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Abstract

In the present thesis, aspects of the dynamics of bodies immersed in gases
are investigated. The bodies under consideration are small compared
to the mean free path in the gas. The study comprises both gases in
equilibrium and gases subject to gradients in the temperature or the flow
velocity. For the description of the inhomogeneous gas, the Chapman-
Enskog distribution function is used.

In the case of an inhomogeneous gas, the dynamics of axially sym-
metric bodies is studied. The total force and torque exerted on the small
body by the gas are calculated. The equations of motion are obtained,
and the resulting transport, corresponding to stationary solutions, is in-
vestigated. For the case of a gas subject to a temperature gradient, the
well-known thermophoresis phenomenon is recovered, where the bodies
are transported towards the cooler parts of the gas. Previously known
results for spherical bodies are generalised to axially symmetric bodies.
For a gas subject to a velocity gradient, a new transport mechanism,
Shearing Phoresis, is obtained, that transports the small bodies along
the eigen directions of the shearing tensor.

In the case of a gas at equilibrium, the forces and torques acting
on a spinning sphere are calculated. First, a sphere of finite thermal
conductivity moving with a small speed is considered. A heat equation
for the rotating sphere is solved, and the temperature field of the body
surface is obtained. The total force acting on the spinning sphere is
calculated, which is found to have three different components: a friction
force, a force parallel to the angular velocity, and a transverse force
of opposite direction compared to the corresponding force appearing in
the continuum limit, the so-called Magnus force. Finally, the total force
and torque acting on a spinning sphere of high thermal conductivity are
obtained for arbitrary speeds. The result is applied to a spinning sphere
in a Kepler orbit. In doing this, perturbation theory is employed. It is



iv
shown that the force and torque, apart from slowly contracting the orbit

radius, also slowly rotates the orbital plane.

Descriptors: rarefied gas, free molecular flow, distribution function,
axially symmetric bodies, thermophoresis, transport phenomenon, Mag-
nus effect, spinning sphere.
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CHAPTER 1
Thesis presentation

There are several ways to read this thesis. One way is to start by chapter
8.

This thesis deals with the dynamics of small bodies immersed in
gases. The bodies are small in the sense that their dimensions are much
smaller than the mean free path of the gas.

Thermophoresis and Shearing Phoresis are the topics of papers (I)
and (II). These belong to a class of interesting phenomena that appear
in a gas with gradients in the temperature or the velocity in the limit
where a continuum mechanical description breaks down.

If the gas is subject to a temperature gradient, we have the well-
known phenomenon of thermophoresis: A small body suspended in the
gas will be transported towards the cooler parts of the gas. Ther-
mophoresis as a phenomenon has been known for a long time, and several
authors have approached the problem. For example, Einstein calculated
the final velocity of a spherical particle in a heat conducting gas using
elementary kinetic theory. A recent review of the phenomenon is given
in an article by Sone, [1].

Thermophoresis is used in some industrial processes, for instance, in
manufacturing pure crystals. In that process, small particles in a gas are
accumulated onto a solid boundary by applying a temperature gradient
normal to the boundary. As a consequence, the small particles start to
drift towards the cooler part of the gas, and finally wind up on the solid
boundary. These applications are studied in [2] and in [3].

The first systematic attempt to describe the thermophoresis phe-
nomenon using kinetic theory is found in an article by Waldmann from
1959, see [4]. That work was made under the assumption that the mean
free path of the gas is much larger than the dimension of the body. Fur-
ther results are found in a variety of articles, but these results mostly
apply to bodies large compared to the mean free path. Some of these
works deal with corrections to the Navier-Stokes equations. It should
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be mentioned that in this region, negative thermophoresis may appear
for bodies with very high thermal conductivity, cf [5].

The thermophoresis phenomenon if usually studied for spheres. In
paper (I), thermophoresis is instead investigated for an axially symmet-
ric body, in the limit where the typical length of the body is much smaller
than the mean free path of the gas.

If the gas is subject to a gradient in the velocity, and if the suspended
body is small compared to the mean free path in the gas, Shearing
Phoresis occurs. This means that the small body will be transported
along the eigendirections of the symmetric and traceless part of the
velocity gradient.

Shearing phoresis is, to the best of our knowledge, a new phenome-
non. Bell and Schaaf, [6], calculated the aerodynamic forces on a cylinder
in shearing gas flow in 1953. Their result for the force from the shearing
is valid for a finite Mach number. In paper (II) it is shown that the
shearing will give rise to a force of first order in the Mach number. This
force does not appear in the results in [6], because the cylinder is mirror
symmetric. It is however apparent from their results that there exists a
second-order force from the shearing acting on the cylinder.

Several authors, however, have studied the dynamics of larger bodies
in a shearing gas, cf. [7],[8],[9]. These works deal with the problem in
the continuum limit, and in particular corrections to the Navier-Stokes
equations. A phenomenon of transverse diffusion of spherical particles
in a shear layer is described in [10]. This phenomenon occurs in a di-
lute suspension of particles as a result of the collisions of the particles.
Further results on this topic are found in [11] and [12]. The mechanism
studied in paper (II) is however a different one, and does not require
collisions between the particles.

Moreover, the force on a spinning sphere moving in a rarefied gas
is the subject of interest in paper (III). The transverse force appearing
in the continuum limit is a well-studied topic [13], not least in connec-
tion with sport balls. Here, the corresponding force is studied in the
opposite limit. The calculations are made for a sphere with a moderate
or higher thermal conductivity, moving with a speed much smaller than
the thermal speed.

In paper (IV), the force and the torque acting on a spinning sphere
of high thermal conductivity moving with arbitrary speed through a
rarefied gas are calculated. The drag force was already calculated by
Epstein for small speeds in [14]. So paper (IV) is an extension of his
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work. These forces and torques are then applied to a spinning sphere in
a Kepler orbit. It is found that these, apart from slowly contracting the
orbit radius, also slowly turn the orbital plane.

Apart from the papers, the thesis also contains an introduction pre-
senting some of the theory and nomenclature necessary to approach the
papers. A summary of the papers is also included.
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CHAPTER 2
Introduction to kinetic theory

2.1. The dilute gas

The gas has in common with the liquid and the solid that it consists
of a large collection of interacting molecules. If we however consider
the relationship between the kinetic energy and the potential energy for
these three different states, we find that in terms of this relationship,
they differ very much among themselves.

In the solid, the molecules are closely bound to each other by intra-
molecular forces. The molecules perform thermal motion but remain
in general rather fixed to an ordered lattice. For these molecules, the
kinetic energy is not large enough to break the lattice ordering.

In the liquid, or in a dense gas, the kinetic energy of a particular
molecule is large enough to destroy the ordered structure of the solid,
but still small enough for the molecules to be in constant interaction
with each other through the intermolecular forces.

In the dilute gas, the kinetic energy dominates over the potential
energy in the sense that a gas molecule spends much of its time with
only a negligible interaction with the other molecules in the gas. The
interaction between the molecules can in the dilute gas be described
as collisions, with a collision taking place during a time interval much
shorter than the time spent by the molecules between collisions.

2.1.1. The molecular cross-section

For the dilute gas the interaction between the molecules can, as men-
tioned above, be reduced to collisions. The typical behaviour of the force
between two molecules is a highly repulsive force for a small distance
between the molecules (For larger distances the force falls of rapidly).
There may also be a weak attractive part for large distances. The re-
sulting collision is described by the cross-section. If the molecules are
hard spheres with diameter d, the total cross section is then given by
the area md?.
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The cross section is for realistic molecules energy dependent, and
becomes smaller when the temperature is increased.

2.1.2. The dilute gas

Consider a simple gas (a gas that consists of one single chemical species)
with density p. If we denote the mass of a molecule by m, we can
compute the average number of molecules per unit volume, the number
density, denoted by n, according to

n=2~2
m
The value of the number density for air at standard temperature and
pressure (293K and 101,3kPa), often abbreviated by STP, is ~ 2.5 -
10%® molecules per cubic meter. This, in turn, tells us that the average
volume of gas per molecule is given by 1/n ~ 4 -10 2% cubic meters
= 410717 cubic millimetres. From the average volume per molecule, we
can estimate the average spacing between the molecules, often denoted
by 4, according to

6~ ViR
For air at STP, this estimate yields § = 3.4 - 10 m. We are now in
a position to define the dilute gas as a gas where the average spacing
between the gas molecules is much larger than the diameter of the cross-
section area, d. In a dilute gas, the time spent by the gas molecule
travelling on the straight between two collisions is much larger than the
time during which it interacts with another molecule in the gas. Air at
STP has d/d ~ 7, and thus barely constitutes a dilute gas.

2.1.3. The mean free path

The mean free path of a gas is defined as the average distance a gas mol-
ecule travels between two successive collisions. It is possible to estimate
the mean free path of a gas in the following way:

Consider a gas with number density n. We assume for simplicity
that the gas is made up of spherical molecules with the radius r and
diameter d = 2r.

Let us start by placing an observer (A) on a particular molecule in
the gas. Viewed from this observer, the molecules of the surrounding
gas will perform some random motions with different velocities. Next,
(A) calculates the average velocity of all the surrounding molecules. In
order to proceed, we now perform the following artificial experiment:
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we replace all the different velocities of the different molecules by their
mean velocity according to (A). We might say that all the surrounding
molecules are replaced by a ’typical’ molecule. When this is done, an-
other observer (B) is placed on one of the surrounding molecules. From
(B)’s point of view, we find that all the gas molecules are at rest except
for our test molecule (A), which moves with the velocity of the same
magnitude but opposite to the mean velocity calculated by (A). Moving
along a straight line with this velocity, it will collide with the first mol-
ecule close enough to its trajectory. To be precise, it will hit another
molecule if the distance between the centres of the molecules is less than
2r = d. Thus, any molecule with its centre within a cylinder, centred
along the straight line-trajectory of our test molecule, with radius d, will
be hit. If our test molecule travels in this way a distance [, the volume
V of this cylinder is given by

V =nd® - 1.

The mean free path X is now defined as the distance this molecule travels
before it collides with another molecule. This means that the volume
of the cylinder by then is large enough to contain precisely one other
molecule. Therefore this volume multiplied by the average number of
molecules per unit volume equals one, or

V.n=1,
or
7d? -\ -n=1.
Solving this relation for the mean free path gives the estimate
1
A= ——. 2.1
nd?n (2.1)

2.1.4. The rarefied gas and the Knudsen number

If we now specify a particular problem for which the gas behaviour is
sought for, there enter further length scales. These new length scales
can be introduced by the boundary, i.e. the width of a channel through
which the gas flows, or the length of an obstacle in a streaming gas. They
may also enter through inhomogeneities in the gas properties, i.e. by
the typical length over which the temperature varies in a non-uniformly
heated gas.

In we denote this external length scale by L, we define the Knudsen
number, Kn, as the quotient between the mean free path of the gas A
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and the external length L according to

In a situation in which the external length scale L is much larger then
the mean free path A (thus for which Kn < 1), the gas may be regarded
as a continuum. Usually one refers to a situation of this kind (Kn < 1)
as within the continuum limit, or sometimes the fluid dynamic limit. In
this limit, the usual fluid dynamic equations can be used to calculate
for instance the pressure and velocity fields of the gas. In this limit, the
gas molecules perform a kind of random walk-like motion.

If, on the other hand, the length scale L approaches the mean free
path A in magnitude, the continuum description fail, and we enter the
realm of Rarefied gases which is described by The Kinetic Theory of
Gases. In this region, a number of striking non-continuum effects arise.
For instance, a temperature gradient along a boundary may cause a gas
flow along the boundary in the direction of the temperature gradient.
This phenomenon is called the thermal creep flow, [15]. Another exam-
ple is thermophoresis, which is a transport mechanism for small bodies
causing them to move towards the cooler parts of a gas of non-uniform
temperature.

2.2. Examples of rarefied gas flows

In the previous section it was claimed that for a dilute gas for which
Kn > 0.1, ordinary fluid mechanics fails, and kinetic theory is required
for the description of the gas flow. Of course, Kn > 0.1 can be achieved
in two ways: either by making the external length L very small, or by
making the mean free path A very large. An example of the former case
is the gas flow through the thin channels in a so-called micro electro
mechanical system (MEMS), such as a micro nozzle. Further readings
on gas flows in micro geometries is found in [16]. An example of the
latter case is a satellite at the height of 140 km above the earth surface.

A further application of rarefied gas flows is the description of the
thin layer (with the thickness of the order of a few mean free paths) of
water vapour evaporating from the surface of the nucleus of a comet that
surrounds the comet, and also the energy transport through channels
and cracks in the comet’s surface, [17].



CHAPTER 3
The Boltzmann equation

In this section, we shall briefly review the so-called BBGKY-hierarchy
[18, 19, 20, 21] derivation of the Boltzmann equation. Consider first an
ensemble of N identical mono-atomic interacting molecules. This is the
most simple case, poly-atomic gases posses further degrees of freedom:
rotation and vibration. Further, both mono- and poly-atomic gases may
undergo electronic transitions, but these require very much energy, that
is, a high temperature. To describe the evolution of the entire system,
we introduce the N-particle distribution function Fp, defined on the
6N-dimensional phase space spanned by the resp. positions and veloci-
ties of the N molecules. We call this space I'-space. The 6-dimensional
phase space of a single gas molecule we denote by y-space. The interpre-
tation of Fy is that Fyd3z,d3¢id3zod3¢s...d3zyd3cy is the probability
that the position and velocity of molecule no 1 lie within d3z;d3c;; the
position and velocity of molecule 2 lie within d3z1d3c; etc. The interac-
tion between the molecules is given by Newton’s laws, and consequently
the N-particle distribution function Fy satisfies the Liouville equation,
which, in the absence of external forces is given by

N N
OFy OFy 1 OFy
— C-—+— X;-——— =0, 3.2
o +2_; awﬁm; " Be; (3:2)
where X; is the internal force acting on molecule 7. The first assump-
tion to be made is that the mono-atomic gas molecules interact via a

spherically symmetric potential, that is, the potential satisfies
Vi(r)=V(r).

We assume that the gas is dilute. This means that the typical diameter
of the cross-section of the interaction between the molecules, d, is small
compared to §, the average distance between gas molecules. For air

under standard conditions, % ~ %

Since the gas molecules are identical, the state of the system is invari-
ant under interchange of position of the molecules in y-space. Therefore,

9
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to an assembly of N molecules in 7y-space, there corresponds N! points
in I-space. We now introduce the function fx = fn (¢, @1, €1,...,ZN,CN)
by writing the probability of finding the system at the points (z;, ¢;) as

3 3 3 3 .
fN(t,wl,cl,..,:L'N,cN)d .’L‘ld Cp .. -d .’L‘Nd CN;

Then we must have fy = N!Fy.

