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Abstract

The compressible turbulent boundary layer developing over a two-dimen-
sional bump which leads to a supersonic pocket with a terminating shock wave
has been studied. The measurements have been made with hot-wire anemom-
etry and Particle Image Velocimetry (PIV).

A method to calibrate hot-wire probes in compressible flow has been devel-
oped which take into account not only the flow velocity but also the influence
of the Mach number, stagnation temperature and fluid density. The calibration
unit consists of a small jet flow facility, where the temperature can be varied.
The hot wires are calibrated in the potential core of the free jet. The jet em-
anates in a container where the static pressure can be controlled, and thereby
the gas density. The calibration method was verfied in the flat plate zero pres-
sure gradient turbulent boundary layer in front of the bump at three different
Mach numbers, namely 0.3, 0.5 and 0.7. The profiles were also measured at
different static pressures in order to see the influence of varying density. Good
agreement between the profiles measured at different pressures, as well as with
the standard logarithmic profile was obtained.

The PIV measurements of the boundary layer flow in front of the 2D
bump showed good agreement with the velocity profiles measured with hot-
wire anemometry. The shock wave boundary layer interaction was investigated
for an inlet Mach number of 0.69. A lambda shock wave was seen on the
downstream side of the bump. The velocity on both sides of the shock wave
as measured with the PIV was in good agreement with theory. The shock
wave was found to cause boundary layer separation, which was seen as a rapid
growth of the boundary layer thickness downstream the shock. However, no
back flow was seen in the PIV-data, probably because the seeding did not give
enough particles in the separated region. The PIV data also showed that the
shock wave was oscillating, i.e. it was moving approximately 5 mm back and
forth. This distance corresponds to about five boundary layer thicknesses in
terms of the boundary layer upstream the shock.

Descriptors: Fluid mechanics, compressible flow, turbulence, boundary layer,
hot-wire anemometry, PIV, shock wave boundary layer interaction, shape fac-
tor.
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STEM group conference, 27 June 2001 Stockholm, Sweden

ERCOFTAC NPC, 29-30 August 2001 Magle̊as, Denmark

ETC 9, 2-5 July 2002 Southampton, U.K.

STEM/CECOST group conference, 5-7 November 2002 Lund, Sweden



Contents

Chapter 1. Introduction 1

1.1. The scope of the thesis 3

Chapter 2. Compressible boundary layer theory 5

2.1. Equations of motion for compressible flow 5

2.2. Laminar boundary layers 6

2.3. Turbulent boundary layers 11

2.4. Shock wave/boundary layer interaction 16

Chapter 3. Experimental facility and setup 19

3.1. Experimental facility 19

3.2. Wind-tunnel 20

3.3. Digital Particle Image Velocimetry 21

3.4. The oil-drop method 26

Chapter 4. Hot-wire anemometry 29

4.1. Heat transfer from a cylinder 30

4.2. Calibration method 32

4.3. Calibration results 39

Chapter 5. Results 44

5.1. Results from the hot-wire measurements 44

5.2. Results from the PIV measurements 53

Chapter 6. Summary 62

Acknowledgements 64

Bibliography 65

vii



CONTENTS

viii



CHAPTER 1

Introduction

With a viscous fluid (gas or liquid) in relative motion to a surface, a boundary
layer will form. At the surface the fluid will have the same velocity as the
surface itself (no-slip condition) and will with increasing distance from the
surface gradually approach the velocity of the fluid far away from the surface.
The flow in the boundary layer can be classified either as laminar or turbulent
and the type of flow is for a specific geometry determined by the Reynolds
number, the ratio of the viscous forces and the inertia forces, where sufficiently
high Reynolds numbers give turbulent flow. For an intermediate Reynolds
number range both laminar and turbulent flow may occur together and the
flow is then denoted transitional.

In many engineering applications with gas flow the flow reaches such high
velocities that the resulting pressure variations give rise to large changes in
the gas density. Such flows are denoted compressible. This is for instance
the case when the relative speed between an object and the fluid outside the
boundary layer is higher than the speed of sound. In such a case the flow is
supersonic, whereas if the flow speed everywhere is lower than the speed of
sound it is denoted subsonic. However, even a subsonic flow must be viewed as
compressible if the Mach number (the ratio of the flow velocity and the speed
of sound) is larger than approximately 0.3.

Even though the approaching free stream velocity is subsonic the flow can
be accelerated over a body surface and regions where the speed is supersonic
may develop. Such a flow field is usually called transonic. A definition of
transonic flow suggested by Shapiro (1954) is: A flow containing both subsonic
and supersonic velocities. Transonic flow is typically in the Mach number range
0.7 to 1.3. In a boundary layer, there will always be a region close to the surface
where the flow velocity will be less than the speed of sound, even though the
free stream is supersonic. Despite of this, boundary layer flows are not in
themselves denoted transonic flows.

Transonic flows can typically be found over aircraft wings since commer-
cial transport planes usually operate in the transonic speed regime. The flow
over helicopter rotors and propellers in high speed flight also often becomes
transonic. Turbomachinery components such as compressors and turbines are
designed to operate at transonic speeds. A poorly designed component operat-
ing in transonic flow may cause a strong shock wave that cause boundary layer
separation and leads to loss of lift and increase in drag.
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1. INTRODUCTION

An illustration of the behaviour of the flow over a wing profile at transonic
speeds can be found in figure 1.1. In figure 1.1(a), the freestream Mach number
has a supercritical value, i.e. the local Mach number has reached unity at some
point and a pocket of supersonic flow exists which is terminated by a shock
wave.

M=0.70

M=0.90

M=0.95

M=1.35

(a) (d)

(c)

(b)

(e)

M > 1

M > 1

M=1.05

Figure 1.1. Flow patterns for transonic flow over a wing pro-
file at a small angle of attack. The grey curves are the sonic
line, i.e. the line where M=1. The dashed lines mark separated
flow.

As the free-stream Mach number increases, the shock wave moves rearward
and the supersonic pocket increases in size as shown in figure 1.1(b). Ultimately,
the shock becomes so strong that, as a result of the shock wave boundary layer
interaction, separation occurs, and the shock wave forms a lambda pattern.
The separation is marked with the dashed lines.

Figure 1.1(c) shows a higher free-stream Mach number where the shock
is moved towards the tail of the wing profile and becomes stronger. The flow
over the surface of the wing is mainly supersonic except near the nose. When
the speed reaches a value just above sonic, the flow is similar to that of a flow
with a Mach number slightly below 1. The main difference is that a detached
shock can be found upstream of the nose of the wing profile, as shown in figure
1.1(d).

Figure 1.1(e) shows a typical pattern close to the attachment of the shock
to the leading edge of the wing profile. The subsonic region close to the nose
becomes smaller and the shock at the end of the wing profile is sharper. The
flow pattern is similar to that of flow across sharp edged profiles, such as a
wedge.
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1.1. THE SCOPE OF THE THESIS

Despite the importance of the transonic flow regime there is still a lack of
fundamental understanding of the physics of the boundary layer in transonic
flow and especially the interaction between the boundary layer and the shock
wave. This lack of basic understanding of the transonic flow are due to both
experimental and theoretical difficulties in studying such flows. For instance
the equations of motion that describe the flow have two different characteristics,
elliptic or hyperbolic, depending on whether the flow is subsonic or supersonic.
In a transonic flow both regions exist simultaneously which make theoretical
and numerical approaches complicated.

Experiments in transonic flows also give rise to problems that are less
severe in subsonic and supersonic flows. For instance disturbances from a
model propagates almost normal to the flow direction and are reflected from
the wind tunnel walls towards the model. The flow field is also in general
quite sensitive to disturbances, which is a problem when intrusive measuring
methods such as hot-wire anemometry are used. Hot wires are also subjected
to high rates of strain caused by the high dynamic pressure. Another difficulty
with hot-wire anemometry is that the method is based on the heat transfer
between the flow and the probe and that in compressible flow the heat transfer
is not only a function of the velocity but also dependent on the density, Mach
number and temperature.

Because of the problems encountered with hot-wires, non-intrusive optical
methods may be preferable to use. Both schlieren optics, where density gradi-
ents in the flow are registered, or methods which use small tracer particles can
been used. Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry
(PIV) belong to techniques which register the speed of trace particles. How-
ever it is important that the particles introduced in the flow field follow the
flow accurately in order to obtain correct results. For high speed flows this
severely limits the size of usable particles. One disadvantage with these meth-
ods as compared to hot-wire anemometry is that the flow field cannot be time
resolved.

1.1. The scope of the thesis

In this thesis wall-bounded turbulent flows at subsonic, but compressible flow
conditions are investigated experimentally in a wind tunnel. Both the incoming
turbulent boundary layer along the wind tunnel wall, as well as the compli-
cated flow field above a two-dimensional wall bumb, with a supersonic pocket
and a terminating shock, are investigated. The thesis is organized as follows.
Chapter 2 gives an introduction to the theory of both laminar and turbulent
boundary layers under compressible flow conditions as well as a discussion of
phenomena related to shock wave/boundary layer interaction. Chapter 3 gives
a brief description of the wind-tunnel and experimental set-up, as well as a
description of the PIV technique. The basics of hot-wire anemometry for com-
pressible flows as well as a calibration technique are described in some detail in
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1. INTRODUCTION

chapter 4. The boundary layer results obtained both with hot-wire anemome-
try and PIV are given in chapter 5, and finally chapter 6 summarises the results
found.
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CHAPTER 2

Compressible boundary layer theory

2.1. Equations of motion for compressible flow

The most important non-dimensional parameters in compressible flows are the
Reynolds number,

Re =
ρUL

µ
, (2.1)

the Mach number

M =
U∞√
γRT∞

, (2.2)

and the Prandtl number,

Pr =
µ

ρα
, (2.3)

where U and L are the characteristic velocity and length, ρ and µ are the
density and dynamic viscosity, γ is the ratio between the specific heats, R is
the specific gas constant, T is the temperature and α the thermal diffusivity.

The equations of motion for a compressible, viscous, heat conducting fluid
are:
the continuity equation:

∂ρ

∂t
+

∂ρui

∂xi
= 0, (2.4)

the momentum equation:

ρ(
∂ui

∂t
+ uj

∂ui

∂xj
) = − ∂p

∂xi
+

∂dij

∂xj
, (2.5)

where the deviatoric stress tensor dij is given by:

dij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
, (2.6)

and the energy equation:

ρ(
∂h

∂t
+ uj

∂h

∂xj
) =

∂p

∂t
+ uj

∂p

∂xj
− ∂

∂xi

(
k

∂T

∂xi

)
+ dij

∂ui

∂xj
. (2.7)
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2. COMPRESSIBLE BOUNDARY LAYER THEORY

where h is the enthalpy, defined as dh = cpdT , and cp is the specific heat of
the gas at constant pressure. Using the perfect gas law, the entalphy can be
written more conveniently as:

h = e +
p

ρ
, (2.8)

with e as the internal energy, and the stagnation enthalpy,

h0 = h +
1

2
V 2. (2.9)

where V 2 = uiui. The variation of dynamic viscosity, µ, with temperature
can be described with Sutherland’s formula, valid in the temperature range of
100 K and 1900 K,

µ

µ0

=
T0 + S0

T + S0

,

(
T

T0

)3/2

. (2.10)

where S0=110.3 K. Including the perfect gas law,

p = ρRT, (2.11)

and knowning the variation of viscosity and thermal conductivity (or the Prandtl
number) with temperature and pressure, the above equations are a closed set,
describing compressible fluid flow. The assumptions that have been made can
be summarized as:

• the continuum hypothesis holds,
• the fluid particles are in local thermodynamic equilibrium,
• body forces can be neglected,
• the fluid is Newtonian,
• heat conduction follows Fourier’s law,
• radiative heat transfer can be neglected.

The boundary conditions for the velocity at a wall is the no-slip condition
for the velocity, i.e. the velocity at the wall is the same as that of the wall itself.
For the temperature the boundary condition depends on the type of wall, for
instance whether the wall is adiabatic (i.e. no heat transfer from the fluid to
the wall) or if it is a constant temperature wall.

2.2. Laminar boundary layers

2.2.1. Boundary layer equations for compressible flow

The boundary layer equations are obtained assuming stationarity and that
variations in the streamwise (x) direction are much slower than in the wall
normal (y) direction. For a two-dimensional boundary layer eqs. (2.4), (2.5)
and (2.7) reduce to

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (2.12)

6



2.2. LAMINAR BOUNDARY LAYERS

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

∂

∂y

(
µ

∂u

∂y

)
(2.13)

∂p

∂y
= 0 (2.14)

ρ

(
u

∂h

∂x
+ v

∂h

∂y

)
= u

∂p

∂x
+

∂

∂y

(
k

∂T

∂y

)
+ µ

(
∂u

∂y

)2

(2.15)

These equations have to be complemented with suitable boundary condi-
tions which will be discussed later.

