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Abstract

The possibility to stabilize the oscillatory thermocapillary convection is demon-
strated using a proportional feedback control. This topic has a strong industrial
motivation in connection with a container-less crystal growth method called
the floating-zone technique. The thermocapillary oscillation is known to cause
detrimental striations, microscopic inhomogeneity of the dopant distribution, in
the final product of the crystal growth process. The feedback control is realized
by locally modifying the surface temperature by using the local temperature
measured at different locations fed back through a simple control law. Placing
sensor/actuator pairs (controllers) in a strategical manner using the knowledge
of the modal structures, a simple cancellation scheme can be constructed with
only a few controllers. In this method, the state can be stabilized without
altering the base flow appreciably which could be advantageous compared with
other available control methods targeting the base convection.

As an initial study of such kind of control method, this thesis work explores
the possibility of applying the control in simplified geometries such as the an-
nular configuration and the half-zone for high Prandtl number liquids by means
of experiments, numerical simulations, and formulation of a simple model equa-
tion system. Successful suppression of the oscillation was obtained especially
in the weakly nonlinear regime where the control completely suppresses the os-
cillations. With a right choice of actuators, even with the local control, it was
shown that it is possible to modify the linear and weakly-nonlinear properties
of the three-dimensional flow system with linear and weakly nonlinear control.
On the other hand, the method exhibits certain limitations. Depending on the
geometry of the system and actuators, the limitation can be caused by either
the enhancement of nonlinear dynamics due to the finite size of the actuators
or the amplification of new linear modes. The former case can be attenuated
by increasing the azimuthal length of the actuators to reduce the generation of
broad wavenumber waves. In the latter case, having an idea of the structures of
the newly appearing modes, the destabilization of those modes can be delayed
by optimizing the configuration of controllers. On the whole, the oscillation
can be attenuated significantly in a range of supercritical Ma up to almost
twice the critical value.

Descriptors: Fluid mechanics, Marangoni convection, thermocapillary con-
vection, annular configuration, half-zone, feedback control, flow visualization,
low dimensional model, bifurcation.
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This thesis contains the study of feedback control of oscillatory thermocapillary
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capillary instability. Physics of Fluids, 14, pp. 3039–3045

Paper 3. Shiomi, J., Kudo, M., Ueno, I., Kawamura, H. & Amberg, G. 2003
Feedback control of oscillatory thermocapillary convection in a half-zone liquid
bridge. Journal of Fluid Mechanics, 496, pp. 193–211

Paper 4. Shiomi, J. & Amberg, G. 2003 Proportional control of oscillatory
thermocapillary convection in a toy model. To be submitted.

Paper 5. Bárcena, L., Shiomi, J. & Amberg, G. 2003 Control of thermocap-
illary instability with local heating. To be submitted.

Paper 6. Shiomi, J. & Amberg, G. 2003 Numerical investigation of feedback
control of thermocapillary instability. To be submitted.
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CHAPTER 1

Introduction

Free surface flows are omnipresent in nature with practical importance in di-
verse situations. The surface tension phenomena are also in charge of some of
the curious fluid motions we encounter in our everyday life. A familiar exam-
ple is the tears of wine, also known as the leg of wine, a traditional measure
to check the character of the wine. In a glass of wine, there is a accumulation
of wine in a band on the top edge of the thin film of wine some distance up
from the surface. From this band, tears, drops of the wine, are released and
flow back into the bulk of wine leaving steaks along the side of the glass.

If you looked at a glass of water on the other hand, you would realize that
the glass of water does not cry. The tears of wine result from the evaporation
of alcohol in wine. In the thin film of wine along the side of the glass, more
evaporation of alcohol results in lower alcohol concentration. Since the surface
tension of water is higher than that of alcohol, variations in concentration give
rise to gradients of surface tension. Consequently, the wine is drawn up along
the side of the glass, until it breaks into tears due to the gravitational force.
This phenomenon was first correctly explained by Thomson (1855) and today,
studies are available with more thorough analyses of the physics (Vuilleumier
et al. 2001; Hosoi & Bush 2001).

This type of convection was named after Carlo Marangoni (1840–1925)
who first suggested that a flow can be driven by the surface tension gradient
not only due to the variation in the composition, but also the variation in the
temperature. The Marangoni convection caused by temperature variation is
often addressed as thermocapillary convection. The Marangoni number (Ma),
which describes the ratio of heat transport and thermal diffusion, is often used
to indicate the strength of the driving force.

As described in the earliest review of Scriven & Sternling (1960), there are
tremendous number of situations were the Maragoni effect has practical im-
portance in industrial applications. Especially, the Marangoni convection can
be seen in many of material processing situations involving melting and solidi-
fication which give rise to the interface of two immiscible fluids subjected to a
temperature gradient. For example, in the semiconductor crystal growth and
welding processes, the thermocapillary convection has a significant influence on
the quality of the finished product.
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4 1. INTRODUCTION

In a crystal growth method called floating-zone technique, the time depen-
dent state of the convection is blamed for detrimental striations in the chem-
ical composition of the finished crystal. The industrial need has motivated a
number of theoretical, experimental and numerical studies to clarify the on-
set mechanism of the instability and the structure of the resulting oscillation.
Many studies on the convective flow were carried out in various simplified model
problems where generic convection similar to that of the flow in the floating-
zone melt is realized. Recently, further development in the field of study has
contributed on understanding important characteristics of supercritical behav-
ior of the oscillatory flows. Most of the ground-based experiments are carried
out in geometries with scales of several millimeters in order to have thermocap-
illary forces dominant over buoyancy forces. With the demand for experiments
in micro-gravity conditions, this problem has been caught in the limelight as a
candidate for space-based projects.

Based on the knowledge obtained from these extensive researches, the ul-
timate goal of this field of study would be to stabilize the instability to im-
prove the quality of semiconductors. In the industries, the control problem
of the crystal growth process has been around for years. For example, in the
floating-zone technique with radio frequency heating, because of the asymmet-
ric thermal field of the radio frequency coil, the growing crystal is subjected to
a rotation to obtain a symmetric single crystal. The rotation is also often ap-
plied to the system to maintain the cylindrical shape of the melted zone. Since
the oscillatory state of the convection was found to be the prior cause of the
detrimental striation, the microscopic inhomogeneity of dopant and impurity
distribution, in the finished product, there has been an increasing interest in
suppression of the oscillation. Most of the works done thus far aim to reduce
or alter the steady state, in other word, to decrease the effective Ma, and thus
to attenuate the fluctuation. For example, a well known method is to apply a
magnetic field to an electronically conductive melt. Others are counteracting
the surface flow by generating a stream by end-wall vibration or directing a gas
jet parallel to the surface. A drawback of these methods is that the damping
of the base convection enhances the macro-segregation of the chemical compo-
sitions due to the weakening of the global mixing.

An alternative way to attenuate the oscillation would be to act only on
the thermocapillary instability. If one could stabilize the instability without
influencing the base flow appreciably, it might be beneficial in terms of both
microscopic and macroscopic homogeneity of the final single crystal. When it
comes to this type of method to control the oscillatory thermocapillary con-
vection, there has been only a limited number of works reported. The idea
originates in that if the surface temperature distribution plays a key role in
the instability mechanism, the property of the oscillation should be able to be
altered by modification of the temperature. The objective is to suppress only



1. INTRODUCTION 5

the fluctuation without altering the base flow by modifying the stability charac-
teristics. Knowing the structure of the oscillation, a few sensors and actuators
are strategically positioned to realize the feedback control. With the help of
feedback control, an attempt can be made to minimize the cost of control.

The attraction of the current study in the academic point of view should
also be noted. This problem contains rich fundamental physics with nonlinear
dynamics which can lead the flow to chaotic states. At the same time, the
problem has a few advantages to be subjected for active flow control. Firstly,
since only a limited number of spatial modes play a role in the instability, the
flow can be possibly controlled with a small number of controllers. Secondly,
the flow can be altered by modifying the temperature which is usually exper-
imentally accessible. Finally, being a rather slow phenomenon compared to
other popular targets of flow control, for instance flows on airfoils, the insta-
bility could be a suitable target for a control scheme which involves real-time
computation of system equations.



CHAPTER 2

Oscillatory thermocapillary convection

2.1. Floating-zone technique

In crystal growth, taking advantage of the difference in melting and freezing
points of various components, a poly-crystal material, can be refined by melting
and freezing the material. Among various refining techniques in the production
of single crystals, a container-less processing called floating-zone technique has
advantages to increase the purity of the crystal (Pfann 1966; Zief & Wilcox
1967). When refining materials which are reactive when melted, such as silicon,
it is difficult to obtain high purity by processing it in containers.

In the floating-zone technique, a raw material rod is slowly pulled through
a ring heater, and the small zone near the heater is melted and re-solidified
as the heater passes by (figure 2.1). Impurities travel with the molted zone,
therefore purifying the remainder. The melted zone is held in place by surface
tensions between two vertical solid rods. Axial rotation is often applied to the
rod to maintain the cylindrical shape of the melt.

The flow in the melt has a strong influence on the quality of the finished
crystals in terms of purity and uniformity. It also influences the stability and
shape of the melt. The possible driving sources of convection are gravitational
buoyancy forces, thermocapillary forces and electromagnetic forces due to in-
duction heating which can be avoided by applying a radiative heating instead.
Since the system has been proposed for space processing in order to minimize
the influence of the gravitational convection, many works have been focused on
the influence of thermocapillary convection.

Among the problems associated with the floating-zone technique, the de-
velopment of microscopic striations in the single crystals, the regions of varying
concentration of impurities or dopants, is known to cause an inhomogeneous
material property distribution in the final product. The striations can be ob-
served in the refined single crystal as a pattern shown in figure 2.2.

2.1.1. Crystal growth experiments

In many early studies of the actual crystal growth of silicon or metals, the
influence of convective transport phenomena in the melt were indirectly de-
duced from analyses of the striations in the grown crystal. Experiments were

6
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Heater

Melt

Poly crystal

Single crystal

Figure 2.1. Floating-zone technique

Figure 2.2. Striation: inhomogeneities of the dopant distri-
bution in refined crystals

performed in normal gravity and also in microgravity conditions where the ther-
mocapillary force was dominant over other sources of convection (Eyer et al.
1985; Cröll et al. 1991). Consequently, similar striation patterns were observed
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for both cases, which suggested that the thermocapiilary convection is responsi-
ble for the dopant striations in silicon crystals, though they have also observed
a non-trivial difference in terms of the instensity of the resulting striations. Ju-
risch & Löser (1990) and Cröll et al. (1989) examined the striation patterns for
various strength of the thermocapillary convection in floating-zones of molyb-
denum and silicon, and observed that the striations appear above a well-defined
critical physical condition. It was suggested that the time-dependent oscilla-
tory state of the thermocapillary convection was the cause for the detrimental
striations in the chemical composition of the single crystal. This was confirmed
by Jurisch (1990) who measured the surface temperature of stationary molyb-
denum float-zones and observed the oscillations whose frequencies matched the
analyses of the striations seen in the grown crystal. More temperature mea-
surements in actual crystal growth are available at this date. For floating-zone
silicon melts, the temperature oscillations have been measured by an optical
fiber thermometry (Schweizer et al. 1999) and by non-intrusive techniques such
as phase-shift Michelson interferometry (Hibiya et al. 2002). However, owing to
the complexity of the system and the experimental inconvenience of handling
the low Prandtl number (Pr) liquids, experimental analyses of the internal flow
and temperature fields and parameter studies for characterizing the instability
encounter severe difficulties.

