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Abstract
Both experimental and theoretical studies have been considered on flat plate
boundary layers as well as on wakes behind porous cylinders. The main thread
in this work is control, which is applied passively and actively on boundary
layers in order to inhibit or postpone transition to turbulence; and actively
through the cylinder surface in order to effect the wake characteristics.

An experimental set-up for the generation of the asymptotic suction bound-
ary layer (ASBL) has been constructed. This study is the first, ever, that report
a boundary layer flow of constant boundary layer thickness over a distance of 2
metres. Experimental measurements in the evolution region, from the Blasius
boundary layer (BBL) to the ASBL, as well as in the ASBL are in excellent
agreement with boundary layer analysis. The stability of the ASBL has ex-
perimentally been tested, both to Tollmien–Schlichting waves as well as to free
stream turbulence (FST), for relatively low Reynolds numbers (Re). For the
former disturbances good agreement is found for the streamwise amplitude pro-
files and the phase velocity when compared with linear spatial stability theory.
However, the energy decay factor predicted by theory is slightly overestimated
compared to the experimental findings. The latter disturbances are known to
engender streamwise elongated regions of high and low speeds of fluid, denoted
streaks, in a BBL. This type of spanwise structures have been shown to appear
in the ASBL as well, with the same spanwise wavelength as in the BBL, despite
the fact that the boundary layer thickness is substantially reduced in the ASBL
case. The spanwise wavenumber of the optimal perturbation in the ASBL has
been calculated and is β = 0.53, when normalized with the displacement thick-
ness. The spanwise scale of the streaks decreases with increasing turbulence
intensity (Tu) and approaches the scale given by optimal perturbation theory
This has been shown for the BBL case as well.

The initial energy growth of FST induced disturbances has experimentally
been found to grow linearly as Tu2Rex in the BBL, the transitional Reynolds
number to vary as Tu−2, and the intermittency function to have a relatively
well-defined distribution, valid for all Tu.

The wake behind a porous cylinder subject to continuous suction or blowing
has been studied, where amongst other things the Strouhal number (St) has
been shown to increase strongly with suction, namely, up to 50% for a suction
rate of 2.5% of the free stream velocity. In contrast, blowing shows a decrease
of St of around 25% for a blowing rate of 5% of the free stream velocity in the
considered Reynolds number range.
Descriptors: Laminar-turbulent transition, asymptotic suction boundary lay-
er, free stream turbulence, Tollmien–Schlichting wave, stability, flow control,
cylinder wake.
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Preface

This doctoral thesis in fluid mechanics is a paper-based thesis of both exper-
imental and theoretical character. The thesis treats of boundary layers on
flat plates as well as wakes behind porous cylinders. The main thread in the
thesis is control, which is applied passively and actively on boundary layers
in order to inhibit or postpone transition to turbulence; and actively through
the cylinder surface in order to effect the wake characteristics. The thesis is
divided into two parts in where the first part, starting with an introductory
essay, is an overview and summary of the present contribution to the field of
fluid mechanics. The second part consists of ten papers, which are adjusted to
comply with the present thesis format for consistency. However, their contents
have not been changed compared to published or submitted versions except for
minor refinements. In chapter 7 of the first part in the thesis the respondent’s
contribution to all papers are stated.

November 2003, Stockholm
Jens Fransson
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You asked, ’What is this transient pattern?’ If we tell the
truth of it, it will be a long story; It is a pattern that came
up out of an ocean and in a moment returned to that ocean’s
depth.

Omar Khayyam (1048–1131)
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Part I

Overview and summary





CHAPTER 1

Introduction

–You push the ends of the seat belt together and you hear the familiar click.
You are ready for take off. The cabin attendant walks through the aisle showing
the safety equipment while the plane taxes of to the runway. You are full of
expectations but also somewhat tense for the trip and you look out through
the window. The rain rattles on the wing. You feel the acceleration pulling you
back into your seat when the plane speeds up and rises. On twenty thousand
metres the plane levels out and the seat belt lights are switched off. The air-
hostess serves you the longed-for single malt and you lean back into your seat.
Within a few minutes you doze off. The plane flies smoothly through air and
rain. How is it possible for this huge machine to rise up into the sky and fly
you to your destination?

Figure 1.1. On December 17, 1903, in Kitty Hawk, North
Carolina, OrvilleWright performed the first ever airplane flight
and this was the breakthrough to airplane development. The
image was downloaded from http://www.wam.umd.edu/.
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2 1. INTRODUCTION

The explanation of the ability of an airplane to fly is the lift force. Feeling
the lift force is an event you most likely faced as a kid. You probably remember
how you stretched out your arm through the car window, and how you by tilting
your hand could feel an upward or downward pointing force. In this context the
tilting angle of your hand is usually denoted angle of attack, whereas your hand
can be seen as a wing. The wellspring of the lift force on your hand is caused
by air accelerating around your thumb which gives rise to a low pressure, whilst
it decelerates along the palm causing a high pressure. This pressure difference
creates an upward pointing force, which is the lift force. When dad accelerated
the car you immediately felt how your hand reacted faster and stronger on a
small change of tilting angle. One can experimentally and theoretically show
that the velocity in square of the car is proportional to the lift force, which
explains the reaction of above acceleration. Exchanging a kids arm with a real
wing, specially designed to cause high lift, on both sides of the car you almost
have an airplane.

–Suddenly the plane is shaking and the ride feels extremely bumpy. You wake
up with your drink all over your trousers. Through the window you hardly see
the wing tip. Dark clouds and heavy rain are all that can be distinguished. The
seat belt lights are turned on and the captain instructs you to remain seated.
What is happening?

Strictly speaking there are two air flow states, laminar and turbulent. The
former can be described as smooth and regular flow like if the air was moving
in a series of layers sliding over one another without mixing. The latter state
is a flow in which the velocity at any point fluctuates irregularly and there is
continual mixing rather than a steady flow pattern. In other words, laminar
flow produces smooth and regular flying conditions whilst turbulent flow is
associated with a rough and irregular condition. Further, turbulence is a multi-
eddy scale flow, ranging from swirling air of hundreds of metres in scale to the
tiny Kolmogorov1 scale (i.e. the smallest length scale of eddies in a turbulent
flow) only a few microns in the perspective of a flying commercial airliner.

Your intuition of a rough flight is easier justified with the presence of bad
weather, but the fact is that turbulence can be present even in clear visible air.
The bumpy feeling caused by turbulence is in everyday language often denoted
’air-pockets’. Literally speaking this denomination is a myth. You may draw
the parallel when sitting in a speedy boat on heavy sea. The waves appearing
from all directions makes you jump around just as an airplane does in strong
turbulent air. Thus, similarly to the boat surrounded with water without any
’water-pockets’ you have air everywhere preventing you from falling down from
the sky. The only difference in the parallel above is that in air the large velocity
and pressure fluctuations are invisible, in contrary to the surface water waves
that you are able to both see and feel.

1Andrej N. Kolmogorov (1903-1987), a soviet mathematician.



1. INTRODUCTION 3

There are many possible reasons that can make turbulence appear in an
atmospheric perspective, such as heated earth (due to sun exposure) which
makes warm air rise due to increasing pressure and a vertical movement of
air is caused, mountainous terrain which makes the air unstable simply due to
its geometrical presence, jet streams due to their high velocities (high velocity
flows are more susceptible to transition), or meteorological reasons.

However, there is no universal theory for how turbulence appears. What is
a common consensus is that the turbulence originates from some instability in
the laminar state that grows in amplitude and eventually causes transition to
turbulence. Natural occurring phenomena in fluid dynamics are complex and
appears irregularly why these favourably are investigated in a more controlled
manner and in a simpler configuration, such as on a flat plate positioned in a
wind tunnel. The present thesis includes theoretical as well as experimental
investigations on the transition process from laminar to turbulent state.



CHAPTER 2

Boundary layer transition

There are plenty of practical applications where fluid dynamics is involved.
Knowledge in this area is preferred in many design studies on for instance on-
and off shore vehicles, airplanes, and space shuttles. A common interest in
vehicle design is to reduce drag in order to minimize the fuel consumption
and/or to be able to go faster as the case of Formula 1 cars.

When studying big streamlined vehicles (with a lot of surface), such as
an airliner, the major contribution to the drag comes from the skin friction.
In figure 2.1a) the skin friction coefficient (cf ) over a flat plate (with zero
pressure gradient) is plotted versus the Reynolds number (Rex). These two
non-dimensional quantities are defined as

cf =
τw
q

; Rex =
xU∞
ν

. (2.1)
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Figure 2.1. Laminar versus turbulent boundary layer. a)
Skin friction coefficient versus Rex. The dotted line describes
a theoretical transition and is the Prandtl-Schlichting formula.
b) Laminar- (◦; Rex = 1.0 × 105) and turbulent (•; Rex =
7.3×105) mean velocity profiles. u∗ = u/U∞. Solid line is the
theoretical Blasius profile.
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2. BOUNDARY LAYER TRANSITION 5
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Figure 2.2. Sketch of a flat plate boundary layer.

In the expressions above τw is the wall shear stress, q the dynamic pressure,
U∞ is the free stream velocity, ν the kinematic viscosity, and x the downstream
distance from the leading edge. As can be seen in figure 2.1a) for large Rex-
values the difference in skin friction between laminar and turbulent boundary
layers becomes significant, more precisely, the skin friction may be reduced
by one order of magnitude if transition can be inhibited. Even if this is not
possible there is a lot to gain if one may succeed to postpone the transition,
since the two curves are diverging. Figure 2.1b) shows typical wall normal
distributions of the mean streamwise velocity component for a laminar (low
Rex) and a turbulent (high Rex) measured profile.

Roughly speaking there are two accepted routes of transition to turbulence
in boundary layer flows, with totally different driving physical mechanisms (cf.
Kachanov 1994, for a thorough review). These are the classical scenario of ex-
ponential character and the by–pass transition scenario. In the present chapter
these two scenarios are presented both theoretically and experimentally with
typical examples, namely the Tollmien–Schlichting wave and the free stream
turbulence induced transition scenarios, in order to elucidate their differences.
Real life applications of fluid mechanics are usually of complex nature why
many fundamental phenomena are studied in detail on the most simplified
configuration one can imagine, namely a flat plate. In figure 2.2 a sketch of the
boundary layer on a flat plate is shown. In the case of zero pressure gradient
the laminar boundary layer grows as x1/2 whilst the turbulent grows as x4/5;
this is indicated in the figure. The natural scenario is that a laminar boundary
layer starts to grow from the leading edge. The receptivity process at the lead-
ing edge, which may constitute of one or a combination of the shown primary
disturbance sources (namely sound waves, surface roughness, and free stream



6 2. BOUNDARY LAYER TRANSITION

turbulence), causes an instability in the laminar boundary layer. This distur-
bance grows in space and time to some amplitude, where it becomes hostile to
secondary instabilities, and transition to turbulence takes place. Note, that a
reverse scenario may also take place in boundary layer flows even though this
type of process is more infrequent, an example of relaminarization is a turbu-
lent boundary layer that is exposed to a steep favourable pressure gradient, i.e.
an accelerated free stream (see e.g. Narasimha & Sreenivasan 1973; Parsheh
2000).

2.1. Tollmien–Schlichting wave scenario

For low environmental disturbances the transition scenario from laminar to tur-
bulent flow on a flat plate boundary layer is rather well understood. This class
of transition starts with instability waves that are generated in the receptivity
process taking place close to the leading edge. The initial growth of these waves
may be described by Fourier modes ∝ ei(αx+βz−ωt), where for spatially growing
waves the streamwise wave number α is complex and the angular frequency ω
and the spanwise wave number β are real. When assuming such a mode, in
a two-dimensional parallel base flow, the Navier–Stokes equations linearized
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Figure 2.3. Spatial stability curves for two-dimensional
waves in a Blasius boundary layer. Solid lines are for constant
imaginary parts of the streamwise wave number (αi) and dash-
dotted for constant real parts (αr). The bold solid line is the
neutral stability curve. The displacement thickness (δ1) is the
characteristic length scale.
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Figure 2.4. Amplitude evolution of the TS-wave at F = 100.
In this and subsequent figures the symbols are experimental
results, and solid lines are the OS-solution of the Blasius pro-
file.

about the base state give rise to the well known Orr–Sommerfeld (OS) and
Squire (S) equations according to

[
(−iω + iαU)(D2 − k2)− iαU ′′ − 1

Re
(D2 − k2)2

]
v̂ = 0 , (2.2)

and [
(−iω + iαU)− 1

Re
(D2 − k2)

]
Ω̂ = −iβU ′ v̂ , (2.3)

respectively. Here D = ∂/∂y, k2 = α2+β2 and v̂ and Ω denote the wall normal
amplitude and vorticity functions of the eigenmode. From the continuity and
the vorticity equations the streamwise and spanwise perturbation components
may be derived (see for instance Fransson 2001, for a full derivation of above
equations). Solution procedures for this semi-coupled system may be found in
e.g. Drazin & Reid (1981); Schmid & Henningson (2001).

These waves grow/decay exponentially (according to the ansatz) and the
critical Reynolds number is, according to Squire’s theorem, obtained for a two-
dimensional wave (i.e. for β ≡ 0) and is called a Tollmien–Schlichting (TS)
wave. In figure 2.3 the stability diagram (based on linear parallel theory)
is given for the Blasius profile. The solid lines are contours of the growth
factor (αi) where the bold solid line shows the neutral stability curve, i.e. the
contour line of αi = 0. The dash-dotted lines correspond to contour lines of
constant wave number (αr). Here, the Reynolds number (Re) is based on
the displacement thickness (δ1), and F is the non-dimensionalized frequency
defined as

F = (ων/U2∞) × 106 .
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Figure 2.5. Phase distribution in the streamwise direction at
F = 100.

If a TS-wave in a Blasius boundary layer reaches high enough amplitude
(�1% of U∞), three-dimensional waves and vortex formations develop (still
laminar) that give rise to the appearance of turbulent spots which merge and
bring the whole flow into a fully turbulent one. The first successful wind tunnel
experiment on TS-waves was carried out and reported by Schubauer & Skram-
stad (1948). However, these results were not in full agreement with theory and
for long the discrepancy between linear parallel stability theory and experi-
ments were believed to be due to the non-parallel effect of a growing boundary
layer. However, Fasel & Konzelmann (1990) found out through direct numeri-
cal integration of the Navier–Stokes equations that this effect is quite small and
that it hardly influences the amplitude and phase distributions. Later, parab-
olized stability calculations by Bertolotti (1991) showed that the non-parallel
effect becomes significantly stronger for three-dimensional disturbances. Fi-
nally, the experiments by Klingmann et al. (1993), performed with a special
designed asymmetric leading edge (in order to get rid of the pressure suction
peak), could show excellent agreement with non-parallel theory, which is close
to the parallel theory for two-dimensional disturbances.

In the following controlled stability experiments, where the studied dis-
turbance is generated with a known frequency, together with theoretical re-
sults are shown. In figure 2.4 the amplitude distribution of the TS-wave at
F = 100 is shown (in this and following figures A corresponds to the maximum
measured amplitude in the profile). The experiment (◦-symbols) shows good
agreement with linear parallel theory (solid line), where both the first and the
second branch are well captured by the experiment. The TS-wave is generated
at x = 205 mm and decays until reaching the first branch at approximately
Re=728.5. From there on it grows in amplitude until reaching the second
branch at approximately Re=1233.5 where it starts to decay.
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The phase velocity (c = ω/αr) of the wave can be determined simply by
determining the real part of the wave number (αr) since the angular frequency
(ω) is known. In figure 2.5 the phase distribution in the streamwise direction is
plotted. The phase is taken at the wall-normal distance above the plate where
the inner maximum amplitude appears. αr is then determined by calculating
the phase gradient (∂φ/∂x), and it is seen to be constant throughout the whole
investigated downstream distance. The symbols are experimental data, the
solid curve is the OS-solution, and the dashed line is the curve fit for the
determination of the gradient. This curve fit gives us a phase velocity of 0.34U∞
compared with the theoretical based on the Blasius profile of 0.36U∞.

In figure 2.6 the amplitude distribution profiles are plotted for F=59 at
five different downstream positions. The first x-position closest to the distur-
bance source, in fact only 50 mm from the source (here located at x=1850 mm
or at Re=1350), is not fully developed in the upper part of the profile when
compared to the OS-solution. However, from the second x-position the agree-
ment is excellent in this part. Further, in figure 2.6 the corresponding phase
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a) b)

Figure 2.7. Smoke visualization of Tollmien–Schlichting
wave breakdown. The flow is from left to right. b) is a blow
up of a section in a). U∞ = 7.5 m/s, F=168, uTS/U∞ = 0.8%,
and λx ≈ 2.9 cm.

distribution profiles are also plotted, and they clearly show the phase shift of
π radians which can be shown to appear where ∂v̂/∂y changes sign, i.e. at
the wall-normal amplitude (v̂) maxima. The experimental data are in good
agreement with the OS-solution (solid line).

2.1.1. Flow visualization of TS-wave breakdown

The non-linear breakdown of TS-waves have been mapped out during the last
decades and can today be considered known (cf. Herbert 1983; Kachanov 1994,
for reviews on the topic). When the amplitude of the TS-wave is large enough
(∼ 1% in urms of U∞) the wave becomes three-dimensional. Klebanoff et al.
(1962) observed a spanwise scale of the same order as the streamwise wavelength
which later became known as the K-type transition after Klebanoff but also fun-
damental since the frequency of the secondary spanwise periodic matched the
original two-dimensional TS-wave. In this scenario Λ-shaped vortices appear in
the non-linear stage that are aligned in both the streamwise and spanwise di-
rections. Another ”similar” breakdown was observed by Kachanov et al. (1977)
that differs in the secondary frequency which is half of the original TS-wave
frequency. This type is known as the N-type1 transition after Novosibirsk or
the subharmonic scenario, in where the Λ-shaped structures are arranged in a
staggered pattern. In figure 2.7 a smoke visualization is shown of a TS-wave
dominated transition scenario. The breakdown seams to occur localized in the
spanwise direction which is due to the nature of the two-dimensional wave gen-
erating device, namely a vibrating ribbon, that provides the wave with a higher
amplitude in the centre. In figure 2.7b) it is possible to discern that a K-type
transition scenario is present in the experiment, which is to be expected at this
high initial amplitude of the TS-wave (uTS), namely 0.8% of U∞.

1Note that this type of transition is sometimes referred to as H-type after Herbert (1983).
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2.2. Free stream turbulence scenario

It is well known that for the Blasius boundary layer free stream turbulence
(FST) induces disturbances into the boundary layer which give rise to stream-
wise oriented structures of low and high speed fluid (see e.g. Kendall 1985;
Westin 1997; Jacobs & Durbin 2001; Matsubara & Alfredsson 2001; Brandt &
Henningson 2002; Fransson & Alfredsson 2003a; Brandt 2003, for thorough in-
vestigations of such a flow). These structures grow in amplitude and establish
a spanwise size which is of the order of the boundary layer thickness far away
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Figure 2.8. Wall normal perturbation- and mean velocity
profiles for different Tu-levels at Re = 544 (based on δ1) or
Rex = 105, u∗ = u/U∞ and u∗
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4.0%.
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from the leading edge. When the streaks reach a certain amplitude they break
down to turbulence, probably through a secondary instability mechanism (see
e.g. Andersson et al. 2001). This type of boundary layer disturbance was orig-
inally called the breathing mode by Klebanoff (1971), since the wall-normal
disturbance profile resembles that which would result from a locally contin-
uous thickening and thinning of the boundary layer edge (see Taylor 1939).
However, this mode is nowadays recognized as the Klebanoff mode which was
proposed by Kendall (1985), and can be viewed as one scenario of by–pass
transition (Morkovin 1969). It is a relatively rapid process by–passing the
traditional TS-wave dominated transition scenario resulting in breakdown to
turbulence at subcritical Reynolds numbers when compared with the predicted
value by traditional theory. Nonlinear theories were tested (see e.g. Orszag
& Patera 1983) in order to find a theory that matched experimental results.
However, the nonlinear terms of the Navier–Stokes equations can be shown not
to be part of the growth mechanism (see e.g. Drazin & Reid 1981). A possible
mechanism governing this type of transition scenario is the transient growth,
i.e. an algebraic growth of the disturbance energy until viscosity becomes sig-
nificant which eventually causes an exponential decay of the energy.

Algebraic growth is a consequence of the non-normality of the governing
differential operator: as the normal modes are not orthogonal, constructive
and destructive interference may give rise to transients before the asymptotic
state described by modal theory sets in (Schmid & Henningson 2001). Butler
& Farrell (1992) pioneered the study of optimal perturbations (OP) in shear
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flows; their findings and those of later workers indicate that the initial con-
ditions which maximize perturbation kinetic energy are streamwise-oriented
vortices which produce streaks (variations in the streamwise perturbation ve-
locity). Ever since the transient growth and its linear physical mechanism
was described by Ellingsen & Palm (1975), and Landahl (1980) a number of
works has been done on the topic. Among the earlier ones are e.g. Hultgren &
Gustavsson (1981), Gustavsson (1991), Reddy & Henningson (1993), and Tre-
fethen et al. (1993). For more recent publications on the subject see e.g. Luchini
(2000), Reshotko (2001), and Andersson et al. (2001). A physical explanation
for this was advanced by Landahl (1980), who noted that such initial configura-
tions of perturbation velocity are ideally suited to ’lift-up’ low-speed fluid into
relatively faster flow and vice versa, exchanging momentum and generating a
streak.

In figure 2.8 streamwise disturbance and mean velocity wall normal dis-
tributions are plotted for different Tu-levels. In figure 2.8a) it is clear that
the presence of higher FST intensity causes a higher disturbance level inside
as well as outside the boundary layer, without affecting the mean velocity (cf.
figure 2.8c). It is both the Reynolds number and the Tu-level that sets the
state, i.e. whether the flow is in the sub-transitional, transitional, or in the
post-transitional state. At least up to the transitional state one can expect
a self similar disturbance profile through the boundary layer. Thereafter, the
disturbance peak moves towards the wall and the disturbance level spreads
out more in the entire boundary layer, this may be observed in figure 2.8b).
An interesting observation is that the level of the disturbance peak inside the
boundary layer increases linearly with Tu which is shown in figure 2.8d), where
solid lines are curve fits to the data (see caption for more information).

In figure 2.9a) the energy distribution versus the downstream distance
for the three different Tu-levels are shown. It is seen that the disturbance
(urms/U∞) reaches levels around 14% for Tu=4.0% before it starts to de-
crease, which is connected to the transitional nature of the boundary layer. It
should be observed that this decrease has nothing to do with the exponential
viscous decay mentioned earlier in connection with transient growth, which is
a purely linear mechanism. What is observed in figure 2.9a) is the algebraic
growth followed by transition. That the peak becomes smaller with decreasing
Tu is probably connected to the relation between turbulent scales in the free
stream (that are different for all three cases), the disturbance level, the streak
spacing, and the boundary layer thickness. Note, also that the energy seems to
asymptote to a constant level around E = 0.007 independent of the Tu-level
after reaching the maximum value. The intermittency function for the three
different cases in a) are shown in figure 2.9b). The maximum (in figure 2.9a) is
closely related to the point of γ=0.5, i.e. the point where the flow alternatively
consists of laminar portions and turbulent spots which explains the high urms

value. In a) it is seen that the higher the Tu the smaller the Rex for which
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the maximum occurs, and figure 2.9b) shows that the relative extent of the
transitional zone is larger for Tu=4.0% than the other two.

2.2.1. Flow visualization of free stream turbulence breakdown

The photograph in figure 2.10 shows the free stream turbulence induced tran-
sition scenario. The flow is from left to right and the white smoke regions have
been shown to correspond to low velocity streaks (see Alfredsson & Matsubara
2000). Secondary instabilities on the streaks triggers turbulent spots accord-
ing to a Dirac probability density function (cf. Dhawan & Narasimha 1957)
which causes a fully turbulent flow further downstream (see the right end in
the photograph). In figure 2.11 an image sequence from the primary instabil-
ity, the streaks, to a fully developed turbulent spot is shown. From studying
video recordings, taken in the MTL wind tunnel at KTH, of this transition
scenario one may conclude that the naturally occurring secondary instability
is of sinuous-type and acts on a low speed streak. This is clearly visualized in
the particular sequence shown in figure 2.11.

Figure 2.10. Smoke visualization of free stream turbulence
induced transition in a flat plate boundary layer. Flow direc-
tion is from left to right. Tu = 2.2%, U∞ = 6 m/s, and the
streamwise extent of the photograph is 220–700 mm. From Al-
fredsson & Matsubara (2000).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2.11. Smoke visualization of free stream turbulence
induced transition in a flat plate boundary layer. Sequence of
a typical breakdown. U∞ = 3 m/s and Tu = 2.2%. Note that
this is a natural scenario, i.e. there is no artificial triggering
on the streak.



CHAPTER 3

Boundary layer flow control

One area of significant recent interest in fluid dynamics is laminar flow control
(LFC). A possible method of LFC is to apply suction at the wall. A definition of
this control method is given in Joslin (1998), where it is pointed out that LFC is
a method to delay the laminar-turbulent transition and not to relaminarize the
flow. The energy cost is typically one order of magnitude higher in the latter
case, which makes the definition appropriate since the optimal performance
is not obtained (as one may believe) when the suction completely absorbs
the boundary layer. The more suction that is used the steeper the velocity
gradient of the boundary layer at the wall implying an increase in skin-friction.
Therefore, the balance between retaining the flow laminar and keeping low
energy consumption is actually the optimal performance.

The viscous drag accounts for 50% of the total drag of a commercial trans-
port aircraft, and since the difference between the turbulent and the laminar
skin-friction typically is one order of magnitude at the same Reynolds number
the interest in LFC (or hybrid laminar flow control HLFC) is motivated by the
reduced fuel consumption that may be achieved (see Saric 1985; Joslin 1998).

In connection to drag reduction experiments (i.e. LFC) suction through
spanwise slots, porous panels and discrete holes has been applied (see e.g. Pfen-
ninger & Groth 1961; Reynolds & Saric 1986; and MacManus & Eaton 2000 as
well as Roberts et al. 2001, respectively). A general review of various types of
surfaces and of the results achieved in wind tunnel tests is given by Gregory
(1961), where pros and cons for practical applications on aircraft are discussed.
The flow characteristics through laser drilled titanium sheets were investigated
by Poll et al. (1992b) and was shown to be laminar, incompressible and pipe
like. Poll et al. (1992a) conducted a cylinder experiment made of a similar
laser drilled titanium sheet. The effect of suction was found to have a powerful
effect upon cross-flow induced transition.

In an experimental and numerical study performed by MacManus & Eaton
(2000) the flow physics of boundary layer suction through discrete holes was
investigated. The aim was to use a realizable design and find a critical suction
criterion for transonic cruise conditions. They showed that the suction may
destabilize the flow by introduction of contra-rotating streamwise vortices but

16
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that for small enough perforations (d/δ1 < 0.6) transition is not provoked by
suction independent of suction velocity.

Roberts et al. (2001) found that two types of instability are possible when
non-uniformities of suction are present. The first one is connected to the clas-
sical TS-wave that is modified due to the non-uniformities and the second one
are streamwise vortices that are induced due to the non-uniformities alone.
The latter instability was triggered by a finite band of suction wave numbers
and the strength of this instability was shown to increase almost linearly with
the amplitude of the suction non-uniformities and flow Reynolds number.

The application of optimal control theory to laminar flow control has
sparked a renaissance in the field (Bewley & Liu 2001). An extensive amount
of work has been done on the subject of flow control in general and the in-
terested reader is addressed to Moin & Bewley (1994); Joslin et al. (1996);
Joslin (1998); Lumley & Blossey (1998); Balakumar & Hall (1999); Högberg
(2001); Lundell (2003), just to mention a few works on both experimental and
numerical control. Pralits et al. (2002); Pralits (2003) and Airiau et al. (2003)
have recently outlined methods in which modifications to the boundary layer
flow by spatially-varying steady suction create conditions which stabilize linear
disturbances.

The difficulties of sensing boundary layer disturbances in an aerospace
setting on the one hand, and the inherent complexity of a system capable
of delivering variable suction at an arbitrary position on a lifting surface on
the other, pose formidable implementation challenges with technology available
today. The simple case where the boundary layer is subject to uniform, constant
suction, as initially envisioned by the pioneers in the field, is far more likely
to find application in practice (see also Amoignon et al. 2003, in where shape
optimization is used in order to theoretically delay transition ).

3.1. Asymptotic suction boundary layer

When uniform wall-normal surface suction is applied over a large area the
well known asymptotic suction profile will be reached after some evolution
region. According to Schlichting (1979) it was Meridith and Griffith that first
derived the asymptotic suction profile, which is an exact solution of the Navier–
Stokes equations in the asymptotic limit of constant suction. Assuming that
the streamwise velocity varies only in y and that the wall-normal velocity is
constant the subsequent simplification of the x-momentum equation permits
its direct integration to,

U(y) = U∞
(
1− ey V0/ν

)
, (3.1)

where V0 is the normal velocity applied at the wall. Physical solutions are
associated only with the suction case V0 < 0 (see Schlichting 1979; White 1991,
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and their references for more details). Since the streamwise velocity is given
by an analytic expression (3.1) the characteristic boundary layer scales may be
calculated exactly and the result is shown below

δ1 = −
ν

V0
; δ2 = −

1
2
ν

V0
; (3.2)

δ0.99 =
ν

V0
log(0.01) = δ1 log(100) ;

uτ =
√
−V0U∞ ; # =

δ1√
Re

;

where uτ and # are the viscous velocity and length scales, respectively. Re
is the Reynolds number based on δ1 and is solely determined by U∞ and V0
according to

Re =
U∞δ1
ν

= −U∞
V0

. (3.3)

Note that the exponent in equation (3.1) is equivalent to −y/δ1 , and that the
shape factor of the asymptotic suction boundary layer becomes exactly 2.

In figure 3.1 experimentally measured velocity profiles are shown at dif-
ferent Re both in a Blasius boundary layer and in three asymptotic suction
boundary layers (see caption for symbols).

The measured profiles in figure 3.1 verifies the similarity profile feature that
both these boundary layers possess. Iglisch1 extended the asymptotic work by
Meridith and Griffith to the non-similar flow arising before the asymptotic
state establishes itself, and outlined a method for finding the velocity profile
corresponding to an arbitrary suction distribution. Later, Rheinboldt (1956)
developed this further to include an impermeable entry length followed by a
region of uniform suction through the surface, and the problem was solved thr-
ough series expansion. This impermeable entry length approach is considered
below.

If an impermeable area is considered from the leading edge to where the
suction starts the boundary layer will be allowed to grow and a Blasius velocity
profile will be developed for a zero pressure gradient flow. In the evolution
region the profile will then undergo a transformation from the Blasius state to
the asymptotic suction state. This spatial evolution can from a simple approach
be described through a non-dimensional evolution equation. The first step is
to introduce a stream function according to

1See Schlichting (1979) for reference.
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Figure 3.1. Velocity profiles for the Blasius and the asymp-
totic suction boundary layers at different Re. The Blasius
profiles with (+)- and (�)-symbols correspond to Re = 544
and 1333, respectively. The asymptotic suction profiles are
shown for Re = 250, 357, and 500 with the symbols (♦), (�),
and (©) respectively. The solid lines are the corresponding
theoretical Blasius- and asymptotic suction profiles, and the
dashed line shows the difference between the two profiles.

ψ =
√
νxU∞f(ξ, η) ,

ξ = x
−V0
U∞

√
U∞
νx

; η = y

√
U∞
νx

.

The streamwise and normal velocity components are recovered through

u(η) = U∞
∂f

∂η
and v(η) =

√
U∞ν

4x

(
η
∂f

∂η
− ξ

∂f

∂ξ
− f

)
,

respectively. When applied to the boundary layer equations we get the following
third order non-linear partial differential equation
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Figure 3.2. The displacement thickness evolution from the
evolution equation (3.4) vs the downstream distance to the
power of two. See text for comments.

∂3f

∂η3
+

1
2
f
∂2f

∂η2
+

1
2
ξ

(
∂f

∂ξ

∂2f

∂η2
− ∂f

∂η

∂2f

∂η∂ξ

)
= 0, (3.4)

with the corresponding boundary conditions

f = ξ (suction)
∂f
∂η

= 0 (no-slip)

}
at η = 0 and

∂f

∂η
→ 1 as η →∞ .

Along the impermeable entry length a Blasius boundary layer is assumed to
develop and is given as input to the evolution equation.

In figure 3.2 the displacement thickness (δ1) of the profiles in the evolution
region is plotted. The different curves (0, 1, 2, 3, and 4) can be seen as differ-
ent impermeable entry lengths shown with the dotted lines, i.e. they belong to
different values of the initial length (ξL). Independently of the impermeable en-
try length all curves asymptotes to unity, which corresponds to the asymptotic
suction condition (cf. expression 3.2 and note the scaling).

The skin–friction coefficient defined in expression 2.1 can in the asymptotic
limit be expressed as
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Figure 3.3. Skin–friction coefficient versus Rex. Solid lines
correspond to laminar and turbulent values of cf . Dash-dotted
and dashed lines correspond to the suction rates 0.01% and
0.1% of U∞, and the different curves belong to different im-
permeable entry lengths (see figure 3.2).

cf =
τw
q

=
2ν
U2∞

∂u

∂y

∣∣∣
y=0

=
2ν

U∞δ1
= 2Re−1 . (3.5)

Note that in the asymptotic limit cf is x independent and thus becomes
constant. Another interesting observation is that cf is viscosity independent.
As mentioned earlier the more suction that is applied (at a constant U∞) the
higher becomes the cf value, and for strong enough suction the skin–friction
actually becomes larger than the turbulent boundary layer. This is illustrated
in figure 3.3 where suction rates of 0.01% and 0.1% of the free stream velocity
have been considered and are plotted with dash-dotted and dashed lines, re-
spectively. The different curves belong to different impermeable entry lengths
and are the same as in figure 3.2.

A fuller velocity profile compared with the Blasius, such as a turbulent
profile or the exponentially asymptotic suction profile, carries more momentum
close to the wall and is therefore more resistant to flow separation. This feature
is of course preferable at large angles of attack of an aircraft wing in order to
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Figure 3.4. Experimental and theoretical results of integral
boundary layer parameters. No suction (unfilled-) and suction
(filled symbols). (�) δ̃1 and (◦) δ̃2 are the displacement- and
momentum thickness, respectively, normalized with 1

L
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(�) H12 is the shape factor. L = 360 mm.

avoid the wing from stalling and maintain a high lift force. The draw back
is the higher skin–friction that has to be balanced accordingly to meet the
requirements on the wing performance.

The experimental results of the integral boundary layer parameters show
excellent agreement with theoretical results (see figure 3.4). The dash-dotted
lines are from the Blasius solution and the solid lines originate from the evolu-
tion equation (3.4). L is the impermeable entry length.

3.1.1. Tollmien–Schlichting waves

Additional terms in the familiar Orr–Sommerfeld/Squire system (eqs. 2.2–2.3)
describing linear stability appear as a consequence of the normal velocity com-
ponent in the asymptotic suction boundary layer, from here on these new equa-
tions are denoted the modified OS- and S-equation. However, it has long been
known that the change in shape of the mean streamwise velocity profile is
the main reason for the altered stability characteristics of the flow (Drazin
& Reid 1981). That this change is considerable is reflected by a two order
of magnitude increase in critical Reynolds number (Hocking 1975; Fransson
& Alfredsson 2003a). In turn, this indicates that modal Tollmien–Schlichting
disturbances are significant in flows where the free stream velocity dominates
the suction velocity.
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Figure 3.5. Amplitude distribution profiles for different
downstream positions in an asymptotic suction boundary layer
for F=59 and Re = 347. Symbols are measured data, solid
line is the modified OS-solution and dotted line the OS-
solution.

One should be aware of that the cross flow does not have a stabilizing effect
in all flow configurations. Fransson & Alfredsson (2003b) showed that for the
case of channel flow with permeable walls and cross flow the situation becomes
more complicated and can give rise to both stabilization and destabilization
depending on the rate of cross flow. The critical Reynolds number is lowered
by an order of magnitude (Rec = 667.4) as compared to plane Poiseuille flow
at a cross flow velocity of 5.7% of the streamwise velocity.

In figure 3.5 experimental and theoretical amplitude distribution profiles
are compared at different downstream positions. Here, Re = 347 which im-
plies that the TS-wave will decay rapidly after its generation. The solid line
is the solution from the modified OS-equation and the dotted is the ordinary
OS-equation. Note that the last profile shown is only 350 mm from the distur-
bance source. Close to the disturbance source the experimental results show
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Figure 3.6. Phase distribution in the streamwise direction at
F=59 and Re = 347 in the asymptotic suction boundary layer.

quite good agreement with the modified OS-solution, whereas further down-
stream the disturbance is seen to be spread out towards the upper part of
the boundary layer and from x=2100 mm the measured data start to appear
somewhat scattered.

The phase velocity of the TS-wave with F=59 is determined in figure 3.6.
The solid line is the modified OS-solution and this solution almost corresponds
to a curve fit to the measured data. The dotted line is the ordinary OS-solution.
The experimental phase velocity is determined to be c = 0.48U∞, which is the
phase velocity predicted by the modified OS-solution.

In figure 3.7 the amplitude decay is shown together with theoretical re-
sults. The theoretical results overpredicts the stability of the TS-wave. The
experimental result gives a damping factor of αi = 0.0153 mm−1, when the
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Figure 3.7. Amplitude decay versus the downstream dis-
tance for F=59 and Re = 347.
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first six points are used for the curve fit, and the modified OS-solution predicts
αi = 0.0263 mm−1, i.e. a factor 1.72 higher.

3.1.2. Free stream turbulence

As already mentioned free stream turbulence gives rise to regions of high and
low velocity (streaky structures) and in a Blasius boundary layer the stream-
wise disturbance energy grows in linear proportion to the downstream dis-
tance. These streaky structures move slowly in the spanwise direction and if
the streamwise disturbance amplitude is measured (urms) it is seen to increase
with the downstream distance when no suction is applied. However, in the
suction case (for this typical suction rate 0.3% of U∞) this amplitude increase
is found to be eliminated and the urms-profiles more or less collapse on each
other independent of the downstream position with a fix free stream turbulence
intensity applied. This can be observed in figure 3.8 where the urms-profiles are
plotted for both cases, i.e. with and without suction, for the Tu = 1.4%. The
position above the plate, where the maximum urms-value appears, does hardly
change in y/δ1-units and is approximately 1.5, this corresponds to 1/2- and 1/3
of the boundary layer thickness without suction and with suction, respectively.
Similar results are found for other free stream turbulence intensities.
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Figure 3.8. urms-profiles for different downstream positions
from the leading edge with Tu = 1.4%. No suction (unfilled-)
and suction (filled markers). (�) Re = 889 mm; (©) Re = 994
mm and (�) Re = 1088 mm. Solid lines are curve fits to data.
Re = 347 in the suction case.
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Figure 3.9. The growth of the average disturbance energy
inside the boundary layer, defined as Eu = 1
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(where δ = δ0.99). a) Tu = 1.4 %, b) Tu = 2.2%, and c)
Tu = 4.0%.

In figure 3.9 the averaged disturbance energy (Eu) inside the boundary
layer is plotted versus the downstream distance from the leading edge. This
figure reflects the growth elimination observed in figure 3.8 in the suction case.
The figures show the well known linear growth of the disturbance energy with
the downstream distance for the no suction case and for all Tu-levels. In the
case with suction the energy growth ceases and a more or less constant level
for each grid is obtained. Note that a larger suction would make the energy
disturbance level decay whilst smaller suction rates would simply dampen the
growth Yoshioka, Fransson & Alfredsson (2003).

The spanwise scale of the streaks can be determined through two-point
correlation measurements of the streamwise velocity component, defined as

Ruu =
u(z)u(z +∆z)

u(z)2
, (3.6)
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Figure 3.10. Contour plots of the correlation coefficient in
the (y, z)-plane. a) Blasius boundary layer x = 1800 mm
(Re = 1333), and b) asymptotic suction boundary layer
x = 1800 mm (Re = 347). Tu = 1.4 %.

where ∆z is the distance between the two probes. It is well known that the posi-
tion where the streamwise correlation coefficient shows a distinct minimum can
be interpreted as half the dominating spanwise wavelength of the streaks (see
e.g. Westin 1997; Matsubara & Alfredsson 2001). From contour plots of Ruu

in the (y, z)-plane an overview of the structure inside the boundary layer is
achieved. In figure 3.10 such contour plots are shown for both the Blasius an
the asymptotic suction boundary layer at Tu = 1.4%. These show that the
spanwise scale of the streaky structures is only slightly decreased by suction,
despite a twofold reduction in boundary layer thickness. This indicates that
disturbances inside the boundary layer is strongly dependent of the scale of the
FST.

So far only the streamwise velocity fluctuation component has been con-
sidered and it has been shown to be strongly damped when suction is applied
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Figure 3.11. X-probe versus LDV measurements in bound-
ary layers influenced by free stream turbulence. a) HW-
measurements, (�) no suction and (�) with suction. b) LDV-
measurements, (◦) no suction and (•) with suction. Measure-
ments with no suction applied are performed at x = 1800 mm
(δ0.99 = 11.6 mm) and when suction applied at x = 2400 mm
(δ0.99 = 5 mm).

compared with the no suction case. In figure 3.11 both Hot-Wire (HW) data
(X-probe) in a) and Laser-Doppler-Velocimetry (LDV) data in b) of the wall-
normal velocity fluctuation are shown. The wall-normal distance has been
chosen to be dimensional for direct comparison between the no suction and
suction case. The peculiar peak observed in the HW-data inside the boundary
layer is a measurement error due to unsteady velocity gradients when using
X-probes (see Fransson & Westin 2002, for details). The difference in vrms

measured by the X-probe is a direct consequence of a much smaller ampli-
tude of the streaks in the suction case. Aronson, Johansson & Löfdahl (1997)
showed that the wall-normal velocity component is damped over a region ex-
tending roughly one macroscale out from the wall in a shear free boundary, i.e.
it is actually the presence of the wall that dampens vrms and not the shear
layer that is created due to the wall (see also Hunt & Graham 1978). The
shear free boundary was created by having a moving wall at the same speed as
the free stream. Figure 3.11 show that in the no suction and the suction cases
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Figure 3.12. Streamwise perturbation velocity profiles at
R = 347. Lines are OP response (i.e. disturbance at tγ : solid
line for β = 0.33, the measured streak separation; dash-dotted
for β = 0.53, the maximum global optimal), symbols represent
experimental data (urms) at different downstream positions,
x = 1m (©), 1.6 m (�), 2m (�) for a flow with Tu = 1.4%.

the vrms-profiles are similar and decrease monotonously from the free stream
towards the wall. This indicates that the suction does not strongly influence
the normal velocity fluctuations close to the wall.

As shown by Fransson & Westin (2002) X-probe measurements to get the
wall-normal fluctuation in streaky boundary layers is not an alternative (see
also Talamelli et al. 2000, for further complications). LDV give accurate data
but it is difficult to get high concentration of smoke close to the wall which
implies that the sampling time increases enormously when approaching the
wall. Due to difficulties in measuring the wall-normal fluctuation it has un-
fortunately been passed over. A large eddy simulation performed by Yang &
Voke (1993) show that it is the pressure- and wall normal velocity fluctuations
that are most efficient in exciting perturbations in the boundary layer, whereas
streamwise fluctuations are rather harmless. This means that a high correla-
tion between the disturbances (and their scales) inside the boundary layer and
the wall-normal fluctuation in the free stream is to be expected, and should be
investigated in more detail.
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The asymptotic suction boundary layer is one case in which the algebraic
growth mechanism presents the only viable linear route to transition at Rey-
nolds numbers of practical interest. In this context it is reasonable to compare
the optimal response state to disturbances measured inside the boundary layer
(cf. §6 of Luchini (2000) for more details). Figure 3.12 compares perturbation
velocity profiles of two different optimal perturbations (OP) with measurements
at three different streamwise stations when Tu = 1.4%. The agreement is good
between the theoretical predictions, corresponding to the maximum global op-
timal for this flow and the global optimal at the measured streak spacing, and
measurements carried out at three x-stations. As might be expected the con-
cordance is slightly better for the optimal whose spanwise periodicity matches
the experimental conditions (for further details and results see Fransson &
Corbett 2003).

Fransson & Alfredsson (2003a) report a decrease of the spanwise scale in-
side the boundary layer with increasing Tu for a Blasius flow, and good agree-
ment of the spanwise scale with spatially predicted OP-scales by Andersson
et al. (1999) and Luchini (2000). In Fransson & Corbett (2003) this hypothesis
is strengthened since it is shown that for high enough Tu (if directly connected
to the streak spacing) the boundary layer preferentially amplifies disturbances
whose scales are close to that of the optimal disturbance. However, it should be
remembered that the free stream scales are important and that the FST level
does probably not set the spanwise scale inside the boundary layer by itself.

3.2. Steady streaks and its effect upon stability

The stability properties of the streaky three-dimensional (3D) boundary layers
may strongly differ from those of the two-dimensional (2D) Blasius boundary
layer and depend on the streak amplitude and shape.

For streaks of sufficiently large amplitude the inflection points, appearing
in the 3D basic flow, are able to support high frequency secondary instabilities
of inviscid nature. Andersson et al. (2001) analyzed the linear inviscid stability
of a family of streaky boundary layers parameterized by the amplitude of the
linearly-optimal vortices, which are forced at the leading edge of the flat plate
. They found that the inflectional instability sets in when the maximum streak
amplitude exceeds a critical value of 26% of the free stream velocity.

The viscous stability of the same family of basic flows considered by Ander-
sson et al. (2001) has been recently explored in the case of moderate amplitudes
of the streaks (< 26%U∞), which are therefore stable to inviscid instability. It
was found (Cossu & Brandt 2002; Brandt et al. 2003) that, in that case, the
streaks have a stabilizing effect on the viscous Tollmien-Schlichting waves. It
was therefore suggested to artificially force such moderate amplitude, steady
streaks in the 2D Blasius boundary layer in order to delay the onset of the
viscous TS instability, and, hopefully the onset of turbulence, to larger values
of the Reynolds number.
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Preliminary wind tunnel tests have been performed in order to verify the
stabilization effect of TS-waves, which show promising results. However, it is
important to define a proper measure of the energy growth/decay in order to
”prove” the stabilization effect, and to get rid of the higher harmonics in the
initial generation process of the steady streaks, which otherwise will undesirely
influence the stability and comparison with theory will be difficult.