The condition of molecular chaos is now imposed. This is a good
approximation when the correlations can be neglected. This condition
means that we can factorize the distribution function into a product of
identical one-particle distribution functions, each describing a ’typical’
gas molecule, that is,

v = f(®1,¢1) - f(x2,c2) - .. fl®n,CN)- (3.3)

Then the Liouville equation for a dilute gas is reduced to an integro-
differential equation for this one-particle distribution function: The Boltz-
mann equation. In the absence of external forces, if takes the form

of
S Vi=J(f]), (3.4)

where the collision operator J(f, f) is given by

7.0 = [ [ [ '8 15) ghvdedtes (3.5)

see [18]. The collision operator J(f,f) originates from the interac-
tion term in the Liouville equation. In the expression for J(f, f), b
is the impact parameter in the binary collision, € is the angle of colli-
sion, g = |e1 — ¢| is the relative velocity of the colliding molecules, ¢ is
the velocity of the typical gas molecule, c; is the velocity of the mole-
cule it collides with. ¢’ and ¢} are the corresponding velocities after the
collision. Further, f1 = f(e1), f' = f(c') and f] = f(c}). Note that the
collision operator is bilinear in f. On the left-hand-side of the Boltz-
mann equation we have the material time derivative of the one-particle
distribution function f. On the right-hand-side, the collision operator
J(f,f) determines the rate of change in the one-particle distribution
function due to collisions between the gas molecules. This equation is
much simpler to handle than the Liouville equation. But the Boltzmann
equation is still complicated enough as direct numerical solutions are
possible only for simple geometries. The Bolzmann equation lacks the
time-reversal symmetry satisfied by the Liouville equation. The essence
of this derivation is thus that a coarse-graining is made in both time
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and space. When this is done, the Boltzmann equation describes the
probable evolution of the distribution f.

3.1. Boundary condition: The Maxwell model

The fate of a gas molecule that has collided with the body is not obvi-
ous. A rather well-established model that can be used is the Maxwell
boundary condition. This model states that a fraction of the stream of
molecules incident on the body surface is reflected specularly (or like
a particle colliding with a solid wall). The remaining fraction of the
incident stream of molecules reaches thermal equilibrium with the body
(complete energy accommodation is assumed), and is reflected as a local
Maxwellian. This fraction is said to be diffusely reflected. It is easy to
see that the part specularly reflected on the surface element does not
transfer any tangential momentum. Therefore, the fraction number is
called, ’the accommodation coefficient of tangential momentum’, and is
usually denoted by «,. Put in mathematical terms, the reflected stream
) fulfils

F€) = (1 = anf ) + 0 f0E).  (36)

Here, f( is the distribution function describing the incident stream of
molecules given by the first order Chapman-Enskog solution. Further,
cg = ¢; — 2n;njc;. n(") is a number density that is determined by con-
servation of particles, and f(© is a Maxwellian with the temperature of
the body.

3.2. Conservation properties

The interpretation of the distribution function states that the average
of a molecular quantity @ (such as the velocity or the kinetic energy),
here denoted by < @ >, is given by

<Q>= /Qfd3c, (3.7)

where the integration is performed over all velocities. The averaged
quantity < @ > corresponds to a macroscopic quantity (such as the flow
velocity and the temperature). Here @ is a function of ¢, the molecular
velocity. The corresponding averaged quantity < @ >, however, in
general depends on time and position through the distribution function
f. Since the Boltzmann equation (3.4) predicts the time evolution of
the distribution function f, it is clear that also the time evolution of the
averaged quantities < () > are determined by the Boltzmann equation.
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In an attempt to find the appropriate differential equation for < Q) >,
we multiply the Boltzmann equation by () and integrate over velocity
space. We then get

/Qg—{d?’c—k/Qc-Vfd%Z/Qj(faf)d?’c.

The molecular quantity @ is as mentioned above independent of position
and time, and thus we may rewrite the terms of the left-hand side as

of 3 0 _0<@>
/Qad%_a/czfd%_T.

/Qc-Vfd3c:V-<cQ>.

If we introduce the shorthand Z[Q)] for the rate of change of @ due to
collisions, that is,

and

701 - [ Q. N (38)
we thus end up with a differential equation for < @) > given by
0
0224V <e@>=1(Q) (3.9)

This is the so-called transfer equation. It has the character of a transport
equation with the source term Z[@)]. Using the symmetry properties of
the collision operator J(f, f), Z[Q] yields the following identity

tial= [ [ [ [ @5~ 15) gpabaeccrae
5[ [ ] [ @+ai-a-a) rngaactade

Written in this form, it is clear that if @@ is either the mass, the mo-
mentum or the energy of a gas molecule, Q' + Q] = Q + Q1, as these
are conserved during a collision, and consequently, Z[Q] = 0 for these
quantities. It can be shown that these are the only quantities (or linear
combinations of these) to be conserved during a collision.

Here it should be pointed out that when formulating the equation
(3.9), the equation for < @@ > depends on < Q¢ > through the second
term of the transfer equation. Therefore, the equation for the mass will
depend on the momentum, the equation for momentum on the energy
etc. Thus, the transfer equations (3.9) will form a coupled, infinite
system of equations.
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3.3. Equilibrium distribution function (H-theorem)

In the six-dimensional y-space, we denote the probability that there are
N7 molecules in the first cell of 7-space, No molecules in the second cell,
etc. by W, [18]. Using some algebra and Stirling’s formula, it can be
shown that W can be expressed in terms of the distribution function f
according to

InW = — / fIn fd3zd3e. (3.10)

The entropy o is usually defined by o = (kp/p) In W, where kg is the
Boltzmann constant.

In this section, we shall study the so-called H-function for a region
D of space defined by

Hp(t) = /D fIn fd3zd3e. (3.11)

Here, f is a solution to the Boltzmann equation, and the functional
Hp(t) is thus related to the probability of this distribution via the
entropy (3.10). We also define the corresponding H-function per unit
volume, H(t,x), by

H(t,x) = /flnfd3c. (3.12)

We shall now multiply the Boltzmann equation by 1 4 In f, and
integrate over velocity space. This cannot be done simply by putting
Q =1+ Inf and adopt the machinery of the previous section, since f
depends on the time and space, and thus we proceed in a different way.
First we observe that

of 0

1+Inf)—=

ot E(flnf)

and
1+Infl)e-Vf=V-(cflnf).

Further, using the symmetry property employed in the preceding section,
we obtain Z[1 + In f]:

Z[1+1n f]:—% / / / 1nJ;]{11 (f'f1 — f£1) gbdbded®c;d?c.

Now we define the function H as

H:/cflnfd3c.
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Accordingly, H is related to the entropy flux. The transfer equation for
1+ In f can thus be written

oH

E‘FV-H:I[I—Flnf]. (3.13)
This equation should be interpreted as a transport equation for H with
the source term Z[1 + In f], that corresponds to an entropy source. Now
we integrate (3.13) over the region D. We then get, using Gauss’ theorem
on the second term of the left-hand side of (3.13)

@Jr/ H-ndS:/I[1+lnf]d3x,
d¢ aD D

where 0D denotes the surface bounding the region D.

Inspecting the expression for Z[1 + In f] shows the factors f'f] — f f1
and In(f'f1/ff1) = Wn(f'f{) — In(f f1) always have the same sign, and
thus make the integrand of (3.3) < 0. Therefore Z[1 + In f] < 0, that is,

dHp

=Py [ H-ndS<o. (3.14)
a " Jop

This is the famous Bolzmann H-theorem [18].

Now we shall impose two defining conditions for the state of equilib-
rium: first we require that there is no net entropy flux through the vol-
ume D. Thus the surface integral vanishes in (3.14). Second, we require
the equilibrium state to be stationary in the sense that the equality in
(3.14) holds, which thus means that entropy is not produced within the
region D. It is easy to see that the equality holds when In(f’f{/f f1) = 0,
orlnf'+Inf{ =Inf+1Inf;. This in turn implies that In f is a linear
combination of the mass, the momentum and the energy, according to

Inf=Am+ B-mc+C,

where A, B and C are functions of time and space. These can be
related to the number density n, the macroscopic flow velocity v and
the temperature 7' by using their resp. definitions in terms of averages
(integrals of f). When this is done, we finally obtain

27rkBT)3/2 [ m(c—’u)2]
m €X _——

(3.15)

foozn( kT

This distribution function is called the Maxwellian, or the equilibrium
distribution function. It is the Normal distribution of the variable ¢,
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centred around the flow velocity v, normalised according to

/fd3c:n,
2

with the standard deviation, or width of the distribution function, o= =
kT/m.
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CHAPTER 4
Solutions of the Boltzmann equation

In this chapter, we shall review approximate solutions to the Bolzmann
equation.

If we denote the length scale of the problem for which we want to
solve Boltzmann’s equation by A, an order of magnitude estimate of the
Boltzmann equation shows that the left-hand side is of the order of %
times smaller than the collision term on the left hand side (we recall that
A denotes the mean free path of the gas. That is, in non-dimensional
variables the Boltzmann equation looks like

A(at*+c Vf)—J(f,f)- (4.16)
(the *-superscript will be dropped in what follows.) For our purposes,
there are two separate length scales for which we want to solve Boltz-
mann’s equation: Firstly, we need a description of the gas subjected
to the macroscopical gradients, that is, A = L. Secondly, we want to
examine the situation for the small body, that is, A = R. Since by as-

sumption % < 1 and % > 1, the corresponding investigations turns out

to be quite different. For % < 1 we use the so-called Chapman-Enskog

solution, [22], to the Boltzmann equation. For % > 1 we end up in the

equations of Free Molecular Flow.

4.1. The Chapman-Enskog solution

In the limit where A < L the solution to the Boltzmann equation can be
expanded in the small parameter % = Kn, where the Knudsen number
Kn measures the rarefaction of the gas. To zeroth order in Kn, we obtain
the solution for a gas in local equilibrium: the Maxwellian, (), given
by

m
In this expression, n is the number of molecules per unit area, kp is
Boltzmann’s constant, 7" is the temperature, m is the mass of a gas

—3/2
f(O) —n (Zﬂ-kBT> e—m(C—'U)Z/ZkBT' (417)
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molecule, v is the flow velocity and c is the velocity of a gas molecules.
Here n, v and T are functions of space and time. The Maxwellian is
thus the solution of J(f, f) = 0. This solution describes a gas in local
equilibrium, with no stresses and no heat currents.

To take into account the influence of the non-uniformity of the dis-
tribution function, we must include deviations from the Maxwellian in
the distribution function. Therefore, we seek the solution to first or-
der in Kn. This solution can be found through the Chapman-Enskog
expansion. David Enskog (1884-1947) was Professor of Mechanics and
Mathematics at KTH. Through his solution, the Navier-Stokes equa-
tions could for the first time be related to the Boltzmann equation [23].
In case of a gas subject to gradients in the temperature and the velocity
v, a solution takes the form

1 2kpT 2
f=r0 [1 - —1/ ks A(C*CT; — EB(CQ)C<iCj>Ui,j - (418)

nT m

Here, C; = \/m/2kpTc; is a non-dimensional molecular velocity. The
solutions A and B are related to the heat conductivity and the viscosity.
A and B both depend on the intra-molecular potential and have the
order of magnitude of Kn. Further, < ... > denotes the symmetric and
traceless part.

This solution is well-established and gives correct values of the coef-
ficients of heat conductivity and viscosity.

4.2. The Hilbert-Grad-Sone asymptotic method

An alternative approach to the Chapman-Enskog method that has come
to be widely used was developed by Sone in the book [19] and by Sone,
Aoki and others in a number of papers, c.f. [24, 25, 26, 27]. This
method is a singular perturbation method, that resembles somewhat
the boundary-layer methods of fluid dynamics. In this method, two
expansions of a solution to the Boltzmann equation are made.

The first expansion is an exterior expansion made for small Kn. This
corresponds to a slowly varying distribution function. This expansion
yields the distribution function (or rather, the deviation of the distribu-
tion function from the Maxwellian) and equations for the hydrodynamic
variables, valid away from the boundary.

The second expansion is an interior expansion made for the distribu-
tion function in the region close to the boundary, extending a distance
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of the order of the mean free path away from the boundary (the so-
called Knudsen layer). Thus here a local Kn, based on the distance to
the boundary, is no longer a small number. From this expansion, the
boundary conditions for the hydrodynamic equations derived in the first
expansion are derived.

4.3. Free Molecular Flow

We now consider a problem where the body has the length scale R < A,
and adopt for a moment its perspective of the gas. On the length scale of
R the molecules of the surrounding gas do not collide with each other.
As a consequence, the gas molecules move along straight lines. Still,
they will of course collide with the small body. Accordingly, in the limit
where % > 1 the collision operator drops out of the Boltzmann equation,
and we have
of

=t V=0 (4.19)

This is the Liouville equation for the one-particle distribution function
f in the absence of forces. This means that f is constant along the
trajectory of a molecule in y-space.

Further, if the body is taken to be convex, a gas molecule will never
undergo two consecutive collisions with the small body. In this limit,
it is reasonable to assume that the body is small enough for the test-
body approximation to be valid: the impact of the small body on the
gas vanishes a distance ~ A away from the body, from where the gas
molecules incident on the body surface originates. Thus, the distribution
function describing the stream of molecules incident on the body surface
can be approximated by the distribution function for the gas in the
absence of the body, f. The particle flux incident on a surface element
dS with unit normal n on the body, N is then expressed in terms of the
distribution function f according to (here, n is the outward normal)

N=- / (n-e)f d, (4.20)
n-c<o

By the same argument, the momentum flux incident on the surface ele-
ment is given by

P = —/ (n - e)me; f dc, (4.21)
Nn-¢<0
and the energy flux is obtained from

1
E = —/ (n-c)=mc®f d3c. (4.22)
n-c<0 2
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With the Maxwell model we can also in a similar manner formulate
the out-flux of mass and momentum by the stream of molecules that
leave the surface. From demanding that the surface of the body is im-
permeable we can determine n("). Then we are in a position to calculate
the net momentum transferred from the gas to the surface element and
thus arrive at an expression for the force and the torque exerted on the
body surface element by the gas. The corresponding expressions can
then be integrated over the total surface of the body to yield the total
force and torque acting on the body.

4.4. Solutions for length scales of the order of the mean
free path

In the region where the external length scale is of the order of the mean
free path, that is, where K'n ~ 1, numerical methods are employed. One
frequently used method is the DSMC (Direct-Simulation-Monte-Carlo)
method. In this method, collisions between the molecules are modelled
by random numbers, [28].

Direct numerical simulation of the Boltzmann equation is in general
difficult, but has been carried out successfully for example for a shock
wave, [29].

Further, a widely used method to approach problems numerically in
this region is to use the BGK-equation. In this equation, the collision
operator in the Boltzmann equation is replaced by a much simpler model,
which is makes many problems much easier to handle numerically. The
BGXK-equation is employed also in other regions.