Some important boundary layer parameters are the displacement thick-
ness, the momentum loss thickness and the shape factor. The displacement
thickness, δ∗, is the distance the streamlines of the outer flow are displaced by
the boundary layer,

δ∗ =

∫ δ

0

(
1− ρu

ρ∞U∞

)
dy. (2.16)

The momentum loss thickness represents the momentum loss due to the exis-
tense of the boundary layer.

θ =

∫ δ

0

ρu

ρ∞U∞

(
1− u

U∞

)
dy (2.17)

whereas the shape factor

H =
δ∗

θ
(2.18)

characterizes the shape of the mean velocity (and density) profile.

The parameters are here defined for compressible flow but can be reduced
to the incompressible ones in the limit of a constant density distribution over
the boundary layer, i.e. ρ = ρ∞.

2.2.2. Blasius similarity solution

Assuming incompressible, laminar flow the boundary layer equations can be
written as

f ′′′ +
1

2
ff ′′ = 0, (2.19)

with the the streamwise velocity proportional to the first derivative of the
function f with the free-stream velocity as the proportionality constant,

u = f ′(η)U∞, (2.20)

and η is a similarity coordinate

η = y

√
U∞
νx

. (2.21)
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2. COMPRESSIBLE BOUNDARY LAYER THEORY

The normal velocity v is

v =
1

2

√
νU∞

x
[ηf ′(η)− f(η)] . (2.22)

The boundary conditions at the wall for equation (2.19), are the no-slip con-
dition for u and zero normal velocity at the impermeable wall, v = 0, whereas
far from the wall the streamwise velocity should reach the free-stream value:




u(y = 0) = 0 ⇒ f ′(η = 0) = 0
v(y = 0) = 0 ⇒ f(η = 0) = 0
u(y →∞) = U∞ ⇒ f ′(η →∞) = 1

(2.23)

With the boundary conditions above, eq. (2.19), can be solved with for instance
a shooting method. This solution is called the Blasius solution.

For incompressible flow when the assumption of constant density is appli-
cable, the definitions for the displacement thickness, eq. (2.16) and the mo-
mentum loss thickness, eq. (2.17) are reduced to expressions which are only
velocity dependent. With the Blasius solution the shape factor, eq. (2.18), can
be determined to be H =2.59.

2.2.3. The Howarth-Dorodnitzyn transformation

The Howarth-Dorodnitzyn transformation can be used to reduce the com-
pressible boundary layer equations to the Blasius boundary layer equation by
transforming the coordinates so that the unknown density distribution is in-
corporated in a transformed variable. The temperature equation can also be
transformed and then written as an ordinary differential equation (ODE) with
variable coefficients which are given by the Blasius solution. The normal coor-
dinate is transformed as:

yHD =

∫ y

0

ρ(x, y)

ρ∞
dy, (2.24)

and the similarity variable is

η = yHD

√
ρ∞U∞
µ∞x

, (2.25)

whereas the streamwise velocity is still described as u = U∞f ′(η).

With the above expressions the x-momentum equation is reduced to the
Blasius equation (2.19), with the same boundary conditions, eq. (2.23), and
can be solved in the same way.

Introducing a non-dimensional temperature function as

T

T∞
= ΘHD(η), (2.26)

then the energy equation can be transformed in the same way as the x-momentum
equation. This gives

Θ′′

HD +
Pr

2
fΘ′

HD + Pr(γ − 1)M2
∞

f ′′2 = 0, (2.27)

8



2.2. LAMINAR BOUNDARY LAYERS

which is an ODE and can easily be solved if the solution to the Blasius equation
is known. For Pr = 1 an analytical solution can be found, with the boundary
conditions {

ΘHD(η = 0) = Θw and f ′(η = 0) = 0
ΘHD(η →∞) = 1 and f ′(η →∞) = 1.

(2.28)

The solution for the temperature is

ΘHD = Θw + (1−Θw)f ′ +
1

2
(γ − 1)M2

∞
(f ′ − f ′2). (2.29)

For a Prandtl number close to one it has been shown (see for instance Schlicht-
ing & Gersten (1996)) that an approximation of the temperature distribution
can be written as

ΘHD = Θw + (1−Θw)f ′ +
√

Pr
1

2
(γ − 1)M2

∞
(f ′ − f ′2). (2.30)

The expressions above now give both the velocity and temperature distributions
over the laminar compressible boundary layer. For an adiabatic wall the wall
temperature, Θw, can be calculated from eq. (2.30) as,

Θw = 1 + r
γ − 1

2
M2
∞

. (2.31)

The factor r is denoted the recovery factor, which for a laminar boundary
layer is r =

√
Pr. This factor defines how close the wall temperature is to the

stagnation temperature.

2.2.4. The shape factor in compressible flow

Using the obtained velocity and temperature profiles, the shape factor can be
calculated based on the displacement and momentum loss thicknesses defined
in eq. (2.16), and eq. (2.17) respectively. Assuming that the perfect gas law
gives the density distribution in the boundary layer, the expression

Hc =
1.721Θw + 0.664γ−1

2
M2
∞

2f ′′(0)
(2.32)

shows the shape factor variation with M∞. This variation is shown in figure 2.1.
Also shown in the figure is the shape factor (Hi) calculated assuming ρ = ρ∞,
and using the velocity distribution obtained from the Howarth-Dorodnitzyn
transformed equations. It is observed that the shape factor increases quite
rapidly with M∞ if eq. (2.32) is used (from 2.59 at M∞ = 0 to 3.23 at M∞ =
1.0).

The individual thicknesses can also be calculated, both non-dimensionally,
figure 2.2(a), and dimensionally, assuming a stagnation temperature of 30◦C
and a characteristic distance of x = 1 m, figure 2.2(b).
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2. COMPRESSIBLE BOUNDARY LAYER THEORY
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Figure 2.1. The shape factor. The dashed line, Hi, is calcu-
lated with the incompressible assumption and the full line, Hc,
the compressible. The square mark shows the incompressible
limit of 2.59.
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Figure 2.2. (a): The displacement thickness and the mo-
mentum loss thickness scaled with the Reynolds number. The
dashed lines is calculated with the incompressible assumption
and the full lines the compressible. (b): The thicknesses as-
suming x = 1 m and T0 = 30◦C.
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2.3. TURBULENT BOUNDARY LAYERS

2.3. Turbulent boundary layers

2.3.1. Averaging in compressible turbulence

For incompressible flows the equations of motion are Reynolds averaged, i.e.
the variables are divided into two parts, one mean part,

u ≡
∫ t+τ

t

u(t)dt (2.33)

and one fluctuating part, u′′:

u = u + u′′, (2.34)

so that u′′ = 0. Here the double prime indicates a fluctuating variable, not a
derivative.

For compressible flows the equations of motion become simpler if Favre
averaging, mass averaging, is used instead. For Favre averaging, the mass
averaged velocity is defined as:

ũ ≡ ρu

ρ
(2.35)

with the fluctuating part defined as u′ ≡ u − ũ. The tilde denotes the mass
weighted average, and the prime a fluctuation from the mass averaged mean.
Favre averaged variables are different from Reynolds averaged variables since
a time average of the fluctuating part of a variable is in general not zero. This
makes statistical results difficult to interpret, though simpler equations are
sometimes more preferable. As an illustrative example, the Reynolds averaged
form of the continuity equation is:

∂ρ

∂t
+

∂

∂xj

(
ρ uj + ρ′u′′j

)
= 0, (2.36)

and the Favre averaged form is

∂ρ

∂t
+

∂ρ ũj

∂xj
= 0. (2.37)

Here ũj is the mean velocity of mass transport, which is not true for uj . The
simplicity of eq. (2.37) as compared to eq. (2.36) is evident.

2.3.2. Turbulent boundary layer equations

The boundary layer equations for a compressible turbulent boundary layer in
a steady, two dimensional, adiabatic flow, written in Favre averaged form, are:

∂ρ ũ

∂x
+

∂ρ ṽ

∂y
= 0 (2.38)

ρũ
∂ũ

∂x
+ ρṽ

∂ũ

∂y
= − dp

dx
+

∂

∂y

(
−ρũ′v′ + µ

∂ũ

∂y

)
(2.39)

11



2. COMPRESSIBLE BOUNDARY LAYER THEORY

ρũ
∂h̃0

∂x
+ ρṽ

∂h̃0

∂y
=

∂

∂y

(
−ρh̃′0v

′ + µũ
∂ũ

∂y
+ k

∂T̃

∂y

)
(2.40)

where h0 = h+ 1

2
(u2 + v2 + w2). If the boundary layer approximated continuity

equation is written in Reynolds averaged form,

∂

∂x
(ρ u) +

∂

∂y
(ρ v) +

∂

∂y

(
ρ′′v′′

)
= 0, (2.41)

where the third term, ∂
∂y

(
ρ′′v′′

)
, acts as a source/sink to the mean flow.

The boundary layer approximated x-momentum equation in Reynolds aver-
aged form can be written as:

∂

∂x

(
ρ u2

)
+

∂

∂y
(ρ u v) = − dp

dx
+

∂

∂y

(
µ

∂u

∂y
− ρ u′′v′′ − u ρ′′v′′

)
. (2.42)

In eq. (2.42), the traditional Reynolds stress can be found, together with
another stress term −u ρ′′v′′ that enhances the incompressible Reynolds shear
stress. The Reynolds stress −ρ u′′v′′, is usually interpreted as the mean rate of
transfer of turbulent x-momentum across the plane normal to the y-direction.
In a similar way, the term −u ρ′′v′′ can be interpreted as the mean rate of
transfer of turbulent mass flux across the same plane. Finally the boundary
layer approximated energy equation in Reynolds averaging has the form:

(ρ u + ρ′′u′′)
∂h0

∂x
+ (ρ v + ρ′′v′′)

∂h0

∂y
=

=
∂

∂y

[
−ρv′′h′′0 + µ

(
1− 1

Pr

)
∂

∂y

(
u2

2

)
+

k

cp

∂h0

∂y

]
, (2.43)

with h0 = h + 1

2
u2 and h′′0 = h′′ + uu′′ and higher order terms neglected. No

additional terms are found, but as seen the convective terms are altered.

Finally the so called Strong Reynolds Analogy (SRA), which is assumed to
be valid for adiabatic flows, gives the relation between velocity and temperature
fluctuations. A possible mechanism for producing the temperature fluctuations
is the convection of the mean temperature field by the velocity fluctuations. In
this case it is assumed that u′′ and T ′′ are perfectlty anticorrelated such that

RuT =
u′′T ′′

√
u′′2
√

T ′′2

= −1 (2.44)

The temperature-velocity correlation has been measured in experiments by
Kistler (1959), who found the correlation to be -0.7. If we assume that the
above relation is valid then it is possible to obtain a relation between the
velocity and temperature fluctuations

√
T ′′2

T
= (γ − 1)M2

√
u′′2

u
(2.45)
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2.3. TURBULENT BOUNDARY LAYERS

By DNS of turbulent channel flow Huang et al. (1995) found that the
classical form SRA is not valid for non-adiabatic flows. This is due to the
fact that SRA comes from the assumption of the small fluctuations in total
temperature, which is not true for the non-adiabatic case.

2.3.3. Morkovin’s hypothesis

In 1962 Morkovin stated, after analyzing the supersonic boundary layer data
available at that time, that for moderate Mach numbers, ”The essential dy-
namics of these shear flows will follow the incompressible pattern”. Bradshaw
reformulated this hypothesis in 1974 by saying that ”high speed boundary lay-
ers can be computed using the same models as at low speeds by assuming the
density fluctuations are weak”. The essentials from Morkovins hypothesis can
be concluded to, ”apart from changing the local fluid properties the dynamic
effects could well be small”.

2.3.4. The temperature field

With Morkovins hypothesis in mind, what is different comparing the com-
pressible turbulent boundary layer and the incompressible boundary layer?
As stated in the hypothesis, the main effect is that the local fluid properties
changes due to changes of the temperature across the boundary layer. If ideal
gas flow with constant specific heat capacity, cp, is assumed together with a
constant pressure across the boundary layer, the density distribution can be
found from the temperature distribution in the boundary layer, using the per-
fect gas law.