White (2002) shows by Fourier decomposition of the velocity field into
different modes that roughness elements induce harmonics in a wide range of
spanwise wavenumbers. Furthermore, comparison with optimal perturbation
theory is done and turns out to disagree, implying that the streaks generated
by White (2002) were not the optimal. The question whether it is possible to
generate an optimal streak or not still remains unanswered. However, the gen-
erated streaks in Fransson et al. (2003a) were shown to agree with suboptimal
theory. Here, both the optimized initial perturbation’s position (corresponding
to the position of the experimental roughness elements) as well as the per-
turbation’s location in the wall-normal direction was considered. The former
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Figure 3.13. Comparison between the experimental results
and suboptimal perturbation theory. a) Wall-normal maxi-
mum of the streak amplitude, and its corresponding position
above the wall in b). For further information consult Paper
6.
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consideration was investigated by Levin & Henningson (2003), but can not
alone explain the suboptimal streaks observed in experiments. The latter con-
sideration was implemented by stretching or compressing the the wall-normal
velocity profile of the optimal upstream perturbation. The result is shown
in figure 3.13 where the stretching/compressing parameter has been tuned to
match the experimental data, and it turns out that the optimal perturbation
has to be compressed (i.e. the maxima in the initial perturbation is found closer
to the wall) in order to agree with the amplitude evolution of the experimental
streaks.

3.2.1. Generation mechanisms

A comparison of the present results with similar experimental studies in litera-
ture shows that two distinct flow configurations can be induced by the presence
of roughness elements; they are both characterised by the formation of stream-
wise elongated velocity perturbations and differ in the relative position of the
high- and low speed streaks with respect to the roughness elements. In the
experiments by Kendall (1990), Gaster et al. (1994) and related simulations
by Joslin & Grosch (1995), White (2002), and Asai et al. (2002), a region of
defect velocity is formed straight behind the element. This is most likely due
to the presence of the wake, which persists downstream forming the low speed
streak. Conversely, in the present experiment, similarly to what was observed
by Bakchinov et al. (1995), a high-speed region is induced behind the roughness
element. Two different generation mechanisms are therefore dominating and in
Paper 6 of the present thesis we attempt an explanation for this behaviour by
considering the perturbation induced by a roughness element in a wall-bounded
shear flow (see Acarlar & Smith 1987). For other streak generation techniques
see Fransson et al. (2003a), Paper 6.



CHAPTER 4

Porous cylinder and flow control

A flow configuration that has attracted researchers and scientists over many
years is the flow past bluff bodies. This configuration offers the interaction
of three shear layers to be studied (cf. e.g. Williamson 1996), namely the
boundary layer, the separating free shear layer, and the wake flow. From a
fundamental research point of view it is a very complex flow geometry that can
advance many flow phenomena in different Reynolds number ranges, such as
boundary layer separation, periodic vortex shedding, wake transition, bound-
ary layer transition, flow reattachment, separation bubbles etc. These flow
phenomena are of direct relevance to many practical and industrial applica-
tions, where the vortex shedding in particular plays an important role, such as
in telecom masts, aircraft and missile aerodynamics, civil and wind engineering,
marine structures, and underwater acoustics. The periodic vortex shedding can
lead to devastating structural vibrations that finally lead to material fatigue
and structural failure in this context denoted vortex induced vibrations.

The vortex shedding instability is a self excited oscillation that will set in
even if all sources of noise are removed (see Gillies 1998), and can be shown
to be attributed to the local stability property of the two-dimensional mean
velocity wake profile behind a bluff body. Monkewitz (1988) identified a se-
quence of stability transitions by using a family of wake profiles, that resulted
in ReC < ReA < ReK , where ReC (≈ 5), ReA (≈ 25), and ReK (≈ 47) are crit-
ical Reynolds numbers that mark the onset of convective, absolute, and von
Kármán shedding instability, respectively. This sequence was in fully agree-
ment with the qualitative model predictions by Chomaz et al. (1988) the same
year. The onset of the global von Kármán shedding mode occurs via a so-called
supercritical Hopfh bifurcation (see e.g. Provansal et al. 1987). For a review on
the stability properties of open flows in general the interested reader is referred
to Huerre & Monkewitz (1990), and for reviews on cylinder flows in particular
see e.g. Williamson (1996); Buresti (1998); Norberg (2003); Zdravkovich (1997,
2003).

33
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a) b)

c)

Figure 4.1. Saguaro cactus. a) Two fairly young Saguaros
(approximately 85 years of age). b) A toppled Saguaro. c)
Close-up of the Saguaro’s spines and cavities.

4.1. Biological example of flow control

A good example of geometrical flow control, by thousands of years of evolution,
is the Saguaro cactus (see figure1 4.1a). The Saguaro is the largest cactus in
USA and reaches commonly heights of 12 m with a diameter of 0.5 m. However,
due to their heights the Saguaro is vulnerable to high speed winds (storms)
which sometimes make them topple but not necessarily brake (cf. figure 4.1b).
The Saguaro can be viewed as a giant cylindrical structure and as mentioned
above the wake will become unstable and a von Kármán eddy street will develop
in the wake which will cause huge side forces on the cactus. Years and years
of evolution has provided the Saguaro with a very complex outer geometry
wich is most probably the optimal by means of minimizing induced side forces.
This geometry has taken the form of longitudinal V-shaped cavities and spines
(see figure 4.1c). For references on the topic the interested reader is referred
to Talley & Mungal (2002).

4.2. Vortex shedding control

The ability to control the wake and the vortex shedding of a bluff body can
for instance be used to reduce drag, increase heat transfer and mixing, and

1The images were downloaded from http://helios.bto.ed.ac.uk/bto/desbiome/saguaro.htm
and http://www.nps.gov/sagu/Saguaros/saguaro.htm
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enhance combustion. Over the second half of the last century there has been a
number of successful attempts to control the shedding wake behind bluff bodies
with the practical goal of reducing the pressure drag on the body.

4.2.1. Rectangular-based forebody

A control approach that has shown to be effective in reducing the average
strength of the vortices and the shedding frequency is base bleed (cf. e.g.
Wood 1967; Bearman 1967). For successively increasing bleeding rates the
regular shedding of vortices ceases, intermittently at first, and then completely.
Hannemann & Oertel (1989) performed numerical simulations on the effect of
uniform blowing from the base, and reported a critical value2 (cq = 0.214) for
which vortex shedding was suppressed. Uniform suction from the base was
considered numerically by Hammond & Redekopp (1997) and they report a
continuous decline of the wake shedding frequency with a gradual increase of
suction until an abrupt suppression occurs at a sufficiently high suction rate.

4.2.2. Cylinder

A simple passive control method is to place a thin splitter plate aligned in
the streamwise direction on the centreline of the near wake (see Roshko 1955,
1961). For a specific length of the splitter plate the sinuous von Kármán mode
is altered for a varicouse mode that causes a pair of twin–vortices to be formed,
one on each side of the plate. More recently, Grinstein et al. (1991) carried out
numerical simulations on the effect of an interference plate in the wake of a
thick plate and found that the base pressure coefficient could decrease by a
factor of 3 depending on the length of the interference plate and its separation
from the base.

Experiments on circular cylinders with forced rotary oscillations have shown
to give a drag reduction of up to 80% at Re = 15000 for certain ranges of fre-
quency and amplitude of the sinusoidal rotary oscillation (see Tokumaru &
Dimotakis 1991). Shiels & Leonard (2001) performed numerical simulations of
this control approach, where the above experimental foundings were verified,
and showed indications that this kind of control could be even more efficient
at higher Re.

Control approaches using feedback control have also been attempted. Rous-
sopoulos (1993) carried out experiments in a wind tunnel with acoustic waves
from a loudspeaker as actuation as well as by vibrating the cylinder. In a nu-
merical study by Park et al. (1994) blowing and suction through slots on the
rear part of the cylinder were utilized as actuation. However, this investigation

2cq = m∗/U∞D∗, were m∗ is the mass flow rate divided by density and for unit depth which

is blown into the wake at the base of the plate, U∞ is the free stream velocity, and D∗ is the
thickness of the plate.
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were performed at relatively low Reynolds numbers (< 300) and so far it does
not exist any results on higher Re-flows.

Glezer & Amitay (2002) used synthetic jets, which provide a localized
addition of momentum normal to the surface, on selected positions over the
cylinder in order to delay separation in both laminar and turbulent boundary
layers. They argued that this delay was caused by increased mixing within
the boundary layer. In addition, the interaction between the jet and the cross
flow has a profound effect both on the separated shear layer and on the wake;
the magnitude of the Reynolds stresses is reduced indicating that the delay in
separation is not merely the result of a transition to turbulence in the boundary
layer.

Experiments with suction or blowing through the entire surface of the
cylinder in order to control the vortex shedding have been considered by e.g.
Pankhurst & Thwaites (1950); Hurley & Thwaites (1951); Mathelin et al.
(2001a,b); Fransson et al. (2003b). Pankhurst & Thwaites (1950) made com-
bined experiments with continuous suction through the surface and a flap in
form of a short splitter plate at different angles. They showed through surface
pressure and wake velocity measurements that with the flap directed in the
streamwise direction and for sufficient suction3 (Cq

√
R � 10) the separation is

entirely prevented and a remarkable close approximation to the potential flow
solution is achieved. Further, Hurley & Thwaites (1951) performed boundary
layer measurements on the same porous cylinder and found in general good
agreement with laminar boundary layer theory. However, no time resolved
measurements to determine the vortex shedding frequency were reported.

The von Kármán frequency is Reynolds number dependent, whilst the di-
mensionless frequency known as the Strouhal number is constant (≈ 0.2) in
the range 102 � Re � 105. Mathelin et al. (2001a,b) considered the case
of continuous blowing through the entire cylinder surface. Among the effects
observed are the wider wake and a decrease of the Strouhal number with in-
creasing blowing. They report an analytical relation of an equivalent Reynolds
number of the canonical case which produces the same flow characteristics in
terms of vortex shedding instability as the case with blowing. The decrease of
the Strouhal number with blowing result was experimentally verified by Frans-
son et al. (2003b), who also considered the effect of continuous suction which
turns out to have the contrary effect on the Strouhal number. Note that uni-
form suction from the base of a rectangular-based forebody, interestingly, gives
the opposite behaviour (cf. Hammond & Redekopp 1997). In Fransson et al.
(2003b) the changes in the flow due to blowing or suction was analyzed in
terms of mean and fluctuating velocity profiles in the wake through hot-wire

3Here Cq is a suction coefficient defined as the suction velocity per unit area divided by the

free stream velocity.
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anemometry, pressure distributions on the cylinder, and drag and vortex shed-
ding measurements. Furthermore, smoke visualizations of the flow field in the
near wake of the cylinder for different blowing or suction rates were reported.
Image averaging enabled the retrieval of quantitative information, such as the
vortex formation length, which showed that the vortex formation length is de-
creased by 75% and increased by 150% for 5% of suction and blowing of the
free stream velocity, respectively.

4.3. The effect of applying continuous suction or blowing

In the following section some results of applying continuous suction or blowing
through the cylinder surface will be shown briefly. The amount of suction or
blowing applied through the cylinder surface is characterized by the parameter
Γ. This parameter is simply defined as the velocity through the cylinder surface
Vsurf. (being negative for suction and positive for blowing) in percentage of of
the free stream velocity U∞, i.e. Γ = 100×Vsurf./U∞. Flow visualizations show
a very complex flow around the cylinder at Reyndols numbers of the order of
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Figure 4.2. Instantaneous flow visualization images in the
near wake of a porous cylinder subject to continuous suction
or blowing for R = 3300.



38 4. POROUS CYLINDER AND FLOW CONTROL

0 20 40 60 80 100 120 140 160 180
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

U    =  25  m/s

Cp

No FST
FST
FST with Suction
FST with Blowing

(1 - 4 sin  (φ))2

φ

a) b)

0 20 40 60 80 100 120 140 160 180

-2

-1.5

-1

-0.5

0

0.5

1

U    =  2.5  m/s

φ

Cp

Γ = -2.6
Γ = -1.4
Normal
Γ = 1.4
Γ = 2.6

(1 - 4 sin  (φ))2

IP

∞ ∞

Figure 4.3. The pressure distribution around the cylinder
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ing/suction with a laminar oncoming flow (U = 2.5 m/s,
R∗ = 8300, Tu = 0.5%). b) shows the effect of free stream tur-
bulence generated by a turbulence generating grid, the blow-
ing/suction is Γ = ±0.4 (U = 25 m/s, R = 10×R∗, Tu = 3%).
Dash-dotted line is the potential flow solution.

104, see figure 4.2. These images clearly show the effect of applying suction
and blowing; with suction the wake shrinks and with blowing it enlarges.

In figure 4.3a) the effect of different suction and blowing rates on the Cp-
distribution is shown and compared with the potential flow solution (dash-
dotted line). There are three major remarks that can be made; firstly, one can
observe how Cp,min is reduced down to a value close to −2 for Γ = −2.6 and
tends to −1 for Γ = +2.6; secondly for suction the separation point (φs) moves
towards larger angles (φs ≈ 105o for Γ = −2.6), and when blowing is applied,
the flow is seen to separate at lower angles; thirdly the base pressure coefficient
(Cp,B) is increased for the case of suction producing a significant increase in
the adverse pressure recovery (Cp,B−Cp,min), whilst for the case of sufficiently
large blowing rates, the recovery region is eliminated.

The inflection point in region IP on the Cp-curve, marked with a dashed
ellipse in figure 4.3a), is often used to estimate the location of the separation
point and this is the criterion employed in the preceding paragraph. Suction
makes the boundary layer profile fuller and hence more resistant to separation,
in analogy to high Reynolds number flow. At Re ∼ 105 transition in the
boundary layer occurs (the exact Re-value depends on the flow quality and
the surface roughness) and the separation point moves from the front part of
the cylinder to the rear part, due to the turbulent boundary layer that can
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Figure 4.4. Shows the effect of the drag coefficient (CD)
when blowing or suction is applied. CD is here estimated by
calculating the momentum loss in the far wake.

make the flow adhere for a longer distance to the surface. In figure 4.3b) the
free stream velocity is increased ten times and the Cp-distribution is compared
with results when a turbulence intensity (Tu = urms/U∞) of 3% is present
(causing transition in the boundary layer at subcritical Reynolds numbers);
this was done by installing a turbulence generating grid at the inlet of the test-
section. It is clearly seen, by comparing the (◦)-symbols in figure 4.3a) with the
(∗)-symbols in b), that suction and high levels of free stream turbulence have
the same impact on the Cp-distribution. Furthermore, in b), one can observe
how a small blowing/suction rate (Γ = ±0.4) effects the location of Cp,min

and consequently the separation point, but not the base pressure coefficient.
In figure 4.4 the drag coefficient (CD) is plotted versus different blowing and
suction rates. The shape of the drag distribution vs Γ may be compared with
that obtained for different Reynolds numbers in the case of a solid cylinder,
see e.g. Schlichting (1979) (page 17 figure 1.4.) with experimental data from
Wieselsberger.

The drop in CD for Γ ≈ −2.5 is related to the shift of the separation point
as described previously in connection with figure 4.3, which is also present for
high Reynolds numbers (Re ∼ 105) due to the laminar-turbulent boundary
layer transition. Both the turbulent profile and the fuller laminar profile due
to suction are more resistent to separation which is the actual cause for the
shift. For further results the intereseted reader is referred to Fransson et al.
(2003b) and Fransson (2003).



CHAPTER 5

Experimental techniques and set-ups

In this thesis experiments have been performed in three different wind-tunnels,
in where eight different experimental configurations or techniques have been
used. This chapter will provide a short summary for the interested reader of
the tunnels, experimental set-ups and experimental techniques that have been
used.

5.1. Wind-tunnels

All three wind-tunnels are low-speed tunnels of closed loop circuit type. The
MTL tunnel1 is specially designed for transition and turbulence research studies
and is located at KTH Mechanics, Stockholm. The test section is 7 m long, 0.8
m high and 1.2 m wide, and the maximum speed is 70 m/s. The background
disturbance level is considered low with a streamwise turbulence intensity lower
than 0.025% of the free stream velocity and with both the cross flow turbulence
intensities lower than 0.035% at U∞ = 25 m/s. The tunnel is equipped with
a heat exchanger and the desired temperature is easily set by the user on the
control panel of the tunnel. At 25 m/s the temperature and pressure variations
over the cross section area are less than ±0.05 ◦C and ±0.06%, respectively.
For further details see Lindgren (2002).

The BL wind tunnel2 is located at KTH Mechanics, Stockholm, and the
test section has a cross sectional area of 0.5 × 0.75 m2, and a length of 4.2
m. The maximum speed is 48 m/s. The flow quality in this tunnel is also
considered good with a turbulence intensity (of all three components) of less
than 0.04% of the free stream velocity. The tunnel was successfully designed
with expanding corners (larger outlet than inlet cross section area) in order to
reduce the total wind-tunnel circuit length with only a negligible increase of
the total pressure loss. The interested reader is referred to Lindgren (2002).

The S4 wind-tunnel is located at IMFT in Toulouse and is equipped with
a three-dimensional traversing mechanism and allows automatized computer
controlled measuring and traversing in one of the cross sectional directions
with an accuracy of 1/80 mm. The dimension of the cross sectional area of the

1Minimum Turbulence Level or Mårten Theodore Landahl named after its late initiator.
2Boundary Layer or Björn Lindgren named after its designer.
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test section is 0.7×0.6 m2 and the length is 1.8 m. The background streamwise
disturbance level amounts to 0.1% at a free stream velocity of 25 m/s.

5.2. Experimental set-ups

The asymptotic suction boundary layer has been created over a porous flat
plate in the MTL wind-tunnel, and this plate has been used for paper 1 & 4.
For this set-up a removable asymmetric leading edge was specially designed
and built (see paper 10). The plate is of sandwich-construction type, and in
the front of the plate the removable leading edge is mounted and in the back
there is a possibility to extend the plate by additional plates of aluminium.
The plate is constructed on a base plate of aluminium with a frame, and is
designed having two 250 mm long plenum chambers starting 360 mm from the
leading edge followed by a 1750 mm long plenum chamber. The subdivision
into three chambers is for future work in where the suction rate then is allowed
to change with the downstream distance. Inside the plenum chamber spacing
elements made of hollowed T-profiles are glued, with a spanwise separation of
50 mm, in order to support the porous plates and avoid bending the plates
when suction is applied. On these T-profiles three porous plates with the total
dimension 2250×1000×3.2 mm3 (length, width, thickness) were mounted into
the frame plate. See Fransson (2001) and paper 1 for details and schematics of
the experimental set-up. The disturbance generating device based on blowing
and suction through a slot in the plate has been used previously and was
designed by Elofsson (1998) in where the interested reader will find all details.

For paper 5 an active turbulence generating grid was designed and built
to fit the MTL wind-tunnel. The grid is active in the sense that it ejects
secondary fluid jets into the fluid upstream, i.e. counterflow injection. By
regulating the injection rate the free stream turbulence intensity can be changed
without changing the set-up in the test section and with a small change of the
characteristic turbulence scales. This grid has been used successfully in paper
1 & 4 as well. Consult Fransson (2001) appendix B and paper 5 for details and
schematics of the active turbulence generating grid.

In paper 7 a porous cylinder with four inner chambers and connection pipes
for tube connections to a high/low pressure source, and pressure holes on the
surface, was designed and built. This cylinder was designed in order to fit both
the S4 and the BL wind-tunnel. The experimental set-ups are described in
paper 7 & 8.

Steady streaks may be generated by different means. One way of doing this
is outlined in paper 6 where the method of roughness elements have been ap-
plied. The elements were made at KTH Mechanics and are standing cylinders
(cylinder axis perpendicular to the plate) glued to the plate with a diameter
and height of 2 mm and 777 µm, respectively. The plate used in this investi-
gation is named the ”Laminar plate” and has been used for several transition
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experiments over the past years in the MTL wind-tunnel. See paper 6 for
further details of the experimental set-up.

5.3. Experimental techniques

5.3.1. Velocity measurements

Hot-Wire Anemometry (HWA) is an old technique from the beginning of last
century and is based on the heat convection from an infinitely long cylinder.
This technique permits high time resolved data and is even today the most
attractive technique for transition and turbulence measurements. A drawback
is its inability to be applied in back flow regions, such as separation bubbles
and near wake flows. However, there exist HWA based techniques – or – tricks
that are developed for these kinds of flow measurements, such as pulsed hot-
wires, flying probes, and multi-wire probes (see e.g. Bruun 1995; Häggmark
et al. 2000; Häggmark 2000). Another complication with this method is the
need of calibration. Here, the single wire probe calibration was done against
a Prandtl tube using a modified King’s law (cf. Johansson & Alfredsson 1982)
taking into account the natural convection which becomes significant at low
velocities. For the X-probe an angle calibration was carried out and two fifth-
order polynomials were fitted to the calibration data (cf. eg. Österlund 1999).
In this thesis close to all hot-wire measurements were carried out with an
AN–1003 anemometer apparatus. The hot-wire probes both single wire- and
X-probes were manufactured by the author at KTH Mechanics, except for the
measurements carried out at IMFT, Toulouse, where a commercial single wire
Dantec probe was used.

The Laser Doppler Velocimetry (LDV) is based on the detection of the
doppler frequency shift that appears from scattered light from particles that
follow the stream. The frequency shift is directly proportional to the velocity
and the proportionality constant is solely determined by geometry and the wave
length of the scattered light, which makes this device easy to use since it does
not need any calibration. Other advantages are for instance the insensitivity to
the temperature and the compound of the fluid as well as it is a nonintrusive
technique in contrary to HWA. Drawbacks with this technique is for instance
its relatively big measurement volume and the need of transparent fluids. Fur-
thermore, the fluid has to be seeded with particles correctly, since the actual
measured velocity is not the fluid’s – it is the particles’. The LDV-system used
in paper 9 is an integrated one dimensional laser-optics unit, including a 10
mW He-Ne laser of wavelength 632.8 nm. A beam expander was mounted to
the lens to reduce the measurement volume, which can be approximated as
an ellipsoid with axes lengths 0.14 mm and 2.4 mm. See paper 9 for further
details.

Particle Image Velocimetry (PIV) is a relatively new technique which allows
capturing a whole field of instantaneous velocities. This technique is based
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on the simple equation speed equals distance over time. With a laser sheet
illuminating the seeded flow a camera is used to capture two fast images with a
known time interval. The images are decomposed into interrogation areas that
are correlated to produce an average particle displacement vector, from where
the velocity and direction is achieved. A drawback is the temporal resolution,
however, today there exist high speed PIV-systems that allows sampling rates
of around 1 kHz. The PIV-system used consists of a Spectra Physics 400 mJ
double pulsed Nd:Yag laser operating at 15 Hz as a light source and the camera
is a double-frame Kodak ES1.0 8-bit CCD camera with 1018× 1008 pixels (cf.
Angele 2003, for use of this system in the MTL and in the BL wind-tunnels).
See paper 8 for a schematic of the experimental set-up.

5.3.2. Flow visualization technique

Many fluids are of transparent media, i.e. their motion remains invisible, why
flow visualization is such an important tool in fluid mechanics research. An
image says more than thousand words and a movie says more than thousand
images is a qualified truth, but the fact is that insights into any flow phenom-
enon will be improved if this process may be observed visually. In this thesis a
flow visualization technique has been developed and applied on the flow around
a porous circular cylinder in the BL wind-tunnel. The technique is reported
in paper 7. In figure 5.1 the flow visualization setup is shown. A horizontal
smoke sheet was created by injecting smoke through a slot in a wing-profile,
which was located over the whole spanwise distance in the stagnation chamber
of the windtunnel. The profile has two tubing inlets, one on each side close to
the walls. The smoke was generated by heating a glycol based liquid with a
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disco smoke generator, JEM ZR20 Mk II, and forced by a small fan through
the tubing into the profile enabling a steady leakage of smoke through the slot.

The light source was a continuous Ar–ion laser, LEXEL 95–4, which gave
the high light intensity needed for the short camera shutter times. The laser
beam (1.5 W) was aligned through a cylinder lens creating a light sheet inter-
secting with the smoke sheet from the side (perpendicular to the flow field and
the test section). The collection of flow visualization images was taken with a
digital video camera, SONY TRV900 576× 720 pixels, with a shutter time of
2 ms and with a rate of 20 images per second.



CHAPTER 6

Conclusions

In this chapter the most important conclusions from the different investigations
are summarized. For further results the reader is referred to the separate papers
in Part II of the present thesis.

Asymptotic suction boundary layer
• Base flow. The mean flow development from the leading edge of the
plate is shown to be in good agreement with a theoretical boundary layer
analysis and when the asymptotic suction region is reached there is an
excellent agreement between the theoretical and experimental boundary
layer profiles.

• Tollmien–Schlichting waves. The correspondence, of the streamwise am-
plitude profiles and the phase velocity is good, between linear spatial
stability analysis and experimental results. However, the decay factor
predicted by theory is slightly overestimated compared to the experi-
mental results.

• Optimal perturbation. The spanwise wavenumber of the optimal per-
turbation in the asymptotic suction boundary layer is β = 0.53, when
normalized with the displacement thickness.

Free stream turbulence induced transition
• In the initially laminar, but disturbed region, it has been found that the
disturbance energy grows linearly as Tu2Rex.

• The transitional Reynolds number was found to vary as Tu−2.
• It was found that the length of the transitional zone has a minimum
value and it increases linearly with Retr. This result puts earlier at-
tempts to model the length of the transitional zone into doubt.

• The relative length of the transitional zone increases with increasing Tu.
• The intermittency function is found to have a relatively well-defined
distribution, valid for all Tu.

• The spanwise scale of the streaks decreases with increasing level of free
stream turbulence and approaches the scale given by optimal perturba-
tion theory.

• The spanwise scale of the streaks is maintained when suction is applied
compared with the no suction case, despite the fact that the boundary
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layer thickness can decrease substantially depending on the suction rate.
The streaks are compressed but not splitted, indicating the importance
of the receptivity process.

• The disturbance energy growth of the streaks are inhibited or even be-
come negative in the asymptotic suction boundary layer, it may be
possible that the streaks initiated at the leading edge become mainly
passive disturbances which are convected downstream by the flow.

• The optimal perturbation velocity profile agrees well with experimen-
tally measured disturbance profiles in the asymptotic suction boundary
layer.

Porous cylinder with continuous suction/blowing
• Strong enough suction moves the separation line to the rear part of the
cylinder in a similar way as it does when the cylinder boundary layer
becomes turbulent. This results in a narrower wake.

• When blowing is applied the separation point moves forward on the
cylinder and the drag is shown to increase linearly with increasing mag-
nitude of blowing. Correspondingly this is shown to result in a widening
of the wake.

• The turbulence on the wake centreline decreases throughout the whole
wake (at least up to x/D = 20) if suction is applied on the cylinder,
whereas there is hardly any effect from blowing beyond x/D = 5.

• The Strouhal number increases strongly with suction (up to 50% for a
suction rate of 2.5% of the free stream velocity), whereas blowing has
the opposite effect (decrease of around 25% for a blowing rate of 5% of
the free stream velocity).

• It has been shown that it is possible to find a relation between an ef-
fective Reynolds number and the blowing/suction rate. The relation
proposed was verified in the Reynolds number range Re ∼ 102 − 106.

• The position of maximum back-flow behind the cylinder and the po-
sition where the two stationary vortices (appearing in the mean field)
confluence, i.e. the stagnation point in the flow field, have been shown
to be related by a factor of 1.4 (in average) for different blowing and
suction rates.

• The vortex formation length have been shown to decrease and increase
with suction and blowing, respectively. However, the absolute size in
the streamwise direction of the recirculating region is not significantly
influenced by suction nor blowing.

• For high enough suction and blowing rates a compression and an exten-
sion, respectively, of the vortices across the wake have been found.
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Other results
• The energy growth and streamwise wall-normal disturbance peak lo-
cation of experimentally generated steady streaks have been found to
agree well with sub–optimal perturbation theory.

• The critical Reynolds number for channel flows with uniform cross flow
has been found to be lowered by an order of magnitude as compared
to plane Poiseuille flow. This critical value occurs when the cross flow
velocity to the maximum streamwise velocity ratio is 5.7%.



CHAPTER 7

Papers and authors contributions

Paper 1
On the disturbance growth in an asymptotic suction boundary layer.
J. H. M. Fransson (JF) & P. H. Alfredsson (HAL). J. Fluid Mech. 482, 51–90.

This work is of both experimental and theoretical character on the asymp-
totic suction boundary layer and was published as part of the Licentiate thesis
of JF. The experimental set-up was designed and built by JF. The experimen-
tal and theoretical investigations were performed by JF under supervision of
HAL and the writing was done by JF and HAL jointly. Parts of these results
have been presented at ERCOFTAC Nordic Pilot Center Meeting 2000, Dalarö,
Sweden, American Physical Society 53rd annual meeting Division of Fluid Dy-
namics 2000, Washington D.C., USA, and at Euromech 423rd Colloquium 2001
Stuttgart, Germany.

Paper 2
Optimal linear growth in the asymptotic suction boundary layer.
J. H. M. Fransson & P. Corbett (PC). Eur. J. Mech. B/Fluids 22, 259–270.

In this paper a variational technique in the temporal framework is used to
study initial configurations of disturbance velocity which maximize perturba-
tion kinetic energy in the asymptotic suction boundary layer. Comparisons
were made between the state of the theoretical optimal perturbation and wind
tunnel experiments (performed by JF). The numerical code was originally writ-
ten by PC for the Falkner–Skan–Cooke family of boundary layers. The deriva-
tion of the equations and extension of the existing code was done by JF under
guidance of PC. Computations and post-processing were performed by JF and
the paper was written by JF and PC jointly.

Paper 3
On the hydrodynamic stability of channel flow with cross flow.
J. H. M. Fransson & P. H. Alfredsson. Phys. Fluids 15, 436–441.

This work is a theoretical investigation of the linear stability problem of an
ordinary Poiseuille flow with uniform cross flow. The theoretical approach was

48



7. PAPERS AND AUTHORS CONTRIBUTIONS 49

done by JF (supervised by HAL) and the numerical code was written by JF.
The computations and the post-processing were performed by JF and the anal-
ysis of the results, and the writing were done in cooperation with HAL. Part
of this work was presented as a model problem in the Licentiate thesis of JF.

Paper 4
Free stream turbulence induced disturbances in boundary layers with wall suc-
tion. S. Yoshioka (SY), J. H. M. Fransson & P. H. Alfredsson

This paper is an extension study of Paper 1. The original set-up was de-
signed and built by JF. Modifications and improvements of the porous plate
was performed by SY with help from JF. The experiments were mainly per-
formed by SY but also by JF. Post-processing and figure generation was done
by SY. A shorter version of this paper was published as a proceeding of TSFP3,
Sendai, Japan, where JF participated in the writing. This paper is based on the
proceeding and was written by SY and HAL with feed-back from JF. These
results were further presented at the European Fluid Mechanics Conference
2003, Toulouse, France.

Paper 5
Transition induced by free stream turbulence
J. H. M. Fransson, M. Matsubara (MM) & P. H. Alfredsson

This paper deals with free stream turbulence induced transition on a flat plate
boundary layer. In this experimental investigation JF helped MM during the
collection of data. Most of the data evaluation was done by MM, whereas most
of the data analysis was done by JF under supervision of HAL. The paper was
written by JF and HAL with input from MM.

Paper 6
On streamwise streaks generated by roughness elements in the boundary layer
on a flat plate.
J. H. M. Fransson, L. Brandt (LB), A. Talamelli (AT) & C. Cossu (CC)

This paper treats of the generation of high amplitude steady streaks in a flat
plate boundary layer by means of roughness elements. Both wind tunnel ex-
periments as well as suboptimal perturbation calculations have been carried
out. The experiments were performed by JF and AT with input from CC, and
the calculations was performed by LB. The paper was written jointly by all
authors. This work was presented at the 17th AIMETA Congress of Theoreti-
cal and Applied Mechanics, and at the American Physical Society 56th annual
meeting Division of Fluid Dynamics 2003, New York, USA.
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Paper 7
Flow around a porous cylinder subject to continuous suction or blowing.
J. H. M. Fransson, P. Konieczny (PK) & P. H. Alfredsson

In this paper the flow past a porous cylinder and the effect of applying con-
tinuous suction or blowing through the porous surface was investigated. The
cylinder (with pressure tabs, blowing/suction chambers, outlet piping etc.) was
designed by JF. The experimental set-up in Toulouse, as well as the pressure
and hot-wire measurements, were performed by JF with help from PK. The
original idea of the visualization set-up in Stockholm came from HAL and the
design and set-up was performed by JF & PK. The final flow visualization
images were taken by JF. The post-processing and figures were made by JF.
The introduction part of the paper was written by PK and the rest by JF
together with HAL. This work has been presented at the European Fluid Me-
chanics Conference 2003, Toulouse, France, and at the ERCOFTAC Nordic
Pilot Center Meeting 2003, Marstrand, Sweden.

Paper 8
PIV–measurements in the wake of a cylinder subject to continuous suction or
blowing. J. H. M. Fransson

This work was performed by the author.

Paper 9
Errors in hot-wire X-probe measurements induced by unsteady velocity gradi-
ents. J. H. M. Fransson & K. J. A. Westin (JW). Exp. Fluids 32, 413–415.

The experimental set-up, measurements, evaluation and writing were performed
jointly by JF and JW. This work was presented at the 15th AIMETA Congress
of Theoretical and Applied Mechanics.

Paper 10
Leading edge design process using a commercial flow solver. J. H. M. Fransson

This work was performed by the author.
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An experimental and theoretical study on the effect of boundary layer suc-
tion on the laminar-turbulent transition process has been carried out. In the
study an asymptotic suction boundary layer was established in a wind tunnel
with a free stream velocity of 5.0 ms−1. Wall normal suction (suction velocity
1.44 cm s−1) was applied over a large area and the boundary layer was nearly
constant over a length of 1800 mm. Measurements were made both with and
without suction so comparisons between the two cases could easily be made.
Measurements of the development of the mean velocity distribution showed
good agreement with theory. The Reynolds number based on the displace-
ment thickness for the suction boundary layer was 347. Both experiments on
the development of forced Tollmien-Schlichting (TS) waves and boundary layer
disturbances introduced by free stream turbulence were carried out. In connec-
tion to the TS-wave experiments spatial linear stability calculations, where the
wall-normal velocity component is accounted for, were carried out for compari-
son with the experiments. This comparison shows satisfactory agreement even
though the stability of the asymptotic suction profile is somewhat overpredicted
by the theory. Free stream turbulence (FST) was generated by three different
grids giving turbulence intensities at the leading edge of the plate between 1.4
% and 4.0 %. The FST induces disturbances into the boundary layer and it
was shown that for the present suction rate the disturbance level inside the
boundary layer is constant and becomes proportional to the FST intensity. In
all cases transition was prevented when suction was applied although without
suction the two highest levels of grid turbulence gave rise to transition. De-
spite a twofold reduction in the boundary layer thickness in the suction case
compared to the no suction case the spanwise scale of the streaky structures
was almost constant.

1. Introduction

One area of significant recent interest in fluid dynamics is laminar flow control
(LFC). A possible method of LFC is to apply suction at the wall. A definition of
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Figure 1. Velocity profiles for the Blasius and the asymptotic
suction boundary layers. No suction (unfilled-), suction (filled
symbols) and theory (lines). Asymptotic suction profile (solid
line) (�) at x = 1800, Blasius profiles (dashed line) (◦) at
x = 300 mm and (�) at x = 1800 mm. (�) shows the difference
(dash-dotted line) between the two velocity profiles.

this control method is given in Joslin (1998), where it is pointed out that LFC is
a method to delay the laminar-turbulent transition and not to relaminarize the
flow. The energy cost is typically one order of magnitude higher in the latter
case, which makes the definition appropriate since the optimal performance
is not obtained (as one may believe) when the suction completely absorbs
the boundary layer. The more suction that is used the steeper the velocity
gradient of the boundary layer at the wall implying an increase in skin-friction.
Therefore, the balance between retaining the flow laminar and keeping a low
energy consumption is actually the optimal performance.

The present paper describes theoretical and experimental work on the
laminar-turbulent transition scenario on a flat plate boundary layer when uni-
form1 suction through the surface is applied. A special case is when the so
called asymptotic suction profile is obtained. This flow condition is obtained
at some distance downstream the leading edge of a flat plate when uniform
suction is applied over a large area. An interesting feature is that an analytic
solution of the uniform suction problem may be derived from the boundary

1In a physical situation uniform suction is an idealization, since the pore size is finite. If the

ratio between the boundary layer thickness and the pore size is large the suction will be close
to uniform.
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layer equations resulting in an exponential profile (the asymptotic suction pro-
file). The suction has a similar influence on the profile as a favorable pressure
gradient and makes the profile in the fully developed asymptotic region much
more stable than the Blasius profile.

The asymptotic boundary layer flow has been dealt with extensively in text
books, see for instance Schlichting (1979), and the theory for the mean flow
is straightforward. One can easily show that the boundary layer profile u(y)
becomes

u/U∞ = 1− e−yV0/ν

where U∞, V0 and ν are the constant free stream velocity, the suction velocity
and the kinematic viscosity, respectively (x, y and z denotes the streamwise,
wall-normal and spanwise coordinate directions). This expression was first
derived by Griffith and Meredith (1936) according to both Jones & Watson
(1963) and Schlichting (1979). In figure 1 experimental data with corresponding
theoretical curves are plotted to show the comparison between the Blasius and
the asymptotic suction profile. The asymptotic boundary layer thickness can
be shown to be directly proportional to ν/V0 and the Reynolds number (Re)
based on the boundary layer displacement thickness (δ1) becomes

Re = U∞/V0(= 1/Cq),

where Cq is the suction coefficient.
To obtain the stability characteristics of the suction boundary layer the

normal velocity component of the mean flow, i.e. the suction velocity at the
wall, can be incorporated in the disturbance equation and this gives a slightly
modified Orr-Sommerfeld (OS) equation. Also the boundary condition of the
normal fluctuation velocity needs to be considered, but the standard bound-
ary condition can be used in the limit when the permeability approaches zero.
Hocking (1975) showed that the critical Reynolds number (Rec), i.e. the low-
est Reynolds number for which two-dimensional waves become amplified, in-
creases by two orders of magnitude as compared to the Blasius boundary layer.
Fransson & Alfredsson (2002) showed that for the case of channel flow with
permeable walls and cross flow the situation becomes more complicated and
can give rise to both stabilization and destabilization depending on the rate of
cross flow. The critical Reynolds number is lowered by an order of magnitude
(Rec = 667.4) as compared to plane Poiseuille flow at a cross flow velocity of
5.7% of the streamwise velocity.

1.1. Laminar-turbulent transition scenarios

1.1a. Tollmien-Schlichting wave dominated transition. For low environmental
disturbances the transition scenario from laminar to turbulent flow on a flat
plate boundary layer is rather well understood. This class of transition starts
with instability waves that are generated in the receptivity process taking place
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Figure 2. Spatial stability curves for two-dimensional waves
in a Blasius boundary layer. Solid lines are for constant imagi-
nary parts of the streamwise wavenumber (αi) and dash-dotted
for constant real parts (αr). The bold solid line is the neutral
stability curve. The displacement thickness (δ1) is the charac-
teristic length scale.

close to the leading edge. The initial growth of these waves may be described by
Fourier modes ∝ ei(αx−ωt), where for spatially growing waves the wavenumber
α is complex. α = αr+iαi and the angular frequency ω is real. When assuming
such a mode the linear disturbance equation gives rise to the well known OS-
equation. These waves grow/decay exponentially and the critical Reynolds
number, is according to Squire’s theorem, obtained for a two-dimensional wave.
In figure 2 the stability diagram (based on linear parallel theory) is given for
the Blasius profile. The solid lines are contours of the growth factor (αi) where
the bold solid line shows the neutral stability curve, i.e. the contour line of αi =
0. The dash-dotted lines correspond to contour lines of constant wave number
(αr). The Reynolds number (Re) (which will be used throughout this paper)
is based on the displacement thickness (δ1), and F is the non-dimensionalized
frequency defined as F = (ων/U2∞) × 106.

If a TS-wave in a Blasius boundary layer reaches high enough amplitude
(�1% of U∞), three-dimensional waves and vortex formations develop (still
laminar) that give rise to the appearance of turbulent spots which merge and
bring the whole flow into a fully turbulent one. The first successful windtunnel
experiment on TS-waves was carried out and reported by Schubauer & Skram-
stad (1948). However, these results were not in fully agreement with theory
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and for long the discrepancy between linear parallel stability theory and exper-
iments were believed to be due to the non-parallel effect of a growing boundary
layer. However, Fasel & Konzelmann (1990) found out through direct numeri-
cal integration of the Navier-Stokes equations that this effect is quite small and
that it hardly influences the amplitude and phase distributions. Later, parab-
olized stability calculations by Bertolotti (1991) showed that the non-parallel
effect becomes significantly stronger for three-dimensional disturbances. Fi-
nally, the experiments by Klingmann et al. (1993), performed with a special
designed asymmetric leading edge (in order to get rid of the pressure suction
peak), could show excellent agreement with non-parallel theory, which is close
to the parallel theory results for two-dimensional disturbances.

1.1b. By-pass transition and streaky structure. It is well known that for the
Blasius boundary layer FST induces disturbances into the boundary layer which
give rise to streamwise-oriented structures of low and high speed fluid (see e.g.
Kendall 1985; Westin 1997; Jacobs & Durbin 2001; Matsubara & Alfredsson
2001; Fransson & Westin 2001, for thorough investigations of such a flow).
These structures grow in amplitude and establish a spanwise size which is
of the order of the boundary layer thickness far away from the leading edge.
When the streaks reach a certain amplitude they break down to turbulence,
probably through a secondary instability mechanism (see e.g. Andersson et al.
2001). This type of boundary layer transition can be viewed as one case of by-
pass transition (Morkovin 1969). It is a relatively rapid process by-passing the
traditional TS-wave dominated transition process resulting in breakdown to
turbulence at subcritical Reynolds numbers when compared with the predicted
value by traditional theory. Nonlinear theories were tested (see e.g. Orszag
& Patera 1983) in order to find a theory that matched experimental results.
However, the nonlinear terms of the Navier-Stokes equations can be shown not
to be part of the growth mechanism (see Drazin & Reid 1981). A possible
mechanism governing this type of transition scenario is the transient growth.
An explanation of this mechanism is given in e.g. Schmid & Henningson (2001)
and arises due to the non-orthogonality of the OS and Squire eigenmodes.
Superposition of such decaying modes may first experience an algebraic growth
followed by an exponential decay, denoted as transient growth. The ”lift-up”
mechanism proposed by Landahl (1980) is the cornerstone contributing to the
algebraic growth in the study of transient growth. Small perturbations in the
wall-normal direction induce large disturbances in the streamwise direction
due to the lift-up of low speed fluid that originally maintains its horizontal
momentum. The presence of viscosity will eventually damp the growth and
finally make the disturbance decay. Some recent publications on the by-pass
transition and the transient growth mechanism are Luchini (2000), Reshotko
(2001), and Andersson et al. (2001).
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1.2. Previous work on suction

Experimental work on the asymptotic suction boundary layer has to some
extent been done earlier, but mainly devoted to determination of the mean
flow (see Schlichting 1979, and references therein). TS-wave as well as FST ex-
periments in a fully asymptotic suction boundary layer, that will be presented
in this paper, have not been carried out earlier. However, in connection to
drag reduction experiments (i.e. LFC) suction through spanwise slots, porous
panels or discrete holes has been applied (see e.g. Pfenninger & Groth 1961,
Reynolds & Saric 1986, and MacManus & Eaton 2000 as well as Roberts et al.
2001, respectively). A general review of various types of surfaces and of the
results achieved in wind tunnel tests is given by Gregory (1961), where pros
and cons for practical applications on aircraft are discussed. The flow charac-
teristics through laser drilled titanium sheets were investigated by Poll et al.
(1992b) and was shown to be laminar, incompressible and pipe like. Poll et al.
(1992a) conducted a cylinder experiment made of a similar laser drilled tita-
nium sheet. The effect of suction was found to have a powerful effect upon
cross-flow induced transition.

In an experimental and numerical study performed by MacManus & Eaton
(2000) the flow physics of boundary layer suction through discrete holes was
investigated. The aim was to use a realizable design and find a critical suction
criterion for transonic cruise conditions. They showed that the suction may
destabilize the flow by introduction of contra-rotating streamwise vortices but
that for small enough perforations (d/δ1 < 0.6) transition is not provoked by
suction independent of suction velocity.

Roberts et al. (2001) found that two types of instability are possible when
non-uniformities of suction are present. The first one is connected to the clas-
sical TS-wave that is modified due to the non-uniformities and the second one
are streamwise vortices that are induced due to the non-uniformities alone.
The latter instability was triggered by a finite band of suction wave numbers
and the strength of this instability was shown to increase almost linearly with
the amplitude of the suction non-uniformities and flow Reynolds number.

Applying continuously distributed suction over a large area may not be
the optimal way of performing active control practically, since the energy con-
sumption becomes relatively high. Another approach would be to use selective
suction to control the growth of unstable fluctuations. This type of control
must be done on a detectable quantity, such as e.g. low speed streaks. The
appearance of streaks with alternate low and high speed velocity observed in a
laminar boundary layer subjected to high levels of free stream turbulence is also
found in the near-wall region of a turbulent boundary layer. Together with the
intermittent bursts or turbulence production events these are usually referred
to as coherent structures. Controlled experiments have been performed, see
e.g. Myose & Blackwelder (1995) and Lundell (2000), in order to reduce the
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instability and delay the breakdown of the low speed streaks in laminar flows.
Myose & Blackwelder (1995) achieved successful control on the breakdown of
Görtler vortices, by pointwise suction of low speed momentum from the low
speed streak and in that manner delay the transition by producing a fuller
profile in the normal direction and by eliminating the difference between low
and high speed regions in the spanwise direction. A similar technique was used
by Lundell (2000) who generated streaks in a plane channel flow by applying
suction through streamwise slots. Secondary instabilities were then forced ran-
domly by speakers and were then successfully controlled by localized suction
some distance downstream.

1.3. Layout of the paper

In §2 the boundary layer equations for the evolution of the asymptotic suction
boundary layer is put forward as well as the stability equations when the normal
velocity is taken into account. Some results on both the mean profile evolution
and stability are then given for the asymptotic suction boundary layer. The
design philosophy of the leading edge of the experimental plate is described in §3
together with characterization of the porous material, the detailed construction
of the flat plate, and the TS-wave excitation method. Herein the different
turbulent length scales and energy spectra generated by the three different
turbulence generating grids are also given. In §4 the experimental results are
given both for the Blasius flow above the porous plate and the streamwise
baseline flow of the suction case as well as the corresponding TS-waves results.
Furthermore, results of the disturbance evolution in both the no suction and
suction cases when FST is present are given and compared in detail. It is clearly
shown that suction dramatically can change the disturbance growth rate and
that transition to turbulence can be prevented.