CHAPTER 5
Spinning bodies and the Magnus effect

For those practising ball sports like table tennis and football, it is well
known that the trajectory of the ball is curved if the ball is spinning.
This effect has thus probably been known for as long as these ball sports
have been practised.

Sir Isaac Newton (1642-1727) observed the effect and attributed it to
a force, using his conclusions in Philosophiae naturalis principia mathe-
matica.

In 1742, Benjamin Robins (1707-1751) published a book with the
somewhat lengthy title: New principles of gunnery containing the de-
termination of the force of gunpowder and investigation of the difference
in the resting power of the air to swift and slow motions, containing a
description of the Magnus effect (although he did not use the term "Mag-
nus Effect’). As the title suggests, the effect was here put in a ballistic
context.

Ballistics was also the subject of interest of the German chemist
Gustav Heinrich Magnus (1802-1870), after whom the Magnus effect is
named. He described the effect on cannon projectiles in a work comimis-
sioned by the Preussian army.

In fact, there are quite a few names that could be associated with
the influence of the spin on the trajectory: Euler, Maxwell, Magnus,
Robins and Zhukovsky, [13].

The effect is usually explained in physical terms using Bernoulli’s
theorem [30] for irrotational flow:

L oy
P+ gpu” = constant (5.23)

This theorem states that the pressure is high where the velocity is low,
and vice versa. To apply Bernoulli’s theorem on the spinning ball, we
proceed as follows:

Viewed from a rest frame of the centre of mass of the ball, at a
certain point (A) the velocity of the surface of the sphere parallel to the

21
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flow velocity is maximal. On the opposite side of the sphere, at the point
(B), the situation is reversed: here the velocity of the sphere’s surface
opposite to the flow velocity assumes its maximum. By viscous action,
the flow velocity is therefore increased at (A) and decreased at (B). This
means, by Bernoulli’s theorem, that the pressure is decreased at (A) and
increased at (B). This pressure difference produces a force directed from
(B) to (A), giving the ball a velocity in that direction. Thus, when a
spinning ball is moving through the air, the spin of the ball will alter
the trajectory, and the ball will be deflected. This is thus the origin of
the effect so efficiently used by famous ball players like David Beckham
and Tiger Woods.

To obtain a precise expression for the force, Rubinov and Keller [31]
calculated the effect in the fluid dynamical limit using Navier-Stokes’
equations, assuming small Reynolds number, Re, and found that the
force acting on a sphere of radius R, velocity v, and angular velocity w,
is given by

F =[14 O(Re)7R*pw x v, (5.24)
where p is the density of the fluid. Experimental results show that
the force (5.24) is adequate also for larger values of Re. A numerical
calculation of the coefficient of the Magnus force for Reynolds numbers
up to a few hundred is presented in [32].



CHAPTER 6
Introduction to the papers

In the papers (I) and (II), it is shown that a body small compared
to the mean free path in a nonuniform gas is set in a motion relative
to the surrounding gas due to gradients in the temperature and the
velocity. The typical length of the small body, R, is assumed to be
much smaller than the mean free path of the gas. Further, the typical
length over which the temperature and the velocity varies, L, is much
larger than the mean free path of the gas. In the papers (III) and (IV),
gas is in equilibrium. This can be regarded as L — oo. In all the
papers, the surface of the body is convex, and the Free Molecular Flow
approximation is used.

6.1. Axially symmetric body

The small bodies under consideration in the papers (I) and (II) are
axially symmetric. This means that the body has no other geometrical
direction than the axis of symmetry, INV.

Axially symmetric bodies can posses an additional symmetry: If
there exists a plane orthogonal to the axis of symmetry in which the
body is mirror symmetric, the body is said to be equatorially symmetric,
or mirror symmetric.

Further, geometric integrals over the total body surface of local ge-
ometrical quantities such as the unit normal n and the vector from the
centre of mass of the body to a point on the body surface, &, must all be
isotropic functions of the axis of symmetry IN. That is, these geometric
integrals are sums of products of N; and the Kronecker delta d;;. An
example of an integral of this type is given by [, g nin;dS, and due to
isotropy it must fulfil

/ nZanS =5 (Cldij + CQNiNj) .
S

Here, S is the total body surface area. The non-dimensional scalar coeffi-
cients ¢; and ¢y can be found from successive contractions with products
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of N; and the Kronecker delta. When this is done, it is convenient to
write the tensor as the sum of one isotropic part proportional to J;; and
one symmetric traceless part proportional to N.;Njs = N;N; — %5“-.
These correspond to the [ = 0 and [ = 2 representation of the rotation
group. The tensor integral then takes the form

1
/ninde =5 (géij + aN<iNj>> .
S

One finds that a measures symmetric deviations of the body shape from
a sphere: For a coin shaped body, a = 1, and for a needle shaped body,
a= —%. For a sphere, a = 0.

6.2. Force and torque on the body

The force, dF', acting on a surface element of the body can now be
obtained by calculating the net transfer of momentum to the surface
element from the gas. This force will in general also produce a torque
acting on the body surface element according to dM = & x dF', where x
is the vector from the centre of mass of the body to the surface element.
As a consequence, the body will start to move and rotate, and a full
rigid-body motion results. A body-fixed frame of reference is introduced,
where one of the principal axes is chosen to be IN. The time evolution
of this frame can then be related to the angular velocity by Fuler’s
equations. The resulting motion of the body will generate additional
forces and torques on the body.

Both the force and the torque acting on the surface element of the
body will be tensor functions of the unit normal n and the vector x. To
obtain the net force and torque acting on the body, we must integrate
the force and the torque acting on a surface element of the body over
the total body surface. This can be done using the method described
above.

The total force will, to the present order of approximation, contain
three different forces: one force arising from the non-uniformity of the
gas, that is, from the heat currents or the stresses; one force depending
on the velocity of the centre of mass of the body, and one force depending
of the rotation of the body. The total torque on the body can be split
up in a similar manner into three corresponding parts.

6.3. Asymptotic solutions

In paper (I) and (II), asymptotic solutions are studied. Given the force,
the torque and Euler’s equations, the equations of motion of the rigid
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body can be formulated. This resulting system is a set of non-linear cou-
pled ordinary differential equations, containing scalar coefficients that
depend on the shape of the body.

With these at hand, asymptotic solutions with no rotation and a
constant velocity can be found. These differ very much in character
between thermophoresis and Shearing Phoresis. This is due to the dif-
ference in symmetry between the vectorial heat current and the tensorial
stress tensor.

In order to investigate the stability of the resulting asymptotic states,
the equations of motion of a test body are linearised close to these states.
We choose as an example a ’double cone’. It consists of two cones,
pointing in the opposite directions and glued together at their common
base. The radius of the base is denoted by D, and the total length by
R.

s-R (I-s)-R
FIGURE 6.1. The ’double cone’

The base is situated a distance s- R from the left cusp, where the
dimensionless parameter s obeys 0 < s < 1. When s = 0 the double cone
degenerates into a single cone with its cusp pointing in the direction of
N. When s = 1 we recover another single cone, pointing in the direction
of —IN. This body is in general not equatorially symmetric, except when
s=1.

In the case of Shearing Phoresis, the parameter s is restricted to
vary in the interval 0 < s < %; Thus, in this case, N always points in
the same direction as the sharpest cusp of the double cone.

Given the linearised system, the eigenvalues of the infinitesimal mo-
tion of the double cone close to the asymptotic states can be calculated
numerically. The stability character of these states can in this way be
obtained for the double cone.
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6.4. The Magnus effect

In papers (IIT) and (IV), the Magnus effect is studied. In case of phoresis,
a linear approximation is adequate. But the Magnus force is quadratic
(or bilinear). Here, a homogeneous spinning sphere is considered. In
paper (IIT) the force is calculated to second order in the Mach number.
A heat equation for the rotating sphere is solved. The boundary con-
dition for this heat equation is obtained by calculating the net energy
flux through the surface from the gas. In paper (IV), the calculations
are made for arbitrary Mach numbers. Here the multiple-scale method
is employed. In this method, two non-dimensional time scales are used:
a 'fast’ time ¢ and a ’slow’ time e, where ¢ < 1, c.f. the weakly damped
harmonic oscillator. Applying this method, a leading order solution is
obtained in terms of the fast time, in which parameters depend on the
slow time et. These parameters are determined by a set of differential
equations obtained from demanding that source terms producing reso-
nance in the solution, and thus giving rise to irregular growth of the
expansion, vanish.



CHAPTER 7
Papers Summary and Results

7.1. Paper (I)

In this paper, Thermophoresis of Axially Symmetric Bodies, the well-
known thermophoresis phenomenon is studied. An axially symmetric
test body is immersed in a heat conducting gas. The length scale of the
temperature gradient (L) is much larger than the mean free path of the
gas (M), and thus the Knudsen number Kn is much smaller than unity.
Therefore the heat current can be described by the the Chapman-Enskog
distribution function.

The test body is assumed to be much smaller than the mean free
path of the gas, and thus the method of free molecular flow is employed.
Further, the body is assumed to have constant temperature: this corre-
sponds to high thermal conductivity.

The Maxwell model is used for the boundary condition: a fraction 1—
a; of the molecules incident on the body surface is reflected specularly,
and the remaining fraction, «., reaches thermal equilibrium with the
body surface, and is reflected as a Maxwellian.

Assuming no net particle flux through the body surface, the net force
and torque acting on the body are calculated to first order in Kn. The
resulting speed is assumed to be small compared to the thermal speed
v/2kpT'/m: This assumption is shown to be consistent with our results.

In figure 7.1, the final thermophoretic speed of an axially symmet-
ric body is plotted against the shape-dependent coefficient ¢(2:9), which
measures the 'oblateness’ of the body: for 20 <0, the body is prolate,
for ¢20) = 0, the body is a sphere, and for ¢(>%) > 0, the body is oblate.

Oblate bodies thus travel with a smaller speed than prolate bodies.

It is also shown, that for mirror-symmetric bodies, the rotational
motion of the body decouples from the temperature gradient (an ellip-
soid is mirror symmetric, but a half-sphere is not). This means that
the axis of symmetry of the body does not align with the heat current,
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0.85 a:=0.5
T
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FIGURE 7.1. The non-dimensional final speed [V|/5|g| is plot-

ted against the parameter ¢(>% for four different values of ;. On
the horizontal axis, negative values corresponds to prolate bodies,
whereas positive values corresponds to oblate bodies.

as is the case for bodies in general. As a consequence, the final ther-
mophoretic velocity of such a body will in general have a component in
the plane perpendicular to the heat current. In the figure 7.2, the orbit
of a coin (mirror-symmetric) is compared to the orbit of a cone, for the
same initial conditions. Thus, a body shaped as an ellipsoid or as a
cylinder will with time travel without bound in a direction perpendicu-
lar to the heat current. It is likely, however, that higher-order terms in
Kn will re-couple the angular momentum of mirror-symmetric bodies to
the heat current. Since this coupling will be small, this effect will still
prevail to a large extent for Kn < 1. This could be used to separate
mirror symmetric bodies from general bodies in an assembly.

7.2. Paper (II)

In the paper Shearing Phoresis, a previously unknown mechanism of
transport is obtained and studied. An axially symmetric body is im-
mersed in a shearing gas. The body is small compared to the mean free
path in the gas, and is assumed to have high thermal conductivity. The
shearing gas is described by the Chapman-Enskog solution.
Calculating the linear and angular momentum transfered to the body
by the gas, a force and a torque due to the shearing are obtained, to-
gether with a friction force and a friction torque. Stationary solutions
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FIGURE 7.2. Orbit of one cone- and one coin-shaped body, with
the heat current in the z-direction. Initially the axis of symmetry
N of the two bodies makes the angle 45° with the heat current.
The initial non-dimensional velocity of the two bodies is directed
along N. Note that the cone assumes a final velocity parallel to
the heat current, whereas the final velocity of the coin also has a
component in the plane orthogonal to the heat current.

to these equations of motion are found, for which the velocity and the
axis of symmetry of the body are parallel to an eigenvector of the shear-
ing tensor. The speed of the body is constant and has the magnitude
~ Avgy, where A is the mean free path of the gas, and v, , is the velocity
gradient. This transport mechanism is not active if the body is mirror
symmetric, which is the case in particular for spheres, ellipsoids, etc. In
the figure 7.3, the orbits of blunt bodies (left figure) and slender bodies
(right figure), subjected to a simple, one-component shearing v, , are
plotted.

Further, a linear stability analysis is made. It shows that the shape
of the body determines along which eigen-vector of the shearing tensor
the body will be transported.

7.3. Paper (III)

In the paper Force on a spinning sphere moving through a rarefied gas
the force acting on the spinning sphere is calculated to second order
in the non-dimensional speed (normalised for the thermal speed) for a
sphere with moderately high thermal conductivity. A heat equation for
the rotating body is solved, where the heat flux through the surface is
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FIGURE 7.3. In each figure, 10 different orbits of bodies subject
to a simple one-component shearing v;,, are represented for the
case o, = 1/2. They all start at t =0 in (z,y) = (0,0). In the left
picture, the planar orbits of blunt bodies with R/L = 2/5 end up
parallel to the line £ = —y. In the right picture, the orbits of more
slender bodies, with R/L = 1/4, finally end up along the line z = y.
The initial angle between IN and the x-axis is varied between 0 and
2w. The initial velocity is parallel to IV, and the initial speed |uo|
is set to approximately one tenth of the corresponding stationary
velocity. The initial angular velocity is zero.

given by the energy conveyed to the body from the gas. The resulting
temperature field of the surface of the sphere enters into the expression
for the net momentum transferred to the body since the temperature
determines the speed of recoil of the gas molecules that has reached
thermal equilibrium with the sphere. It is shown that the resulting
force has three components: One opposite to the velocity, one trans-
verse force, and one proportional to the angular velocity of the sphere.
The transverse force is found to have opposite sign compared to the cor-
responding transverse force appearing in the fluid dynamic limit. In the
limit of infinitely high thermal conductivity, only the transverse compo-
nent survives. Thus the trajectory of a spinning sphere is curved in the
opposite direction compared to the corresponding well-known case of a
spinning sphere in the continuum limit.
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7.4. Paper (IV)

The sphere is assumed to be a perfect conductor. The total force and
torque acting on a spinning sphere are calculated for arbitrary speed.
It is shown that the transverse force coincides with the corresponding
force in the small speed limit. The friction torque is found to have
two components: one parallel to and one perpendicular to the velocity
of the body. The coefficients of these torques are found to expose the
same type of speed dependence as the friction force coefficient. They are
constants for speeds small compared to the thermal speed. For speeds
large compared to the thermal speed, they are proportional to the speed.