The temperature within a zero-pressure gradient boundary layer is usually
assumed to follow the so called Walz’ distribution. If one assumes that the
temperature is a function of the velocity and also that the turbulent Prandtl
number is close to one, one can approximately write (Smits & Dussauge (1996)),

T

T∞
=

Tw

T∞
+

Tr − Tw

T∞

(
u

U∞

)
− r

γ − 1

2
M2
∞

(
u

U∞

)2

. (2.46)

where Tw is the actual wall temperature and Tr is the recovery temperature
(i.e. the wall temperature for an adiabatic wall). r is the recovery factor, the
ratio of the increase in temperature at the wall and the temperature increase
obtained for an isentropic velocity decrease to zero velocity (U 2

∞
/2cp),

r =
Tr − T∞

T0∞ − T∞
. (2.47)

The recovery factor for a turbulent boundary layer on an adiabatic flat plate

is assumed to be Pr
1

3 , Smits & Dussauge (1996). Walz’ relation eq. (2.46) is
used extensively and is considered to describe the temperature distribution in
the boundary layer satisfactory.

13



2. COMPRESSIBLE BOUNDARY LAYER THEORY

2.3.5. Turbulent boundary layer scaling

The turbulent boundary layer has been found to be self similar in an inner and
outer region respectively where the dynamics is governed by different length
scales. In the inner region the length scale is the so called viscous length scale,
defined by

`∗ =
νw

uτ
, (2.48)

where the index w denotes the value evaluated at the wall. uτ is the friction
velocity defined as

uτ =

√
τw

ρw
. (2.49)

and τw is the skin friction,

τw = µw(
∂U

∂y
)w, (2.50)

The skin friction can be expressed dimensionless as the skin friction coefficient,

cf =
τw

1

2
ρwU2

∞

. (2.51)

The above viscous units are used to non-dimensionalise the physical quantities
into a measure also called plus units,

u+ =
U

uτ
, (2.52)

y+ =
y

`∗
. (2.53)

In these plus units different sub-regions can be identified. Close to the wall there
is the linear region where u+ = y+, where the viscous forces are dominant. In
the buffer region, approximately 5 ≤ y+ ≤ 30, there is a smooth change from
the linear region to the logarithmic region approximately from y+ ≈ 30 to
y/δ = 0.15. The logarithmic region is covered by both inner and outer scaling
and is also called the overlap region. The logarithmic region can be expressed
as

u+ =
1

κ
ln y+ + C, (2.54)

where κ is the von Karman constant and C the intercept with the u+ axis.
Both κ and C are empirical constants and the values of the constants are still
debated with values of 0.38 ≤ κ ≤ 0.41 and 4.0 ≤ C ≤ 5.2 (see for instance

Österlund (1999)).

In the outer region, the so called wake region, viscosity is less important,
but the presence of the wall still has an influence through the magnitude of the
shear stress. The relevant outer length scale is

∆ =
δ∗U∞

uτ
, (2.55)

and the variable for the wall normal direction is
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2.3. TURBULENT BOUNDARY LAYERS

η =
y

∆
. (2.56)

In the outer region the velocity is made non-dimensional as a defect and the
relevant velocity scale is still the friction velocity giving

U∆ =
U∞ − U

uτ
. (2.57)

For the outer layer, the expression equivivalent to the log law is:

U∆ = − 1

κ
ln η + B (2.58)

where B can be calculated as

B =
U∞
uτ

− 1

κ
ln

δ?U∞
ν

− C (2.59)

and becomes close to 3.6 for κ=0.38.

For compressible flow the so called Van Driest transformation has been
introduced and has been shown to allow compressible boundary layer data to
be compared to incompressible data. The transformation is

Uc =

∫ u

0

√
ρ

ρw
du. (2.60)

Since the pressure is constant through the boundary layer this can be rewritten
using the perfect gas law such that

Uc =

∫ u

0

√
Tw

T (u)
du. (2.61)

Inserting Walz’ relation eq. (2.46), in the above expression,

Uc =

∫ u

0

√
1

1− a1u2 + a2u
du, (2.62)

with

a1 =
r

2cpTw
, (2.63)

and

a2 =
Tr/Tw − 1

U∞
, (2.64)

then the final expression for the transformed velocity is:

Uc =
1√
a1

[
arcsin

2a1u− a2√
4a1 + a2

2

+ arcsin
a2√

4a1 + a2
2

]
. (2.65)

For an adiabatic wall a2 is equal to zero and the second term vanishes and the
expression reduces to

Uc =
1√
a1

[arcsin
√

a1u] . (2.66)
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2. COMPRESSIBLE BOUNDARY LAYER THEORY

For Mach numbers below one the argument
√

a1u is in general small so that
the RHS can be series expanded such that

Uc = u

[
1 +

a1u
2

6

]
. (2.67)

2.4. Shock wave/boundary layer interaction

The pressure rise across a shock wave results in an increase of the boundary
layer thickness. Due to the thickening of the boundary layer, compression
waves forms upstream the shock wave. When the shock wave becomes strong
enough and the thickening of the boundary layer large enough the compression
waves coalesce into an oblique shock wave upstream the other shock wave and
a lambda shock is formed.

A sketch of a lambda shock wave/boundary layer interaction can be found
in figure 2.3. The first oblique shock, usually denoted the C1 shock, is the

C1
C2

C3

Ue

2

3

1Sonic line
δ

Slip line

Figure 2.3. A lambda shock system.

oblique shock formed by compression waves and is a weak solution to oblique
shock theory. Where the C1 shock meet the quasi-normal shock located in the
far outer field, denoted as the C3 shock, two states with different pressures and
velocity inclinations, ➀ and ➂, exist. At the intersection of these shocks the
states are not compatible, therefore a third shock is created, which is named
the C2 shock.

The factors that determines if the adverse pressure gradient downstream
the C2 shock is strong enough to cause boundary layer separation, are the
Mach number upstream the shock and the shape factor calculated with the
assumption of incompressibility, Delery & Marvin (1986). The shape factor has
a weak influence on the onset of separation, leaving the Mach number ahead
of the shock as the principal parameter. For a shape factor of 1.50 the Mach
number should be higher than 1.25 to cause separation but if the shape factor is
reduced to 1.20 the Mach number has to be increased to 1.32 for separation to
occur. The results were found by investigations in several different experimental
setups, such as a mounted wing profile in the test section and a bump on the
wall. For a wall with curvurature of δ/R < 2 %, where δ is the boundary layer
thickness upstream the shock and R the radius of the curvature. The effect of
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2.4. SHOCK WAVE/BOUNDARY LAYER INTERACTION

the curvature is small and similar to that of increasing the shape factor, Inger
& Sobieczky (1978) and Nandanan et al. (1980).

Raghunathan & McAdam (1983) investigated the influence of free-stream
turbulence on the shock wave/boundary layer interaction on a bump model.
They found that if the free-stream turbulence (FST) level was increased from
0.3% to 6% the shock location was shifted 20% further downstream relative
to the starting point of the bump. This shift in shock location could not be
explained solely by the thickening of the boundary layer due to the increase in
FST but no other explanation was proposed.

The transonic flow over a thick circular arc airfoil was experimentally in-
vestigated by McDewitt et al. (1975). They found that up to a critical Mach
number the flow was steady with boundary layer separation near the trailing
edge (Me = 0.76). Increasing the Mach number slightly the flow became un-
steady with the separation oscillating between the trailing edge and the base
of the shock with a frequency of about 190 Hz. A further increase of the Mach
number (to Me = 0.78) resulted again in steady flow but with the separation
located at the base of the shock foot.

Shock wave oscillations have been categorised for the transonic flow over
an airfoil and are known as Tijdeman (1977) type A, B and C.

Type A is a small amplitude almost sinusoidal motion and can be explained
in the following way. Consider a transonic flow over a wing profile with shock
waves on both sides attributed to an asymmetric disturbance causing a higher
Mach number on the upper side. Let the Mach number on the upper side be
strong enough to cause shock wave induced separation and hence the wake at
the tail of the wing profile will be deflected upwards. The change in the flow
geometry will cause the shock wave on the lower side to move towards the tail.
At the same time the shock wave on the upper surface will move upstream into
lower velocities and thus weaken and the boundary layer will reattach. This
will cause shock wave induced separation on the lower side of the wing profile
with deflection of the wake downwards, and the cycle will repeat itself, Lee
(1990) and Raghunathan et al. (1998).

The type B motion is similar to type A, but with an amplitude high enough
to cause the backwards moving shock wave to disappear at its most upstream
position. Type C has an even larger shock motion amplitude and the shock
propagates upstream into the free stream as a weak and free shock wave during
part of the cycle, see Tijdeman & Seebass (1980) for further details.

For a bump on the wall the shock wave in transonic flow can exhibit an
oscillatory motion. The motion can be explained with similar arguments as
for Tijdemans type A motion. When the shock wave on the bump becomes
strong enough to cause a considerable boundary layer growth, the flow geom-
etry changes and the shock wave moves upstream. As the shock wave moves
upstream it becomes weaker, the boundary layer growth declines, and the shock
wave moves downstream. It has been shown in supersonic flow when the shock
wave is strong enough to cause shock induced separation, the shock wave shows
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2. COMPRESSIBLE BOUNDARY LAYER THEORY

something similar to a high frequency motion superimposed on a low frequency
oscillation, Dolling & Murphy (1983). The low frequency oscillation has been
found to correlate with the low frequency pressure fluctuations of the separation
bubble, Erengil & Dolling (1991).
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CHAPTER 3

Experimental facility and setup

3.1. Experimental facility

The wind tunnel used in the present study is one of several exchangeable test
rigs in a larger experimental facility located at the Department of energy tech-
nology, KTH. The flow facility consists of a screw compressor which is located
outdoors, a cooler, the experimental rig and an exhaust fan. A drawing of the
system is shown in figure 3.1. The outdoor screw compressor (1.3 MW) delivers
4.7 kg/s air at a maximum of 4 bars absolute pressure and at a temperature
of 180◦C. The compressed air is cooled in a heat exchanger from 180◦C to a
value at will (minimum 30◦C) and conducted through a 40 cm diameter pipe
system to the test rig. The air to the compressor is taken from the outside air
which means that the humidity of the air provided to the tunnel is the same
as for the outside air since no drying is provided. This may lead to fog in the
tunnel when the flow accelerates and the temperature decreases. After passing
the test section the air is released to the outdoor via the exhaust fan.

Figure 3.1. The transonic wind-tunnel with, compressor,
cooler and pipe system.

The mass-flow rate, inlet and outlet pressures in the test section are regu-
lated through the inlet, outlet and bypass valves and the speed of the exhaust
fan, figure 3.2.
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Wind-tunnel

Outlet

Bypass valve

Compressor

InletOutlet

Exhaust gas fan

Inlet valveOutlet valve

Cooler

Exchangable test rig

Figure 3.2. A flow chart of the experimental facility.

3.2. Wind-tunnel

The air is coming from the compressor through a guide-vane equipped corner
to the inlet part of the wind-tunnel and a honeycomb guides the flow into the
250×250 mm2 stagnation chamber. This chamber is equipped with screens and
located 1.5 m upstream of the test section. A first contraction in the horizontal
plane conducts the flow into the vertical contraction located 30 cm upstream of
the test section. After the contractions the tunnel area is slightly increased to
compensate for boundary layer growth. The test section is 100 mm wide and
120 mm high with an exchangeable test ’floor’ where a flat plate or a bump
model can be mounted. For a schematic view of the wind tunnel see figure 3.3.

Bump model

2nd Contraction Window

Flow direction

Holes for pressure taps

Diffuser1st Contraction

Stagnation chamber

Screens and honeycomb

Holes for pressure taps

Test section

Figure 3.3. A side-view of the transonic wind-tunnel.
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3.3. DIGITAL PARTICLE IMAGE VELOCIMETRY

There are two different bump models available, a 2D bump and a 3D bump.
In this investigation the flat plate and the 2D bump has been used. The
maximum height of the bump is 10.5 mm. The test section with the 2D bump
inside is shown in figure 3.4.

Figure 3.4. The bump-model in the test section.

The test section ceiling and side windows are exchangeable and optical glass
or Plexiglas windows can be inserted. This allows optical measuring methods
such as LDV, PIV and schlieren techniques. In the Plexiglas windows, holes
for pressure taps are located. Static pressure holes are also located in the floor
at the inlet and outlet of the test section.

The stagnation temperature is measured with a copper-constantan ther-
mocouple. The thermocouple is mounted in a pipe which is directed towards
the oncoming flow in the stagnation chamber.

