2.1. Flow-distributor geometry. The electrochemical reactions that
occur at the active layers depend on a sufficiently fast transport of reactants to,
and products away from, the active sites so as to limit concentration overpoten-
tials. Towards this end, the bipolar plates contain grooved channels, which can
take a number of different shapes. Amongst the most common designs today
are:

(a): parallel channels, with only one pass over the porous backing, run
in coflow, as shown in figure 2a.

(b): parallel channels, with only one pass over the porous backing, run
in counterflow, as shown in figure 2a.

(c): interdigitated channels, where channels are terminated, in order to
force the flow into the porous backing, see figure 2b.

(d): a porous material, such as a foam; here, the entire surface of the
porous backing is in contact with the gas flow, see figure 2c, in contrast
to the channel based flow distributors, which contain ‘dead’ zones
between the channels.

(e): serpentine flow channels, comprising one long channel with many
passes over the porous backing.

(f): a combination of some of the above, e.g. (a) and (e), (b) and (e).
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a)

b)

c)

Figure 2. Schematic of the flow distributors considered: a) parallel channels
which can be run in coflow or counterflow; b) interdigitated flow channels; c)
foam.

We focus here on (a)-(d).

2.2. Governing equations.
2.2.1. Flow channels. In the flow channels, we solve for the momentum

and continuity of mass, given by

∇ · (ρv) = 0, (2.1)

∇ · (ρv⊗ v) = −∇
µ
p+

2

3
µ∇ · v

¶
+∇ ·

³
µ
³
(∇v) + (∇v)T

´´
, (2.2)

where v is the velocity, ρ is the density, p is the pressure and µ is the dynamic
viscosity. The transport equations for the ternary gas mixture, comprising
oxygen, water and nitrogen are

∇ ·
µ
ρv

µ
wO2

wH2O

¶¶
= ∇ ·

µ
ρD

· ∇wO2

∇wH2O
¸¶

, (2.3)

where wO2
and wH2O are the mass fractions of oxygen and water and D is the

diffusion tensor.
2.2.2. Porous backing/Foam. For porous regions, we have to define super-

ficial and intrinsic properties. Superficial averages are defined as

hφi ≡ 1

V
Z
V
φdV, (2.4)

and intrinsic as

hφi(g) ≡ 1

V(g)
Z
V
φdV, (2.5)

where V is the total volume of the Representative Elementary Volume (REV)
and V(g) is the volume of the gas in the REV. With the porosity, γ = V(g)/V,
the two averages are related through

hφi = γ hφi(g) . (2.6)
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Conservation of mass and momentum is given respectively by

∇ ·
³
hρi(g) hvi

´
= 0, (2.7)

∇ ·
³
hρi(g) hvi⊗ hvi

´
+ µK−1 · hvi = −∇

µ
hpi(g) + 2

3

µ

γ
∇ · hvi

¶
+∇ ·

µ
µ

γ

³
∇ hvi+ (∇ hvi)T

´¶
, (2.8)

where K is the permeability tensor.
The species transport equations are described by

∇ ·
Ã
hρi(g) hvi

Ã
hwO2

i(g)
hwH2Oi(g)

!!
= ∇ ·

Ã
hρi(g) γ hDi(g)

"
∇ hwO2

i(g)
∇ hwH2Oi(g)

#!
,

(2.9)
where hDi(g) is the total mass diffusion tensor, containing contributions from
an intrinsic effective mass diffusion tensor and an intrinsic hydrodynamic dis-
persion tensor. For a more detailed discussion of these, see [11].

2.3. Boundary conditions.
2.3.1. Inlet. At the inlet, we prescribe the normal velocity and the gas

composition for the channel distributors:

v · ex = U in, v · ey = v · ez = 0, wO2 = winO2
, wH2O = winH2O; (2.10)

in addition, for the counterflow distributor, we require

v · ex = −U in, v · ey = v · ez = 0, wO2 = winO2
, wH2O = winH2O, (2.11)

for the second channel (see figure 3b);
For the foam:

hvi · ex = U in, hvi · ey = hvi · ez = 0, hwO2i(g) = winO2
, hwH2Oi(g) = winH2O.

(2.12)
2.3.2. Outlet. At the outlet, we specify the pressure and the streamwise

gradients of the velocities and species are set to zero, corresponding to fully
developed flow conditions. For the channels:

p = pout, (2.13)

ex ·
³
∇v+ (∇v)T

´
· ey = 0, (2.14)

ex ·
³
∇v + (∇v)T

´
· ez = 0, (2.15)

ex ·∇wO2 = ex ·∇wH2O = 0; (2.16)
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correspondingly, for the foam:

hpi(g) = pout, (2.17)

ex ·
³
∇ hvi+ (∇ hvi)T

´
· ey = 0, (2.18)

ex ·
³
∇ hvi+ (∇ hvi)T

´
· ez = 0, (2.19)

ex ·∇ hwO2i(g) = ex ·∇ hwH2Oi(g) = 0. (2.20)

2.3.3. Walls. At the walls of the channels, we specify no-slip, no normal
flow and no componental flux:

v = 0, (2.21)

n ·∇wO2 = n ·∇wH2O = 0, (2.22)

where n is the unit normal to a wall. In the porous backing and foam, zero
shear stress, no normal flow and no componental flux conditions are applied;
these are, respectively,

n ·
³
∇ hvi+ (∇ hvi)T

´
· t = 0, (2.23)

n · hvi = 0, (2.24)

n ·∇ hwO2i(g) = n ·∇ hwH2Oi(g) = 0, (2.25)

where t is the unit tangent to a wall.
2.3.4. Symmetry conditions. The flow distributors considered in this pa-

per are all of periodic character, see figure 2, allowing us to reduce the com-
putational domain for each by introducing unit cells, see figure 3, with the
appropriate symmetry conditions. For the foam and porous backing:

n ·
³
∇ hvi+ (∇ hvi)T

´
· t = 0, (2.26)

n · hvi = 0, (2.27)

n ·∇ hwO2i(g) = n ·∇ hwH2Oi(g) = 0; (2.28)

correspondingly, for the channels:

n ·
³
∇v + (∇v)T

´
· t = 0, (2.29)

n · v = 0, (2.30)

n ·∇wO2 = n ·∇wH2O = 0. (2.31)

2.3.5. Channel/porous backing interface. At the interface between the porous
backing and the flow channels, we couple the point wise velocities, normal and
shear stresses in the plain fluid (flow channels) with their superficial counter-
parts in the porous medium. The mass fractions and fluxes of oxygen and water
are continuous across the interface.
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2.3.6. Active region/porous backing interface. The active region in the cath-
ode is sufficiently thin to allow us to treat it as a boundary condition for the
porous backing. Using Faraday’s Law, the mass fluxes of oxygen and water can
be found as

hnO2i · ey = −MO2
hii · ey
4F

, (2.32)

hnH2Oi · ey =
(1 + 2α)MH2O hii · ey

2F
, (2.33)

where hnO2i and hnH2Oi are the mass fluxes, α is the amount of water dragged
through the membrane with each proton,Mi is the molecular mass of species i,
hii is the superficial current density and F is Faraday’s constant. The superficial
velocity from the reaction can be derived from the the theory of multicompo-
nent mass transfer as

hρi(g) hvi · ey=hii · ey
4F

((2 + 4α)MH2O −MO2) . (2.34)

2.4. Constitutive relations. Assuming an ideal gas, the gas density can
be found from

ρ =
pM

RT
, (2.35)

where M = (wO2/MO2 + wH2O/MH2O + wN2/MN2)
−1 is the mean molecular

mass, R is the universal gas constant and T is the temperature. The mass
fraction of nitrogen is given by

wN2 = 1− wO2 − wH2O. (2.36)

We note here that the molar fractions xi are related to the mass fractions wi
by

xi =
wiM

Mi
. (2.37)

Furthermore, in the most general case, the dynamic viscosity, µ, is also a func-
tion of the composition, but for simplicity it is considered constant in this
paper. The corresponding constitutive properties in the porous backing and
foam are the same, but based on intrinsic values.

An expression for the diffusion tensor [15] can be found from the diffusion
coefficients eDij for the molar diffusion flux, relative to a molar-averaged velocity
frame, as eD11 = DO2,N2(xO2DH2O,N2 + (1− xO2)DO2,H2O)/S, (2.38)eD12 = xO2DH2O,N2(DO2,N2 −DO2,H2O)/S, (2.39)eD21 = xH2ODO2,N2(DH2O,N2 −DO2,H2O)/S, (2.40)eD22 = DH2O,N2(xH2ODO2,N2 + (1− xH2O)DO2,H2O)/S, (2.41)

S = xO2DH2O,N2 + xH2ODO2,N2 + xN2DO2,H2O, (2.42)



60 A study of flow-distributors in a PEM fuel cell

where Dij are the binary Maxwell-Stefan diffusion coefficients. Since we use
the mass diffusion flux relative to the mass-averaged velocity, the following
transformation is required:

D = BWX−1 eDXW−1B−1, (2.43)

B = δij − wi

µ
1− wnxj

xnwj

¶
, i, j = 1, 2, n = 3, (2.44)

X = xiδij, i, j = 1, 2, (2.45)

W = wiδij, i, j = 1, 2, (2.46)

where δij is the Kronecker delta. The binary Maxwell-Stefan diffusion coeffi-
cients are corrected for pressure and temperature via

Dij(T, p) = p0
p

µ
T

T0

¶ 3
2

Dij(T0, p0), (2.47)

stemming from kinetic gas theory [12]. The cross terms in the diffusion tensor
D are around one to two orders of magnitude lower for the operating parameters
in this study than the diagonal terms, allowing us to neglect their contributions,
whence

D =

·
D11 0
0 D22

¸
. (2.48)

In the porous media, i.e. in the foam and porous backing, we apply a Brugge-
man correlation for the superficial effective mass diffusion tensor

hDi = γ
3
2D. (2.49)

The permeabilities of the porous backing and foam are taken to be isotropic

K = κδij, (2.50)

where κ is the permeability.