It is found that the force and the torque, when applied to a rotating
body in a Kepler orbit, apart from slowly contracting the orbit radius
also slowly rotates the orbital plane with an angular velocity propor-
tional to the component of the initial angular velocity of the sphere
parallel to the orbital plane. In the figure 7.4, the orbit of a rapidly
rotating sphere in an initially circular Kepler orbit is shown.

FIGURE 7.4. The orbit in the figure above shows the evolution
of an initially circular Kepler orbit of a sphere due to the damping
and the action of the transverse force. The simulation exposes a
slowly contracting orbit radius in a slowly rotating orbital plane.
The angular velocity of the sphere has been exaggerated in order
to produce a clearly visual effect on the orbit.
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CHAPTER 8
”Beckham in for a surprise on Mars”

The 21:st February 2003, the journalist Philip Ball wrote an article in
Nature with the title: “Beckham in for a surprise on Mars”. In this
article, he reviews paper (III) in this thesis and speculates on a possible
application of the reversed Magnus force. Here follows two excerpt from
his article:

“ If a future interplanetary soccer competition is held on Mars, even
David Beckham will struggle to bend the ball into the net, a new study
suggests. Swedish physicists have found that a spinning ball would
swerve in the opposite direction to the way it goes on Earth in the
low-pressure atmosphere of the red planet.”

He continues:

“Sports players understand the Magnus force intuitively. But in
a gas much thinner than our atmosphere, their intuition would lead
them astray. A ball swerves away from its spin in thin air, explain Karl
Borg and colleagues at the Royal Institute of Technology in Stockholm.
Footballers and baseball pitchers are used to balls that curve into their
spin.

The problem is that, in a rarefied gas, the average distance that
the molecules travel before colliding with one another is greater than
the diameter of a ball. So more moleculs hit the ball’s forward-facing
hemisphere than its rear hemisphere, the researchers calculate. These
molecules bounce off in the direction of the ball’s spin. Because of the
conservation of momentum, this deflection of gas molecules pushes the
ball itself in the opposite direction.

At intermediate gas pressure, the researchers point out, these two
effects balance and a spinning ball won’t swerve at all. ”

But perhaps we cannot for sure promise the Earthly supporters of
Beckham the spectacular experience of the ball swerving in the unex-
pected direction. It might take an atmosphere somewhat thinner than
that on Mars. Alternatively, the game could be played with a smaller
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football. But would really supporters then pay for the somewhat costly
travel to the soccer game on Mars? On the other hand, with the whole
solar system at our disposal we could of course choose another planet,
with a thinner atmosphere than the one on Mars, for the interplanetary
soccer competition. Beckham could then bring with him the football he
is used to.

The article [33] (Ball, P., Beckham in for a surprise on Mars) can be
found at: www.nature.com/nsu/030217/030217-11.html.



CHAPTER 9

Future work

The results of this thesis are obtained mainly by analytical methods in
the free molecular flow limit. By means of Monte Carlo simulations,
corresponding investigations for larger bodies (compared to the mean
free path) would be of great interest. For instance, the critical density for
which the transverse force (Magnus force) equals zero may be obtained
by such a method.

For the Shearing phoresis phenomenon, there also remains to in-
vestigate if there exists a corresponding phenomenon in the continuum
limit.

Further, it would be very interesting to extend the investigations
made for the transverse force (Magnus force) in paper (IV) for a rotating
body in a plasma. The outcome of such a study would probably have
very interesting astrophysical applications.
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Thermophoresis of Axially Symmetric
Bodies

By Karl I. Borg and Lars H. Soderholm

Department of Mechanics
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Published in Rarefied Gas Dynamics (2001), pp 867-874

Thermophoresis of axially symmetric bodies is investigated to first order
in the Knudsen-number, Kn. The study is made in the limit where the
typical length of the immersed body is small compared to the mean
free path. It is shown that in this case, in contrast to what is the case
for spherical bodies, the arising thermal force on the body is not in
general anti-parallel to the temperature gradient. It is also shown that
the gas exerts a torque on the body, which in magnitude and direction
depends on the body geometry. Equations of motion describing the body
movement are derived. Asymptotic solutions are studied.

1. Introduction

Thermophoresis as a phenomenon has been known for a long time, and
several authors have approached the problem. For example, Einstein
calculated the final velocity of a spherical particle in a heat conducting
gas using elementary kinetic theory. A recent review of the phenomenon
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is given in an article by Sone, see [1]. Another review is given by Talbot,
see [2]. The first systematic attempt to describe the thermophoresis
phenomenon using kinetic theory is found in an article by Waldmann
from 1959, see [3]. That work was made under the assumption that
the mean free path of the gas is much larger than the dimension of
the body. Further results are found in a variety of articles, but these
mostly apply to larger bodies, using asymptotic methods, and often to
spheres. For example, Sone and Aoki analyzed negative thermophoresis
in [4]. Further, in [5], thermophoresis of a moderately large and almost
spherical particle is studied.

In this work, thermophoresis of axially symmetric bodies is consid-
ered. The typical macroscopical length L over which the temperature
varies is assumed to be much larger than A, the mean free path of the
gas. Further, we define the Knudsen number according to Kn = \/L.
Thus Kn < 1, and we can use the first order Chapman-Enskog solution
to the Boltzmann equation, see [6], to describe the heat conducting gas
from the macroscopical viewpoint. The length R of the body is assumed
to be much smaller than A. R is also assumed to be much larger than
d, the linear dimension of a gas molecule. In calculating the momen-
tum transfer from the gas to the body we therefore use the equations of
free molecular flow, [6]. We also assume that the speed of any point of
the body is much smaller than the speed of sound. We define a Mach-
number according to M =v/c; < 1, where v is the speed of a body
surface element and where ¢, is the speed of sound.

2. Local momentum transfer to the body

If the one-particle distribution function f = f(,c,t) describing the gas
is known and the proper gas-body surface boundary conditions are spec-
ified it is in principle possible to calculate the net transfer of momentum
from the gas molecules to a body immersed in the gas. We shall now cal-
culate the net force exerted by the surrounding gas on a surface element
dS = ndS. Here n is the outward unit normal of the surface element.
It is convenient to perform the calculations in a frame of reference in
which the unit surface element is momentarily at rest. This is possible
since the force is a Galileian invariant (as the net mass flux through the
surface element vanishes.) The force has two contributions: One from
the stream of molecules incident on the surface element, and one from
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the reflected stream, according to

dF; = —/ mcz-cjnjf(i)(c)d3cd5
cpnE <0

— (/ mcicj'n,jf(r) (C)d?’cds> B (1)
cpng>0

Here, m is the mass of a gas molecule, ¢; is the molecular speed, f® and
f) are the one-particle distribution functions describing the stream of
molecules incident and reflected on the surface element. Since the body
is small compared to the mean free path of the gas, and as the body
is assumed to have a convex surface, the incident stream of molecules
is approximated by f, the one-particle distribution function describing
the gas in the absence of the body, that is, f(*)(c) = f(c). The reflected
stream of gas molecules is obtained from Maxwell’s boundary condition.
This means that the the reflected stream can be split in two separate
parts: one part that is specularly reflected (that is, reflected as a particle
hitting a solid wall), while the remaining part of the reflected stream
has reached thermal equilibrium with the surface, and is reflected as an
isotropic Maxwellian. We here assume complete energy accommodation
[6], see below (25). Thus we write

)

Fe) = (1 = ar) fO(e) + ——ar fO(e). (2)

Here, c;- = ¢; — 2n;njc;. The number «; is called the accommodation
coefficient of tangential momentum, and measures the fraction of the
reflected stream that is diffusely reflected. If o, = 0, there is no trans-
fer of tangential momentum between the gas molecules and the surface
element. The unknown number density n(") is to be determined from
conservation of particles on the surface element. The Maxwellian is given

by
kT ~>/? mc?
0)(p) — B _
f(e) n( ) exp( QkBT) .

In this expression, the temperature of the reflected stream equals the
temperature of the body.

n

We now demand that the net mass flux through the surface element
vanishes. This means that

/ cini fO(e)d3e + / cini f (e)d3c = 0. (3)
cpnEp <0

cpngp>0
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This gives, [6],

(r) —1/2
(62 [ i@ @
cxngp>0

n n \ 2mm

The force (1) becomes

dF; = — [(1 ~a) / e di)ejnif(c)d’e

+a; (/ meicjn; f(e)dPc+
cpnp<0

(™)

/ mcicjnjf(o) (c)d3c
n cpng>0

We note that the last integral can be performed and equals %pni where
p = nkpT. The velocity difference in the first integral can be written ¢; —
¢; = 2n;njc;. Now we introduce a non-dimensional molecular velocity

’ m
Ci = QkBTcia (6)

a non-dimensional incident mass flux according to

ds. (5)

27 (2kpT\*/* :
= _ﬁ< kp ) / Cinif®(C)dC, (7)
n m Crngp<0
and a non-dimensional incident momentum flux according to
4 (2kpT\>*? .
M; == <L> / ciCin,i fA(c)dadc. (8)
n m Crnp <0

These are normalized to give M = 1 and M; = n; for the Maxwellian
O Now we write (4) as

= M. 9)

Then the force becomes

1
dF; = —p |(1 — a;)ninjM; + g0 (M + Mn;) | dS. (10)
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3. Body moving in a heat conducting gas

In the present case, we shall consider a body which is small compared
to the mean free path. This body will start to move under the in-
fluence of the force. Thus, in a frame of reference in which the body
surface element is momentarily at rest the surface element will experi-
ence a homogeneous flow of the surrounding gas. This flow will exert
an additional force on the surface element. It is convenient to perform
the calculation of the force on the surface element (10) in this frame.
Therefore, we consider a distribution function corresponding to a gas
which is subject to a temperature gradient and a homogeneous flow. It
is assumed that Kn = A/L, where X is the mean free path and where
L is the macroscopic length scale of the temperature gradient, is small.
We also assume that the resulting motion of the surface element is small
compared to the speed of sound. This is consistent with our result for
the final velocity, see below.

For a gas subject to a non-uniform temperature distribution the
distribution function takes, in the local rest frame of the gas, the form,

[6],
f = f(o) (1 + ¢temp.grad.) 3 (11)

where @iemp.grad. can be found through the Chapman-Enskog expansion
to first order in Kn. The result for pure heat conduction is

1 2kpT
¢temp.gra,d. = _’I’L_T ’:’L A(CQ)CZT,Z (12)

The function A is usually expressed in Sonine polynomials according to

o
2y _ (n) (2 . _ 2mk
A€ = - Zansw(c ), with a = ST (13)
n=1
Here & is the heat conductivity. If we introduce
A(C?) = A(C?)/ay,
We may exXpress Ptemp.grad. 10 terms of the heat current ¢; = —kT); ac-
cording to
4 (2kpT\ % .
Ptemp.grad. = —5 (T) A(CQ)Cz'CIi- (14)
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NoW ¢temp.grad. is integrated to give the moments (7), (8) and one arrives
at

2 2nkpT
M=1, Mi:m_l(ﬂTB

-1/2
O (2mT) T ) g (1)

The formulas (15) thus apply to a body surface element at rest. Here,
the integral + is given by

WZA ceA(c?)e ¢ dic. (16)

If only the first term in the Sonine polynomial expansion of A is retained,
v = 1. The corresponding integral in M,

/ ctA(CY)e ¢ d’c =0
0

as the gas is at rest.

The temperature gradient will give rise to a force on the immersed
body and thus set the body in motion. This means that the motion of
a particular point in the body will be given by v = v + w X &, where
v is the velocity of the body’s center of mass, w is the angular velocity
of the body and x is the vector from the body’s center of mass to the
particular point we are considering. As the interaction between the gas
and the body is mediated through the body surface, it is practical to take
the motion of a body surface element into account by transforming the
distribution function to a frame of reference where the surface element
is momentarily at rest. Thus, for practical purposes, we consider a gas
flowing with the velocity —u. The one-particle distribution function for
the gas molecules can then be written

f = f(o)(_u)(l + ¢temp.grad.)7 (17)

where f(9)(—u) is the Maxwellian with the flow —u, and where Ptemp.grad.
is the first-order Chapman-Enskog solution to Boltzmann’s equation for
a heat conducting gas. If the gas is moderately rarefied and if the ve-
locity of the body is small compared to the speed of sound, f (0)(—u)
can be linearized according to f(O(—u) ~ fO(1 + daow). f© is the
Maxwellian describing the gas at rest. Under these circumstances we
can also omit the cross-effect between the heat conduction and homo-
geneous flow. consequently, the moments M and M; get additional
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contributions of the order of M, and the result is

2kpT\ /2
M=1—I—7r<7rB ) Ui, (18)
m
2rkpT\ '/?
M; =n; -2 ( mB > (05 + nin;j) (;—qu - Uj) - (19)
The resulting force on a body surface element (10) becomes
orkpT\ '/
dF; = —pn;dS + ( T: ) {ar (%QZ —pui)
s
+ [%(4 —3ar)g —p (4 - (3 - 5) ozT) Uj] nj”i} s (20)

This force will in general also produce a torque acting on the body
through the surface element according to

dMi = fijkwdeka (21)

where « is the vector from the center of mass of the body to the surface
element.

4. Geometric integrals

In the expressions (20) and (21) there will appear tensor integrals all
depending on the variables n and x. These have the general form

11928k |J172. 01"

k.l
/nilniz...nik:vjlsz...ledSE I.( ) (22)
S

Here, the indices ip,j, € {1,2,3}. In expression (20) for the force we

have terms proportional to 1(%0 = S. The integrals Ii(lkl',Ql?--ik‘jljz---jl
tensors of rank k + [, and from symmetry, these integrals are all isotropic
functions of N;, where N; is the body’s axis of symmetry. This means
that they are sums of products of N; and §;;. It is convenient to use the

symmetric and traceless part of the tensor V;N;, denoted by N;N;-..

are

The scalar coefficients in these expansions will be contractions of the
integrals. For example,

i1i2| 3
These coefficients will thus depend on the body geometry. In the ex-
pression (23) above,

20 = % /S [(N n)? - %] ds. (24)

1
1(210) =S [_5i1i2 + 0(2’0)N<i1Ni2>:| . (23)
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Here the coefficient ¢?) is particularly important. It measures sym-
metric deviation of the body surface from spherical symmetry. For a
needle-shaped body, its value is —1/2 and for a coin-shaped body it
equals 1. For a sphere, it vanishes. A number of tensor integrals of this
type appear. Along with the corresponding scalar coefficients, they are
all calculated in the appendix. With these at hand we are in a position
to write down the expressions for the force and the torque acting on the
body.