3.3. Digital Particle Image Velocimetry

The DPIV technique measures the fluid velocity by determining the displace-
ment in a given time interval of small tracer particles suspended in the fluid.
A thin high intensity laser sheet illuminates the particles and a CCD camera
placed normal to the laser sheet records the particle distribution in the plane
and stores the image digitally. The flow field is exposed twice with a short time
interval and the images are either stored on separate frames or on the same
frame. The image is divided into a number of small areas, so called interro-
gation areas, with the assumption that within each area the velocity should
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3. EXPERIMENTAL FACILITY AND SETUP

be constant. The mean particle displacement between the exposures is deter-
mined through a two dimensional cross- or auto-correlation process dependent
on the type of storage chosen. This gives the velocity vector variation over the
illuminated plane, both with respect to its direction and absolute magnitude.

CCD

Figure 3.5. A schematic of the PIV setup.

The correlation of the light intensity distribution I(~x) in each interrogation
area is given by:

Rc(~s) =

∫

ia

I1(~x)I2(~x + ~s)d~x,

where ~s is a two dimensional displacement vector. Ii(~x) is the light intensity
distribution in image i, which for an auto-correlation method gives I1(~x) =
I2(~x). The highest Rc for |~s| 6= 0 gives the most likely displacement in the
interrogation area. With auto-correlation it is not possible to determine the
flow direction since it is not possible to distinguish which particles come from
the the first exposure and which come from the second.

To decrease the time to carry out the correlation calculations, the images
are Fast Fourier Transformed (FFT). The Fourier transform of an interroga-
tion area from the first image is multiplied with the complex conjugate of the
corresponding transformed interrogation area from the second image and then
inversely transformed to obtain the correlation function Rc. The position of the
maximum cross-correlation peak, or the second highest auto-correlation peak
corresponds to the most probable particle displacement in the interrogation
areas between the two exposures.
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FFT Cross-
correlation
function

Image Pair
Interrogation
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FFT Auto-
correlation
function
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I2

Figure 3.6. A schematic of the PIV analysis. The white dots
are the seeding particles. The grey dots are the particles for
the second exposure (in auto-correlation mode).

3.3.1. Particle considerations

3.3.1.1. Light scattering from small particles

The intensity of the scattered light from small particles is two to three orders
of magnitude lower normal to the laser sheet than to the incident light, which
is the reason why high intensity lasers are needed as light sources. The light
intensity in the images decreases as I ∼ l−2, where l is the distance between
the light scattering particle and the camera.

For spherical particles with a particle diameter of the order of the wave-
length of the illuminating light, Mie scattering theory has to be applied to
estimate the scattered light in different directions. The most important factors
affecting the scattering power are the particle diameter and relative refractive
index and the scattering power increases both with the particle size and the
relative refractive index, see Adrian & Yao (1985).

3.3.1.2. Dynamical behaviour of small particles

The dynamics of particles in a fluid is given by Newton’s second law which states
that the mass of the particle times its acceleration is equal to the forces acting
on the particle. The important forces are here the fluid dynamic forces which
are due to a velocity difference between the particle and the fluid, whereas it
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3. EXPERIMENTAL FACILITY AND SETUP

is assumed that external forces, such as gravitational, centrifugal and electro-
static, can be neglected. The equation governing the dynamics of particles is
usually denoted the BBO-equation (Basset-Boussinesq-Oseen) and is for spher-
ical particles given by (see for instance Hinze (1975))

d3
pρp

π

6

dUp

dt
= −3πµdpV +

π

6
d3

pρf
dUf

dt
− π

12
d3

pρf
dV

dt

−3

2
d2

p

√
πµρf

∫ t

t0

dV

dχ

dχ√
t− χ

, (3.1)

where subscripts p and f , refer to the particle and fluid respectively, V is
the instantaneous velocity of the particle relative to the fluid, V = Up − Uf .
The first term on the right hand side is the viscous drag given by Stokes law,
which then implies that the particle Reynolds number (V dp/ν) is smaller than
one. The force on the particle due to the pressure gradient in the vicinity of
the particle produced by the particle’s acceleration is described by the second
term. The third term is a measure of the force required to accelerate the fluid
around the particle in a time dependent flow field (“added mass” term). The
last term is a so called history term associated with unsteady motion.

For practical applications with a large ratio between the particle and fluid
densities, only the first term on the RHS in eq. (3.1) is important and the
equation of motion can be written as

dUp

dt
= − 18µ

d2
pρp

V. (3.2)

Assuming a step change in velocity, eq. (3.2) gives the relaxation time for a
particle encountering the change in velocity as:

τp =
1

18

ρp

ρf

d2
p

ν
. (3.3)

For turbulence measurements the particle size should not exceed the smallest
turbulent eddies and the density of the particle should be as close as possible
to the density of the fluid in order to follow the turbulent motion. For particles
with a density higher than the fluid the size of the particles has to be quantified
with respect to the highest turbulence frequency of interest. This frequency
can be estimated with the Kolmogorov time scale, τk =

√
ν/ε, where ε is the

local turbulence dissipation.

Particles commonly used in measurements of gas flows are generated from
polyethylenglycol or silicon oil with a diameter of about 1 µm and a density of
about 700 – 900 times that of air. These particles have a spherical shape and
are easy to produce. The maximum frequency that can be resolved with these
kind of particles is about 10 kHz, Melling (1997). Titaniumdioxide particles
with a density of 3000 times that of air are also used. These particles with
a diameter of 1 µm have a frequency response of 1 kHz, but if the diameter
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is decreased to 0.5 µm the frequency response increases to 10 kHz. Other
commonly used particles are made of Al2O3, glycerine and MgO.

In the present study the most critical point of particle dynamics is the
passage of particles through the shock. Assuming particles with a density of
1000 kg/m3 in a flow across a shock wave with the Mach number 1.30 upstream
the shock and 0.79 downstream the shock, the relaxation length for a particle
with a diameter of 1 µm is about 12 mm. The size of the particles should be
less than 0.3 µm to have a relaxation length shorter than 1 mm, for further
details see Melling (1997). The shock strength is however not influencing the
relaxation length, Ross et al. (1994).

3.3.2. Validation

Data validation for PIV mainly means the detection and removal of spurious
velocity vectors. These vectors are considered unrealistic in relation to neigh-
bouring velocity vectors and are often caused by insufficient numbers of particle
pairs in the interrogation areas due to low particle density, high number of par-
ticle losses between exposures or low signal to noise ratio in the image. The
particles that most likely are lost are those moving out of the plane and the
particles with the highest velocity. This means that the measurement is biased
towards a lower velocity than the real one. The particles from the first exposure
that corresponds with particles lost in the second, can however be correlated
with other particles in the second exposure, for instance particles entering an
interrogation area. These correlations are denoted random correlations and
decrease the signal to noise ratio.

To get a high signal to noise ratio in the correlogram a relative high number
of particles in each interrogation area is needed. The amount of particles that
are required in each interrogation area to ensure a 95 % valid detection rate of
the correlation peak, has been investigated by different authors with the use
of Monte Carlo simulations. The authors found that, for cross-correlation, 5–7
particles in each interrogation area are needed (Keane & Adrian (1992), Dantec
(1998)) and, for auto-correlation, 10–20 particles/interrogation area (Adrian
(1991)). With auto-correlation, a higher amount of particles are needed in
each interrogation area since the amount of random correlations are higher.

In order to minimise loss of pairs and to sort out true correlations from
random correlations, the particles are not allowed to have travelled further than
25 % of the interrogation area sidelength. An implementation of the criteria
is to set the time between the exposures. The maximum time between two
exposures can be determined as

t ≤ 1

4

`iaLim

NpxUmax
, (3.4)

where `ia is the interrogation area sidelength of the image in pixels, Lim the
physical image sidelength, Npx the sidelength of the image in pixels, and Umax

the maximum velocity in the interrogation area.
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Furthermore the detectability of the correlation peak, the Peak Value Ra-
tio (PVR), the ratio of the highest cross-correlation peak to the second high-
est (second highest auto-correlation peak to the third highest), should not be
smaller than 1.20. Together with the seeding requirement, this should result
in 95 % validated correlations according to Keane & Adrian (1992). Angele
(2003) investigated the influence of the PVR when increasing the limiter from
1.20 to 1.50 by comparing turbulent boundary layer data measured with PIV
and hot-wire anemometry. The influence of the validation in the mean velocity
was none and in the velocity rms negligible. This leaves the conclusion that a
PVR of 1.20 is sufficient and an increase does not necessarily mean that random
correlations are removed but true correlations can be removed as well.

3.3.3. The PIV system

The measurements were performed with a system consisting of a Quanta Ray
GCR-series Nd:YAG laser, a Dantec light guide arm with optical head and
laser sheet forming optics, a Kodak ES 1.0 CCD camera and a Dantec PIV
2000 software. The Nd:YAG laser has two laser cavities that can be fired
individually at a maximum repetition rate of 15 Hz and the peak energy in the
4 ns long laser pulse is 0.4 J. The light sheet optics forms a 1 mm thick laser
sheet with a Gaussian intensity distribution at the beam waist.

The camera has 1018× 1008 pixels and a dynamic range of 256 grey-scale
levels. The first image is stored in buffer cells in the CCD-chip before the
second image is captured. The transfer between sensing element and buffer
is instant and the time between two successive images can be brought down
to 1 µs. The transfer of the two images to the computer is however slow and
limits the data rate.

The PIV system operates both in cross-correlation and auto-correlation
modes, however, to achieve separations between exposures shorter than 1 µs
the camera has to be run in auto-correlation mode and the timing between
laser pulses has to be controlled by an external pulse delay generator (Stanford
Research DG535).

3.4. The oil-drop method

An important variable in boundary layer research is the wall-shear stress. In the
present project the oil-drop method was used as an independent measurement
of the skin friction on the flat plate and the method is briefly described here.

The basis of the oil-drop method is to measure the change in thickness of
a drop of oil on the wall while the drop is deformed by the skin-friction of the
boundary layer. The variation of the thickness of the oil drop is measured using
an interference method. The film thickness can be visualised by Fizeau fringes
of alternately high and low light intensity which originate from the interference
of light reflected from the top and bottom of the oil-film. The height of the kth

black fringe is
hk = h0 + k∆h k = 0, 1, 2 . . . (3.5)
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with

∆h =
λ

2
√

n2 − sin2 α
(3.6)

where h0 is the height of the zeroth black fringe, ∆h the difference in height
from two neighbouring fringes, n the refractive index of the oil, α the viewing
angle and λ the wavelength of the illuminating light. This means that the
fringes are contour lines of the height of the oil film.
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Figure 3.7. x − t diagram for the oil-drop method. Picture
from Medici (1999), with permission.

The motion of the fringes along a straight line is recorded in an x − t
diagram, figure 3.7. The temporal development of the height of a thin 2D oil
film affected by a surface shear that only varies in the streamwise direction of
the flow, is described by

∂h

∂t
= − 1

2µ

∂(τh2)

∂x
, (3.7)

where τ is the shear stress. Assuming constant shear stress (τ ) in time and
space, eq. (3.7) can be reduced to

∂hk

∂t
+ uk

∂hk

∂x
= 0, (3.8)

with uk = τhk/µ, where uk is equivalent to the slopes of the contour lines in
the x− t plane. The above eqs. (3.5) – (3.8), together give

τk + τ
h0

∆h
= µuk

2
√

n2 − sin2 α

λ
, (3.9)
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which is an over determined system for a number of uk measured in an x − t
diagram. A simple least square fit gives the unknown quantities τ and h0/∆h.
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CHAPTER 4

Hot-wire anemometry

Velocity measurements in compressible flows are more complex than in the
incompressible case, since in general not only the flow velocity varies, but also
the temperature and the density of the gas as well as the viscosity of the
gas. Furthermore if a probe (for instance a pitot tube or hot wire) is inserted
in the flow not only the gas velocity will be zero at the probe surface, but
the gas properties will change from its undisturbed conditions. The fact that
’everything varies’ in compressible flow makes the use of intrusive measuring
techniques more complicated than for the incompressible case and in order
to get accurate absolute measurements a calibration and evaluation technique
must be able to take these different variations into account. In this chapter a
calibration technique for hot-wire measurements in compressible flows for Mach
numbers up to 1 is described and evaluated.