2.5. Electrokinetics and the active layer. An expression is still re-
quired for the current density hii · ey given in equation (2.34) . A novel feature
of this paper is to implement an expression from an agglomerate model derived
by Jaouen et al. [3], and subsequently validated experimentally [4]. Although
[3] considers an active layer of finite thickness, it is possible to demonstrate
that, for our purposes, the active layer need not be resolved explicitly, but
rather can be treated implicitly as a boundary condition. Some further details
are as follows.

The volumetric current density hivi, given by [3], is approximated as

hivi = Ai0
¡
1− γpol

¢
(1− γa) exp

µ
−αrF
RT

η

¶
F
hcO2i(g)
crefO2

(2.51)

where Ai0 is the volumetric exchange current density in the agglomerates, γpol
is the volume fraction of the polymer electrolyte in the agglomerate nucleus,
hcO2i(g) = hwO2i(g) hρi(g) /MO2 is the molar concentration of oxygen, αr is the
cathodic transfer coefficient for the ORR, n is the number of electrons consumed
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in the ORR per oxygen molecule, η is the overpotential at the cathode (defined
negative), and γa is the volume fraction of pores in the active layer. F is the
nucleus effectiveness factor, defined as

F =
3

Υr

µ
1

tanh(Υr)
− 1

Υr

¶
, (2.52)

with Υ given by

Υ =

s
Ai0

¡
1− γpol

¢
exp

¡−αrF
RT η

¢
nFD

, (2.53)

where D is an effective oxygen permeability in the agglomerates and r is the
radius of the agglomerate nucleus. This agglomerate model was validated by [4]
for a small PEM fuel cell with an area of 2 cm2 at conditions well above the sto-
ichiometric flow rate, allowing the cell there to be modelled one-dimensionally,
since concentration gradients in the streamwise direction in the cathode can
be neglected. In this paper, however, the aim is to capture and study two-
and three-dimensional effects. The one-dimensional agglomerate model can be
used for this purpose by noting that the geometry of the active layer studied is
slender, i.e. its thickness, ha, is much smaller than its width (w) and breadth
(L) , implying that only gradients in the normal direction in the active layer
will contribute to mass transfer; consequently, this allows us to treat the active
layer locally as one-dimensional. Although we omit the details here, it is pos-
sible to show by scale analysis that we will not have any gradients of oxygen
in the normal direction in the active layer, since the magnitude of the diffusion
coefficient in the agglomerates is O(10−11) m2s−1, as compared to O(10−5)
m2s−1 in the pores. The additional approximation of reducing the active layer
to a boundary condition corresponds to an infinite effective proton conductiv-
ity in the the active layer. The total current density is then given locally by
hii · ey = hii = hiviha.

Jaouen et al. [3] discerned four different regimes, where the Tafel slope
doubles or even quadruples, and subsequently supplied the experimental vali-
dation to support these [4]. In regime 1, the active layer is controlled by Tafel
kinetics and is first order in the oxygen concentration. Regime 2 displays a
doubling of the Tafel slope, due to the active layer being governed by Tafel ki-
netics and oxygen diffusion in the agglomerates, but still remains first order in
the oxygen concentration. A doubling of the Tafel slope is observed in the third
regime, where the active layer is controlled by the Tafel kinetics, in addition to
proton migration. The oxygen dependence here is half-order. The final regime,
the fourth, shows a quadrupling of the Tafel slope, and is attributable to an
active layer controlled by Tafel kinetics, proton migration and oxygen diffusion
in the agglomerates. The oxygen dependence is half-order, as in regime 3.

By assuming that we have no resistance to proton migration, we limit the
validity of the expression to regimes 1 and 2, i.e. to an active layer controlled
by Tafel kinetics at low overpotentials, and at higher overpotentials by Tafel
kinetics coupled with oxygen diffusion resistance in the agglomerates. We are
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thus able to capture the doubling of the Tafel slope due to mass transfer lim-
itations in the agglomerates, although the doubling due to proton migration
resistance and a quadrupling of the slope are not modelled.

Finally, we note that of more use, as regards judging fuel cell performance,
than the overpotential, η, is the cell voltage, Ecell, where

η = Ecell −E0, (2.54)

and E0 is the equilibrium potential.

3. Numerics and verification

A commercial computational fluid dynamics code, CFX-4.4, based on fi-
nite volumes, was used to implement the model outlined above. As can be seen
in figure 2, all of the flow distributors are periodic in the spanwise direction.
Hence, a representative computational unit cell, with symmetry boundary con-
ditions on both sides in the spanwise coordinate, can be introduced. The unit
cells for the distributors are chosen so that the area of the active layer and
the contact area between the channels and porous backing are the same for
all, with the exception of the foam, which covers the entire porous backing as
depicted in figure 3.

a) b)

d)c)

ex

ez

ey

w

w

w/2

w/2

hp hp

hphp

hf hf

hf hf LL

L L

wf

wf

wf

wf

wf

wf

Figure 3. Schematic of the computational unit cells: a) parallel channels run
in coflow; b) parallel channels run in counterflow; c) interdigitated channels;
d) foam.

Using a structured mesh, each flow distributor with porous backing was resolved
as follows:

(a): parallel channels run in coflow ; the channel contained 104 compu-
tational cells and the porous backing 2 × 104 cells, giving a total of



E. Birgersson and M. Vynnycky 63

3 × 104 cells. Mesh independence was assured by comparing with a
mesh comprising 1.2 × 105 cells and the difference was found to be
∼ 1% for the average current density.

(b): parallel channels run in counterflow ; the two channels with 104

cells each and the porous backing with 4 × 104 cells, giving a total
of 6 × 104 cells. Mesh independence was assured by comparing with
a mesh comprising 2 × 105 cells and the difference was found to be
∼ 1% for the average current density.

(c): interdigitated channels; the two channels with 104 cells each and
the porous backing with 4× 104, giving a total of 6× 104 cells. Mesh
independence was assured by comparing with a mesh comprising
2× 105 cells and the difference was found to be ∼ 4% for the average
current density. At higher currents, i.e. hii > 4 Acm−2, more than
6× 104 cells were necessary to resolve the flow in the porous backing.
We did not pursue these higher current densities, however.

(d): foam; the foam and porous backing, each with 2× 104 cells, giving
a total of 4×104 cells. Mesh independence was assured by comparing
with a mesh comprising 1.6× 105 cells and the difference was found
to be ∼ 1% for the average current density.

The computations, carried out on a 500 MHz Compaq Alphaserver with 3
GB RAM, required about 1-2 hours for lower current densities and about 12
hours for higher.

The numerical code was verified via asymptotic solutions [11]. [11] showed
that for a slender two-dimensional geometry, consisting of a flow channel ad-
jacent to the porous backing, closed form solutions could be found for ∆ =

1/
¡
Reσ2

¢ À 1, where Re
³
= ρU inL

µ

´
is the Reynolds number, and σ = hf/L,

with hf and L as the height and length of the flow distributor. The geometry
is depicted in figure 4 in dimensional form.

hf

hp

L

y

x

Uin Flow channel

Porous backing

Figure 4. The two-dimensional cathode with a flow distributor above the
porous backing.

For the asymptotic analysis, the governing equations are scaled so that X =
x/L, Y = y/hf . For a current density which can be written nondimensionally
on the form I = hxO2i(g), where I = hii /[i] and [i] is the current density scale,
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the leading order solution was found to be given by

A log
Ã
ζO2

(X)
¡
ΦζO2

(0) + 1
¢

ζO2
(0)
¡
ΦζO2

(X) + 1
¢!−(AΦ− B)Ã ζO2

(X)− ζO2
(0)¡

ΦζO2
(X) + 1

¢ ¡
ΦζO2

(0) + 1
¢!

=
ΩX

4ρ0(0)
¡
ΦζO2

(0) + 1
¢ ,

where

A =
1

MN2

·
(MH2O −MN2)

µ
(2 + 4α) ζO2

(0) + ζH2O(0)

ΦζO2
(0) + 1

¶
− 1
¸
,

B =
1

MN2

·
(MO2 −MN2) + (MH2O −MN2)

µ
ΦζH2O(0)− (2 + 4α)

ΦζO2
(0) + 1

¶¸
,

and

ζO2
=

xO2

M ,

ζH2O =

¡
1 +ΦζO2

(X)
¢
ζH2O(0) + (2 + 4α)

¡
ζO2

(0)− ζO2
(X)

¢
ΦζO2

(0) + 1
,

withMi =Mi/[M ],M =M/[M ], where [M ] is a molecular weight scale, Ω =
[i][M ]

[ρ]U inFσ
and Φ = (2 + 4α)MH2O −MO2 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

X  [-]

M
as

s f
ra

ct
io

ns
 [-

]

Figure 5. Verification of the CFX-4.4 code. (–) corresponds to analytical
solutions and markers are for the CFX-4.4 solutions: water mass fraction (+);
oxygen mass fraction (x).
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For the agglomerate model applied here, we obtain the current density scale

[i] = Ai0
¡
1− γpol

¢
(1− γa) exp

µ
−αrF
RT

η

¶
F

ha[ρ]

crefO2
[M ]

,

whence I ≡ hxO2i(g) as required for the solution above.
Comparison, shown in figure 5, was carried out in terms of mass fraction

profiles along the cathode. All parameters from the base case were used, see
table I, but with ∆ = 960, σ = 10−3 and Ω = 28.2. The number of cells used
for this 2D calculation in CFX-4.4 were 2000. The mass fractions obtained
with CFX-4.4 agree well the ones obtained analytically.