5. Force and torque on the body

The force becomes

2rkpT\ /% (48

—pS (a25i]’ + a3N<,~Nj>) v + 3pS3/2a46,~jkNjwk} . (25)

The coefficients a1, ..,a4 are calculated in the appendix. The first term
on the right hand side of (25) is a thermal contribution to the force
proportional to the heat current. The order of magnitude of this term
is ~ pSKn. The second contribution to the total force is a friction force
with geometrical features similar to the thermal force. The last term is
a force acting on the body as a consequence of the body rotation. The
two last terms both have the magnitude ~ pSM, where the M -number is
based on v in the first term and in the second term on wR. We note that
this expression is correct to first order in Kn and M. A corresponding
calculation of the net energy transfer to the body will give the result
0+terms of higher order in Kn and M: Heating or cooling effects do not
enter at this level of approximation. Thus it is consistent to assume that
the temperature of the body is the same as the temperature of the gas.

The torque is given by

orkpT\ "2 [ 3vS53/2
Mi:( - ) F aseije Njqr — 3pS*ageije Njvi

pS?

—T (G/r(sz'j + a8N<Z~Nj>) wj ¢ - (26)
The coefficients a1, .., a4 are calculated in the appendix. In the expres-
sion for the torque, the first term is a thermal torque that acts to align
the axis of symmetry parallel or anti-parallel to the heat current. This

contribution is of the order of ~ pS3/2Kn. The second term is active
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whenever the axis of symmetry is not parallel or anti-parallel to the ve-
locity. The third term is a friction torque. The two latter contributions
are of the order of ~ pS3/2 M.

6. Equations of motion

In order to formulate the equations of motion for the body immersed
in the heat conducting gas, we now introduce a body-fixed orthonormal
frame of reference with the origin in the body’s center of mass. The basis
vectors are denoted by e(®) where the index o = 1,2, 3 numbers the basis
vectors. One of these basis vectors is naturally chosen to coincide with
the axis of symmetry IN. Newton’s second law gives (mp is the mass of
the body)

d
—v=F. 27
mp ;v (27)
The angular momentum equation becomes
d
—L=M 28
SL=M, (28)

where L = Iw, and %L = L° + w x L. Here L° denotes the rate of
change of L with respect to the body-fixed frame. The basis vectors
rotate with the angular velocity of the body, so

d

a(e(o‘)) =w x e, (29)
where I is the inertia tensor. This tensor has the form
Iij =mpgS (Bldij + B2N<iNj>) . (30)

For values of non-dimensional constants B1, Bo, see Appendix.

7. Stationary solutions to the equations of motion

In order to look for the asymptotic behavior of the bodies, we equate
the force and the torque to zero. To do this we first make the ansatz
v =V =constant and w = 0, and we get from the force equation (25)

0= %S(Q)q —pSSWy, (31)
and from the torque equation (26)
3/2
0= 35 asN x g — 3pS*2agN x V, (32)

5
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where the symmetrical tensors S are given by

(S(q))ij = 0;j + a1 N<;Nj>, (S(”))ij = a0;; + a3 N Nj>.

Note that these tensors are even functions of N. We obtain’

Two different types of solutions to this equation are possible:

(I): N || £q. From this condition we can compute the asymptotic
velocity from the momentum equation.

(I1): a5 — %% 322_33 = 0. This is the case when the body is mirror
symmetric with respect to a plane orthogonal to the axis of symmetry.
Here, any orientation of IN relative to q is possible. Thus, the asymptotic
velocity will in this case generally have a component perpendicular to
g- This case will be studied in paragraph 10.

When N || £q, we obtain from (31) is reduced to an expression for
the asymptotic velocity V:
4y 342m oy 143 (4—3a;) 20 (
T T5p3as+2a37 Bplt Ea, + L[8— (6 7)ay]c@0 T

33)

Here, 7 is given by (16). It depends on the intramolecular forces of
the gas molecules; v = 1 if only the first term of the Sonine polynomial
expansion of the heat conducting part of the distribution function is re-
tained. The new terms are those containing the parameter ¢(>), defined
by

20 = % /S [(N .n)? — %] ds, (34)

that depends on the body geometry. ¢ measures deformations of
the body surface from a sphere: For a sphere, ¢(29) = (0. In this case
the asymptotic velocity (33) coincides with Waldmann’s result, [3]. If
the the body is extremely oblate, or shaped like a coin, ¢® =1. If
the body is extremely prolate, or shaped like needle, ¢(>%) = —1. -The
order of magnitude of this velocity is Kn - c.

'The equations (31) and (32) do not have solutions if the body is a coin or a needle
and if a; = 0. This situation is unphysical and thus excluded in this context.
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FIGURE 1. The non-dimensional final speed |V|/35lql is plotted
against the parameter ¢(>® for four different values of .

8. Numerical simulations

Non-dimensional variables are now introduced according to v; = g—gv;‘,

1/2 —1/2
t="128 (—QWkBT) t* and w; = 25 (—%kBT) wy, where g = |g|. The

pS m mp m
non-dimensional heat current is chosen to be g = (1,0,0). Further, we
introduce a non-dimensional tensor of inertia according to I;; = I;;/mpS.
Then the system (27)-(28) becomes

ng = %(m&j +aaN<iNj>)G; — (a30i; + asN<iNjs)vj
-pt. 3ase€;jp Njwy, (35)
d%* (fzjw;> =D - 3age;jx NGy — D - 3aze;jp Njvy,
—%(as% + agN<iNjs )wj. (36)

Here one non-dimensional parameter appears,

D— (27rkBT>1/2 Ympgq A

~ —Kn.
m 5p283/2  d
(The final order-of-magnitude estimate is made under the assumption
that the density of the body equals the density of a gas molecule.) Tt
is not obvious if this parameter is large or small. In the numerical
calculations, we have set D = 1. The orbits of 10 identical double cones
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with D/R = 2/5 and s = 1/4, but with different initial conditions, are
shown in figure 2. In this figure, § = (1,0,0).

FIGURE 2. All the 10 orbits start at the origin. The all have the
initial speed v*(0) = 10, but with different directions of the axis of
symmetry. IN makes for all double cones the angle of 45° with the
z-axis. The angle the axes of symmetry make with the z-axis in the
zy-plane is varied isotropically. The direction of the initial velocity
coincides with that of the axes of symmetry. Despite the difference
in initial condition, they all end up traveling along the heat current.

Simulations of the non-dimensional equations of motion of a cone-
shaped body and a coin-shaped body are made, and the corresponding
orbits are plotted in figure 3. Numerical simulations suggest that the
bodies reach asymptotic states after a distance of the order of 1 in non-

2nkgT 1/2 ymBq
m 5p2S

nal units. Here, R is the dimension of the body, and d is the diameter
of a gas molecule. This order-of-magnitude estimate is based on the
assumption that the density of the body equals the density of a gas mol-
ecule. The difference in the final velocity is due to a symmetry in the
coin-shaped body that is lacking in the body shape of the cone. This is
investigated further later on.

dimensional units, that is, [ = ( ~ %)\ - Kn in dimensio-

9. Linear stability analysis

In order to investigate the stability of the two asymptotic states we
linearize the equations of motion around the state where IN is nearly
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FIGURE 3. Orbit of one cone- and one coin-shaped body, with
the heat current in the z-direction. Initially the axis of symmetry
N of the two bodies makes the angle 45° with the heat current.
The initial non-dimensional velocity of the two bodies is directed
along N. Note that the cone assumes a final velocity parallel to
the heat current, whereas the final velocity of the coin also has a
component in the plane orthogonal to the heat current.

parallel to q. The eigenvalues of the resulting linear system are calcu-
lated for a special type of body, a ’double cone’, shown in figure 4. This
body consists of two cones with a common base. The radius of the base
is denoted by D, and the total length by R. The base is situated a dis-
tance s - R from the left cusp, where the dimensionless parameter obeys
0 <s<1. When s =0 the double cone degenerates to a single cone
with its cusp pointing in the direction of N. When s =1 we recover
the same single cone, pointing in the opposite direction of IN. A double
cone with a given value of s = s’ is identical to the double cone with
s =1—s', but is pointing in the opposite direction.

The ansatz used for this linearization close to the asymptotic state
N || q given by

N = (1,eNy, eN,), (37)
v* =V + (€evg, vy, €vy), (38)
w* = (ewy, €wy, €w,). (39)

Note that since N2 =1, the correction to N, is negligible. The non-
dimensional asymptotic velocity V* is the non-dimensional final velocity.
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s-R (1-s)-R

FIGURE 4. Test body: a ’double cone’

The ansatz is now substituted into the equations of motion, and a
linear first-order system results. If we define the vector w according to

w = (NyaNzaUmavyaUzawx,wyawz), (40)

this linear system takes the form

d
w = Lw 41
dt* ’ (41)

where £ has been calculated with MAPLE, and is too large to give in
explicit form here. The eigenvalues of the resulting linear systems are
calculated for a; = % The boundary between different stability areas is
plotted in the plane spanned by s and D/R in the figure 5.

Plotting the real part of the eigenvalues against s yields a picture
of the preferred orientation of the body. It turns out that stability is
determined by two identical eigenvalues (the other eigenvalues are either
negative or zero for all values of s). This eigenvalue is plotted against
s in figure 5 for a somewhat prolate body (R/D = 3) and for an oblate
body (R/D =1/3).

It is apparent that the stable state for the prolate double cone oc-
curs when the longer cone is pointing in the same direction as the heat
current. For the oblate body the preferred orientation is in the opposite
direction. For a symmetric body (s = 0.5) these eigenvalues vanish.

10. Body invariant under reflexion in a plane orthogonal
to the axis of symmetry

Now we consider a body that is symmetric with respect to an equator
plane, that is, a plane orthogonal to the axis of symmetry (ellipsoids,
for example, possess this symmetry). Then the coefficients a4, a5 and
ag vanish. It it easy to see that then the rotational motion decouples
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FIGURE 5. Critical eigenvalue plotted against s for two different
double cones

from the translation and becomes independent of the heat current. The
remaining part of the angular momentum equation states that as t — oo
all constant values of IN are solutions. The asymptotic solution to the
momentum equation in this case becomes

Vi = [6ij + k (85 — NiNj)] V3, (42)

where Vj is the asymptotic velocity (33) found in the previous section.
The tensor ¢;; — N; N; picks up the projection of g that lies in the plane
perpendicular to IN. The parameter k is introduced for simplicity and
is given by (we recall that ¢ is a geometrical parameter encountered
in (33))

k= 6ma’c®Y) . {2(8 + ma,) + [16 — (12 — 27)a, — 3ma?]e®0)

9y —1
—[32 — (48 — 4m)a, + (18 — 37)a?] [0(2’0)] } . (43)
In case of purely diffuse reflection, k£ takes the following values:

k= % = 0.79 (coin — shaped body),

™

6—7
For a sphere, £ = 0. This means that a non-spherical body for general
values of o, will acquire a velocity component in the plane perpendicular
to the heat current. This effect is apparent in the final behavior exposed

k=

= —0.34 (needle — shaped body).
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by the body orbit of the coin in figure 3. If we let 8 denote the final
angle between the IN and g, it follows that the asymptotic speed of the
body is now given by

V| = |V|\/1+ (2k + k2) sin? 3, (44)

and that the angle 9 that the velocity vector makes with the heat current
obeys

1+ ksin? B8

V14 (2k + k2)sin® B
The maximum angle between the heat current and the body velocity,
1, occurs in case of purely diffuse reflexion for an optimal value of the
final orientation of the axis of symmetry relative to the heat current,
and is given by

cos ) = (45)

2+ k 12.0° (needle — shaped body) (46)

These results thus predict that an initially localized assembly of
equatorially symmetric bodies with different orientations relative to the
heat current will, in the plane perpendicular to g, with time spread
without bound. This is an interesting result, but perhaps not the whole
story: Going to higher order contributions to the torque, a term of the
order of Kn?,

V4 0 (coin —
m = arccos {2 1+ k} - { 16.4" (coin — shaped body)

Mi ~ eijkNjTjng)Nl (47)
(B)

appears, where 7, y is the stress tensor at the Burnett level in case of
temperature gradients, given by

2 1
T,-(]-B) = S_T (K3T,<z'j> + K5TT<,iT,j>> . (48)
Here 4 is the viscosity and K3 and K5 are constants, cf [6]. This torque
will re-couple the angular momentum of equatorially symmetric bodies
to the temperature gradient. However, since in the present context
Kn < 1, this coupling is clearly weak, and thus the typical time required
for IN to align with g is much larger for equatorially symmetric bodies.
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Appendix

The geometric tensor integrals encountered when the expressions for
the force and the torque are integrated over the body surface are listed
below:

(1,0) _
IZ.| =0

Il(;l,l) _ 53/20(0’1)Nj

%9~ g [£6i,5, + PO N, Ny |

i1i2‘ -

Iz.(é.’l) = §3/2 [cgl’l)&'j + Cgl’l)N<iNj>] .

0,2 0,2 0,2
I|(J'1j2) =52 [Cg )51'1]'2 + Cg )N<j1Nj2>]

1(2,1) = 53/ [052,1)51'12'2]\[]' + Céz,l) (5i1jNi2 + 5i2jNi1) + CgQ’l)NhNiQNj]

i1i2]j

1192|4172
2,2 2,2
CZ(’> , )6i1i2Nj1Nj2 + Cz(l 7 )51' Vi Ni,

1J2
+6i1j2Ni2Nj1 + 5i2j1Ni1Nj2 + 6i2j2Ni1Nj1) + CéQ,Z)Ni1Ni2Nj1Nj2]

2,2 2,2 2,2
I( ) = 52 [Cg )5i1i25j1j2 + Cg ) (5i1j15i2j2 + 5i1j25i2j1) +
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(k.l)

The coefficients ¢y, "’ in the expressions above are given by

2

¢

YY)

2

v
— = =R N N

2

2

TR Y)
TN NN N O

(SRS
NN

NN N N N N N N N N

NOUS R S SN e S /\Q?/\[\g e Y N S P U N X P Y

\.w -
SRS

(e
o

=T
=5(3J1—-1)
=z

=5 (3T — Jo)
==zJ5

(8Jr — Ts)

(Jo — Tu)

(J3 — Ja)

(—2J2 — 2J3 + 5J4)

(=3J4+17T5 +2Js — 87 — 3Tz + Jo)
(2T5 —2Js — 3J7 — 3Ts + 4J9 + J10)
(=T
(-
(-
(-

(

5 +2J6 + Jr + Tz — 4Ty + Jo)
3T5 +2Js + 1J7 + 3T — 4J9 — 5J10)
3T5 +2Js +3T7 + 7T — 4J9 — 5J10)
JIs —2Js — Jr — Tg — 8J9 — 5J10)
Js+2Js — 5J7 — 5Jg — 5Jy + 35J10)

CO|— GO o[ 00| 00|+ 00| 00| N[ N[ N[ N[ o= N ol = N[ =

In these coefficients the integrals J; — J19 are given by

Integrals

jl lfS N n) ds

Jo =832 [(x- NdS

Ty = S~ (@) (n- N)ds
Ji = 53/2f (z-N)(n-N)*dS
j5 2‘[5' 2dS

Je = QfS T-n) 248

Jr=S8 2f5 @ N) dS

s =52 [, )2 ds
j9=5—2j§(m-n)(ac N) (n - N)dS
Jio=57* [s(x- N)*(n- N)*dS
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In the following table, the values of the coefficients a;..ag and there
resp. equatorial symmetry (E.S.) are listed:

Coefficient Value E.S.
ay % (4—3a,;)(3J - 1) +
as ? (8 + warr) +
as [8 —(6 -7 a;] (31 —1) +
a4 2{[8+( 2)ar] T2 — 8 - (6 — m) ar] T5} -
as 6 [( a’r) J2 — (4 3057') j?)] -
ag 12{[8+( 2)ar] T2 — [8 = (6 — ) ar] T3} -
a7 {[8+(W—2)&T]J5—[8—(6—71’)017]‘76} +
as 3 {[16 - (10 27!') aT] j5 - [16 - (12 - 27!') aT] j(;
—[24—(12 - 37) o] J7 — [24 — (18 — 37) ;| T3
+[48 — (36 — 67) ar] Jo} +

The tensor of inertia, I;;, is conveniently expressed according to (30)
with the choice

I() = mBS,
and the coefficients By and By become

2 213
o / pl@)a*d%s,

[2? — 3(N - )?] d*z.