The principle of hot-wire anemometry is based on the fact that the cooling
of a heated body immersed in a moving fluid depends on the flow velocity (for
the basics of hot-wire anemometry see for instance Bruun (1995)). Although
hot-wire anemometry is a well known technique for incompressible flows and
in that case can give accurate results both for mean and fluctuating quantities,
it has been much less used in compressible flow cases. Still it has a lot of
advantages since it gives a continuous signal allowing frequency information
as well as a rather small, at least in two directions, measuring volume. For
instance Kosinov et al. (1990) used hot-wire anemometry to investigate the
growth of wave disturbances in a laminar boundary layer at a Mach number of
3. In that study the probe was located at different downstream positions but
at a position inside the boundary layer where the mean voltage was constant,
thereby ensuring that the position was the same in terms of the velocity. The
rms of the raw hot-wire signal was then used to evaluate the growth/decay of
the waves. With this methodology they avoided the problem to do absolute
calibrations of the system.

In the anemometer set up the probe is connected to one arm in a Wheat-
stone bridge. Because of the small diameter of the wire most of the electrical
resistance (typically 1-20 ohms) of the probe and cablage is associated with
the wire itself. By providing a voltage difference across the Wheatstone bridge
a current flows through the wire and heats it. Typically it is heated to 100-
200 degrees above ambient temperature. A servo amplifier keeps the bridge in
balance by controlling the voltage across the bridge, giving a varying current
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4. HOT-WIRE ANEMOMETRY

through the wire in such a way that the resistance of the wire, Rhw, is kept con-
stant, independent of the cooling imposed by the fluid. This also means that
the mean temperature Thw of the wire is constant. This mode of operation is
referred to as Constant Temperature Anemometry (CTA).

For CTA-operation the square of the current through the wire is propor-
tional to the electrical power generated and hence this is also the heat transfer
to the wire surroundings. To obtain good operating conditions it is necessary
that the main part of the heat flux is directly from the wire to the fluid, however
a certain amount is fed to the prongs by heat conduction. This is the reason
why the length to diameter ratio of the wire should be as high as possible.

The current through the wire is directly proportional to the voltage across
the Wheatstone bridge and this voltage (or a voltage proportional to it) is
usually provided as the anemometer output. The combination of the sensor’s
low thermal inertia and the high gain of the servo loop amplifier gives a fast
response to fluctuations in the flow. This makes it possible to resolve also very
high frequency fluctuations, such as small vortices that are convected by the
mean flow. However one problem which need to be addressed when measuring
in turbulent flows is the spatial resolution of the probe. Even a 1 mm long
wire may be much too long to resolve typical length scales in e.g. a turbulent
boundary layer at high velocities.

4.1. Heat transfer from a cylinder

The heat transfer from a cylindrical body can be given in terms of the non-
dimensional Nusselt number

Nu =
hd

k

where h is the heat transfer from the cylinder to the fluid, d is the cylinder
diameter and k the heat conductivity of the fluid. By ignoring the radiative
heat ransfer the most general form of the convective heat transfer from an
infinite long cylinder to a gas expressed in non-dimensional parameters is

Nu = Nu(Re, Pr, Gr, M, Kn, τ) (4.1)

Here Re(= ρUd/µ) is the Reynolds number based on the gas density ρ, the
flow velocity U , the wire diameter d, and the dynamic viscosity µ. The density
and dynamic viscosity is usually evaluated at the mean temperature of the
wire and the surrounding gas. The Prandtl number, Pr = ν/α, where α is
the thermal diffusivity, is constant for conditions not too far from atmospheric.
For instance, the Prandtl number of air varies only 3% when the temperature
changes from 0◦C to 100◦C. The Grashof number describes the influence of free
convection, but is of no importance for the high velocity flows considered here.

M is the Mach number, defined as M = U/
√

γRT , where γ is the ratio
between the specific heats at constant pressure cp and volume cv (also called
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4.1. HEAT TRANSFER FROM A CYLINDER

the adiabatic exponent), R is the specific gas constant and T the absolute
temperature of the gas. For air at moderate temperatures γ is close to 1.40
whereas R = 287 J/kg K.

Under most circumstances a gas can be described as a continuum but this
is not necessarily a good approximation for high speed gas flows. The Knudsen
number Kn gives the relation between a characteristic length, here the wire
diameter, and the the mean free path of a gas molecule, such that Kn = λ/d,
where the mean free path, λ, can be expressed as

λ =
µ∞
ρ∞

√
π

2RT∞
.

For a gas at standard conditions λ ≈0.06 µm, but increases with decreasing
pressure. Usually one assumes that if Kn ≤ 0.01 the fluid can be considered as
a continuum and the heat transfer is then independent of the Knudsen number.

Finally τ is the overheat ratio, defined as, τ = (Thw − T0)/T0, with T0 as
the stagnation temperature of the flow, and Thw the wire temperature. Since
the wire temperature operated by a CTA is constant, the overheat ratio varies
with the stagnation temperature only.

4.1.1. Heat transfer in incompressible flow

For incompressible flow in air (M = 0) at near standard conditions Kn can
be viewed as sufficiently small to allow for the continuum hypothesis and the
Prandtl number can be viewed as a constant. If the air velocity is larger than
typically 0.3 m/s then the Grashof number is small enough so that forced
convection will completely dominate the heat transfer to the gas. This means
that eq. (4.1) reduces to

Nu = Nu(Re, τ) (4.2)

The Nusselt number for the wire is proportional to the power input, i.e. it
is proportional to the square of the output voltage from the anemometer, E2.
For a given overheat ratio it is possible to express the output voltage in terms
of the flow velocity such that

E2 = A + BUn (4.3)

This equation is often referred to as King’s law. The dependence of ρ and µ
are included in the calibration constants A, B and n in eq. (4.3). King (1914)
derived an expression for the heat transfer around an infinitely long cylinder
and obtained a value of the exponent n of 0.5, and from calibration data an
exponent close to 0.5 is usually found. The constant A can be seen to equal
the square of the voltage at zero velocity, however usually A is slightly less
than that. This is because free convection becomes important when the flow
velocity is low giving a larger heat transfer than would otherwise be the case.
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4.1.2. Heat transfer in compressible flow

In compressible flow one has to take into account also other variables than the
velocity when evaluating the hot-wire output signal. This is not only true for
the mean voltage but also for fluctuations of velocity, density and temperature,
Kovasznay (1953). This makes the calibration method for compressible flow
more complex since also these quantities have to be varied.

However, one can usually assume that Gr and Kn both are small and that
the Prandtl number is constant, which makes eq. (4.1) reduce to:

Nu = Nu(Re, M, T0) (4.4)

Using King’s law, eq. (4.3), as an ansatz also for compressible flow, the following
relation is suggested

Nu = A′(M, T0) + B′(M, T0)Ren (4.5)

The generalization of King’s law means that the constants A′ and B′ are
allowed to vary with the Mach number and the stagnation temperature. The
variable in the relationship is changed to the Reynolds number, instead of the
velocity alone. If the viscosity and wire diameter in the Reynolds number are
included in the functions A′ and B′ in eq. (4.5) it can now be written for a
given gas as

E2 = A(M, T0) + B(M, T0)(ρU)n (4.6)

The above expression, eq. (4.6), is now the calibration function for hot-
wires in subsonic compressible flow, ’King’s law for compressible flow’. If the
functions A(M, T0), B(M, T0) and the exponent n are found in a calibration
process, then the velocity can be calculated, a procedure which will be described
in section 4.2.4. For incompressible flow, where the Mach number is zero, and
the density and stagnation temperature are constant, eq. (4.6) reduces to the
ordinary King’s law, eq. (4.3).

Another factor that may influence the heat transfer from a hot wire is the
air humidity. Schubauer (1935) studied this influence and found that when the
humidity was changed from 25 to 70 percent with a surrounding temperature of
25◦C, a 2 percent change in the Nusselt number was observed. The explanation
was given by the high thermal conductivity of water which is believed to raise
the thermal conductivity of the air.

4.2. Calibration method

4.2.1. Calibration set-up

The calibration was performed in a TSI calibrator unit model 1127, figure 4.1.
This unit produces a jet of variable speed and the hot wire is placed in the
potential core of the jet. The calibrator unit consists of a 270 mm long stagna-
tion chamber with a diameter of 110 mm, and an exit nozzle. In the stagnation
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chamber there are screens at half the chamber length to reduce mean flow vari-
ations and decrease turbulent fluctuations in the jet. The nozzle diameter can
be changed by replacing the entire nozzle. Four nozzle sections with different
diameters are available with diameters of 3, 6, 10 and 14 mm and the smaller
the nozzle the higher the maximum outlet velocity. The air to the calibrator
was obtained by a 2.2 kW compressor which could deliver a pressure up to
8 bar.

In order to calibrate the hot wire at different densities the outlet pressure
has to be varied. This was made possible by letting the jet flow into a Plexiglas
container in which the static pressure could be varied by applying suction or
blockage at the top of the container, see figure 4.1(b). At first the enclosing
caused vibrations of the probe due to vortices appearing between the container
wall and the nozzle, but this problem was eliminated by inserting a secondary
tube with holes close to the nozzle. The setup is similar to that of Johnston &
Fleeter (1997).

To allow the stagnation temperature to be changed, a heater was added
between the pressure regulator and the calibrator. The heater consisted of a
tube with resistive wire from a hairdryer in the centre of the tube. The wire was
heated by applying a current from a power supply. The stagnation temperature
could then be adjusted from ambient temperature up to 50◦C.

For high Mach numbers the 3 mm diameter nozzle has to be used since
the mass flux of the compressor system is limited. Even though the hot wire
is positioned close to the nozzle exit in the potential core the finite size of the
probe may influence the calibration results. Therefore a ”classic calibration”
was performed to investigate the effect of changing the nozzle size. By the term
”classic calibration” it is meant that the probe was placed in the jet where the
stagnation temperature was held constant and the stagnation pressure was
changed in order to vary the velocity. This was performed with the nozzle
diameters 3 mm and 6 mm. The curves can be found in figure 4.3. The curves
differ by 1 % in the velocity or 0.2 % in the voltage showing that the small size
of the 3 mm nozzle does not influence the calibration results.

4.2.2. Hot-wire probe

For the present measurements home made single hot-wire probes were used,
figure 4.4. The hot-wire probe body was a ceramic tube designed for ther-
moelement use with a diameter of 2.7 mm. The prongs were made of spring
steel. According to potential theory the length of the prongs should be at least
6 body diameters, in order for the probe body not to affect the flow. However
the prongs are glued to the probe body with a low viscosity resin in a stream-
lined fashion, thus making the necessary length shorter. The prong length here
is 15 mm, or 5.6 diameters. The conical shape of the prong tips were obtained
by an etching of the prongs in nitric acid (60 %). The positioning of the prongs
in the probe body were done with micro manipulators under a 80× microscope.
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(a)

Flow direction

Probe

Suction or blockage

Air proof container

Nozzle

Airtight container

Secondary tube

Holes

(b)

(c)

Figure 4.1. The hot-wire calibrator unit. (a): the calibrator
unit, (b): the probe-holder arrangement, (c): a photograph of
the setup.
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Figure 4.2. A schematic of the heater. A resistive wire is
coiled inside a tube where the air flows towards the stagnation
chamber.

0 50 100 150 200 250
80

100

120

140

160

180

200

220

U [m/s]

E
2  [V

2 ]

Figure 4.3. A classic calibration curve. On the ordinate the
anemometer output voltage squared is plotted and on the ab-
scissa the velocity. The squares are the values for the 6 mm
diameter nozzle and the circles mark the values for the 3 mm
diameter nozzle.

The heated part of the probe consisted of a tungsten wire with a diameter
of 5 µm and a length of approximately 1 mm, which was welded between the
prongs. Tungsten is preferably used in high velocity flows since tungsten is
much stronger than platinum which is the other material typically used for
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hot-wire probes. In contrast to platinum wires, which usually are soldered to
the prongs, tungsten is not possible to solder and needs to be welded. The
length to diameter ratio is larger than 200, which is usually set as a lower limit
in order for heat transfer to the prongs to be negligible. The anemometer was
a DISA 55 M10 constant temperature anemometer.

Figure 4.4. A hot-wire probe used in the present study.

The welding is done under a microscope where the probe is fixed. With
the probe fixed the wire is traversed with micro manipulators so that the wire
is lightly resting on top of the prongs. Then the welding electrode is micro
manipulated on to the wire pressing it slightly to the prong and a short pulse
current is let through, which welds the wire onto the prong. The wire is welded
to each prong with two welding spots.

The downside with this welded hot-wire probe with a 5 µm welded tungsten
wire, is that it requires a considerable warm up time. It has to be ”burned”
before the measurements can begin. This is most crucial when the calibration
is taking place outside the wind-tunnel, when also the anemometer needs to
reach thermally stable conditions. For the DISA 55 M10 anemometer this start
up time, including the warming of the anemometer, was empirically determined
to about one hour.