2.1.2. Flow analyses in floating-zones

Most of the observations of the flow in the floating-zone are done by either nu-
merical simulations or experiments using high Pr liquids. These are commonly
carried out in a stationary floating-zone model, where the melt is fixed at the
same location without any rotation to the system for simplicity. Main challenge
of the early works were to characterize the two-dimensional basic flow. When
only thermocapillary force is considered, there will be two vortices forming on
top of each other as shown in figure 2.1. Since, in most of liquids, the surface
tension decreases with temperature, the flow is driven from the mid-hight of
the melt to the solid-liquid boundaries on the free surface. The first works to
examine the flow in the floating-zone melt was done by Chang & Wilcox (1976)
using a numerical simulation . The flow pattern and temperature distribution
were simulated for a cylindrical silicon melt. Later, Schwabe & Scharmann
(1979) carried out an experiment in a floating-zone apparatus and observed
similar flow patterns. Kazarinoff & Wilkowski (1989, 1990) made numerical
simulations of a two-dimensional axisymmetric full float-zone. They discussed
the possibility for two-dimensional time-dependent flow and demonstrated its
bifurcation scenario.

2.2. Simplified geometries

In general, the full floating-zone geometry introduces complexity to the prob-
lem especially for three-dimensional oscillatory flows. Therefore many of the
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reported flow studies were carried out in simplified geometries. Since the first
experimental observations of the three-dimensional time-dependent state in
thermocapillary convection by Schwabe & Scharmann (1979) and Chun &
Wuest (1979) in one of the simplified models called the half-zone, the main
interest in this field shifted towards the physics of the time-dependent oscil-
latory convection. Many of the experimental studies deal with high Pr flow
(Pr � 1) which is easier to handle compared with low Pr liquids (Pr � 1). A
review of the recent experimental works in this field is documented by Schatz
& Neitzel (2001). For flows with low Pr fluid, contributions are mostly done
by means of numerical simulations.

2.2.1. Shallow liquid layers

2.2.1.1. Classical Marangoni convection

Most of the early theoretical analyses of thermocapillary instabilities were done
in thin liquid layers. The classical problem is the Marangoni convection in a
static liquid layer heated from below. The linear stability analysis was demon-
strated by Pearson (1958) who showed that many of the reported cells in
Rayleigh-Benard convection flows were in fact caused by the surface tension
force. The mechanism for this instability is simple. First, we consider a hot
spot on the free surface. This drives a flow outwards from the hot spot due to
the surface tension. At the same time, due to the continuity, the internal fluid
is driven upward to the surface. Since the internal fluid is warmer than that
on the surface, the process is amplified. The outward flow from the hot spot
travels until it reaches the edges of the cell and descends towards the bottom
surface to maintain the circulation.

2.2.1.2. Hydrothermal wave

Departing from the rather ideal case with a temperature gradient perpendicular
to the free surface, Smith & Davis (1983) described the onset of the convection
with interfacial motions driven by the temperature gradient parallel to the free
surface. This simple case, originally invented for realization of a theoretical
analysis, is an important model where the insights on the instability mecha-
nism in more complicated geometries can be gained. Two types of base flow
were tested, one with a linear velocity profile, and the other with a return flow
in the bottom of the cavity. In addition to the stationary longitudinal rolls
driven by the similar mechanism as the classical Marangoni layer heated from
below, a new type of instability, which takes a form of propagating tempera-
ture disturbance, was identified. For the return flow, this convective instability
named hydrothermal-wave instability is the primary instability independently
of Pr. The temperature disturbance wave was found to propagate in different
directions for low and high Pr liquids. Later, this problem was experimentally
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realized by Riley & Neitzel (1998) in a finite shallow liquid layer with a hor-
izontal temperature gradient using high Pr fluid and the hydrothermal-wave
instability was successfully detected.

2.2.1.3. Physical explanation of the hydrothermal wave

The physical interpretation for the mechanism of the hydrothermal wave insta-
bility was given by Smith (1986). Being a more complicated problem than the
classical Marangoni convection, the full description of the scenario tends to be
rather lengthy and here only the key points for the case with closed ends are
reviewed. The mechanism is different for low and high Pr since, in the range
of the critical Marangoni number (Macr) obtained in Smith & Davis (1983),
the flow is conductive-inertial and convective-viscous dominated, respectively.

One of the distinct feature of the hydrothermal wave compared with the
classical Marangoni convection with vertically imposed temperature gradient
is that it takes the form of an oscillation. This means that there needs to be
a mechanism which changes a hot spot to a cold spot and vice verse. The
oscillation is sustained by a sequence of overshoots of one effect being damped
by the other.

In the low Pr limit, this can be understood by considering the dominating
inertial effect. Consider a hot spot on the free surface in the form of a line
in the streamwise-direction in figure2.3(a). Just as in the classical Marangoni
mechanism, outward-spanwise flow and up-flow is driven as a result of thermo-
capillarity and continuity. Because of the existing velocity shear, the upflow
brings fluid with a lower velocity up to the free surface. This creates an iner-
tial force which drives the upsteam velocity perturbation. The upstream carries
cold fluid and reduces the temperature of the spot. The lag in the viscous and
conductive time scales causes the overshoot of the cooling, and hence the cold
spot appears. Note, with this explanation, the flow cannot be entirely conduc-
tive, since certain convection would be needed cool the spot. The transition
back to a hot spot takes the reversed manner.

The scenario may be intuitively simpler for high Pr, where the wave is
driven by heat transport coupled with thermocapillarity. This time, the grow-
ing perturbation takes the form of a line in the spanwise-direction. Just as in
the case of low Pr, the upflow is driven at the hot spot which carries up cold
internal fluid and cools the spot. The opposite is basically the same; the cold
spot drives the downstream flow carrying the hot fluid. Due to the convective
nature of the flow, the resulting internal hot spot is carried downstream by the
internal mean flow.
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(c) Annular configuration

Figure 2.3. Various simplified geometries

2.3. Half-zones

Many of the recent studies have been carried out for a simplified model geom-
etry called the half-zone model, which essentially models half of the floating-
zone. In a half-zone, as shown in figure 2.3(b), a liquid drop is held by surface
tension forces between two coaxial rods maintained at different temperatures
to impose an axial temperature gradient on the free surface. On increasing
the temperature difference imposed between the top and bottom rod above a
certain value, the flow becomes time dependent exhibiting an oscillation with
a distinct azimuthal wavenumber. The most dangerous wavenumber and the
critical frequency have a strong dependence on the geometrical parameters,
mainly the aspect ratio, Ar, the ratio of the hight to the radius of the cylindri-
cal melt (Preisser et al. 1983), and the shape of the melt often characterized
with the volume ratio (Hu et al. 1994).
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2.3.1. Onset mechanism

One of the first theoretical investigations in half-zone models were demon-
strated by Neitzel et al. (1993) and Kuhlmann & Rath (1993). In both studies,
the two-dimensional base state was computed numerically and for that the
linear disturbance growth in three-dimensional system was computed.

The onset mechanism of the instability for a low Pr liquid was identified
to be a purely hydrodynamic instability. Levenstam & Amberg (1995) carried
out a numerical simulation for two low Pr liquids with Pr = 0 and 0.01.
Since Macr remained exactly the same for two cases, they concluded that
the oscillation is caused by a hydrodynamical instability, similar to the one
of a vortex ring. Further exploration of the dependence of the onset on Pr
was performed using the linear stability analysis for a range of low and high
Pr by Wanschura et al. (1995). For low Pr liquid flows, they drew similar
conclusions to that of Levenstam & Amberg (1995). As for high Pr liquids,
the instability was attributed to the heat transport coupled with the Marangoni
effect, with a mechanism similar to the hydrothermal wave in shallow layers.
In fact, there are certain correspondences between observations in half-zones
and the hydrothermal wave, such as maximum disturbances in the interior
and the oblique traveling waves. In the intermediate Pr regime (Pr = 0.07 −
0.84), Levenstam et al. (2001) carried out numerical simulations and linear
stability analysis which showed that the thermocapillary forces counteract the
hydrodynamical instability, thus the axisymmetric base state is much more
stable than for high or low Pr.

2.3.2. Supercritical oscillation

The bifurcation of the oscillation was shown to be supercritical in the exper-
iment of Preisser et al. (1983), where they measured the amplitude of the
oscillation for a range of supercritical Ma. This was followed by Velten et al.
(1991) where the dominant wavenumber was checked for flows with strong non-
linearity raising the Ma up to a few times the critical value. Recently, more
works have been reported to characterize the supercritical behavior of the os-
cillatory flow. In connection with the bifurcation theory, Leypoldt et al. (2000)
have described the feature of the supercritical Hopf bifurcation by means of a
numerical simulation.

Further increase in the temperature gradient will result in the transition
to chaotic state. Ueno et al. (2003) has shown the change in the flow struc-
ture during the transition. Some interesting flow patterns were observed in
the transitional regime by Schwabe et al. (1996) and Kawamura et al. (2002).
Seeding the flow with particles, three-dimensional structures were revealed by
particles accumulating along a single closed orbit.
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2.4. Annular configuration

Another popular geometry to realize thermocapillary instabilities is the annu-
lar configuration. As shown in figure 2.3(c), the system is an open cylindrical
container filled with a liquid to have a top free surface. The inner and outer
cylinders are prescribed with different temperatures. Thermocapillary convec-
tion is thus driven by imposing a radial temperature gradient on the flat free
surface. There are various types of annular configurations with differences in
the ratio of the inner to outer radius, Hr = Rh/R, and the direction of the
temperature gradient.

2.4.1. Small Hr

The classical setup is with Hr � 1 and negative temperature gradient along
the radial axis, the geometry first suggested by Kamotani et al. (1991). The
bottom temperature condition is adiabatic. Although the annular geometry
does not reproduce the industrial applications layout, a generic flow of a char-
acter similar to that found for instance in the floating-zone method can be
studied. The motivation is to acquire better quantitative data to gain more
understanding of the mechanism of the thermocapillary instability. In half-zone
model experiments, since the gravitational force deforms the liquid-gas inter-
face, it is difficult to measure or maintain the shape of the interface. This is
problematic for qualitative analysis and also comparison with numerical data.
On the other hand, in annular configuration, having the free surface perpen-
dicular to gravity, it can be kept flat, thus better quantitative analysis can be
achieved.