B =

By = 2mBS
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Shearing Phoresis

By Lars H. Soderholm and Karl 1. Borg

Department of Mechanics
Royal Institute of Technology
100 44 Stockholm, Sweden

An axially symmetric body small compared with the mean free path is
free to move in a shearing gas. The body is treated as a test particle.
The force and torque acting on the body are calculated. The body will
be set in motion, which asymptotically will take place in one of the
eigendirections of the rate of deformation tensor. The axis of the body
then points in the same direction. For a velocity field v, (y) the final
motion is parallel to one of the lines x = y and x = —y, and the speed
of the motion relative to the gas is given by

V= 98N [27kpT a; by MUz .y
“ 8V m 44 L1ra, + 8 — (6 —mas)bs p

Here 1 is the viscosity of the gas, p is the pressure, Sy is a number
close to unity, 7' is the temperature, m is the mass of a gas molecule,
and o is the accommodation coefficient of tangential momentum. The
non-dimensional numbers b; and b3 depend on the shape of the body.
This speed is of the order of the mean free path of the gas multiplied
by the shearing. -This means that there is a phenomenon of phoresis
in a shearing gas, which is analogous to thermophoresis in a gas with a
temperature gradient.
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1. Introduction

Thermophoresis is a widely studied phenomenon. There are three length
scales: that of the body, that of the mean free path and that of the
temperature field of the gas. The assumption is made that the mean free
path of the gas is much smaller than the length scale of the temperature
field. So this phenomenon is characterised by two small parameters.

For small Knudsen numbers, however, there are two basic deforma-
tions of the local Maxwellian. One from a temperature gradient and
one from shearing. In an earlier paper of one of the authors, [1], the
influence of shearing on the heat transfer to a body was studied. It was
found there, that due to the tensorial nature of the shearing, shearing
did not influence the heat transfer to a spherical body, so bodies of ar-
bitrary symmetry were considered. It was found that the equilibrium
temperature of an axially symmetric small body was influenced by the
shearing and thus was different from that of the surrounding gas.

In an other work by the present authors, [2], thermophoresis was
studied for axially symmetric bodies and also their full rigid body mo-
tion.

In the present work, focus is again on the influence of shearing on
axially symmetric bodies. But now force and torque on the body ex-
erted by the surrounding gas are calculated. It is found that there is
a motion, a phoresis, in a shearing gas, which is analogous to that of
thermophoresis. It vanishes for bodies, which are mirror symmetric with
respect to a plane perpendicular to the axis of symmetry of the body,
in particular for spheres. We name this motion shearing phoresis. It is
found that there will be a resulting slow transport of the particles rela-
tive to the gas. It takes place in the direction of one of the eigenvectors
of the traceless rate of deformation tensor. The axis of symmetry of the
body lines up with the direction of the velocity of the body. In the case
of a simple shearing, where v,(y) is the only non-vanishing component
of the velocity field of the surrounding gas, the resulting motion is either
parallel to the line z = y, or parallel to the line x = —y, depending on
the shape of the body.

A phenomenon of transverse diffusion of spherical particles in a shear
layer is described in [3]. This phenomenon occurs in a dilute suspen-
sion of particles only if the particles are interacting. The mechanism
described in the present work is an entirely different one.



Shearing Phoresis 65

In this work the problem will be approached in the way outlined by
Waldmann in [4]. Thus the method of free molecular flow is applied,
which means that the body is small enough for the molecules incident
on the body surface to be unaffected by the presence of the body. Thus
one can express the total momentum conveyed to the body from the
distribution function for the incoming molecules only.

2. The distribution function of the shearing gas

We consider a convex high conductivity body, small compared to the
mean free path of the gas. The gas is subjected to a velocity gradient.
As a consequence the small body will start to move. This means that
the velocity of a point in the body will be given by v/ = u + w x x,
where u is the velocity of the body’s center of mass, w is the angular
velocity of the body and @ is the vector from the body’s center of mass
to the point under consideration. As the interaction between the gas and
the body is mediated through the body surface, it is convenient to take
the motion of a body surface element into account by transforming the
distribution function to a frame of reference where the surface element
is momentarily at rest. In this frame, the gas is flowing with the velocity
—u'. In the absence of the shearing, to zeroth order in the mean free
path, the distribution function is thus given by the Maxwellian

~3/2
fo(-u')=n (QWkBT> / e m(CHUW) [2knT

m

Here n is the number density of the gas, kp is Boltzmann’s constant, T
is the gas temperature, m is the mass of a gas molecule, and ¢ is the
velocity of a gas molecule. Now the assumption that the speed |u/| is
much smaller than the speed of sound is made (this assumption will be
consistent with our results for the final speed of the body), and thus the
distribution function can be approximated by

fo(=u') = fo(0) [1 4 d(siow)]

where
m

P(flow) = “weT S u'
has been introduced for convenience. In what follows fy(0), the Maxwellian
at rest, will be denoted by fj.
To first order in the mean free path, the distribution function for

the gas molecules can then be written [5]

[= fO(_u’)[l + (:b(shear)]a
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where @(ghear) 18 given by the first-order Chapman-Enskog solution to
Boltzmann’s equation for a shearing gas. @(spear) has the explicit form

[5] )
P(shear) = _;MB(CZ)C<iCj>U<i,j>a (1)

where the nondimensional molecular velocity C; = \/m/2kpTc; has been
introduced. Under these circumstances one can also omit the cross-effect
between the shearing and the homogeneous flow, and thus

f=1fo [1 + ¢(shear) + d)(ﬁow)] : (2)
In this expression, < .. > denotes the symmetric and traceless part. The
scalar function B(C?) is usually expanded in Sonine polynomials. It is
normalised so that B = 1 if only the first term in the Sonine expansion
is retained.

3. The force exerted by the gas on a body surface
element

We shall now calculate a general expression for the net force exerted by
the surrounding gas on a resting surface element d.S; = n;dS. Here n; is
the unit outward normal of the surface element. This force is given by
the difference of the momentum brought to the surface element by the
incident stream of gas molecules and the momentum carried out by the
reflected stream, and can be written

aF, = [P - P"] as, (3)
where the momentum flux incident on the surface element P,gi) is given
by

Pk(i) = —/ mcijnjf(i)d3c. (4)
¢jn;<0

If the surrounding gas is described by a resting Maxwellian distribution,
P,gl) takes the value —Pysn;, where

1
Py = SnkpT. (5)
The momentum flux carried out by reflected molecules P,Sr) is given by

P,gr) = / mcijnjf(r)d?’c. (6)

i >0
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Here, 4 and () are the distribution functions of the stream of molecules
incident and reflected on the surface element. Since the body is small

compared to the mean free path of the gas, and as the body is convex,

the incident stream of molecules can be approximated by the distribu-

tion function describing the gas in the absence of the body, that is,

fO = f. The reflected stream of gas molecules is given by Maxwell’s

boundary condition, cf Kogan [6]. One part is specularly reflected (that

is, reflected like a particle hitting elastically a solid wall). The remaining

part has reached thermal equilibrium with the surface, and is reflected

as a Maxwellian. Thus we have

f) = (1 - ar)fY(c - 2(c-n)n)

(w) —3/2 9
o™ (M) exp <_L> 0

m 2kpTW)

The number «; is called the accommodation coeflicient of tangential
momentum, and measures the fraction of the reflected stream that is dif-
fusely reflected. If a; = 0, there is no transfer of tangential momentum
between the gas molecules and the surface element. 7(") is the temper-
ature of the surface of the body. The unknown number density n(") can
be determined from the condition that the net particle flux through the
surface vanishes, that is, 0 = N — N where the incident particle
flux N is given by

N = —/ cing fOd3e. (8)
¢jn;i<0

For a Maxwellian distribution at rest N takes the value

[ kT
The reflected particle flux N®) is found from (7) to be
NO =1 - a;) N 4 a, N, (10)

where N ](VVIV ) is given by (9) but with wall-values of T and n. Therefore,
due to conservation of gas molecules at the surface, n(") fulfils
(), FBT

NO = (/22— (11)
2mm
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We are now in a position to calculate the net momentum flux trans-
ferred to the surface element according to (3). In the case of pure specu-
i)

lar reflection, it is given by ananj( . In case of purely diffuse reflection,

the corresponding momentum can be written P]E}V )ni, where PJS/V[V ) is (5)
(w)

with wall-values of T' and n. P,,;’ can be expressed according to
T(w) N
P = [ —=
Ny
Here, (11) has been used. The force on the surface element (3) can thus
be written

dFy, = [ (1-ar) 2nkn]P(i)

+ar ( P — N() )] ds. (12)

The first term is the momentum transferred to the body from the spec-

ularly reflected stream. The second term, aTP,EI), is the part of the
incident momentum to be reflected diffusely. The last term is the mo-
mentum carried out from the surface by the diffusely reflected stream.
Note that Njs and Pjs depend on the gas parameters only. The influ-
ence of the wall is collected in T™"). In what follows the approximation
T™) ~ T will be used. This will be justified in Section 11.

4. Particle and momentum fluxes

Now the splitting of the distribution function (2) is used and the particle
and momentum fluxes incident on a body surface element with unit
outward normal n given by (8) and (4) are calculated. The contributions
to these from the resting Maxwellian have already been calculated and
are given by (9) and (5)

4.1. Fluzes from the shearing

Now the contribution to the particle flux incident on a body surface
element from the shearing is calculated:

4 A
2 / CknkB(C2)€_C2C<icj>d3cv<i,j>
TP JCin;<0

(i)
N(shear) -

4“[
= —ITciisUcijs-
ap <H>U<ii>
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From symmetry,
I<ij> = I1n<’i'n'j>a

where I; is a scalar integral. Using spherical coordinates, one finds
L= / ChniB(C?)e™C"CeiCioncin>d3C = — 2 By.
Cin; <0 6

Here

,BN = / 653(62)6_62(16 = %/ $2B($)6_wd$. (13)
0 0

If B(z) is expanded in Sonine polynomials and only the first term is
retained, Sy = 1. Thus the shearing contribution to (8) takes the form

i 7
N((Szlear) = _ﬂN\/Wn<inj>v<i,j>. (14)

When calculating the momentum flux one finds that the shearing
contribution to the influx of momentum (4) is proportional to

/ ciB(C?)e¢ d3C. (15)
Cin;i<0

Due to the definition of temperature, which is given by the total kinetic
energy of the gas molecules, the Chapman-Enskog solution [5] fulfils

1
O:/imczfoqs(shear)d?)ca

which means that the integral (15) vanishes. Thus the shearing does not
contribute to the momentum flux (to this order).

4.2. Fluzes from the homogeneous flow
For the homogeneous flow the incident particle flux (8) becomes

i n
N ((ﬂ)ow) = it (16)

Similarly, the incident momentum flux (4) is given by

i [ m
P((ﬂ)ow)k =-p rkpT (Okj + ngnj) u; (17)

Having obtained the fluxes, the total force on a surface element ac-
cording to (12) can be calculated.
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5. Force and torque on the body

The fluxes (14), (16) and (17) are now substituted into (12), and one
gets three different contributions to the force on the surface element of
the body:

1
dF; = —pn;dS + EHaT/BNnin<jnk>lu<j,k>dS (18)

_ /27r;nBTp {aTué + [4 — (3 — g) aT] u;njnz} ds

The first force stems from the resting Maxwellian, the second from the
shearing and the third from the homogeneous flow.

The object of this section is to integrate the force over the surface
of an axially symmetric body, for which we denote the axis of symmetry
N. In addition, the gas will in general also produce a torque acting
on the body. For this purpose, we introduce a frame of reference with
the origin at the center of mass of the body. The torque then becomes
(here €5, is the totally antisymmetric permutation pseudotensor, with
€103 = 1)

dMi == eijk:vdek. (19)

Here, x is the position vector of the surface element with the normal n
in this frame. Integrated over the surface of the body it gives the total
torque.

To calculate the force and torque, several purely geometrical tensor
integrals of the type

/Snilniz...nik:z;jlzz;jQ...ledS = IZ.(IICZ.’Q__Z.Hjm___jl

have to be performed. Their tensorial features can be found from sym-
metry and isotropy, and the scalar coefficients are found by successively
forming contractions with 5ij or N;. They are listed in the appendix.

It is well known that a gas at equilibrium will not exert forces or
torques on a resting body. This is easy to show: The Maxwellian
contribution,—pn;dS, is proportional to . Since the surface of the body,
S, is closed, the force vanishes when it is integrated over the surface of
the body. The corresponding torque acting on the surface element is
proportional to & X n. By virtue of Gauss’ theorem, the integrated
torque also vanishes. Thus the resting Maxwellian does not exert forces
or torques on the body. We will now proceed to calculate the forces from
the shearing and from the homogeneous flow.