2. Boundary layer evolution and stability concepts

2.1. Evolution region

When uniform wall-normal surface suction is applied over a large area the well
known asymptotic suction profile will be reached after some evolution region.
If an impermeable area is considered from the leading edge to where the suction
starts the boundary layer will be allowed to grow and a Blasius velocity profile
will be developed for a zero pressure gradient flow. In the evolution region
the profile will then undergo a transformation from the Blasius state to the
asymptotic suction state. This spatial evolution can from a simple approach
be described through a non-dimensional evolution equation. The first step is
to introduce a stream function according to

ψ =
√
νxU∞f(ξ, η) ,
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ξ = x
V0
U∞

√
U∞
νx

; η = y

√
U∞
νx

.

The streamwise and normal velocity components are recovered through

u(η) = U∞
∂f

∂η
and v(η) =

√
U∞ν

4x

(
η
∂f

∂η
− ξ

∂f

∂ξ
− f

)
,

respectively. When applied to the boundary layer equations we get the follow-
ing third order non-linear partial differential equation

∂3f

∂η3
+

1
2
f
∂2f

∂η2
+

1
2
ξ

(
∂f

∂ξ

∂2f

∂η2
− ∂f

∂η

∂2f

∂η∂ξ

)
= 0, (1)

with the corresponding boundary conditions

f = ξ (suction)
∂f
∂η = 0 (no-slip)

}
at η = 0 and

∂f

∂η
→ 1 as η →∞ .

Along the impermeable entry length a Blasius boundary layer is assumed to de-
velop and is given as input to the evolution equation. The boundary conditions
at permeable surfaces are not obvious. Taylor (1971) discussed the boundary
conditions and concluded that due to the open structure of a porous solid with
large pores the external surface stress may produce a tangential flow below the
surface resulting in that the no-slip condition for the mean flow is not valid.
This surface velocity is assumed to depend on the mean tangential stress in
the fluid outside the porous material, the permeability and another material
(porous) connected parameter. This model showed that experimental results
agreed well with calculation but has only influence for large permeabilities.

The first solution from such an evolution equation with an impermeable
entry length was obtained by Rheinboldt (1956) through series expansion. The
ansatz of a stream function and non-dimensionalized variables for deriving the
evolution equation are not to be confused with similarity solutions. The stream
function is dependent on two variables and becomes ‘similar‘ when the asymp-
totic suction state is reached. In figure 3 the displacement thickness (δ1) of the
profiles in the evolution region is plotted. The different curves can be seen as
different impermeable entry lengths shown with the dotted lines, i.e. they be-
long to different values of the initial length (ξL). These are the positions where
suction starts and what all the curves have in common is that after some evo-
lution region they all merge together to a value of unity which corresponds
to the asymptotic suction region. Recall that the asymptotic suction profile
possesses an analytic expression which implies that all the characteristic length
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Figure 3. The displacement thickness evolution from the evo-
lution equation (1) vs the downstream distance to the power
of two. See text for comments.

scales are exact, e.g. δ1 = ν/V0, δ2 = (1/2)δ1 and δ0.99 = δ1log(100), where δ2
and δ0.99 are the momentum thickness and the actual boundary layer thickness
respectively.

2.2. Modal stability characteristics

When deriving the Orr-Sommerfeld (OS) and Squire equations the so called
parallel flow assumption is made, which means that changes in x of the mean
flow is neglected. For the continuous suction case where the mean wall-normal
velocity component (V0) is uniform and constant this assumption is exact, al-
though the flow is not parallel to the wall. In order to neglect the V -component
the suction rate has to be small. However, the parallel flow assumption is not
needed since the cross-flow term easily can be considered.

When the following baseline flow, U = (U(y), V0, 0), is introduced into the
linearized stability equations one extra term is added to each equation, namely
V0

∂u
∂y

, V0 ∂v∂y , and V0
∂w
∂y

. Here (u, v, w) denotes the fluctuation velocity compo-
nents in the (x, y, z) directions, respectively. The expression for the pressure,
achieved by taking the divergence of the linearized momentum equations, does
not change (compared to the no suction case) since the additional terms ful-
fill the continuity equation and therefore cancel out. After that the pressure
expression is used in the v-equation of momentum we apply the normal mode
hypothesis. Using the standard notations for the spatial theory, α represents
the complex streamwise wave number, ω the real angular frequency and β the
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real spanwise wave number which is used in order to possibly include oblique
modes. The modified OS-equation can then be written as

[
(−iω + iαU − 1

Re
D)(D2 − k2)− iαU ′′ − 1

Re
(D2 − k2)2

]
v̂ = 0 ,

where D = ∂/∂y, k2 = α2 + β2 and v̂ denotes the amplitude function of
the eigenmode. This modified version of the OS-equation can e.g. be found
in Drazin & Reid (1981). Continuing from here a modified Squire equation can
equally be derived resulting in

[
(−iω + iαU − 1

Re
D)− 1

Re
(D2 − k2)

]
Ω̂ = −iβU ′ v̂ ,

where Ω is the normal vorticity. So far no change of the boundary conditions of
the disturbance quantities has been made and should indeed not be necessary
as long as the permeability of the porous material has a reasonably low value.

In the present study the homogeneous boundary condition was used, i.e.
v̂ = Dv̂ = Ω̂ = 0, in all calculations since the permeability for the chosen
material can be considered small.

Another boundary condition for the perturbations of a porous plate was
suggested by Gustavsson (2000), where a pressure perturbation above the plate
is added to Darcy’s law. The result is an extra term for the boundary condition
at the wall, which for small permeability would be negligible. This condition
has so far not been verified experimentally.

Squire’s theorem can be derived from the modified OS- and Squire equa-
tions in the usual way by identification of terms in the two-dimensional and
three-dimensional cases. However, the extra terms do not contribute to any
additional condition to Squire’s theorem.

2.3. Numerical methods

The evolution equation was solved with a spectral approach, where Chebyshev
expansion was made in the wall-normal direction and a backward finite differ-
ence method in the marching direction with a step size of dξ = 0.001. A built
in non-linear equation solver in the commercially available software Matlab was
used.

The stability calculations carried out on the Blasius and the asymptotic
suction boundary layer in the present chapter are for the spatial spectrum, i.e.
the set of equations are solved for α given a real frequency ω.

The numerical method used for these calculations was also a spectral
method with Chebyshev expansion of the dependent variable. The solution
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is then represented by a truncated sum of Chebyshev polynomials according to

v̂(ỹ) =
N∑

n=0

anT
j
n(ỹ) for ỹ ∈ [−1, 1] ,

where N is the truncated value, an is the coefficient of the n:th Chebyshev
polynomial and the superscript j denotes the j:th derivative of the Chebyshev
polynomials. A domain mapping from the finite Chebyshev domain ([−1, 1])
into the semi-infinite physical domain of the boundary layer was made through
y = y∞

2 (1− ỹ).
A spatial approach gives rise to a nonlinear eigenvalue problem where the

eigenvalue appears as a fourth power in the normal velocity. This can be
reduced to an eigenvalue equation of second power by a transformation of the
independent variable according to Haj-Hariri (1988)

(
v̂

Ω̂

)
=

(
V̂

Ê

)
e−αy. (2)

In order to get rid of the non-linearity in the eigenvalue problem, i.e. the
now remaining second order α-terms of the V̂ -component, one can introduce a
vector quantity according to

d =


 αV̂

V̂

Ê




which takes care of the non-linear α-terms, see e.g. Schmid & Henningson
(2001). After applying the transformation of equation (2) on the perturbation
equations we get a linear eigenvalue problem which in matrix form can be
written

Ld = αMd, (3)

where

L =


 −R1 −R0 0

I 0 0
0 −S −T0


 and M =


 R2 0 0

0 I 0
0 0 T1


 . (4)

The Ri, Ti and S elements represent a number of terms and the only difference
between the OS and Squire equations and the modified OS and Squire equa-
tions is the appearance of some extra terms that are marked below
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Drazin & Reid Schmid & Henningson Present
CASE Blasius Asymp. Blasius Blasius Asymp.
Rec 520 54370 519.4 518.7 54382
αc 0.3012 0.1555 0.303 0.3036 0.1555
ccr 0.3961 0.150 0.3965 0.3966 0.1499
F 229.3 0.429 231.3 232.1 0.429

Table 1. Critical values for the Blasius and the asymptotic
suction boundary layer.

R2 = 4T
2 + 2iUReT1 + 2T

1︸︷︷︸
extra

R1 = −4T
3 − iUReT2 − 3T

2︸︷︷︸
extra

−2iωReT1 + 4β2T1 +

+ iUReβ2T0 + iU ′′ReT0 + β2T0︸ ︷︷ ︸
extra

R0 = T
4 + T

3︸︷︷︸
extra

+iωReT2 − 2β2T2 − β2T1︸ ︷︷ ︸
extra

−iωβ2ReT0 +

+ β4T0

T1 = T
1 + iUReT0 + T

0︸︷︷︸
extra

T0 = −T
2 − T

1︸︷︷︸
extra

−iωReT0 + β2T0

S = iβU ′ReT0 .

The notation of the elements in the matrixes (4) are chosen to be the same as
used by Schmid & Henningson (2001).

The system of equations (3) was solved using a built-in eigenvalue problem
solver in the mathematical software Matlab.

A (temporal) program using search routines was developed in order to
provide high accuracy of the critical values given in table 1. For a given wave
number (α) this program searches for the Reynolds number where the imagi-
nary part of the phase velocity (ci) is zero with an accuracy specified by the
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Figure 4. Eigenfunctions of both the Blasius (dashed lines)
and the asymptotic suction case (solid lines) at [Re, F ] = [800,
125] in a) and b), and at their critical values (see table 1) in
c) and d) respectively.

user and stops only for positive values of ci. From there it chooses a new α
by means of minimizing Re. The accuracy of α is also set by the user. The
critical values in table 1 are in good agreement with other published values, see
e.g. Drazin & Reid (1981) and Schmid & Henningson (2001), and the slightly
varying values may be due to the solution method. Adding the V -component
into the linearized stability equations, resulting in the modified OS-equation,
has only a minor effect on the stability characteristics of the particular flow.
The large stabilizing effect arises from the mean velocity profile change, see
e.g. Fransson (2001).

In figure 4 the difference between the Blasius and the asymptotic suction
boundary layer eigenfunctions (streamwise and wall-normal) are illustrated for
two different parameter values. It is noteworthy that the maximum of the u-
disturbance is found closer to the wall and that the ratio between the v- and the
u-component is smaller for the asymptotic suction boundary layer as compared
to the Blasius boundary layer.

3. Experimental design and set-up

This section deals with the design of the experimental set-up, the construction
work, and the experimental techniques. In order to perform experiments in an
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asymptotic suction boundary layer a plate had to be designed and built with
a suitable permeable surface material. This material was investigated in order
to get the characteristic properties of this porous material. In connection to
the design a new asymmetric leading edge was built and investigated.

3.1. Experimental set-up

The experiments were carried out in the MTL-wind tunnel at KTH. The test
section is 7 m long, 0.8 m high and 1.2 m wide. The maximum free stream
velocity in the test-section is more than 60 m s−1, however in the present study
it is only used at low velocities. At these low velocities the turbulence intensity
is around 0.02%-0.03%. The tunnel has good temperature stability characteris-
tics due to a built in heat-exchanger and temperature control system. The wind
tunnel is equipped with a computer controlled 5 degree of freedom traversing
mechanism, which is convenient for boundary layer traverses as well as X-probe
calibration. For a recent report on the tunnel characteristics see Lindgren &
Johansson (2002).

A schematic of the experimental set-up is shown in figure 5, and is divided
into two figures showing the FST experimental set-up and the TS-wave ex-
perimental set-up in a) and b), respectively. Everything present in a) is also
present in b) except for the turbulence generating grids. A fine-meshed screen
(mosquito type) was installed at the end of the test section just upstream the
trailing edge flap (going into the diffuser). This was done in order to create
a pressure drop to compensate for the extra blockage below the plate due to
suction channels and tubing (the total blockage in the tunnel is about 7%).
In the present experiments the wind tunnel ceiling was adjusted so that the
pressure gradient along the test section was close to zero for the no suction
(Blasius flow) case. When suction was applied less than 1 % of the flow in the
test section was removed. This gives rise to a slight adverse pressure gradient,
however the effect on the boundary layer flow is very small as compared to
the suction itself. The suction is achieved by a centrifugal fan positioned out-
side the test section and is connected through a pressure vessel to the suction
channels underneath the plate with vacuum cleaner tubing.

FST was generated by three different grids (two passive, B and E, and one
active, G) mounted at different distances (xgrid) from the leading edge. The
grids gave turbulence intensities (Tu = urms/U∞) at the leading edge of the
plate of 1.4%, 4.0% and 2.2%, respectively. In figures 6 and 7 the energy spectra
(at x=400 mm) and the FST decay in the free stream for the three different
grids are plotted respectively. To the Tu-decay data the typical power-law
decay, Tu = C(x − x0)b, is applied and plotted with solid lines in figure 7
for the three different grids. Here x = 0 is at the leading edge of the plate,
whereas x0 is a virtual origin. The constant C and exponent b are parameters
to be determined through curve fit to experimental data. In the curve fits b
was set to -0.5 which is the value for fully isotropic turbulence. The virtual
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Figure 5. Schematic of the experimental set-up. a) The three
turbulence generating grids give different turbulence intensi-
ties at the leading edge. TuB = 1.4%, TuE = 4.0% and grid
G being an active grid was used at TuG = 2.2%. b) 2D-waves
were generated through two different slots in the plate.

origin has been determined consistently by taking the intersection point with
the x/M -axis when 1/Tu2 = x/M is plotted (M being the meshwidth of the
grid). The fits are done to the unfilled symbols in figure 7, which corresponds to
data collected when no suction was applied whilst the filled symbols are when
suction was applied. The virtual origin is found to be displaced downstream of
the grid for all cases (see figure 5a)).

The active turbulence generating grid, injecting secondary fluid upstream
and in that way allowing different Tu-levels, is described thoroughly in Frans-
son (2001) and in figure 8 a sketch of the grid is shown. The secondary fluid
was driven by a modified vacuum cleaner. In the present investigation only one
injection rate was applied. In figure 9 both the evolution of the longitudinal
Taylor micro lengthscale (γ) and of the integral lengthscale (Γ) are shown for
the active grid. As expected the scales grow with the downstream distance
due to the dissipation of the smallest scales. The flow behind the active grid



80 Jens H. M. Fransson & P. Henrik Alfredsson

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

F

Grid E
Grid G
Grid B

E
(F

) 
/  

(0
.5

 U
   

 ∆
F

 )
∞2

Figure 6. Energy spectra in the free stream from the three
different grids at x=400 mm.

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

x  (mm)

Tu

  Grid    Tu Tu Tu
    
    C 0.38 0.62 1.26
    b -0.5 -0.5 -0.5
x   (mm) -960 -885 -1033
symbol

B G E

0

Figure 7. Turbulence decay in the free stream for the three
different turbulence generating grids.

is homogeneous and isotropic 20M downstream the grid position, which was
checked with X-probe measurements. The two passive grids have been used
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Figure 8. Active grid with main measures. M = 50 mm and
dp = 5 mm corresponding to a geometrical solidity (Sg) of
0.19. The total amount of jet orifices are 254 and these are
concentrated to the middle section of the grid.
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Figure 9. The Taylor (γ) and the integral (Γ) lengthscale
evolution of the active grid (with injection) are plotted with
(◦) and (×)-symbols respectively. Filled symbols of Γ are from
spatial correlation measurements and unfilled from the auto-
correlation. γ was determined from the autocorrelation alone
which gives a better estimate of this scale (see Fransson 2001,
for further details).

extensively in previous works and the Taylor microscale data have been ob-
tained from Westin (1997). In table 2 the characteristic data of the turbulence
generating grids are summarized.

TS-waves were generated by alternating suction and blowing at the wall
through a slot in a plug mounted in the plate. The slot is 330 mm long in
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Grid Tu (%) γ (mm) M (mm) dp (mm) Sg Bar geometry xgrid (mm)
B 1.4 7±1 23 3.5 0.28 round -1500 (65M)
E 4.0 7±1 50 10 0.36 square -1180 (23.5M)
G 2.2 9±1 50 5 0.19 round -1400 (28M)

Table 2. Characteristic data of the turbulence generating
grids. For definitions of M , dp and Sg see figure 8.
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Figure 10. Final shape of the leading edge. The profile is
described by two cubic Bézier curves.

the spanwise direction and 0.8 mm wide. Two plugs (slots) are present, one
at x=205 mm from the leading edge and one at x=1850 mm. The latter
is used for investigations in the fully developed asymptotic suction boundary
layer. At the second plug the porous plate was made impermeable over the
whole spanwise width by putting a tape underneath the plate over the 50 mm
in the the flow direction where the plug was located (in order to keep the
two-dimensionality of the flow). The disturbance signal was generated by the
computer through a D/A-board to an audio amplifier driving the loudspeakers.
The loudspeakers are connected to the disturbance source through ten flexible
tubes. A more thorough description of the disturbance generating system can
be found in Elofsson (1998).

An asymmetric leading edge was specially designed for this experimental
set-up, which resulted in a relatively short pressure gradient region without
any suction peak at the leading edge. The local pressure distribution near
the leading edge influences the stability of the flow further downstream and
therefore the design of the leading edge is an important issue, see e.g. Kling-
mann et al. (1993). In figure 10 the final shape of the present leading edge,
which is described by two cubic Bézier-curves, is shown. The commercial flow
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Figure 11. Surface roughness measurement of the porous
material. a) smooth side with a blow-up area and b) rough
side. c) shows the surface traces from a part of the area shown
in a).

solver CFX 4.2 was used to design the leading edge for the present set-up.
Two-dimensional laminar flow calculations were performed in the test section
of the wind tunnel, i.e. the ceiling (upper wall) and the floor (lower wall) of the
tunnel were simulated together with the plate. The present leading edge (with
a thickness of 30 mm) gives a near Blasius profile as close as 100 mm from the
leading edge, when the suction channel and the suction tubing are absent from
the set-up. The analytic expression of the shape and further information about
the design process together with experimental verification of the design can be
found in Fransson (2001).

3.2. Porous material

As a permeable plate a porous plastic material was chosen. Compared to laser
drilled plates (discrete holes) it is only one tenth of the price and it has some
advantages. For instance, the plastic material allows quite accurate hot-wire
readings close to the wall due to the low heat conductivity, and its pore size
and pore spacing is small making the surface-normal velocity ”uniform” over
the surface area which is preferable in this experiment in contrast with what
would be obtained in an experiment with a plate with discrete holes.

The porous plates consist of a sintered plastic material with an average
pore size of 16 µm (given by the manufacturer). One of the surfaces can be
considered smooth and the other rough (the smooth one was used as the upper
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Figure 12. Piston-experiment result used to determine the
permeability of the porous material.

surface). The standard deviation of the roughness is about 0.38 µm on the
smooth side, which was calculated from a surface roughness measurement seen
in figure 11a) and b) (note the scale). In figure 11c) the needle traces from the
blow-up area in a) is shown.

The flow properties of the porous material were characterized through a
piston-experiment where the permeability of the porous material was deter-
mined. This was done by placing a piece of the porous material (thickness t
= 3.2 mm) at the end of a 0.9 meter, 4 cm diameter Plexiglass pipe and mea-
suring the pressure drop over the porous material when a piston was forced
through the pipe with a linear motor. This was done at various velocities (V )
in the range 0.4-1.2 cm−1 and it was found that the pressure drop ∆p varied
in linear proportion to the flow velocity through the material (see figure 12 for
the measurement result). From this the permeability (k) of the material was
determined from Darcy’s law as k = V tµ/∆p where µ is the dynamic viscosity
and was found to be k = 3.7× 10−12m2.

A load-test of the porous material was performed in order to be able to
design the inner structure of the plate such that the surface deformation was
sufficiently small when suction was applied. Three tests were performed and the
average modulus of elasticity was determined to be 974 MPa. On the suction
side longitudinal T-profiles with a certain spanwise interval distance supported
the plate. The spanwise distance (Ls) between the T-profiles, supporting the
porous plates, was determined by assuming a 1.5 kPa pressure difference across
the plate with a restriction of a bending deviation (wb) of less than 1% of the
boundary layer thickness (being 5 mm resulting in wb = 50 µm). This gave
Ls = 58 mm and the Ls finally used was 50 mm. Since the actual pressure
difference that was applied in the final experiment was about 200-250 Pa there
was a large margin in the load assumption.
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Figure 13. Schematic view of the plate construction. See
text for comments.
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Figure 14. Photos of the construction work. Photo b) shows
the two front plenum chambers together with the larger span-
wise drilled suction holes and the pressure tubing for the static
pressure measurements.

3.3. Plate construction

The test plate is built as a sandwich-construction and a schematic is shown in
figure 13. In the front of the plate the removable leading edge is mounted and
in the back there is a possibility to extend the plate by additional plates of
aluminum. The plate is constructed on a base plate of aluminum with a frame,
and is designed having two 250 mm long plenum chambers starting 360 mm
from the leading edge followed by a 1750 mm long plenum chamber. The sub-
division into three chambers is for future work in where the suction rate then is
allowed to change with the downstream distance. Inside the plenum chamber
spacing elements made of hollowed T-profiles are glued, with a spanwise sepa-
ration of 50 mm, in order to support the porous plates and avoid bending the
plates when suction is applied. On these T-profiles three porous plates with the
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Figure 15. Photo of the plate together with the leading edge
mounted in the windtunnel.

total dimension 2250×1000×3.2 mm3 (length, width, thickness) were mounted
into the frame plate. On a spanwise line in the base plate five large holes (30
mm) were drilled at nine positions to where nine suction channels were con-
nected. This secured a uniform pressure in the plenum chamber, which was
checked by measuring the the static pressure at 40 different positions in the
chamber. In figure 14 photos are shown of the construction process work. The
two front chambers are seen in 14b) as well as the larger spanwise distributed
suction holes. Finally, the finished plate mounted in the test-section of the
MTL windtunnel is shown in figure 15.

3.4. Measurement technique

Single hot-wire probes operating at constant temperature were used to measure
the streamwise velocity components. One probe could be traversed in all three
spatial directions whereas a second probe was located at a specific spanwise
position (in the centre of the tunnel). Both probes were traversed in the x and
y-directions by the same traversing system and their x and y positions were
the same. This made it possible to make two-point spanwise space correlation
measurements.

The single probes were made of 2.5 µm platinum wires with a distance be-
tween the prongs of approximately 0.5 mm. The calibration function according
to Johansson & Alfredsson (1982) was used, where an extra term is added to
King’s law for compensation of natural convection which makes it suitable for
low speed experiments and is shown below,

U = k1(E2 − E20)
1/n + k2(E − E0)1/2.
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4. Experimental results

In the next three sections the experimental results will be shown and discussed.
In the first section the results for the Blasius boundary layer will be presented
showing the baseline flow properties and TS-wave experiments. The next sec-
tion shows the evolution region (from the Blasius to the asymptotic suction
state) followed by TS-wave experiments in the asymptotic suction region. Fi-
nally FST experiments will be presented where the Blasius and the asymptotic
suction results are chosen to be presented together for direct comparisons.

The experiments reported here were made at a free stream speed of 5.0
m s−1. Since stability experiments are sensitive to the Reynolds number Re,
accurate determination of the viscosity is necessary meaning that both temper-
ature and pressure has to be monitored and measured. For the suction case the
suction speed was 1.44 cm s−1, corresponding to a pressure difference across the
porous plate of ∆p=221 Pa. This gives an asymptotic boundary layer thickness
of 5 mm and a Reynolds number based on the displacement thickness of 347,
which corresponds to Cq = 2.88× 10−3.
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4.1. TS-waves in a Blasius boundary layer

In order to verify the flow set-up, measurement technique and disturbance
generation, the stability characteristics of the Blasius boundary layer for 2D-
wave disturbances were determined and compared with previously reported
results from the MTL-wind tunnel.

The pressure distribution over the plate was determined by traversing a
hot wire close to the plate surface but outside the boundary layer using the
Bernouilli equation to obtain the pressure. This method has earlier been used
and verified by Klingmann et al. (1993) and gives better accuracy than a static
pressure tube for low velocities. In figure 16a) the streamwise pressure distri-
bution is plotted for the investigated downstream region on the flat plate. Two
different measurements are shown, one at constant y(=50 mm) and the other
by traversing the probe to a position just outside the boundary layer. As can
be seen there is hardly any difference between the two measurements except
at the leading edge, and the variation for x >300 mm is within ±1% of the
dynamic pressure. The relatively long pressure gradient region observed in fig-
ure 16a) is due to the thickening of the plate due to suction channels and tubing
underneath the plate that are present in this experiment. The suction channels
alone contributes to an extra vertical blockage of 35 mm. In figure 16b) the
spanwise pressure distribution is plotted over a spanwise distance of 140 mm
at x=300 mm for two different y-positions in the free stream, and is shown to
vary within ±0.75% of the dynamic pressure. As expected measured boundary
layer profiles from x=300-2400 mm and z=±70 mm show excellent agreement
with the Blasius profile, for details see Fransson (2001). It is notable that the
hot-wire reading very close to the wall is quite accurate, making it possible to
measure velocities down to 0.5 m s−1 without any deviation from the theoret-
ical curve (cf. figure 1). This is due to the calibration function as well as the
low heat conductivity of the porous material.

Controlled stability experiments were performed, where the studied dis-
turbance is generated with a known frequency. The first slot located in the
leading edge is used to verify the experimental set-up, and the second slot far
downstream was used to perform experiments that later will be compared with
the TS-wave study in an asymptotic suction boundary layer. In figure 17 the
amplitude distribution of the TS-wave at F = 100 is shown (in this and follow-
ing figures A corresponds to the maximum measured amplitude in the profile).
The experiment ((◦)-symbols) shows good agreement with linear parallel the-
ory (solid line), where both the first and the second branch are well captured
by the experiment. The TS-wave is generated at x = 205 mm and decays until
reaching the first branch at approximately Re=728.5. From there on it grows
in amplitude until reaching the second branch at approximately Re=1233.5
where it starts to decay.
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Figure 17. Amplitude evolution of the TS-wave at F = 100.
In this and subsequent figures the symbols are experimental
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Figure 18. Amplitude distribution profiles for F = 100.
a) x = 300 mm at three different spanwise positions (A =
0.0094− 0.0097 m s−1), b) x = 550 mm (A = 0.0036 m s−1),
and c) x = 1500 mm (A = 0.0210 m s−1).

In figures 18 the disturbance amplitude distribution profiles are shown for
the three filled symbols (•) in figure 17. In figure 18a) the two-dimensionality
of the TS-wave is illustrated by plotting the profiles of three different spanwise
positions together with the OS-solution. The other figures show the smallest
(least amplified) and the largest (most amplified) profiles, and in b) (at x=550
mm) the smallness can be revealed near the boundary layer edge where the mea-
sured data appear more scattered than in c) (at x=1500 mm). Furthermore,
in c) a deformation of the amplitude distribution at the inner maximum can
be seen. This deformation has been observed in previous works, see e.g. Kling-
mann et al. (1993) and Ross et al. (1970), at downstream distances far from
the disturbance source.
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Figure 19. Phase distribution in the streamwise direction at
F = 100.

The phase velocity (c = ω/αr) of the wave can be determined simply by
determining the real part of the wave number (αr) since the angular frequency
(ω) is known. In figure 19 the phase distribution in the streamwise direction is
plotted. The phase is taken at the wall-normal distance above the plate where
the inner maximum amplitude appears. αr is then determined by calculating
the phase gradient (∂φ/∂x), and it is seen to be constant throughout the whole
investigated downstream distance. The symbols are experimental data, the
solid curve is the OS-solution, and the dashed line is the curve fit for the
determination of the gradient. This curve fit gives us a phase velocity of 0.34U∞
compared with the theoretical based on the Blasius profile of 0.36U∞.

From now on all stability results are from the second disturbance slot in
the plate located at x=1850 mm corresponding to Re=1350. This is also the
region where the stability experiments were made for the asymptotic suction
boundary layer. In figure 20 the amplitude distribution profiles are plotted for
F=59 at five different downstream positions. The first x-position closest to the
disturbance source, in fact only 50 mm from the source, is not fully developed
in the upper part of the profile when compared to the OS-solution. However,
from the second x-position the agreement is excellent in this part.

In figure 20 the corresponding phase distribution profiles are also plotted,
and they clearly show the phase shift of π radians which can be shown to appear
where ∂v′/∂y changes sign, i.e. at the wall-normal amplitude (v′) maxima. The
experimental data are in good agreement with the OS-solution (solid line).

For F=59, the TS-wave is unstable in this region which is in between
branches I and II. The amplitude growth of the TS-wave is seen in figure 21
together with the predicted amplitude evolution by the OS-equation. The phase
velocity is c = 0.29U∞ determined from figure 22 whereas the corresponding
phase velocity obtained from the OS-solution is c = 0.33U∞. However, the
agreement has to be judged as good since there are many external conditions
that may influence the result this far downstream from the leading edge. When



On the disturbance growth in an asymptotic suction boundary layer 91

0

1

2

3

4

5

0

1

2

3

4

5

−π 0 π  π

 0  π  π  πφ

φ
0 1 1 1u / Au / Au / A

0 1 1u / Au / A

x = 1900 mm x = 2000 mm

x = 2200 mm x = 2400 mm x = 2600 mm

y 
/ δ

1
y 

/ δ
1
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compared with figure 19 one can observe that the phase velocity is larger just
as for that frequency, but in this case the trend is somewhat stronger and the
effect is more apparent.

Experiments were also made at two other frequencies (F = 29 and F = 81)
which both showed good agreement with linear stability theory. The latter
frequency (at the second slot) is close to the second branch and a clear decay
of the amplitude growth was visible. To fit the experimental data to the OS-
solution it was necessary to make a shift in the Reynolds number. The shift
corresponds to a virtual (v) origin at xv = −15.8 mm, which can be considered
small (recall the large distance from the leading edge).

In summary the results indicate that the presence of the passive porous
plate itself does not seem to affect the stability characteristics of the boundary
layer flow. The amplitude growth of the TS-wave agrees with linear parallel
theory as well as the amplitude and phase distribution profiles.
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Figure 21. Amplitude evolution of the TS-wave at F = 59.
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Figure 22. Phase distribution in the streamwise direction at F=59.

4.2. TS-waves in an asymptotic suction boundary layer

In the following section the baseline flow when continuous suction is applied
will be presented together with TS-wave experiments in the fully developed
asymptotic suction region.

For the present experiments the flat plate and wind tunnel test section were
adjusted for zero-pressure gradient with no suction through the plate. Much
effort was spent in order to achieve the zero pressure gradient by changing
the floor and ceiling positions of the test-section. Recall that the thick plate
together with its suction channels and additional blockage due to suction tubing
makes the adjustments more difficult. Therefore, no additional geometrical
adjustments of the test section were done for the suction case. The result
of different suction rates on the pressure distribution along the streamwise
direction is shown in figure 23.

All experimental results are for a pressure difference (∆p) over the porous
plate of 221 Pa, which corresponds to a suction velocity of 1.44 cm s−1 using
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(discussed in §2.1) in the evolution region. η = y
√

U∞
xν .

the permeability value determined through the piston-experiment described in
§3.2.

In figure 24 several velocity profiles are plotted in the evolution region,
where the wall-normal distance η (= y

√
U∞/xν) is chosen in order to clearly

follow the profile evolution. The development of the boundary layer from the
Blasius towards the asymptotic profile shows good agreement with theory, i.e.
the evolution equation, and can be observed in figure 25 (note the scaling). The
dash-dotted lines are from the Blasius solution and the solid lines originate from
the evolution equation. L is the impermeable entry length.

The uniformness and two-dimensionality of the flow was checked in the as-
ymptotic suction region by comparing the velocity profiles at different spanwise
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and downstream positions. There are in total fourteen mean velocity profiles
plotted in figure 26, and they show excellent agreement with the theoretical
exponential curve (solid line), i.e. the analytical asymptotic suction profile.
The wall position (y0) and the displacement thickness (δ1) were determined by
fitting the measured data (u(ymeas)) to

u(ymeas)
U∞

= 1− e−(ymeas−y0)/δ1

by means of the least square method. This is also a way to verify the actual
suction velocity through the porous plate with the suction velocity correspond-
ing to the pressure difference applied. Since the displacement thickness is
δ1 = ν/V0, the suction velocity can easily be calculated once δ1 is determined
from the curve fit. Any profile chosen to verify the suction velocity 1.44 cm
s−1 agrees within 9%.

In the TS-wave experiments for the asymptotic suction boundary layer the
slot at x=1850 mm was used in order to study the wave in a fully developed
boundary layer. However due to the presence of the slot (50 mm in the stream-
wise direction) the porous material was made impermeable over the whole
spanwise length in order to ensure the two-dimensionality of the flow as was
mentioned in 3.1. This allows the boundary layer to grow slightly and a small
increase of δ1 may be observed downstream of the slot. This results in a Rey-
nolds number increase and for the theoretical comparison Re=382 was used,
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Figure 26. Mean velocity profiles for different downstream-
and some different spanwise positions in the asymptotic suc-
tion boundary layer.

which was extracted from the profiles. For the present Re the TS-wave will de-
cay rapidly after its generation. In figure 27 the amplitude distribution profiles
are shown for different downstream positions. The solid line is the solution from
the modified OS-equation and the dotted is the ordinary OS-equation. Note
that the last profile shown is only 350 mm from the disturbance source. Close
to the disturbance source the experimental results show quite good agreement
with the modified OS-solution, whereas further downstream the disturbance
is seen to be spread out towards the upper part of the boundary layer and
from x=2100 mm the measured data start to appear somewhat scattered. The
corresponding phase distribution profiles are plotted in figure 28 with the solid
line belonging to the modified OS-solution. The agreement is good in the up-
per part of the boundary layer and in the free stream, but in the theoretical
phase distribution there is a zigzag-formation in the middle of the boundary
layer that is not clearly apparent in the experimental results. It is the quotient
between the imaginary and real part of the eigenfunction that determines the
shape of the phase distribution and it is a large decrease with a minimum of this
quotient at y/δ1 = 2.7 followed by an increase that gives the zigzag-formation
of the theoretical result.
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Figure 27. Amplitude distribution profiles for different
downstream positions in an asymptotic suction boundary layer
for F=59. Symbols are measured data, solid line is the modi-
fied OS-solution, and dotted line the OS-solution.

The phase velocity of the TS-wave with F=59 is determined in figure 29.
The solid line is the modified OS-solution and this solution almost corresponds
to a curve fit to the measured data. The dotted line is the ordinary OS-solution.
The experimental phase velocity is determined to be c = 0.48U∞, which is the
phase velocity predicted by the modified OS-solution.

The amplitude decay is shown in figure 30 together with theoretical re-
sults. The theoretical results overpredicts the stability of the TS-wave. The
experimental result gives a damping factor of αi = 0.0153 mm−1, when the
first six points are used for the curve fit, and the modified OS-solution predicts
αi = 0.0263 mm−1, i.e. a factor 1.72 higher.

TS-wave measurements in the asymptotic suction boundary layer were also
made for a higher frequency, F=84.4. The same conclusions are drawn as
for the lower frequency experiment. Good agreement with theory is found
for the amplitude distribution profile close to the disturbance source and the
theoretical decay factor is still overpredicted compared with the experimental
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results. Some possible explanations for this discrepancy will be discussed in
section 5.
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4.3. Experiments with free stream turbulence

4.3a. Disturbance growth. Free stream turbulence (FST) gives rise to regions of
high and low streamwise velocity (streaky structures) and in a Blasius bound-
ary layer the streamwise disturbance energy grows in linear proportion to the
downstream distance. These streaky structures move slowly in the spanwise
direction and if the streamwise disturbance amplitude is measured (urms) it
is seen to increase with the downstream distance when no suction is applied,
whereas in the suction case this amplitude increase was found to be eliminated.
This can be observed in figures 31 & 32 where both the mean velocity and dis-
turbance profiles are plotted for both cases, i.e. with and without suction
respectively, for the TuB-level and for different downstream positions. The
position above the plate, where the maximum urms-value appears, does hardly
change in y/δ1-units and is approximately 1.5, this corresponds to 1/2- and 1/3
of the boundary layer thickness without suction and with suction, respectively.
The results are similar for the other two grids (these data can be found in
Fransson 2001).

In figure 31a) the mean velocity profiles hardly show any distortion from
the theoretical Blasius profile despite disturbance levels up to 8% inside the
boundary layer far downstream. Each solid curve in b) is a curve fit to data
in order to more easily separate the different downstream positions from each
other. It is clearly seen that the amplitude increases with increasing x.

For the suction case the mean flow is indistinguishable from the asymptotic
suction profile as can be seen in figure 32a). A large difference is however, that
the disturbance level amplitude inside the boundary layer is much smaller than
for the no suction case, and that the level is decreasing slightly with increasing
x for the profiles in figure 32b). Note that the decay is similar to the FST
decay observed in the upper part of this figure.

Fransson (2001) reported vrms-data obtained from LDV-measurements both
for the Blasius and the suction boundary layers. These results show that in
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Figure 31. Data for different downstream positions from grid
B without suction. a) Mean velocity profiles, and b) urms-
profiles for the same x-positions as in a).

both cases the vrms-profiles are similar and decrease monotonously from the
free stream towards the wall. This indicates that the suction does not strongly
influence the normal velocity fluctuations close to the wall.
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Figure 32. Data for different downstream positions from grid
B with suction through the porous plate. a) Mean velocity
profiles, and b) urms-profiles for the same x-positions as in a).

In figure 33 the displacement thickness evolution, with and without suction,
is plotted versus the downstream distance for different FST intensities. In a
Blasius transition region when the profile approaches the turbulent one an
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Figure 33. The displacement thickness evolution with and
without suction when influenced by FST.

increase in the displacement thickness is expected. According to this figure the
displacement thickness seems to increase somewhat in both the suction and
no suction case when the Tu-level is increased. The dashed and solid lines in
figure 33 correspond to the theoretical laminar δ1-evolution of the Blasius and
the suction case, respectively.

In figure 34 the disturbance amplitude, here chosen as the maximum value
of the disturbance profiles, for the three different grids are plotted versus the
downstream distance from the leading edge. For the no suction cases the dis-
turbance amplitude has been found to grow in proportion to the x1/2 and a
similar development is observed here. For grid B transition does not occur
over the length of the measured region, despite the fact that the urms-level is
above 8% at the end. For high enough Tu-levels the FST will force the flow to
transition. For grid G a maximum of nearly 17% in the turbulence intensity
is found at x ≈ 1800 mm. Such a maximum is usually observed in the inter-
mittent region where the flow consists both of laminar regions and turbulent
spots. Further downstream the intensity decreases which is expected when the
flow goes towards a fully developed turbulent stage. For grid E, measurements
were only made until x = 700 mm where a similar high level was observed.

When applying the present rate of suction it is however found that tran-
sition does not occur for any of the grids, although the mean velocity profiles
deviate from the asymptotic profile at the most downstream positions for grid
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Figure 34. Peak disturbance amplitude vs downstream dis-
tance from the leading edge. No suction (unfilled-) and suction
(filled symbols). (◦) TuB, (�) TuG and (�) TuE.

E. Instead the fluctuation level inside the boundary layer reaches an almost
constant level for all three grids and the level is in each case close to the level
where the suction starts. An interesting observation is that this level is propor-
tional to the level of the FST. This is shown in figure 35 where the maximum
urms-values (or constant level in the suction case) versus the local Tu-level are
plotted for both the suction and no suction case.

The data presented in figure 34 appear somewhat scattered and another
way to plot the disturbance evolution is to evaluate the average disturbance
energy (Eu) by integrating u2rms across the boundary layer. This measure is
plotted in figure 36 versus the downstream distance from the leading edge. The
figures show the well known linear growth of the disturbance energy with the
downstream distance for the no suction case and for all Tu-levels. In the case
with suction the energy growth ceases and a more or less constant level for each
grid is obtained.

4.3b. Spanwise scale of the streaks. The spanwise scale of the streaks can be
determined through two-point correlation measurements of the streamwise ve-
locity component. It is well known that the position where the streamwise
correlation coefficient (Ruu) shows a distinct minimum can be interpreted as
half the dominating spanwise wavelength of the streaks (see e.g. Matsubara
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& Alfredsson 2001), and will from here on be denoted λ
1/2
z . In order to de-

termine this spanwise scale the correlation measurement has preferably to be
done inside the boundary layer where the maximum urms appears, this is the
position where the correlation coefficient will appear strongest. The spanwise
correlation coefficient is defined as

Ruu =
u(z)u(z +∆z)

u(z)2
.

In figure 37 two correlation measurements are shown, one measured at the
boundary layer edge (•) and the other where the maximum urms appears (◦).
In the former the correlation is close to one at the first measuring point and it
decays gradually to become uncorrelated far away. In the latter measurement
the correlation coefficient shows the (previously mentioned) dinstinct minimum.
An interesting observation is the zero crossing of the correlation coefficient that
will be shown to be an equally good measure of the spanwise scale of the streaks
as the minimum value. In figure 38 the correlation coefficient is plotted for grad-
ually increasing distance (y) from the plate. Close to the surface the data seem
to be somewhat scattered, which is due to the short sampling time (30 sec).
From data such as shown in figure 38 one can make a contour plot in the yz-
plane for an overview of the structure inside the boundary layer. This was done
for different Tu-levels and x-positions with and without suction and are shown
in figure 39 (for TuB and TuG) and 40 (for TuE with suction). Figure 39 shows
that the spanwise scale of the streaky structures is only slightly decreased by
suction, despite a twofold reduction in boundary layer thickness. This indicates
that disturbances inside the boundary layer is strongly dependent of the scale
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of the FST. Note that the minimum value is clearly distinguishable in all cases,
including figure 40 with TuE at x = 500 mm.

Matsubara & Alfredsson (2001) showed that the spanwise scale of the
streaks observed near the leading edge seems to depend on the FST scales
introduced into the boundary layer at an early stage of the receptivity process.
Further downstream this scale seems to adapt to the boundary layer thickness
and grows in proportion to this thickness. In the suction case the scenario is
slightly different since the spanwise scale is hardly changed compared to the
spanwise scale observed in the Blasius boundary layer, and this despite the
fact that the boundary layer thickness is only half of that in a Blasius layer.
This result was obtained for all three FST intensities tested. The conclusion
from figure 39 is that the effect of suction on the streaks is compression, i.e.
since the boundary layer thickness decreases the streaks are compressed in the
wall-normal direction but the spanwise scale is preserved. This creates a wider
structure in terms of boundary layer thickness as compared to the Blasius case.
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case consists of 504 measuring points and the suction case of
392. δ0.99 ≈ 11 and 5 mm for dp=0 and 221 Pa respectively.

In figure 41 the evolution of the spanwise scales of the streaks from all
three grids are shown. The minimum values of the correlation coefficient (Ruu)
were determined by fitting a third order polynomial to the measured data
and the zero crossing of Ruu by fitting a second order polynomial. For all
cases there is a tendency for the scales to increase with x, however the effect
is strongest for grid B (figure 41a)). If a difference between the no suction-
and suction cases should be pointed out, a tendency towards a slower growing
spanwise scale in the suction case compared to the no suction case may be
observed. The spanwise scale of the streaks seems to decrease with increasing
FST intensities according to figure 41. As can be seen in figure 41d) the zero
crossing is an equally good measure of the spanwise scale as the minimum value
of the correlation coefficient. The zero crossing can not give a direct physical
interpretation, but is easier to determine from an experimentalist’s point of
view. All ratios of the minimum value of the correlation coefficient and the
zero crossing of the present data collapse at a value of 1.68± 0.23.
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In figure 42 the evolution of the spanwise scales of the streaks are plotted
again (same data as in figure 41) together with the Blasius boundary layer
thickness evolution. This figure allows a direct comparison between all cases
and confirms previous studies, see e.g. Matsubara & Alfredsson (2001), that
the spanwise scale comes close to the boundary layer thickness for low Tu-levels
in the Blasius boundary layer.

5. Discussion and summary

In the present work a successful experimental set-up to establish the asymptotic
suction boundary layer in a wind tunnel is reported. The main interest of the
study is not to develop a practical suction set-up but to establish a generic flow
situation where the effect due to suction on disturbance development inside the
boundary layer can be investigated. The suction coefficient Cq is fairly high
compared to what is given in the literature as a reasonable value for flow control.

A test plate with a porous surface material was constructed and with a
specially designed leading edge with a short region of non-zero pressure gradi-
ent. The mean flow development from the leading edge of the plate is shown to
be in good agreement with a theoretical boundary layer analysis and when the
asymptotic suction region is reached there is an excellent agreement between
the theoretical and experimental boundary layer profiles.

The stability equations for modal disturbances are derived where the wall
normal mean velocity modifies the standard OS-equation. The effect of this
component as well as the change in mean velocity profile is discussed, and it is
shown that the main effect is due to the profile change.
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TS-waves are generated in the experiment through a spanwise slot and
the development of the waves over the plate without suction is shown to be
in good agreement with standard stability theory and previous experiments.
The same conclusion can be drawn for the asymptotic suction boundary layer
although in that case the waves are strongly damped. The correspondence of
the streamwise amplitude profiles and the phase velocity is good, but the decay
factor predicted by linear stability theory is slightly overestimated compared
to the experimental results. It is not clear why this difference occurs but
four main possibilties for the discrepancy of the decay rate as compared to the
theoretical results have been identified, namely i) the adverse pressure gradient,
ii) the disturbance introduced by the width of the slot which may give small
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deviations of the mean profile, iii) the low wave amplitude, and iv) a possible
obliqueness of the measured disturbance. The adverse pressure gradient that
is present in the asymptotic suction region (due to the suction, see figure 23),
influences the stability characteristics in such a way that the flow would be less
stable. This would bring the theoretical results closer to the experimental ones.
However, the pressure gradient is small and PSE calculations with the present
pressure gradient, show hardly any effect on the stability characteristics (A.
Hanifi, private communication).

Secondly, the profile is affected due to the impermeable streamwise length
of 50 mm in connection with the disturbance slot. A sudden stop of the con-
tinuous suction over some streamwise distance would allow the boundary layer
to grow and the profiles to become slightly disturbed when passing above the
impermeable slot. It is well known that even small deviations can give large
differences in the decay rate. Also the displacement thickness becomes larger as
noted in the measurements. However, this latter effect was taken into account
in the stability calculations by using a higher Reynolds number of Re=382 that
was extracted from the profiles in the region of interest.