Thus far, this type of annular flow has been studied only for high Pr
fluids. The first demonstration of the thermocapillary oscillation was done
by Kamotani et al. (1991). A three-dimensional oscillatory flow with a peri-
odic surface temperature pattern was observed. In a ground-based experiment,
Kamotani et al. (1996) measured critical temperature differences for various
container size with the same Hr and Pr (= 27 at 25oC) and the upper limit of
the container size below which the Marangoni convection dominates over the
buoyancy convection was identified.

In a micro-gravity experiment, the cell can be enlarged to a significant
extent. In 1992, the system was brought up to space to conduct a micrograv-
ity experiment (Kamotani et al. 1995). The steady thermocapillary flow was
investigated and results were compared to a numerical study. In more recent
microgravity experiments by Kamotani et al. (2000), the onset of the oscillation
was investigated. Comparison between the data obtained in microgravity and
the ones from normal gravity showed good agreement (Kamotani et al. 1996).
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2.4.1.1. Onset mechanism

As discussed in Kamotani et al. (1999, 2000), they observed that Ma at the on-
set is not consistent for flows in annuli with different gap length, Rg = R−Rh

and constant height. With absence of gravitational effect, if only the ther-
moapillary convection plays a main role in the instability, one would expect
the onset to be specified by certain value of Macr. However, the experiments
cited above showed an almost linear increase of Macr with Rg. They attributed
this behavior to free surface deformation at the hot corner region. A mecha-
nism was proposed to be due to the surface deformation altering the surface
velocity through a radial pressure gradient. Coupled with the thermocapillary
heat transfer, this process is amplified. It was suggested that the onset of
the oscillation depends on the ratio of the deformation to horizontal thermal
boundary layer thickness, which was given the name S parameter. Computing
S for the above flows with various Rg, consistent critical value of S was ob-
tained. A similar argument was also made for the half-zone models by Masud
et al. (1997).

Noting that the variation in Rg causes a change in the aspect ratio, it is not
surprising that Macr is not consistent since the linear stability characteristics
will change. In this sense, introduction of S parameter is a challenging idea
where a parameter independent of aspect ratio is searched for.

Despite of the demonstrations of the use of S parameter cited above, this
scenario for the instability mechanism is not widely accepted yet. One reason
is the magnitude of the surface deformation. As mentioned in Kamotani et al.
(2000), the deformation is very small; a few micro meters at the onset. This was
comparable to the random surface deformation caused by the residual gravity,
which seems not to alter the onset. It might be more natural to think that this
minute surface deformation is a secondary response to the oscillation. Another
reason is that there are some works reported to show reasonable comparisons
between experiments and numerical simulations with non-deformable free sur-
face for both the half-zone (Leypoldt et al. 2000) and the annular configuration
(Lavalley et al. 2001).

2.4.2. Large Hr

Another type of annular configuration is with a large inner cylinder, Hr ∼ O(1).
In the original setup of Schwabe et al. (1992), thermocapillary convection was
driven outwards in a shallow liquid layer by heating the inner cylinder with
respect to the outer cylinder. The bottom wall is connected to the cold outer
wall. The aim of the experiment was to experimentally realize the hydrothermal
wave predicted by Smith & Davis (1983). In order to satisfy the correspondence
to the theory with infinite length in the spanwise direction, the annular gap was
used. More recently, with similar geometries, both micro- and normal-gravity
experiments was reported by Schwabe & Benz (2002). Here, the direction of the
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temperature gradient is reversed by heating the outer wall instead. This was
done to keep resemblance to the Czochralski crystal growth technique (Pfann
1966; Zief & Wilcox 1967). The experiment was equipped with a possibility
to change the annular depth and, consequently, they identified hydrothermal
waves for a shallow annulus and more complicated spatio-temporal structure
for a deep one.



CHAPTER 3

Basic concepts

3.1. Governing equations

Taking only temperature dependence of the surface tension into account, the
surface tension, σ, is considered as a linearly decreasing function of the tem-
perature,

σ = σ0 − γ(T − T0), (3.1)

where σ0 denotes the surface tension at reference temperature T0. The surface
tension coefficient, γ, has a positive value for most of the liquids, therefore the
flow is driven against the temperature gradient on the free surface.

We assume the system to be an incompressible Newtonian flow. Therefore,
the flow is governed by the incompressible Navier-Stokes equations, energy
equation, and continuity equation. Here, the equations are shown for an an-
nular geometry, though the difference is minor in the case of a half-zone. The
coordinate system of the annular geometry is shown in figure 2.3(c). To sim-
ulate flows in axisymmetric geometries, the equations are expressed using the
cylindrical coordinates as

∂u
∂t

+ (u · ∇)u +∇p− Pr

Ma
∇ · (∇u +∇uT) = 0, (3.2)

∂θ

∂t
+ (u · ∇)θ − 1

Ma
∇ · (∇θ) = 0, (3.3)

∇ · u = 0, (3.4)

where u, θ and p are the velocity vector (u, v, w), temperature and pressure.
These equations have been nondimensionalised using the length scale, R, tem-
perature difference, ∆T , velocity scale,

U =
γ∆T

µ
(3.5)

and time scale,

t =
R

U
, (3.6)

16
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where µ is the dynamic viscosity. The velocity scale U is derived by the balance
between the radial surface tension gradient and the shear stress due to the
normal velocity gradient as,

µ
∂u

∂z
= γ

∂T

∂r
. (3.7)

Scaling both the normal and radial length with the common length R, the veloc-
ity scale U can be obtained as in equation 3.5. The nondimensional parameters
appearing above are Ma and Pr defined as,

Ma =
γ∆TR

µα
, (3.8)

Pr =
ν

α
, (3.9)

where α and ν are the thermal diffusivity and kinematic viscosity, respectively.
The Reynolds number can be expressed by Ma and Pr as,

Re =
Ma

Pr
(3.10)

In the annular configuration, the system is subjected to the boundary condi-
tions,

u = 0, θ = 1 at r = Hr, (3.11)

u = 0, θ = 0 at r = 1, (3.12)

∂v

∂z
=

∂θ

∂φ
, v = 0,

∂u

∂z
=

∂θ

∂r
at z = Ar, (3.13)

u = 0,
∂θ

∂z
= 0 at z = 0, (3.14)

where Hr = Rh/R and Ar = H/R.
Now, we consider the actuation of the system by heating and/or cooling

the free surface. Assuming that the temperature modification is done purely
by heat conduction on the liquid-gas interface, the control can be simulated by
an additional boundary condition,

∂θ

∂z
= q(r, φ) at z = Ar, (3.15)

where q is the nondimensional heat flux which represents the control perturba-
tion.
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3.2. Scaling analysis

In this section, some important scales are presented. We consider a station-
ary two-dimensional problem of equations (3.2) – (3.4). For convenience, the
momentum equation (3.2) can be reformulated using a vorticity formulation,

Reu · ∇ω = ∇2ω (3.16)
with corresponding changes in the boundary conditions, where ω is the vorticity.

The scaling is carried out assuming that the velocity and thermal length
scales along the free surface can be characterized by a single length scale l.
Here, the characteristic velocity scale along the surface is uo and ∆T = O(1).
Let δ and δT be the vertical length scales of the velocity shear and the thermal
gradient at the free surface. Then we obtain

Re
uo

l
∼ 1

l2
+

1
δ2

, (3.17)

Ma

(
uo

l
+

uoδ

lδT

)
∼

(
1
l2

+
1
δ2
T

)
. (3.18)

Now, we can derive a conventional scale, the ratio of the velocity to thermal
boundary layer thickness as,

δ

δT
= Pr1/2. (3.19)

In addition, the thermocapillary boundary condition is scaled as,
uo

δ
∼ 1

l
. (3.20)

3.2.1. Low Pr

When Pr � 1, since the temperature field is determined mostly by conduction,
rather straightforward scaling can be carried out. Here the thermal boundary
layer will be absent (δT ∼ 1) and surface temperature has a monotonous profile
(l ∼ 1). The simplest case is when the flow is dominated by the viscous force
(Re << 1), then all the scales used for non-dimensionalization are correct
(uo ∼ δ ∼ 1). For the conductive and inertial flow within the limit of Pr � 1
and Re →∞, we obtain, from equations (3.17) and (3.18),

δ ∼ Re−1/3, (3.21)

and from scaling of the continuity equation,

uo ∼ Re−1/3. (3.22)

Hence the effective Reynold’s number, Reeff , is

Reeff ∼ Re2/3. (3.23)
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3.2.2. High Pr

The problem is more complicated for high Pr liquids since the isotherms are
distorted by the convection. Attention has been paid to different regions in
the geometry, the hot/cold corner region near the contact of the hot/cold wall
and the free surface, and the bulk flow which is the rest of the geometry.
Giving separate attention to those regions, some scales have been identified.
The scaling of the viscous flow (Re ∼ O(1)) in the hot corner region was
studied by Cowley & Davis (1983). By assuming an insulated vertical wall to
obtain the scales in the boundary layers along the vertical wall, and scaling
the surface boundary layers with thermocapillary balance together with global
heat conservation, the following scaling can be derived,

ucore ∼ Ma1/7, ∆h ∼ Ma−2/7, δh ∼ Ma−3/7, Nu ∼ Ma2/7, (3.24)

where ucore and ∆h are the velocity in the core far away from the boundaries
and the viscous boundary thickness along the hot wall. Nu is the Nusselt num-
ber on the hot wall. The notations are described in figure 3.1. The subscript
h and c denotes the values in the hot and cold regions.

For the cold corner region, Canright (1994) clarified the various scalings for
different characteristics of the flow (Pr, Ma) including the ones for convective
and viscous states,

uo ∼ 1, lc ∼ Ma−1, δc ∼ Ma−1. (3.25)

For thermocapillary flows in closed geometries, such as the half-zone and
the annular configuration, the scaling laws (3.21) and (3.22) are probably the
most important ones. Although, in a strict sense, these scaling laws are limited
to conductive and inertial flow, even for high Pr inertial flow, the scalings
are not far off and are useful to grasp the scales of the characteristic physical
quantities. In convective and inertial flow, the cold corner region is pressed
towards the cold wall and, consequently, the length scale lc becomes very small.
Since the surface temperature in the rest of the region decreases outwards rather
gradually, in a rough sense, l ∼ R. The above discussion would become less
accurate as Ma increases to form a plateau in the surface temperature profile
around the mid-gap since then the length scale l becomes smaller than R.