Table I. Base-case parameters
Physical parameters:
γb 0.3
γf 0.99
DO2,H2O 3.98× 10−5 m2s−1 at 363 K, 1 atm [3]
DO2,N2 2.95× 10−5 m2s−1 at 363 K, 1 atm [3]
DH2O,N2 4.16× 10−5 m2s−1 at 363 K, 1 atm [3]
E0 1.18 V
MO2 2.8× 10−2 kg mol−1
MH2O 1.8× 10−2 kg mol−1
MN2 3.2× 10−2 kg mol−1
κp 10−12 m2

κf 10−10 m2

µ 1.812× 10−5 kgm−1s−1
F 96487 As mol−1

α 0.3
R 8.314 Jmol−1K−1

[M ] 10−2 kg/mol
[ρ] 1.0 kgm−3

pvapH2O 4.7× 104 Nm−2 [16]
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Operating conditions:
pout 1 atm
L 0.1 m
hin 30%
T 80◦C
hf 10−3 m
hp 3× 10−4 m
wf 5× 10−4 m
w 2× 10−3 m

Agglomerate model parameters:
r 5× 10−7 m
αr 0.78
Ai0 3× 103 Am−3
D 10−11 mol m−1s−1

ha 10−5 m
γa 0.3
γpol 0.3

n 4
crefO2

6.2 mol m−3 at h = 30%, 1 atm and 353 K
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4. Results & Discussion

For each flow distributor, simulations were carried out for six different cell
potentials, Ecell. However, rather than specifying the inlet velocity, U in, we
specify instead, as tends to be the practice in experimental work with fuel
cells, the stoichiometry, ξ, which is defined by

ξ =

R
Ain n

in
O2
dAR

Acat

­
ncatO2

®
dA

=
ρU inwinO2

Ain

MO2

4F

R
Acat hiidA0

, (4.1)

where ninO2
and

­
ncatO2

®
are the mass fluxes of oxygen into the cathode and of

the oxygen being consumed at the active layer, respectively, and Acat and Ain

are the total areas of the active layer and the inlet. This formulation implies
that the inlet velocity is iterated for, its value depending on the current density
obtained at the catalytic layer on the previous iteration. We also specify the
relative humidity at the inlet, Hin, given by

Hin =
xinH2Op

in

pvapH2O
, (4.2)

where pvapH2O is the vapour pressure of water; furthermore, since xO2/xN2 =
21/79 and xO2 + xH2O + xN2 = 1, we have the inlet compositions for a given
relative humidity as

xinH2O = H
in
pvapH2O
pin

, xinO2
=
1− xinH2O
1 + 79/21

. (4.3)

Consequently, xinH2O and xinO2
must also be updated at every iteration.

Earlier work [13, 14] suggests that the interdigitated design should be
capable of yielding higher current densities than either one of the straight
channel designs considered here. Also, we expect that either the foam or the
interdigitated channels give rise to the highest average current densities, since
the interdigitated design forces the flow into the porous backing, whereas the
foam covers the whole surface of the porous backing. Parallel channels run in
counterflow might be expected to perform better than channels in coflow, as
the former allows for alternating inlets and outlets, reducing the level of oxygen
depletion along the channels. This is indeed the case, as can be seen in figure
6, where the polarization curves for the stoichiometries 1.5, 3 and 5 are shown.
The interdigitated design allows for average current densities of 4 Acm−2 for
cell potentials between 0.3 V and 0.4 V, depending on stoichiometry. Current
densities ranging from 2 to 3.2 Acm−2 are obtainable with the foam. The
counterflow gives somewhat higher current densities than the coflow design,
especially for the higher stoichiometry.
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Figure 6. Polarisation curves for the different flow distributors at
stoichiometry ξ = 1.5, 3, 5: coflow channels (o), counterflow channels (∇),
interdigitated channels (x), foam (+).
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Figure 7. Power density, P , for the different flow distributors at
stoichiometry ξ = 1.5, 3, 5: coflow channels (o), counterflow channels (∇),
interdigitated channels (x), foam (+).
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Figure 8. Standard deviation of the current density, σstd, for the different
flow distributors at stoichiometry ξ = 1.5, 3, 5: coflow channels (o),
counterflow channels (∇), interdigitated channels (x), foam (+).

Figure 7 depicts the power density for the flow distributors. In the lower ranges
of current density, 0 ∼ 0.4 Acm−2, the power density is independent of the type
of distributor used. As the current density is increased, differences between
the flow designs become readily apparent, with the interdigitated sustaining
the highest power densities, followed by the foam. The counterflow channels
perform marginally better than the coflow channels.

The performance of a fuel cell is judged not only on the magnitude of
current density that can be generated, but also on the uniformity of the current
distribution at the active layer, since uniformity is linked to catalyst utilization
and degradation. As a measure of the uniformity, we compare the standard
deviation of the current density for each flow design, σstd, defined by

σstd =

µ
1

Acat

Z
Acat

³
hii− hiiavg

´2
dA0

¶ 1
2

, where hiiavg =
1

Acat

Z
Acat

hiidA0,
(4.4)

as illustrated in figure 8.
For all flow distributors, the distribution becomes more uniform as the sto-

ichiometry is increased. At a stoichiometry of 1, all the oxygen that enters the
cathode would be consumed; by increasing the stoichiometry, the flow becomes
less depleted of oxygen, and is hence able to sustain higher current and a more
uniform distribution. The parallel channels, run in co- and counterflow, exhibit
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the highest deviations at current densities above ∼ 0.4 Acm−2, with the coflow
being the less uniform of the two. At current densities below 1.5-2 Acm−2,
depending on stoichiometry, greatest uniformity is obtained for the interdigi-
tated design, but the extent of the non-uniformity increases with the current;
ultimately, the foam design gives the greatest uniformity. These findings are
also reflected in figures A1-A4, where the local current density for different
cell potentials is given. All distributors exhibit a more non-uniform current
density as the overpotential is increased, i.e. as the cell voltage decreases.
For coflow (see figure A1), the areas under the flow channels can sustain local
higher current densities than those under the "rib" of the bipolar plate, where
mass transfer becomes increasingly limiting with increasing overpotential. The
cathode operated in counterflow behaves similarly (figure A2), but delivers a
somewhat higher overall performance, as the counterflow arrangement allows
for exiting air with a lower oxygen concentration in one channel to be balanced
by incoming fresh air in the two adjacent channels. For the foam (figure A3),
the local current density is a function of the streamwise coordinate only, al-
though there are minor inlet and exit effects, which become somewhat more
pronounced at higher current densities. This simplification is attributable to
the inherent characteristic of the foam to cover the surface of the porous back-
ing, in contrast to grooved channels in a bipolar plate comprising alternating
regions of channels and ribs. Finally, the interdigitated arrangement (figure
A4) displays an increasingly spanwise behaviour for the local current density
at higher overpotentials. The overall flow increases for a given stoichiometry
at higher current densities, leading to increased forced convective flow in the
porous backing, whence the local current density becomes more even in the
spanwise direction.

Keeping the pressure drop, ∆p
¡
= pin − pout

¢
, at a minimum is of interest

in terms of reducing operating costs for the fuel cell, whence the optimal flow
distributor should be able to sustain high even current densities, whilst keeping
the pressure drop to a minimum. The foam, as shown in figure 9, requires the
highest pressure drop to drive the flow; this can be attributed to the rather low
permeability chosen for the foam in this study. An increase in permeability to
10−8 m2 would lead to a reduction of the pressure drop by approximately 2
orders of magnitude, as can be estimated from Darcy’s law. The pressure drop
for the interdigitated distributor is higher than for the coflow and counterflow,
which is to be expected since the flow is being forcibly driven through the porous
backing, in this study with a permeability of 10−12 m2. The lowest pressure
drops are obtained with the parallel channels, with no discernible difference in
the magnitude of the pressure drop between the two.
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Figure 9. Pressure drop, ∆p, for the different flow distributors at
stoichiometry ξ = 1.5, 3, 5: coflow channels (o), counterflow channels (∇),
interdigitated channels (x), foam (+).
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Figure 10. Obtained inlet velocity, U in, for the different flow distributors at
stoichiometry ξ = 1.5, 3, 5: coflow channels (o), counterflow channels (∇),
interdigitated channels (x), foam (+).
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Since we do not specify the inlet velocity, but rather iterate on it to obtain
a given stoichiometry for a specified cell potential, it is of interest to see how
the inlet velocity changes with current density and stoichiometry; this is shown
in figure 10. The inlet velocity is almost proportional to the average current
density, and only starts to deviate from linear when the density at the inlet
changes due to the pressure drop obtained. The reason why the inlet velocities
for the interdigitated channels are higher is because the inlet area is half as
large as for the other flow distributors.

5. Conclusions

A study of different flow distributors, based on a gas-phase model for mass,
momentum and species transport in the cathode of a PEM fuel cell, has been
considered. Special attention was given to the treatment of the active layer, for
which an agglomerate model developed previously [3] was used. The numerical
code used was verified with an analytical solution also developed previously
[11]. The novel features of this study are: 1) a direct quantitative comparison
of the performance of different flow distributors; 2) the use of a new Tafel law
which agrees well with experimental observations for a small fuel cell [4]. The
complete validation of the gas-phase model considered here would require more
detailed information about the local current density distribution; in future, this
will be obtainable via experiments with a segmented cell.