Thirdly, one cannot rule out the possibility that the small amplitude of
the wave disturbances in the experiment, may make the measurements suscep-
tible to noise. This would increase the measured level, especially at the more
downstream positions, thereby giving a too low decay rate.

Finally, even though the generated disturbance is two-dimensional the
circumstances with external disturbances and high noise level may cause an
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oblique mode which is less stable than the corresponding two-dimesional distur-
bance. Three-dimensional disturbance analysis reveal that the theoretical dis-
turbance growth approaches the experimental one as β increases (equal around
β=0.25). However, this mode has a phase velocity of 0.70U∞ (compared to
0.48U∞) which in turn simply moves the mismatch to the phase velocity. An
obliqueness can despite this not be excluded as a possible factor. A combina-
tion of all the suggested explanations is the most likely scenario making the
situation rather complicated.

The second part of this study deals with the development of FST induced
disturbances. Direct comparisons between the no suction (Blasius) and suction
cases were made. In the no suction case the results were similar to earlier work,
showing a linear growth of the disturbance energy in the downstream direction
until spot formation occurs. However in the suction case the growth of the dis-
turbance amplitude has been shown to cease, and that present amplitude level
is essentially kept constant throughout the measured region for this particular
suction velocity. In consequence, transition is inhibited for all cases with suc-
tion. The ’constant’ level was found to be proportional to the FST level. Note
that for larger suction rates the disturbance amplitude decays, and for smaller
rates the growth is simply damped (cf. Yoshioka et al. 2002).

The spanwise scale of the streaks is maintained when suction is applied
compared with the no suction case, and this despite a twofold boundary layer
thickness reduction. In both cases the receptivity process at the leading edge is
similar due to the Blasius boundary layer that develops during the impermeable
entry length for both the suction and the no suction case. This might explain
the development of similar spanwise scales in the two studied cases since the
initial spanwise scale is probably set by the receptivity process.

The spanwise wavenumber of the optimal perturbation in a Blasius bound-
ary layer is at β = 0.775 when normalized with the displacement thickness
(see e.g. Andersson et al. 1999 and Luchini 2000). For the asymptotic suction
boundary layer the optimum is at β = 0.53 (Fransson & Corbett 2002), i.e. a
somewhat widened structure inside the boundary layer compared to the Bla-
sius case. This is in agreement with the present experiments even though the
experiment shows even more widened structures inside the boundary layer for
low FST levels (see figure 39). In some recent papers (Andersson et al. 1999;
Luchini 2000; Matsubara & Alfredsson 2001) comparisons have been made be-
tween the optimal perturbation theory and experiments at Tu=1.5 %. The
streamwise disturbance profiles were found to agree well, but initially there is
a mismatch in the spanwise wavelength of the streaks as pointed out by Mat-
subara & Alfredsson (2001). The results of Fransson & Corbett (2002) show
similarily good agreement also for the asymptotic boundary layer when it comes
to the disturbance distribution normal to the wall.
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The experimental and theoretical results support the following hypothesis.
When free stream turbulence of sufficient level is present, disturbances, which
develop into streaks, are triggered inside the boundary layer. The scale of the
triggered disturbances depends on both the level and the scale of the FST.
Higher FST level implies that more energy is present over the whole range of
scales (see figure 6). A certain level is needed to generate disturbances within a
certain scale interval, but if this level is high enough the boundary layer would
preferably amplify disturbances whose scales are close to that of the optimal
disturbance. This is in accordance with the experiments which clearly show
that the spanwise scale of the streaks decreases with increasing level of FST
(as shown in figure 41) approaching the scale given by optimal perturbation
theory. For instance for the Blasius boundary layer in the range x = 200− 500
mm the streak spacing (λ1/2z ) is between 6 − 7.5 mm when subjected to TuE

(see figure 41c) where the theory gives λ1/2z = 5.4− 8.5 mm.
Finally one should bear in mind that for transition it is not only the streak

amplitude and scale that is important. The streaks will not break down to
turbulence without the development of a secondary instability. The triggering
of the secondary instability may be due to the free stream turbulence working
on top of the streaks. In order to obtain a growing instability the streak
amplitude has to be sufficiently large. With the suction rate of the present
experiments it seems that the amplitude of the streaks is not high enough for
the secondary instability to be able to trigger breakdown to turbulence.
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A variational technique in the temporal framework is used to study initial con-
figurations of disturbance velocity which maximize perturbation kinetic energy
in the asymptotic suction boundary layer (ASBL). These optimal perturbations
(OP) excite significant and remarkably persistent transient growth, on the order
of that which occurs in the Blasius boundary layer (BBL). In contrast, classical
modal analysis of the ASBL predicts a critical Reynolds number two orders of
magnitude larger than that for the BBL. As in other two-dimensional bound-
ary layer flows, disturbances undergoing maximum amplification are infinitely
elongated in the direction of the flow and take the form of streamwise-oriented
vortices which induce strong variations in the streamwise perturbation velocity
(streaks). The Reynolds number dependence of the maximum growth, and the
best choice of scaling for the spanwise wavenumber of the perturbation causing
it, are elucidated. There is good agreement between the streak resulting from
OP and disturbances measured in experiments in which the asymptotic suction
boundary layer is subject to free stream turbulence (FST). This agreement is
shown to improve as the level of FST increases.

1. Introduction

A boundary layer subject to a wall-normal flow is encountered in many ap-
plications, e.g. filtration through porous membranes, and laminar flow control
via suction through discrete holes or a permeable surface. Potential reductions
in viscous drag on the order of 60% to 80% provided a strong motivation for
early workers to concentrate on the latter case, for which Meridith and Grif-
fith2 found a general solution in the asymptotic limit of constant suction. Later
Iglisch1 extended this work to the non-similar flow arising before the asymp-
totic state establishes itself, and outlined a method for finding the velocity
profile corresponding to an arbitrary suction distribution.

1Permanent address: KTH Mechanics, SE-100 44 Stockholm, Sweden.
2These references are taken from Schlichting (1979).
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The application of optimal control theory to laminar flow control has
sparked a renaissance in the field (Bewley 2001). An extensive amount of
work has been done on the subject of flow control in general and the in-
terested reader is addressed to Moin & Bewley (1994), Joslin et al. (1996),
Joslin (1998), Lumley & Blossey (1998), Balakumar & Hall (1999), Högberg
(2001), and Lundell (2003), just to mention a few works on both experimental
and numerical control. Pralits et al. (2002) and Walther et al. (2001) have re-
cently outlined methods in which modifications to the boundary layer flow by
spatially-varying steady suction create conditions which stabilize linear distur-
bances. This approach contrasts with earlier work in which the disturbances
themselves are the target of some rationally directed control activity (Abergel
& Témam (1990); Bewley & Liu (1998)).

The difficulties of sensing boundary layer disturbances in an aerospace set-
ting on the one hand, and the inherent complexity of a system capable of
delivering variable suction at an arbitrary position on a lifting surface on the
other, pose formidable implementation challenges with technology available
today. The simple case where the boundary layer is subject to uniform, con-
stant suction, as initially envisioned by the pioneers in the field, is far more
likely to find application in practice. It is also the focus of recent experimental
and theoretical work by Fransson & Alfredsson (2003), who investigated the
linear stability characteristics of the flow using classical spatial stability the-
ory (Drazin & Reid (1981); Schmid & Henningson (2001)). They determined
the behaviour of Tollmien-Schlichting waves, and observed disturbances evoked
by varying levels of free stream turbulence (FST, whose intensity is typically
quantified by the parameter Tu = urms/U∞).

Additional terms in the familiar Orr–Sommerfeld/Squire system describ-
ing linear stability appear as a consequence of the normal velocity component,
however it has long been known that the change in shape of the mean stream-
wise velocity profile is the main reason for the altered stability characteristics
of the flow (Drazin & Reid 1981). That this change is considerable is reflected
by a two order of magnitude increase in critical Reynolds number (Hocking
1975). In turn, this indicates that modal Tollmien–Schlichting disturbances
are significant in flows where the free stream velocity dominates the suction
velocity.

At moderate flow régimes likely to arise in applications, attention must
then turn to other linear growth mechanisms. Since Fransson & Alfredsson
(2003) report the presence of streaks in asymptotic suction boundary layers
subject to FST, it is natural to inquire whether and to what degree this flow
is capable of sustaining algebraic or transient growth, of which streaks are a
characteristic signature (see Westin (1997); Matsubara & Alfredsson (2001),
and their references for a complete review of the phenomenon in the Blasius
boundary layer (BBL)).
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Algebraic growth is a consequence of the non-normality of the governing
differential operator: as the normal modes are not orthogonal, constructive
and destructive interference may give rise to transients before the asymptotic
state described by modal theory sets in (Schmid & Henningson 2001). Butler
& Farrell (1992) pioneered the study of optimal perturbations (OP) in shear
flows; their findings and those of later workers indicate that the initial con-
ditions which maximize perturbation kinetic energy are streamwise-oriented
vortices which produce streaks (variations in the streamwise perturbation ve-
locity). Ever since the transient growth and its linear physical mechanism
was described by Ellingsen & Palm (1975), and Landahl (1980) a number of
works has been done on the topic. Among the earlier ones are e.g. Hultgren &
Gustavsson (1981), Gustavsson (1991), Reddy & Henningson (1993), and Tre-
fethen et al. (1993). For more recent publications on the subject see e.g Luchini
(2000), Reshotko (2001), and Andersson et al. (2001).

In the following, OP are sought for the asymptotic suction boundary layer
(ASBL) using a direct-adjoint technique in the temporal framework. This
method has been employed previously to investigate the Falkner–Skan–Cooke
family of boundary layers (Corbett & Bottaro 2000, 2001). For the ASBL the
parallel flow approach is exact and no local approximations are made. The
results are then compared with experimental measurements made by Fransson
(2001), and good agreement between the computed and measured disturbances
in the boundary layer is observed.

2. Asymptotic suction boundary layer

This work focuses on events in the steady flow of an incompressible fluid over a
permeable flat plate through which a normal velocity is applied, and in partic-
ular to the region where the boundary layer ceases to evolve in the streamwise
direction. The general situation is depicted in figure 1. In this two-dimensional
flow continuity is satisfied directly, provided the streamwise velocity varies only
in y and the wall-normal velocity is constant. The subsequent simplification of
the x-momentum equation permits its direct integration,

U(y) = U∞ [1− exp (y Vw/ν)] , (1)

where U∞ is the free stream velocity, Vw is the normal velocity applied at the
wall, and ν is the kinematic viscosity. Physical solutions are associated only
with the suction case Vw < 0 (see Schlichting 1979; White 1991, and their
references for more details). The displacement and momentum thicknesses,
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Figure 1. Schematic of the flow field over a flat plate sub-
jected to constant suction. The coordinate system used in this
work is shown, along with the corresponding velocity compo-
nents.
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δ1 = −
ν

Vw
and δ2 =

δ1
2

,

are constant, as is the boundary layer thickness. In this flow the wall-directed
convection exactly balances the growth of the shear layer through viscous diffu-
sion. The resulting streamwise velocity profile is fuller than the Blasius bound-
ary layer, as shown in figure 2.

The Reynolds number based on δ1 becomes

R =
U∞δ1
ν

= −U∞
Vw

, (2)

and is used throughout this investigation.

3. Optimization problem

Of interest is the transient behaviour of unsteady three-dimensional velocity
perturbations ũ(x, y, z, t) = [ũ, ṽ, w̃] in a steady incompressible parallel base
flow U(y) = [U, Vw, 0 ], which are described by the Navier–Stokes equations
linearized about the base state. The ASBL is parallel, but to treat the spatially
developing BBL as parallel is an approximation which is only valid as long as
the disturbance varies on a length scale which is much smaller than that of the
base flow.

Since the base flow U has two components, terms involving Vw arise and
the classical Orr–Sommerfeld/Squire equations are no longer valid. These extra
terms can easily be taken into consideration provided the unknowns are scaled
with respect to U∞ and δ1, as Vw can then be replaced by −1/R (cf. expres-
sion 2). Furthermore, the system of linearized Navier-Stokes equations describ-
ing ũ can be simplified considerably by eliminating the perturbation pressure
and introducing the wall-normal perturbation vorticity, η̃ = ∂ũ/∂z − ∂w̃/∂x.

The resulting system for ṽ = [ṽ, η̃] can, upon assuming periodicity in the
stream- and spanwise directions,

ṽ(x, y, z, t) = v(y, t) exp(iαx+ iβz) ,

(with α, β ∈ R the corresponding stream- and spanwise wavenumbers), be
written
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[(
∂

∂t
+ iαU − 1

R

∂

∂y

)
∆− iα

d2U
dy2

− 1
R
∆2

]
v = 0 , (3)

[
∂

∂t
+ iαU − 1

R

∂

∂y
− 1

R
∆
]
η = −iβdU

dy
v . (4)

Here ∆ = ∂2/∂y2 − k2 represents the Laplacian operator, where k2 = α2+ β2,
and the grouping − 1

R
∂
∂y

represents wall-normal convective effects. Perturba-
tions are assumed to be zero at the wall and to vanish far from the wall. As a
consequence homogeneous Dirichlet boundary conditions apply to v, and from
continuity it is seen that additional homogeneous Neumann conditions apply
to v.

Initial conditions v0 = v0(y) for (3) are sought which undergo maximum
relative amplification over a given time span, t ∈ [0, τ ]. The metric used here
is the growth,

G(τ ) =
E(τ )
E(0)

, (5)

or ratio of final to initial perturbation kinetic energy densities,

E(t) =
1
2

∫ ∞

0

(ū · u+ v̄ · v + w̄ ·w) dy =
1
2k2

∫ ∞

0

(−v̄∆v + η̄ · η) dy .

Above, overbars indicate conjugate transpose quantities.
The procedure for determining v(y, 0) = v0 which maximizes the ratio (5)

while satisfying (3) and its boundary conditions is described in detail in Corbett
& Bottaro (2001), to which the interested reader is referred (alternative meth-
ods in the temporal and spatial frameworks are reported in ?Butler) and An-
dersson et al. (1999), respectively). Here it is simply noted that the constraints
on the extremization of G are enforced by introducing Lagrange multipliers,
or adjoint variables, for each of the constraints. An iterative procedure is then
used to maximize G. One starts from an arbitrary guess for v0 and integrates
(3) from t = 0 to t = τ . At this point transfer relations,

a(y, τ ) = − 1
2k2E(0)

v(y, τ ) , b(y, τ ) =
1

2k2E(0)
η(y, τ ) ,
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from v to its adjoint a(y, t) = (a, b)T are applied. The adjoint field’s behaviour
is described by,

[(
∂

∂t
+ iαU − 1

R

∂

∂y
+

1
R
∆
)
∆+ 2iα

dU
dy

]
a = −iβdU

dy
b , (6)

[
∂

∂t
+ iαU − 1

R

∂

∂y
+

1
R
∆
]
b = 0 , (7)

where the boundary conditions on a are analogous to those on v. Integrating
the adjoint system (6) from t = τ to t = 0, another set of transfer relations

v0(y) = −
2k2E(0)2

E(τ )
a(y, 0) , η0(y) =

2k2E(0)2

E(τ )
b(y, 0) ,

provides an estimate for v0. The procedure is repeated until v0 converges,
which requires few iterations in general.

4. Results

Before presenting results, some nomenclature is introduced for clarity in the
discussion to follow. In a mean flow parameterized by R, what distinguishes
an OP for the period t = τ from all other valid initial conditions described by
the wavenumber pair (α,β) is that it maximizes the growth at the end of the
interval, G(τ ). The procedure outlined in §3 produces a global maximum of G
as argued by Luchini (2000).

Below, the words ‘local’ and ‘global’ are applied in a different context to
describe OP: in the following these words will refer to periods of time. The OP
for an arbitrary interval is referred to as a local optimal,

σ(τ ) ≡ max
∀v0(α,β)

G(τ ) ,

whereas the largest growth achievable for perturbations described by a given
wavenumber pair in the same mean flow is termed a global optimal,
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Figure 3. Local and global OP growth in the ASBL ((α, β) =
(0,0.53) at R = 800, the shaded region represents the envelope
of local optimum growth. The grey line is the envelope of local
optimum growth in the BBL ((α, β) = (0,0.65)) at R = 800.
The individual cases are discussed further in the text.

γ = σ(tγ) ≡ max
∀t

σ(t) ,

where tγ is time at which this growth occurs. The largest transient growth
possible at R is experienced by the maximum optimal,

Γ = γ(tΓ) ≡ max
∀α,β

γ(tγ) ,
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Figure 4. Contours of global optimal growth in the
wavenumber plane at R = 800 for a) the ASBL, b) the BBL.
The empty rectangles near the origin are uncalculated areas,
and the empty region about α ≈ 0.3 in the latter case in-
dicates the presence of exponentially amplified disturbances.
Level lines of γ are solid, those of tγ dashed. The increment
between all level lines is 100.

and is a characteristic quantity of the base flow. Its parameters are denoted
tΓ, αΓ and βΓ. Finally, the ‘response’ of an optimal perturbation is the state
of the disturbance at the time for which it is optimal (i.e., τ or tγ or tΓ).

The distinctions drawn above are illustrated in figure 3. The shaded region
represents the envelope of growth attained by local optimals with α = 0, β =
0.53 in the ASBL at R = 800. The three curves entirely within this region show
the temporal evolution of two local optimals and the global optimal, these are
denoted pre-global, post-global and global, respectively. Symbols indicate the
times for which they are optimal, demonstrating that locally optimal growth
seldom coincides with the maximum growth experienced by the perturbation.

The global optimal shown in figure 3 corresponds to the maximum optimal
for the ASBL at R = 800, no other perturbation experiences more algebraic
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Flow β γ tγ
BBL max 0.65 969.9 625.7

pre-max 0.53 352.1 300.0
ASBL max 0.53 633.9 917.7

post-max 0.53 537.7 1500.0

Table 1. Parameterization of the OP at R = 800 whose
growth is shown in figure 3. ‘Max’ denotes a global maxi-
mum, the other fields denote local maxima. In all of these
cases α ≡ 0.

amplification. The solid grey curve is the analogue of the shaded region for
the BBL (α = 0, β = 0.65 at R = 800). Evidently, the ASBL is capable of
sustaining significant transient growth on the order of that experienced in the
BBL. This is in sharp contrast to the situation for modal disturbances: Hocking
(1975) shows that the critical Reynolds number in the ASBL is two orders
of magnitude larger than in the BBL. The strong damping effect of suction
on Tollmien–Schlichting waves evidently does not carry over to algebraically
excited disturbances.

The difference in transient growth characteristics between the ASBL and
the BBL can be attributed to the change in shape of the mean streamwise
velocity profile. The solid black line partially within the shaded area in figure 3
traces the temporal evolution of the global maximum optimal perturbation
(Γ = 636 at tΓ = 1065, with α = 0, β = 0.50) in a hypothetical flow with no
suction but an identical U -velocity profile to the ASBL. Effectively, this exercise
demonstrates that the additional terms due to Vw in (3) and (6), required to
obtain the correct physics, only bring about a small change in the overall result.

Transient growth is not restricted to disturbances infinitely elongated in the
streamwise direction. Figure 4 shows that perturbations exhibiting periodic-
ity in the streamwise direction also experience substantial algebraic excitation.
The rapid decrease in tγ away from the β axis shows that such perturbations
reach their maximum amplitude earlier than those undergoing the most ampli-
fication, as a consequence they may play a significant role in flows subject to
forcing which excites them preferentially.

The physical mechanism behind algebraic growth in the ASBL is identical
to that found in previous work on transient growth (Butler & Farrell 1992; An-
dersson et al. 1999). This is seen from the optimal perturbation velocity profiles
shown in figure 5 and their respective responses at tγ for the local and global
optima of figure 3 (cf. table 1 for a full parameterization of these disturbances).
It is possible to discern that the OP take the form of streamwise-oriented vor-
tices, with perturbation velocities distributed primarily in the crossflow plane.
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800 in the crossflow plane, illustrating the lift-up mechanism.
a) The crossflow components of the OP superposed on the
perturbation pressure field (dark shading corresponds to low
pressure). b) u-contours of the response (dark lines correspond
to low velocity) similarly overlaid on p, at tγ .

In contrast, the response is consistent with a streak, producing a large varia-
tion in streamwise perturbation velocity. A physical explanation for this was
advanced by Landahl (1980), who noted that such initial configurations of per-
turbation velocity are ideally suited to ‘lift-up’ low-speed fluid into relatively
faster flow and vice versa, exchanging momentum and generating a streak, an
effect illustrated in figure 6 for the maximum optimal in the ASBL at R = 800.
Also shown in figure 5 are the perturbation velocity profiles for the BBL (given
by solid lines). It is interesting to compare the global OP in the ASBL and the
BBL, i.e. the dashed and solid lines. Whereas the OP profile maxima for all
ASBL cases are located higher above the plate than their BBL counterparts,
the reverse holds for the u-component of the response. The time evolution of
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all perturbation components of the maximum optimal in the ASBL case is illus-
trated in figure 7. The strong initial v- and w-components decay quickly, while
the u-component grows until reaching its maximum at tγ ≈ 920 (coinciding
with the maximum energy), decaying slowly thereafter. The pressure pertur-
bation, always largest at the surface, peaks rapidly and decays downstream.

With the scaling employed by Gustavsson (1991) to analyse the growth of
the vorticity one can show that tΓ will scale linearly and Γ quadratically with
R (Schmid & Henningson 2001). These trends are confirmed for the BBL and
ASBL in figure 8, where results for several different R have been reduced using
both integral length scales. While either scaling is adequate to collapse the
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Flow Γ× 103 tΓ β

BBL, Butler and Farrell 1992 1.50R2 0.778R 0.65
BBL 1.51R2 0.781R 0.65
ASBL 0.99R2 1.147R 0.53
BBL, ASBL intersection 0.82R2 1.920R 0.53

Table 2. Reynolds number dependence of the maximum
global optimal energy growth (Γ) and the time (tΓ) at which
this appears for the Blasius-, asymptotic suction boundary
layer, and their intersection (see text).

data for a given type of boundary layer flow, it is interesting that the span-
wise wavenumber associated with maximum growth is nearly independent when
scaled with momentum thickness. Similar behaviour has been observed in the
Falkner–Skan boundary layer (Corbett & Bottaro 2000). Considering the fact
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experimental data (urms) at different downstream positions,
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Experimental data from Fransson (2001).

that in the ASBL flow the equations are exact (i.e. no local approximation is
invoked) the collapse of the curves in figure 8 indicates that boundary layer
scales would be appropriate to model the physics of this problem even for R as
small as 200. By transferring this argument to the BBL, this result provides a
firm ground for the asymptotic (boundary-layer-based) analysis by Andersson
et al. (1999) and Luchini (2000). Fitting the results for maximum global growth
at various R, one obtains the coefficients reported in table 2. The minor dis-
crepancy in the results reported for the Blasius case may be due to differences
in optimization method, numerical discretization, or problem formulation.

From table 2 it is evident that in comparison to the case with no suction,
the ASBL supports less algebraic growth and that this takes longer to develop.
However, it is noticeable in figure 3 that as t becomes large more growth is
experienced by the transient disturbances in the ASBL than in the BBL. The
point of intersection between ASBL and BBL growth curves (cf. the©-symbol
in figure 3) scales as tΓ and Γ mentioned previously. As this behaviour occurs
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for all R, it also occurs for all times, including the shorter intervals for which
the parallel flow approximation in the BBL is a good one. The coefficients for
the intersection relation with respect to tΓ and Γ are given in table 2.

The ASBL is one case in which the algebraic growth mechanism presents
the only viable linear route to transition at Reynolds numbers of practical
interest. In this context it is reasonable to compare the optimal response state
to disturbances measured inside the boundary layer (cf. §6 of Luchini (2000) for
more details). Experiments on the ASBL subject to three different levels of FST
were conducted by Fransson (2001). Three different turbulence generating grids
situated upstream of the leading edge of the flat plate were used to generate the
different FST intensities (Tu). The first 0.36 m of the plate is impermeable,
after which uniform suction through a porous plastic plate material causes an
asymptotic boundary layer to develop. The suction is such that R = 347 when
U∞ = 5 m/s, and measurements are carried out using hot-wire anemometry.

The experimentally observed streaks are not stationary in space nor in
time. Thus, from two-point spatial correlation measurements a spanwise cor-
relation function may be extracted and the position between the two probes
where a distinct minimum in the correlation function is observed (which is
quite clear in laminar boundary layers) may be interpreted as half the domi-
nating spanwise wavelength of the streaks (i.e. = π/β). Experimentally, a small
increase of the spanwise scale with the downstream distance is observed and
the scale seems to vary inversely with the level of free stream turbulence (cf.
Fransson & Alfredsson 2003). Figure 9 compares perturbation velocity profiles
of two different OP with measurements at three different streamwise stations
when Tu = 1.4%. The agreement is good between the theoretical predictions,
corresponding to the maximum global optimal for this flow and the global op-
timal at the measured streak spacing, and measurements carried out at three
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x-stations. As might be expected the concordance is slightly better for the
optimal whose spanwise periodicity matches the experimental conditions.

In comparing theory to measurement, differences in free-stream disturbance
amplitude between the BBL and ASBL are apparent (cf. Andersson et al. 1999;
Luchini 2000; Matsubara & Alfredsson 2001). The explanation is simple: in
the BBL, perturbations within the boundary layer grow with x, and since the
data is normalized to unity the free-stream disturbance amplitude decreases.
In contrast, disturbance growth within the ASBL ceases as the asymptotic
régime is approached for that particular suction velocity, and so a similar scaling
causes the disturbance profiles to collapse in the free stream (see Fransson &
Alfredsson 2003).

As mentioned above, the magnitude of Tu appears to have a significant
effect on the measured streak spacing. Figure 10 shows that the theoretically
predicted spanwise wavenumber for the maximum global OP is approached as
Tu increases. In this figure the different β are extracted from the experiments
(corresponding to a particular Tu) and used as an input to the OP-calculation.
It is noteworthy that the maximum achievable growth varies little with large
changes in β, on the other hand tγ decreases dramatically.

It should be pointed out that the receptivity process giving rise to streaky
structures is very complex and far from fully understood. There are many
parameters influencing the process that are hard to control in an experiment
when changing Tu. Amongst them are the integral and Taylor length scales
of the FST that are impossible to keep constant, even when an active grid
(with a variable upstream injection of secondary fluid in order to change Tu)
with fixed mesh width and bar geometry is used (cf. Fransson 2001). Westin
(1997) discusses whether or not any preferred spanwise scale exists that is
most likely to be excited inside the boundary layer for any specific scale in the
free stream. Fransson & Alfredsson (2003) report a decrease of the spanwise
scale inside the boundary layer with increasing Tu for a Blasius flow, and good
agreement of the spanwise scale with spatially predicted OP-scales by Ander-
sson et al. (1999) and Luchini (2000). This study strengthens the hypothesis
that for high enough Tu the boundary layer preferentially amplifies distur-
bances whose scales are close to that of the optimal disturbance. However, it
should be remembered that the free stream scales are important and that the
FST level does probably not set the spanwise scale inside the boundary layer
by itself.

5. Conclusions

The transient behaviour of small disturbances in the asymptotic suction bound-
ary layer (ASBL) has been investigated using a direct-adjoint approach in the
temporal framework which is exact for this parallel flow. Initial disturbance
configurations (optimal perturbations, OP) are found which maximize subse-
quent algebraic amplification of perturbation kinetic energy over a given period.
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Significant algebraic growth is shown to occur, albeit less than that occur-
ring in the Blasius boundary layer, which represents the no suction case. The
difference can be attributed to the change in shape of the mean streamwise ve-
locity profile. On the other hand, algebraically excited disturbances are shown
to persist longer in the ASBL.

In accordance with other results for two-dimensional boundary layer flows,
most growth occurs for disturbances which are infinitely elongated in the stream-
wise direction. These OP initially take the form of streamwise-oriented vortices
which engender streaks, or large variations in the streamwise disturbance ve-
locity. When scaled by momentum thickness, the spanwise wavenumber of the
disturbance experiencing maximum amplification is identical to that for the
Falkner–Skan family of boundary layers.

The numerical results from this work are in good agreement with experi-
mental data obtained by Fransson (2001). That is, the velocity profile of the
streak resulting from the OP undergoing the most growth is in good agreement
with disturbances measured in the ASBL. The agreement is slightly better for
the optimal perturbation whose spanwise wavenumber matches the streak spac-
ing observed experimentally. Streak spacing in the experiment appears to be
dependent on Tu. As the FST level increases, the streak spacing approaches
the numerically determined wavenumber for the disturbance undergoing the
most growth.

The asymptotic suction boundary layer is a suitable model for flows which
may result from active flow control via steady suction (Walther et al. 2001;
Pralits et al. 2002), amongst other applications. This work shows that algebraic
disturbance amplification is a viable linear path to transition in the ASBL, and
that OP for this class of flow must be taken into consideration in applications.
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We study plane channel flow with a homogeneous cross flow through porous
walls mainly with respect to the stability to two-dimensional wave disturbances.
Since the stability of a shear flow depends both on the velocity distribution and
the Reynolds number we partly investigated this flow under the conditions that
the flow Reynolds number was constant. The flow exhibits some interesting and
unexpected stability characteristics. The effect of the cross flow was for certain
parameter regions stabilizing and for others destabilizing. The latter result is
in contrast to previous studies.

1. Introduction

A well known method for controlling wall bounded flows is to use suction or
blowing through a porous part of the wall. Suction is usually associated with
stabilizing the flow in the sense of hydrodynamic stability, and vice versa for
blowing. For instance it is well known that the asymptotic suction boundary
layer is much more stable than the Blasius boundary layer. In the case of a
channel flow with a homogeneous cross flow, i.e. both walls are porous and fluid
is injected and withdrawn with the same rate at the two walls, respectively,
the effect on the stability is less obvious.

The present flow geometry can be found in a wide range of industrial
applications, e.g filtration and flow in artificial kidneys are some important
processes in the biomedical industry. Further, in cooling/heating applications
and in boundary layer control areas the effect of cross flow is of great interest.
Furthermore, the results of the present investigation extends previous studies
and throws a new light on the stability of plane Poiseuille flow with uniform
cross flow.

In previous works on the stability analysis of this flow, e.g. Hains (1971)
and Sheppard (1972), the pressure gradient along the channel has been held
constant, independent of the magnitude of the cross flow. For increasing cross
flow the flow rate along the channel decreases and thereby the flow Reynolds
number. For this case the cross flow has a stabilizing effect of the flow and Hains
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(1967) showed that the unstable mode in plane Poiseuille flow (without cross
flow) becomes completely stable as the velocity profile approaches the linear
profile of Couette flow, which in turn has been proven to be stable for all
infinitesimal disturbances (see e.g. Potter (1966)).

The stability of flows with suction and/or injection have been considered by
e.g. Zaturska et al. (1988), Nicoud & Angilella (1997), Jankowski & Majdalani
(2002). These authors studied continuous suction at both walls (asymmet-
ric solutions), Couette flow with uniform cross flow, and porous channel flow
with suction through the walls considering an oscillatory pressure, respectively.
In Nicoud & Angilella (1997) it was shown that low rates of cross flow has a
destabilizing effect on the flow, whilst high rates act stabilizing.

In the present study we have taken a slightly different approach to the
problem. The stability of a shear flow is both a function of the mean velocity
distribution and the Reynolds number. In the previous studies these two effects
have not been separated, since the flow Reynolds number decreases when the
cross flow increases, assuming the same pressure gradient. Here we chose to
keep either the flow rate or the maximum streamwise velocity constant, and
thereby the flow Reynolds number is also constant. This gives a different picture
of the flow as compared to the previous studies and it is shown that depending
on the parameter values the flow can be either stabilized or destabilized.

2. Theoretical considerations

2.1. Mean flow distribution

The asymptotic suction boundary layer profile is one of few exact solutions
to the Navier-Stokes equations, however it is also possible to obtain an exact
solution for the streamwise velocity profile in a plane channel with uniform cross
flow. The shape of the profile depends on a Reynolds number, Rv = V0h/2ν ,
based on the cross flow velocity (V0 = const) and half the channel height h/2.

The velocity profile can be written as

u(y) = Rv
y + sinh−1(Rv) e−Rvy − coth(Rv)
1− log[R−1

v sinh(Rv)]− Rvcoth(Rv)
, (1)

where u(y) is the velocity profile made non-dimensional with the maximum
streamwise velocity U0, and y (∈ [-1, 1]) is the non-dimensional variable normal
to the walls. For small values of Rv a series expansion of the expression (1)
becomes

u(y) = (1− y2)[1− 1
3
yRv + (y2 − 1

3
)R2v] +O(R3v), (2)
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Figure 1. a) Velocity profiles for laminar plane channel flow
with continuous cross flow when keeping U0 constant. Dashed
line is the parabolic profile achieved when the cross flow is
absent and the dash-dotted indicates the centreline. b) The
influence of Rv on yd. See text for comments.

and it is clearly seen how the parabolic profile is retrieved when Rv = 0. The
velocity profiles are plotted in Fig. 1(a). In the presence of the cross flow the
position of maximum streamwise velocity (this position is denoted by yd in
the following) is displaced towards the lower (suction) wall. In Fig. 1(b) yd is
plotted versus Rv, where the yd-values of the profiles in a) are marked with
circles. Note that for high enough values ofRv the velocity profile will approach
the linear Couette flow profile, except for a thin boundary layer at the suction
wall. In the above expression the streamwise pressure gradient is substituted
by expressing it with the maximum velocity (U0) in the channel. The pressure
gradient is plotted in terms of (U0) in Fig. 2 versus Rv which shows that the
pressure difference has to increase to keep U0=const.

In this study the stability is considered through two other Reynolds num-
bers than what was used by the above references (based on constant dP/dx).
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One of the Reynolds numbers, Re0, is based on a constant U0, whereas the
other, Rem, is based on a constant average velocity (Um=const) defined as

Um =
1
2

∫ 1

−1
u(y)dy.

This latter condition gives an increasing maximum velocity, see Fig. 3(a), with
increasing cross flow velocity. In Fig. 3(b) the influence of Rv on U0/Um is
plotted. For the parabolic profile the value is 3/2, whereas in the asymptotic
limit when Rv → ∞, the Couette flow limit is approached and the maximum
velocity is twice the average velocity. To keep the Reynolds number constant
the applied pressure gradient has to increase with increasing cross flow for both
cases.

2.2. Stability characteristics and numerical procedure

When considering the stability of flows with cross flow the mean cross flow ve-
locity component can also be taken into consideration in the stability equation.
The implementation of this component becomes trivial when scaled with the
maximum velocity in the channel and gives rise to an extra term with respect
to the standard Orr-Sommerfeld and Squire equations (the sign of this term
determines the direction of the cross flow), which gives


(−iω + iαU − Rv

Re
D︸ ︷︷ ︸

extra

)(D2 − k2)− iαU ′′ − 1
Re

(D2 − k2)2


 v̂ = 0 (3)

and


(−iω + iαU − Rv

Re
D︸ ︷︷ ︸

extra

) − 1
Re

(D2 − k2)


 η̂ = −iβU ′v̂, (4)

respectively. Above, D represents differentiation with respect to the wall-
normal coordinate (y), ω is the angular frequency, α is the streamwise and
β the spanwise wavenumbers and k2 = α2 + β2.



144 Jens H. M. Fransson & P. Henrik Alfredsson

The stability analysis is made with a temporal approach implying that
the eigenvalue problem is solved for ω ∈ C or alternately for c = ω/α, being
the phase velocity, v̂ and η̂ the complex eigenfunctions of normal velocity and
vorticity respectively, and with the streamwise wave numbers (α, β) ∈ R. The
boundary conditions chosen are that η̂, v̂, Dv̂ = 0 at both walls.

We have mainly devoted our attention to the least stable modes, i.e. two-
dimensional wavelike perturbations according to Squire’s theorem, resulting
in that β = 0 in most of the calculations. Squire’s theorem can be derived
in the usual way by identification of terms in the two-dimensional and three-
dimensional cases. For a given base flow Rv is constant (cf.eq. 1) and therefore
the extra term does not give any additional condition to Squire’s theorem.

The numerical method used for these calculations was a spectral method
with Chebyshev expansion of the dependent variable. The solution is then
represented by a truncated sum of Chebyshev polynomials according to

v̂ =
N∑

n=0

anT (j)n (y) for y ∈ [−1, 1],

where N is the truncated value, an is the coefficient of the n:th Chebyshev
polynomial and the superscript (j) denotes the j:th derivative of the Chebyshev
polynomials.

The eigenvalue problem was solved using a built-in solver in the mathemati-
cal software Matlab. The accuracy of the code was checked through comparison
with results for plane Poiseuille flow by Schmid & Henningson (2001).

3. Results

For a specific Re and wavenumber (α) the influence of Rv on the stability is
analyzed. For the chosen values, which are (Re, α) = (6000, 1.0), the parabolic
profile is unstable, i.e. ci > 0. For a gradually increasing cross flow the flow
is first stabilized until some critical value is reached. Increasing the cross flow
further destabilizes the flow and it becomes unstable again after a certain value
of Rv is reached. This threshold value will be denoted branch I, since for a
further increasing Rv the flow will enter the stable region again after crossing
branch II. This is seen in Figs. 4(a) and (b), where the least stable mode is
followed. In Fig. 4(a) ci is plotted versus Rv where the branches are marked in
the reduction figure and in Fig. 4(b) the complex plane of the phase velocity
(c = cr + ici) is plotted where the Rv-value is given at the markers.

When keeping Re0 = const. an increasing Rv gives a decreasing Rem.
However, in order to show that the influence of the choice of Reynolds number
is small, Figs. 5(a) and (b) show similar plots (as in Fig. 4) but now with Rem
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= const. It is clear that the effect of the choice of Reynolds number is only
marginal.

The streamwise and wall-normal disturbance amplitude distributions be-
longing to the least stable eigenvalue are shown in Fig. 6 for different strengths
of the cross flow (here given both in terms of Rv and yd). The distributions
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Figure 6. Amplitude distributions of streamwise and wall-
normal disturbance function, |û| (solid lines) and |v̂| (dashed
lines) respectively, for different strength of the cross flow. û
is obtained from the continuity equation together with the
definition of the vorticity, and both functions are normalized
with the maximum value of |û|. Flow parameters (Re, α, β)
= (6000, 1.0, 0).

for the two different Reynolds number based calculations can hardly be dis-
tinguished, thus only the one based on the maximum velocity is plotted. For
small values of Rv (up to 3.4 for these parameters) the flow stabilizes and the
effect on û is a decreasing amplitude of the upper peak (blowing side) as com-
pared to the suction side. The suction side peak also moves towards the wall.
The distribution of the wall-normal disturbance shows a similar trend, i.e. its
maximum is shifted towards the suction side. When increasing Rv further the
streamwise disturbance peak at the blowing side becomes the largest and also

yd Rv Rec αc cr Rv/Rec

0 0 5772.22 1.02039 0.263982 0
0.0332 h 0.2 5967.01 1.01189 0.261378 3.35e-5
0.0665 h 0.4 6607.4 0.99025 0.25399 6.05e-5
0.0989 h 0.6 7902.5 0.95361 0.24148 7.59e-5

Table 1. Critical values for various yd values. (See text)
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Figure 7. Neutral stability curves for various Rv.

the wall normal disturbance has its largest amplitude in the upper part of the
channel. However at Rv ≈ 400 the amplitude of û is the same on both sides of
the channel and as Rv increases further the maximum in û occurs on the lower
(suction) side.

Neutral stability curves for Rv = 0, 0.2, 0.4 and 0.6 are plotted in Fig. 7
to show the movement of the curves for increasing Rv. The shift of the curves
towards higher Rec and lower αc may be observed for increasing Rv. Recall that
for relatively large Rv the stability changes character and therefore the neutral
stability curve will at some Rv change direction and move towards smaller Rec.
The critical values for the chosen cross flows in Fig. 7 are presented in table 1.
These values are calculated with a critical-value search program developed for
accurate determination of these values. The critical value for plane Poiseuille
flow determined here are in agreement with e.g. Schmid & Henningson (2001).

As was shown in Fig. 4 there is a region of intermediate Rv where the cross
flow makes the flow unstable. In order to elucidate this region contour plots of
critical Rv with the corresponding cr for branch I and II in the α-Re plane are
shown in Fig. 8. The solid lines indicates paths of constant critical Rv-values
(a,b) and cr-values (c,d). Note that the calculated range of Re is in between
1000 and 10000. Below a certain Re the flow is absolute stable and the critical
values are given in the end of this section.

In Fig. 9 the neutral stability curve for α=1.0 is plotted in the Re-Rv

plane. For small values of Rv the critical Re increases dramatically from Rec
= 5814.9, marked with (×) in Fig. 9, and the unstable range of wavenumbers
becomes smaller1. Figure 7 shows that a disturbance with α = 1.0 for low

1Note that this is not the critical value for plane Poiseuille flow (5772.22), since that value
is obtained for α = 1.02039.
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Rv (∼ O(1)) becomes stable for all Re up to a certain critical value of Rv,
giving rise to a discontinuity in the neutral stability curve in Fig. 9. When Rv

increases further the flow becomes more unstable and the neutral curve moves
towards lower critical Rv. The ultimate critical values are determined to be
(Rec, αc, R

c
v) = (667.4, 0.858, 38.24) with cr = 0.644. The critical Re-value can

be substantially reduced when cross flow is present and for the ultimate critical
value the cross flow velocity to the maximum streamwise velocity ratio is 5.7%.
The corresponding critical Re is hence lowered by an order of magnitude as
compared to plane Poiseuille flow.

So far, only two-dimensional disturbance calculations have been presented.
The focus has been on the most unstable mode, which can be justified since
Squire’s theorem is still valid despite the cross flow term. However, the stabi-
lizing effect of three-dimensionality for a given β is smaller with increasing Rv.
This is an interesting phenomenon since it would imply that three-dimensional
modes could be realistic competitors to there two-dimensional counterpart in a
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real flow situation. For the particular case (Re, α) = (6000, 1.0) the growth fac-
tor (ci) of the most unstable mode is reduced from 0.00032 to -0.00202 when β
is increased from 0 to 0.5 for Rv = 0, and is located on branch2 A. Considering
the same case but Rv = 10 the reduction is from -0.03190 to -0.03257 for the
corresponding most unstable mode on branch A. It should be noted however,
that at Rv ≈ 1.18 and 0.87 for β = 0 and 0.5 respectively, the overall most
unstable mode has moved to branch P . Another feature that was observed is
that for relatively smallRv the phase velocity of the disturbance is increased for
increasing β. In contrary, for larger values of Rv the phase velocity is reduced
and the change of trend occurs around Rv = 2.

4. Summary

We have shown that plane channel flow with homogeneous cross flow through
porous walls exhibit some interesting and unexpected stability characteristics.
Since the stability of a shear flow depends both on the velocity distribution and
the Reynolds number we partly investigated this flow under the conditions that
the flow Reynolds number was constant. The effect of the cross flow was for
certain parameter regions stabilizing and for others destabilizing. The latter
result is in contrast to previous studies.
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An experimental investigation of free stream turbulence (FST) induced distur-
bances in asymptotic suction boundary layers (ASBL) has been performed. In
the present study four different suction rates are used and the highest is 0.40%
of the free stream velocity, together with three different FST levels (Tu= 1.6,
2.0 and 2.3%). A turbulence generating grid of active type is used and offers
the possibility to vary the Tu-level while the scales of the turbulence remains
almost constant. It is known that FST induces elongated disturbances con-
sisting of high and low velocity regions, usually denoted streaky structures,
into the boundary layer. The experiments show that wall suction suppresses
the disturbance growth and may significantly delay or inhibit the breakdown
to turbulence. Two-point correlation measurements in the spanwise direction
show that the averaged streak spacing decreases with increasing FST-level,
whereas the spacing in the ASBL is more or less constant in the downstream
direction. This is in contrast to what is observed in a Blasius boundary layer
where streaks develop and adapt their spanwise scale close to the boundary
layer thickness. A hypothesis for the present observations is that the observed
scale reflects the disturbances that are fed from the leading edge part into the
boundary layer whereafter the structures only passively are convected down-
stream.

1. Introduction

Boundary layers influenced by high free stream turbulence (FST) are encoun-
tered in many technical applications, especially in various types of fluid ma-
chinery. Boundary layer transition under such circumstances is usually referred
to as bypass transition. Reliable methods for the prediction of bypass transi-
tion is at present limited, (see e.g. Westin & Henkes 1997), mainly because the
mechanisms of disturbance receptivity and growth as well as the breakdown
process are still not fully understood. It is known that FST induces stream-
wise elongated disturbances consisting of high and low velocity regions (streaky
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structures) into the boundary layer (Kendall 1985, 1998; Westin et al. 1994;
Alfredsson & Matsubara 2000; Matsubara & Alfredsson 2001), which seem to
resemble so called transiently growing disturbances, (see e.g. Andersson et al.
1999; Luchini 2000; Fransson & Corbett 2003). For boundary layers subjected
to FST it has been found that the disturbance grow algebraically to a fairly
high amplitude before it breaks down into turbulence and this breakdown may
be caused by a secondary instability on the streaks Andersson et al. (2001).
Westin et al. (1998) pointed out that the continuous forcing by FST along the
boundary layer edge is necessary for the breakdown.

Distributed suction at the wall has long been known to be a possibility to
stabilize laminar boundary layers with respect to instability waves (TS-waves)
in order to avoid or postpone transition. Fransson & Alfredsson (2003) showed
that also FST induced disturbances could be stabilized by suction at the wall,
indicating that the suction is also effective to delay bypass transition.

In the present study these results are extended to other Reynolds numbers
and a parametric study is made in order to understand both the receptivity
to free stream turbulence of the boundary layer as well as the subsequent
disturbance development.

Recent studies (e.g. Matsubara & Alfredsson 2001) indicate that the span-
wise scale of the streaky structures tends towards the local boundary layer
thickness far from the plate leading edge in the Blasius boundary layer (BBL).
In an asymptotic suction boundary layer (ASBL) experiment it is possible to
change the boundary layer thickness and Reynolds number independently. Fur-
thermore in the asymptotic region the boundary layer thickness is independent
of the downstream position. This makes it possible to study the development
of the streaky structures under constant conditions, which is not possible in a
growing boundary layer.