Recently, some works were reported on the scaling of the specific closed-
geometry problems. Here, the scales for inertial flows would be of particular
interest. The base flows of the half-zone and annular configuration show differ-
ent characteristics due to the difference in the flow fields on the free surface. In
an annular flow, unlike in the half-zone, the flow diverges on the free surface.
As a consequence, for a half-zone inertial flow, the core of the convection is
located close to the hot corner, whereas in annular flow, the core is located
rather closer to the cold wall. This gives rise to the different thicknesses or
vertical scales in the velocity boundary layer.
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Figure 3.1. Sketch of the geometry together with the nota-
tions introduced in the scaling analysis (Kuhlmann 1998).

Kamotani & Ostrach (1998) and Kamotani et al. (2000) describe the above
differences by suggesting that in overall, the flow is mainly driven in the hot
corner for the half-zone and in the bulk region for the annular configuration.
They defined a length scale ∆, the distance from the hot corner to the velocity
peak on the free surface, and considered the thermocapillary stress balance in
the region. Observing constant velocity and temperature gradient in this re-
gion, they assumed that the free surface flow is purely conductive, and therefore
the convection in the thermal boundary layer along the hot wall is balanced by
the conduction in the hot corner. Furthermore, the average velocity along the
hot wall should scale with uo. Together with the balance between convection
and conduction in the thermal boundary layer along the wall and global heat
conservation, the following scales were derived;

uo ∼ Ma−1/7, ∆ ∼ Ma−1/2, Nu ∼ Ma2/7. (3.26)

For the annular configuration, they suggested to base the scaling on the
bulk flow characteristics. Based on the observation that the vertical location
of the vortex core has weak dependence on Ma, the bulk flow was assumed to
be viscous dominated. The velocity can be determined by balancing the shear
stress with the surface tension gradient due to the characteristic temperature
variation in the bulk region. By considering the scaling for continuity and heat
transport in the bulk region together with the global heat conservation, they
derived,

uo ∼ ucore ∼ Ma−1/5, δ ∼ Ma−2/5, Nu ∼ Ma1/5. (3.27)

3.3. Modal structures

In axisymmetric flows, the thermocapillary instability arises with a distinct
azimuthal wavenumber. The selection of the most dangerous mode depends
strongly on the geometrical parameters such as the aspect ratio and also, in
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case of an annular configuration, the ratio of inner to outer radius. In the half-
zone models with Pr = 7 liquid, Preisser et al. (1983) experimentally found
that the dominant wavenumber n can be related to the aspect ratio as,

nAr = c, (3.28)

where c ∼ 1.1. This was later confirmed in the numerical simulation of Leypoldt
et al. (2000), where they computed the constant c ∼ 1.2. The Pr dependence
of the relation (3.28) is yet not clear. For high Pr, Ueno et al. (2003) carried
out experiments with various liquids with high Pr (= 14, 28, 68) and observed
a weak dependence of the wavenumber on Pr. On the other hand, for low
Pr liquids, ideas have been presented based on analogies with the vortex ring
instability (Levenstam & Amberg 1995) and the transient flow structure in
Poiseuille flow (Wanschura et al. 1995). However, at this stage, these analogies
are no more than speculations, and more studies would be needed. In the
annular configuration, to this date, there is no reported work on the selection
of the azimuthal wavenumber. The difficulty lies in the complication due to an
additional geometrical parameter, Hr, the ratio of inner to outer radius.

It is interesting to know if the dominance of the onset mode structure
remains the same in the regime with stronger nonlinearity. The wave structure
for a range of supercritical Ma is visualized in the experiment of Ueno et al.
(2003). They presented a case where the wavenumber of the fundamental
mode remained visible to about three times Macr. Above that value of Ma,
the chaotic signals were observed in local temperature measurements. In this
regime, the mixing of the tracer particles is too strong to allow examination of
the flow structure with flow visualization. In this context, an interesting feature
of a low Pr system is reported by Sumiji et al. (2002) where they measured
surface temperature fluctuations in a silicon melt at two azimuthal locations
by a non-intrusive method. Chaotic temporal signals were observed, however,
the correlation of the signals from different sensors indicated that the spatial
modal structure was still preserved.

3.3.1. Traveling or Standing?

In one of the first temperature measurement of the oscillatory flow with multi-
ple sensors, Velten et al. (1991) observed that signals at all three sensors were
in phase, which they originally suggested to be due to the axisymmetric oscil-
lation. Later, it was revealed with help from flow visualization techniques that
the oscillation can take a form of a standing wave. There is still ongoing dis-
cussion on if the onset wave structure is standing or traveling. Many reported
works carried out with different fluids and geometries do not seem to reach a
consensus.

In a half-zone model, Savino & Monti (1996) showed, performing a numer-
ical simulation for Pr = 30 and Ar = 0.5, 1, that the instability arises as a
standing wave at the onset of the oscillation due the symmetry of the problem
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but when a fully established periodic state is reached, the solution will be a
traveling wave. The aspect ratio, Ar, is defined as the ratio of the hight to
radius of the liquid bridge. They mention that their results are in agreement
with the micro-gravity experiment of Monti et al. (1994). For Pr = 4 and 7
and a wide range of Ar from 0.5 to 1.3, Leypoldt et al. (2000) also reported that
the traveling wave is the only stable solution. On the other hand, Ueno et al.
(2003) performed experiments varying the viscosity of Silicone oil, ν = 1 − 5
cSt, and the aspect ratio, Ar = 0.3 − 2.0, and found that the onset structure
of the oscillation was standing.

In an annular configuration, Kamotani et al. (2000) observed, using a fluid
with ν = 2 cSt in the micro-gravity experiments for a range of aspect ratios,
that the oscillation is traveling at the onset and becomes standing as Ma
increases. The same trend has been observed by Sim & Zebib (2002) in a
numerical simulation for Pr = 17. On the contrary, Lavalley et al. (2001)
showed in their numerical simulation that the onset oscillation is standing and
becomes traveling as Ma increases. Carrying out an experiment with the same
geometry as Lavalley et al. (2001), we observed only traveling waves for a range
of Ma with some uncertainty on judging the structure close to the onset (Paper
2).

At this stage, nothing conclusive can be said on what triggers different
structures. We can only raise the possible causes that might make the difference
such as the aspect ratio, volume ratio, heat conduction through the free surface,
Pr, and grid resolution in case of numerical simulations.

3.4. Weakly nonlinear analysis

In order to analyze the weakly nonlinear state close to the onset of the instabil-
ity, formulation of amplitude equations is useful. The derivation of amplitude
equations for the classical Marangoni convection was carried out by Rosenblat
et al. (1982a,b). They considered eigenfunction expansions based on the eigen-
functions of the linear stability problem and adopted the Galerkin procedure.
Consequently, they obtained the equation from the amplitude of the dominant
mode (A),

∂A

∂t
= c1εA− c2A

3, (3.29)

where the values of the coefficients c1 and c2 depend on the given problem with
various geometrical parameters. ε is the overcritical parameter defined as

ε =
Ma−Macr

Macr
. (3.30)

For the thermocapillary oscillation in the system with a temperature gra-
dient parallel to the surface, the weakly nonlinear analysis has been performed
only for hydrothermal waves in a shallow liquid layer by Smith (1988), where
finite amplitudes of the modal structures close to the criticality are derived.
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With the standard asymptotic expansion with multiple scales, the amplitude
equations for left and right traveling waves were derived to take the general
form of the celebrated Ginzburg-Landau equation.

Such a formulation of the amplitude equation for the thermocapillary in-
stability of axisymmetric base flow would be difficult, at least analytically, and
hence it is not available to this date. However, distinct evidence concerning the
bifurcation characteristics, as shown in section 3.5, suggests that the amplitude
equation of the oscillation may a from similar to equation (3.29).

Recently, for a half-zone flow, Leypoldt et al. (2000) characterized the
temporal evolution of the complex amplitudes of the two traveling waves with
opposite directions of azimuthal propagation by basing their analysis on the
Ginzburg-Landau equation. A temporally and spatially periodic wave can be
described as the sum of clockwise- and counterclockwise-travelling waves with
amplitudes A+ and A−. If the state is translation-invariant in the wave (az-
imuthal) direction, fluctuations of the temperature and velocities, s = (θ′,u′),
can be expressed as,

s(r, φ, z, t) = so(r, z)[A+(φ, t)einφ + A−(φ, t)e−inφ]e−iωt + c.c., (3.31)

where so is the eigenvectors of the linear stability problem and ω is the critical
angular frequency (Cross 1988). In the weakly nonlinear limit, the slow tem-
poral and spatial modulations resulting from the weak nonlinear coupling can
be captured by the slow variation of the complex amplitudes A+ and A−. In
this limit, considering a one dimensional problem in φ, the amplitude equations
take the form of general Ginzburg-Landau equations,

τo(
∂

∂t
+ v

∂

∂x
)A+ = ε(1 + ico)A+ + (1 + ic1)ξ2

o

∂2A+

∂x2

−g1(1 + ic2)|A2
+|A+ + g2(1 + ic3)|A2

−|A+, (3.32)

τo(
∂

∂t
+ v

∂

∂x
)A− = ε(1 + ico)A− + (1 + ic1)ξ2

o

∂2A−

∂x2

−g1(1 + ic2)|A2
−|A− + g2(1 + ic3)|A2

+|A−, (3.33)

where v is the group velocity and τo, g1, g2, co, c1, c2, c3 are real coefficients.
Since the thermocapillary wave with order of unity aspect ratio exhibits a cer-
tain integer wavenumber, we disregard the slow spatial-amplitude modulations.
Then the equations for the real amplitudes Â+ and Â− can be calculated to
be,

τo
∂Â+

∂t
= εÂ+ − g1Â

3
+ − g2Â

2
−Â+, (3.34)

τo
∂Â−

∂t
= εÂ− − g1Â

3
− − g2Â

2
+Â−. (3.35)
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Figure 3.2. Bifurcation curve of the uncontrolled thermocap-
illary oscillation in an annular flow. Circles: The amplitude
of the oscillation. Line: The square root curve fit to the data.
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Marangoni number Macr = 46270.

Now, considering the pure traveling wave with A− = 0, the equations are
reduced to the same form as equation (3.29).

3.5. Bifurcation theory

The amplitude equation (3.29) takes the form of a classical example in bifur-
cation theory (Iooss & Joseph 1989; Strogatz 1994). Depending on the sign
of the coefficients, the system can exhibit different types of bifurcation char-
acteristics. On fixing c1 to have a positive value, the oscillation exhibits the
supercritical and subcritical Hopf bifurcation for positive and negative c2, re-
spectively. As for the thermocapillary waves in axisymmetric base flow, the
bifurcation is detected to be supercritical without any hysteresis with change
in ε. In case of supercritical Hopf bifurcation, the amplitude grows continu-
ously from zero and increases proportionally to

√
ε. This general feature was

observed in both half-zone models (Leypoldt et al. 2000, Paper 3) and annular
configurations (Lavalley et al. 2001, Paper 2) by means of numerical simulations
and experiments. The experimental result from Paper 2 is shown in figure 3.2.