The aim of the study was to compare the performance of different flow dis-
tributors for a given cell at a given potential, in terms of four different quanti-
ties: the obtained average current density, power density, standard deviation of
the current density distribution and pressure drop. The results show that the
interdigitated flow distributor can sustain the highest current densities, but at
a higher pressure drop than the counterflow and coflow channels. Furthermore,
to function properly, the interdigitated channels would have to be in contact
with the porous backing in such a way that channeling effects are kept at a
minimum; given the high velocities required, even the slightest gap might lead
to most of the flow going through the gap and not through the porous backing,
with a resulting loss of power density. A foam distributor is able to give the
lowest standard deviation for the current at high current densities, but care
should be taken as to its permeability to avoid an unreasonably high pressure
drop.

The present work was limited to gas-phase flow and isothermal conditions.
Future work will seek to incorporate both the possible production of liquid
water at the catalytic layer and non-isothermal effects.
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List of symbols
A Area, m2

A Integration constant for asymptotic solution
Ai0 Volumetric exchange current density, A m−3

B Transformation tensor
B Integration constant for asymptotic solution
c Molar concentration, mol m−3

D Diffusion tensor, m2s−1eDij Diffusion coefficients for molar diffusive flux
relative to a molar-averaged velocity, m2s−1

Dij Diffusion coefficients for mass diffusive flux
relative to a mass-averaged velocity, m2s−1

Dij Binary Maxwell-Stefan diffusion coefficients, m2s−1

D Effective oxygen permeability in the agglomerates, mol m−1s−1

∆p Pressure drop, Nm−2

ex, ey, ez Coordinate vectors
E Potential, V
F Faraday’s constant, As mol−1

F Nucleus effectiveness factor for the agglomerate model
h Height, m
h Relative humidity
i Current density, A m−2

hivi Volume current density, A m−3

I Dimensionless current density
K Permeability tensor, m2

L Length, m
M Mean molecular mass, kg mol−1

M Dimensionless mean molecular mass
Mi Molecular mass of species i, kg mol−1

Mi Dimensionless molecular mass of species i
n Number of electrons consumed in the ORR per oxygen molecule
n Unit vector in the normal direction
ni Mass flux of species i, kg m−2s−1

p Pressure, Nm−2

P Power density, Wm−2

r Radius of agglomerate nucleus, m
R Gas constant, J mol−1 K−1

Re Reynolds number
S Denominator for transformation of diffusion coefficients, m2s−1

t Unit vector in the tangential direction
T Temperature, K
v Velocity, ms−1

V Volume of the representative elementary volume, m3

w Width, m
wi Mass fraction of species i
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W Transformation tensor
xi Molar fraction of species i
X, Y Dimensionless coordinates
X Transformation tensor
Greek
α Coefficient for water transport by

electro-osmosis in the membrane
αr Cathodic transfer coefficient for the ORR
γ Porosity
δij Kronecker delta
∆ = 1/(Reσ2) Dimensionless parameter
ζ i Dimensionless fraction of species i
η Overpotential, V
κ Permeability, m2

µ Dynamic viscosity, kg m−1 s−1

ξ Stoichiometry
ρ Density, kg m−3

σ = hf/L Dimensionless number
σstd Standard deviation for current density, Am−2

Υ Parameter for current density expression
φ General tensor
Φ = (2 + 4α)MH2O −MO2 Dimensionless number
Ω = Λ/σ Dimensionless number
Subscripts
0 Equilibrium, Reference
a Active layer
cell Cell
p Porous backing
pol Polymer electrolyte in the active layer
f Flow channel
H2O Water
O2 Oxygen
N2 Nitrogen
avg Average
Superscripts
cat Catalytic region
g Gas
in Inlet
out Outlet
ref Reference
vap Vaporisation
Miscellaneous symbols
h i Superficial average
h i(g) Intrinsic average
[ ] Scale
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Appendix A. Local current density distributions
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Figure A1. The local current density distribution for the coflow distributor
at the active layer for different potentials at stoichiometry ξ = 3: a)
Ecell = 0.782 V; b) Ecell = 0.682 V; c) Ecell = 0.582 V; d) Ecell = 0.482 V; e)
Ecell = 0.382 V; f) Ecell = 0.282 V.
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Figure A2. The local current density distribution for the counterflow
distributor at the active layer for different potentials at stoichiometry ξ = 3:
a) Ecell = 0.782 V; b) Ecell = 0.682 V; c) Ecell = 0.582 V; d) Ecell = 0.482 V;
e) Ecell = 0.382 V; f) Ecell = 0.282 V.
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Figure A3. The local current density distribution for the foam distributor at
the active layer for different potentials at stoichiometry ξ = 3: a)
Ecell = 0.782 V; b) Ecell = 0.682 V; c) Ecell = 0.582 V; d) Ecell = 0.482 V; e)
Ecell = 0.382 V; f) Ecell = 0.282 V.
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Figure A4. The local current density distribution for the interdigitated flow
distributor at the active layer for different potentials at stoichiometry ξ = 3:
a) Ecell = 0.782 V; b) Ecell = 0.682 V; c) Ecell = 0.582 V; d) Ecell = 0.482 V.
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Abstract. An isothermal 2-D liquid-phase model for the electrokinetics and the
transport of mass, momentum and species in the anode of a DMFC is presented and
analysed. The model is developed for the case when the geometry aspect ratio is
small, and it is shown that, under realistic operating conditions, a reduced model,
which nonetheless still describes all the essential physics of the full model, can be de-
rived. The significant benefits of this approach are that physical trends become much
more apparent than in the full model, and the considerable reduction in the time
required to compute numerical solutions - a fact especially useful for wide-ranging
parameter studies. Such a study is then performed in terms of the three nondimen-
sional parameters that emerge from the analysis, and we subsequently interpret our
results in terms of the dimensional design and operating parameters. In particular,
we highlight the effect of these on methanol mass transfer in the flow channel and
on the current density. The results indicate the relative importance of mass transfer
resistance in both the flow channel and the adjacent porous backing.

1. Introduction

The direct methanol fuel cell (DMFC) is an attractive power source for low
power applications. High power and energy density, low emissions, operation
at or near ambient conditions, fast and convenient refuelling and a potentially
renewable fuel source are some of the features that make the fuel cell promising.
The main advantage of the DMFC, compared to other types of fuel cells, is the
simplicity of the entire power system: there is no need to store a gas or to
reform a liquid fuel at elevated temperatures, with the liquid fuel simply being
pumped through the anode of the fuel cell. The anode side of a DMFC can
schematically be described as in Figure 1: methanol and water enter at the
left-hand side and react at the active layer to form carbon dioxide, protons and
electrons, according to

CH3OH +H2O→ CO2 + 6H
+ + 6e−. (1.1)

An important tool for acquiring knowledge about the physical processes
that occur in the anode is theoretical modeling, since it is difficult to measure
potential and concentration gradients within the thin active layer or the porous
backing directly. There are already some models of the DMFC that aim to
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describe the processes occurring, including the electrochemistry [1-14]. The
treatment of the mass transfer varies considerably in these models, and only a
few of these models account for the mass transfer limitation on performance in
both the porous backing and the active layer [4-8,11-14]. None of the previous
models, with the exception of [12-14], are two-dimensional with respect to the
length of the electrode, nor do they take mass transfer in the channel into
account. The Kulikovsky model [12, 13] is a gas-phase model that neglects
the influence of the spanwise gradients in the channel. Most recently, Wang
and Wang [14] have modelled the DMFC using a multiphase mixture theory
developed in earlier work for other physical applications [15].

hf

hp

L

y

x

Flow Channel

Porous Backing

Active layer
ha

Figure 1. A schematic of the anode side of a DMFC.

Mass transfer has been shown experimentally to be important [11], and it is
the aim of this paper to investigate this in detail by means of a two-dimensional
liquid-phase model that accounts for the mass transfer in the whole anode. The
influence of fuel flow on cell performance will also be analysed in a parameter
study. In addition to mass transfer, the model will include all of the important
known physics in the liquid-phase anode, including the porous backing and the
porous active layer; however, the approach that we adopt, as distinct from all
earlier work, is to use scaling arguments and elementary asymptotic techniques
to yield a reduced model which requires minimal computing time, a factor which
makes the model suitable for inclusion in system studies, where computational
time is of the essence.

Although the one-phase mass transfer described in this paper is geared
towards the direct methanol fuel cell application, the equations are general
and could equally well describe the mass transfer in a one-phase fuel cell-based
electrochemical reactor. It is the view of the authors that electrochemical
synthesis will benefit from the development in the polymer electrolyte fuel cell
area, including DMFC. Thus, the formulation presented may become of interest
for applications other than the DMFC.