1.1. The asymptotic suction boundary layer

In a laminar boundary layer with wall suction, i.e. the velocity normal to the
wall is negative and uniform at the wall (−V0 , furthermore the normal velocity
is the same throughout the ASBL), the streamwise velocity distribution (U(y))
in the wall normal direction can be analytically obtained and expressed as
follows (see e.g. Schlichting 1979)):

U(y) = U∞
(
1− e−

V0y

ν

)
, (1)

where U∞ and ν denote free stream velocity and kinematic viscosity, respec-
tively. It should be noted that the velocity profile is independent of streamwise
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Figure 1. Schematic of experimental facility. Dimensions are
in mm.

position x, and thus the boundary layer thickness becomes constant. The dis-
placement thickness δ1, momentum thickness δ2, and shape factor H12 are:

δ1 =
ν

V0
, δ2 =

1
2
ν

V0
and H12 = 2. (2)

The Reynolds number based on displacement thickness δ1 is written as:

Re =
U∞δ1
ν

=
U∞
V0

. (3)

As indicated by Eqs. (2) and (3), the boundary layer thickness and Reynolds
number can be independently adjusted by changing U∞ and V0.

2. Experimental set up

The experiments were conducted in the MTL-wind tunnel at KTH and a
schematic of the experimental set up is shown in figure 1. We use a coor-
dinate system with its origin fixed at the centre of the leading edge of the
plate. The x, y- and z-axes were directed in the downstream, wall normal and
spanwise directions. The test section is 7 m long, 0.8 m high and 1.2 m wide
and a horizontal test plate, which spans the whole width of the test section
was mounted with its upper surface approximately 0.25 m from the wind tun-
nel floor. A porous material, 3.2 mm in thickness, covers 2.25 m (length) × 1.0
m (width) of the upper surface of the test plate. Through this porous surface,
uniform suction was applied starting from x=0.36 m, see figure 1. The porous
plate consists of a sintered plastic material with an average pore size of 16 µm
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Figure 2. Variation of free stream turbulence level, Tu, for
the three cases, �: G0, ◦: G1 and •: G2 at U∞=5.0 m/s.

and can be considered hydrodynamically smooth. There is a plenum chamber
below the porous plate which is connected to an electric blower through 18
holes and 9 suction channels. An extra aluminum plate section of 3.1 m was
added downstream of the test plate and was followed by a trailing-edge flap.
The trailing-edge flap as well as the fine-meshed screen placed just upstream
the flap is used to adjust the blockage ratio between the upper and lower sides
of the test plate. This makes it possible to control the position of the stag-
nation line at the leading edge and have it on the upper side of the plate to
avoid separation. For the leading edge, an asymmetric shape was employed to
minimize the pressure gradient. The pressure gradient along the porous part of
the plate without suction was within ∆Cp=±0.01 by careful adjustment of the
test section ceiling. For details of the plate and leading edge (see e.g. Fransson
2001).

Velocity measurements were made with hot-wire anemometry, where the
sensors were single wires made from platinum with a diameter and length of
2.5 µm and 0.5 mm, respectively. The calibration is made in the free stream
against a pitot tube and the calibration function used is King’s law with an
extra term added to take natural convection at low velocities into account (see
e.g Johansson & Alfredsson 1982). The hot-wire probe was mounted on the
traversing mechanism as shown in figure 1. For the evaluation of the span-
wise scale of the streaky structures, two hot wire probes were used for the
simultaneous measurement of the instantaneous streamwise velocity.



Free stream turbulence induced disturbances 157

The free stream turbulence was generated by an active turbulence generat-
ing grid mounted upstream of the leading edge. This grid has a mesh width of
50 mm and is constructed by 13 horizontal and 20 vertical pipes with a diameter
of 5 mm. A total of 254 jet orifices (diameter 1.5 mm) were drilled in the pipes
and point towards the upstream direction. From these jet orifices, secondary
air is ejected into the free stream. The distance from the grid to the plate is 1.4
m, which ensures a fairly homogeneous turbulence at the plate. The turbulence
intensity depends on the injection rate and in the present study three cases are
studied. These are denoted by G0 (without injection), G1 and G2, hereafter.
In figure 2, the downstream variation of the FST level, Tu = urms/U∞ is
shown. In all three cases, the FST level gradually decreases in the downstream
direction. The FST level at the leading edge of the test plate,i.e. at x = 0 m, is
1.6%, 2.0% and 2.3% for the G0, G1 and G2 cases respectively. An advantage
with using the active grid to control the turbulence level is that the turbulence
scales are fairly independent of the injection rate as shown by Fransson (2001)
and for the grid used the Taylor scale is approximately 8 mm.

In the present study we take advantage of the fact that for the asymptotic
suction boundary layer the Reynolds number and the boundary layer thickness
can be changed independently as discussed in section 1.1. In one set of mea-
surements the free stream velocity was set to 5.0 m/s and the suction velocity
V0 was varied in the range of 0–0.4% of U∞. In another set of measurements
the free stream velocity U∞ was varied in the range 2.0–6.0 m/s and the suc-
tion velocity was kept at 0.29% of U∞, which gave a constant Reynolds number
(Re = 350). In that way the boundary layer thickness, but not the Reynolds
number, changes. The characteristics of the boundary layers studied can be
found in Table 1.

Many different methods, which are based on the measured velocity time
signal, have been deviced to determine when the flow changes between laminar
and turbulent conditions (or vice versa) in a transitional flow situation, see
e.g. Hedley & Keffer (1974). In this study the following simple method was used
to distinguish between these different flow regimes. The method is depicted
in figure 3 which in (a) shows a typical signal from the transitional region,

Experiment Case A Case B
U∞ (m/s) 5.0 2.0 3.0 4.0 5.0 6.0
V0/U∞ (%) 0.10 0.20 0.29 0.40 0.29

Re 1000 500 350 250 350
δ1,ASBL (mm) 2.99 1.50 1.03 0.75 2.58 1.72 1.29 1.03 0.86

Table 1. Boundary layer characteristics for the different
ASBL in the present study.



158 S. Yoshioka, J. H. M. Fransson & P. H. Alfredsson

Figure 3. An example illustrating the sorting technique for
laminar and turbulent periods in the transitional region. The
measurement is made at x=1.4 m and the suction rate is 0.1%
of U∞ (=5.0 m/s), and with grid condition G2. (a) veloc-
ity signal from the position of maximum urms (b) high-pass
filtered velocity signal, (c) square of high-pass filtered signal.
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Figure 4. Mean velocity profiles for boundary layers with
(�) and without (•) wall suction, no grid. Also the theoret-
ical distributions for the Blasius (——–) and the asymptotic
suction (– – –) boundary layer profiles are shown. x=2.2 m,
U∞=5.0 m/s

characterized by turbulent spots intermixed with laminar regions. This signal
was Fourier transformed whereafter the contribution below 200 Hz was set
to zero. By an inverse transform the high frequency part of the signal was
extracted which can be seen in figure 3(b). By squaring the high-pass filtered
signal and applying a suitable threshold the turbulent sequencies of the signal
were determined. Note that the vertical axis in figure 3(c) is logarithmic in
order to clearly see the effect of changing the threshold. The method of course
show some sensitivity to the chosen values of filter frequency and threshold
and these values were chosen after a trial and error procedure, but were then
kept constant for all cases. This methodology was used both to determine
the intermittency factor (which was determined at the y-position of maximum
urms) as well as to extract the non-turbulent parts in order to determine the
spanwise spatial scale of the streaky structures in the transitional region.

3. Results and discussion

3.1. Disturbance growth

Typical mean velocity distributions, U(y), without FST at a fixed free stream
velocity of U∞=5.0 m/s are shown in figure 4 at x=2.2 m with (V0/U∞ =
0.20%) and without suction. Note that the distance from the wall is normalized
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Figure 5. Downstream development of displacement thick-
ness for the no suction case (•) and for the four suction ratios
of Case A in Table 1. The lines indicate the theoretical de-
velopment of the displacement thickness for the BBL and the
asymptotic thickess for the four suction cases. There is no grid
and U∞=5.0 m/s.

by the measured displacement thickness. For the ASBL the measured value is
within 3% of the theoretical one (1.45 mm as compared to 1.50 mm) whereas
the discrepancy is larger for the BBL (4.05 mm as compared to 4.42 mm).
The theoretical velocity profiles obtained from the Blasius solution and Eq. (1)
are also shown in the figure for comparison. It is seen that both measured
velocity distributions are in good agreement with theory. Figure 5 shows the
development of the displacement thickness for the cases without any turbulence
grid. In the no suction case the displacement thickness grows roughly as x1/2 as
expected from theory whereas it grows less or decreases for the suction cases.
For suction velocities of 0.2% and higher it seems that the boundary layer
reaches the asymptotic state on the test plate. The boundary layer growth
with FST is similar except for the cases when it becomes transitional.

The random motion of the streaky structures gives rise to low frequency
fluctuations in the streamwise velocity as sensed by a stationary hot wire.
Rms-distributions of the velocity fluctuations in the boundary layer are shown
in figure 6 for the case G1 at x=1.0 and 2.2 m. For x=1.0 m the flow is
still laminar whereas at x=2.2 m (depending on the suction rate) the flow is
either fully turbulent, transitional or laminar. Figure 6(a) shows that with
increasing suction rate the urms-level inside the boundary layer decreases. At
x=2.2 m, figure 6(b), the no suction case shows a distribution that is what to
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Figure 6. Effect of wall suction on the wall normal distri-
butions of turbulent intensity for case G1. (a) x=1.0 m, (b)
x=2.2 m. ———: no suction, – · – · –: V0/U∞=0.1%, – – -:
0.2%, — — —: 0.29%, – ·· – ·· –: 0.40%.

be expected by a typical turbulent boundary layer with a maximum very close
to the wall. Also the maximum level is in the range which one would expect
from a turbulent boundary layer. For V0/U∞=0.10%, the disturbance level is
larger than that of the no-suction case especially in the region close to the wall.
This is due to the transitional state of the boundary layer. It is obvious that a
further increase of suction provides a reduction of urms across the full height
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of the boundary layer, that the peak position moves away from the wall, and
that the peak itself becomes broader.

The downstream evolution of the FST induced disturbance amplitude in
the boundary layer is investigated next. In this case the free stream velocity
was fixed to U∞=5 m/s, and the suction velocity was changed which gives a
variation of the Reynolds number as summarized in Table 1.

In figure 7 the variation of the maximum values of urms measured at each
x position is shown. Figure 7(a) shows the G0 case, and without suction urms

increases approximately as x1/2 until x=2.0 m, and thereafter it increases faster
due to the start of the transition process, i.e. formation of turbulent spots. This
is indicated by the variation of the shape factor, H12, and the intermittency
factor, γ, shown in figure 8(a). Even at the most upstream position, x=0.5
m, the shape factor is H12 = 2.5, which is less than the value of the Blasius
profile, H12 = 2.6. This is due to the presence of the streaky structures inside
the boundary layer. The shape factor is almost constant up to x=1.5 m but
decreases to H12 = 2.3 at x =2.2 m. Corresponding to this decrease, the
intermittency factor γ rises from 0.0 to 0.2.

From figure 7(a) it is obvious that the development of the disturbance am-
plitude in the downstream direction shows less growth when suction is applied.
In fact the growth of urms with downstream distance seems eliminated for a
suction rate V0/U∞ of 0.2%, and urms is decreasing in the downstream direc-
tion, for higher suction rates. The shape factor H12 and intermittency factor
γ for all the suction cases presented in figure 8(a) are close to H12 = 2.0 and
γ = 0.0 which means that the boundary layer state is laminar and transition
is inhibited.

In figure 7(b) the results obtained from the case G1, are shown. With-
out suction, urms first increases with downstream distance as for the G0 case.
The start of the transition occurs around x=1.4 m, which is further upstream
as compared to the G0 case, the highest rms-level is found around x=1.8 m,
whereafter it decreases until the boundary layer has established a fully turbu-
lent region. This development is also clearly demonstrated by the downstream
variation of H12 and γ, shown in figure 8(b).

For the suction rates V0/U∞ = 0.1% and 0.2%, the growth of urms is sup-
pressed as compared with the no-suction case, see figure 7(b). However at the
end of the test region the start of transition is seen both as an increase in urms

and as an increase in γ (figure 8(b)). Furthermore a corresponding decrease in
the shape factor is also seen. For the two highest suction rates (0.29%, 0.40%)
there is hardly any sign of transition, neither in the rms-amplitude nor in the
intermittency result. For the highest suction case V0/U∞ = 0.40% in particu-
lar, urms decreases in the downstream direction in the same way as for the G0
case.
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Figure 7. Downstream evolution of urms-maximum. (a) G0,
(b) G1, (c) G2. ◦, No suction; �, V0/U∞=0.1%; �, 0.2%; ♦,
0.29%; �, 0.40%. Lines are for visual aid only.
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Figure 8. Downstream variation of the shape factor (H12)
and the intermittency factor (γ). (a) G0, (b) G1, (c) G2.
Symbols as in figure 7. Filled symbols, H12; open symbols, γ.
Lines are for visual aid only.
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For the highest FST level (G2) all cases except the highest suction rate
become transitional in the measurement region (figures 7(c) and 8(c)). It is
also clear, especially from the intermittency data, that the start of transition
moves upstream as compared with the G1 case.

3.2. Spanwise scale of streaky structures

The spanwise scale of the streaky structures induced by FST in the Blasius
boundary layer has previously been investigated by Matsubara & Alfredsson
(2001). They showed that the spanwise scale (obtained both from flow vi-
sualization and two-point velocity measurements) changes in the downstream
direction (it may decrease or increase depending on the grid and U∞). They
concluded, however, that the spanwise scale tended towards 3δ1, which is close
to the boundary layer thickness. This also means that a typical structure would
have an aspect ratio close to one in the cross stream plane. So called optimal
perturbation theory for spatially developing disturbances shows that the most
amplified spanwise wavenumber (β) for streaky structures is β=0.775 where
δ1 is the normalizing length (see e.g. Andersson et al. 1999; Luchini 2000). In
terms of the spanwise scale of the structures this implies a spanwise streak
width of 4.1δ1.

Fransson & Alfredsson (2003) also did some measurements in the asymp-
totic boundary layer and compared directly with the Blasius boundary layer.
In that case there was no large difference between the two cases. They noted
however, that the higher the FST level, the shorter the spanwise scale, coming
closer to the wave length of the optimal disturbance. For the ASBL, Fransson
& Corbett (2003) showed that the spanwise wavenumber (β) of the the most
amplified transiently growing disturbance (the optimal disturbance in a tem-
poral context) is β =0.53, where δ1 is the normalizing length. This corresponds
to a spanwise wavelength of 11.8δ1, i.e. a streak width of 5.9δ1.

In the following we will further investigate the spanwise scale of the streaks
in the ASBL, by both changing the Reynolds number as well as the bound-
ary layer thickness at a constant Re. The spanwise scale is determined from
the two point correlation of the fluctuating streamwise velocity simultaneously
obtained at two different spanwise positions but at the same streamwise and
wall normal positions. The wall normal position was chosen as the one with
highest measured rms-level and this was done through an iterative process for
each measurement position. For positions where the flow is laminar this cor-
responds to the position for which the streaks have their maximum amplitude,
however in the transitional region where turbulent spots intermittently passes,
this position would move closer to the wall, since the maximum of the turbulent
fluctutations is closer to the wall (cf. figure 6).

In the transitional region, the laminar periods of the fixed hot-wire were
extracted and only these periods were used to determine the correlation. We
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Figure 9. Two examples of spanwise correlation of stream-
wise velocity obtained for G2. •: full signal, ◦: filtered sig-
nal. The filtered correlation function is shown with a fitted
third order polynomial used to determine the correlation min-
imum. (a): x=1.4 m, V0/U∞=0.10%, γ=0.44, (b): x=2.2 m,
V0/U∞=0.29%, γ=0.34

will call this the conditional correlation. Two typical correlation functions are
shown in figure 9. Both the correlation obtained from the full signal as well as
the conditional correlation are shown. The full correlations show quite different
behaviour in the two cases shown and the reason for this is apparent when the
two hot-wire signals (separated by 8 mm) are viewed in figure 10. In the case
corresponding to figure 10(a) the DC-level of the signals jumps between two
levels, depending on the whether the flow is in a laminar or turbulent state.
In figure 10(b) on the other hand the DC-level of the two flow regimes is
the same. In the former case, even if the high frequency turbulence becomes
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Figure 10. Excerpt of time signals obtained from two hot-
wires separated by ∆z=8 mm which were used to evaluate the
correlations in figure 9. (a): x=1.4 m, (b): x=2.2 m.
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uncorrelated, the signals will still show a high correlation due to the nearly
simultaneous change in DC-level.

The conditional correlation has however, for both cases, a similar appear-
ance with a clear local minimum which gives us confindence in our method.
The spanwise position, ∆zmin, of this local minimum is considered to corre-
spond to half of the spacing of the streaky structures. In order to determine
the minimum in a consistent way a third order polynomial was fitted to the
ten measurement points which were closest to the minimum measured value
and then the spacing was obtained from the minimum of the fitted function.
This was done by an automatic process, however all correlation functions were
checked by visual inspection to avoid occasional erroneous points.

In figure 11 the streamwise variation of the streak spacing ∆zmin is shown.
In the case without suction ∆zmin increases in the downstream direction for
all three FST cases (see figure 11(a)). In the cases of G1 and G2 some down-
stream positions are not shown because in this region transition is completed
and the boundary layer is in a fully turbulent state. The data show that the
streak spacing becomes wider as the boundary layer grows. In the most down-
stream position ∆zmin is slightly less than the boundary layer thickness at that
position. This development is in agreement with the results of Matsubara &
Alfredsson (2001) and Fransson & Alfredsson (2003).

When suction is applied, see figures. 11(b)–(e), the increase of ∆zmin is
suppressed and its value stays fairly constant and falls in the range 7–10 mm in
all suction cases. This suggests that for these conditions ∆zmin is not strongly
affected by the change of the boundary layer thickness due to the different
rates of suction. However, the trend that higher FST gives smaller ∆zmin is
still observed for all cases.

In order to further illustrate this behaviour the data are replotted in fig-
ure 12 where instead the ∆zmin values for each Tu-level are given in different
graphs. In each subfigure the four different suction cases are shown and the
data points are for five different x-positions (x=0.5, 0.7, 1.0, 1.4 and 2.2 m).
First of all it can be seen that the variation for a given suction rate along the
plate (i.e. at different x-positions) is quite small. It is also clear that for all four
different suction cases there is no clear variation, but instead the data strongly
suggest that the spanwise scale is the same (however one should also be aware
of that for Re = 1000 the boundary layer has not reached its asymptotic state,
see figure 5). A difference is however clearly seen for the different Tu-levels,
the higher the Tu-level the smaller the spanwise scale. This is in accordance
with similar findings by Fransson & Alfredsson (2003). A final remark is that
the spanwise scale is close to the Taylor length scale of the grid.

In the above set of measurements the Reynolds number changes with the
suction rate. A second set of measurements was made where the Reynolds
number was kept constant by simultaneously changing the free stream velocity
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Figure 11. Streamwise variation of streak spacing. V0/U∞=
(a) 0, (b) 0.10%, (c) 0.20%, (d) 0.29%, (e) 0.40%. •: G0, ◦:
G1, �: G2. Lines are for visual aid only.
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Figure 12. Variation of streak spacing as a function of dis-
placement thickness (or Re). Same data as in figure 11. Lines
give the average value of all measurements at each Tu. (a)
G0, average value=8.9 mm, (b) G1, average value 8.1mm, (c)
G2, average value 7.5 mm. Symbols mark the five different
measurement positions, •: x=0.5 m, �: 0.7 m, �: 1.0 m, ♦:
1.4 m, �: 2.2 m.

and the suction velocity such that their ratio was constant and hence also the
Reynolds number. In this way the thickness of the boundary layer changes and
gives the possibility to investigate the relationship between the boundary layer
thickness and the streak spacing without influence of the Reynolds number.

For the data in figure 13 U∞ varies from 2.0 to 6.0 m/s and V0 was adjusted
to keep the Reynolds number at Re=350, see Table 1. In order to have the
same turbulence level the injection rates of secondary airflow from the active
turbulence grid for the G1 and G2 cases were tuned to the same Tu-levels at
the leading edge to those for U∞=5.0 m/s cases. However, since there is no
tuning possibility for the G0 case only the G1 and G2 were used for this part
of the study. In the figure also the curve corresponding to the spanwise width
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Figure 13. Streak spacing against displacement thickness at
Re=350. •: G1, ◦: G2, — — —: optimal spacing BBL at
x=0.36 m, ——: optimal spacing ASBL.

of the optimal perturbation for the ASBL has been plotted (=5.9δ1) as well
as the spanwise width of the optimal perturbation for a disturbance which is
assumed to develop inside a BBL up to a streamwise length corresponding to
the length of the solid leading edge (=0.36 m).

For the high free stream velocities (corresponding to small δ1 in the fig-
ure), the measured data are only slightly larger than the optimal values from
the BBL, but for lower free stream velocities the difference becomes large. On
the other hand the measured data comes closer to the optimal scale in the
ASBL when the velocity decreases. A hypothesis explaining this behaviour is
that for the high velocities the displacement thickness at the start of suction
is larger than the final thickness of the ASBL and after the leading edge the
velocity distribution in the near wall region of the boundary layer undergoes
a strong rearrangement. This also means that the Reynolds number based on
displacement thickness decreases about a factor of three. In such a situation it
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seems natural that the disturbances are passively convected downstream with-
out changing the spanwise scale as was also evident from the data in figure 12.
For the U∞=2.0 m/s case on the other hand, the displacement thickness of the
BBL at the start of the suction section is approximately the same as that for
the ASBL. For this case the boundary layer is already at the start of the suc-
tion section close to the final ASBL and the disturbances have the possibility
to develop towards the optimal disturbance over a fairly long distance.

4. Summary and conclusions

The primary motive for the present investigation is to enhance the knowledge of
the boundary layer transition scenario caused by moderate levels of free stream
turbulence (FST) and to investigate how it is influenced by wall suction. The
present experimental set-up is unique in the sense that it allows a change of
the boundary layer thickness while keeping the Reynolds number constant.
Furthermore, the active turbulence generating grid used in this work is able to
maintain (roughly) the same Taylor scale while varying the intensity.

The results reported in section 3.1 show that wall suction may strongly
affect and even eliminate breakdown to turbulence in a boundary layer which
is affected by FST. A well known hypothesis is that in bypass transition the
breakdown to turbulence is caused through a secondary instability developing
on the spanwise inflectional velocity distribution formed by the streaky struc-
tures. It has also been shown that in order to obtain breakdown the streaks
need to reach fairly high amplitudes. Since the growth of the streaks decreases
with suction and their amplitude saturates the level where breakdown occurs
may not be reached.

The experiments clearly show that with an increase of the energy at small
wave numbers in the free stream there is also a decrease in the observed span-
wise disturbance wave length in the boundary layer.

Two observations can be made from the measurements of the spanwise
scale which can be related to recent work on optimal perturbations.

• For the case of constant U∞=5.0 m/s the scale of the structures does not
change significantly over the suction section and is for this case slightly larger
than the optimal scale of BBL at the start of suction. This may be an effect of
that the scales observed mainly depend on the scales which are introduced into
and amplified in the boundary layer near the leading edge. Since the growth
of the streaks are inhibited or even become negative in the ASBL, it may be
possible that the streaks initiated at the leading edge become mainly passive
disturbances which are convected by the flow.

• For a constant Re, but with varying U∞, it seems that two competing
mechanisms are at work. One is that (as above) the disturbances from the lead-
ing edge is passively convected in the downstream direction with the boundary
layer. However in the case when the boundary layer displacement thickness
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does not change significantly as the boundary layer reach the suction section,
the streaks may develop further and their scale is observed to approach the
optimal scale.
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Transition induced by free stream turbulence

By Jens H. M. Fransson Masaharu Matsubara1 and
P. Henrik Alfredsson

KTH Mechanics, SE-100 44 Stockholm, Sweden

Free stream turbulence is maybe the most important source to force by-pass
transition in boundary layer flows. The present study aims at describing the
initial energy growth of streamwise oriented disturbances in the boundary layer
originating from the presence of turbulence intensities between 1.4% and 6.7%,
but also to lay the ground for a prediction model for free stream turbulence
induced transition. For this study three passive and one active turbulence
generating grids were used. The active grid was built in order to vary the
turbulence intensity (Tu) with only a small change of the characteristic turbu-
lence scales. It is shown that the initial energy growth in the boundary layer is
linear in the downstream distance and proportional to Tu2, whereas the tran-
sitional Reynolds number is shown to be inversely proportional to Tu2. The
intermittency in the transitional zone was determined and it was shown that
by scaling the intermittency function with the length of the transition zone a
universal function could be obtained. The length of the transition zone was
found to increase linearly with the transition Reynolds number, however it was
also noted that the length has a minimum value. With these results we were
able to formulate an expression for the spot production rate which has a better
physical base than previous models.

1. Introduction

It is known from both flow visualization and hot-wire measurements that
a boundary layer subjected to free stream turbulence (FST) develops un-
steady streaky structures with high and low streamwise velocity (for reviews see
Kendall 1998; Westin 1997). This leads to large amplitude, low frequency fluc-
tuations inside the boundary layer although the mean flow is still close to the
laminar profile. Several flow visualization photos have been published showing
the presence of streaky structures in boundary layer transition induced by free
stream turbulence (see e.g. Matsubara & Alfredsson 2001), and it is apparent
that the free stream turbulence gives rise to longitudinal structures in the flow

1Permanent address: Department of Mechanical Systems Engineering, Faculty of Engineer-
ing, Shinshu University, Nagano, Japan.
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with a relatively well defined spanwise scale. The streaks are subsequently
seen to develop a streamwise waviness, which develops into turbulent spots.
This sinuous-type of secondary instability can only take place for sufficiently
high amplitudes of the streaks (experimentally when the streamwise rms-value
reaches about 10% of the free stream velocity). Quantitative measurements of
this scenario, especially growth rate and scales of the longitudinal streaks, are
important to obtain accurate physical modeling of these processes and they are
also needed for development of a reliable prediction method.

Today it is known that there exist several routes of transition to turbu-
lence. FST induced transition is only one scenario which by-passes the classical
Tollmien-Schlichting scenario. Over the past two decades several experimental
studies have investigated transition under the influence of FST. Kendall (1985)
observed low-frequency fluctuations in the boundary layer that grows in linear
proportion to x1/2 (i.e. proportional to the laminar boundary layer thickness,
δ). He also observed the occurrence of elongated streamwise structures with
narrow spanwise scales. Also Westin et al. (1994) made detailed measurements
of a laminar boundary layer disturbed by free stream turbulence and showed
among other things that the Blasius profile was only slightly modified, despite
urms levels of about 10 % inside the boundary layer before breakdown. They
also confirmed that the growth of urms was proportional to x1/2. The span-
wise scale of the streaks decreases with increasing turbulence intensity (Tu)
and this scale seems to adopt to the boundary layer thickness after an initial
mismatch (see Matsubara & Alfredsson 2001). Fransson & Alfredsson (2003)
carried out FST experiments in an asymptotic suction boundary layer and
could show that with a reduction of the boundary layer thickness by a factor
of two the spanwise scale of the streaks was maintained, giving rise to a span-
wise widening of the streaky structure relative to the boundary layer thickness.
This result excludes the possibility of the boundary layer thickness itself to be
an upper limit of the spanwise scale, and puts the FST scales in focus for the
determination of the streak spacing.

A correct modeling of the receptivity process is important if theoretical
results are to be compared with experimental ones. The natural transition sce-
nario is complex and there is a limitation by means of measurement techniques
to measure initial disturbances (they are simply too small). In case of FST
induced transition experiments, the best one can do (at the present time) is to
make sure that the characteristc scales generated by the turbulence generating
grid are well documented. In flat plate wind tunnel experiments there are two
essential factors that determines the receptivity process. Firstly, the geome-
try of the leading edge plays a major role (cf. e.g. Klingmann et al. 1993).
A symmetric leading edge gives rise to a pressure suction peak, which results
in a local negative pressure gradient followed by a positive one. This is the
reason for several asymmetric leading edge designs (see e.g. Klingmann et al.
1993; Fransson 2001). Secondly, the nature of the disturbances that effects
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the boundary layer is important. In case of FST disturbances these are de-
scribed by the characteristic scales of the turbulence and the energy-frequency
spectrum.

For reasons mentioned above, experimental results may differ, since there
are many external and experimental conditions that may vary from facility to
facility. To overcome the difficulties in analysing experimental data and to find
clear trends there is a need of experiments with small variations of the FST
scales, this in order to reduce the scale dependence. With an active grid the
scales can be kept almost constant within a fairly large range of FST levels.
The major part of the results in this paper is from such a grid. The present
paper starts with a brief introduction of the experimental setup followed by a
thorough description of the turbulence generating grid. Thereafter, a standard
intermittency estimation technique with an improvement on the threshold de-
termination is described. Finally the results are shown and discussed in terms
of modelling and prediction of transition.

2. Experimental setup

The experiments were performed in the MTL wind-tunnel at KTH where a 4.2
m long test plate was mounted horizontally in the test section. Over the past
decade several studies on FST induced by-pass transition have been reported
from the KTH Mechanics group with roughly the same experimental setup (we
refer to Matsubara & Alfredsson 2001, concerning details of the experimental
setup). Briefly speaking, the test section is 7 m long with a cross sectional
area of 1.2× 0.8 m2, and is equipped with a five degree traversing mechanism
(see figure 1 for a schematic view of the flat plate setup). The maximum speed
is around 70 m/s and the contraction ratio is 9. Recently, the flow quality of
the MTL wind tunnel was re-confirmed after 10 years in operation. At 25 m/s
the streamwise turbulence intensity is less than 0.025% and both the cross flow
turbulence intensities are less than 0.035%. Furthermore, the total pressure and
temperature variation is less than ±0.06% and ±0.05◦, respectively. For full
details of the tunnel the interested reader is refered to Lindgren & Johansson
(2002).
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Figure 1. Schematic view of the experimental setup.
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Grid Bargeom. M (mm) dp (mm) Sg τ (mm) Λ (mm)
A round 36 6 . . . 7±1 . . .
B round 23 3.5 0.28 7±1 . . .
E square 50 10 0.36 7±1 . . .
G round 50 5 0.19 9±1 20–50

Table 1. Passive (A, B, and E) and active (G) grid charac-
teristics. See text for definitions.

The FST was generated by four different grids (three passive, grids (A,
B, E), and one active grid G) mounted at different positions (∆L=1000–1600
mm) upstream the leading edge. The free stream velocity (U∞) was varied in
the range 2–14 m/s and a variation of ∆L provided turbulence levels (Tu =
urms/U∞) in the range 1.4% to 6.7% at the leading edge of the plate. In
section 3 the active turbulence generating grid is described thoroughly and in
Table 1 the characteristics of all four grids are summarized.

The data were collected with hot-wire anemometry of both single- and
X-probe type. The single probe was calibrated in the wind tunnel against a
Prandtl tube and then a modified King’s law (cf. Johansson & Alfredsson 1982),
taking into account the natural convection, was used for curve fitting. For the
X-probe an angle calibration was carried out and a 2D fifth-order polynomial
were fitted to the calibration data, giving U and V as functions of the obtained
voltage pair.

3. Active turbulence generating grid

Free stream turbulence is usually generated with the use of grids, consisting of
circular or square bars. The scale and intensity of the FST is related to the
geometry of the grid, as for instance the mesh width (M) and the solidity, where
a higher solidity gives a higher turbulence level. In order to generate different
FST intensities without changing the set-up in the test section an active grid
was developed. The grid is active in the sense that it ejects secondary fluid jets
into the fluid upstream, i.e. counterflow injection. A study on such an active
grid was carried out by Gad-El-Hak & Corrsin (1974) where both coflow and
counterflow injection was compared with the zero injection case. They showed
through a simple analysis that in the zero injection case the FST intensity is
proportional to the square root of the coefficient of static pressure drop over
the grid. Even though an expression of this coefficient may be derived for the
injection case the relation to the FST intensity could not be derived. Gad-El-
Hak & Corrsin (1974) concluded that the effects of injection are simply too
many and complicated. One would have to consider for instance the effects on
the boundary layers around the grid elements, the turbulence levels near the
jet exits, and the stability of the system of jets.
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Their experimental investigation revealed that coflow injection reduces the
static pressure drop across the grid, hence decreases the effective solidity as
well as the rod wake width. This in turn leads to a smaller turbulence level
at a prescribed distance downstream. In contrast, the counterflow injection
produces a larger pressure drop across the grid with increasing jet strength
which increases the effective solidity and gives larger FST levels. The effective
solidity was visualized by means of hydrogen bubble flow technique. The au-
thors claim that the counterflow injection generates higher turbulence energy
as well as larger scales, both events being associated with the instability of the
jet system. This result is verified with the present active grid.

3.1. Design

The active grid was built to be placed in the test-section of the MTL wind
tunnel at KTH. The grid consists of a rectangular frame with dimension 1.2×0.8
(width×height, identical with the test-section dimensions). Each side of this
frame is separated from the others and consists of a brass pipe with an outer
diameter of 15 mm (wall thickness = 1 mm) and has two inlets for secondary air
in order to reduce the pressure drop inside the grid. A total amount of 33 brass
pipes, 20 vertically and 13 horizontally, were then soldered to the frame. These
pipes has a diameter (dp) of 5 mm (wall thickness 0.9 mm) and are located
to give a mesh width M=50 mm (square) which corresponds to a geometrical
solidity (Sg) of 0.19. The jet orifices have a diameter of 1.5 mm and are in the
present setup directed upstream. The orifices are concentrated to the middle
section of the grid with a total amount of 254 (12 horizontally × 12 and 11
vertically × 10, cf. figure 2 for an illustration of the grid geometry). The
secondary air is supplied to the grid through flexible rubber tubing connected
to the inlets at the frame. The air is driven by a modified vacuum cleaner (1
kW) and the jet strength was regulated by a transformer. In the result part
of the present study the injection rate was varied, but in this section three
different rates (none, moderate and high) will be shown. These are denoted

Jet orifice (d = 1.5 mm)

M0.
8 

 m

1.2  m dp

Figure 2. Active grid (G) with main measures.
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as G0, G1 and G2, which corresponds to an upstream injection of (0, 5, 10)
litre/sec or an individual jet velocity of (0, 11, 21) m/s, respectively. A fine-
meshed screen (mosquito type) was positioned on the downstream side of the
frame in order to improve the homogeneity of the flow.

3.2. Characteristic data of the active grid

3.2a. Turbulence decay. Downstream of the grid the turbulence decays and the
typical power-law decay can be described according to

Tu =
urms

U∞
= C(x− x0)b, (1)

where x0 is a virtual origo, the constant C and exponent b are parameters to
be determined through curve fit to experimental data.

In figure 3 the downstream development of Tu, of the active grid, is shown.
The two different injection rates are plotted together with the zero injection
case for comparison. The grid distance upstream the leading edge was in this
section fixed at x = −1400 mm corresponding to 28M from the leading edge
of the plate. The curve fits are done for Tu with Eq. (1) with b = −0.5, which
can be shown to be the value for fully isotropic turbulence decay. The virtual
origin has been determined consistently by taking the intersection point with
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Figure 3. Turbulence decay for different injection rates. The
curves are fitted to experimental data according to Eq. (1) for
a given b = −0.50.
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the x/M -axis when 1/Tu2 is plotted versus x/M . A new virtual origin was
determined for all three cases and are given in figure 3 together with the value
of the constant C. This figure clearly shows the increase of Tu with increasing
injection rate for all downstream positions from the grid position.

In figure 4 the isotropy measure vrms/urms is plotted as a function of the
downstream distance. The figure shows a nearly isotropic turbulence for all
three cases at x = −400 mm downstream the active grid, which is in agreement
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Figure 5. Pressure distribution vs the downstream distance
for different injection rates (cf. figure 4 for symbols).
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with the rule of thumb that 20M is needed to establish a nearly isotropic turbu-
lence behind a grid. All three cases have an isotropy measure above 0.9 and the
highest Tu seems to achieve the highest degree of isotropy. According to Groth
& Johansson (1988) several investigations have reported that the turbulence
behind a grid retains a small degree of anisotropy over a very large downstream
distance (up to 400M). They report fast return to a nearly isotropic state and
explains that the main source for a persisting anisotropy may be large-scale
anisotropic turbulence on the upstream side of the grid and that the return to
isotropy depends on the macroscale (i.e. integral scale) Reynolds number.

The measurements on the active grid were carried out in connection with a
flat plate boundary layer experiment and a large effort was taken to get a zero
pressure gradient on the plate (starting at x = 0 mm). This gives rise to a small
acceleration in front of the plate. However as can be seen from the pressure
coefficient (Cp) plotted versus the downstream distance in figure 5 the mean
flow condition stays the same despite the injection from the grid. Since the
injection gives rise to a larger blockage the rotational speed of the wind-tunnel
fan is increased to compensate for this such that the same velocity, measured
with a Prandtl tube at a reference position, is obtained.

3.2b. Turbulence scales. In addition to the turbulence intensities generated
by the grid, the FST scales are of interest. In a turbulent flow the scales
ranges from the smallest Kolmogorov scale (which can be determined from the
turbulence decay) to the largest allowed by the geometry.

The smallest energetic timescale is called the Taylor microscale (τt) and
this scale can be estimated directly from the autocorrelation function. Also the
integral (macro) timescale (Λ) can be obtained from the autocorrelation and is
defined as

Λ =
∫ ∞

0

Ruu(t∗)dt∗, (2)

where R(t∗) is the autocorrelation function defined as

Rij(t∗) ≡
ui(t)uj(t′)
ui(t)uj(t)

,

with t∗ = t′ − t. Through Taylor’s hypothesis (frozen turbulence approxima-
tion) the length scales can then be determined and should agree with scales
determined from two point spatial correlation functions. This hypothesis holds
for u/U∞ � 1 and states that u(t) ≈ u(x/U). It is hard to estimate the
Taylor lengthscale from spatial correlation measurements since this needs a
well resolved correlation coefficient curve for small separations. Therefore the
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timescale is usually determined and the use of Taylor’s hypothesis is used to
convert to a length scale.

The Taylor microscale can be defined as

τ2t ≡ 2
u2

(∂u/∂t)2
.

This expression is derived through Taylor series expansion of the correlation
coefficient function (see e.g. Tennekes & Lumley 1997) and was used here to
determine the Taylor length scale. The same procedure as Hallbäck et al.
(1989) was used with the exception of approximating the time derivative of the
signal with ∆u/∆t. First the measured (denoted by subscript m) time scale is
computed according to

τ2tm = 2
u2

(∆u/∆t)2
(3)
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for decreasing ∆t (i.e. increasing sampling frequency) and then the expression

(
τtm
τt

)2
= 1 + β

∆t

τt
(4)

is fitted to data in the region 0.1 < ∆t/τt < 0.35, which was suggested
in Hallbäck et al. (1989) (for increasing downstream distance the lower limit is
though shifted towards higher values). τt is then accurately obtained. Hallbäck
et al. reported that for very small ∆t the effect of electrical noise and insuf-
ficient resolution in the AD-converter gives a too low value of the microscale
which could be observed in the present case as well.

The autocorrelation was calculated from a 60 sec long time signal sampled
at a frequency of 25 kHz. There is a relatively small difference between the three
cases, although a tendency for the highest injection rate to be correlated over
the longest times. It is however clear that a typical correlation time increases
with downstream distance for all three cases. Similar results are obtained
from spatial (in the spanwise direction) correlation measurements using two
hot-wires. At x = 40M the correlation functions clearly show that the scales
increase with increasing injection, whereas further downstream the differences
between the three cases decrease. It is also seen that the correlation extends
over larger distances when x increases which is in accordance with the results
obtained from the autocorrelation function.

In figure 6 the downstream evolution of τ and Λt,z, respectively, are plotted.
For the calculation of Λ through expression 2 the above integration limit was
truncated at τt = 0.1 sec for the autocorrelation and ∆z = 70 mm for the spatial
correlation. The timescale is transformed to the length scale through Taylor’s
hypothesis. The integral length scales obtained from the spatial correlation is
slightly smaller than the one obtained from the autocorrelation, which is in
agreement with theoretical results for isotropic turbulence. The lengthscales
are seen to grow in the downstream direction and the Taylor lengthscale seem
to increase slightly with increasing injection which is in concordance with the
results in Gad-El-Hak & Corrsin (1974).

3.2c. Energy spectra. The energy spectra gives a good overview of the turbu-
lent scales for the different injection rates. If the energy distribution over the
frequencies are the same it is most likely that they also share the same energetic
scales, i.e. turbulent lengthscales. When plotting the energy as f · E versus
the frequency (log f) for the no-injection case it clearly shows that the main
energy content moves towards lower frequencies with the downstream distance,
indicating an increase (in size) of the integral lengthscale (most energetic scale).

The energy spectra (normalized to make the total kinetic energy equal to
unity) for all three injection rates are compared in figure 7 at different down-
stream positions. This figure shows that the variation of the energy distribution



Transition induced by free stream turbulence 189

0 2 4 6
0

0.1

0.2

0.3

0.4

0 2 4 6
0

0.1

0.2

0.3

0.4

0 2 4 6
0

0.1

0.2

0.3

0.4

0 2 4 6
0

0.1

0.2

0.3

0.4

log (f)log (f)

x = -450 mm x = 0 mm

x = 800 mm x = 2200 mm

E *

E *

Figure 7. Energy spectras at different downstream positions
for all three injection rates. (solid) G0, (dashed) G1, and
(dash-dotted) G2. E∗ = f ·E/

∫ ∞
0 f · E d(log f).

is small for the different injection rates, although a slight shift towards lower
frequencies can be seen for increasing injection. It is also clearly seen that the
maxima in the distributions move towards lower frequencies with downstream
distance. A similar increase in the turbulence scales was observed in figure 6.

4. Intermittency estimation procedure

In analysis of transitional flows, discrimination between turbulent and laminar
flow is valuable not only to estimate the intermittency (γ) function but also
to obtain separated statistics of the measured data into laminar and turbulent
cases, i.e. conditional sampling. In order to do this there are two essential deci-
sions that has to be made by the evaluator, i.e. choice of detector (D)/criterion
(C) function, and the determination of threshold value. So far there is no uni-
versal procedure accepted for these two decisions. One difficulty is that the
intermittency estimate is very sensitive to the threshold value, which makes
the choice of method essential and more or less suitable for a given flow.
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Hedley & Keffer (1974) stressed the difficulties in intermittency estima-
tion and summarized many of the different D-functions which had been used
by different researchers. From this paper Kuan & Wang (1990) developed a



Transition induced by free stream turbulence 191

general method to determine the threshold, the so called ”dual-slope method”.
In this method the second derivative of the velocity signal was adopted as
the D-function. The cumulative intermittency distribution as function of the
threshold value appeared to consist of two straight lines of different slopes when
plotted in a semilogarithmic diagram. The intersection of these lines was then
chosen to give the threshold value.

However, with the data presented in this paper the change of slope was
not always that clear, making it difficult to determine the threshold in an
insensitive manner. In our case the original idea in Hedley & Keffer (1974) to
use the region of maximum curvature as threshold value would have been more
appropriate. However, the intermittency estimation of the data in the present
paper is based on standard high-pass filtered velocity signal as D-function and
the threshold value is chosen in a fairly insensitive way. In figure 8 an example
case of the intermittency estimation is illustrated. Figure 8(a) shows a velocity
signal (u) with the absolute value of the corresponding high-pass filtered signal
(uh). A systematically chosen cut-off frequency (fcut) for the filtering was used
in order to develop an automatic γ-calculator, namely; fcut = U∞/(5 · δ99),
where δ99 is the Blasius based boundary layer thickness. This expression of
fcut, which turned out to create a nice detector function, was selected thro-
ugh visual inspection of many different signals and is naturally based on the
convective velocity (∝ U∞) and the streamwise scale (∝ δ99) of the streaky
structures (cf. Matsubara & Alfredsson 2001). The C-function is created by
short-time averaging of the D-function, this in order to get rid of the appearing
zeros in the turbulent regions. Next thing is to determine the threshold value
(u∗

s) that will discriminate the true turbulence from the noise and give an
accurate value of the finally calculated γ. This is done by varying the level
of us in figure 8(a) on the C-function, producing an indicator (I) function
according to:

Ij(ti) =
{

1 when C(ti) ≥ ujs
0 when C(ti) < ujs

here i = 1 : n; and j = 1 : m, where n and m are the number of discrete
points of the signal and the amount of threshold values, respectively. From the
I-function, γ is calculated as function of us which is plotted in figure 8(b) as a
solid line. The dashed line corresponds to

γ(us) = c · exp(αus),

which is fitted to the calculated values between the dotted vertical lines. The
intercept with the abscissa is used as the ”true” value of γ. The corresponding
threshold value (u∗

s) giving the same γ is marked in the figure by a circle.
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5. Results

The presentation of the experimental results are divided into three sections
where the first part deals with the streamwise disturbance energy growth. The
streamwise disturbance level is shown to grow linearly with x and the influ-
ence of the level of Tu is discussed. The second part deals with quantitive
results from the transition zone, obtained from intermittency measurements.
The correlation between a transitional Reynolds number, based on the down-
stream distance from the leading edge, and the FST level is shown to agree
according to a ”recent” theory by Andersson et al. (1999). Finally the present
intermittency data are compared with two previously published models of the
transition zone (Narasimha 1957; Johnson & Fashifar 1994). The universal
intermittency functions according to the above mentioned models are tested
and parameters are proposed based on the present data. A new expression
with a sound physical basis, based on the present measurements, for the spot
production rate is also proposed.

5.1. Disturbance energy growth

In figure 9(a) the streamwise disturbance energy (E = u2rms/U
2
∞), measured at

y/δ∗=1.4 (δ∗ = 1.72
√
xν/U∞ is the theoretical laminar displacement thickness

of the Blasius boundary layer), is plotted as function of the Reynolds number
(defined as Rex = xU∞/ν throughout this paper). A typical curve shows
an initial, nearly linear, growth after which the disturbance energy reaches a
maximum and then asymptotes to a constant level around E = 0.007. By
inspection it is found that the maximum is closely related to the point of
γ=0.5, i.e. at this point the flow alternatively consists of laminar portions and
turbulent spots. The higher the Tu the smaller the Rex for which the maximum
occurs, i.e. transition occurs for smaller Rex. Another apparent feature of
figure 9(a) is that the amplitude of the maximum increases with increasing Tu,
or equivalenly the maximum decreases the higher the associated Rex. There
may be several reasons for the variation of the maximum value with Rex, such
as changes in the mean velocity between the laminar and turbulent parts of
the signal or changes in turbulence intensity with Rex due to change of the
measurement position with respect to the wall in terms of viscous lengths for
the turbulent part of the signals. Another possibilty is simply that transition
occurs at lower streak amplitudes for higher Re. However in order to get a full
understanding of this behaviour further experiments and analysis have to be
made.