Now we consider a possibility to alter the coefficients such that

Ȧ = (c1ε−G1)A− (c2 + G3)A3, (3.36)

where G1 and G3 are positive constants. Naturally, variation of G1 can alter
the linear term, i.e. criticality of the oscillation. When c2 < G3, the bifurca-
tion is supercritical and the slope of the bifurcation curve decreases with G3.
Therefore, if there are accessible means to alter these coefficients, it would be
possible to change the bifurcation characteristics in a favorable way. Generally,
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in industrial applications, the supercritical bifurcation is preferred to the sub-
critical one since the latter is accompanied with a sudden appearance of the
oscillation with a finite amplitude on crossing the criticality. In a thermal con-
vection loop problem, which is the experimental realization of the celebrated
Lorenz equations, the original subcritical Hopf bifurcation which leads the state
to a chaotic one, was changed to supercritical bifurcation using a cubic control
by Yuen & Bau (1996).

3.6. Routes to chaos

Studies in nonlinear dynamics and chaos have revealed that the chaotic state
can be reached through different scenarios such as period-doubling, quasiperi-
odicity and intermittency (Strogatz 1994). In the period-doubling scenario,
increasing the experimental parameter, λ (Ma in the current problem), the pe-
riod of the oscillation changes to approximately double the period of the original
one. One of the most interesting features of this scenario is that critical val-
ues of λ for the ith period doubling, λi, satisfies the quantitative universality
discovered by Feigenbaum (1978, 1979),

λi − λi−1

λi+1 − λi
= 4.669... . (3.37)

Although this originated in analyses of simple mathematical systems, the law
was later confirmed in experiments by Libchaber et al. (1982) for the natural
convection of liquid mercury in a box container heated from below. To this
date, the period-doubling scenario has been observed in a number of physical
systems including hydrodynamical problems such as the Taylor vortex flow
(Wiener et al. 1997).

An evidence is presented in Paper 3 which shows that the transition to
chaotic state in a high Pr half-zone flow, can follow a period-doubling scenario.
From the temperature signal measured on the free-surface, a three-dimensional
return map can be constructed as shown in figure 3.3 (a). The map shows that
the oscillation is in a state of period-doubling with period-4 cycle, the beginning
of a cascade which leads the system to chaos. Although no detailed analysis
was performed to verify the quantitative feature of the period-doubling, from
rough observations of the delay maps for different Ma, the transition did not
seem to follow the quantitative universality. However, this could be due to the
fact that the experiment is far from a single parameter problem in this range
of high Ma, and hence a better controlled experiment could be of interest to
explore the period-doubling characteristics.
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Figure 3.3. Three-dimensional return maps of a temperature
oscillation in the period-doubling regime. (a): Uncontrolled
state, (b): Subjected to a linear control.



CHAPTER 4

Active control of thermal convection

4.1. Control of natural convection

For industrial applications, it is beneficial to control convective flows to achieve
the preferable flow characteristics. In many situations, the goal is set to de-
lay the transition of instabilities or to attenuate the supercritical disturbances.
Taking material science applications into account, a classical key target of con-
trol is the natural convection driven by the buoyancy force. When the flow
has a well defined spatial wavenumber, the system can be controllable with a
limited number of sensors and actuators, thus feedback control can be applied
more easily.

Between internal and external natural convection, the former natural con-
vection has caught more recent attention as the target of control since the
closed geometry makes the feedback control possible. Some cases of successful
control have been reported for flows in various geometries with different ways
of imposing temperature gradients. Many of the works have been carried out
by the group of Bau, the pioneers in this field of study. Their methodology is
to first have a set of simple model equations available, then carry out stabil-
ity analysis as well as numerical simulations to check the performance of the
control in terms of the stability limit and bifurcation analysis. The results are
finally validated by experiments.

There is still a large distance between the numerical studies adopting so-
phisticated control schemes such as the optimal control scheme and experimen-
tal studies where application of such control schemes face serious difficulties
because of not only the lack of experimental tools, but also the heavy real-time
computation it would require. Being a slow phenomenon with limited number
of modes playing a role in the instability, the study of the thermal convection
could be the bridge between the two stances. Also, being a classical problem
which has been intensively studied, some promising simplified model equations
are available for pre-testing the control performance and identifying the system
in real-time.

One of the first works to utilize feedback control to stabilize thermal con-
vection was carried out by Wang et al. (1992) who applied proportional control
in a thermal convection loop, and managed to suppress the chaotic behavior.

27
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Later, Yuen & Bau (1996) succeeded to change a subcritical Hopf bifurcation
to a supercritical one using cubic control. An attractive feature of this problem
is that the system can be well described by a set of model equations which are
essentially the celebrated Lorenz’s equations. Based on the model equations,
theoretical and numerical analyses were carried out together with experiments.

Using a similar methodology, these works were followed by the series of
works on Rayleigh-Bénard convection. For two-dimensional Rayleigh-Bénard
convection, Tang & Bau (1993) theoretically demonstrated the possibility to
delay the onset of the convection by almost one order of magnitude. This
was followed by the experimental work of Howle (1997) where feedback control
realized significant suppression of two-dimensional convection in a slender box.
The control method was also tested for three-dimensional convection by Tang &
Bau (1998), but the obtained stabilization fell short of the theoretical prediction
done for two-dimensional convection.

Recently, a few theoretical works have been reported on feedback control of
the transition from no-motion state to time-independent motion in Marangoni-
Bénard convection. Linear control was applied to delay the onset of the insta-
bility by Bau (1999). The delay of transition was confirmed by means of linear
stability analysis. Or et al. (1999) demonstrated the possibility of controlling
the long wavelength mode by a weakly nonlinear control law. Nonlinear flow
properties could be altered to eliminate the subcritical nature of the bifurca-
tion. A similar analysis was applied to the finite wavelength mode by Or &
Kelly (2001), taking the buoyancy effect into account.

4.2. Control of steady thermocapillary convection

4.2.1. Base flow control

The simplest way to delay the onset of the oscillation would be to weaken the
base flow. If the purpose is only to suppress the Marangoni convection, some
of the suggested contacting methods such as partially covering (Lan & Kou
1991a,b) or coating (Eyer & Leiste 1985) the free surface of the melt would be
most efficient. However, since that would cause a contamination and dull the
original merit of the floating-zone technique, a contact-less method is preferred.

A well known method to attenuate the fluctuations in the electronically
conductive melt is to apply a magnetic field to the melt-zone. The magnetic
field has an effect to weaken the axisymmertic base convection, in other words,
to decrease the effective Ma, and thus the fluctuation is attenuated. One of
the first works of this kind was reported by Leon et al. (1981) where an ax-
ial magnetic field was applied in a float-zone of high-resistivity silicon. This
was followed by a series of experimental observations by applying both trans-
verse (Kimura et al. 1983; G. D. Robertson & O’Connor 1986b) and axial
(G. D. Robertson & O’Connor 1986a) magnetic field, where the efficiency of
the axial magnetic field was found to be superior to the transverse one. Dold



4.2. CONTROL OF STEADY THERMOCAPILLARY CONVECTION 29

et al. (1998) applied a weak static axial magnetic field and found that al-
though the reduction of the fluctuation can be achieved, the magnetic field
causes a separation of the flow field in a quiescent center periphery mixed by
thermocapillary convection, which gives rise to the deterioration of the radial
homogeneity. Although this could be remedied by strengthening the magnetic
field, that would lead to the appearance of another type of striations due to
thermoelectromagnetic convection caused by the interaction of thermoelectric
currents with the magnetic field (Cröll et al. 1998). The appearance of the
thermoelectromagnetic convection can bring a tremendous complexity to the
analysis and application of the method due to the difficulties in prediction and
control of the convection. In some of the recent studies, a rotation is added to
the system in order to improve the method with a weak magnetic field. The
method was shown to reduce the fluctuation while the radial homogeneity was
maintained (Fischer et al. 1999; Dold et al. 2001). The efficiency of the control
increases with the length of the melt diameter, however, remaining dopant stri-
ations with smaller intensity and higher frequency than the original ones were
still observed in the balanced state. The possibility for the rotating magnetic
field to induce Taylor vortices is discussed by Kaiser & Benz (1998).

A method to directly counteract the thermocapillary flow was first sug-
gested by Dressler & Sivakumaran (1988), where they attempted to counteract
the steady thermocapillary flow by directing a gas jet parallel to the surface.
Later, Anilkumar et al. (1993) suggested the idea to generate a surface stream
flow by vibrating the solid end of the liquid bridge and oppose the steady
thermocapillary flow on the surface. In these first works, the possibility to gen-
erate a streaming strong enough to balance the thermocapillary flow is shown
in a half-zone using Silicon oils with high viscosities up to 100 cSt. Following
these first demonstrations, the method was applied to suppress thermocapil-
lary convection in a sodium nitrate melt (Shen et al. 1996). In floating-zone
configurations, between the two half zones appearing on top of each other, the
target of the control would be the vortex close to the freezing interface which
plays an important role for the solidification process. Consequently, promotion
of microstructual homogeneity could be observed in the re-solidified materials.
One of the difficulties in this method is that the strength of the streaming for
a certain end-wall vibration decreases with the viscosity. Thus far, this fact is
preventing this method to be applied to low viscosity melts such as silicon. In
terms of the flow physics, despite of recent theoretical and numerical works (Lee
et al. 1996; Lee 1998), the three dimensional interaction between the streaming
and steady thermocapillary convection is yet not clear.

Another way to reduce the base flow was recently suggested in Azumi
et al. (2001) where the basic convection velocity in a silicon melt could be
reduced by altering the partial pressure of the oxygen. Since the magnitude of
the surface tension coefficient of the melted silicon decreases with the oxygen
partial pressure, increasing pressure leads to decrease in the surface tension
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gradient, and hence the driving force can be weakened. Consequently they
have observed a change from a complex oscillation with broad spectra to a
single mode oscillation.

4.2.2. Control of thermocapillary instability

A drawback of the above mentioned methods to attenuate the fluctuation by
reducing the steady convection is that the damping of the base flow enhances
the macro-segregation of the chemical compositions due to the weakening of the
mixing. Furthermore, in most of these methods, there is a difficulty in predic-
tion, analysis and control of the three-dimensional dynamical interaction of the
actuation and the state. Hence, it would be beneficial to investigate the possi-
bility to suppress only the oscillation without altering the base state apprecia-
bly. Since the convective heat transport plays a key role in the thermocapillary
instability, it should be possible to alter the stability characteristics by slightly
modifying the temperature field. In addition, the temperature modification
can be realized by heating/cooling on the free surface with a well-understood
physical description, which should help us to examine the influence of the con-
trol to the flow. The idea is encouraged by the literature on natural convection
control cited earlier, where this type of control using weak modification of the
boundary temperature has been carried out.