Shearing Phoresis 71

5.1. Force and torque from the shearing

The force due to the shearing becomes

1
F(shea.r)i = E/JIO‘T/BN/Snin<]'nk>dS'U<]}k>

P BN JijkV< k> (20)

N —

where the tensor integral J;; is given by
Jijk = / ninjnde
S

and must therefore be proportional to the body surface area. From
isotropy, and since all traces vanish, one can write

1
Tijk = —5Sb1 (9 Ny + 0 Nj + 035 N; — 5NiN; Ny) ,

where S is the body’s surface area. The factor —1/2 is chosen for con-
venience. Contracting with N;N; Ny one finds

1 3
= —= 'N -
b S/S(n )7 dS

Note that b; = 0 if there exists a plane orthogonal to the axis IN in which
the body is mirror symmetric. The force (20) becomes, since v > is
symmetric and traceless,

F (shear) ¢

1
= —gharBnSbi (8ij — 15N<iNj> ) v<je> Ni- (21)
Using the previously obtained expression for the force from the shear-
ing (18) the corresponding torque (19) is integrated and the total torque
due to the shearing acting on the body becomes

1
Mshear): = 5,uaTIBNS3/2b2€ijkNjU<k,l>Nl- (22)

The coefficient by is a scalar integral given in appendix. Note that bo,
in contrast to b1, does not in general vanish if the surface is mirror
symmetric in a plane orthogonal to the axis of symmetry.
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5.2. Force and torque from the homogeneous flow

Again, integration over the surface is performed in the way described
above. Now the transformation to the frame where the gas is at rest
is made, in which the body is in motion. The force and the torque are
invariants under this transformation. In terms of the velocity of the
body’s center of mass u and the angular velocity of the body, w, one
gets the force and the torque due to the motion of the body (c.f. [2])

m
Flaow)i = 4/ SnkpT [—pS (a16;j + a2 N<iNj>) uj

+3p53/2a3€,-jkNjwk] , (23)
m 3/2
Mgowyi = kT [—3105 Raze;Njvy
SZ
—pT (a4(51j + a5N<Z~Nj>) wj] . (24)

The coefficients a;..a5 are listed in the appendix.

6. Equations of motion

To formulate the equations of motion of the system, the body mass mp
and the tensor of inertia I;; are introduced. The latter is written

Lij = mpS (I10i5 + IoN<iNj>) -

Here the coefficients I, I are dimensionless moments of inertia. They
are given in Appendix. Further, we introduce a body-fixed orthonormal
frame of reference with the origin in the body’s center of mass. The basis
vectors are denoted by e{®) where the index o = 1,2, 3 numbers the basis
vectors. One of these basis vectors is naturally chosen to coincide with
the axis of symmetry IN. The basis vectors of the body fixed frame move
according to Euler’s kinematic equations

de(®
dt

Further, Newton’s second law now gives (c.f. Goldstein [7]), with the
forces calculated in the previous section,

= wx el

mp S
Bat —

1
—EMQTﬂNSh (05 — 18N« Nj) vk Ny
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m
27l'kBT

[—pS (@10;5 + aaNiNjs) u;

+3pS3/2a36ijkNjwk] . (25)

The other equation needed, giving the time derivative as the angular
momentum as the torque, is Euler’s equation (see Goldstein [7])

dUJj

T

+ €ijpwjlw; =
1
E,U,OAT,BNSSﬂb2€ijkNju<lc,l>Nl

m
+” kT [—3p53/2a36ijkNjuk

S2
B2 (a4dij + asN;Nj>) wj} . (26)

2

7. Stationary solutions

A first attempt to understand the equations of motion is provided by
seeking a stationary solution. For this solution, the assumptions w = 0
and a constant velocity U are made. From the equations (25), (26) one
then gets the system

0 = —Spa,Babi (6 — 15BN Njs) vej s Ni
—/ srieTP (a10i5 + a2N<iNj>) U;

0 = €k N;j [%MarﬁNb2v<k,l>Nl -3,/ ﬁpa:’,Uk]

From the second of these equations, one can see that the sum within the
square brackets must be parallel to N;. Hence the vector v.; j~ N; must
be a linear combination of N; and U;. This result is substituted into the
first equation, and one finds that U is parallel with IN. Using again the
second equation, it is apparent the vectors v; j~N; and N; are parallel,
that is, IN is an eigenvector of v; j~. We conclude that

Ui =

ouBy [2mkpT by - -
4p m 4+ ira, +[8— (6 —mas)lby

Here, the the values of a1 and as from appendix have been inserted.
In this expression, IN coincides with an eigenvector of the traceless
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rate of deformation tensor v;j~, and [ is the corresponding eigen-
value. For a velocity field with only one non-vanishing component,
v, (y), there are two eigenvectors with non-vanishing eigenvalues of the
corresponding traceless rate-of-deformation tensor. The eigenvectors are
(+e; + ey) /V/2, and the corresponding eigenvalues | = v, , /2, respec-
tively.

In the expression for the stationary velocity (27), the purely geomet-
rical parameter bs, given by, see appendix,

by = % ) [(n .N)? — %] ds, (28)

depends on the shape of the body: For a coin shaped body, or an ex-
tremely oblate body, b3 = 1. For needle shape, or an extremely prolate
body, b3 = —1/2. For a sphere, b3 = 0.

As mentioned earlier, b; is given by

_1 3
bl_S/S(n N)*ds.

We recall that b; = 0 if the body is mirror symmetric in a plane orthog-
onal to the axis of symmetry. If the velocity field of the gas is v, (y),
a simple order of magnitude estimate of this velocity is given by, if A
denotes the mean free path of the gas,

Ul ~ Avg,y.

8. Numerical simulations
8.1. Scaling and nondimensional variables

To obtain numerical solutions to the equations of motion, a time-scale
7 is introduced according to

mp [2wkgT
=2 ) 2
T pYS 1/ - (29)

This time scale is obtained from the force proportional to uw in (25).
For the flow field of the surrounding gas a simple velocity field v (y)
is considered. For the traceless rate of deformation tensor D the only
non-vanishing components then become

1
V<g,y> = U<y,z> = §’Uz,y- (30)

The corresponding eigendirections are the lines £ = £ty with the corre-
sponding eigenvalues | = +v,, /2.
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To form a non-dimensional shearing tensor, we write

Dj; = 2v<ij> [ |vgyl-

The eigenvalues of this non-dimensional shearing are given by [} = £1.
Further, a non-dimensional tensor of inertia is introduced according to
I;} = Iij(mBS)_l.

It is convenient to chose the velocity scale V' from the stationary

speed, as
g,BN 27T]€BT ,wux,y
V= \/ .
8 m p

The dimensionless variables t*, v}, z},w; are now defined by

1

_ * L * L * o —1 %
t=1t", uy =Vu;, z; =Vrz; w; =17 w;.

In what follows, the *-superscript will be skipped. With this choice, the
dimensionless equations of motion take the form

du; 1
d—tz = —gparb (6ij — 15N<;Nj>) Djp Ny
— (a16i5 + agN<;Njs ) uj + Dagejp Njwy,

and
dw;

hitay

. 12
+ €ijkwilw; = D lgarbm‘jkNjDklNl

_ 1
-D lgageijkNjuk — 5 (a4(5ij + a5N<Z~Nj>) Wy.
Here the dimensionless number D is given by

8(27rkBT>_1 p253/2 p nm
3 MmBPBN vy Hozy P .

D=
m
(In this expression, dimensional units are used.) Here n is the number
density of the gas, m is the mass of a gas molecule, and p is the density
of the body. This number is not definitely large or small. In the numer-
ical calculations and in the stability analysis we have unless otherwise
indicated, for simplicity chosen D = 1. The non-dimensional version of
the asymptotic velocity (27) becomes, with the present scaling

o OéTbl
44 ira; + 8 — (6 — may)|bs

IN;. (31)

%
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8.2. Orbits of a double cone.

To be specific, we now introduce a geometrically simple body for which
the coefficients that depend on the shape can be calculated easily. This
body, a ’double cone’, is shown in the figure below.

This body is axially symmetric. It is mirror symmetric (with respect
to a plane orthogonal to the axis of symmetry) precisely when s = 1/2.
This body is homogeneous and consists of two cones with a common
base. The radius of the base is denoted by R, and the total length by
L. The base is situated a distance s L from the left cusp, where the
dimensionless parameter obeys 0 < s < 1/2. N points in the direction
of the sharpest cusp of the double cone. When s = 0 the double cone
degenerates to a single cone. It should also be pointed out that b; < 0
when s € [0,1/2].

L

s+ L

The equations of motion are now solved numerically for the double
cone. The figures 1 show the resulting orbits of two different double
cones, both with s = 1/4, in a gas subject to the simple shearing given
by (30). It is obvious from these figures that the asymptotic transport
of the blunt double cones takes place parallel the line £ = —y, and for
the more slender bodies parallel to z = y. It is found that in the fi-
nal orientation of the blunt double cones, the sharpest cusp is directed
parallel to the final velocity, whereas for the slender double cones, the
sharpest cusp is directed in the direction opposite to the final velocity.
This is in agreement with the expression for the final velocity (27), when
s €[0,1/2]. It should also be pointed out that the bodies in the left fig-
ure travel in both directions along the line £ = —y. The same goes for
the the body orbits along the line £ = y in the right figure. This sym-
metry stems from the tensor character of the shearing: It is invariant
under rotation by an angle of .

9. Stability analysis

The numerical simulations of the orbits in figure (1) in the previous
section suggest that the stability of the double cone depends on the ratio
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15F

151 1

-15}F

-0.5 0 0.5 -0.5 0 0.5

FIGURE 1. In each figure, 10 different orbits of bodies subject
to the simple shearing given by (30) are represented for the case
ar =1/2. They all start at ¢t =0 in (z,y) = (0,0). In the left
picture, the planar orbits of blunt bodies with R/L = 2/5 end up
parallel to the line £ = —y. In the right picture, the orbits of more
slender bodies, with R/L = 1/4, finally end up along the line z = y.
The initial angle between IN and the x-axis is varied between 0 and
27. The initial velocity is parallel to IN, and the initial speed |uo|
is set to approximately one tenth of the corresponding stationary
velocity. The initial angular velocity is zero.

N = (eNy,1,eN,),

u =U + (evy, evy, €vy),

7

R/L. In order to investigate the stability of the orbits close to the lines
z =y and £ = —y the equations of motion are linearised for the double
cone close to these final states. For simplicity, a new coordinate frame
{z',y',2'} is introduced in which the shearing tensor (30) is diagonal.
In this frame, the basis vectors are rotated by an angle 7/4 about the
z-axis. In the frame {z',4/,2'}, the z'-axis corresponds to the positive
eigenvalue, and the line y'-axis corresponds to the negative eigenvalue.

The Ansatz used for this linearisation close to the asymptotic state
along the y/-axis is given by
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W = (€W, €wyr, €w,r).

As N2 = 1, the correction to Ny is of second order. The non-dimensional
stationary velocity U is given by (31). The linearisation close to the z'-
axis is made in a similar manner.

The ansatz is now substituted into the equations of motion, and a
linear first-order system results for each eigendirection. If one defines
the vector w according to

W = (Na:’aNz’aU:c'a'Uy’avz’aww’awy’awz’)a
this linear system takes the form
dw
dt
where L has been calculated with MAPLE, and is too large to give
in explicit form here. L is different for the two different asymptotic
states, that is, £ = y and x = —y. The eigenvalues of the resulting
linear systems are calculated for a; = 1/2. The eigenvalues of a slender
double cone with R/L = 1/4 (cf FIG. 1, right figure) are plotted in
figure 2. It is clearly seen that the stability of the body depends on its
shape.

=Lw

I

The boundary between different stability areas is plotted in the plane
spanned by s and R/L in the figure 3.

There exist however cases where none of these states is stable. For
small values of D (heavy body or very rarefied gas), limit cycles appear
in the body orbits, see figure 4. Here s = 0.1, R/L = 0.25, a; = 0.9
and D = 10~2. For these cases, no macroscopic transport will occur due
to the shearing. In general, for the cases with linear instability, effects
of the heating may be large and produce additional forces and torques
on the body. For the orbit in figure 4, however, the timescales are large
enough for these effects to be small. This is discussed in the next section.
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05 Stability for x = y Stability for z = —y

0.5

o

o

Eigenvalues (real part)
Eigenvalues (real part)

|
N

-1.5F b -15r

-2 i i i I 2

FIGURE 2. In the left figure the real part of the eigenvalues of the
linearised equations of motion close to the line x = y are plotted,
and in the right figure, the corresponding eigenvalues for z = —y
are shown. The scale of eigenvalues on the vertical axes is 7~ !. On
the horizontal axis, s is varied. It is apparent that the shape of the
cone determines the stability. In particular, one critical eigenvalue

changes sign as s is varied: For small values of s the line x = —y is
the stable one, whereas for larger values of s, the line z = y is the
stable one.

10. Effects of inhomogeneities in the temperature field of
the body

(In what follows, dimensional variables are used.) For a body with
typical length R and with the heat conductivity , the time scale of the
heat conduction in the body is given by c;,,,oR2 /K, where ¢, and p are the
heat capacity and density of the body. In this case, except for bodies
with poor heat conductivity, the heat conduction is much faster than the
rate of change in the dynamics close to the stable states. This follows
from the magnitude of the eigenvalues close to the stationary states in
the previous section together with the assumption of free molecular flow.
Thus the stationary heat equation can be used here. This also holds for
the limit cycle orbit exposed in figure 4, since the time elapsed during
one period is of the order of 7.

Energy is transferred to the body both by the shearing and by the
homogeneous flow of the surrounding gas [1]. For example, from the
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Region of stability

04

0.1
0

FIGURE 3. On the vertical axis, R/L-values are represented. On
the horizontal axis, s is varied. Double cones with values of s and
R/L below the boundary curve are stable on the line z = y, whereas
bodies with values above the curve are stable along the line z = —y.
Here, ar =1/2.

0,005

L L L L L L L L L L
-004 -0.035 -003 -0.025 -0.02 -0.015 -0.01 -0.005 0 0005 001
xz

FIGURE 4. A body orbit forms a limit cycle. For the case above,
s=01, R/L =0.25, a, =0.9 and D = 1072,

shearing the influx of energy gets the contribution

3 Veii
EU,BE <>

ne<ingsFy,

where g is a number close to unity, and where Ej; = 2kgTN®. The
stationary heat equation for the body is solved with the net influx of
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energy through the surface as a boundary condition. The resulting tem-
perature field will get an inhomogeneous contribution proportional to

__nkpR [kgT 1,

X Vo T
where 7, = R?pc,/k (in which p and ¢, are the density and the heat
capacity of the body), and where 7 is the typical damping time given
by (29). Except for bodies of poor heat conductivity, one finds from
explicite calculation that y < 1 in the free molecular flow region, and
consequently, the force dFj on the a surface element with unit normal
ny that stems from the temperature field (12) at the body surface will

thus be a factor x times smaller than the other forces calculated here.
Thus, it is legitimate to neglect these forces.

11. Conclusions

It has been shown that a body small compared to the mean free path in a
shearing gas is subject to a, to the best of the knowledge of the authors,
previously unknown transport mechanism we call the Shearing Phoresis.
This transport takes place along the directions of the eigenvectors of the
traceless part of the rate of deformation tensor. The final velocity of a
transported body depends on the body shape, and is given by

2wkgT b
U = Yufn [2mkp : a;by IN;.
4p m 44 smar+[8 — (6 — mar)]bs

Here, N is one of the eigenvectors of the symmetrical and trace-
less part of the velocity gradient (v;;s), and [ is the correspond-
ing eigenvalue. For the simple type of shearing discussed above, we
have the eigenvectors (+e; + e,) /v/2 with the corresponding eigenval-
ues | = fu,, /2.