In figure 9(b) the measured points are plotted where the x-axis has been
scaled with the interpolated Rex-value for whichE=0.01 or equivalently urms =
0.1U∞. As expected all points fall nicely onto one curve, however the most
interesting feature is that a line fitted through the points will cross the abscissa
at some positive value ofRex. This indicates that there is an initial region at the



Transition induced by free stream turbulence 193

0 2.5 5 7.5 10 12.5 15

x 10 5

0

0.005

0.01

0.015

0.02

0.025

0 0.25 0.5 0.75 1 1.25
0

0.0025

0.005

0.0075

0.01

0.0125

E

Rex

Rex / Rex, urms=0.1U∞

(a)

(b)

Tu

E

Figure 9. (a) Streamwise turbulent energy (E = u2rms/U
2
∞)

as function of Rex for various free stream turbulence levels.
Measurements are made at y/δ∗=1.4. (b) Measured points
in (a) where horizontal axis is scaled with the position where
urms=0.1U∞ (i.e. E=0.01).



194 J. H. M. Fransson, M. Matsubara & P. H. Alfredsson

10
-2

Tu2

10
-8

10
-7

10
-6

10
-4

10
-3

G

Figure 10. Slope of the linear growth in figure 9(a) versus
Tu2. The different symbols (�, +, ©, �) correspond to the
different turbulence generating grids (B, A, G, E), respectively.

leading edge where the disturbances grow slower than further downstream. One
possibility is that this is due to the receptivity process which needs a certain
distance before it is completed and the disturbances have adjusted themselves
to the boundary layer.

Figure 10 shows a measure of the disturbance growth (G = dE/dRex), i.e.
the slope of the linear region of a typical curve in figure 9(a). The slope is
calculated by fitting a straight line in the interval of E between 0.0025 and
0.0125. Here, the lower limit is due to the above mentioned receptivity region
where the disturbance evolution has another slope, and the upper energy limit
is where the intermittency starts to increase from zero (for E <0.0125 γ is
always less than 0.1) and deviation from the linear growth expected. It can
be seen that this quantity (G) is proportional to Tu2. This result strongly
indicates that there is a linear response between the level of FST (forcing) and
the disturbance amplitude (response) in the boundary layer.

5.2. The transition zone

In order to investigate the transition zone further the intermittency function for
the different levels of Tu were determined according to the procedure described
in section IV. It is not obvious how to chose the best y-position to evaluate
the intermittency. The following results were obtained by evaluating the inter-
mittency at a position in the boundary layer where y/δ∗=1.4. However as was
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shown in Matsubara et al. (1998) the intermittency is fairly constant up to at
least y/δ∗=2.

Figure 11(a) shows the intermittency curves for seven different intensities
of the FST (namely, Tu=[1.4 2.2 3.3 3.9 5.3 5.7 6.7]%). They are shown as
function of Rex/Rex,γ=0.5, i.e. they will all cross the point [1,0.5] in the plot.
The figure shows that the relative length of the transition region increases with
increasing turbulence level. Figure 11(b) on the other hand, shows that all the
intermittency curves of the grid G cases that satisfy Tu ≤ 2.6% collapse on a
universal function.

The intermittency functions can now be used to estimate the transition
Reynolds number Retr , which we define to be the Reynolds number for which
γ=0.5. Figure 12 shows the transitional Reynolds number as function of Tu
for all four grids. In both figures the line corresponding to

Rex,γ=0.5 = C · Tu−2. (5)

is also shown, which gives a good representation of the data. This is in line
with the suggestion by Andersson et al. (1999) who proposed that for FST
induced transition the breakdown to turbulence occurs when the streaky dist-
urbances in the boundary layer reach a certain (high) amplitude. They also
assumed that the input energy is proportional to the free-stream turbulence
energy and that the streaky structures grow in amplitude with the optimal
rate. These assumptions lead to that Rex,tr becomes proportional to Tu−2. In
that paper this idea was substantiated by comparisons with experimental data
by Matsubara, Yang and Voke, and Roach and Brierley (for detailed references
see Andersson et al. 1999). The present data give C = 196, which can be
compared with C = 144 suggested in Andersson et al. (1999). The latter was
however, based on only six experimental data points.

The length of the transition zone is also an important variable for modelling
as well as basic understanding of the transition process. In our experiments
this length can be estimated from the intermittency function and we chose the
values of γ=0.1 and 0.9 to define the position where transition starts and ends,
respectively. In the same way we define the middle of the transition zone as
the position where γ=0.5. In figure 13(a) the transition length is made non-
dimensional in terms of a Reynolds number (∆Retr = Rex,γ=0.9 − Rex,γ=0.1 )
and plotted as function of the Reynolds number of the middle of the transition
zone (Rex,γ=0.5). If we now estimate that the x-position where γ=0.5 is the
average value of those positions where γ=0.1 and 0.9, we can introduce a shaded
area in figure 13(a) which denotes non-admissible values of the transition length
Reynolds number. This relation just states that ∆Retr < 2Rex,tr and is arrived
at from pure geometrical reasoning. The data from Grid E and G seem to
collapse on a single straight line wheras the data from grid A and grid B are
above that line and thereby show a slightly longer transition zone. One should
also point out that the line does intercept the vertical axis at a value of about
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3.9× 104, showing that there is a minimum length of the transition zone also
at high disturbance levels. This is of course also related to the fact that there
is a minimum Reynolds number for self-sustained turbulence.

The linear variation of ∆Retr with Rex,γ=0.5 can also be used to determine
an expression for the relative length of the transition region. If we assume that
there is a linear relation as in figure 13(a) this can be expressed as

∆Retr = ∆Retr,min + kRetr (6)

where ∆Retr,min=3.9 × 104 is the intercept of the line with the ordinate axis
and k=0.33 is the slope. With this relation we can easily calculate the relative
length of the start and end of transition such that

x0.9
x0.5

= 1 +
k

2
+

∆Retr,min

2Retr
(7)

and

x0.1
x0.5

= 1− k

2
− ∆Retr,min

2Retr
(8)

As can be seen the relative length tends to a constant value for large
transition Reynolds numbers whereas it becomes larger for small Retr. This
is nicely illustrated in figure 13(b) where the individual values are plotted. As
can be seen the assumption that the position of γ=0.5 is in the middle between
the values of γ=0.1 and 0.9 seems to be fairly accurate.

There has been other attempts to relate the length of the transition zone
with the transition Reynolds number. For instance Dhawan & Narasimha
(1957) and later Narasimha (1984) suggested a power law relation such that

∆Retr = αReβtr. (9)

The values of α and β given in Narasimha (1984) were 9.0 and 0.75, respectively,
where they used the levels of γ=0.25 and 0.75 to determine the length of the
transition zone. However according to Eq. 6 there is a minimum length of
the transition zone and therefore the expression (9) must diverge from the
experimental data for small values of Retr, i.e. high levels of Tu. In figure 14
the same data as in figure 13 are plotted, but now in logarithmic format and
with (∆Retr−∆Retr,min) as function of Retr, where ∆Retr,min=3.9×104. Also
plotted in the figure is Eq. 9 with the values suggested by Narasimha (1984).
First of all it is clear that the present data nicely follow expression (6). It is
also seen that the relation suggested by Narasimha (1984) is close to the data
for large Retr , whereas it diverges for small values as expected. The slighly
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smaller transition zone length obtained with Eq. 9 can be explained as an effect
of chosing a smaller interval of γ values to define the transition zone length.

5.3. Intermittency models

Emmons (1951) formulated a theory which describes the relation between a
spot production function [g(x, y, t)] and the intermittency factor [γ(x)], based
on probability considerations. For a steady two-dimensional flow this relation
becomes:

γ(x) = 1− exp
[
−

∫
R
g(x0)dx0dy0dt0

]
, (10)

where R is the dependence volume (spot sweep volume) assumed to be a cone
with straight generators. However, due to the lack of available experimenal
data Emmons suggested a first and simple assumption about g(x), namely
to be independent of x. Seven years later Narasimha (1957) improved this
assumption based on new observations. These observations suggested that
laminar breakdown in a two-dimensional boundary layer is nearly point-like,
and that the spots originate in a restricted region (see Dhawan & Narasimha
1957 for an extended version of Narasimha 1957). In Dhawan & Narasimha
(1957) they argue that g(x) should have a maximum at some location and they
state that experimentally this location turns out to be the start position of
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and the Reynolds number at the end of transition.
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transition (xt). Assuming a Gaussian distribution to represent g(x) with its
centre at xt, they showed that the best fit of the Gaussian curve to experimental
data is achieved when the standard deviation approaches zero (i.e. nearly a
Dirac delta function, δ(x)). Applying g(x0) = nδ(x0−xt) in Eq. (10) Narasimha
(1957) derived the following expression

γ(x) = 1− exp
[
−(x − xt)2

nσ

U∞

]
, (11)

where nσ/U∞ is assumed constant with n and σ beeing the turbulent spot
production rate per unit length in the spanwise direction and the Emmon’s
dimensionless spot propagation parameter, respectively.

Furthermore, Narasimha (1957); Dhawan & Narasimha (1957) showed that
γ can be expressed as a unique function of ξ according to

γ(x) = 1− exp
[
−AN (ξ +BN )2

]
, (12)

where ξ = (Rex − Retr)/∆Retr, and AN and BN are constants.
Johnson & Fashifar (1994) used a different approach resulting in an ordi-

nary differential equation of γ. Furthermore, they assumed nσ/U∞ to increase
linearly with x resulting in a unique function of γ like Eq. (12) but with the
exponent of ξ appearing as a power of three (instead of two) according to
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γ(x) = 1− exp
[
−AJ (ξ +BJ )3

]
, (13)

where AJ and BJ are constants.
In figure 15 all γ-distributions corresponding to different Tu-levels are plot-

ted and as can be seen they all show a common distribution. In the same figure
both the Narasimha and the Johnson γ-functions are shown as dashed and solid
lines, respectively. The best fit to all data results in (AN , BN) = (1.42, 0.72)
and (AJ , BJ) = (0.60, 1.05), respectively, where the Johnson model is seen to
give the best representation. It can be noted that a slightly larger exponent
than 3 would give an even better fit to the data.

Finally, by introducing Rex in Eq. (11) the Narasimha model may be trans-
formed into a dimensionless form according to

γ(x) = 1− exp
[
−(Rex − Rex,t)2n̂σ

]
, (14)

where n̂ = nν2/U3∞ is a dimensionless spot production parameter. Note that
comparison with Eq. (12) reveals the relation n̂σ ∝ ∆Re−2tr .

An interesting correlation in this context is the one between the position
where transition starts and the Tu-level. For this, one has to define the start
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of transition. Mayle (1991) (see his Appendix B) outlines a method in order
to determine this position based on the function

F (γ) = p
√
(− log(1 − γ))

suggested in Narasimha (1957) (where p = 2). Through straight line curve
fitting in the range 0.1 < γ < 0.9, Rex,t is determined by the Rex where the
line crosses the ordinate axis (i.e. F (γ)=0). An example is shown in figure 16
where F (γ) for both the Narasimha (p = 2) and the Johnson (p = 3) models
are plotted.

This procedure is repeated for all cases (and both models) and in figure 17
the Retr,start is plotted versus the Tu-level together with the Rex where γ = 0.1
(see (+)-symbols). A best fit to the (+)-symbols according to Retr,start =
K · Tum with m = −2 is done, resulting in K = 126, and compared with the
model by Mayle corresponding to (K,m) = (1148,−5/4). From the figure we
can conclude that Rex,γ=0.1 corresponds well with the Narasimha model and
that the Johnson model defines the start of transition slightly earlier (i.e. for
a lower γ-value). It should also be noted that for high Tu the Johnson model
even produced some values of the start of transition that were located upstream
the leading edge of the plate. These are of course excluded from figure 17.

From Eq. 14 it is clear that the slope of the curve corresponds to
√
n̂σ,

which is related to the transition length as stated above. In figure 18(a) and (b)
the non-dimensional spot production rate (n̂σ, obtained from the Narasimha
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model) is plotted versus ∆Retr and Tu, respectively. Figure 18(a) simply veri-
fies the above stated proportionality and the solid line in the figure corresponds
to n̂σ = 1.52∆Re−2tr . With this result, together with Eqs. 5 and 6, it is possible
to write down an expression for the variation of n̂σ with Tu such that

n̂σ =
1.52

∆Re2tr,min

(
1 +

kC

∆Retr,min
Tu−2

)−2
(15)

where the values of the constants have been given earlier but are repeated
here; k=0.33, C=196 and ∆Retr,min = 3.9 · 104. In figure 18(b) we compare
the Mayle (1991) model (n̂σ = 4.7× 10−8Tu7/4) with the present data. Also
included in the figure is the expression obtained from Eq. 15. It is seen that this
expression follows the data better than the Mayle model, and especially seems
to give the correct behaviour for low Tu, where Eq. 15 shows n̂σ to become
proportional to Tu4. For levels of Tu less than 0.5–1 %, TS-waves start to
dominate the transition process and then Eq. 15 ceases to be valid.

On the other hand, high values of Tu give a constant value of n̂σ. This
can be seen as a result of a minimum Reynolds number for transition, i.e. for
high Tu a further increase does not lower Retr and hence n̂σ seems to stay
constant.

6. Summary and conclusions

This paper describes an extensive set of measurements of free stream turbulence
induced transition for turbulence levels ranging from 1.4% up to 6.7% of the
free stream velocity. The following points summarize the results:

• An active grid has been designed and evaluated. This grid makes it
possible to change the Tu-level within a fairly large range without sig-
nificantly changing the length scale of the turbulence.

• A procedure to estimate the intermittency of a velocity signal has been
developed and implemented succesfully to determine flow properties in
the transitional zone.

• In the initially laminar, but disturbed region, it has been found that the
disturbance energy grows linearly as Tu2Rex.

• The transitional Reynolds number was found to vary as Tu−2.
• It was found that the length of the transitional zone has a minimum
value and it increases linearly with Retr. This result puts earlier at-
tempts to model the length of the transitional zone into doubt.

• The relative length of the transitional zone increases with increasing Tu.
• The intermittency function is found to have a relatively well-defined
distribution, valid for all Tu.



206 J. H. M. Fransson, M. Matsubara & P. H. Alfredsson

We may also conclude that the present results seem to confirm that the
initial part of the transition scenario is due to algebraically growing disturban-
ces and that the prediction method of Andersson et al. (1999) rests on a sound
physical basis. The present results, which are based on a larger data base than
used by Andersson et al. (1999), give, however, a slightly different numerical
value of the related constant. Finally we were able to relate Retr and Tu to
the spot production rate in a way which gives a better physical description of
the transitional zone than has previously been done.
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On streamwise streaks generated by roughness
elements in the boundary layer on a flat plate
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An experimental and theoretical investigation aimed at describing the tran-
sient growth of steady and spanwise periodic streamwise streaks in a flat plate
boundary layer is presented. Stable laminar streaks are experimentally gener-
ated by means of a spanwise periodic array of small cylindrical roughness ele-
ments fixed on the plate. The streamwise evolution of the streaks is measured
and it is proved that, except in a small region near the roughness elements,
they obey the boundary layer scalings. The maximum achievable amplitude is
mainly determined by the relative height of the roughness elements. Very low
intensity of the streamwise turbulent fluctuations excludes the formation of a
shedding from the elements. Results are compared with numerical simulations
of optimal and ’nearly optimal’ boundary layer streaks. The theory is able
to elucidate some of the discrepancies recently noticed between experimentally
realizable transient growth and optimal perturbation theory. The key factor is
found to be the wall normal location and the extension of the laminar standing
streamwise vortices inducing the streaks. The differences among experimental
works can finally be explained by the different streak generation mechanisms
dominating in the boundary layer and can be linked to the geometry and to
the ratio between the roughness height and the boundary layer scale.

1. Introduction

In the absence of external free-stream or wall perturbations the boundary layer
developing on a semi-infinite flat plate immersed in a uniform flow of an in-
compressible viscous fluid is two-dimensional (2D) and is well described by the
Blasius solution (see e.g. Schlichting 1979). The 2D Blasius solution is known
to be linearly unstable to viscous Tollmien-Schlichting (TS) waves in a range
of Reynolds numbers. Unstable TS waves modify the basic flow and, when
they exceeds a critical amplitude of the order of 1% of the freestream velocity
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U∞, they experience a secondary instability Herbert (1988) wich finally leads
to fast transition to turbulence. This transition scenario is well understood, at
least in its initial part, and is often called the “classical” transition scenario.
The classical transition scenario is, however, observed only with low levels of
external perturbations. It has been known for many years that the presence
of free-stream turbulence or wall imperfections may lead to strong 3D modu-
lations of the boundary layer and trigger early transition (see Klebanoff et al.
1962; Tani 1969; Kendall 1985a, among others).

Lift-up and streaky structures in 2D boundary layers

In the 2D boundary layer, indeed, small amounts of streamwise vorticity are
very effective in pushing low momentum fluid away from the wall and high
momentum fluid towards the wall. This eventually leads to large elongated
spanwise modulations of the streamwise velocity field called streamwise streaks.
This ‘lift-up effect’ (Landahl 1980) is based on an inviscid mechanism but the
effect of viscosity eventually dominates rendering the growth of the streaks only
transient. Before their final viscous decay, however, the growth of the streaks
may attain values of the order of the Reynolds number (Gustavsson 1991).
The potential of shear flows to exhibit such large transient growths is related
to the non-normal nature of the linear stability operator (see e.g. Trefethen
et al. 1993, for a review). The optimal perturbations, i.e. the perturbation
leading to maximum transient growth, have been computed for a number of
wall bounded shear flows and found to consist of streamwise vortices, while
the most amplified perturbation, optimally forced by these vortices, consists in
streamwise streaks (for a review the reader may refer to the book by Schmid &
Henningson 2001). In the non-parallel Blasius boundary layer, the disturbance
present at the leading edge that are most spatially amplified consists, again,
of spanwise periodic streamwise vortices which have spanwise scales of the
order of the boundary layer thickness at the location where the maximum
amplification is attained (Andersson et al. 1999; Luchini 2000). The most
amplified perturbations consist of streamwise streaks.

Streamwise streaks are therefore expected to appear whenever a boundary
layer is exposed to perturbations with streamwise vorticity. An extensively
studied case is the boundary layer developing in the presence of free-stream
turbulence. In early observations, Dryden (1937) and Taylor (1939) reported
that spanwise modulations of the boundary layer thickness are generated in
the presence of free-stream turbulence. These observations were confirmed and
further detailed by, among others, Arnal & Juillen (1978) and Kendall (1985a)
who coined the term ‘Klebanoff modes’ for the observed streaks, referring to
early observations by Klebanoff (1971). The streaks forced by free-stream tur-
bulence typically slowly oscillate in the boundary layer in a random way; their
rms velocity profiles, however, were found to closely match the shape of the
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steady streaks forced by optimal vortices (Andersson et al. 1999). The occur-
rence of bypass transition observed in the presence of free-stream turbulence
was therefore related to the stability properties of boundary layers modulated
by steady optimal streaks.

Influence of the presence of the streaks on boundary layer stability

The stability properties of the streaky 3D boundary layers may strongly dif-
fer from those of the Blasius 2D boundary layer and depend on the streak
amplitude and shape.

For streaks of sufficiently large amplitude the inflection points, appearing
in the 3D basic flow, are able to support high frequency secondary instabilities
of inviscid nature. Andersson et al. (2001) analyzed the linear inviscid stability
of a family of streaky boundary layers parametrized by the amplitude of the
linearly-optimal vortices which are forced at the leading edge of the flat plate.
They found that the inflectional instability sets in when the maximum streak
amplitude exceeds a critical value of 26% U∞.

The viscous stability of the same family of basic flows considered by Ander-
sson et al. (2001) has been recently explored in the case of moderate amplitudes
of the streaks (< 26%U∞), which are therefore stable to inviscid instability. It
was found (Cossu & Brandt 2002; Brandt et al. 2003; Cossu & Brandt 2003)
that, in that case, the streaks have a stabilizing effect on the viscous Tollmien-
Schlichting waves. It was therefore suggested to artificially force such moderate
amplitude steady streaks in the Blasius boundary layer in order to delay the
onset of the viscous TS instability, and the transition to turbulence to larger
Reynolds numbers.

Experimental generation of steady streaks

The generation of steady vortices in the flat plate boundary layer has retained
the attention of experimentalist since the early 1960’. Most of these investiga-
tions aimed at analyzing the effect of streamwise streaks on the boundary layer
stability.

In the experiments of Tani & Komoda (1962) and Komoda (1967), small
wings, located outside the boundary layer, were used to generate steady stream-
wise vortices which, upon entering the boundary layer, led to the development
of steady spanwise periodic modulations of its thickness, i.e. to steady stream-
wise streaks. The circulation of the forced vortices was tuned by changing the
incidence of the wings. Streamwise vortices may also be introduced by pertur-
bations applied at the wall of the flat plate for instance by spanwise periodic
blowing and suction through wall slots (see e.g. Kachanov & Tararykin 1987,
among many others). Spanwise periodic arrays of roughness elements have also
been proven very efficient to introduce steady streamwise vorticity in boundary
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layers. Roughness elements would probably be simpler to manifacture in case
of industrial applications based on the generation of streaks.

Bakchinov et al. (1995) used a spanwise periodic array of roughness ele-
ments of rectangular section, placed at the wall at some finite distance from
the leading edge, to generate large amplitude streaks. For low freestream ve-
locities (U∞), the amplitude of the streaks was moderate and the streaks were
stable up to 20%U∞. Far downstream of the roughness array these streaks
were periodic, almost sinusoidal in the spanwise direction, and with a wall nor-
mal perturbation profile reminiscent of the Klebanoff mode and of the optimal
streak shape, having however its maximum at η ∼ 2δ, where δ =

√
νx/U∞ is

the local boundary layer reference scale at the streamwise station x. The high
speed parts of the streaks were located in spanwise correspondence with the
roughness element, while the low speed streaks were observed to be located in
correspondence to the free space between the roughness elements.

White (2002) investigated small amplitude (stable) steady streaks gener-
ated by using a spanwise periodic array of roughness elements of circular section
and very small height. The far downstream shape of the streaks considered by
White is also periodic in the spanwise direction and ‘nearly-optimal’ in the wall
normal direction with, again, a maximum at 2δ. However, in that experiment,
the high speed streak is found to correspond to the space between the rough-
ness elements while the low speed streak is situated in correspondence to the
roughness elements. White (2002) carefully analyzed the streamwise evolution
of the streaks, starting near the roughness array, and compared his results with
the characteristics of the optimal streaks predicted by the theory when opti-
mal vortices are forced at the leading edge. He found that the experimental
streaks differ from the optimal ones in, at least, two important features: (a)
the streamwise position at which the peak amplitude is attained is found to be
much upstream of the value predicted by optimal theory; (b) the wall normal
position of the maximum perturbation velocity of the streak is closer to the
wall compared to the prediction by transient growth theory.

Motivation of the present study

The initial motivation of our study was to experimentally verify the stabilizing
action of streamwise streaks on TS waves found by Cossu & Brandt (2002) for
optimal streaks of moderate amplitude (from 10% to 25%U∞). White (2002)
results showed, however, that the streaks generated by roughness elements are
likely to differ from optimal streaks in some important features. The present
investigation is therefore aimed at carefully detail the evolution of streaks of
amplitude larger than that considered byWhite (2002) and answer the following
relevant questions:

1. Do the suboptimal trends reported by White (2002) for very low ampli-
tude streaks apply also to larger amplitude streaks?
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2. What are the main factors affecting the suboptimality of the experimen-
tal streaks?

The answer to the first question is important because the generation pro-
cess of the large amplitude streaks reported by Bakchinov et al. (1995) seems to
differ from that of small amplitude streaks reported by White (2002): respec-
tively the low or the high speed region of the streaks are found far downstream
behind each roughness element in these two experiments.

It is necessary to answer the second question if one wants to compare the
stability of experimental and numerical streaks. Understanding the reasons
leading to suboptimality could allow either to experimentally generate optimal
streaks, either to numerically reproduce the experimental suboptimal streaks.
For instance, it is not even a-priori known if the experimentally generated
streaks verify the boundary layer scalings away from the roughness elements
and in that case it would be inappropriate to compare them with optimal
streaks which are solutions of the boundary layer equations.

In order to answer these questions we conducted an experimental study and
then we compared the results with numerical simulations of optimal and ‘nearly
optimal’ boundary layer streaks. The article is therefore organized as follows:
In section 2 we describe the experimental setting and the particular parameters
we choosed to generate the streaks. In section 3 we present the evolution of the
experimentally generated streaks and we prove that they verify the boundary
layer scalings except near the roughness elements. We further check whether
nonlinear saturation effects are important at the considered amplitudes. In
section 4 we numerically investigate the main factors leading to suboptimal
behavior and compare the numerical results to the experimental findings. In
section 5 we discuss the results and we finally summarize the main findings in
6.

2. Experimental setup and parameters

Test facility

The experiments were carried out at KTH Mechanics in the MTL-wind tunnel ,
which has a test section of 7 m in length, 0.8 m in heigh and 1.2 m in width, and
the maximum speed is 70 m/s. After ten years in operation the flow quality of
the MTL tunnel has been re-confirmed and the result is collected in an internal
technical report by Lindgren & Johansson (2002). At 25 m/s the streamwise
turbulence intensity is less than 0.025% of the free stream velocity and both the
cross flow turbulence intensities are less than 0.035%. The tunnel is equipped
with a heat exchanger in the return circuit just after the fan which is able to
maintain the variation of the total pressure and the temperature below ±0.06%
and ±0.05◦, respectively. Furthermore, for boundary layer measurements the
tunnel is equipped with a computer controlled five degree of freedom traversing
mechanism. A schematic of the experimental set-up is shown in figure 1. A 4.2
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Figure 1. Schematic of the experimental set-up.

m long flat plate was mounted horizontally in the test section. The plate is the
same as described in Klingmann et al. (1993) and has an asymmetric leading
edge, in order get a short pressure gradient region without any suction peak at
leading edge region. Further, a trailing edge flap is also used in order to regulate
the stagnation streamline. The roof of the test section is adjustable making it
possible to change the pressure gradient. A zero pressure gradient with a Cp-
variaton of less than ±0.01 was achieved for this set-up. A cartesian coordinate
system is introduced (cf. figure 1). The origin is located on the centreline at
the leading edge with x−, y−, and z-axis directed along the streamwise-, wall
normal-, and spanwise direction, respectively.

Experimental setting

The streaky boundary layer was generated by means of roughness elements
made of brass, obtained by cutting slices of a cylinder rod. Several preliminary
tests were carried out in order to find the proper shape and dimension for the
elements to generate stable and high amplitude streaks. In order to simplify
these experiments the roughness elements were positioned in the middle of the
plate where the boundary layer is substantially thicker. To get a good spanwise
homogeneity 9 elements were periodically pasted on the plate surface. The
experimental conditions are shown in the photograf of figure 2 with relevant
dimensions. Here, δ is the boundary layer scale corresponding to

√
xν/U∞, k is

the height of the roughness element, d the cylinder diameter, ∆z is the spacing
of the elements, and xk is the distance from the leading edge where the elements
were located. A single hot-wire probe operating at constant temperature was
used to measure the streamwise velocity component (here denoted u). The
probe was built at KTH Mechanics and was made of a 2.5 µm platinum wire
with a distance between the prongs of approximately 0.5 mm. The calibration
function proposed by Johansson & Alfredsson (1982) was used, where an extra
term is added to King’s law for the compensation of natural convection. This
makes it suitable for low speed experiments. No temperature compensation is
required due to the presence of the heat exchanger and temperature control
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Figure 2. Photograf of the experimental set-up, showing the
cylinder roughness elements. k = height, d = diameter, and
∆z = roughness element spacing.

system. The probe is operated at 50% overheat and is calibrated against a
Prandtl tube in the free stream.

Choice of parameters

Wind-tunnel experiments were performed at different free stream velocities,
viz. 5, 6, 7 and 8 m/s while keeping the same height, streamwise and spanwise
locations, and diameter of the roughness elements. This is a way of regulating
the streak amplitude since a change of the velocity influences the height to
the boundary layer scale ratio (k/δ). A stronger spanwise modulation of the
boundary layer flow is achieved with an increase of velocity and vice versa.
When k/δ or alternatively the roughness element Reynolds number (Rek =
u(k)k/ν) becomes too large transition to turbulence occur. The critical value
of Rek for transition depends on the roughness element geometry and the flow
quality of the wind-tunnel, i.e. the background disturbance level, and can be
found in the range 300-1000 (cf. Klebanoff et al. 1992).

The selected spanwise distance between the roughness elements (∆z) sets
the generated spanwise scales. However, a large ∆z will induce an extra streak
in between the roughness elements and initially there will be a mismatch be-
tween ∆z and the spanwise wavelength of the energy dominating mode. In
section 5 two different streak generation mechanisms will be discussed, and the
dominating one depends on the roughness geometry, k/δ and presumably the
front area (or rather z-width) of the roughness element. The dimensionless
spanwise wave number is often defined as β = β∗δ, where β∗ = 2π/∆z. How-
ever, as mentioned above ∆z does not necessarily correspond to the dominating
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mode, which makes the definition delicate since comparisons are often made
with the β predicted by optimal perturbation theory in where the spanwise
modulation of the base flow only consists of one mode.

The Reynolds number based on the local Blasius scale (δ) at xk (Reδ =
U∞δ/ν) is a relevant stability parameter, and the critical value for amplify-
ing Tollmien–Schlichting waves is well known to be around 300. All above
mentioned parameters for the different flow cases are summarized in table 1.
Numerous test-measurements with the goal to generate stable, high amplitude,
and sinusoidal streaks, were made before the particular parameters in table 1
were chosen.

3. Experimental results

Perturbations induced by the roughness elements

Evolution in physical space. To follow the initial stage of the streak develop-
ment, results for the configuration with U∞ = 7 m/s are first presented. The
stationary streamwise velocity perturbation is shown in the cross-stream (y, z)
plane at different streamwise stations in figure 3. The perturbation velocity is
defined as the difference of the local velocity U(y, z) to the spanwise-averaged
profile U(y). Contours of constant streamwise velocity are also shown for com-
parison. Note that a region of large excess velocity is formed further down-
stream (x ≥ 70 mm) straight behind the cylinders, located at z = 0 and 8
mm. The decay phase of the streaks is shown in the contour plot 500 mm
downstream of the leading edge. The spanwise profiles change into almost si-
nusoidal curves as the disturbance evolves downstream and the details of the
flow induced just behind the roughness elements are lost. As observed also
in White (2002), a complicated disturbance is found in the region closest to
the roughness array, in which the wake of each element is transformed into
the periodic spanwise modulations of the streamwise velocity observed farther
downstream. In the present experiments as well as in White (2002) standing
cylinder roughness elements have been used, however, in the former case a

x∗
k k∗ d∗ ∆z∗ U∞ (m/s) δ∗ k∗/δ∗ Rek Reδ β

40 777 2 8 5 0.35 2.24 180 115 0.272
40 777 2 8 6 0.32 2.46 231 126 0.248
40 777 2 8 7 0.29 2.65 285 137 0.230
40 777 2 8 8 0.27 2.84 340 146 0.215

Table 1. Summary of the physical parameters. Parameters
marked with an asterix are dimensional quantities in (mm).
In subsequent text the (∗)-symbols are omitted for simplicity.
See text for further details.
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Figure 3. Streamwise evolution of positive and negative
streamwise velocity perturbations (solid and dashed lines re-
spectively). Dotted contour lines (0.1 U∞ of increment) cor-
respond to constant streamwise velocity. U∞ = 7 m/s.

high speed streak is formed straight behind the element (in agreement with
Kendall 1990; Bakchinov et al. 1995) and in the latter case a low speed streak
is achieved (in agreement with Gaster et al. 1994; Joslin & Grosch 1995). An
easy explanation of the contradictory observations is that there are different
dominating generation mechanisms present (cf. section 5 for an extension of
the subject). However, both mechanisms give rise to a transient growth of the
energy in the downstream distance.
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In figure 4 urms-profiles, based on the spatial U(z)-distribution, for three
different downstream locations are compared. The positions are x = 55, 70, and
200 mm corresponding to 19, 45 and 206 roughness element heights downstream
of the elements. It is clear from the figure that for this particular case the
roughness elements induce a single peak in the urms-profile, despite the fact
that it is possible to distinguish a shift in the locations of maxima in the high
and low speed streaks (see figure 3 x = 55 mm). The reason for not observing
the two peaks in the urms-profile is because all modes are superposed and
the outer peak is hidden in the summation. White (2002) observed a two
peak urms-distribution as far downstream as 66 roughness element heights,
which is explained by the fact that the three strongest modes in that particular
experiment all were of two-peak nature (cf. figure 6a) of that paper). Another
observation of figure 4 is that the peak position is seen to move away from the
wall in terms of y/δ.

Evolution of the spanwise harmonics. Normalized spanwise velocity profiles at
the wall-normal position of maximum perturbation are displayed in figure 5.
Here, the evolution into an almost sinusoidal modulation of the base flow in the
downstream direction is illustrated, and the higher harmonics induced straight
behind the roughness elements are lost. Fourier transform of the considered
profiles is also shown in figure 5. The dominating wavelength is dictated by
the roughness array periodicity already at x > 70 mm or beyond 45 rough-
ness heights downstream of the elements. Relatively small energy peaks at the
higher harmonics of the fundamental wavelength (λ0 = 8 mm) can also be seen.
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Figure 5. Streamwise evolution of the mean spanwise veloc-
ity profile taken at the wall normal position corresponding to
the disturbance peak. a) spanwise velocity distribution nor-
malized to ±1, and b) spanwise power spectral density func-
tion. The normalization is such that ∗ corresponds to max∀x.
U∞ = 7 m/s.

These harmonics reach their respectively energy maxima upstream the funda-
mental mode which is in concordance with theory and the results by White
(2002).

In the present case, the spanwise wavelength of the streaks is unambigu-
ously determined by the distance between the roughness elements (see figure 5).
In White (2002) and White & Ergin (2003), on the contrary, the spanwise di-
mension (i.e. the diameter) of the roughness elements determines the dominat-
ing spanwise scale of the disturbace downstream. In White (2002) the spacing
of the roughness elements is 12.5 mm and the fundamental spanwise wave-
length is half of this value, while in White & Ergin (2003) similar cylindrical
elements (diameter of 6.35 mm) are placed 19 mm apart. In the latter case the
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most energetic wavelength is one third of the spacing. For both experimental
configurations the dominating scale is about 6 mm, remarkably close to the
spanwise width of the elements and to the width of the induced wake.

In figure 6 the Power Spectral Density distributions in the wall normal di-
rection is shown for different modes. Figure 6a) shows that the only mode with
a two peak distribution is the fundamental mode. However, a superposition of
the four modes in a) agree well with the urms-profile (see figure 4) at the same
x-position since the outer peak is hidden by the other modes, this was men-
tioned earlier and is illustrated in figure 6b). Figure 6c) shows the evolution
of the fundamental mode in the downstream direction and at x = 70 mm or
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at 45 roughness element heights behind the elements the two peak wall normal
distribution has disappeared. Finally, in d) the fundamental mode is compared
with the urms-profile at the same x-position, namely x = 200 mm, and shows
excellent agreement. This implies that there are no higher harmonics present
any longer and that non-linear effects are negligible.

Streamwise evolution of the streak amplitude. In this section, we consider the
downstream evolution of the streaks for the four cases under consideration, i.e.
U∞ = 5, 6, 7 and 8 m/s. We have shown that, except the region just down-
stream of the roughness, most of the perturbation energy is in the fundamental
harmonic and we can therefore consider the streak amplitude in physical space.
The streak amplitude AST is defined as the wall-normal maximum of the peak-
to-peak difference between the streamwise velocities in the low- and high-speed
regions, i.e.

AST = max
y
{U(y)high − U(y)low}/2

where U(y)high and U(y)low are the velocity profiles in the high- and low-speed
regions, respectively.

The streamwise evolution of the amplitude AST is displayed in figure 7a).
For the same experimental set-up, stronger streaks are induced by increasing
the free stream velocity. This is due both to the increase of the cylinder height
relative to the local boundary layer displacement thickness and to the increased
velocity hitting on the elements. Further, it is observed that the location of
maximum amplitude also moves to larger distances from the leading edge when
increasing the free-stream velocity.

In figure 7b) the downstream evolution of the wall-normal position of the
maximum of the steady perturbation is shown for the four cases. The dotted
line represents the theoretical value obtained for the optimal perturbation at
the leading edge of the flat plate y/δ = 2.2 (see Andersson et al. 1999; Luchini
2000). In all four cases the position of maximum perturbation is seen to move
upwards in the boundary layer which is in concordance with the experiments
by White (2002).

Boundary layer scaling and linearity of the streaks

The data in figure 7 are here rescaled according to the boundary layer affinity
property to verify whether the experimentally observed streaks also satisfy this
scaling property. This property is based on th eassumption of slow streamwise
variation of the flow and it is therefore not valid in the vicinity of the rough-
ness elements. However, the downstream evolution of the perturbations can
still be described by the boundary layer equations. As shown in Andersson
et al. (1999) and Andersson et al. (2001), steady streamwise streaks obey the
boundary layer approximation and are therefore Reynolds number indepen-
dent. This results in a scaling property that couples the spatial scales of the
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Figure 7. Streamwise evolution of the streaks: a) Streak am-
plitude AST versus x (mm). b) Wall-normal position of the
maximum streak amplitude normalised with the local Blasius
length scale δ. The symbols (�), (�), (◦), and (�) correspond
to U∞ = 5, 6, 7, and 8 m/s, respectively.

problem to the free stream velocity and viscosity, implying that the same streak
profile is obtained for every combination such that xβ∗2/U∞ · ν = constant.
Since β∗ and ν are kept constant in the present experiment, the downstream
evolution of the streaks is expected to be proportional to U∞. This scaling
implies that the same streak can be observed if the relevant flow parameters
remain constant when scaled with the local boundary layer thickness. As a
consequence, one can define a streamwise coordinate X such that the spanwise
wavenumber β, scaled with the local δ, is the same at each station X for the
four cases depicted in figure 7 and obtain the same streamwise evolution pro-
vided the scaling property holds. The streamwise coordinate X can be freely
chosen. In the present case it is selected such that β = 0.45 at X = 1 and the
results are shown in figure 8, where the streak amplitude AST is normalised
with its streamwise maximum. The collapse of the different curves is remark-
able despite the local β at the position of the roughness elements slightly differs
for the different realizations. It should also be noted that the four configura-
tions considered in figure 7 differ in the value of k/δ, i.e. the relative height
of the roughness elements. In principle, this would break the suggested scaling
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property. However, it does not affect the curve collapse in the plot, where the
amplitude of the streak is divided by its maximum value. Therefore, it may be
inferred that the parameter k/δ mainly determines the maximum achievable
streak amplitude. The maximum amplitude is attained for a local β of about
0.45 in all cases and the evolution of the wall-normal position of the maximum
perturbation is also in agreement among the different experimental configura-
tions (figure 8b). From the collapse of the curves we can also conclude that
the streaks behave linearly and that the nonlinear interactions are not strong
enough to induce the upstream shift of the location of the maximum amplitude
noted in the simulations by Andersson et al. (2001) for high-amplitude nonlin-
early saturated streaks. Hence, the differences between optimal perturbation
and experimentally generated streaks cannot be explained by nonlinearities,
as expected by the results in White (2002) where the importance of nonlinear
terms can be ruled out by the small amplitudes of the measured streaks.
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4. Suboptimality of the experimental streaks

The streak amplitude curves in figure 7 show only a qualitative agreement
with the predictions from transient growth theory: the maxima occur farther
upstream, thus at lower local β, as observed also by White (2002), and the decay
downstream of the maximum is faster than for the optimal disturbances. In
order to understand the physical reason for the observed differences, numerical
simulations are performed on a simple theoretical model. The model is based
on the work by Andersson et al. (1999).

Numerical method

The numerical code used in the work mentioned above is used as a basis for the
present simulations. It solves the linear boundary layer equations for steady
spanwise periodic disturbances. It uses Chebychev polynomials in the wall-
normal direction and a fully implicit finite difference scheme in the marching
direction (streamwise). The optimal perturbations are obtained by an adjoint-
based optimization technique.

Influence of the streamwise position of input of the streamwise vortices

Since the disturbance is introduced by the roughness elements a certain distance
downstream of the leading edge, the code used in Andersson et al. (1999) has
been modified to optimize for initial conditions at a generic streamwise station
X0 different from the leading edge. The interested reader is referred to Levin &
Henningson (2003) for a thourough account of the effect of the initial position
X0 on the transient growth of streaks. In particular, these authors show that
the optimal disturbance introduced at a certain position downstream of the
leading edge gives rise to a larger growth than for optimal disturbances at the
leading edge.

The optimal perturbation for the experimental flow parameters at U∞ = 7
m/s, corresponding to X0 = 0.2611 and β0 = 0.230, has been computed and is
considered in this section. In figure 9 we display the comparison between the
evolution of the disturbance energy for the optimal perturbation at the leading
edge, the optimal perturbation at the actual location of the roughness element
and the measured data, where we assume the square of the amplitude AST as
a measure of the perturbation energy and the experimental data are arbitrarily
scaled to fit in the plot. It can be seen that the growth is larger for the case
of initial optimal perturbation at X0 = 0.26, in agreement with the findings
in Levin & Henningson (2003). The discrepancies between experimental and
theoretical results are qualitatively similar and we can therefore conclude that
taking into account the actual position of the perturbation generation cannot
explain the observed streak behavior.
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Influence of the shape of the vortices: suboptimal input vortices

The initial optimal conditions at X0 = 0.2611 has zero streamwise velocity
and therefore it consists only of streamwise vorticity ωx. The latter is shown
by the solid line in figure 10. It can be seen in the figure that the maximum
of ωx is located far up in the boundary layer, namely at y/δ = 3.55. It was
therefore decided to study the effect of changing the position of the initial
streamwise vortices relative to the wall and to verify if this could be the cause
of the differences between experimental data and optimal perturbations. Since
u = 0, w may be derived directly from v through the continuity equation,
and the wall-normal profile of v or alternatively of ωx completely defines the
optimal disturbance at the upstream position X0. The wall-normal profiles of
the sub-optimal initial vortices considered below are also shown for comparison
in figure 10. These different conditions are obtained simply by stretching or
compressing the wall-normal velocity profile of the optimal upstream pertur-
bation. This amounts to multiply the wall normal coordinate (y) pertaining to
the optimal perturbation by a factor c, so that the position of the maximum is
moved to y/δ = 3.55c.

It should be noted that this is the simplest approximation among the many
possible initial conditions, which can be used to represent the perturbation in-
duced by a wall-mounted cylinder. In particular, considering the discussion
above on the generation mechanism, we do not consider the wall-normal vor-
ticity associated to the cylinder wake but only the streamwise vorticity of the
standing vortex forming upstream of the obstacle. However, as shown below,
this approximation allows some essential features of the streak generation pro-
cess to be captured.
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The downstream evolution of the wall-normal maximum of the streamwise
velocity, corresponding to the same streak amplitude definition as in the exper-
iments, is displayed in figure 11a) for different values of the parameter c. The
curve pertaining to the optimal perturbation (optimal at X = 1) is indicated
by the solid line. For values of the parameter c lower than one, i.e. for initial
streamwise vortices confined closer to the wall, lower amplification is obtained.
Further, the location of maximum amplitude is moving upstream and a faster
decay is observed downstream of the maximum. These effects become even
clearer for lower values of c. Conversely, for c larger than one, i.e. for an initial
vortex farther away from the wall, the location of the maximum growth moves
downstream. The vortex needs a longer distance to diffuse into the growing
boundary layer and to interact with the wall-normal shear of the basic flow. It
is also interesting to note that the peak value is larger for c = 1.2. Comparing
the evolution of the optimal perturbation in figure 9 and 11a), it can seen that
the location of the maximum moves upstream when the streak amplitude is
considered instead of the kinetic energy as a measure of the perturbation. The
maximum of the wall-normal velocity is displayed in figure 11b), where the loga-
rithmic axis is chosen to emphasise the final decay rates. It is observed that the
decay is exponential and that the increase in the parameter c, corresponding to
the increase in the wall-normal scale of the upstream vortices, is associated with
a decrease of the downstream decay of the perturbations. This is in agreement
with previous theoretical studies on the evolution of free-stream perturbations;
the modes of the continuous spectrum of the linearized Navier-Stokes equations
for a parallel boundary layer flow which show the lowest decay rate are in fact
characterised by the largest wall-normal scales (Grosch & Salwen 1978). Note
also that the damping rate of the stable modes of the discrete spectrum, i.e. of
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Figure 11. Streamwise evolution of the streak generated by
initial conditions at X0 = 0.2611, β0 = 0.2299. a) Stream-
wise velocity amplitude; b) Wall-normal maximum of the wall-
normal velocity amplitude and c) Wall-normal maximum of
the streamwise velocity perturbation. Solid line: c = 1 (opti-
mal disturbance); dotted line: c = 1.2; dashed line: c = 0.8;
dash-dotted line: c = 0.7.

modes not zero inside the shear layer and decaying in the free-stream, is larger
than for modes of the continuous spectrum for streamwise independent modes.
The faster decay rate of the streamwise vortices can therefore explain both the
reduced streak growth and the faster final decay.

The wall-normal position of the maximum of the streamwise velocity per-
turbation in figure 11a) is shown in figure 11c). After an initial phase in which
the position of the maximum seems to be related to the location of the upstream
vortices, the streak is slightly displaced away from the wall, in agreement with
the experimental data. Note that for the optimal perturbation at the leading
edge considered in Andersson et al. (1999), the position of maximum perturba-
tion is found to be almost constant. Finally, in figure 12 we show the best fit to
the experimental data. This is obtained for a value of c = 0.78, corresponding
to the location y/δ = 2.75 of the maximum of the streamwise vorticity per-
turbation at the position of the roughness elements. This value is remarkably
close to the height of the roughness element k/δ = 2.65. In figure 12a) the
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Figure 12. Comparison between the experimental results for
all U∞ in Table 1 and the best fitting to U∞ = 7 m/s obtained
using initial vortices confined closer to the wall (c = 0.78). a)
wall-normalmaximum of the streak amplitude. b) wall-normal
position of the maximum perturbation.

streak decay is well captured while the position of maximum amplification is
slightly upstream compared to the experiments. The downstream increase of
the position of maximum perturbation is also well predicted (see figure 12b).

The wall-normal distribution of the streamwise velocity perturbation at
two different streamwise stations is compared with the theoretical results in
figure 13. In figure 13a) the streak profile is defined as the peak-to-peak differ-
ence in the high and low-speed region, whereas in figure 13b) it is defined as√
E(y, β0) =

√
û2(y, β0), where û is the Fourier transform in z of he streamwise

velocity and β0 the fundamental wavenumber corresponding to the roughness
spacing. Both plots show a good agreement with the theoretical result.