4.2.3. The calibration procedure

As can be seen in eq. (4.6), the functions A(M, T0), B(M, T0) as well as the
exponent n should be found for different values of ρU . This is done by placing
the hot-wire in a jet, where the velocity, stagnation temperature and the density
in the jet can be varied independently. The calibration is then performed in
steps where two variables are kept constant while the third is varied.

For instance, by changing the static pressure in the jet the density can be
varied, while keeping the Mach number and stagnation temperature constant.
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Repeating this for different Mach numbers, the dependence of A(M) and B(M)
can be found. Changing the stagnation temperature and repeating the above
procedure, the unknown functions can then be determined. The calibration
procedure used can be summarized as

1. Set the stagnation temperature.
2. Set the Mach number (given by the pressure ratio between the outlet

and the stagnation chamber).
3. Vary the density by applying suction or blockage.
4. Repeat step 3 for the desired Mach numbers.
5. Repeat step 2 and step 3 for different stagnation temperatures.

4.2.4. Calculation procedure

To transform a measured voltage into a velocity the following method was used.
Starting from the perfect gas law

p = ρRT (4.7)

where R is the specific gas constant. With the definition of the Mach number

M =
U

a
(4.8)

where the speed of sound is written as

a =
√

γRT (4.9)

Assuming adiabatic flow, the relation of the stagnation temperature and the
temperature can be expressed in terms of the Mach number as

T0

T
= 1 +

γ − 1

2
M2 (4.10)

The relations (4.8)–(4.10) are inserted in the perfect gas law, eq. (4.7), to get an
expression for the mass flux in terms of the static pressure, the Mach number
and the stagnation temperature.

ρU = pM

√
γ(1 + γ−1

2
M2)

RT0

(4.11)

With the above expression and King’s law for compressible flow, eq. (4.6), the
Mach number can now be calculated from a single voltage if the static pressure,
p, and the stagnation temperature are known.

If the definition of the Mach number, eq. (4.8), is rewritten in terms of
stagnation temperature with eq. (4.10) as

M =
U√

γRT0 − γ−1

2
U2

(4.12)
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then the velocity can be calculated implicitly from the Mach number, with the
assumption that the flow is adiabatic.

4.2.5. Derivation of the sensitivity coefficients

In compressible flow the hot wire is sensitive to several different quantities
and this is reflected not only in the mean but also in the fluctuations. A
common way of analyzing the response of hot wires in subsonic compressible
flows has been to use a linearised expression of the heat transfer law, e.g.
eq. (4.4), Steinback & Nagabushana (1994). By logarithmically linearizing the
heat transfer law, the fluctuations in the voltage, e, can be expressed in terms of
the independent variables, density, r, velocity, u, and stagnation temperature,
t0 as

e

E
= Sρ

r

ρ
+ Su

u

U
+ St

t0
T0

(4.13)

where capital letters are the mean values and the sensitivity coefficients are
defined as

Sρ =
∂ ln E

∂ ln ρ


U,T0

(4.14)

Su =
∂ ln E

∂ ln U


ρ,T0

(4.15)

St =
∂ ln E

∂ ln T0


ρ,U

(4.16)

The sensitive coefficients, can be obtained from eq. (4.6) as

Sρ =
n

2

[
1− A

E2

]
(4.17)

Su = Sρ

[
1 +

1

nB

∂B

∂ ln U

]
+

1

2E2

∂A

∂ ln U
(4.18)

St =
T0

2E2

[
∂A

∂M

∂M

∂T0

+
∂A

∂T0

]
+

T0

2B

[
1− A

E2

][
∂B

∂M

∂M

∂T0

+
∂B

∂T0

]
(4.19)

The partial derivative ∂M
∂T0

can be found from eq. (4.12) to be

∂M

∂T0

=
−γRU

2
(
γRT0 − γ−1

2
U2
) 3

2

(4.20)

This approach is based on a linearised theory and only valid for small
fluctuations, or if the fluctuations in voltage are related to flow fluctuations
by power laws. Another assumption is that the dynamic sensitivities are equal
to the static sensitivities, that are found in the calibration process, and the
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calibration is made in a steady stream. There have also been different opinions
regarding if the velocity and density sensitivities are equal or not. Horstman &
Rose (1977) were the first to propose this equality. But Steinback & Johnson
(1983) deduced that this was not the case. However the equality has been used
anyway Qi-lin & Chang-an (1993).

4.3. Calibration results

4.3.1. The calibration function

To determine the calibration function, the anemometer output voltage, E, was
measured for different mass fluxes, ρU , at constant Mach numbers, M , and
stagnation temperatures, T0. In each calibration set the stagnation tempera-
ture was chosen and kept constant through the set of calibration data. For each
stagnation temperature the Mach number was kept constant and the pressure
changed in order to change the density, i.e. the massflux. This were performed
for the Mach numbers 0.2, 0.3, 0.4, . . . , 0.9.

The calibration was performed for the stagnation temperatures 21, 25, 28,
32 and 35.5◦C. The variation in temperature was less than 0.5 K during the
calibration process. For the stagnation temperature 35.5◦C measurements were
only performed for the Mach numbers 0.5 to 0.9. The overheat ratio was set
to 1.5.

In figure 4.5,
√

ρU is plotted against the square of the anemometer output
in accordance with King’s law for compressible flow, eq. (4.6). In the figure the
Mach number is constant along each line. The lines in the figure are linear least
square fits to the data. Here the exponent n is chosen to one half as originally
suggested by King.

The slope of the least square fits are the B function values for the constant
Mach number, and the intercept of the lines with the y-axis are the A function
values. The A and B values for the different Mach numbers in the range
0.2 to 0.9 are plotted in figure 4.6. The lines are determined by a least square
polynomial fits of order four. A(M) varies with a factor 2 in the range M = 0.2
to M = 0.9, while B(M) remains almost constant. The other temperatures
(not shown) are found in between these lines.

The square on the y-axis mark E2
0 , the A value in the incompressible limit.

Noticeable is that when the Mach number approaches zero, i.e. when the com-
pressible effects becomes negligible, A(M) approaches E2

0 which is used for
incompressible flow.

Using the A and B values for the different Mach numbers and stagnation
temperatures and fitting a fourth order least square polynomial in the Mach
number and stagnation temperature as the A(M, T0) and B(M, T0) functions,
the calibration is finished.

Figures 4.7(a) and (b) show A(T0) and B(T0) for the different Mach num-
bers. As can be seen in the figures, A(T0) is an increasing function for all Mach
numbers while B(T0) is a decreasing function. The figures also show that the
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Figure 4.5. The anemometer voltage for different values of
the mass flux. The stagnation temperature is 21◦C. The Mach
number is constant along each line and the lines are linear least
squares fitted to the calibration data.
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Figure 4.7. The temperature dependence of the functions
(a): A and (b): B. In the figure the symbols mark constant
Mach numbers M : (∗) M=0.2, (◦) M=0.3, (?) M=0.4, (O)
M=0.5, (/) M=0.6, (+) M=0.7, (�) M=0.8, (�) M=0.9. The
lines are best least square fits to the data points. (c): The
temperature differentials of A (◦) and B (?), i.e. the slope of
the lines for the different Mach numbers in (a) and (b). (d): E2

plotted against T0 for the different Mach numbers, the Mach
number is increasing upwards.

wire is as most temperature sensitive for low Mach numbers. An explanation
for this could be that for a fixed stagnation temperature, the static temperature
decreases with the Mach number, which means that the local overheat ratio in-
creases. When the overheat ratio increases, the wire becomes less temperature
sensitive.

In figure 4.7(c) the differentials ∂A
∂T0

and ∂B
∂T0

, the slope of the lines in
the upper figures, are plotted against the Mach number. As can be seen in
the figure the temperature dependence is largest for Mach numbers up to 0.5.
Above M = 0.5 both differentials are almost constant.

For CTA in supersonic flows the calibration function is independent of the
Mach number reducing the functions A and B to functions of the stagnation
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temperature only, Smits et al. (1983) and the temperature dependence is sat-
isfyingly linear. Looking at figure 4.7 this Mach number independence seems
to appear already at Mach numbers of 0.5. The lines in the figure are fourth
order least square fit polynomials. The polynomials are used to calculate the
total temperature sensitivity coefficient.

In figure 4.7(d), the temperature dependence of the hot wire for the dif-
ferent Mach numbers is plotted. The figure is created by using the calibration
function E2 = A(M, T0) + B(M, T0)

√
ρU and only varying T0. The curves

are not straight lines in the figure, but the deviations from a straight line
are small. The linear temperature correction for CTA is commonly used in
incompressible flow, and has been verified by numerous experiments, see for
instance Abdel-Rahman et al. (1987). The linear and constant slope of the
temperature dependence allow a linear temperature correction for changes in
the stagnation temperature, between calibration and measurement, or during
the measurement.

The fitted polynomials of A(M, T0) and B(M, T0) are used in King’s law
for compressible flow, eq. (4.6), to get the final calibration function for the
hot wire. This calibration function is used on the measured values of velocity,
density and static pressure determined in the calibration, to get the error of
the calibration. The relative error of the calibration is found to be about 0.3 %
in the voltage.

4.3.2. The sensitivity coefficients

The calibration curves can also be used to obtain the sensitivity coefficients
defined by eqs. (4.14)–(4.16).

In the expression for the density sensitivity coefficient, eq. (4.17), it can
be seen that Sρ should approach n/2 when the quotient A/E2 → 0. In fig-
ure 4.8(a), Sρ is plotted and is seen to approach 0.25 when the Mach number
increases, which is in agreement with the theoretical expression.

The velocity sensitivity coefficient, eq. (4.18), figure 4.8(b) varies both with
the density and the Mach number, however the density variation gets lower
when the Mach number increases.

In the incompressible range the quotient Su/Sρ should be one, since the
functions A and B are constants for incompressible flow conditions. In fig-
ure 4.8(c) it can be seen that the ratio approaches near unity when the Mach
number approaches zero. deSouza & Tavoularis (1999) found that this quo-
tient approached zero when the Mach number approached unity, indicating
the wire becoming a density fluctuation transducer. This is not found in this
investigation or as they comment: ”not anywhere else in the literature”.

The total temperature sensitivity coefficient, eq. (4.19), figure 4.8(d), is
always negative, but approaches zero for the higher Mach numbers showing
that the probes become less temperature sensitive for high Mach numbers.
The values for M = 0.2 does not seem to follow the trend set by the other
Mach numbers, but the values for M = 0.2 comes from a fit with few points
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Figure 4.8. (a): the density sensitivity coefficient, (b): the
velocity sensitivity coefficient, (c): The quotient Su/Sρ, (d):
the total temperature sensitivity coefficient. The different
symbols mark different static densities.

in a small interval, which means that the uncertainty for M = 0.2 is relatively
large.
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CHAPTER 5

Results

5.1. Results from the hot-wire measurements

The hot-wire measurements of the boundary layer was made on the floor at the
entrance of the test section. The calibration procedure is the one described in
section 4.2. To be able to verify the calibration with respect to the variations in
mass flux the measurements were made for three different static pressures and
three different Mach numbers, ranging from subsonic to transonic, see table 5.1
for a summary. The pressures were constant within 0.7%. The stagnation
temperature was set to 30◦C and was kept constant within 0.4 K (0.1%) during
the measurements and the hot wire was operated at an overheat ratio of 1.5.

case: 1 2 3 4 5 6 7 8 9
M∞: 0.3 0.3 0.3 0.5 0.5 0.5 0.7 0.7 0.7

ps [kPa]: 100 92 110 100 90 110 100 90 110

Table 5.1. Overwiev of the measurements

In figure 5.1 the nine measured velocity profiles normalized with the free-
stream velocity and the incompressible displacement thickness are shown. As
can be seen it is possible to reach velocities even lower than 40 % of the free-
stream velocity, which corresponds to y < 0.1 mm from the plate surface. With
the normalisation in figure 5.1 the collapse of the profiles is fairly good. The
Van Driest transformation eq. (2.67) gives a maximum change of less than 2 %
in the velocity and would not considerably change the velocity profiles.