The mathematical model is a modified version of the reduced PEFC model
derived by [16]. After a brief detour through the basics of flow in porous media,
dimensionless quantities are introduced, followed by the governing equations
and corresponding boundary conditions. We consider laminar one-phase flow
in the anode, governed by the Navier Stokes equations in the channel and
Darcy’s law in the porous backing, coupled with multicomponent mass transfer
equations for methanol and carbon dioxide. The flow can be treated as a dilute
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mixture. In a previous paper [11], the pore diffusion, finite ionic conductivity
and the complex methanol oxidation kinetics of the anode electrode were all
taken into account. In the present paper, we use that model to derive an
expression that can be used to reduce the governing equations in the active layer
to a boundary condition for the flow in the rest of geometry; as a consequence,
the present model implicitly accounts for the porous effects and the reaction
kinetics of the previous study. The modeled electrode is 23 µm thick and is
comprised of 0.8 mg/cm2 of PtRu (1:1, 40% on carbon) and 1.7 mg/cm2 of

Nafion
R°
. The model, as all previous DMFC models [1-14], is isothermal. For

very low fuel flow rates, this is not a particularly good assumption, although
it becomes so if the cell is tempered. Since the kinetic equations used were
derived at 70oC, all physical properties are also taken at that temperature.
Adaption of the reduced model to the anode shows the conditions for which
the the velocity field in the channel decouples from the rest of the flow and can
be solved a priori. The operating conditions at the anode enable a reduction of
the mass transfer equations to just one scalar transport equation for methanol
in the flow channel; the solutions in the active layer and porous backing are then
given by elementary analytical expressions involving a function that requires
the numerical solution of a simple transcendental equation. The reduced model,
solved numerically with a Modified Box discretization scheme, is verified against
two commercial codes which solve for the full set of governing equations and
boundary conditions. The results from a parameter study of the anode are
discussed and conclusions are drawn.

2. Mathematical formulation

A reduced model for tricomponent flow in the slender cathode of a polymer
electrolyte fuel cell (PEFC) has been derived recently by [16]. This reduced
model is based on a rigorous mathematical reduction of the full elliptic gov-
erning equations for two-dimensional one-phase conservation of mass, species
and momentum in the flow channel and adjacent porous backing. Further-
more, that model is general enough to be adaptable, after minor modifications,
to the anode of the DMFC. To limit the algebra, however, we will here give
only the modified equations as they pertain to the anode once the slenderness
of the geometry has been invoked, and refer to [16] for the full derivation of
these. The dimensional equations are shown in Appendix A, together with the
dimensional boundary conditions in Appendix B.

In the channel, see Figure 1, conservation of momentum is given by the
Navier Stokes equation for an incompressible fluid and in the porous backing
by Darcy’s law. Continuity of mass and species transport equations are solved
for the liquid mixture, containing methanol, water and carbon dioxide.

These are nondimensionalised with the parameters given below. Recogniz-
ing the slenderness of the geometry, i.e. that the ratio of the heights of the
flow channel, porous backing and active layer to the length is much smaller
than one, hf/L << 1, hp/L << 1, ha/L << 1, we rescale once more to obtain
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what is called the narrow-gap approximation. Mathematically, this additional
scaling essentially entails the reduction of elliptic PDEs to parabolic PDEs in
the flow channel and ODEs in the porous backing. The resulting equations are
outlined below.

2.1. Basics of flow in porous media. A proper description of the trans-
port processes in a porous medium requires the introduction of volume-averaged
equations and associated intrinsic and superficial properties, and we introduce
these details first; see e.g. [17-19] for more details on volume averaging.

We let hφi and hφi(l) denote superficial and intrinsic properties, defined as

hφi ≡ 1

V
Z
V
φdV 0, (2.1)

and

hφi(l) ≡ 1

V(l)
Z
V
φdV 0, (2.2)

where V is the total volume of the Representative Elementary Volume (REV)
and V(l) is the volume of the void in the REV. Introducing the porosity, γ =
V(l)/V, the two averages are related through

hφi = γ hφi(l) . (2.3)

2.2. Dimensionless quantities. The model is based on the following
nondimensionalization:

ey = y

L
, ex = x

L
, ep = p− pout

ρ (U in)
2 , hepi(l) = hpi(l) − pout

ρ (U in)
2 , Mi =

Mi

[M ]
,

hIi = hii
[i]

, eD =
D

[D]
,
DeDE(l) = hDi(l)

[D]
, ev = v

U in
, hevi = hvi

U in
.

Here, p is the pressure (with pout as the outlet pressure), Mi is the molecular
mass of species i with typical scale [M ], D and hDi(l) are the diffusion tensors
in the channel and porous backing with characteristic scale [D], i is the current
density with scale [i], L is the length of the channel, U in is the maximum
velocity for a fully developed laminar velocity profile at the inlet, v = (u, v)
is the velocity in the channel, hvi = (hui , hvi) is the superficial velocity in the
porous backing. In what follows we will take the density to be constant and
equal to that of water; this is justified on physical grounds at the start of the
subsection on “Constitutive relations”. The dimensionless parameters which
appear are

Re ≡ ρU inL

µ
, Sc ≡ µ

[D]ρ
, Da ≡ κp

L2
, Λ ≡ [i][M ]

ρU inF
,

where Re, Sc and Da are the Reynolds, Schmidt and Darcy numbers, respec-
tively, and Λ describes the ratio of the mass flux of the electrochemical reaction
to the convective mass flux, whence it can be viewed as a Damköhler number.
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Here, κp is the permeability of the porous backing, µ is the dynamic viscosity
and F is Faraday’s constant.

Since the typical anode is slender, i.e. hp/L, hf/L << 1, we scale further
with

X = ex, Y =
ey
σ
, U = eu, V =

ev
σ
,

where σ ≡ hf/L and hp is the height of the porous backing. We will later also
use the notation H for the ratio hp/hf .

We neglect terms of O(σ) or lower, although combinations of σ and other
dimensionless properties are retained, and introduce the additional dimension-
less numbers

∆ ≡ 1

Reσ2
, Ω ≡ Λ

σ
, Σ ≡ σ2

Da
1
2

;

here, ∆ is the reciprocal of the reduced Reynolds number and Ω is the modified
Damköhler number.

2.3. Governing equations. With the simplifications outlined above, the
dimensionless form of the dimensional equations given in Appendix A is, for
the channel,

∂U

∂X
+

∂V

∂Y
= 0, (2.4)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+∆

∂2U

∂Y 2
, (2.5)

∂P

∂Y
= 0, (2.6)µ

U
∂

∂X
+ V

∂

∂Y

¶µ
wMeOH
wCO2

¶
=
∆

Sc

∂

∂Y

·eD ∂

∂Y

µ
wMeOH
wCO2

¶¸
, (2.7)

where wMeOH and wCO2 are the mass fractions of methanol and carbon dioxide,
respectively. The species transport equation, Eq. 2.7, is written in a compact
form, to be read as two equations, one for methanol and the other for carbon
dioxide, which are coupled through the diffusion tensor, eD.

The equations to be solved in the porous backing are

∂ hUi
∂X

+
∂ hV i
∂Y

= 0, (2.8)

hUi = 0, (2.9)

∂ hP i(l)
∂Y

= −∆Σ2 hV i , (2.10)µ
hUi ∂

∂X
+ hV i ∂

∂Y

¶Ã hwMeOHi(l)
hwCO2i(l)

!
=
∆

Sc

∂

∂Y

"
γ
DeDE(l) ∂

∂Y

Ã
hwMeOHi(l)
hwCO2i(l)

!#
.

(2.11)
We point out that the details of the derivation of Eqs. 2.8-2.10 from Eqs. A.4
and A.5 can be found in [16]. Briefly, these equations require a permeability
κp . 10−10 m2, so that the shear-stress-induced velocity in the streamwise
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direction at the interface between the porous backing and the flow channel
is negligible, and hence can be set to zero at leading order, Eq. 2.9; typical
permeabilities for the porous backing found in literature range from 10−11 m2

[14] to 10−14 m2 [12].

2.4. Boundary conditions. The full boundary conditions are given in
Appendix B, and here we give only those that are needed for our reduced
model. In particular, this means that the boundary conditions at the outlet of
the channel and at the right-hand end of the porous backing are redundant,
and we therefore do not include them here.

At the inlet (X = 0, 0 ≤ Y ≤ 1), we specify
U = 4

¡
Y − Y 2

¢
, (2.12)

which corresponds to fully developed laminar flow, andµ
wMeOH
wCO2

¶
=

µ
winMeOH
winCO2

¶
. (2.13)

At the upper wall in the channel (0 ≤ X ≤ 1, Y = 1), there is no slip and
no normal flow, so that

U = V = 0, (2.14)

and no componental flux, so that

∂wMeOH
∂Y

=
∂wCO2

∂Y
= 0. (2.15)

At the left wall of the porous backing, (X = 0, −H ≤ Y ≤ 0), we prescribe
no normal flow and no componental flux, so that

hUi = ∂ hwMeOHi(l)
∂X

=
∂ hwCO2i(l)

∂X
= 0. (2.16)

At the channel/porous backing interface (0 ≤ X ≤ 1, Y = 0), the reduced
model requires continuity of streamwise and normal velocity components:

U = hUi , (2.17)

V = hV i . (2.18)

For the species, continuity of mass fractions and fluxes are prescribedµ
wMeOH
wCO2

¶
=

Ã
hwMeOHi(l)
hwCO2i(l)

!
, (2.19)

eD ∂

∂Y

µ
wMeOH
wCO2

¶
= γ

DeDE(l) ∂

∂Y

Ã
hwMeOHi(l)
hwCO2i(l)

!
. (2.20)

At the interface between the porous backing and the active layer (0 ≤ X ≤
1, Y = −H), we specify

hV i = −Ω hIiΦ
6

, (2.21)
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hV i
Ã
hwMeOHi(l)
hwCO2i(l)

!
− ∆
Sc

γ
DeDE(l) ∂

∂Y

Ã
hwMeOHi(l)
hwCO2i(l)

!