From the results of this section we can conclude that the distance to the
wall and the extension of the fundamental vortices is a fundamental parameter
for the generation of steady streaks. Vortices confined into the boundary layer
induce streaks, which grow less, reach their peak amplitude upstream and decay
faster if compared to the optimal perturbation. Conversely, vortices displaced
away from the wall create streaks, which reach higher peak amplitude but at
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positions further downstream and have a lower decay rate. We have thus identi-
fied the factor which is able to explain the difference between optimally growing
perturbations and experimentally induced streaks, both in our experiment and
in the study of White (2002), in spite of the different configurations.
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The observed behavior is also believed to be able to explain the differences
observed between optimal perturbation and streaks induced by free-stream tur-
bulence. It is observed in Matsubara & Alfredsson (2001) that the latter streaks
are characterised by a spanwise wavenumber slightly larger than the one pre-
dicted by the theory in Andersson et al. (1999) and Luchini (2000). Fransson &
Alfredsson (2003) experimentally confirmed these results and showed that for
high levels of free-stream turbulence the experimental results approaches the
theoretical. The present results show, in fact, that vortices extending further
above the boundary layer than the optimal vortices, and thus probably a bet-
ter representation of free-stream turbulence, reach their maximum amplitude
further downstream and are therefore associated to larger values of the local
wavenumber β at the saturation stage. This latter type of initial conditions
seems more difficult to achieve with wall-mounted actuators.

5. Discussion

Vorticity generation mechanism on the roughness elements

Comparison of the above results with similar experimental studies in literature
show that two distinct flow configurations can be induced by the presence of
roughness elements; They are both characterised by the formation of stream-
wise elongated velocity perturbations and differ in the relative position of the
high- and low speed streaks with respect to the roughness elements. In the
experiments by Kendall (1990), Gaster et al. (1994) and related simulations
by Joslin & Grosch (1995), White (2002), and Asai et al. (2002), a region of
defect velocity is formed straight behind the element. This is of course due
to the presence of the wake, which persists downstream forming the low speed
streak.

Conversely, in the present experiment, similarly to what was observed
by Bakchinov et al. (1995), a high-speed region is induced behind the roughness
element.

Two different generation mechanisms are therefore dominating in the two
cases and we here attempt an explanation for this behaviour by considering the
perturbation induced by a roughness element in a wall-bounded shear flow (see
Hunt et al. 1978; Acarlar & Smith 1987).

A wake is formed behind the roughness element as a consequence of the
momentum loss induced by the presence of an obstacle. This is associated
with the wall-normal vorticity, mainly due to the spanwise variation of the
streamwise velocity. This vorticity can be tilted in the streamwise variation by
the wall-normal shear of the streamwise velocity profile.

Further, the presence of the wall is affecting the perturbation induced in
the flow. The spanwise vorticity of the incoming shear flow is wrapped around
the front part of the obstacle forming a stationary horseshoe-shaped vortex
structure with the two streamwise legs pointing downstream. The vorticity
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Figure 14. Schematic of the roughness elements disposition
and conceptual view of the streaks generation mechanism.

associated with these two counterrotating streamwise vortices is such that high-
speed fluid is pushed towards the wall in the region behind the obstacle and
low-speed fluid is lifted on the outer sides (Hunt et al. 1978). The amount of
vorticity concentrated in the streamwise legs of the standing vortex depends
on the relative height of the element with respect the boundary layer thickness
(k/δ).

It must be pointed out that the experiments by Acarlar & Smith (1987)
show that the interactions between small hemispheric protuberances and a lam-
inar boundary layer may also generate, for sufficiently high values of Rek, a
shedding of periodic hairpin vortices. The hairpin vortices are released from
the roof of the roughness element. The legs of each vortex consist of two coun-
terrotating streamwise vortices, which lift low-momentum fluid in the region
between them and push high-momentum fluid towards the wall on the sides.
The vortices are therefore acting so as to increase the defect velocity induced
in the wake.

Nevertheless, the low level of the streamwise velocity fluctuations and the
absence of any peak in the power spectra show that this phenomenon is not
present in the current experiment. It may be speculated that this absence can
be related to the lack of the curvature in the outer irrotational flow field, due
to the geometry of the element, which is the condition for the vortex lines to
concentrate forming the hairpin vortices.

It can be concluded that there is a competition between the perturbation
induced by the vortex generated by the incoming vorticity upstream of the
element and the wake downstream of it. In the present experiment the former
mechanism is dominating and a high-speed region is located in correspondance
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with the roughness element. This can be inferred from figure 3 (see also the
sketch in figure 14): a region of defect velocity (wake) is induced just behind
the elements, z = 0 and 8 mm and x = 55 mm.

The streamwise legs of the standing vortex cannot be seen from the stream-
wise velocity contour plot but their effect seems evident further downstream.
The two vortices push high-momentum fluid from the upper part of the bound-
ary layer towards the wall in the region behind the roughness elements, so that
the region of defect velocity present at x = 55 mm is first annihilated and then
replaced by the high-speed streak (x = 70 and 100 mm). The two vortices lift
up low-momentum fluid on their sides; they start to interact with the vortices
induced by the neighbouring cylinders already at x = 100 mm so as to induce
a low-speed region centred at z = −4 and 4 mm, see plot at x = 200 mm in
figure 3 where well-formed streaks are shown.

Conversely, in the experiments by Kendall (1990), Gaster et al. (1994)
and White (2002), any given element generates a wake associated with a coun-
terrotating vortex pair (the legs of the horseshoe vortex released when the flow
is started) which decay downstream. In these cases, the steamwise vorticity
of the vortex forming upstream of the obstacle are not able to overcome the
defect velocity of the wake.

The studies mentioned above are all characterised by different configura-
tions, both in terms of the shape of the roughness elements, the ratio between
their spanwise width to their heigth and the local Reynolds number. However,
a close examination seems to indicate that the ratio k/δ is the most relevant
parameter: the wake mechanism is seen to be the most relevant for low values
of k/δ, while the standing vortex is dominating for larger values of k/δ. Note
also that if the latter mechanism is dominating streaks of higher amplitude are
induced. In Kendall (1990) k/δ = 0.45, while in White (2002) k/δ = 0.59 and
0.72. In the present experiment k/δ is larger than 2 as in the work of Bakchi-
nov et al. (1995). Note however that an excess velocity behind the element
is also observed by Kendall (1990) in the far wake. As a consequence, one
can conjecture that for relatively high elements the standing vortex is strong
enough to more than balance the effect of the wake and a high-speed streak is
found behind the element. In the case of lower values of k/δ, the wake of the
roughness element is the dominating perturbation in the flow. The effect of the
streamwise vortices generated upstream of the obstacles seems to be relevant
much farther downstream and it was only detected by Kendall (1990). This is
just an hypothesis which needs to be confirmed by future investigations.

6. Summary and concluding remarks

Steady, spanwise periodic streamwise streaks have been experimentally gener-
ated in a flat plate boundary layer using a spanwise array of small roughness ele-
ments of cylindrical section. All the streaks growth curves are found to collapse
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when rescaled on the maximum streak amplitude and on the streamwise posi-
tion where this maximum is attained. The experimentally generated streaks are
hence found to satisfy the similarity property valid for perturbations satisfying
the boundary layer approximation. It has however been observed, as in White
(2002), that discrepancies exist between the streaks induced by the roughness
elements array and the optimal streaks, in particular in the streamwise and
wall normal position of the maximum streak amplitude. The same differences
are observed for the large amplitude streak generated in present work. By
comparing experimental data and numerical simulations, we found that these
discrepancies can be mostly attributed to the fact that the streamwise vortices
generated by the roughness elements are more confined into the boundary layer
than the theoretically predicted optimal vortices. By considering sub-optimal
vortices, theoretical predictions and experimental streak amplitude curves are
seen to agree. In view of applications in the boundary layer transition delay,
as recently suggested in Cossu & Brandt (2002), it has also been shown that
it is possible to experimentally generate streaks of moderate amplitude, larger
than those considered in White (2002), which are still stable to inflectional
secondary instability.
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In the present experimental investigation the surface pressure distribution, vor-
tex shedding frequency, and the wake flow behind a porous circular cylinder
are studied when continuous suction or blowing is applied through the cylin-
der walls. It is found that even moderate levels of suction/blowing (� 5% of
the oncoming streamwise velocity) have a large impact on the flow around the
cylinder. Suction delays separation contributing to a narrower wake width,
and a corresponding reduction of drag, whereas blowing shows the opposite
behaviour. Both uniform suction and blowing display unexpected flow features
which are analysed in detail. Suction has a persisting stabilizing influence on
the turbulence intensity in the wake whilst blowing only shows an effect up
to five diameters downstream of the cylinder. The drag on the cylinder is
shown to increase linearly with the blowing rate, whereas for suction there is
a drastic decrease at a specific suction rate. This is shown to be an effect of
the separation point moving towards the rear part of the cylinder, similar to
what happens when transition to turbulence occurs in the boundary layer on a
solid cylinder. The suction/blowing rate can empirically be represented by an
effective Reynolds number for the solid cylinder, and an analytical expression
for this Reynolds number representation is proposed and verified.

Flow visualizations expose the complexity of the flow field in the near
wake of the cylinder, and image averaging enables the retrieval of quantitative
information, such as the vortex formation length.

1. Introduction

The phenomenon of vortex shedding from bluff bodies still remains a chal-
lenging and interesting problem. The canonical configuration of the motion
of a fluid past a circular cylinder is still of relevance to a large number of
flows found in industrial applications (the flow past moving vehicles, pylons of
bridges, buildings, etc.), as well as in natural settings. Recently, interest has
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focussed on the ability to manipulate the wake of a bluff body to reduce drag,
increase heat transfer or mixing, and enhance combustion.

There is an aboundance of studies in the literature on the flow past a circu-
lar cylinder, starting with Strouhal (1878) and von Karman (1912). A complete
overview of the field will not be attempted here; for the interested reader there
are several recent reviews available, e.g. Williamson (1996), Buresti (1998) and
Norberg (2003), as well as a comprehensive two volume monograph published
recently Zdravkovich (1997, 2003).

The characteristics of the flow around a cylinder depends strongly on the
cylinder Reynolds number (Re = U∞D/ν , where U∞ is the free stream veloc-
ity, D is the cylinder diameter and ν the fluid kinematic viscosity). For low
Reynolds numbers (4 � Re � 47) a pair of counter-rotating vortices is formed
behind the cylinder, and for Re � 47 these become unstable and the region
up to Re ≈ 200 is usually called the laminar periodic regime. For slightly
higher Re the wake becomes unstable and irregular. Roshko (1961) provided
a definition of different flow regimes based on measurements of velocity fluctu-
ations and spectra for Re > 1000. These regimes can be identified depending
on the behaviour of the boundary layer on the cylinder and are called: sub-
critical (purely laminar separation), precritical (laminar separation followed by
turbulent asymmetric reattachment, Re = 1.5× 105 to 3.8× 105), supercritical
(symmetric reattachment, transition and turbulent separation, Re = 3.8× 105

to 3× 106) and postcritical.
In the present study we focus on Reynolds numbers of the order of 104,

which is in the subcritical regime (also known as the shear-layer transition
regime). In these conditions the boundary layers on the cylinder are still lami-
nar, they separate from the body and instabilities develop. Many studies have
been focusing on the subcritical range, e.g. a compilation of more than 70 ref-
erences can be found in Cantwell & Coles (1983). Although a cylinder mounted
perpendicular to the free stream may seem as a simple generic case, the exact
flow behaviour may still be influenced by various flow and geometry factors, for
instance the turbulence level of the free stream, the surface roughness of the
cylinder, the blockage ratio as well as the aspect ratio of the cylinder. For low
Reynolds numbers, very large aspect ratios are needed to have results that are
independent of it. For flows in the subcritical range there is less influence (see
Norberg 1994).

1.1. Control of vortex shedding

It is of great interest for technical applications to be able to control the vortex
shedding from a body, as well as its wake. At low Reynolds numbers (< 300)
several techniques have been shown to have a potential to suppress vortex
shedding or shift the shedding frequency. One such method is to oscillate the
cylinder in rotary motion Berger (1967) at a suitable frequency and amplitude.
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Another is to heat the cylinder Wang et al. (2000) thereby changing the viscos-
ity close to the cylinder surface, giving rise to a change in the effective Reynolds
number. A different approach is to use feedback control, as demonstrated in
both experiments and numerical simulations by Roussopoulos (1993) and Park
et al. (1994), respectively. In the experiments the actuation was acoustically
induced through a loudspeaker (in a wind tunnel) as well as by vibrating the
cylinder (in a water channel), whereas in the numerical study blowing and suc-
tion slots on the rear part of the cylinder were utilized. No blowing and suction
experiments exist for this Reynolds number range (< 300) since the size of the
cylinder for typical velocities in air or water would be very small and it would
not be possible to implement such a device at this scale.

For higher Reynolds number flows (larger cylinders) a possible form of
(passive) control consists in modifying the geometry in order to affect the vortex
shedding. Experiments along this line for flow past a circular cylinder were
reported by Roshko (1955, 1961); he simply placed a splitter plate on the
centreline behind the cylinder. With a proper length of the splitter plate the
flow behaviour can change from the alternating shedding mode to a symmetrical
mode, with two closed recirculation regions on each side of the plate.

In the subcritical range of interest in this study, Tokumaru & Dimotakis
(1991) carried out experiments on circular cylinders executing forced rotary
oscillations. They managed to obtain a significant drag reduction of up to 80%
at Re = 15000 for certain ranges of frequency and amplitude of the sinusoidal
rotary oscillation. Computational results Shiels & Leonard (2001) have verified
these experimental observations and there are indications that this kind of
control could be even more efficient at higher Reynolds number.

1.2. Porous cylinders with suction or blowing

Other studies have considered a flow manipulation consisting in the application
of suction or blowing. Early experiments on porous cylinder made of sintered
bronze were carried out by Pankhurst & Thwaites (1950). They made exper-
iments with continuous suction, but also combined suction with a flap in the
form of a short splitter plate placed at various angles. At an angle of 180◦, i.e.
along the downstream symmetry line, and for sufficient suction, the separation
is entirely prevented and a remarkably close approximation to the potential
flow solution is achieved, as attested by the pressure distribution and by mean
flow velocity profiles of the wake. They concluded from their experiments that
values of Cq

√
Re larger than ≈ 10 were needed to avoid separation1. They also

reported values of the drag coefficient but did not do any time resolved mea-
surements to determine the vortex shedding frequency. Boundary layer mea-
surements on the same porous cylinder were performed by Hurley & Thwaites

1Here Cq is a suction coefficient defined as the suction velocity per unit area divided by the

free stream velocity.
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(1951) and in general good agreement was found with laminar boundary layer
theory.

Continuous blowing on the whole surface has also been studied experi-
mentally by Mathelin et al. (2001a,b). The cylinder in these experiments is
16.2 mm in outer diameter and is made of sintered-stainless-steel, with 30%
of porosity and 30 µm average pore diameter (see Mathelin et al. 2001a, for
the detailed description of the set-up). Among the effects observed, we note
the presence of a wider wake and a decrease of the Strouhal number. The
decrease in Strouhal number is linear with the injection rate until saturation
occurs. For a 5% injection at Re = 3900 the reduction is for example 25%.
Taking into account this reduction of the vortex shedding frequency, and the
Strouhal-Reynolds curve for low Reynolds number (between 50 and 300), the
flow submitted to blowing would have the same characteristics in terms of in-
stability as a flow at a lower Reynolds number, and an analytical relation was
determined to provide the equivalent Reynolds number of the canonical case
which produces the same behaviour as the case with blowing.

A different type of blowing can be achieved through the use of synthetic
jets, which provide a localized addition of momentum normal to the surface.
Glezer & Amitay (2002) show that synthetic jets on selected positions over the
cylinder can give a delay of separation for different Reynolds number (i.e. both
for a turbulent and a laminar boundary layer). They argued that this delay
was caused by increased mixing within the boundary layer. In addition, the
interaction between the jet and the cross flow has a profound effect both on the
separated shear layer and on the wake; the magnitude of the Reynolds stresses
is reduced indicating that the delay in separation is not merely the result of a
transition to turbulence in the boundary layer.

1.3. Present study

The objectives of our study is, partly, to complement the investigations just
cited by considering both the effect of uniform suction and blowing, on a very
smooth, porous cylinder. We will document the changes of the flow in the sub-
critical regime, in terms of mean and fluctuating velocity profiles in the wake
through hot-wire anemometry, pressure distributions and vortex shedding for
different blowing and suction rates. Smoke visualizations of the flow comple-
ment the study providing a clear picture of the flow behaviour under parametric
variations. Attention to the effects of free stream turbulence will also be paid,
and comparison will be made with the known results of the canonical case
for which the behavior of the critical transition thresholds with free-stream
turbulence is known (see e.g. Kiya et al. 1982).

Finally, it is shown here that the suction/blowing rate can empirically be
represented by an effective Reynolds number for the solid cylinder, and an
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analytical expression for this Reynolds number representation is proposed and
verified.

2. Experimental set-ups and flow visualization technique

Most of the experiments were performed in the S4–wind tunnel at IMFT in
Toulouse, which is a low speed closed circuit tunnel. It is provided with a three-
dimensional traversing mechanism and allows automatized computer controlled
measuring and traversing in one direction (y) with an accuracy of 1/80 mm.
The background streamwise disturbance level without filtering amounts to 0.5%
and 0.1% at a free stream velocity of 2.5 and 25 m/s, respectively. The dimen-
sion of the test-section is 1800 × 700 × 600 mm (length(L) × height(H) ×
width(W)). Measurements were made with hot-wire anemometry using a sin-
gle wire Dantec probe, with 5 µm and 1.25 mm in wire diameter and prong
separation, respectively. The calibration was done against a Pitot tube using
the standard King’s law and was carried out on the centreline, 400 mm up-
stream of the cylinder. The diameter (D), wall thickness (t) and the porous
length of the cylinder were 50, 2.5 and 600 mm, respectively.

The end parts of the cylinder are made of brass with four inlets for tube
connections. The four tubes from the inlets are then confluenced before connec-
tion to a flow meter (rotameter type), which in turn is connected to a pressure
source (vacuum cleaner or high pressure air depending on whether suction or
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blowing is required). The cylinder is mounted vertically in the test-section with
end plates located at a distance ∆ = 50 mm from the ceiling and floor. This
is done to minimize three dimensional end effects that are created from the
boundary layers developing on ceiling and floor (cf. Szepessy & Bearman 1992,
for a thorough investigation of the effect of end plates); see figure 1a) for the
experimental set-up. The blockage and aspect ratios of this set-up are 0.083
(= D/W ) and 12 (= (H − 2∆)/D), respectively.

The inside of the cylinder consists of four isolated chambers, as shown in
figure 1b), in order to achieve varying suction rates through different portions
of the cylinder, in view of future planned experiments. Furthermore, the co-
ordinate system of the present investigation is defined in this figure. There
are 16 surface pressure taps (inner diameter 0.5 mm) positioned around the
cylinder, which are shifted along the length of the cylinder forming a spiralling
pattern in order to minimize mutual interference. The pressure holes can be
moved relative to the oncoming flow by rotating the cylinder, and the pressure
tubings are connected to a Scanivalve to facilitate the measurements.

Some of the experiments were also made with a turbulence generating grid
placed at the inlet of the test section. The grid has a mesh width of 25 mm
and the bars are of rectangular cross section with a width and a thickness of 4
and 3 mm, respectively.

2.1. Characteristics of the porous material

The porous cylinder is made of a sintered plastic material with an average pore
size of 16 µm. Previous surface roughness measurements on a similar but flat
porous plate Fransson & Alfredsson (2003) show a deviation of ±1 µm from
the mean surface. For the present case the surface can be considered to be
hydraulically smooth. The cylinder is made from a flat plate which is bent to
form a circular cylinder. This means that there is a joint in the axial direction
along the whole cylinder, and this gives rise to a small asymmetry with a 0.5
mm larger diameter in average when measured over the joint, see figure 1b).
The joint is therefore in most cases positioned 180◦ away from the oncoming
flow in order to avoid any flow asymmetry.

To determine the permeability of the material the pressure difference (∆P )
over the cylinder wall and the flow rate (Q = V × S , where V and S are the
velocity through the porous material and the surface area, respectively) are
measured, when suction is applied. Through Darcy’s law the permeability (k)
is then determined to be k = µtV/∆P = 2.31× 10−7 m2, by best line fitting
to the data (µ is the dynamic viscosity).
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2.2. Flow visualization technique

The flow visualizations were carried out in the BL–wind tunnel at KTH in
Stockholm. For all technical information about this wind tunnel the interested
reader is referred to Lindgren & Johansson (2002).

For the flow visualizations the same cylinder setup was used as for the hot-
wire and pressure measurements (with a new porous cylinder section because
of transport damages from France to Sweden, and without end plates to avoid
camera view reduction) and in figure 2 the flow visualization setup is shown. A
horizontal smoke sheet was created by injecting smoke through a slot in a wing-
profile, which was located over the whole spanwise distance in the stagnation
chamber of the wind tunnel. The profile has two tubing inlets, one on each side
close to the walls. The smoke was generated by heating a glycol based liquid
with a disco smoke generator, JEM ZR20 Mk II, and forced by a small fan
through the tubing into the profile enabling a steady leakage of smoke through
the slot.

The light source was a continuous Ar–ion laser, LEXEL 95–4, which gave
the high light intensity needed for the short camera shutter times. The laser
beam (1.5 W) was aligned through a cylinder lens creating a light sheet inter-
secting with the smoke sheet from the side (perpendicular to the flow field and
the test section). The collection of flow visualization images was taken with a
digital video camera, SONY TRV900 576× 720 pixels, with a shutter time of
2 ms and with a rate of 20 images per second.
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Figure 2. Flow visualization set-up of the porous cylinder.
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3. Measurement results

In the present work the cylinder Reynolds number (Re = U∞D/ν) is kept
constant atRe = 8300 unless otherwise stated, whereas the suction and blowing
rates are varied. This rate is expressed through the parameter Γ = (V/U∞) ×
100, where V is the velocity through the porous material, negative for suction
and positive for blowing, and U∞ is the oncoming streamwise velocity. At
Re = 8300 the oncoming mean flow velocity is U∞ = 2.5 m/s and the range of
Γ investigated in this section is−4 < Γ < +6. The Reynolds number would, for
the case of a solid cylinder, produce a laminar boundary layer and separation
with a turbulent wake.

3.1. Suction and blowing distributions

The surface pressure distribution varies around the circumference of the cylin-
der when exposed to an oncoming flow, and this gives a non-uniform suction/
blowing if the pressure inside the cylinder is constant. This is the case when
the chambers are connected to a single tube through which suction/blowing is
performed. A possible remedy to obtain uniform velocity at the surface is to
divide the inner part of the cylinder into a large number of chambers that are
individually regulated; this, however, would be an unpractical solution. In the
present experiments the four chambers are connected to the same tubing, and
hence have the same pressure. For the suction case the largest suction velocity
occurs along the front stagnation line and then it decreases towards the rear. In
the separated region the suction velocity is fairly constant and for Γ = −1.4 the
suction velocity is about 6% smaller in this region as compared to the front.
For larger suction rates the difference becomes smaller. In contrast, for the
blowing case the smallest blowing velocity is along the frontal stagnation line
and then increases and becomes constant from about 65◦ and downwards. In
this case the maximum variation is less than 6% and the variation decreases
with increasing Γ.

3.2. Effect of suction/blowing on the pressure distribution

Simply by analyzing the change of the surface pressure distribution when the
cylinder is subject to continuous blowing or suction, some important conclu-
sions can be drawn.

In figure 3a) the effect of different Γ-values on the Cp-distribution is shown
and compared with the potential flow solution (dash-dotted line). There are
three major remarks that can be made; firstly, one can observe how Cp,min

is reduced down to a value close to −2 for Γ = −2.6 and tends to −1 for
Γ = +2.6; secondly for suction the separation point (φs) moves towards larger
angles (φs ≈ 105o for Γ = −2.6), and when blowing is applied, the flow is seen to
separate at lower angles; thirdly the base pressure coefficient (Cp,B) is increased
for the case of suction producing a significant increase in the adverse pressure
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Figure 3. The pressure distribution around the cylinder is
shown for different Γ-values. a) shows the effect of blow-
ing/suction with a laminar oncoming flow (U = 2.5 m/s,
Re = 8300, Tu = 0.5%). b) shows the effect of free stream tur-
bulence generated by a turbulence generating grid, the blow-
ing/suction is Γ = ±0.4 (U = 25 m/s, Re = 83000, Tu = 3%).
Dash-dotted line is the potential flow solution.

recovery (Cp,B −Cp,min), whilst for the case of sufficiently large blowing rates,
the recovery region is eliminated.

The inflection point in region IP on the Cp-curve, marked with a dashed
ellipse in figure 3a), is often used to estimate the location of the separation
point and this is the criterion employed in the preceding paragraph. Suction
makes the boundary layer profile fuller and hence more resistant to separation,
in analogy to high Reynolds number flow. At Re ∼ 105 transition in the
boundary layer occurs (the exact Re-value depends on the flow quality and the
surface roughness) and the separation point moves from the front part of the
cylinder to the rear part, due to the turbulent boundary layer that can make
the flow adhere longer to the surface. In figure 3b) the free stream velocity is
increased ten times and the Cp-distribution is compared with results when a
turbulence intensity (Tu = urms/U∞) of 3% is present (causing transition in
the boundary layer at subcritical Reynolds numbers); this was done by putting
a turbulence generating grid at the inlet of the test-section. It is clearly seen, by
comparing the (◦)-symbols in figure 3a) with the (∗)-symbols in b), that suction
and high levels of free stream turbulence have the same impact on the Cp-
distribution. Furthermore, in b), one can observe how a small blowing/suction
rate (Γ = ±0.4) effects the location of Cp,min and consequently the separation
point, but not the base pressure coefficient.
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Figure 4. Mean velocity profiles at different positions behind
the cylinder for the normal, the suction, and the blowing case.
(∗,◦,•) denotes Γ = (0,-2.6,+2.6). Uf is the mean velocity far
from the cylinder in the y-direction and U∗ = max(Uf −u(y))
for all Γ at each x/D-position. The solid lines are curve fits to
data.
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3.3. Effect of suction/blowing on the surrounding flow

In figure 4 the mean velocity profiles for the normal case (Γ = 0), one suction
case (Γ = −2.6), and one blowing case (Γ = +2.6) are plotted across the wake
for different x/D-positions (see caption for symbols). Close to the cylinder
(x/D small), one can observe the presence of negative values of the velocity
(i.e. speeds higher than the free stream velocity). This is the effect of the
shoulder acceleration around the cylinder, which for higher x/D-values is seen
to disappear and the profiles approaches the Schlichting’s far wake shape (see
e.g. Zdravkovich 1997, chapt. 9.7). For the blowing case the shoulder acceler-
ation is, however, quite persistent and may be observed down to x/D = 3.

When suction is applied, the velocity decreases close to the cylinder com-
pared to the normal case, but farther away it actually becomes larger. This
is due to the presence of low speed regions in the normal case, as shown in
figure 5 for Γ = 0, where the contours represents the mean streamwise velocity
normalized with U∞. The dotted, dash-dotted, dashed, and solid contour lines
correspond to u/U∞ = 0.8, 0.9, 1.0, and 1.1, respectively. The gray regions
correspond to urms/Ulocal ≥ 0.30, which is a zone that has to be considered
with caution since the hot-wire results may be significantly affected by large
flow angles and even backflow. Note that some of the profiles in figure 4 also
become affected. For successively decreasing Γ (increasing suction) the mean
streamwise velocity behind the cylinder decreases at first, but at Γ ≈ −2.6
there is a sudden change of trend and the velocity starts to increase. This can
be observed in the contour plots of figure 5. The reason for a sudden change
in the mean velocity component is the fact that suction affects the boundary
layer around the cylinder and delays the separation as pointed out earlier. A
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Figure 5. Contour plots of u(x, y)/U∞ in the xy-plane. Dot-
ted, dash-dotted, dashed, and solid contour lines correspond to
u/U∞ = 0.8, 0.9, 1.0, and 1.1, respectively. Gray filled regions
correspond to measured values of urms/Ulocal ≥ 0.30.
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Figure 6. urms-profiles at different positions behind the
cylinder for the normal, the suction, and the blowing case.
(∗,◦,•) denotes Γ = (0,-2.6,+2.6). u∗

rms is max(urms) for all Γ
at each x/D-position.

possible explanation is that suction also stabilizes the wake and that less mix-
ing occurs. With increasing suction the separation point on the cylinder is
moved from the front to the rear part of the cylinder implying a decrease of the
shoulder acceleration (see figure 5), a narrower wake, and thereby an increase
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Figure 7. Shows contour plots of Tu in the xy-plane. Solid,
dashed, dash-dotted, and dotted contour lines correspond to
Tu = urms/U∞ = 0.02, 0.04, 0.06, and 0.08, respectively. Gray
filled regions correspond to urms/Ulocal ≥ 0.30.

of the velocity in the wake. For very high suction rates the flow would stay
attached to the cylinder giving rise to a potential-like solution, and hence the
wake will be less pronounced. This hypothesis is corroborated by inspection of
figure 3a).

Contrary to suction, blowing causes the flow to separate earlier, also ob-
served in figure 3a). Despite the direct injection of air behind the cylinder the
effect of the separation point is much larger and the mean velocity is reduced
in the wake. Increasing blowing widens the wake and the shoulder acceleration
is seen to amplify leaving low speed fluid close behind the cylinder as the wake
grows. This can be observed in figure 5.

In figure 6 urms-profiles corresponding to the mean velocity profiles in fig-
ure 4 are shown, whereas figure 7 displays the contour plots of the turbulence
intensity (Tu) for different values of Γ. Solid, dashed, dash-dotted, and dotted
contour lines correspond to Tu = urms/U∞ = 0.02, 0.04, 0.06, and 0.08, re-
spectively. Gray filled regions are the same as in figure 5 (urms/Ulocal ≥ 0.30),
and the quantitative results in these regions should be viewed with caution.
Note that some of the profiles in figure 6 also become affected. The Tu-level
consistently decreases for increasing suction and it is possible to discern a more
narrow wake. Furthermore, one can observe a strengthened formation of the
two-peak disturbance distribution across the wake, which are seen to move
towards the cylinder for increasing suction (see also figure 6).

In figure 8 the turbulence intensity Tu is plotted along the centreline (CL)
behind the cylinder for different Γ. The low Tu-level close to the cylinder
when blowing is applied is well illustrated in figure 8b) (as discussed in the last
paragraph). It is clearly shown that blowing only effects the very near wake up
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Figure 8. TuCL-distribution on the centreline (CL) behind
the cylinder. a) and b) show the effect of increasing suction
and blowing, respectively, inside the wake. c) shows how the
suction decays with TuΓ=0CL and the independence of the blow-
ing for TuΓ=0CL .

to x = 250 mm (5D) (cf. figure 8b), whilst suction has a persisting stabilizing
effect on the flow behind the cylinder (cf. figure 8a).

In figure 8c) some of the TuCL-data in figure 8a) and b) are used together
with new data to show the independence of different x/D-positions on blow-
ing/suction (Γ). The TuCL-data is normalized with TuΓ=0CL and decays linearly
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Figure 9. The flatness distribution across the wake is shown
for different x/D-positions. The different symbols corresponds
to the normal, the suction, and the blowing case. (∗,◦,•) stand
for Γ = (0,-2.6,+2.6), respectively.

with increasing suction for any fixed x/D-position, whereas the blowing has no
effect from x/D = 5 and forward.

An additional way to illustrate the widening and narrowing of the wake is to
look at the flatness (F = (u − u)4/u2

2
) evolution, since one would expect high

intermittency peaks at the wake edge (laminar/turbulent edge). In figure 9 the
flatness is plotted for the three cases at different downstream positions. From
this figure one can clearly see a trend of earlier departure of the F -values from
the centre with suction, and a corresponding delay with blowing, compared
to the normal case. The peak level difference between the three cases can
be explained by an amplitude increase of the vortex shedding frequency when
suction is applied and vice versa for the blowing case. The peak in F for the
suction case is clearly seen to appear close to the centre, corresponding to a
narrower wake. This narrowing and widening could also be observed directly
from the profiles in figure 4 and from the contour plots in figure 6. The error in
calculating the flatness due to rectification seems to be small. The questionable
data in the profiles is found within 1.5D centred around the wake symmetry
axis. The data corresponding to the normal and the suction cases at x/D = 4
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and 8 are unaffected while the region width of possibly affected data decreases
with x/D in the blowing case (cf. figure 5 or 7).

3.4. Effect on the vortex shedding frequency

Applying continuous blowing or suction can be interpreted as a decrease or
increase, respectively, of an effective Reynolds number (related to an effective
diameter), which is in contrast to intuition. This is demonstrated in the fol-
lowing section, where a function of an effective Reynolds number (Reeff ) vs
the parameter Γ is derived and verified.

In figure 10a) several different collections of data of the Strouhal number
(St = fKD/U∞, where fK is the von Karman vortex shedding frequency) are
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Figure 10. a) and b) shows the Strouhal number (St) ef-
fect on Reynolds number (Re) and blowing/suction (Γ), re-
spectively. a) is data taken from: (�) Strouhal, (�) Relf, (◦)
Tyler, (�) Drescher, (•) Etkin et al.; figure 13.9 in Zdravkovich
(1997). b) present data (where both Re and V were varied).
c) shows the effective Reynolds number (Reeff ) vs Γ (cf. equa-
tion 3).
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shown vs the Reynolds number (see caption for reference). For the collection of
those data the probe was positioned approximately one diameter downstream
of the cylinder and outside the shear layer. If one assumes a constant value
of St (� 0.2) in a wide range of Re one can fit an σth degree Re-curve (two
terms) to the data according to:

St(Re) = m+ n[log10(Re) + k]σ. (1)

Furthermore, in figure 10b) St is plotted vs Γ from the present measurements,
where both Re and V are varied. The fK is determined by selecting the
frequency, where the distinct energy peak appears in the power spectrum. The
more suction/blowing is applied, the more diffuse becomes this energy peak
(which is in accordance with Re-dependent results both for high and low Re),
however in figure 10b) only data where a distinct frequency can be detected are
shown. From this figure it is seen that suction increases the St of about 50%
for Γ ≈ −2.5. In contrast to suction, blowing decreases the St with around
25% for Γ ≈ +5 (in agreement with Mathelin et al. 2001b), i.e. the effect on
the absolute change is smaller than for suction.

An analytical expression of Reeff (Γ) can be derived by making use of
equation (1) and after assuming the following relation between St and Γ:

St(Γ) = d+
ea(Γ+e) − eb(Γ+e)

c
. (2)

The curve fit in figure 10b) is done with equation (2). After simple manipula-
tions of the equation St(Re) = St(Γ) (equations (1) and (2)), the expression
of Reeff (Γ) can be written as:

log10(Reeff (Γ)) = −k ± abs
{(

∆S −m+ d+

+
2
c
exp

[
(Γ + e)

(a + b)
2

]
sinh

[
(Γ + e)

(a − b)
2

])
/n

}1/σ
,(3)

and is plotted in figure 10c). Here ∆S is the needed Strouhal shift for an equal
value of the equations (1) and (2) with Re ∼ 103−104 and Γ = 0, respectively.
The (+)-sign in equation (3) is for (∆S−m+ St(Γ)) > 0 and the (−)-sign for
(∆S−m+St(Γ)) < 0. Note, that the relation between Reeff and Γ described
by equation (3) spans a large range of Reynolds numbers, i.e. from Re ∼ 102

to Re ∼ 106. In table 1 all the parameters used in the curve fits are given.

a b c d e m n k σ ∆S
0.942 -0.691 290 0.182 -2.31 0.188 0.0024 -3.69 5 0.0111

Table 1. The parameter values in functions 1, 2 and 3.
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Figure 11. a) and b) shows the Strouhal number (St) effect
on Reynolds number (Re) with blowing and suction, respec-
tively.

In figure 10b) all Re are plotted together, however there is a small Re-
dependence which can be illustrated by normalizing St with StΓ=0, as done
in figure 11a) and b) for the suction and blowing cases respectively. It can be
observed that in the suction case the Re-dependence is quite weak, whereas it
is somewhat stronger for the blowing case. For large suction the frequency peak
of the vortex shedding in the power spectra is strongly reduced and is no longer
a dominating frequency. The drop observed in figure 11a) is due to the fact that
lower frequencies are detected with more energy content, and these are omitted
in figure 10b). For moderate (Γ ≈ +5− 6) to large blowing and low Reynolds
number (Re = 8500) it is possible to discern the beginning of the saturation
level reported by Mathelin et al. (2001b), which is reached at Γ ≈ +10. In the
case of blowing the Re-dependence was first noted by Mathelin et al. (2001b),
which in the present Γ-investigation is quite small and considered to have a
negligible effect in the outcome of above effective-Reynolds-number analysis.

3.5. Drag enhancement/reduction

The momentum equation can be used to calculate the drag coefficient (CD)
from the velocity distribution across the far wake (i.e. for large values of x/D)
according to:

CD =
2
D

∫ y2

y1

(Uf − u)u
U2f

dy, (4)
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where y2 − y1 is the wake width. This was made for different Γ-values and
the result is plotted in figure 12 with (◦)-symbols. The use of the momentum
formula, equation (4), to calculate the total drag can render significant errors
if meausred to close to the cylinder. At x/D ≈ 30 the positive contribution of
the Reynolds normal stresses to the total drag becomes zero whereafter there
is a small negative contribution (cf. Antonia & Rajagopalan 1990, for details).
However, in all the present drag measurements the x/D-positions were beyond
15, which would in the case of Γ = 0 render an error that is smaller than
8% (see Antonia & Rajagopalan 1990). At x/D = 20 the error is less than 5%.

The shape of the drag distribution vs Γ may be compared with that
obtained for different Reynolds numbers in the case of a solid cylinder, see
e.g. Schlichting & Gersten (2000) (page 19 figure 1.12.) with experimental
data from Wieselsberger. Now, by applying equation (3) interpolated data
from Wieselsberger is mapped into figure 12 with (•)-symbols. From the figure
it is evident that the blowing/suction rate can be replaced with an effective
Reynolds number through equation (3), and this relation is valid in a large
range of Reynolds numbers (i.e. Re ∼ 102 − 106). Due to a limited length
of the wind tunnel there is a mismatch of the data, e.g. one would expect a
collapse of the data for Γ = 0 and Re ≈ 8300 which is not the case. The
drag coefficient approaches a saturation level for increasing x/D, and in the
present case (suction: x/D = 20; blowing: x/D = 16) one can observe that
the saturation level is not yet reached. The two data-sets have an excellent
qualitative agreement, only a shift (correction) of the absolute values is needed

4 3 2 1 0 -1 -2 -3 -4
0.2

0.4

0.6

0.8
1

2

Γ

CD

Re = 10 2 Re = 8  10 3x Re = 2  10 6x

Figure 12. Shows the effect of CD when blowing or suction
is applied. (◦)-symbols and (�)-symbols are calculated using
expression 4 and by direct integration of the pressure distri-
bution in figure 3a), respectively. (•)-symbols are data from
Wieselsberger mapped through expression 3 using Re = [100
140 180 280 8000 105:105:106 2 × 106], which corresponds to
the symbols from left to right (see text for reference).
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Figure 13. Shows that the urms-profiles scales with the effec-
tive diameter related to the effective Reynolds number. (∗,◦,•)
denotes Γ = (0,-2.6,+2.6). In a) x/D = 8 for all three cases,
and in b) (∗,•) are shown at x/D = 8 and (◦) at x/D = 12,
respectively.

for total collapse. However, the absolute level drop of CD at Γ ≈ −2.5 seems
to be the same, and one reason for this collapse could be the fact that the
flow situation is different and a smaller x/D is needed to reach the saturation
level of CD. The drop is related to the shift of the separation point as de-
scribed previously in connection with figure 3, which is also present for high
Reynolds numbers (Re ∼ 105) due to the laminar-turbulent boundary layer
transition. Both the turbulent profile and the fuller laminar profile due to suc-
tion are more resistent to separation which is the actual cause for the shift.
The drag coefficient was also calculated by direct integration of the pressure
distribution (cf. figure 3a) and is plotted with (�)-symbols in figure 12. The
agreement with the CD-value calculated through equation (4) is good, which is
expected, since the friction contribution to the total drag can be estimated from
CD,f = 2/

√
Re (cf. Zdravkovich 1997, page 92) and becomes approximately 2%

of the total drag at Re = 8300. Note that the difference becomes significant for
lower Reynolds numbers (or positive values of Γ), which is in agreement with
the above mentioned formula and the present results (see figure 12). However,
the most common technique for drag measurements is to measure directly the
force with a balance and this method takes all contributions into account, just
as equation (4) does, if applied at x/D = 30.

In figure 13 the effective diameter (connected to the effective Reynolds
number) is used to plot and compare the profiles at the same x/Deff . For
x/Deff = 8 one achieves the x-positions 363, 400, and 569 mm for the blowing,
the normal, and the suction case respectively. Figure 13b) shows the profiles
at x = 400, 400, and 600 mm (which are close to the desired locations) for
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the blowing, the normal and the suction case respectively, and it is clear from
the figure that the appropriate profile scaling has been found. The difference
is small in the mean velocity profile, which is the reason why the urms-profiles
have been chosen to be displayed here.

4. Flow visualizations of the near wake

Flow visualization images were taken close behind the cylinder in the near
wake. The Reynolds number was Re = 3300 (with U∞ = 1 m/s) and the range
of Γ investigated was −5 < Γ < +5 for these flow visualizations. In figure 14
instantaneous flow visualization images are shown for five different values of
Γ, namely 0,±2.6 and ±5.0. These images verify the previously presented
measurement results, i.e. with suction the wake shrinks and with blowing it
enlarges. In addition, they are able to provide size information of the small
eddies formed in the very near wake, and the extent of the vortex formation
length.

As the instantaneous images all are unique, it is not possible to draw any
firm conclusion about the physical behaviour of the flow from inspection of
one image. Therefore, 200 images were digitally averaged for each Γ studied
(13 values), to be able to extract some quantitative information of the vortex
formation length. A typical averaged image is shown in figure 15a). The
settings (such as contrast and shading) of the averaged images were then all
equally changed for a clearer image view. The asymmetry of the image is due to
the cylinder shading the light coming from the left hand side in the figure. The
same contour line (corresponding to a chosen value of the light intensity) of the
averaged images was then analyzed, and in figure 15a) the result of the image
averaging (and its contour line) of the Γ = 0 case is shown. In figure 15b) the
contour lines for Γ = +5,+3.9,+3.2,+2.6,±1.4,±1.9, and 0 are plotted with
alternately dash-dotted and solid lines for increasing |Γ|. The intersection of
the contour lines with the streamwise axis (dotted line in figure 15b) has been
chosen to represent the vortex formation length (LF ); this is plotted versus Γ in
figure 15c) with (◦)-symbols. The resulting estimation of the vortex formation
length (LF ) is however strongly affected by the value of the chosen contour
line.

Usually the peak of the velocity fluctuation level (Tu = urms/U∞) down-
stream of the cylinder is used as a definition of the vortex formation length (see
e.g. Williamson 1996). Therefore the value of the contour line was here chosen
to match LF = 80 mm extracted from figure 8b) in the Γ = 0 case. Note
that the Reynolds number is not the same in the two cases (measurements and
visualizations), but are, nonetheless, in the same flow regime. The absence of
contour lines for Γ = −2.6,−3.2,−3.9 and −5 in figure 15b) is due to the fact
that the smoke is too dense, because of the wake reduction (cf. figure 14), and
there will not be any visible lines for the chosen contour value. However, by
applying another value of the contour line one obtains the tiny �-symbols in
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figure 15c). Then the three values of Γ = 0,−1.4 and −1.9 are shifted by an
average distance ∆L to collapse with the ◦-symbols for the same Γ (i.e. the
first chosen value of the contour lines). The same shift ∆L is then applied to
the other data as well to give the large �-symbols in figure 15c).

The data in figure 15c) clearly show how the vortex formation length de-
creases with increasing suction and vice versa for blowing. The data show an
almost linear decrease with Γ although LF is lower for Γ = −1.37 than for
Γ = −1.93. This is most probably connected to the complicated mean flow
behaviour with suction discussed previously (cf. section 3.3). Furthermore,
for Γ = −5 (maximum suction investigated) it seems that the wake has disap-
peared since the vortex formation length obtained is at the cylinder edge (cf.
figure 15c).

Verification of the relative increase of LF obtained from the flow visualiza-
tion can be done using the hot-wire measurements. For the blowing case, in
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Figure 15. Variation of the vortex formation length vs Γ.
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to the intersection points of the contour lines in b) with the
centreline. (•) belongs to Γ = 0 (see text for (�)-symbols).

figure 8b), the peak appears very distinct and moves from x/D ≈ 1.5 to 3 with
an increase of Γ from 0 to +3.9. Using the values extracted from the flow visu-
alization images one observes an LF -increase to x/D ≈ 3.5 in the same blowing
interval, which is deemed acceptable considering the resolution in figure 8b).

5. Summary

The flow around a porous cylinder subject to continuous suction or blowing
has been experimentally studied for Reynolds numbers of the order of 104.
It is shown that even moderate levels of the secondary flow, i.e. � 5% of
the oncoming streamwise velocity, have a large impact on the flow around the
cylinder, both for suction and blowing.

Strong enough suction moves the separation line to the rear part of the
cylinder in a similar way as it does when the cylinder boundary layer becomes
turbulent (resulting in a narrower wake). This is shown in a qualitative way
through the drastic reduction of CD (up to 70%) above a specific value of Γ
(≈ −2.5) and by a direct check of the Cp-distribution. When blowing is applied
the separation point moves to smaller angles and the drag is shown to increase
linearly with increasing magnitude of blowing. Correspondingly this is shown
to result in a widening of the wake.
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A measure of the vortex formation length has been defined from flow vi-
sualization images and used for investigating relative changes of this length
when suction or blowing is applied. For instance, the vortex formation length
is decreased by 75% and increased by 150% for Γ ≈ −5 and +5, respectively.
For the suction case the decrease in formation length may be directly coupled
to the rearward motion of the separation point and vice versa for the blowing.
It is notable that the turbulence on the wake centreline decreases throughout
the whole measured downstream distance (x/D = 20) if suction is applied on
the cylinder, whereas there is hardly any effect from blowing beyond x/D = 5.