With better understanding of the phenomena from extensive studies on
the onset mechanism and nonlinear features of the instability, a few works
have been reported on control of oscillatory thermocapillary convection in vari-
ous geometries. An attempt to stabilize the thermocapillary wave instability in
an experiment on a plane fluid layer was made by Benz et al. (1998). The tem-
perature signal and phase information sensed by thermocouples near the cold
end of the layer was fed forward to control a laser which heated the downstream
fluid surface along a line.

For a half-zone model, Petrov et al. (1996, 1998) attempted to stabilize
the oscillation by applying a nonlinear control algorithm using local tempera-
ture measurements close to the free surface and modifying the temperature at
different local locations with Peltier devices. The control scheme inherits the
idea of Ott et al. (1990). They have constructed a look-up table based on the
system’s response to a sequence of random perturbations. A linear control law
using appropriate data sets from the look-up table was computed. The control
law was updated at every time step to adapt the control law to the nonlinear
system. Using one sensor/actuator pair, successful control was observed at the
sensor location for Ma ∼ 17750. However infrared visualization revealed the
presence of standing waves with nodes at the feedback element and the sensor.
This was resolved by adding a second sensor/actuator pair which enables the
control to damp out both waves propagating clockwise and counterclockwise,
thus standing waves. The performance of the control was reported for only one
value of Ma ∼ 15000, where the critical value was Macr ∼ 14000. They stated
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that the oscillation could not be suppressed when Ma exceeds the critical value
by more than 8.5%, mostly due to the weak response of the fluid flow to the
Peltier devices, which cannot be cooled more than a few degrees during the
application of the control pulse.



CHAPTER 5

Methodologies

5.1. Opposition control

In the present thesis work, the intention is to control oscillatory thermocap-
illary convection in axisymmetric geometries using an active feedback control
scheme. The control is based on a simple linear feedback control law with sen-
sors and actuators strategically positioned based on knowledge of the dominant
azimuthal mode which is determined by the geometry of the system.

5.1.1. Proportional control

The linear feedback control law can be written as,

Q(φi + dφ) = G1θ
′(φi), (5.1)

where φi is the ith azimuthal sensor location and dφ is the distance between
sensors and paired actuators. Q, G1 and θ′ are the actuator power output,
linear control gain and non-dimensional temperature disturbance. The value
of dφ can be varied according to various positioning of the controllers depending
on the experimental feasibility, but should be

dφ =
{

2jπ
n − π

n , G1 > 0,
2jπ
n , G1 < 0,

(5.2)

where j is a positive integer. This way, a simple opposition control can be
realized.

In the experiments, since we adopt heaters as actuators, the actuation
is limited to heating only. Therefore, the actual output can be expressed,
assuming point heat sources, as

Q(φi + dφ) =
{

G1θ
′(φi), G1θ

′(φi) ≥ 0
0, G1θ

′(φi) < 0.
(5.3)

5.2. Weakly nonlinear control

The cubic terms are added to the control law to apply a weakly nonlinear
control. For instance, when the control gains have positive values, the control
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law can be written as

Q(φi + dφ) =
{

G1θ
′(φi) + G3θ

′(φi)(θ′(φ1)2 + θ′(φ2)2), θ′(φi) ≥ 0
0, θ′(φi) < 0.

(5.4)

where G3 is the cubic control gain. As discussed in section (3.5), a cubic control
is often applied to change the bifurcation characteristics. Specifically, if the
system shows a subcritical bifurcation, modification of the nonlinear properties
of the system may render it to supercritical which is more easily controlled
(Yuen & Bau 1996). Another merit is to modify the state without altering the
criticality. As a consequence, we have taken advantage of the latter one.

5.3. Experiments

The above control method was experimentally applied to the two different geo-
metrical models, the annular configuration and the half-zone. This topic covers
the major part of this thesis. The task here is first to check the practicability of
such a method, then to carry out quantitative analyses varying the parameters
to verify its performance and limitations. The influence of the local feedback
control can be examined in connection with the fundamental bifurcation the-
ory. The explored parameter space consists of Ma, G1, G3 and the selection
of the sensor/heater positions. In this section, some of the key issues in the
experiments are discussed.

5.3.1. Influence of buoyancy

In ground based experiments, the flow can be severely influenced by the gravita-
tional force. When exploring the mechanism of the thermocapillary instability,
one would prefer to establish a flow driven purely by the thermocapillary force.
Furthermore, in order to simulate the material processing in space, the reduc-
tion of the gravitational effect is necessary. This can be done by reducing the
size of the geometry. The criterion for the dominant thermocapillary convec-
tion can be expressed by considering the ratio between the buoyancy forces to
thermocapillary forces as,

Gr

Re2
eff

=
Gr

Re4/3
=

Bod

Re1/3
< 1. (5.5)

Here, the dynamic Bond number is Bod = Gr/Re = ρgβR2/γ, where ρ, g and
β are the density, acceleration of gravity and thermal expansion coefficient. Gr
is the Grashof number. For an annular geometry, Kamotani et al. (1996) mea-
sured critical temperature differences for various container sizes with the same
Hr and Pr(= 27). The upper limit of the container size below which Marangoni
convection dominates over buoyancy convection was identified. From the iden-
tified limit and other presented parameters, we can derive the criterion for
negligible buoyancy effect, Bod ≤ 0.24. In the annular configuration presented
in this thesis, Bod ≤ 0.089, hence we conclude that the buoyancy should be of
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minor importance. Following this criterion, the gound-based experiment of this
kind is compelled to keep the cell size to the order of millimeters. In addition
to the difficulties in handling the instruments, one of the problems in measure-
ment of physical properties in a small volume is the low signal to noise ratio.
Especially, in the supercritical regime close to the onset of the instability, the
magnitude of the oscillation could be relatively too small to be detected.

5.3.2. Temperature measurements

Many reported experimental works to determine the onset of the instability
have encountered difficulties in the quantitative accuracy of measuring the am-
plitude of the oscillations. When the surface temperature is to be measured,
the measurements were commonly made by contact-less techniques such as
thermographs or placing thermocouples close to the free surface of the liquid.

An alternative way is to dip the thermocouples into the liquid, which may
contaminate the flow field because thermocouples are rather large, especially
for ground-based experiments where the system is made small to let the ther-
mocapillary force dominate over the buoyancy force. When the relatively large
object is installed through the free surface, influence of the developed meniscus
could be significant. This is problematic, since the quantitative temperature
measurement of the oscillation close to criticality would be very useful to de-
termine Macr.

Probably, at least in the ground-based experiments, the best method so far
is to install the classical cold wire sensor through the free surface. The wire
can be manufactured to have a shape of U, and dipped into the liquid until
the bottom reaches a certain depth. Since the wire is typically a few microns
thick, it can be installed through the free surface without causing any appre-
ciable free-surface deformation. One of the difficulties in this method is the
measurement sensitivity to the depth of the sensor installation. Since, close
to the surface, the thermal boundary layer can be quite thin, the steep tem-
perature gradient enhances the dislocation sensitivity. Another source of error
could be the inevitable interaction between the sensor support and the thermal
boundary layer in the gas. Nevertheless, with this method some convincing
qualitative results were obtained. As shown in figure 3.2, a Hopf bifurcation
curve could be measured successfully (Paper 2).

5.3.3. Actuation

As far as experiments are concerned, actuation plays the key role in active
flow control problems. Especially, if one would like to connect the obtained
control performance to physical interpretations or theoretical understandings,
it is important to know how the flow is actually actuated. Many of the reported
works in active flow control seem to struggle to manage the actuation to be
describable in terms of mathematical formulation, especially when the velocity
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vector is to be modified. Compared with those cases, the fact that the flow
can be altered by temperature modification can simplify the problem to a large
extent.

To attenuate temperature fluctuations, the preferable function of the ac-
tuator would be to cool and heat alternately. This can be realized by using
Peltier devices (Petrov et al. 1996) which heat or cool depending on the di-
rection of the applied current. The problem with a Peltier device is that in
order to keep up with the time response of the oscillation, the magnitude of
the power output faces a severe limitation, which is not enough to explore the
possibility to suppress oscillation in a range of supercritical Ma. Therefore, in
the series of experiments presented in this thesis, the actuator is an heater. In
this case, too, the time response of the temperature change in the heater is an
issue. The heat conduction time scale of the heater needs to be less than the
convective time scale of the oscillation. For this purpose, the heater was made
to have a very small volume.

5.3.4. Liquid-gas boundary

In half-zone models, especially in the ones with large aspect ratios, the surface
is inevitably deformed due to the gravity force as sketched in figure 2.3(b).
To carry out quantitative analysis on control performance, it is important to
prevent the surface shape from changing due to evaporation, since this may
affect the stability properties as shown by Hu et al. (1994).

It is observed that the forced and natural convection formed in the gas layer
could have significant influence on the liquid flow. In our half-zone experiment,
though it is not presented in the thesis, we have observed in a regime very close
the the criticality, that placing an object with low heat conductivity in the gas
thermal boundary layer can strongly alter the flow.

5.3.5. Visualization techniques

In half-zone experiments, top-view flow visualization allows us to observe the
mode structure in the r − φ plane as shown in figure 5.1(a–c). Here, a mode-2
standing oscillation is shown by a sequence of pictures. In this visualization
technique, the modal structures are visualized as polygonal particle-free areas
appears at the center of the plane. The number of lines of symmetry in the
visualized image indicates certain polygonal modal flow structures. The polyg-
onal particle-free area indicates the radial deformation of the vortical structure
from the axisymmetric state. For Ar = 1, the particle-free area appears to be
an ellipse. Here, the number of lines of symmetry is 2 thus the oscillation has
azimuthal wave number of 2 (mode-2).