=
Ω hIi
6

µ −MMeOH

MCO2

¶
, (2.22)

where Φ ≡ ((1 + 6αH2O)MH2O +MMeOH −MCO2) ; in the latter, αH2O is the
number of water molecules dragged through the membrane with each proton
via electro-osmosis. The electro-osmosis of methanol is neglected as it is con-
siderably lower than the electro-osmosis of water [6]. Scott et al. [6] assume
that αMeOH ≈ xMeOH αH2O. For the cases considered, the highest value of the
molar fraction of methanol is 0.019, whence the influence of the electro-osmosis
of methanol is neglected. These boundary conditions can be derived from Fara-
day’s law and the theory of multicomponent mixtures, and have been used in
dimensional form for PEFC models by [16, 20, 21]. The novel feature in this
paper is to combine these boundary conditions with an expression for the local
superficial current density, which still takes concentration and potential gradi-
ents in the active layer into account, yet does not require a spatial resolution
of the active layer in the model.

2.5. Constitutive relations. By extrapolating literature data to 70oC,
the influence of methanol on the density is estimated to lower the density by
0.4% at 2 wt.% methanol in the mixture [22]. This contribution can safely be
neglected, whence we take the density of the mixture, ρ, as that of pure water.

The diffusion tensor in the channel can be simplified to a diagonal tensor,
since the system can be treated as a dilute solution, rendering the cross terms
redundant, i.e

D =

·
DMeOH,H2O 0

0 DCO2,H2O

¸
; (2.23)

in the porous backing, a Bruggeman relationship for the superficial total mass
diffusion tensor, in the form

hDi = γ
3
2D, (2.24)

will be used. Note that we specify the superficial diffusion tensor here and not
the intrinsic.

In order to take the porous effects of the actual active layer into account, a
previous model [11] is used to generate an expression for the local current den-
sity, that can be used for the boundary conditions at the active layer/porous
backing. This current density implicitly accounts for the same effects as were
considered in that paper, i.e. pore diffusion in the active layer, finite ionic con-
ductivity and the complex methanol oxidation kinetics. Appendix C outlines
how the model in the previous paper is reduced, in dimensional form, to

hii = A
³
hcMeOHi(l)

´B exp
¡
αAF
RT (EA −E0)

¢
1 + exp

¡
αAF
RT (EA −E0)

¢ , (2.25)

where hii is the local superficial current density, EA is the anode potential mea-
sured at the active layer/membrane interface versus a DHE reference electrode
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(EA = 0.33 − 0.40 V [11]), αA is the Tafel slope measured at low potentials,
hcMeOHi(l) = hρi(l) hwMeOHi(l) /MMeOH is the methanol concentration at the
porous backing/active layer interface, and A, B and E0 are three experimen-
tally fitted parameters (see Table I).

The vapor pressure of the dissolved carbon dioxide is taken from Henry’s
law for molar fractions, assuming that the low fraction of methanol in the liquid
water does not influence the Henry’s law coefficient, HCO2 :

pCO2 = xCO2HCO2 . (2.26)

2.6. Magnitude of dimensionless numbers. To determine the magni-
tude of the dimensionless numbers, we need typical scales for the anode, which
are given by [M ] ∼ 10−2 kg mol−1, [i] ∼ 4× 103 Am−2 and [D] ∼ 10−9 m2s−1;
the remaining parameters are summarized in Table I.

Table I. Base-case parameters.
Parameter Value Units
A 1.57× 102 [-]
αA 7.9× 10−1 [-]
αH2O 2.5, see Ref. [3] [-]
αMeOH αMeOH ≈ xMeOH αH2O [6] [-]
B 6.10×10−1 [-]
DMeOH,H2O 6.69× 10−9 m2s−1

E0 5.04×10−1 V
EA 0.5 V
F 96487 As mol−1

γ 8.75× 10−1 [-]
ha 2.3× 10−5, see Ref. [11] m
hf 10−3 m
hp 1.8× 10−4 m
HCO2 3903, see Ref. [23] bar
κp 10−12 m2

L 1× 10−1 m
MCO2 4.4× 10−2 kg mol−1

MH2O 1.8× 10−2 kg mol−1

MMeOH 3.2× 10−2 kg mol−1

µ 4.1× 10−4 kgm−1s−1

pout 101.325× 103 Pa
R 8.314 Jmol−1K−1

ρ 978 kg m−3

T 343 K
U in 3

2 × 3× 10−3 ms−1

winCO2
0 [-]

winMeOH 3.2× 10−2 [-]
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The dimensionless numbers are thence Re ∼ 103, Sc ∼ 50, Da ∼ 10−10, Λ ∼
4 × 10−4, σ ∼ 10−2, Ω ∼ 4 × 10−2, ∆ ∼ 10 and Σ ∼ 10. Noting the orders
of magnitude of these various parameters enables us to simplify the model
equations further, as follows.

2.7. Adaption to the anode of a DMFC. We note that wH2O >>
wMeOH and wH2O >> wCO2 , so writing

wMeOH + wCO2 = 1− winH2O, (2.27)

we only need to solve the mass transfer equation for methanol and this relation-
ship will provide the mass fraction of carbon dioxide. This also simplifies the
diffusion coefficient DMeOH,H2O, which we can treat as constant for the dilute
system; thus, an appropriate choice for the characteristic diffusion coefficient
scale, [D], is [D] = DMeOH,H2O.

Returning to the porous backing and the velocity boundary condition, Eq.
2.21, we scale the spanwise velocity in the porous backing further according toDbV E = hV i

Ω
. (2.28)

Using Eq. 2.9 to eliminate hUi in Eqs. 2.8 and 2.11, Eqs. 2.8, 2.10 and 2.11
become, respectively,

∂
DbV E
∂Y

= 0, (2.29)

∂ hP i(l)
∂Y

= −∆Σ2Ω
DbV E , (2.30)

Ω
DbV E ∂ hwMeOHi(l)

∂Y
=
∆

Sc
γ
3
2
∂2 hwMeOHi(l)

∂Y 2
. (2.31)

Now, since Ω ∼ O
¡
10−2

¢ ¿ 1, we conclude from Eq. 2.18 that at lead-
ing order for the channel V = 0 at Y = 0; furthermore, Eqs. 2.9 and 2.17
imply that U = 0 at Y = 0. Consequently, we find that the inlet condition
for a fully developed laminar velocity profile satisfies the momentum equation
downstream, and thence that, at leading order, the velocity decouples from the
mass transfer in the channel; all that remains to be solved there is

4
¡
Y − Y 2

¢ ∂wMeOH
∂X

=
∆

Sc

∂2wMeOH
∂Y 2

. (2.32)

Now, Eqs. 2.21 and 2.29 combine to give, for the entire porous backing,DbV E = −hIiΦ
6

;
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then, since the current density is a function of X alone, we have
DbV E =DbV (X)E. We can integrate Eq. 2.31 and, using Eq. 2.21 and 2.22, we ar-

rive at

−Ω hIiΦ
6

hwMeOHi(l) − ∆
Sc

γ
3
2
∂ hwMeOHi(l)

∂Y
= −Ω hIi

6
MMeOH. (2.33)

Furthermore, choosing [M ] =MMeOH, whenceMMeOH = 1, Eq. 2.33 becomes

Φ hwMeOHi(l) + 6∆

ScΩ hIiγ
3
2
∂ hwMeOHi(l)

∂Y
= 1. (2.34)

Returning to the expression for the current density, Eq. 2.25, and choosing
the, as yet, unspecified current density scale, [i], to be

[i] = A

µ
ρwinMeOH
MMeOH

¶B
exp

¡
αAF
RT (EA −E0)

¢
1 + exp

¡
αAF
RT (EA −E0)

¢ , (2.35)

we obtain

hIi =
³
hwMeOHi(l) (X,−H)/winMeOH

´B
. (2.36)

Integrating Eq. 2.34 gives

hwMeOHi(l) (X,Y ) =
1

Φ
+ C exp

µ
−ΦScΩ hIi

6∆γ
3
2

Y

¶
, (2.37)

where C is an integration constant to be determined shortly. At Y = −H, we
have

hwMeOHi(l) (X,−H) = 1

Φ
+ C exp

µ
ΦScΩ hIi
6∆γ

3
2

H
¶
, (2.38)

and at Y = 0,

hwMeOHi(l) (X, 0) =
1

Φ
+ C, (2.39)

whence the integration constant C is given by the methanol mass fraction at the
interface between the porous backing and the channel. Recalling the boundary
conditions for the plain/porous interface, Eqs. 2.19 and 2.20, for the methanol
transport equation, we combine these two to obtain just one boundary condition
for the channel at Y = 0 :

∂wMeOH(X, 0)

∂Y
+
ΦScΩ hIi
6∆

µ
wMeOH(X, 0)− 1

Φ

¶
= 0. (2.40)

This is valid for any profile hIi , which is a function of the value of hwMeOHi(l)
at Y = −H; for the profile considered in this paper, hIi can be determined in
terms of wMeOH(X, 0) through the transcendental equation

winMeOH hIi
1
B =

1

Φ
+

µ
wMeOH(X, 0)− 1

Φ

¶
exp

µ
Γ hIi
6

¶
, (2.41)

where Γ = ΦScΩH/(∆γ 3
2 ).

In summary, the adaption of the reduced model to the anode of a DMFC
is based on the fact that the anode operates at a large water fraction and that
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the magnitude of the dimensionless parameter Ω is much smaller than 1; in
dimensionless form, the latter condition is

[i] [M ]L

ρU inFhf
¿ 1.

Mathematically, we find that these reductions enable us to obtain solutions
for the porous backing in simple analytical form; for the channel, we have
an analytical solution for the velocity field and a linear diffusion equation for
the methanol concentration, although subject to a highly non-linear boundary
condition at the interface with the porous backing.