In table 5.2 the shape factor and the displacement thickness and the mo-
mentum loss thickness can be found. The parameters have been calculated with
both the compressible definitions, eqs. (2.16) – (2.17) and with the incompress-
ible assumption of constant density in the boundary layer. The temperature
distribution and thereby the density distribution was assumed to follow Walz’
relation, eq. (2.46). The striking fact is that the displacement thickness varies
up to 12 % dependent on the method of calculation while the momentum loss
thickness is fairly constant. This results in different trends for the shape fac-
tor with the Reynolds number based on the momentum loss thickness. The
compressible shape factor increases with Reynolds number while the incom-
pressible one decreases. This is consistent with what is found for the laminar
case discussed in section 2.2.4.
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Figure 5.1. The velocity profiles for the nine different cases.

case δ∗c [mm] θc [mm] Hc δ∗i [mm] θi [mm] Hi

1 1.46 1.07 1.37 1.42 1.08 1.32
2 1.46 1.07 1.37 1.43 1.08 1.33
3 1.43 1.05 1.37 1.41 1.06 1.33
4 1.29 0.92 1.40 1.22 0.94 1.30
5 1.33 0.94 1.41 1.25 0.97 1.30
6 1.31 0.93 1.40 1.24 0.96 1.30
7 1.20 0.79 1.52 1.06 0.83 1.28
8 1.27 0.83 1.53 1.12 0.87 1.28
9 1.15 0.78 1.48 1.04 0.82 1.27

Table 5.2. The shape factor calculated with both the com-
pressible method and the incompressible method.

The errors found, when comparing the free-stream velocity measured with
the stagnation pressure tube, and the free-stream velocity derived from the
hot-wire voltages are found in table 5.3, in the column ”Error”. The errors are
within 4 % and the calibration are considered satisfactory.

The skin friction coefficient was determined with the Clauser method.
Comparing the values with the relation found by Österlund (1999) investi-
gating incompressible zero pressure gradient flat plate boundary layers, the
skin friction coefficient seems to follow the same relation, figure 5.2. The skin
friction in the same setup was measured by Tillmark (2001) with the oil drop
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Figure 5.2. The skin-friction coefficient plotted against the
Reynolds number based on the momentum loss thickness. The
symbols are the present mesurements while the dots are the
values from Österlund (1999).

method for the Mach numbers M∞ = 0.3, M∞ = 0.5 and M∞ = 0.7 and stag-
nation temperature T0 = 30◦C. The values found is summarized in table 5.3
in the column τNT

w , the values seems to correspond fairly well with the values
determined from the Clauser method. The Fizeau fringes were not very clear
and not too many fringes appeared on the photos for the Mach numbers 0.5
and 0.7. But the values found can be used as a guideline.

In figures 5.3 and 5.4 the boundary layer profiles are plotted in inner and
outer scales. The profiles collapse nicely with the incompressible law of the wall,
but the intercept for the measured profiles is slightly higher than determined
by Österlund (1999), the dashed line. The intercept here is 4.6 for the M = 0.3

and 5.0 for M = 0.7, see table 5.4. Österlund (1999) found the value 4.08 in
his low-speed incompressible experiment.

Performing the Van Driest transformation, eq. (2.65), the velocity profiles
are shifted upwards, i.e. the intercept increases. As can be seen in table 5.4
the compressibility effects are not detectable for the lowest Mach number but
is seen to increase with the Mach number.

In figure 5.5 the distributions of turbulent intensity, urms =
√

u′′2, are
plotted in inner and outer scaling. In the figures the intensity profiles are
plotted together with an incompressible profile measured by Österlund (1999).
For the incompressible case a clear peak is found near the wall. As can be
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case Reθ Rex τw[Pa] τNT
w Uhw

∞
[m/s] Up

∞
[m/s] Error [%]

1 6900 1.4 · 106 19 17 105.9 108.5 2.4
2 6900 1.4 · 106 17 - 103.2 106.2 2.5
3 6700 1.4 · 106 20 - 103.3 106.2 2.5
4 9000 2.2 · 106 44 48 169.0 170.7 1.4
5 9300 2.2 · 106 41 - 171.6 172.8 1.1
6 9300 2.2 · 106 50 - 170.0 172.6 1.7
7 9800 3.0 · 106 78 86 233.6 227.8 2.2
8 10400 3.0 · 106 71 - 234.8 229.6 1.4
9 9600 3.0 · 106 85 - 234.7 226.3 3.5

Table 5.3. Results from the measurements. Uhw
∞

and Up
∞

are
the freestream velocities measured with the hot wire and the
stagnation pressure probe respectively.

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

u+ = 2.6 ln y+ + 4.6

y+

u+

Figure 5.3. The velocity profiles in inner scaling. The
dashed line is an incompressible velocity profile measured by
Österlund (1999).

seen for the present measurements in the inner part of the boundary layer the
fluctuations are low and no peak close to wall is found. This is due to the
fact that the wire length is too large to resolve small turbulent scales. The
size of the probe in viscous scales can be found in table 5.5. A too long probe
works as a spatial low-pass filter and therefore measure too low fluctuation
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Figure 5.4. The velocity profiles in outer scaling

case: 1− 3 4− 6 7− 9
C: 4.6 4.6 5.0
B: 4.6 4.7 5.2

Table 5.4. The intercept for the law of the wall. C is the
untransformed intercept and B the Van Driest transformed
intercept.

levels. Nevertheless the rms-profiles show a good agreement in the outer region
whereas large discrepancies are seen close to the wall.

case: 1− 3 4− 6 7− 9
l∗: 260 410 540

Table 5.5. Hot-wire length in viscous units.

When urms is determined usually the strong Reynolds analogy is used to
determine the temperature fluctuations as: Trms/T = (γ − 1)M2

∞
urms/u. If

the perfect gas law is time averaged and assuming |ρ′′T ′′| � ρT , then

p′′

p
=

ρ′′

ρ
+

T ′′

T
. (5.1)
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Figure 5.5. (a) and (c): urms in inner scaling. (b) and (d):
urms in outer scaling. In the plots the line that deviates is an
incompressible intensity profile from Österlund (1999). (−−)
M = 0.3, (− · −) M = 0.5, and (—) M = 0.7.

Generally the assumption is that, the pressure fluctuations are small compared
to the density and temperature fluctuations, Kistler (1959), leaving

ρ′′

ρ
≈ −T ′′

T
. (5.2)

With the above relations the temperature and density fluctuations can be de-
rived from the velocity fluctuations with the assumption of negligible pressure
fluctuations and that the strong Reynolds analogy holds. This has only been
performed for the free-stream values, table 5.6, since the turbulence intensity
distributions are underestimated in a large part of the boundary layer, fig-
ure 5.5.

The third, skewness, and fourth, flatness, moments of the probability den-
sity function can be found in figure 5.6. These higher moments are defined
as:
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case: U∞ [m/s] T∞ [K] ρ∞ [kg/m3] 100urms

u∞
1000Trms

T∞

1 108.5 298.2 1.18 0.44 0.17
2 106.2 297.1 1.10 0.58 0.22
3 106.2 298.4 1.30 0.44 0.17
4 170.7 289.5 1.22 0.34 0.34
5 172.8 288.9 1.10 0.35 0.36
6 172.6 289.2 1.34 0.34 0.34
7 227.8 278.2 1.27 0.29 0.54
8 229.6 277.6 1.14 0.28 0.53
9 226.3 278.7 1.39 0.28 0.50

Table 5.6. Table of freestream values

Su =
u′′3

u′′2
3/2

(5.3)

Fu =
u′′4

u′′2
2

(5.4)

The skewness describes the asymmetry of the signal and is dominated by
the tails of the probability density function. A negative skewness indicates that
negative deviations dominate the signal. For the flatness, the tails are even
more weighted and both positive and negative deviations give contributions of
the same sign. A high flatness indicates a high intermittency in the signal. For
a Gaussian signal, the skewness is zero and the flatness is three. As can be
seen in figure 5.6 this behaviour can be found in the free stream for both the
flatness and skewness. However the validity of the Su and Fu profiles must be
questioned in the inner part of the layer where the turbulence is dominated by
smaller scales, since the wire length is fairly large. As can be seen in figure 5.6,
the skewness is around zero and the flatness around three in the inner part
indicating a Gaussian turbulence distribution. In the outer part where the
errors from the probe is less significant the familiar peak in the flatness profile,
and the dip in the skewness profile, are found. The magnitudes of the peak and
dip appear to be a little low. A skewness of −1.4 is found in this investigation.
Österlund (1999) found for the incompressible layer a value of around −3.5.
The same can be said for the flatness, here values of five to seven is found while
Österlund (1999) measured values well above ten.

In figure 5.7 the velocity signal for case 6 is plotted for three different
positions in the boundary layer, a point in the buffer region, y+ = 15, at a
position in the logarithmic region, y+ = 280, and at a position in the wake
region y+ = 4560. It can be seen that the fluctuations increase from y+ = 15
to y+ = 280. The signal for y+ = 4560 show the high skewness with the dips
in the signal, which is assumed to be blobs of low speed boundary layer fluid
that pass the probe.
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Figure 5.6. The skewness in inner, (a), and outer scaling,
(b), and the flatness in inner, (c), and outer, (d), scaling. (−−)
M = 0.3, (− · −) M = 0.5, and (—) M = 0.7.
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Figure 5.7. The velocity signal for case 6, at three differ-
ent positions in the boundary layer. Top signal: y+ = 4560.
Middle signal: y+ = 280. Lower signal: y+ = 15
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5.2. Results from the PIV measurements

5.2.1. The PIV measurements

PIV measurements have been performed at free-stream Mach numbers ranging
from 0.30 to 0.70, at different positions on a bump model in the test section.
The different measurement areas are shown in figure 5.8 and table 5.7. The
PIV system have been operated both in cross-correlation and auto-correlation
mode, see table 5.8. The free-stream stagnation pressure was measured with a
stagnation pressure probe in the stagnation chamber and the static pressure was
measured both at the inlet and outlet of the test section. The stagnation tem-
perature was assessed with a copper-constantan thermocouple to 30◦C ±0.4 K
in all measurements. The free stream Mach number at the inlet of the test
section was determined from the inlet static pressure and the free-stream stag-
nation pressure.
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Figure 5.8. The positions of the measurement areas. For the
mode of operation see table 5.8. The curvature of the bump
begins at x = 70 mm and the highest point on the bump is
located at x = 117.5 mm. (Junction between model and inlet
channel floor at x=0)

area: A1 A2 A3 A4 A5 A6
x [mm]: 28-36.2 28-44 137-159 156-178 173-195 190-212
y [mm]: 0-8.2 0-16 6-28 3.5-25.5 1.5-23.5 0.5-22.5

Table 5.7. Overview of dimensions and positions of the mea-
surement areas.

The number of images/image pairs was 1100 in all cases. The flow was
seeded with oil particles into the boundary layer in the stagnation chamber.
The particles were generated by a spray-atomizer delivering particles with a
diameter of about 0.2 µm, according to the manufacturer (Polytech (1997)).
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The conventional validation criterias were used in all measurements, namely
that the particles should not have travelled further than 25 % of the inter-
rogation area side-length and a peak value ratio of 1.20. The interrogation
areas were 50 % overlapped. The interrogation area size were 64× 64 pixels in
all measurements except for the measurements in area A2 at freestream Mach
number 0.30, where the interrogation area size was 32 × 32 pixels. The time
interval between the images was set according to eq. (3.4).

Area Mode Image size [mm] ia sidelength [mm] Me

A1 a-c 8.2×8.2 0.284 0.69
A2 c-c 16×16 0.256 0.30
A2 c-c 16×16 0.504 0.50
A2 c-c 16×16 0.504 0.70
A3 c-c 22×22 0.688 0.69
A4 c-c 22×22 0.688 0.69
A5 c-c 22×22 0.688 0.69
A6 c-c 22×22 0.688 0.69

Table 5.8. Overwiev of the measurements. a-c stands for
auto-correlation and c-c cross-correlation. ia is short for inter-
rogation area.

5.2.2. PIV results and discussion

5.2.2.1. Inlet conditions

The streamwise velocity in the turbulent boundary layer at area A2 was mea-
sured in order to be able to compare data obtained with different methods.
The measurements were performed at free stream Mach numbers 0.30, 0.50
and 0.70. The inlet static pressure was atmospheric, the same as for one of the
operating points for the hot-wire measurements. Figure 5.9 shows the velocity
profiles in the inlet region obtained from PIV and from previous hot-wire data.
The hot-wire measurements were performed on a flat plate model 10 mm up-
stream of the junction between the plate and the inlet tunnel floor, whereas the
PIV measurements were carried out 28 mm downstream of the junction due
to optical access limitations. The figure contains both shifted and unshifted
velocity profiles to facilitate comparisons between different Mach numbers as
well as different methods. The velocity is normalised with the free-stream value
and the wall normal coordinate is normalised with the displacement thickness
determined by assuming constant density in the boundary layer.