The above visualization method is not applicable for annular flows because
of the absence of such a particle-free zone indicating the modal structures. A
common and most useful way to detect the wave structure for this geometry
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(a) t = 0 s (b) t = 0.23 s

(c) 0.46 s (d)

Figure 5.1. Flow visualization of a mode-2 standing wave.
(a–c): Without control. (d): Time independent state achieved
by proportional control. The solid and dashed lines represent
the lines of symmetry. ε = 0.18.

is therefore to use thermography technique. An alternative is to visualize the
flow by seeding it with flakes (Irodin 120 Pearl Lustre) and illuminating from
above. The visualized image of a mode-3 traveling oscillatory flow is shown
in figure 5.2. The white part is where the seeded flakes, lying parallel to the
surface, reflected the illumination the most. The deformation of the vortex ring
was observed to have a triangular shape which confirms that the azimuthal wave
number was three. This method, however, has a disadvantage in detecting wave
structures close to criticality, since the deformation of the vortex is very weak
in this regime. For this reason, the visualization could not be use to examine
the effect of control in the annular flow experiments presented in this thesis.
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Figure 5.2. Top view flow visualization of a mode-3 os-
cillatory flow in an annular configuration.(ε,Ma,Macr) =
(0.6, 70560, 44100). Lavalley et al. (2001)

5.4. Toy model formulation

To gain more qualitative understanding of the controlled system, a simple
model problem was formulated. Beginning from the Navier-Stokes, energy and
continuity equations in the cartigian coordinates, the system is first reduce to
disturbance equations solving for the mean flow based on the rough estimation
of the spatial profiles. The pressure gradient was ignore in the entire formula-
tion. Now, the idea is to simplify the problem by limiting the number of modes
to the base tones and the first harmonics and roughly assuming the spatial
profiles of the variables. As shown in Paper 4, by representing the fluctuations
of the variables with vector s, the solutions were expanded as.

s(x, y, z, t) = (5.6)
κ{ss,1(t) sin(2nπx) + sc,1(t) cos(2nπx)}f(y)g(z)

+ κ{ss,2(t) sin(4nπx) + sc,2(t) cos(4nπx)}f(y)2g(z)2

+ κ{ss,2a(t) sin(4nπx) + sc,2a(t) cos(4nπx)}f(y)2g(z)
dg(z)
dz

, (5.7)

where the profiles of the fluctuations are given as

f(y) = exp(− y

δ′
), (5.8)

g(z) = 4z(1− z). (5.9)

Two types of harmonic spatial modes were considered with different pro-
files in the direction normal to the free surface to broaden the variation of
nonlinear interaction taken into account. This turned to out to be necessary
to trigger the oscillatory state. Plugging in these solutions and integrating the
system following the idea of weighted residual, we obtain a set of third order
ordinary differential equations. The model shows qualitative features that are
observed in experiments and numerical simulations such as standing/traveling
wave structures and supercritical Hopf bifurcations (figure 5.3).
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Figure 5.3. Supercritical bifurcation in the toy model equa-
tion system.

The ultimate goal of the model development is to use it to apply some of
the available schemes such as the optimal control theory which requires the
system equations to estimate the whole flow field from limited measurement
information and to predict the reaction to the control. Although more accurate
model would contribute to better prediction of the system, thus better perfor-
mance of control, full simulation of the Navier-Stokes equations could hardly
catch up with the real-time experiment in most of the flow. At this point, it
order to realize these control schemes to real application, it may be more prac-
tical to use simplified model equations and compensate the loss of resolution
of the phenomenon with assumptions based on physical understandings. As
shown by Bau & Torrance (1981) for the thermal loop convection, in a low
dimensional problem as the current problem, there is a better chance that a
simple set of ordinary differential equations can be sufficient, even with fairy
strong nonlearity.

5.5. Numerical simulations

5.5.1. Numerical method

A finite element method in the (r, z)-plane combined with a pseudo-spectral
method in the azimuthal direction was used to solve the equations in cylin-
drical coordinates. A Galerkin approach is adopted to formulate the discrete
equations. The solutions were expanded to the azimuthal Fourier modes, and
for each mode, the equation system is solved, except for the nonlinear terms, in
two-dimensional plane using triangular elements with quadratic base function
for the velocity and temperature and piecewise linear function for the pressure
(P2P1).
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The time discretization is done using an Euler implicit and explicit scheme
for the viscous terms and nonlinear advection terms, respectively. The pressure
is decoupled from the velocity computations by using a projection method.
With this implementation, the resulting linear equation system is solved by
a conjugate gradient method. The explicit treatment of the convection of the
nonlinear terms imposes a restriction on the timestep; a CFL condition needs to
be satisfied for numerical stability. The time necessary to simulate one period
of oscillation (about one second in physical time) for Ma well over critical value
is typically about four hours on a PC with AMD Athlon MP2000.

As mentioned by Leypoldt et al. (2000), this type of problem with az-
imuthal periodicity is suited to adopt the pseudo-spectral method in the direc-
tion. Furthermore, for moderate strength of nonlinearity, the disturbance takes
a form of periodic waves with a distinct fundamental wavenumber with its low
harmonic modes. In fact, experiments show that even for flow with complex
temporal oscillation, the spatial structure of the wave is still low dimension.
This allows that the azimuthal structure can be resolved to sufficient accuracy
with a limited number of Fourier modes. On computing the nonlinear terms for
Nφ azimuthal planes, de-ailiasing was done by computing the nonlinear terms
for 2Nφ (r, z) - planes and filtering the first Nφ modes.

5.5.2. Automated code simulation

The finite element method simulation for two-dimensional flow fields was coded
with help from a symbolic coding tool called femLego (Amberg et al. 1999).
FemLego is a toolbox in Maple which can generate complete finite element
codes. Within the range of utilities of the software, its usability is far from
complicated. Using Maple work sheet as an interface, the relevant system
equations, Navier-Stokes equations in the current case, are entered into the
Maple script, together with the initial and boundary conditions, implicit or
explicit solving methods, and optionally output format for post processing. In
separate Maple worksheet, the type of finite elements, P2P1 in the present
case, is specified. Executing the Maple worksheet, ready-for-compile Fortran
77 code is generated. Together with input parameters and mesh information,
the code can be immediately executed.

This tool box enhances the efficiency of the coding process to a large extent.
Not only in terms of the initial programing, but mainly in the modification of
the code. For example, changes in boundary conditions, dimensions and math-
ematical model itself can be made simply by changing the Maple script without
getting into the related subroutines to make corresponding changes. This would
be very beneficial for example in construction of a model equation which best
describes the given physics since it would require the try and error routine. In
this sense, the benefit of the current study lies in the easy implementation of
different controls, in other words, heat flux on the surface free surface.



CHAPTER 6

Summary of results

In this chapter, the context of the papers appended in part 2 is summarized.
Instead of listing the summaries of the papers in the order of appearance, the
following sections are organized to cover each topics that arose in the course of
the entire thesis work. On stating the summary of each topic, results from all
the related papers are taken into account.

6.1. Single actuator control

The first experimental attempt was made by applying the proportional control
to an annular flow using only one sensor/heater pair (controller). As shown
in Paper 1, significant attenuation of the oscillation was achieved in a wide
range of supercritical Ma, with the best performance in the weakly nonlin-
ear regime. Quantitative analyses were carried out to characterize the optimal
feedback amplification and the required power. Although the attenuation was
observed at the sensor position, an uncertainty remained if the global stabi-
lization was indeed achieved in all cases. More detailed measurements with
multiple sensors in various azimuthal positions suggested that evaluating the
control scheme with single sensor signal could lead us to overestimation of the
performance. As reported by Petrov et al. (1998), applying control with single
sensor/heater pair could change the initial wave to a standing wave with nodes
at the probe positions. Since the oscillation has two degrees of freedom of ro-
tation in the azimuthal direction, at least two controllers are needed to satisfy
the controllability. This was confirmed by a numerical investigation (Paper 6).

6.2. Global suppression of the oscillation

The problem stated above was resolved by adding the second controller inherit-
ing the idea of Petrov et al. (1998). The control was experimentally applied in
an annular configuration and a half-zone model. In both geometries, significant
attenuation of the oscillation was achieved in a range of supercritical Ma and
this time, the stabilization was global (Paper 2, 3 and 5). Especially, in the
half-zone experiment, the control was performed together with flow visualiza-
tion and the transitional process of global flow field stabilization was captured.
On applying the control, the mode-2 standing wave with the elliptical particle-
free area (figure 5.1, a–c) gradually reaches a steady axisymmetric state, as
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shown in figure 5.1(d). Radial streaks appear in the particle-free area, which
implies that the azimuthal velocity is absent.

In both geometries, the control performs best in the weakly nonlinear
regime, where the amplitude of the uncontrolled oscillation is predictable by
the weakly nonlinear theory. In this regime, the oscillation could be suppressed
to the background noise level as shown in figure 6.1. Having the saturated os-
cillatory state as the initial condition, with a proper choice of G1, the system
with the control loop exhibits an exponential decay which clearly indicates that
the linear stability of the target mode was modified without influencing the sta-
bility of other modes. The heater output plotted bellow shows that, though
the output initially overshoots, the power needed to maintain the stabilization
is less than 1 mW , which is in the order of a hundredth of the driving power of
the base convection. This state could be maintained for infinite time and was
quantitatively repeatable. On turning off the control, the fluctuation grows
exponentially until it reaches the nonlinear saturation. Similar results were ob-
tained from the numerical simulation of annular flows for the values of ε very
close to the critical one (Paper 6).
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Figure 6.1. The typical picture of successful control of os-
cillation with weakly nonlinearity. Top: Time history of the
dimensionless temperature signal. Bottom: Simultaneously
measured heater output power. ε = 0.18.

6.3. Limitations of control

Although successful suppression of the oscillation was demonstrated for small
ε, the control also exhibited limitations as nonlinearity becomes stronger. At
these values of ε, maximum suppression is reduced, where the shortcoming
is accompanied with a distortion of the temporal signals. There seems to
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be different scenarios causing the limitation, depending on the geometry and
configuration of the controllers.

6.3.1. Destabilization of linear modes

It was experimentally observed that, beyond the limitation of control, the time
signal exhibits clear modulation which suggests that appearance of other spatial
modes with close-by critical frequency as the original one. In the half-zone
experiment (Paper 3) the flow visualization captured a clear process of waves
with new azimuthal wavenumber (mode), taking the value of 1 for this case,
being destabilized. As increasing the linear control gain, the new mode is
amplified and eventually dominates the flow as shown in figure 6.2 where excited
mode-1 standing wave is visualized.

The results from the annular configuration experiments (Paper 2 and 5)
show that the control can amplify both or either of the frequency peaks in the
close-by frequency to the fundamental one as in the half-zone experiment, and
the first harmonic frequency. For the former case, temperature measurements
at multiple locations suggested that the newly appearing oscillation was mode-
2. This was confirmed by carrying out a numerical simulation for the annular
geometry (Paper 6), where the results show transition from mode-3 to mode-
2 dominated flow as increasing the control gain. For the latter case, the toy
model shows that an attempt to target the fundamental mode with current
local proportional control can result in the destabilization of the first harmonic
mode (Paper 4). In the numerical simulation, this type of destabilization was
not evident for the limited range of ε.

(a) t = 0s (b) t = 0.48s

Figure 6.2. Flow visualization of excited mode-1 standing
wave in a half-zone.

The controlled oscillation always appeared to be a standing wave with
nodes nearby sensors and heaters. Therefore, on turning off the control, when
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the original uncontrolled oscillation has a travelling nature, the symmetry of
the problem gives equal possibilities for both clockwise and counterclockwise
wave to take over. This could be seen in switch of the direction of rotation
before and after applying the control (Paper 2).