3. Numerics and verification

We have to resort to a numerical scheme to solve the transport equation
for methanol in the channel, since no further simplifications are possible. This
entails solving Eq. 2.32, subject to the boundary conditions Eqs. 2.15 and 2.40
and the inlet condition for methanol, Eq. 2.13.

The governing equations are parabolic, for which a Modified Box discretiza-
tion scheme is suitable [24]. The scheme leads to a block tridiagonal matrix,
allowing fast computations. The resulting system of non-linear equations is
solved with a Newton-Raphson-based algorithm in MATLAB 6.

To confirm the validity of the reduced model, its predictions were compared
with numerical results obtained using two other softwares, wherein the full
elliptic governing equations and boundary conditions are implemented. One
is FEMLAB 2.2 (see [25] for details), a commercial finite element solver for
a wide variety of engineering applications; the other is CFX-4.4 (see [26] for
details), a commercial CFD software which uses finite volumes. Comparison,
shown in Figure 2, was carried out in terms of the local superficial current
density obtained along the anode for a variety of values for the nondimensional
parameters ∆ and Ω (given in Table II).

Table II. Values of ∆ and Ω used for the verification.
∆ 0.932 2.79 9.32 27.9 93.2 279
Ω 3.76×10−3 1.13×10−2 3.76×10−2 1.13×10−1 3.76×10−1 1.13

These were obtained by varying the inlet velocity, U in, and keeping all other
physical parameters constant; in particular, the base case corresponds to ∆ =
9.32 and Ω = 3.76× 10−2. Several features are apparent. First, for the higher
(∆,Ω)-combinations, the reduced model starts to deviate from the full solution,
since the spanwise velocity due to the electrochemical reaction now is of the
same order of magnitude as the streamwise inlet velocity, i.e. Ω is no longer
much smaller than unity and the spanwise velocity in the channel is no longer
negligible. Nevertheless, the local current densities from the reduced model
remain close to the current densities from the full elliptic equations, even for
these combinations. Second, we note discrepancies between the values obtained
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at the inlet and outlet by the two commercial solvers. In particular, conver-
gence difficulties were encountered with FEMLAB 2.2 as regards the resolution
of the corners, and the solutions presented are actually for a channel that is
extended at the inlet and outlet; such difficulties were not encountered with
CFX-4.4. Since our principal interest was only to verify the reduced model,
these differences were not investigated further.

A final comment here which illustrates the benefit of the reduced model
approach concerns a comparison of the computing times for the three methods.
On a 1Ghz AMD PC, with 512 MB SDRAM the reduced model with 104 cells
took ∼ 5 CPU seconds to converge, whereas Femlab 2.2 required & 1 − 2
CPU minutes. The CFX-4.4 code required & 1−2 CPU minutes on a 500 MHz
Compaq Alphaserver with 3 GB RAM. Mesh independent solutions were found
for the reduced model at . 103 cells, allowing for computational times of less
than 1 second. For the present study 104 cells were chosen, as speed was not
of the essence.

4. Results and Discussion

The nondimensionalisation of the governing equations reveals that the flow
in the anode is governed essentially by three dimensionless numbers: ∆, Ω, and
H. Both ∆ and Ω contain design parameters, such as the geometry of the anode
in terms of length and height of the flow channel, and inlet conditions, such
as velocity. H is the ratio of the heights of the porous backing and the flow
channel. Varying ∆, Ω and H thus covers all possible combinations of the
underlying parameters, apart from porous backing porosity and methanol inlet
composition.

Figure 2 depicts the local superficial current density for different values
of ∆. For lower values, which can be interpreted as higher inlet velocities or
shorter channels, the current density distribution is more even than at higher
ones, where the methanol content becomes more or less depleted downstream.
Higher ∆-values correspond to lower inlet velocities or longer channels than
given by the base case.

Given the importance of mass transfer in a DMFC anode [11], it is of
interest to see the role of geometrical effects in a two-dimensional electrode,
especially with regard to the current density distribution in the streamwise
direction and the concentration gradients of methanol and carbon dioxide. A
uniform current distribution is desirable, not only from the perspective of cat-
alyst utilisation, but also since it is reasonable to assume that the degradation
of the electrode with time is linked to the local current density.

In Figure 2, it is evident that the current distribution along the electrode
is far from uniform, especially for the larger values of ∆; for instance, for the
base case parameters, the local current density drops from 4300 Am−2 at the
inlet to 3000 Am−2 at the outlet. Clearly we have mass transfer limitations
along the anode. Since the local superficial current density is a function of the
methanol mass fraction at the active layer/porous backing interface, a gradient
in the methanol fraction is expected to be the cause.
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Figure 2. Verification of the reduced model. (· · ·) corresponds to the
CFX-4.4 solution with 104 number of nodes, (–) is the Femlab solution for
∼1000 adapted nodes and markers are for the reduced model, with 104 cells.
(F): ∆ = 0.932, (o): ∆ = 2.79, (×): ∆ = 9.32, (+): ∆ = 27.9, (¤): ∆ = 93.2,
(O): ∆ = 279.
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Figure 3. Methanol mass fraction for the base case (∆ = 9.32).

This is indeed the case, as can be seen from Figure 3, where the methanol
mass fraction for the base case is shown. From the contour lines we discern
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two coupled mass transfer resistances, one in the channel and the other in the
porous backing. In the channel, mass transfer is mainly via diffusion in the
spanwise direction for Ω < 1, see Eq. 2.32, whereas the convective contribution
in the porous backing constitutes Φ hwMeOHi(l) ∼ 20% of the total mass flux,
as given by Eq. 2.34.
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Figure 4. Partial pressure of the carbon dioxide for the base case (∆ = 9.32).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X  

Y

0.03

0.03

0.028

0.028

0.026

0.026

0.024
0.024

0.022
0.022
0.02

Figure 5. Methanol mass fraction for ∆ = 2.79.



E. Birgersson et al. 97

As already noted above, the discrepancy between the results of the reduced
model and the full elliptic model is due to the increasing contribution of the
spanwise velocity to the mass transfer in the flow channel.

Figure 4 illustrates the theoretical partial pressures of the liquid mass frac-
tions of carbon dioxide in the anode. The high supersaturations of 5-35 bar for
the base case indicate that carbon dioxide will evolve as a gas and not remain
fully dissolved in the liquid phase.

For ∆/Sc << 1, we expect a boundary layer to develop adjacent to the
porous backing. This is indeed the case, as is illustrated in Figure 5, with
contours for the methanol mass fraction for ∆ = 2.80, which can be viewed as
the base case but with an inlet velocity of 10−2 ms−1. As ∆ is decreased, this
boundary layer will decrease in thickness, leading to an enhanced mass transfer
to the active layer, as is apparent from Figure 2.
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Figure 6. Polarization curves for ∆ = 0.279, 0.932, 2.79, 9.32 and 27.9. a)
winMeOH = 6.4× 10−3 (0.2 M) and b) winMeOH = 3.2× 10−2 (1 M).

Varying ∆ will also influence the polarization curves, as shown in Figure 6.
The figure shows polarization curves corresponding to the inlet concentrations
0.2 M and the base case, 1 M, of methanol. The impact of varying ∆ is larger
for higher potentials. At a potential of 0.5 V vs DHE, the difference between
high and low ∆ values is significant. The influence of ∆ on the polarization
curve is very low at potentials below 0.4 V, i.e. anode performance at such low
potentials is independent of operating conditions, such as the fluid flow rate
or length of the anode. Of note here is that the impact of varying ∆ needs
to be considered above a certain potential rather than above a certain current
density, contrary to what one might at first expect.
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It is interesting to see the model prediction when the height of the porous
backing or the flow channels is changed. From Figure 7, where we have kept
the base case parameters and varied H, it is clear that it would be desirable
to have smaller H values. This corresponds to a thin porous backing and/or
broad flow channels. The performance in terms of total current density at a
given anode potential can potentially be improved by ∼10% for the base case
set of parameters, by letting H → 0. The figure also shows that the shape of
the local current density distribution is almost entirely unaffected by changing
H.

An important question arises when the carbon dioxide partial pressure is as
high as in the base case: can the pressure be reduced by lowering ∆? Figure 8
gives the maximum partial pressure of carbon dioxide in the two different media,
the porous backing and the flow channel. It is obvious from the figure that even
for very low values of ∆, thermodynamics imply that the carbon dioxide from
the electrochemical reaction will evolve as a gas, unless the potential is very
low. The conditions for one-phase flow are thus satisfied only for ∆ << 1 in
conjunction with low potentials, typically EA . 0.35 V. Previous calculations
[27] indicate that carbon dioxide gas will form in the gas diffusion layer, or
even in the porous electrode, at base-case supersaturations. Since not even
very large flows of fuel (lower values of ∆) prevent the formation of carbon
dioxide gas at moderate current densities, it is inevitable that a model that
aims to capture the full physics in a DMFC has to take two-phase flow into
account.

5. Conclusions

A one-phase model for mass, momentum and species transport in the an-
ode of a DMFC has been considered. The governing equations and boundary
conditions were nondimensionalised, and a reduced model was then derived, us-
ing elementary asymptotic techniques, for the case where the anode geometry
is slender.

From the modelling point of view, an important advantage of the reduced
approach is that it leads to an understanding of the important transport mecha-
nisms for momentum, mass and species that would have been difficult to discern
from simply a numerical solution of the full set of equations. In particular, we
find that flow in the anode can be described by three dimensionless parameters,
∆,Ω,H, given in terms of operating, design and physical parameters by

∆ =
µL

ρU inh2f
,Ω =

[i] [M ]L

ρU inFhf
,H =

hp
hf

.