The figure shows an overall good agreement between hot-wire and PIV data
for the two highest Mach numbers investigated (comparison in (D)) though
the PIV profiles are slightly less blunt. The major difference between the
methods is found at the lowest Mach number, Me = 0.3 (profile (A)), where
PIV data gives a higher velocity compared with the hot-wire but also compared
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Figure 5.9. Velocity profiles at the inlet of the test section
for different free-stream Mach numbers. The figure contains
profiles shifted both to the left and upwards in steps of 0.1 and
1 respectively (A: Me = 0.3), (B: Me = 0.5), (C: Me = 0.7)
and unshifted (D). (◦) are data from hot-wire measurements
and (×) data from PIV measurements. (�) shows measure-
ments at Me = 0.69 with the PIV system in auto-correlation
mode.

to profiles obtained at higher Mach numbers. The profile was obtained using
32× 32 pixels interrogation areas compared to 64× 64 pixels used in the other
PIV profiles. The velocity overestimate is presumably caused by the smaller
interrogation area. Decreasing the interrogation area size, fewer particles are
present, the signal to noise ratio decreases but also the bias towards a lower
velocity becomes prominent with higher velocity. This is believed to be the
case though the data points are not exceedingly scattered. The underestimate
is most pronounced for the largest velocity, the free stream, i.e. the normalizing
velocity. As the velocity and hence also the bias effect decreases throughout the
boundary layer the normalised velocity profile becomes more blunt compared
with the unbiased profile.

Turbulence intensity distributions are also obtained from the PIV data.
They are not shown here because the turbulence intensities are approximately
three times higher than those measured by the hot-wire throughout the bound-
ary layer and considered not to be realistic. The increase in turbulence is
attributed to poor seeding and too few samples.
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PIV data

Me δ∗c [mm] θc [mm] Hc δ∗i [mm] θi [mm] Hi Reθi

0.30 1.70 1.28 1.33 1.66 1.28 1.29 7300
0.50 1.19 0.85 1.40 1.12 0.87 1.29 8500
0.70 1.13 0.75 1.51 1.00 0.77 1.30 10300
0.69 0.99 0.65 1.53 0.87 0.67 1.29 8800

Hot-wire data

Me δ∗c [mm] θc [mm] Hc δ∗i [mm] θi [mm] Hi Reθi

0.30 1.46 1.07 1.37 1.42 1.08 1.32 6900
0.50 1.29 0.92 1.40 1.22 0.94 1.30 9000
0.70 1.20 0.79 1.52 1.06 0.83 1.28 9800

Table 5.9. Different boundary layer parameters calculated
assuming compressible as well as incompressible boundary
layer flow.

Displacement thickness, momentum loss thickness, shape factor and Rey-
nolds number have been determined assuming compressible as well as incom-
pressible boundary layer flow. During these calculations PIV data were ex-
tended with hot-wire data close to the plate surface where no particle images
could be retrieved in the strong glare. The results are given in table 5.9 together
with parameters determined in section 5.1. If the data from the measurements
for Me = 0.3 are not considered, then the shape factor from the PIV and
hot-wire measurements agree within 2 %. The displacement thicknesses and
momentum loss thicknesses are all lower for the PIV data (within 8 %). This
can be attributed to that the measurements were made at two different oc-
casions, and the experimental facility had been used with other exchangeable
test rigs during this period. In the replacement of the wind-tunnel something
might have been altered that influence the development of the boundary layer.
However, the boundary layer have reached an equilibrium in accordance to that
found in the hot-wire measurements.

5.2.3. Visualisations

A sequence of four PIV images of area A3 capturing the unsteady shock system
at the downstream side of the bump at inlet Mach number 0.69, are shown in
figure 5.10. The stagnation pressure is 160 kPa and the static outlet pressure
is 105 kPa. The images are selected from the PIV image database and the
two first images show the extreme positions of the shock system whereas the
other two show intermediate positions. Bright areas in the pictures are mainly
scattered light from clusters of seeding particles, condensed water vapour and
shock fronts imbedded in the flow. The seeding particles are predominantly
found in the lower part of the pictures while the very bright area in the up-
per part is caused by fog. The bright curves found in the central part of the
PIV images point out a lambda shock system. The oblique leading shock C1
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Figure 5.10. PIV images of the area covering the shock sys-
tem. The pictures show the light scattered by groups of par-
ticles in the flow as bright areas. The white area in the lower
part of the figures is a part of the model. The flow is from left
to right. The exposure time is 4 ns.

is hardly visible but is confirmed by schlieren pictures (by Bron (2003)) taken
at the same flow conditions, see figure 5.11. The shock system is unsteady
and moves randomly back and forth between x = 142 mm and x = 149 mm, a
motion most likely caused by small variations in the upstream and downstream
conditions in the flow system. The schlieren pictures show that the flow close
to the surface changes drastically downstream of the leading shock foot (C1),
due to either a radical increase in the boundary layer thickness or a separa-
tion. The appearance of a lambda shock together with PIV images showing
negligible number of particles in the region close to the surface strengthens the
presumption of a shock-induced separation.
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[mm]

Figure 5.11. Schlieren images of the shock wave boundary
layer interaction at two different outlet pressures, 104 kPa (a)
and 106 kPa (b). The flow is from left to right. Exposure time
1 ms. The black frame encloses the same area as shown in the
PIV images. The scale on the x-axis is within ±1 mm. The
images are from Bron (2003), with permission.

5.2.4. Shock wave/boundary layer interaction

The ensemble averaged (1100 frames) Mach number distribution around and
across the shock 7 mm above the bump surface is shown in figure 5.12. The
figure shows a gradual increase in the Mach number from about 1.25 to 1.27
approaching the shock, a drastic fall in the Mach number entering the shock
system and finally a slight recovery to an output Mach number of 0.92 which
decreases gradually downstream.

The increase in the Mach number upstream of the shock is caused by the
supersonic expansion over the curved bump surface and is verified theoretically
using Prandtl-Meyer expansion, shown in the figure as a dashed line. The
Mach number distribution in the shock region is an average over an oscillating
shock system changing both in strength and position. Assuming a sinusoidal
shock motion and a nonlinear relation between shock position and strength
gives the general trend but does not explain the dip and recovery in the Mach
number at the outlet of the shock system. The explanation is instead sought in
a post-shock expansion due to a wall curvature change caused by the sudden
increase in the boundary layer thickness. The small final decay in Mach number
downstream of the shock system is attributed to subsonic expansion along the
bump profile. The downstream Mach number obtained from relations over a
normal shock is also included in the figure (full line). Comparison with the
measurements show that the lambda shock system is less dissipative and the
post-shock Mach number is considerable higher.
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Figure 5.12. The Mach number distribution at y = 7 mm (�)
over the surface. (−−) Prandtl-Meyer theory. (—) normal
shock relations. The shock system oscillates between x = 142
and x = 149 mm.

The velocity distribution was measured at a number of positions on the
bump, both upstream and downstream of the shock system, see figure 5.13.
The normalized velocity profiles are found in figure 5.14.

The velocity profile upstream of the shock, (A), shows a large scatter in
the data in the outer part of the boundary layer, compared with the other
profiles. This is due to the high light reflectivity of the condensed water vapor,
previously mentioned, which reduces the visibility of the seeding thus creating
a low signal to noise ratio. Downstream of the shock the velocity data are more
coherent and smooth profiles are obtained.

The boundary layer thickness is seen to grow downstream of the shock
and the thickness is increased from about 1 mm upstream of the shock (A)
to 11 mm approximately 45 mm downstream of the shock (D). The velocity
outside the boundary layer decreases slowly as the flow expands along the
profile downstream of the shock.

Measurements with the PIV system in auto-correlation mode were also
made at several positions with a measuring area of 8.2 mm × 8.2 mm. However
the velocity data were very scattered likely due to lower particle density in the
interrogation areas, as discussed earlier, and all profiles but one were discarded.
This velocity profile at x = 138 mm, upstream of the shock, is shown in the
figure and a good agreement with the cross-correlation data is found.

The backflow coefficient i.e. the fraction of time the flow is reversed, was
determined downstream of the shock and indicates that no separation occurs.
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Figure 5.13. The locations of the different mean profile mea-
surements shown in figure 5.14. The thick line points out the
mean position of the shock. The height of the line indicates
the vertical extent of the measuring area. (A) x = 138 mm,
(B) x = 155 mm, (C) x = 175 mm, (D) x = 192 mm and
(E) x = 209 mm. The shock system moves between x = 142
and x = 149 mm.

This is in line with the profiles in figure 5.14 but contradictory to what was
proposed from images containing the lambda shock. However a detailed study
of the sequence of images used in the determination of the mean profiles shows
that the particle density in the region close to the profile surface varies inter-
mittently from particle density similar to that obtained in the freestream to no
particles at all. This may indicate a periodic separation not registered because
of a lack of particles during these events. The large change in the velocity
profile at position (E) in figure 5.14 strengthen the above hypothesis.
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5.2. RESULTS FROM THE PIV MEASUREMENTS
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Figure 5.14. Mean streamwise velocity profiles upstream and
downstream the shock. The vertical distance is measured from
the bump surface. (A) x = 138 mm, (B) x = 155 mm, (C)
x = 175 mm, (D) x = 192 mm and (E) x = 209 mm. (◦)
are data from measurements in auto-correlation mode at (A).
Measurement area 8.2 mm×8.2 mm.
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CHAPTER 6

Summary

A calibration unit and methodology were developed for calibration of hot-wire
probes in compressible flows. In subsonic compressible flow the calibration
function ”King’s law for compressible flow”, E2 = A(M, T0) + B(M, T0)(ρU)n,
is shown to be a suitable generalisation of King’s law. The function A(M) is
close to E2

0 when the flow is considered to be incompressible but varies with a
factor of about two in the Mach number interval from 0.2 to 0.9 whereas B(M)
is found to be essentially constant in the interval. E2 is found to be a linear
function of the stagnation temperature for constant Mach numbers.

Hot-wires were used to measure the flat plate zero pressure gradient tur-
bulent boundary layer at three different static pressures and at three different
free-stream Mach numbers. The calibrated hot-wires measured free-stream ve-
locities with an error of about one to three percent in the mean velocity for
all static pressures and Mach numbers. The mean velocity profiles were found
to follow the incompressible law of the wall for all of the Mach numbers ran.
The von Karman constant was found to be 0.39, the same value as for incom-
pressible flow measured by Österlund (1999). The intercept was found to be
4.6 at M∞ = 0.3 and 5.0 at M∞ = 0.7 which is higher than the incompressible
value of 4.1 found by Österlund (1999). Using the Van Driest transformation
the intercept increased to 5.2 at M∞ = 0.7 while the transformation showed
no effect at M∞ = 0.3.

The hot-wire length was found to be too large to resolve the small turbu-
lent scales. However in the outer part of the boundary layer the streamwise
turbulence intensity is similar to that of an incompressible boundary layer. The
dip in the skewness and peak in the flatness in the outer part of the boundary
layer were found to be smaller in magnitude compared to what was obtained
in incompressible boundary layer study by Österlund (1999). This may be due
to the large hot-wire length but may also be an effect of compressibility.

PIV was also used to measure the boundary layer for the flow over a two di-
mensional bump at the same Mach numbers as for the hot-wire measurements.
The PIV system was operated in both cross- and auto-correlation mode. The
data for the inlet boundary layer showed an overall good agreement in the
mean velocities compared with the hot-wire measurements. However, strong
diffuse light reflections from the surface covered the scattered light from the
seeding particles in the measurements close to the surface. It was not possible
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6. SUMMARY

to determine the turbulence intensity distributions in the boundary layer due
to poor seeding.

The variation of the shape-factor with the Reynolds number was found to
differ depending on if the flow was considered incompressible or compressible in
the calculations. In the incompressible case the shape-factor decreases whereas
it increases in the compressible case. Hence, it has to be clearly stated how the
shape factor is calculated.

Velocity profiles were also measured for the transonic flow over the bump
model. An oscillating lambda shock wave was found to cause boundary layer
separation. The conclusion of a separated boundary layer was not supported by
the backflow coefficient, but a boundary layer growth of 10 mm in a distance of
45 mm indicated a separated boundary layer downstream of the shock wave.
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Österlund is thanked for sharing his data. The two that needs a lot of ap-
preciation are Marcus Gällstedt and Ulf Landén in the workshop that have
manufactured the experimental equipment that has been used. My supervisor,
professor Henrik Alfredsson and professor Torsten Fransson at EGI have also
to be acknowledged for their help in the project.

Special thanks for discussions goes to Mårten Stenmark, Johan Matsols
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