6.3.2. Nonlinear limits

The control can certainly enhance nonlinear features of the oscillation. Exper-
iments have shown that an excess of control gain and Ma can result in the
broadening of the temporal spectra which would eventually make the state to
chaotic. Since the actuation employed in the current control method has defi-
nite length, the actuator (or heater) influences a broad range of modes whose
width depends on the geometry of the actuator. In spite of our original hope
for the generated higher modes to diffuse away, they have a strong influence for
high control gain and Ma. As shown in figure 6.3(a), temporal spectra from
the experiment in the annular configuration depict the broadening of the peak.
Further increase of G1 forces the system to a chaotic state. The numerical sim-
ulation supports these observation where broadening in the spatio-temporal
spectra is observed as shown in figure 6.3(b).
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Figure 6.3. Broadening of the spectra of the oscillation sub-
jected to the linear control. (a): The temporal spectra of the
oscillation without (dashed lines) and with (solid lines) control
at φ = 0(top) and φ = π/2 (bottom). Heater length, Lh, is
1.5mm. ε = 0.24. (b): The spatio-temporal decomposition of
the oscillation in the numerical simulation. γ is the suppres-
sion ratio. ε = 0.07.
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6.4. Remedies

6.4.1. Actuator size

The broadening of the spatio-temporal spectra caused by the local heating can
be reduced by increasing the azimuthal length of the actuator. The idea is
to attenuate the generation of the broad wavenumber waves in order to reduce
the enhancement of nonlinear events. The modification resulted in a significant
change in the controlled oscillation where original broad spectra is reduced to
clear peaks of two fundamental modes. The change can be observed in the
difference between figure 6.3 and 6.4. The limitation of the control is now due
to clear destabilization of a linear mode which can be delayed with the following
methods. This feature of the controlled oscillation for difference actuator length
was also observed in the numerical simulation (Paper 6).

6.4.2. Configuration of the controllers

In case that the limitation of the control is due to the destabilization of a new
linear mode, once we have an idea of which mode is amplified, it is possible
to delay the destabilization by changing the configuration of the sensors and
the actuators. The original series of experiment were carried out with negative
G1 in equation (5.3). Taking the two close-by fundamental modes (original
and new) into account, it was suggested that positive G1 with corresponding
changes in the configuration can delay the destabilization of the new modes
(Paper 3, 5 and 6).

6.4.3. Weakly nonlinear control

Applying the weakly nonlinear control, the amplitude of the oscillation can
be attenuated without altering the linear stability (Macr) of the system. The
effect can been seen not only for the original critical wavenumber waves but also
for the newly appearing mode. This allows us to delay the destabilization of
the new mode while attenuating the original mode (Paper 3 and 5). This effect
was more evident in the half-zone experiment than the annular one. In the
annular configuration, the improvement of the control performance was limited
to a slight one. With excess of the control gains, the control does eventually
influences the stability characteristics and the transition to the new mode takes
place.

6.5. Bifurcation characteristics of the controlled system

The remedies listed above allows us to examine the influence of the control in
connection with the bifurcation characteristics. Figure 6.5 shows the resulting
bifurcation of mode-2 oscillation subjected to the linear and weakly-nonlinear
control in the half-zone experiment. In the experiments with both geometries,
clear influences of the linear and cubic control can be observed as described
in section 3.5 using the simplest picture of the phenomena. The bifurcation



6.7. OVERALL PERFORMANCE 45

0 0.5 1 1.5 2 2.5 3 3.5 4

10-10

10-5

P
sd

Frequency [Hz]

0 0.5 1 1.5 2 2.5 3 3.5 4

10-10

10-5

P
sd

Frequency [Hz]

(a) G1 = −0.155 W

0 0.5 1 1.5 2 2.5 3 3.5 4

10-10

10-5

P
sd

Frequency [Hz]

0 0.5 1 1.5 2 2.5 3 3.5 4

10-10

10-5

P
sd

Frequency [Hz]

(b) G1 = −0.503 W

Figure 6.4. The power spectrum density for the nondimen-
sional temperature signal for both sensors. Dashed lines: with-
out control. Solid lines: subjected to the linear control with,
G1 = −0.155 W (a) and G1 = −0.503 W (b). Heater length,
Lh = 1.5mm. ε = 0.24.

analyses for the destabilized mode reveal that the influence of the control on the
linear properties of the new mode is not as genuine as the one for the original
mode (Paper 3 and 5).

6.6. Controlling the period-doubling oscillation

It is well known that the state becomes chaotic when increasing Ma. In the
half-zone experiment, with the strongest technically allowable driving force, the
control was applied to the oscillation in a state of period-doubling with period-
4 cycle, the beginning of a cascade which leads the system to chaos (Paper
3). On applying the proportional control, as shown in figure 3.3(b), the linear
control stabilizes the orbit to a limit cycle. We could attenuate the amplitude
of the oscillation by increasing G1 even more. However, the maximum power
output limit of the heater prevented us from exploring the control with optimal
values of G1.

6.7. Overall performance

The overall performance of the control deduced from the experimental studies
in both the annular configuration and the half-zone is shown in figure 6.6. In
both geometries, when ε � 1, the suppression ratio, defined as the ratio of
the magnitude of the controlled fluctuation to uncontrolled one, is decreased to
the signal to noise ratio. For both cases, γ gradually increases with ε with the
steepest increment around ε ∼ 0.45. In overall, a significant attenuation was
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Figure 6.5. Bifurcation curves of mode-2 oscillation sub-
jected to the linear and weakly nonlinear control with vari-
ous control gains. A2

2 is the squared amplitude. Dotted lines
indicate A2 ∝

√
ε.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε

γ o
pt

(a) Half-zone

0 0. 2 0. 4 0. 6 0. 8 1
0

0. 2

0. 4

0. 6

0. 8

1

γ o
pt

ε

(b) Annular configuration

Figure 6.6. Overall performance of the proportional control.
Circles: suppression ratio γ with the optimal gain G1,opt.

observed in a wide range of ε (< 1). Comparing the two cases, control shows
better performance for the half-zone than for annular geometry. One of the
reasons could be due to the higher signal to noise ratio in the half-zone owning
to more volatile oscillation.



CHAPTER 7

Conclusions and outlook

The long term goals of the work presented in this thesis concern the possibility
to stabilize the thermocapillary instability which gives rise to the oscillation
blamed for the detrimental microscopic inhomogeneity in the final product of
the crystal growth process. The opposition control presented in this work aims
to change the stability characteristics without altering the base flow apprecia-
bly. If this can be realized in the real floating-zone crystal growth, there will
be an advantage over other base-flow-reducing methods such as applying mag-
netic field in terms of the macroscopic segregation. Having this as an ultimate
goal, the current study has explored the possibility of applying this method in
simplified geometries and for high Pr liquids.

The idea originates from Petrov et al. (1996, 1998), where the control
is realized by heating or cooling the local free surface by actuators using the
feedback control with local sensor signals as inputs. In this study, we proposed a
proportional control method where the controllers are strategically placed using
the knowledge of the modal flow structures. It was shown that the method can
be used to attenuate the oscillation in a range of supercritical Ma. Especially in
the weakly nonlinear regime, the control completely suppresses the oscillations.
With the right choice of the actuators, even with a local control, it is shown
that it is possible to modify the linear and weakly-nonlinear property of the
three-dimensional flow system with linear and weakly nonlinear control.

Compared with the scheme of Petrov et al. (1996, 1998), the advantage of
the present method lies in its robustness where the control could be carried out
in a wide range of ε (< 1) with significant attenuation even when the target state
is not reached. Also, the simplicity of the method allowed us to tackle the object
without constructing the reference data before hand. In the experiments shown
in this thesis, the control gain is manually varied, however, it would be simple
to automatically optimize the gain respect to certain objective function as in
Bau (1999). In this case, we are left with the dominant azimuthal wavenumber
as an open parameter, which can be checked by temperature measurements or
flow visualizations. In a well controlled experiment, it could also be reduced
from the given aspect ratio.
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The actuation of the system using the local boundary heating can also
destabilize different mode structures, which increases the dimension of the prob-
lem. In the model-independent control schemes using system identification as
demonstrated by Petrov et al. (1998), one would need twice as many sensors
as the number of the active mode in order to maintain the uniqueness of the
look-up table, in other word to maintain the observability. Note that we would
need two sensors to identify one modal structure. On the other hand, in the
current study, having an idea of the newly appearing modes and the fact they
are likely to be standing waves, the destabilization can be delayed by optimizing
the configuration of sensors and heaters.

In terms of the actuation, the toy model shows that the linear controlla-
bility of the system with a fundamental and a harmonic modes can be satisfied
by two local heaters. This suggests the possibility that the system may be
controlled even with fewer heaters than twice the number of the active modes.

The current study is still limited to high Pr liquids, hence, having the
practical application in mind, an important question would be, if this type
of control methods is applicable for low Pr system. One obvious doubt is
that, since the onset mechanism of the instability in low Pr liquid is a purely
hydrodynamical instability, the modification of the thermal field may not have
much effect. Furthermore, the heating may have a weak impact on the flow
because of a strong thermal diffusion. However, the second bifurcation to the
oscillatory state in low Pr flows (Levenstam & Amberg 1995) is not clear yet,
and for such a high Ma for which the oscillatory flow is observed, the convective
force should have a nontrivial influence in the dynamics. If the heat transport
plays a role in the chain of the instability mechanism, surface heating should
be sufficient to alter the flow.

On controlling a chaotic state to an oscillatory state, there is still a good
chance for a simple control scheme to function. In the low dimensional chaos,
the trajectory can still be or comes close to the stable limit cycle, i.e. within
the range where linear control can be useful. In fact this could be easier than
to suppress a limit cycle to a fix point in a nonlinear system as we do in the
oscillation suppression. Although the flow in this regime could not be examined
in the current study due to the technical limits of the available experimental
apparatuses, it is known that such a chaotic state can be easily achieved by
performing the experiment in a freezer (Ueno et al. 2003) which enables us to
apply very high driving temperature difference. As shown by Schwabe & Benz
(2002), reversing the temperature difference in the annular geometry may do
as well.

The validity of the qualitative analyses presented in this work suggests that
the experimental system is clean and simple so that, despite of a local control
of three dimensional problem, the control problem could be reduced to a lower
dimensional model, such as, if all goes well, an ordinary differential equations.
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Such a simple model as the toy model presented in the current study could
recreate many of the features of the controlled system. This encourages the
hope for construction of a model system which is sufficiently accurate and sim-
ple to be used to realize a control scheme that requires real time computation
of the system equation. This may allow us to overcome the limitation of the
control performance due to nonlinear dynamics of the system whose influence
is inevitable for the current linear control method when Ma is high.

Being a slow phenomenon with a limited number of active modes in the
instability and the means of actuation with well-understood influence to the
system, the problem may be one of the most suitable problems for experimental
realization of the recent development in the art of flow control theories. This
problem can be the bridge between two communities of experimental and the-
oretical control as the problem of thermal convection loop, but with a strong
connection with the practical application. I hope that this thesis work will
serve as one of the initial studies for such future explorations.
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Cröll, A., Müller-Sebert, W. & Nitsche, R. 1989 The critical Marangoni num-
ber for the onset of time-dependent convection in silicon. Material Research
Bulletin 24, 995–1004.
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