The Strouhal number increases strongly with suction (up to 50% for Γ ≈
−2.5), whereas blowing has the opposite effect (decrease of around 25% for
Γ ≈ +5). This can be seen to be coupled to an apparent diameter of the cylin-
der, which is decreased for suction and increased for blowing as compared to
the solid cylinder. However, another interpretation of the change of Strouhal
number is that the effective Reynolds number changes with suction and blow-
ing. In fact it was shown that it was possible to find a relation between an
effective Reynolds number and the blowing/suction rate. This relation was
verified in a large Reynolds number range (Re ∼ 102 − 106).
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PIV–measurements in the wake of a cylinder
subject to continuous suction or blowing

By Jens H. M. Fransson

KTH Mechanics, SE-100 44 Stockholm, Sweden

The present experimental investigation analyses the effect on the wake when
applying continuous suction or blowing, through the cylinder surface, by means
of PIV-measurements. Part of the cylinder is made of a porous material with
a hydraulically smooth surface. Particular attention has been given to the
vortex formation length behind the cylinder. Both the position of maximum
back-flow and the position of the confluence point of the two stationary vortices,
which appears in a mean field view, have been used as a measure of the vortex
formation length. These are shown to be related by a factor of 1.4 in average.
Peculiar peaks in the integrated streamwise energy across the wake was found at
fixed downstream positions, and was observed to be strenghend with suction in
particular. These energy peaks are hypothesized to be attributed to inflectional
instability of the mean streamwise velocity profile.

1. Introduction

A flow configuration that has attracted researchers and scientists over many
years is the flow past bluff bodies. This configuration offers the interaction of
three shear layers to be studied (cf. e.g. Williamson 1996), namely the bound-
ary layer on the body, the separating free shear layer, and the wake flow. From
a fundamental research point of view it is a very complex flow geometry that
can give many flow phenomena in different Reynolds number ranges, such as
boundary layer separation, periodic vortex shedding, wake transition, bound-
ary layer transition, flow reattachment, separation bubbles etc. These flow
phenomena are of direct relevance to many practical and industrial applica-
tions, where the vortex shedding in particular plays an important role, such as
in telecom masts, aircraft and missile aerodynamics, civil and wind engineering,
marine structures, and underwater acoustics. The periodic vortex shedding can
lead to devastating structural vibrations that finally lead to material fatigue
and structural failure.

The vortex shedding instability is a self excited oscillation that will set in
even if all sources of noise are removed (see Gillies 1998), and can be shown
to be attributed to the local stability property of the two-dimensional mean
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velocity wake profile behind a bluff body. Monkewitz (1988) identified a se-
quence of stability transitions by using a family of wake profiles, that resulted
in ReC < ReA < ReK , where ReC (≈ 5), ReA (≈ 25), and ReK (≈ 47) are crit-
ical Reynolds numbers that mark the onset of convective, absolute, and von
Kármán shedding instability, respectively. This sequence was in fully agree-
ment with the qualitative model predictions by Chomaz et al. (1988) the same
year. The onset of the global von Kármán shedding mode occurs via a so-called
supercritical Hopf bifurcation (see e.g. Provansal et al. 1987). For a review on
the stability properties of open flows in general the interested reader is referred
to Huerre & Monkewitz (1990), and for reviews on cylinder flows in particular
see e.g. Williamson (1996); Buresti (1998); Norberg (2003); Zdravkovich (1997,
2003).

1.1. Vortex shedding control

The ability to control the wake and the vortex shedding of a bluff body can
for instance be used to reduce drag, increase heat transfer and mixing, and
enhance combustion. Over the second half of last century there have been a
number of successful attempts to control the shedding wake behind bluff bodies
with the practical goal of reducing the pressure drag on the body.

1.1a. Rectangular-based forebody. A control approach that has shown to be
effective in reducing the average strength of the vortices and the shedding
frequency is base bleed (cf. e.g. Wood 1967; Bearman 1967). For successively
increasing bleeding rates the regular shedding of vortices ceases, intermittently
at first, and then completely. Hannemann & Oertel (1989) performed numerical
simulations on the effect of uniform blowing from the base, and reported a
critical value1 (cq = 0.214) for which vortex shedding was suppressed. Uniform
suction from the base was considered numerically by Hammond & Redekopp
(1997) and they report a continuous decline of the wake shedding frequency
with a gradual increase of suction until an abrupt suppression occurs at a
sufficiently high suction rate.

1.1b. Cylinder. A simple passive control method is to place a thin splitter plate
aligned in the streamwise direction on the centreline of the near wake (see
Roshko 1955, 1961). For a specific length of the splitter plate the sinuous von
Kármán mode is altered for a varicose mode that causes a pair of twin–vortices
to be formed, one on each side of the plate. More recently, Grinstein et al.
(1991) carried out numerical simulations on the effect of an interference plate
in the wake of a plate and found that the base pressure coefficient could decrease
by a factor of 3 depending on the length of the plate and its separation from
the base.
1cq = m∗/U∞D∗, were m∗ is the mass flow rate divided by density and for unit depth which

is blown into the wake at the base of the plate, U∞ is the free stream velocity, and D∗ is the
thickness of the plate.
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Experiments on circular cylinders with forced rotary oscillations have shown
to give a drag reduction of up to 80% at Re = 15000 for certain ranges of fre-
quency and amplitude of the sinusoidal rotary oscillation (see Tokumaru &
Dimotakis 1991). Shiels & Leonard (2001) performed numerical simulations of
this control approach in where the above experimental findings were verified
and showed indications that this kind of control could be even more efficient
at higher Re.

Control approaches using feedback control have also been attempted. Rous-
sopoulos (1993) carried out experiments in a wind tunnel with acoustic waves
from a loudspeaker as actuation as well as by vibrating the cylinder. In a nu-
merical study by Park et al. (1994) blowing and suction through slots on the
rear part of the cylinder were utilized as actuation. However, this investigation
were performed at relatively low Reynolds numbers (< 300) and so far it does
not exist any results on higher Re-flows.

Glezer & Amitay (2002) used synthetic jets, which provide a localized
addition of momentum normal to the surface, on selected positions over the
cylinder in order to delay separation in both laminar and turbulent boundary
layers. They argued that this delay was caused by increased mixing within
the boundary layer. In addition, the interaction between the jet and the cross
flow has a profound effect both on the separated shear layer and on the wake;
the magnitude of the Reynolds stresses is reduced indicating that the delay in
separation is not merely the result of a transition to turbulence in the boundary
layer.

Experiments with suction or blowing through the entire surface of the
cylinder in order to control the vortex shedding have been considered by e.g.
Pankhurst & Thwaites (1950); Hurley & Thwaites (1951); Mathelin et al.
(2001a,b); Fransson et al. (2003). Pankhurst & Thwaites (1950) made com-
bined experiments with continuous suction through the surface and a flap in
form of a short splitter plate at different angles. They showed through surface
pressure and wake velocity measurements that with the flap directed in the
streamwise direction and for sufficient suction2 (Cq

√
R � 10) the separation is

entirely prevented and a remarkable close approximation to the potential flow
solution is achieved. Further, Hurley & Thwaites (1951) performed boundary
layer measurements on the same porous cylinder and found in general good
agreement with laminar boundary layer theory. However, no time resolved
measurements to determine the vortex shedding frequency were reported.

The von Kármán frequency is Reynolds number dependent, whilst the di-
mensionless frequency known as the Strouhal number is constant (≈ 0.2) in the
range 102 � Re � 105. Mathelin et al. (2001a,b) considered the case of contin-
uous blowing through the entire cylinder surface (see Mathelin et al. 2001a, for

2Here Cq is a suction coefficient defined as the suction velocity per unit area divided by the

free stream velocity.
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a detailed description of the experimental set-up). Among the effects observed
are the wider wake and a decrease of the Strouhal number with increasing
blowing. They report an analytical relation of an equivalent Reynolds number
of the canonical case which produces the same flow characteristics in terms of
vortex shedding instability as the case with blowing versus the blowing rate.
The result is that the Strouhal number decreases with blowing, which was ex-
perimentally verified by Fransson et al. (2003), who also considered the effect of
continuous suction which turns out to have the contrary effect on the Strouhal
number. Note that uniform suction from the base of a rectangular-based for-
body, interestingly, gives the opposite behaviour (cf. Hammond & Redekopp
1997). In Fransson et al. (2003) the changes in the flow due to blowing or
suction were analyzed in terms of mean and fluctuating velocity profiles in the
wake through hot-wire anemometry, pressure distributions on the cylinder, and
drag and vortex shedding measurements. Furthermore, smoke visualizations of
the flow field in the near wake of the cylinder for different blowing or suction
rates were reported. Image averaging enabled the retrieval of quantitative in-
formation, such as the vortex formation length, which showed that the vortex
formation length is decreased by 75% and increased by 150% for 5% of suction
and blowing of the free stream velocity, respectively.

This paper deals with the wake effect, in particular the effect of the vortex
formation length, behind a porous cylinder when different rates of continuous
suction or blowing are applied through the entire cylinder surface. The Rey-
nolds number is around 4000 which is in the subcritical regime (cf. Roshko
1961), implying laminar boundary layers around the cylinder with a purely
laminar separation, and the data presented can be seen as a suitable test case
for comparison with numerical simulations, which can be used to develop accu-
rate CFD (Computational Fluid Dynamics) schemes and models. Further, this
investigation complement the above cited investigations by providing full veloc-
ity field information using PIV, which provides accurate velocity measurements
also very close to the cylinder.

2. Experimental set-up and measurement technique

2.1. Wind tunnel

The experiments were performed in the BL wind tunnel3 at KTH Mechanics,
Stockholm. The cross sectional area of the test section is 0.5× 0.75 m2, and
it is 4.2 m long with a maximum speed of 48 m/s. The flow quality in this
tunnel is considered good with a turbulence intensity (of all three components)
of less than 0.04% of the free stream velocity. The tunnel is equipped with a
heat exchanger and the desired temperature is easily set by the user on the
computer controlling the tunnel. At 25 m/s the temperature variation over the
cross section area is less than ±0.07 ◦C and the variation over a time period

3Boundary Layer or Björn Lindgren named after its designer.
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Figure 1. Schematic of the experimental set-up. Flow is from
right to left.

of 4 hours is less than ±0.03 ◦C. At this speed the total pressure variation is
less than ±0.1%. The tunnel was successfully designed with expanding corners
(larger outlet than inlet cross section area) in order to reduce the total wind
tunnel circuit length with only a negligible increase of the total pressure loss.
The interested reader is referred to Lindgren (2002) for further details.

2.2. Cylinder

The same porous cylinder as was used by Fransson et al. (2003) for flow visu-
alization was used in the present investigation. The cylinder consists of a cross
profile made of brass as an inner skeleton. A sintered plastic material shaped
to a cylinder is then slided over the brass profile and sealed, creating four iso-
lated chambers through which different amount of blowing or suction may be
applied. The end parts were made of brass pieces and act as plugs on each side
of the cylinder. These were equipped with four inlets for tube connections that
were confluenced before connected to a flow meter (rotameter type), which in
turn was connected to a pressure source (vacuum cleaner or high pressure air
depending on whether suction or blowing is required).

In figure 1 a schematic of the experimental set-up is shown with relevant
measures. The cylinder was mounted vertically in the test section and has a
diameter of 50 mm and a porous length of 600 mm. The porous material is a
sintered plastic material with an average pore size of 16 µm, and the thickness
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is 2.5 mm. Previous surface roughness measurements on a similar but flat
porous plate (see Fransson & Alfredsson 2003) showed a deviation of ±1 µm
from the mean surface, which for the present case can be considered to be
hydraulically smooth. The cylinder is made from a flat plate which is bent to
form a circular cylinder. This means that there is a joint in the axial direction
along the full length of the cylinder, and this gives rise to a small asymmetry
with a 0.5 mm larger diameter in average when measured over the joint. The
joint is therefore positioned at 180◦, i.e. behind the cylinder in the streamwise
direction, in order to avoid any flow asymmetry.

To determine the permeability of the material the pressure difference (∆P )
over the cylinder wall and the flow rate (Q = V × S , where V and S are the
velocity through the porous material and the surface area, respectively) are
measured, when suction is applied. Through Darcy’s law the permeability
(k) is then determined to be k = µtV/∆P = 2.31 × 10−7 m2, by best line
fitting to the data (µ is the dynamic viscosity). Furthermore, a non-uniform
suction/blowing rate is expected through the cylinder surface since the static
pressure around the circumference of the cylinder varies when exposed to an
oncoming flow and the fact that the tubing from the different chambers are
confluenced before connected to the pressure source. However, the influence
can be shown to be rather small. For the suction case the largest suction
velocity occurs along the front stagnation line and then it decreases towards
the rear. In the separated region the suction velocity is fairly constant and for
a suction rate of 1.4% of the free stream velocity the suction velocity is about
6% smaller in this region as compared to the front. For larger suction rates
the difference becomes smaller. In contrast, for the blowing case the smallest
blowing velocity is along the frontal stagnation line and then increases and
becomes constant from about 65◦ and downwards. In this case the maximum
variation is less than 7% and the variation decreases with increasing blowing
rate (see figure 2b).

2.3. Measurement technique

For the velocity measurements a Particle Image Velocimetry (PIV) system was
used. The advantage of this technique is the allowance to capture a whole field
of instantaneous velocities. On the other hand a drawback would be the rela-
tively poor temporal resolution when compared with hot-wire for instance. The
PIV-system used consists of a Spectra Physics 400 mJ double pulsed Nd:Yag
laser operating at 15 Hz as a light source, and the camera is a double-frame
Kodak ES1.0 8-bit CCD camera with 1018× 1008 pixels. Further, a laser arm
is connected to the laser which facilitates traversing of the laser sheet. The air
was seeded with smoke particles generated by heating a glycol based liquid with
a disco smoke generator, JEM ZR20 Mk II. The smoke inlet to the tunnel was
in the open cross section between the end of the test section and the diffuser.
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Figure 2. a) Permeability determination of the porous ma-
terial (repeated for all chambers). Solid line is the best fit
to all data. b) Suction/blowing distribution due to the static
pressure variation around the circumference of the cylinder.

Before the measurements the smoke was recirculated in the tunnel until the air
became homogeneuously seeded. See figure 1 for an illustration.

In the post-processing of the measured data conventional validation criteria
were applied. Displacements of the particles larger than 25% of the interro-
gation area length was not allowed, in order to avoid low-velocity bias due to
loss-of-pairs. This criterion is set before the measurements by choosing the
appropriate time between the two consecutive captured images. Furthermore,
spurious measurement errors were eliminated by applying a Peak-Value-Ratio
(PVR) of 1.2, that is the ratio of the highest to the second highest peak in the
cross-correlation is not allowed to be smaller than 1.2.

3. Experimental results

The amount of suction or blowing applied through the cylinder surface is char-
acterized by the parameter Γ. This parameter is simply defined as the velocity
through the cylinder surface Vsurf. (being negative for suction and positive for
blowing) in percentage of the free stream velocity U∞, i.e. Γ = 100×Vsurf./U∞.
In the present experiments the free stream velocity has been kept constant at 1
m/s, corresponding to a Reynolds number based on the cylinder diameter and
the free stream velocity of 3700.

The results are aimed at describing the effect of the vortex formation length
for different blowing and suction rates, and to map the effect on the urms and
the vrms velocity fluctuation components as well as the Reynolds stress (uv).
See figure 1 for the coordinate directions, the origin of the system is however not
shown in the figure which is located at the symmetry axis of the cylinder. The
statistical quantities for all the different suction and blowing rates are based
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on at least 1056 image pairs, and in the following vector and contour figures in
the (x, y)-plane the data have been smoothed. Note that all contour levels can
be seen as dimensional or as dimensionless form (normalized with U∞) since
U∞ = 1 m/s. The measurements in the suction and in the blowing cases are
not taken at the same position. In the blowing case the measurement field is
slightly enlarged and moved downstream in order to follow and capture the
confluence point of the two stationary vortices that are formed in an averaged
perspective.

3.1. Suction

As reported in Fransson et al. (2003) suction decreases the size of the wake,
both in terms of the extension of the vortex formation length as well as the
width of the wake, contributing to a decrease of the total drag. In figure 3
instantaneous vector velocity fields (left column) and their corresponding back-
flow coefficient maps (right column) are shown for Γ = 0,−1.4,−2.6, and -5.0.
The black region in the left of the figures is the cylinder. The figures (left
column) illustrates the roll up of the shear layers into distinct von Kármán
eddies. Note that the shown fields only extends to 2.5 diameters downstream
of the cylinder’s symmetry axis, which implies that the back-flow regions only
appear in the very near-wake of the cylinder according to the right column
of figure 3, where the instantaneous back-flow (U < 0) is shown with (+)-
symbols. Here, the indication of a larger back-flow region at Γ = −5 compared
to Γ = −2.6 is simply an artefact of a snapshot of a turbulent velocity field
dominated by large coherent structures.

In figures 4-5 the mean vector velocity fields (left column) and their cor-
responding mean back-flow coefficient maps (right column) are shown for Γ =
0,−1.4,−1.9,−2.6,−3.2,−3.9,−5.0, and -6.5. The figures show that the aver-
aged velocity field consists of two stationary vortices with a stagnation point
where they confluence. At some distance upstream of this point the maximum
back-flow is achieved. The filled contours of the back-flow coefficient (right
column) correspond to an increment of 0.1, from 0 (white = no back-flow in
average) to 1 (black = back-flow at all times). The white bullet, in all figures
(right column), correspond to the maximum value of the back-flow coefficient.
For increasing suction this point moves towards the cylinder and in the cor-
responding vector velocity fields (left column) the two stationary vortices are
seen to move along. The vertical (y/D) position of the cores of the two sta-
tionary vortices seem to be unaffected for low suction rates but for increasing
suction the vortices are seen to be compressed in this direction implying an
enlarged region of high back-flow velocities in between the cores before the
vortices totally are suppressed (see Γ = −6.5 case).
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Figure 3. Instantaneous vector velocity fields (left column)
and their corresponding back-flow coefficient maps (right col-
umn) for different suction rates.
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Figure 5. For caption see figure 4.
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Figure 6. Root mean square of the u and v velocity fluctua-
tions and the uv-Reynolds stress component in the (x, y)-plane
for different suction rates.

Figures 6-7 show the urms, vrms, and uv-Reynolds stress component in the
(x, y)-plane for Γ = 0,−1.4,−1.9,−2.6,−3.2,−3.9,−5.0, and -6.5. The dotted
contour lines in the urms and vrms figures correspond to 0.05 and the solid
lines to 0.1, 0.2, 0.3, and 0.35 with increasing values to the closed regions. For
uv the dotted lines correspond to the zero contour and the dashed and solid
contour lines correspond to negative and positive values of 0.002 0.02 0.035
0.05, respectively, with increasing values to the closed regions. For increasing
suction the two peaks in urms move towards the cylinder and decreases in size
which is illustrated in the figure with the approaching contour lines, since the
same contours are plotted in all figures. In vrms a single peak is observed which
approaches the cylinder with increasing suction. The uv shows the asymmetric
behaviour with positive (solid) and negative (dashed) contour lines.
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Figure 7. For caption see figure 6.

The wake energy evolution in the streamwise direction is shown in figure 8.
Eu, Ev, and Euv are defined as

Eu =
∫ {

urms

U∞

}2
dy , Ev =

∫ {
vrms

U∞

}2
dy , and Euv = (Eu +Ev)/2 ,

respectively. Where Euv denotes the ”total energy” (w-component missing) at
a prescribed distance downstream of the cylinder. From figure 8a) it is clear
that the level of Eu decreases monotonically with increasing suction in the
region beyond approximately 2.1D behind the cylinder. From inspection of
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figure 8a) one may conclude that the suction suppresses the transient energy
distribution behind the cylinder and moves the maximum closer to the cylinder.
This is probably also the scenario of Ev, see figure 8b), where the maximum
is shifted about 0.5D downstream. A large energy peak at x/D = 1.1 can be
observed in Eu which is also present in Ev but 3-5 times smaller depending on
the suction rate. The total energy Euv is plotted in figure 8c) and resembles
what is just stated, but the x/D-position where a monotonic decrease of the
energy with increasing suction is observed has moved slightly downstream (to
≈ 2.25) due to the shifted maximum in Ev.

3.2. Blowing

The effect of blowing has previously been shown (cf. Fransson et al. 2003) not
only to increase the wake width but also to increase the velocity deficit that is
encountered behind the cylinder. This causes an almost linear increase of the
drag coefficient with increasing blowing. In figure 9, snapshots of the vector
velocity field (left column) is shown for Γ = 0, 1.4, 2.6, and 5.0 together with
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Figure 8. Wake energy evolution in the streamwise direc-
tion for different suction rates. a) Eu: the energy of the u-
component. b) Ev: the energy of the v-component. c) Total
energy Euv = Eu +Ev.
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their corresponding back-flow map (right column), which gives a representative
view of the flow. Large indistinct von Kármán vortices are observed in the
figure (left column) and the region of back-flow gives an impression to increase
with blowing. Figures 10-11 show the mean vector velocity fields (left column)
and their corresponding mean back-flow coefficient maps (right column) for
Γ = 0, 1.4, 1.9, 2.6, 3.2, 3.9, 5.0, and 6.5. The y/D-position of the cores of the
two stationary vortices seem to be unaffected for blowing rates up to Γ =
3.2, whereafter the distance between the two cores start to grow. However,
already at low blowing rates there is a notable movement in the streamwise
direction of the stagnation point and the position of maximum back-flow (for
contour information of the back-flow coefficient see the corresponding suction
case). The growth of the vortices with increasing blowing are best illustrated by
the enlarged regions of maximum back-flow in the contour plots of figures 10-
11. Here, the white bullets, again, illustrate the movement of the position of
maximum back-flow.

Figures 12-13 show the urms, vrms, and uv-Reynolds stress component
in the (x, y)-plane for Γ = 0, 1.4, 1.9, 2.6, 3.2, 3.9, 5.0, and 6.5. The dotted,
dash-dotted, dashed, and the solid contour lines in the urms and vrms figures
correspond to 0.15, 0.20, 0.30, and 0.35 respectively. The dotted contour lines
of uv correspond to the zero level, and the dashed and solid to negative and
positive contour lines, respectively (of ±0.002,±0.02,±0.035, and ±0.05 with
the increment towards the closed regions). The opposite effect of all three
quantities is observed when compared to the suction case. The two peaks in
the urms-distribution move away from the cylinder but a blowing rate of at
least Γ = 3.2 is needed in order to observe an effect of blowing. The same
tendency is seen for the vrms and uv. However, from Γ = 3.9 to 5.0 there is a
large change in all three quantities, rendering the positive and negative maxima
in uv out of the image.
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Figure 9. Instantaneous vector velocity fields (left column)
and their corresponding back-flow coefficient maps (right col-
umn) for different amount of blowing.
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corresponding mean back-flow coefficient maps (right column)
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Figure 12. Root mean square of the u and v velocity fluctua-
tions and the uv-Reynolds stress component in the (x, y)-plane
for different blowing rates.

For increasing blowing the trends of the energy distribution is similar but
not as clear as in the suction case. The Eu is monotonically increasing with
blowing at x/D = 4.7, which can be observed in figure 14a). The maximum
value of Eu moves away from the cylinder with increasing blowing and between
Γ = 3.0 and 5.0 it seems to be a large shift downstream. Note that for Γ = 6.5
it looks like if the trend has been reversed when compared with Γ = 5.0. Fig-
ure 14b) shows the Ev evolution, which shows a clear shift of the maximum
towards higher x/D with increasing blowing. The lower energy level distribu-
tions for Γ = 5.0 and 6.5 compared to Γ = 0 is most certain due to the delay
of the energy growth when blowing is applied and the former two Γ-values will
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Figure 13. For caption see figure 12.

reach their respective maxima far out of the image in the downstream direc-
tion and therefore the intersection with Γ = 0 is not observed in the figure. In
figure 14c) the ”total energy” Euv is shown in where the energy peaks located
at x/D = 2.65, 3.40, and 3.75 come from Eu alone.
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Figure 14. Wake energy evolution in the streamwise direc-
tion for different blowing rates. a) Eu: the energy of the u-
component. b) Ev: the energy of the v-component. c) The
total energy Euv = Eu +Ev.

3.3. Suction and blowing

In figure 15 the x/D-positions of maximum back-flow (white bullets in fig-
ures 4-5 & 10-11) and the stagnation point, corresponding to the confluence
point of the two stationary vortices, are plotted versus Γ. Both these quanti-
ties can be seen as a measure of the vortex formation length. The ratio of the
two quantities is fairly constant, implying that the absolute size in the stream-
wise direction of the recirculating region is not significantly effected by suction
nor blowing. However, a compression and an extension of the vortices in the
y/D-direction could be observed for high enough suction and blowing rates,
respectively (cf. figures 4-5 & 10-11). From figure 15 it is clear that suction
reduces the extent of the near-wake, and the maximum back-flow and the stag-
nation point measures decrease with 60% and 32%, respectively, at Γ = −5
compared to Γ = 0. In contrast, blowing increases the near-wake extension
with 70% and 66%, respectively, at Γ = 5 compared to Γ = 0. These mea-
surements do not contradict the results by Fransson et al. (2003), where the
vortex formation length was achieved from an averaged photo technique, who
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Figure 15. The effect of suction and blowing on the near-
wake extension. Both the position of maximum back-flow and
the stagnation point (or the confluence point of the two sta-
tionary vortices) can be seen as a measure of the vortex for-
mation length. The averaged ratio between the two is 1.42.

reported a decrease of 75% and an increase of 150% at Γ-values of -5 and 5,
respectively. The choice of measure is sensitive to the relative changes, which
is reflected in this analysis of the present two different measures. Furthermore,
in Fransson et al. (2003) the Reynolds number was two times larger than in
the present experiments, and a Reynolds number dependence may be possible.

Figure 16 show the mean streamwise velocity profiles on the centreline
behind the cylinder for some chosen ±Γ-values. The dotted lines correspond to
the x/D-positions where the energy peaks in figures 8-14 appear. A possible
explanation for the appearance of peaks in the y-integrated energy is inflectional
instability of the mean velocity profile. In both the suction and the blowing
cases (cf. figures 8-14) the energy peak is strongest in Eu, why the streamwise
profiles are shown here. The change of the inflection point of the mean velocity
profile in figure 16 seems to correspond with the peak strength and position in
the energy distribution.

4. Summary

In the present investigation the effect on the wake behind a porous cylinder,
subject to continuous suction or blowing through the cylinder surface, has been
studied. The Reynolds number was 3700, implying laminar boundary layers
around the cylinder with a purely laminar separation.

The effect of suction and blowing of the statistical quantities are easily
summarized by saying that suction pulls the wake towards the cylinder and
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the x/D-positions where the energy peaks in figures 8-14 ap-
pear.

blowing pushes it away. Furthermore, the wake width is compressed by suction
and enlarged by blowing, which is revealed by inspection of vector velocity
fields, and for high enough suction the mean field around the cylinder is not
far from a potential flow field.

The vortex formation length is documented by means of two different mea-
sures, which in average are related by a factor of 1.4. These are the position of
maximum back-flow behind the cylinder and the position where the two sta-
tionary vortices (appearing in the mean field) confluence, i.e. the stagnation
point in the flow field. The choice of measure has been shown to be sensitive
to relative changes, why further analysis is needed in order to define an appro-
priate measure of the vortex formation length. This measure may be used as
a benchmark for numerical simulations, which is the main reason why this has
been emphasised in the present investigation.

A tentative explanation of the appearance of energy peaks, at particular
x/D-positions, in the integrated streamwise energy over the wake width is that
they can be attributed to inflectional instability of the mean streamwise velocity
profile.

Further analysis on the present data will be done, where comparison with
absolute instability theory and probability density distributions of the vortex
sizes will be given attention.
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Errors in hot-wire X-probe measurements
induced by unsteady velocity gradients
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Errors in hot-wire X-probe measurements due to unsteady velocity gradients
are investigated by a comparison of hot-wire and LDV-measurements (Laser
Doppler Velocimetry). The studied flow case is a laminar boundary layer sub-
jected to high levels of free stream turbulence, and the hot-wire data shows
a local maximum in the wall-normal fluctuation velocity inside the boundary
layer. The observed maximum is in agreement with existing hot-wire data, but
in conflict with the present LDV-measurements as well as existing results from
numerical simulations. An explanation to the measurement error is suggested
in the paper.

1. Introduction

It is well known that strong spatial mean velocity gradients can distort mea-
surements obtained by hot-wire X-probes if the size of the probe can not be
considered small as compared to the flow structures in question. In some cases
correction procedures can be applied with success, for example Cutler & Brad-
shaw (1991) applied a linear correction procedure to correct X-probe measure-
ments of the spanwise velocity component in a boundary layer1. In a recent
paper by Talamelli et al. (2000) errors observed when measuring the wall-
normal component in a boundary layer was thoroughly investigated using a
special probe which allowed a continuous variation of the relative displacement
of the two wires of the probe. Both first and second order correction terms
could be estimated, and successful corrections of the mean normal velocity (V )
as well as the turbulent shear stress (uv) were shown.

The free stream turbulence (FST) induces unsteady streaky structures of
high and low streamwise velocity inside the boundary layer (for more details,
see e.g. Westin 1997; Matsubara & Alfredsson 2001). This can be observed as a
large amplitude low-frequency fluctuation primarily in the streamwise compo-
nent (see figure 1). However, most available measurements of the wall-normal

1In the present paper the streamwise, wall-normal and spanwise directions are denoted by x,
y and z, and the corresponding velocities with U , V and W .
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fluctuations (Arnal & Juillen 1978; Roach & Brierley 1992; Westin 1997), which
are all obtained using X-wire probes, also reveal a local maximum in vrms in-
side the boundary layer. This is in contradiction to both large eddy and direct
numerical simulations (Voke & Yang 1995; Rai & Moin 1991; Jacobs & Durbin
2001), which have not been able to reproduce this peak in vrms. In addi-
tion to that, theoretical studies based on the concept of nonmodal disturbance
growth (often denoted transient growth, see e.g. Andersson et al. 1999) do not
predict any spatial amplification of the wall-normal disturbance energy.

To clarify this discrepancy between experimental results and computations
it was decided to compare measurements with hot-wire anemometry (HWA)
and Laser Doppler Velocimetry (LDV) in a laminar boundary layer subjected
to FST (sometimes denoted a pseudo-laminar boundary layer). In addition
to experimental results, an explanation to the observed measurement error is
suggested.

2. Experimental and evaluation techniques

The experiments were carried out in the MTL wind tunnel at KTH. The results
shown in figure 1, which in the following will be denoted the “old” data, were
measured on a 4 m long flat plate with a turbulence level of 1.5% at the leading
edge. For more details about the experimental set-up and the grid generated
turbulence, see Westin et al. (1994). The so-called “new” results shown in
figure 2 were obtained on a slightly different 6 m long flat plate, but otherwise
the two experimental set-ups were similar.

In the HWA-technique an X-probe was used to measure the streamwise
and wall-normal velocity components operating in CTA mode. The probe was
made of 2.5 µm platinum wires and had a measurement volume less than 1 mm3

(side length ≤ 1 mm) for the new data (figure 2). The old data (figure 1) was
taken with a smaller probe with a wire separation of 0.5 mm. The calibration
was done at different angles and flow velocities, and two fifth-order polynomials
were fitted to the calibration data, givingU and V as functions of the obtained
voltage pair (E1,E2).

In the LDV-measurements an integrated one dimensional laser-optics unit
was used, including a 10 mW He-Ne laser of wavelength 632.8 nm. A beam
expander was mounted to the lens to reduce the measurement volume, which
can be approximated as an ellipsoid with axes lengths 0.14 mm and 2.4 mm. To
be able to measure the wall-normal component close to the wall the probe has
to be inclined. This causes an error which in the present case was estimated to
be less than 0.2%. To provide a uniform seeding smoke from a smoke generator
was injected downstream of the test section in the closed-loop wind tunnel.

The LDV-data presented are residence time weighted, i.e. each particle is
weighted with its transit time. The LDV-unit only allows fixed bandwidths to
be changed by the user, and the choice influences the background noise level
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Figure 1. Profiles of a) urms and b) vrms in the pseudo-
laminar boundary layer at Tu = 1.5% (U0 = 8 m/s). The
different x -positions are 100 mm (R = 400) (+), 250 mm (R
= 630) (�), 500 mm (R = 890) (�) and 800 mm
(R = 1120) (◦).

in the measured data. In the present flow case with a dominant mean flow
direction along x it was possible to choose a more narrow (and better suited)
bandwidth for the wall-normal component than for the streamwise one. In
the present study two different bandwidths were used for the measurements of
the streamwise component. However, to compensate for the background noise
the urms-profile is corrected by subtracting an appropriate constant noise level
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= 700 mm (R = 790). ◦ HWA-data; � LDV-data.

which was chosen in order to fit the free stream values to the corresponding
HWA-data.

3. Results and discussion

Due to the presence of the wall the V -fluctuations in the free stream are damped
when approaching the wall (see e.g. Hunt & Graham 1978). In figure 1b and 2b
the damping can be seen also outside the boundary layer edge (which is located
at y/δ∗ ≈ 3). Inside the boundary layer both the HWA and the LDV predict a
large amplitude peak in the urms, and after the correction of the LDV-data to
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the moving streaks on the Reynolds stresses is illustrated.

obtain a correct rms-level in the free stream both methods showed a maximum
amplitude inside the boundary layer of approximately 4.5% (see figure 2a).

When comparing the vrms-profiles the two measurements agree quite well
in the damped region outside the boundary layer edge, but closer to the wall it
is evident that the HWA-data generates a virtual maximum. The LDV-data is
damped all the way down to the wall, which is in agreement with DNS-data (see
e.g. Rai & Moin 1991; Jacobs & Durbin 2001). It is also interesting to note
that the relative magnitude of the erroneous peak in vrmsis larger in figure 2b
than in 1b, i.e. the larger probe size in the new measurements results in larger
errors.

The explanation to the virtual maximum in vrms obtained with HWA can
be understood if one considers that the disturbances in the pseudo-laminar
boundary layer is dominated by longitudinal streaks with high and low stream-
wise velocity. This is illustrated with solid and dashed circles in figure 3. Since
the V -component is obtained from the voltage difference between the two wires,
a spanwise gradient in U will be erroneously detected as a wall-normal compo-
nent. Depending on the sign of ∂U/∂z and the direction of the movement of the
streaks four different scenarios are possible of which one is shown in figure 3.
The outcome of the other three is similar. It can be seen that the off diagonal
element uv in the Reynolds stress tensor becomes zero, while there are non-zero
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contributions to both urms and vrms. Since in this simplified illustration both
vrms and uv should be zero, it is clear that the error due to unsteady spanwise
gradients primarily will appear in measurements of the wall-normal fluctuation
level.

In the present study only laminar boundary layers subjected to FST have
been considered, which is a case where the described error becomes clearly vis-
ible due to the very small level of wall-normal fluctuations. However, the same
gradient effect will distort measurements also in other cases. For example in the
near-wall region of a turbulent boundary layer u-velocity streaks are common,
and vrms-profiles obtained with HWA in this region are certainly overestimated.
The smaller spanwise scales in the turbulent boundary layer as compared to
the pseudo-laminar one further enhances the effect of the measurement error.
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Leading edge design process using a
commercial flow solver

By Jens H. M. Fransson

KTH Mechanics, SE-100 44 Stockholm, Sweden

In the present work the design process of an asymmetric leading edge, for lam-
inar stability measurements in a flat plate boundary layer, is reported. It is
well known that a symmetric leading edge gives rise to an undesired pressure
suction peak, which effects the receptivity process and in turn the stability
characteristics of the flow. The aim of the study is to design and construct
a leading edge with a short adverse pressure gradient region and without the
suction peak. Wind tunnel testing of the leading edge shows a successful de-
sign and is here verified by means of measured mean velocity profiles and the
pressure coefficient distribution.

1. Introduction

The ideal flat plate does not have any leading edge, it is simply an infinitely thin
plate with a zero pressure gradient everywhere. When placing an obstacle in a
flow the fluid will accelerate around it causing the static pressure to decrease.
First when the fluid is allowed to decelerate the pressure can start to recover.
In figure 1 a symmetric ”leading edge” generated by a two-dimensional source
and a rectilinear flow (known as half body) with potential flow theory is shown
with a solid line. The velocities are easily calculated for the above problem (see
e.g. Massey 1998) from where the pressures may be achieved via Bernouilli’s
equation. The pressure coefficient (Cp) possessing an exact solution for this
half body then becomes

Cp =
sin 2θ
θ

− sin2 θ
θ2

,

given in polar coordinates (θ = 0 is the stagnation point), and is also plotted
with a dashed line in figure 1. At the stagnation point (x/L = 0) Cp is equal to
unity according to its definition. Thereafter Cp is reduced as long as the fluid
is accelerating around the nose, but as soon as the curvature starts to decrease
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Figure 1. Symmetrical leading edge generated by a 2D source
in a uniform velocity field with potential flow theory (L=0.215
m).

the pressure starts to recover. This minimum of Cp is the well known suction
peak giving rise to a local negative pressure gradient followed by a positive one.

During the last decade several laminar to turbulent transition scenarios
have been studied in the MTL wind tunnel at KTH Mechanics. Klingmann
et al. (1993) was the first study and dealt with Tollmien-Schlichting wave in-
stability in a flat plate boundary layer. That investigation ended the discussion
whether the disagreement between modal theory and experiments was to be
attributed to the parallel approach or if there was some other assumption that
had been overlooked. Apart from the low background disturbance level of the
MTL wind tunnel one of the reasons for being able to experimentally verify
existing linear parallel theory was the design of an asymmetric leading edge.
After this investigation in 1993 the plate together with the leading edge has
been used successfully in a number of investigations (see e.g. Matsubara &
Alfredsson 2001; Fransson et al. 2003b,a).

There are not many studies on asymmetric leading edges found in the
literature, but receptivity studies on symmetric, both elliptic and super elliptic,
leading edges have been carried out. Saric et al. (2002) discuss the leading-edge
effects and mention that even small discontinuities in the juncture between the
leading edge and the flat plate can effect the stability properties of the flow.
They also summarize some works on the effect of the receptivity coefficient for
different symmetric leading edge geometries. Bake et al. (2002) studied both
experimentally and theoretically the effect of localized surface vibrations in
zero and favourable pressure gradient boundary layers . Both boundary layers
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were found to be more receptive to three-dimensional perturbations than to
two-dimensional ones. Further, the favourable pressure gradient was found
to enhance the vibration receptivity amplitudes in the range of parameters
studied, and the effect increased with growing spanwise wavenumber.

The large pressure gradient prevents the evolution of a Blasius profile in
this region and effects the stability characteristics of the boundary layer flow, as
discussed by Klingmann et al. (1993). In their investigation the importance of
the leading edge design was highlighted and it was shown that an asymmetric
leading edge together with a trailing edge flap to adjust the stagnation line can
reduce the influence that a leading edge really has on the flow.

The asymmetric leading edge presented here is a removable part from the
accompanying flat plate and is 260 mm long, 30 mm thick, and 1200 mm
wide. It was specially designed for the experimental set-up reported in Frans-
son (2001) (later published by Fransson & Alfredsson 2003), and resulted in
a relatively short pressure gradient region without any suction peak at the
leading edge. The leading edge is described analytically by a parameter based
polynomial and a commercial flow solver was used in the design process with
the criteria to minimize the pressure gradient region and to eliminate the pres-
sure suction peak on the upper side of the plate. The leading edge was tested in
a wind tunnel and the pressure coefficient distribution was found to be within
±0.01 40 mm downstream of the leading edge. Furthermore, the wall-normal
distribution of the mean velocity measured as close as 100 mm from the leading
edge was very close to the Blasius profile, which shows that the present design
of the leading edge (thickness = 30 mm) was successful. The performance of
the previously reported asymmetric leading edge by Klingmann et al. (1993)
was used as a challenge in the present design process, even though there was a
criterion on a 58% thicker leading edge compared to that one.

2. Flow calculations

Navier-Stokes equations were solved with the commercial flow solver CFX 4.2
in the design process of the leading edge. CFX uses a conservative finite-
difference method as discretisation and the equations are solved in the fixed
Cartesian directions on a non-staggered grid. The test section of the MTL wind
tunnel, i.e. the ceiling and the floor of the test section, was simulated in CFX
together with the plate. Since the plate is not positioned in the centre of the
test-section the ceiling (upper wall) and floor (lower wall) exert an influence on
the pressure distribution which can not be neglected. Furthermore, the tuning
of the stagnation point at the leading edge could be done by simulating the
effect of a trailing flap by changing the outflow ratio between the upper (I) and
lower (II) outlet (cf. figure 3). In this way the full length of the plate does
not need to be simulated and the computational box can be reduced. For the
present calculations the computational box, consisting of 18500 mesh points,
was divided into 6 different computational blocks in order to achieve a well
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resolved region around the leading edge with a smooth mesh transfer from one
block to another.

Two cubic Bézier-curves connected at the nose tip were used to describe
the upper and the lower sides of the leading edge. A cubic Bézier-curve is a
parameter based polynomial consisting of two interpolation points ([p̄1, p̄2] and
[p̄2, p̄3] for the lower and upper parts, respectively) and two steering points ([b̄l,
c̄l] and [b̄u, c̄u] for the lower and upper parts, respectively). The interpolation
points are shown in figure 2. In the connection point between the upper and
lower curves the two curves were forced to have the same first derivate (ex-
pressed by the K̄2l and K̄1u vectors) in order to make the transition smooth.

A systematic parameter study was performed by applying different total
areas (or weights) of the leading edge. The varying parameters are nose po-
sition (p̄2), starting points of curvature on lower and upper side (p̄1 and p̄3
respectively), and the steering points (2×b̄ and 2×c̄), i.e. totally 7 parameters.
First an area (or weight) of the leading edge was chosen and then the steering
points were varied for different p̄-vectors, thereafter the total area (weight) was
changed and the procedure was repeated.

The result of the extensive and systematic parameter study, performed
in order to minimize the pressure gradient region, is shown below with the
parameters of the final shape of the leading edge (lower (l) and upper (u) part)

r̄l = (1− t)3p̄1 + 3t(1− t)2b̄l + 3t2(1− t)c̄l + t3p̄2, 0 ≤ t ≤ 1
r̄u = (1− t)3p̄2 + 3t(1− t)2b̄u + 3t2(1− t)c̄u + t3p̄3, 0 ≤ t ≤ 1
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Figure 2. Final shape of the leading edge. The profile is
described by the Bézier curves r̄l and r̄u given in the text.



Leading edge design process using a commercial flow solver 311

80
  c

m
In

fl
ow O

ut
fl

ow
 I

O
ut

fl
ow

 I
I

Upper wall

Lower wall

105  cm

Figure 3. View of the computational domain. The filled con-
tour plot shows the pressure distribution in this particular run.
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b̄l = p̄1 + αlK̄1l; b̄u = p̄2 + αuK̄1u;
c̄l = p̄2 − γlK̄2l; c̄u = p̄3 − γuK̄2u;

p̄1 = [0.18 − 0.015]; p̄2 = [0 0.01]; p̄3 = [0.13 0.015];

K̄1l = [-1 0]; K̄2l = [0 1]; αl = 0.15; γl = 0.0046;
K̄1u = [0 1]; K̄2u = [1 0]; αu = 0.0033; γu = 0.0110;

and is plotted in figure 2. α and γ (above) are positive numbers representing
the ”strength” of the steering points and gives the actual steering points for
fixed p̄-vectors.

In figure 3 a view of the flow domain and geometry in the computational
box is shown. The filled contour plot represents the pressure distribution for
a particular run and the white solid line shows the stagnation streamline. A
homogeneous velocity of 5 m/s was used as inlet condition in all runs, on the
walls the ’no slip’ condition was used, and the outlet conditions was set by
specifying the massflow ratio between outflow (I) and (II).
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Figure 4. Illustration of the effect upon the stagnation point
when the massflow below the plate is increased 2.5% in each
figure from a) to c).

In figure 4 the effect upon the stagnation point is illustrated when increas-
ing the massflow below the plate with 2.5% in each figure from a) to c). The
2.5% of massflow change corresponds approximately to a flap angle change of
1o of a one meter long flap. The filled contours show the pressure distribution
with low and high pressures as light and dark colors, respectively. The three
white lines in figures 4a)-c) correspond to representative streamlines under and
above the stagnation streamline, i.e the middle streamline.

3. Experimental testing

In figure 5 the experimental pressure distribution along the leading edge is
shown. The pressure coefficient (Cp) was calculated from the velocity, obtained
from hot-wire measurements, using Bernouilli’s equation. The velocity used

0 40 80 120 160

0

0.1

0.2

0.3

200
x  (mm)

Cp

Figure 5. Pressure distribution close to the leading edge cal-
culated from hot-wire data by applying Bernoulli’s equation
(see text for comments).
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Figure 6. Velocity profiles measured relatively close to the
leading edge. Solid line is the Blasius profile and the mark-
ers denote measured profiles. The corresponding displacement
thicknesses for x=100 and 150 mm are δ1=0.91 and 1.14 mm,
respectively.

for this calculation is the velocity just outside the boundary layer edge and it
has been obtained by traversing the probe through the boundary layer and then
the position with a subsequent negligible velocity change is chosen. The non-
dimensionalized pressure distribution is found to be within ±0.01 downstream
of x = 40 mm, which is judged to be very good for a plate of this thickness (=
30 mm).

Another check of the flow around the leading edge is how Blasius-like the
flow is close to the leading edge. In figure 6 two profiles are plotted at x=100
and 150 mm, and the corresponding measured displacement thicknesses (δ1)
are 0.91 and 1.14 mm, respectively. The measured displacement thicknesses
are within 3% and 1% of the theoretical Blasius values, respectively, which
correspond to virtual origins at xvirt= 6.78 and 3.71 mm, respectively.

4. Summary

For stability and transition wind tunnel studies a well designed and constructed
leading edge is crucial for the outcome of the experiments, and the thicker the
plate is the more important is obviously the design. For controlled transition
experiments there is a need to eliminate as many external and internal dis-
turbance sources as possible that take part in the receptivity process. In this
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context external disturbances are attributed to for instance free stream turbu-
lence or sound waves and internal disturbances are connected to surface rough-
ness, vibrations, or the geometry design (such as the leading edge). Spending
work on the leading edge design is a good investment, since it can provide long
series of experiments with reliable and controlled data without any pressure
suction peak effect. This is of particular importance in Tollmien-Schlichting
wave measurements.

In the present paper a method is outlined for the design work of an asym-
metric leading edge. The quality of the design and construction work is verified
successfully by wind tunnel tests, and are presented in the paper. Furthermore,
this design has already been used in a number of studies in connection with a
porous suction plate and is reported in e.g. Fransson (2001), Fransson & Westin
(2002), Fransson & Alfredsson (2003), and Yoshioka et al. (2003).
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