In addition, differences and similarities between different types of fuel cells
become apparent. For instance, in contrast to the cathode of a PEFC, where
the flow induced by the electrochemical reaction at the catalytic layer was
found to have a leading order effect on the flow field in the channel [16], the
velocity induced by the electrochemical reaction in the anode of the DMFC
has a negligible effect on the channel flow field, which leads to a decoupling
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of the momentum equations and furthermore allows us to write the velocity
field in the channel in closed form. In addition, although the equations of the
reduced model must themselves be solved numerically, the computational cost
is considerably smaller than that incurred when using commercial software to
solve the full set. This can be of benefit both for thorough parameter studies,
as well as for system studies of DMFCs.

From the point of view of predicting fuel cell performance, a parameter
study has shown that the current density distribution is far from even, es-
pecially for higher values of ∆, i.e. lower inlet velocitites or longer anodes.
Performance can be improved by choosing thin porous backings (small H) and
running the cell at smaller values of ∆ : the former will reduce the mass transfer
limitations in the porous backing and the latter in the flow channel.

The mass fraction of the carbon dioxide in the liquid phase leads to high
supersaturations, whence carbon dioxide will vaporize for all operationally re-
alistic values of ∆ and evolve as a gas. The present model does not capture this
gas phase, which is expected to affect overall flow behavior in the anode, not
least due to the buoyancy effect of the rising bubbles and its resulting impact
on the mass transfer of liquid methanol to the active layer. The analysis of the
one-phase flow presented in this paper is intended to serve as a stepping stone
for a forthcoming two-phase study.
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Appendix A. Governing equations in dimensional form

Flow channel.- The equations for the conservation of mass and momentum,
given respectively by

∇ · v = 0, (A.1)

∇ · (ρv⊗ v) = −∇p+ µ∇2v, (A.2)

are solved together with the scalar transport equations for methanol and carbon
dioxide:

∇ ·
µ
v

µ
wMeOH
wCO2

¶¶
= ∇ ·

µ
D

· ∇wMeOH
∇wCO2

¸¶
. (A.3)

Porous backing.- Darcy’s law with the Forchheimer and Brinkman exten-
sion is assumed to govern the flow in the porous backing:

∇ · hvi = 0, (A.4)

hvi = −κp
µ
∇ hpi(l) + κp∇2

µhvi
γ

¶
− F hvi , (A.5)

where F is the Forchheimer correction tensor. Scalar transport is given by

∇ ·
Ã
hvi

Ã
hwMeOHi(l)
hwCO2

i(l)
!!

= ∇ ·
Ã
γ hDi(l)

"
∇ hwMeOHi(l)
∇ hwCO2

i(l)
#!

. (A.6)
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Appendix B. Boundary conditions in dimensional form

Inlet, outlet, upper wall, vertical walls.- For the flow channel, we specify
inlet velocity and liquid composition at x = 0, 0 ≤ y ≤ hf :

u = U in, v = 0, wMeOH = winMeOH, wCO2 = winCO2
. (B.1)

At the upper channel wall (0 ≤ x ≤ L, y = hf ), there is no slip, no normal
flow and no componental flux:

u = v =
∂wMeOH

∂y
=

∂wCO2

∂y
= 0. (B.2)

At the outlet at x = L, 0 ≤ y ≤ hf , we set the pressure and no diffusive
componental flux:

p = pout,
∂v

∂x
=

∂wMeOH
∂x

=
∂wCO2

∂x
= 0. (B.3)

At the vertical walls of the porous electrode (x = 0, L, −hp ≤ y ≤ 0), we have
no normal flow, no tangential shear and no mass flux for the species:

hui = ∂ hvi
∂x

=
∂ hwMeOHi(l)

∂x
=

∂ hwCO2i(l)
∂x

= 0. (B.4)

Channel/porous backing interface.- At the fluid-porous interface at y = 0,
0 ≤ x ≤ L, we specify continuity of the superificial mass fractions and fluxes
with their pointwise counterparts in the flow channel:

nMeOH · n = hnMeOHi · n, nCO2 · n = hnCO2i · n, (B.5)

hwMeOHi(l) = wMeOH, hwCO2i(l) = wCO2 , (B.6)

where n is the normal vector of the interface, coupled with continuity of the
pointwise velocities, tangential and normal shear stresses in the flow channel
with their superficial counterparts in the porous backing:

v = hvi , u = hui , (B.7)

p− µ
∂v

∂y
= hpi− µ

γ

∂ hvi
∂y

,
∂u

∂y
=
1

γ

∂ hui
∂y

. (B.8)

Active layer/porous backing interface.- At y = −hp, we treat the active
layer as a boundary condition, whence the total superficial mass flux is given
by

ρ hvi = − hii
6F

((1 + 6αH2O)MH2O +MMeOH −MCO2) , (B.9)

and the componental fluxes by

ρ hvi
Ã
hwMeOHi(l)
hwCO2i(l)

!
− ργ hDi(l) ∂

∂Y

Ã
hwMeOHi(l)
hwCO2i(l)

!
=
hii
6F

µ −MMeOH

MCO2

¶
.

(B.10)
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Appendix C. Reduction of the equations for the active layer

An earlier model of the porous anode electrode of the DMFC [11] showed
that the porous structure of the electrode is responsible for the mass transport
limitations and, at high currents, finite ionic conductivity. The kinetic equation
of the anode reaction was also shown to be very complex. As concentrations
and potential in the active layer can vary considerably, it is desirable to take
these effects into account.

Since L >> ha, it is safe to assume that the concentration gradient in the
electrode is only a function of the distance across the electrode. For a given
potential, any concentration of methanol at the porous backing/active layer in-
terface corresponds to a local current density. As a consequence, it is possible
to express the local current density as a function of the concentration at that
location and the measured anode potential. Such a function will implicitly take
into account the effects of the concentration and potential gradients. Since the
kinetic equation of the anode reaction is very complex, an analytical solution
will not be considered, but rather an expression that is parameter-adapted to
data from the model of the active layer. Thus, the porous effects of the more
detailed model is considered in the resulting expression for the local superfi-
cial current density. In order to obtain a simple expression, we restrict the
domain where the function is valid to 0.3V≤ E ≤ 0.51 V and 50 mol m−3 ≤
hcMeOHi(l) ≤ 1000 mol m−3.

0

500

1000

0.30.350.40.450.5
0.5

1

1.5

2

2.5

3

3.5

4

c M
eO

H
   /

m
ol

 m
-3

E
A

   /V vs DHE

lo
g 10

<i
/A

m
-2

>

Figure A1. Comparison between the parameter-adapted kinetic function,
used as local superficial current density for the boundary conditions at
(0 ≤ X ≤ 1, Y = −H), and the result from the more detailed anode model
[11].
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The concentration of methanol for the base case is ∼ 1000 mol m−3 at the inlet
and drops to about half of the inlet concentration. If the concentration or the
potential gradients within the electrode are of interest, it is always possible to
generate the gradients using the full electrode model [11].

Figure A1 gives the agreement between the adapted expression and the
current density from the detailed model by [11].

The parameter-adapted expression we use is then

hii = A
³
hcMeOHi(l)

´B exp
¡
αAF
RT (EA −E0)

¢
1 + exp

¡
αAF
RT (EA −E0)

¢ . (C.1)

Figure A1 shows that the new expression for the local current density correlates
well to the data from the electrode model in this region. The only exception is
when the potential is high whilst the concentration is lower than 200 mol m−3.
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List of symbols

A, B Experimentally fitted parameters
C Integration constant
Da ≡ κp

L2 Darcy number
Di,j Binary diffusion coefficients for a pair (i,j), m2s−1

E0 Experimentally fitted parameter, V
EA Electrode potential of anode vs DHE, V
F Faraday’s constant, A s mol−1

h Height, m
H ≡ hp/hf Dimensionless height of porous backing
HCO2 Henry’s law coefficient, bar
i Current density, Am−2

I Dimensionless current density
L Length of anode, m
M Mean molecular mass, kg mol−1

Mi Molar mass of species i, kg mol−1

M, Mi Dimensionless molar mass
p Pressure, Paep, P Dimensionless pressures
R Gas constant, J mol−1 K−1

Re ≡ ρU inL
µ Reynolds number

Sc ≡ µ
[D]ρ Schmidt number

T Anode temperature, K
u, v, v Velocities, m s−1eu, ev, ev, U, V Dimensionless velocities
V Volume of the representative elementary volume, m3

w Mass fraction
x, y Coordinates in streamwise and spanwise direction, mex, ey,X, Y Dimensionless coordinates
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Greek
α Coefficient for transport by

electro-osmosis
αA Tafel slope
γ Porosity of the porous backing
Γ ≡ ΦScΩH/(∆γ 3

2 ) Dimensionless number
∆ ≡ 1

Reσ2 Dimensionless number
κp Permeability of the porous

backing, m2

Λ ≡ [i][M ]
ρU inF Dimensionless number

µ Dynamic viscosity, kg m−1s−1

ρ Density, kg m−3

σ ≡ hf
L Dimensionless number

Σ ≡ σ2

Da
1
2

Dimensionless number

φ General tensor
Φ ≡ ((1 + 6αH2O)MH2O +MMeOH −MCO2) Dimensionless number
Ω ≡ Λ

σ Dimensionless number

Subscripts
a Active layer
CO2 Carbon dioxide
f Flow channel
H2O Water
i Species i
(l) Liquid phase
MeOH Methanol
p Porous backing

Superscripts
in Inlet
(l) Liquid phase
out Outlet
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