For bodies mirror symmetric in a plane orthogonal to the axis of
symmetry, such as spheres, ellipses and right circular cylinders, this
velocity vanishes.

Numerical simulations of the equations of motion for a double cone
have been made for the case with a one-component shearing, v;,. A
linearised version of the equations of motion has been obtained to inves-
tigate the stability close to the asymptotic states of a double cone.
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Appendix

The geometric tensor integrals encountered when the expressions for
the force and the torque are integrated over the body surface are listed
below:

I(170) — O

d

0,1
I(j ) — 53/20(0,1)Nj

209 _ g [%(52'12'2 + 0(2’0)N<i1Ni2>]

12| T

Iz.(“ly.’l) = §3/2 [Cgl’l)éij + Cgl’l)N<iNj>] )

0,2 0,2 0,2
I\(jljz) =5 [Cg )51'1]'2 + Cg )N<j1Nj2>]

i1i2)j 1

1(2’1) = §3/2 [0(2,1)51'12'2]\[]' + 652’1) (5i1sz'2 + ‘Siszh)
+ 022’1)Ni1NizNj]

2,2 2,2 22
Iz‘(1i2|)jlj2 = §? [Cg )(52'11'25]'1]'2 + Cg ) ((5i1j1(5i2]'2 + 6i1j25i2j1)
2,2
+632 835, N3 Ny, + 22655, N3 N,

2,2
—|-C{(~’, ?) (5i1j1Ni2Nj2 + 5i1j2Ni2Nj1 + 5i2j1Ni1Nj2+

2,2
6i2j2Ni1Nj1) + Cé )Ni1N’i2Nj1Nj2]
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(k,0)

The coefficients ¢y, in the expressions above are given by

O = 75

29 — 1 (37, — 1)

cgl’l) =ih

c%(l)’; = % (33 — J2)

c = gjs

cgi = % (3T — Ts)

6%2,1) = ? (JQ - J4)

6%2 ) = ? («73 - J4)

¢y =1 (=20 — 275 + 574)

oD = L (=371 + 175 + 276 — 87 — 35 + Jo)
ng,z) _ % (2Ts — 2Js — 37 — 3Tz + 4J9 + J10)
cgz,z):%( TIs +2Ts + Tr + Tz — 4T9 + J10)
2 = 1 (2375 4+ 205 + 177 + 3% — 4Jo — 5T10)
7 = 1 (=375 + 275+ 3T + 105 — 4o — 5710)
2D = L(— g5 = 205 — Tr — Ts — 89 — 5T10)
P = 1 (T5 + 205 — 5T — 5Js — 57y + 3570)

In these coefficients the integrals [J; — J11 are given by

Integrals
Ji=8""[,(N-n)?dS
Jp =832 [qx- NdS
I3 = S3/2f (z-n)(n- N)dS
Ji = 53/2f (z-N)(n-N)*dS
j5 2f5 2dS
Je = 2]‘5 T-n) 248
37— =2 [ ( z: N) dS
Qf )2ds

(- N)(n-N)dS
S 3/Sf (z - N )dS
J S3/2f(a: n)( N)2ds

79
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In the following table, the values of the coefficients ai..a5 and bo, b
are listed:

Coeflicients

a; = & (8 + ma,)

ag=7[8—(6—ma;](3J1 —1)

a3 = 35 {[8 + (1 —2) ;] Jo — [8 — (6 — 7) a;] Tz}

ay = f—g{[8+(77—2)0471«75—[8—(6—77)047]36}

as = 5 {[16 — (10 — 27) ;] J5 — [16 — (12 — 27) ;] Ts
—[24— (12— 37) ar] Jr — [24 — (18 — 37) ar] T

+[48 — (36 — 67) ] Jo}

by = J10 — J11

b3 = % (3j1 — 1) (Z 6(2’0))

The tensor of inertia, I;;, contains two non-dimensional moments of
inertia I; and Iy become
L = 5 fy @)a?d’s
I =553 fV p(x) [.’n2 —3(N - m)2] d3z

Acknowledgments
L. Séderholm wishes to acknowledge a valuable discussion with Prof. I.

Goldhirsch. -This work has been supported by the Swedish Research
Council for Engineering Sciences.



References

[1] Séderholm, L. H. 2002 Equilibrium Temperature of a Convex Body in Free Molec-
ular Shearing Flow, Phys. Rev. E, 66: 031204.

[2] Borg, K. 1., and Séderholm, L. H., Thermophoresis of Azially Symmetric Bodies.
Submitted to Rarefied Gas Dynamics.

[3] Wang, Y., Mauri, R. and Acrivos, A. The transverse shear-induced liquid and
particle tracer diffusivities of a dilute suspension of spheres undergoing a simple
shear flow. J. Fluid Mech. (1996), vol. 327, pp 255-272.

[4] Waldmann, L. 1959 Uber die Kraft eines inhomogenen Gases auf kleine sus-
pendierte Kugeln. Z. Naturforsch. 14a: 589-99.

[6] S. Chapman and T. G. Cowling. The mathematical Theory of Nonuniform Gases,
3rd ed. (Cambridge U.P., Cambridge, England, 1958)

[6] Kogan, N. M. 1969 Rarefied Gas Dynamics New York: Plenum.

[7] Goldstein, H. (1981) Classical Mechanics Addison-Wesley publishing company

85






Paper 3






Force on a spinning sphere moving in a
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The force acting on a spinning sphere moving in a rarefied gas is calcu-
lated. It is found to have three contributions with different directions.
The transversal contribution is of opposite direction compared to the
so-called Magnus force normally exerted on a sphere by a dense gas. It
is given by

2
F = —angwR‘o’mnw X v,

where a; is the accommodation coefficient of tangential momentum, R
is the radius of the sphere, m is the mass of a gas molecule, n is the
number density of the surrounding gas, w is the angular velocity and
v is the velocity of the center of the sphere relative to the gas. The
dimensionless factor £ is close to unity, but depends on w and k, the
heat conductivity of the body.

89
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1. Introduction

The force acting on a sphere moving in a fluid has been a subject of
great interest in the history of fluid physics. This is also true for spin-
ning spheres. Newton observed that a transverse force acts on spinning
sphere moving through a fluid. In 1742 Robins described the effect in
connection with the trajectory of cannon balls. The early history of the
subject is described in Tokaty [1]. Nowadays the effect is usually called
the Magnus effect. Rubinov and Keller [2] calculated the effect in the
fluid dynamical limit using the Navier-Stokes equations, assuming small
Reynolds number, Re, and found that the force acting on a sphere of
radius R, velocity v, and angular velocity w, is given by

F =[1+ O(Re)|7nR*mnw x v, (1)

where m is the mass of a gas molecule and n the number density of
the fluid. This force has attracted much interest in connection with
sports balls [3, 4]. Experimental studies, on the whole, confirm formula
(1) [4, 5, 6] and indicate that, in fact, it is quite reasonable also for
high Reynolds numbers. For large Reynolds numbers but small wR/v,
however, the force sometimes changes sign [6, 7]. This is called the
inverse Magnus effect. Here it is shown that if the sphere moves through
a rarefied gas the force also will have the opposite sign.

There are a few studies in the literature on other forces acting on
rotating objects in rarefied gases. One of some relevance is Bowyer [8],
who studied the drag on a rotating cylinder in a rarefied gas.

Consider a homogeneous sphere with radius R and heat conductivity
% immersed in a gas with number density n. The mass of a gas molecule
is denoted by m. The gas is assumed to be rarefied enough for the mean
free path of the gas (the average distance a gas molecule travels between
collisions) to be large compared to R. Therefore we may employ the
method of free molecular flow [9]. The distribution function describing
the gas that surrounds the sphere can then be approximated with the
distribution function for the gas in the absence of the sphere. For further
results of this method, see Schaaf [10].

The sphere is set into motion relative to the gas in equilibrium. The
velocity of the center of mass of the sphere is denoted by v and the
angular velocity by w. We further assume that the heat conduction of
the sphere is much faster than the damping of v and w. One can show
that this applies when (c¢;R/k) - (mn/p) < 1. Here ¢, is the speed of
sound, k = K/pcp, where & is the heat conductivity and ¢, is the heat



Force on spinning sphere 91

capacity of the body, and where p is the density of the body. The surface
of the body interacts with the gas according to Maxwell’s boundary
condition: a fraction 1 — o, of the stream of molecules incident on the
surface is reflected as a light beam hitting a mirror, and a fraction o, of
the incident stream reaches thermal equilibrium with the body surface,
and is reflected as a Maxwellian.

The object here is to, under these circumstances, calculate the force
acting on the rotating sphere. This is done by calculating an expression
for the force acting on a surface element of the body and then by inte-
grating this expression over the surface of the sphere. The calculations
will be made to second order in wR/c, and v/c,, and to arbitrary wR?/k.

2. The distribution function

If we introduce a frame of reference with origin at the center of the
sphere, the velocity of a point x; on the surface of the sphere is given
by v; + €;jkw;jTi. For a sphere, a point on the surface can be written as
z; = Rn;, where n is the unit normal in the point, and where R is the
radius. It is convenient to make the calculations in a frame of reference
in which the surface element is momentarily at rest. In this frame, the

surrounding gas has the velocity u; = —(v; + Re;jpwjng). Consequently,
the surrounding gas is described by the distribution function
2rkpT\ /2 m(c; — u;)?
= - . 2
@) =n (L) ep [0 @)

Here, n is the number density of the gas, kg is Boltzmann’s constant, T is
the temperature, m is the mass of a gas molecule and ¢; is a component of
the velocity of a gas molecule. This is the Maxwell distribution function
describing a gas in equilibrium subjected to the homogeneous flow wu;.
It is normalized according to

n:/f(c)d3c,

where d3c is a unit volume in velocity space. To this end, we introduce

the non-dimensional velocities C; = ¢;v/m/2kgT and U; = u;\/m/2kpT.
For a monoatomic gas, Y = \/(%M, the Mach-number, here based upon
the translation of the body. The corresponding dimensionless number,
based on the rotation, wR+/m/2kgT, is assumed to be of the same order
of magnitude as U.
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3. The force exerted by the gas on a body surface
element

We shall now calculate a general expression for the net force exerted by
the surrounding gas described by f, the distribution function of the gas
in the absence of the body, on a resting surface element dS; = n;dS.
Here n; is the unit normal of the surface element. The object of this
section is to express this force completely in terms of f. In doing this,
the procedure outlined by Waldmann [11] is employed.

The net force exerted on the surface element is the difference of the
momentum carried in to the surface element by the incident stream of
gas molecules and the momentum carried out by the reflected stream,
and can be written

aF, = [P - P as, (3)
where the momentum flux incident on the surface element P,gi) is given
by

P,gi) = —/ mckc]-njf(i)d?’c. (4)
¢jn;i<0

If the surrounding gas is described by a resting Maxwellian distribution,
(4) takes the value —Pyrn;, where

1
The momentum flux carried out by reflected molecules P(™) is given by
P,gr) = / mckcj-njf(r)d?’c. (6)
cjni>0

Here, ) and f() are the distribution functions describing the stream
of molecules incident and reflected on the surface element. Since the
body is small compared to the mean free path of the gas, and as the
body is convex, the incident stream of molecules can be described by
the distribution function of the gas in the absence of the body, that is,
fO = f. The reflected stream of gas molecules is given by Maxwell’s
boundary condition, cf Kogan [9]. This means that the the reflected
stream has two separate parts: one part is specularly reflected (that is,
reflected as a particle hitting elastically a solid wall). The other part of
the reflected stream has reached thermal equilibrium with the surface
and is reflected as Maxwellian.
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Thus we have

9 = (1~ ar) fO (e~ 2(c-n)n)

kT 2
tan™ [ ZEEBL T exp (- ). (7)
! m 2kgT ()

The number «, is called the accommodation coefficient of tangential
momentum and measures the fraction of the reflected stream that is dif-
fusely reflected. If o = 0, there is no transfer of tangential momentum
between the gas molecules and the surface element. T(") is the temper-
ature of the surface of the body. The unknown number density n(*) can
be determined from the condition that the net particle flux through the
surface vanishes, that is, 0 = N@® — N®) where the incident particle
flux N is given by

N = —/ cjnjf(i)d3c. (8)

;<0

For a Maxwellian distribution at rest f() = f(©)_ (8) takes the value

[kpT
Ny = —. 9
M=n 2mm (9)
The reflected particle flux N) obeys (7):
N®O =1 -a;)NO 4 o, N, (10)
where N ](VV[V ) is given by (9) but with wallvalues of 7" and n. Therefore,

due to conservation of gas molecules on the surface, n(") fulfils

(w), [ kBT

NGO — )
n 2mm

(11)

We are now in a position to calculate the net momentum flux trans-
ferred to the surface element according to (3). It is easy to see that in
case of pure specular reflection, the momentum transferred to the sur-

)

face element is given by anan](i .

(w)

can be written P,/ 'n;, where PJE}V ) is (5) with wallvalues of T' and n.

The diffusely reflected momentum

Here PI(\:'[V ) is given by

w) _ [T NO
Py = T Ny

M -



94 Karl I. Borg, Lars H. Soderholm and Hanno Essén

Here we have used (11). The force on the surface element (3) can thus
be written

dF;, =

. . (w) Ny
2(1 - ay) nknjpj(l) + o, (P;SI) _ TT ]]\\[[M PMnk)] ds. (12)

The first term is the momentum transferred to the body from the spec-

ularly reflected stream. The second term, ozTP,gl), is the part of the
incident momentum to be reflected diffusely. The last term is the mo-
mentum carried out from the surface by the diffusely reflected stream.
Note that Nj; and P,; only depends on the gas parameters. The in-
fluence of the wall is contained in ™). The only real complication of
this problem is finding /7(%) /T, which requires the heat conduction
equation to be solved for the rotating sphere.

4. Calculation of the force from a moving Maxwellian

The situation investigated here is the case where v < ¢; and wR < c;.
Hence the forces (12) are expanded in &/. We recall here that for a
monoatomic gas, U = /6/5M, the Mach-number.

To zeroth-order in U, f = f(O), a Maxwellian at rest and the force
(12) simply takes the form dF; = —pn;dS, where p = nkgT, which
vanishes when integrated over the body surface.

To obtain the forces that depend on the rotation, we shall calculate
the force (12) to order of U?. The force is split into two separate parts:
one part that depends on the inhomogeneous temperature field on the
body surface, and one part that does not. To that end the relative
temperature deviation is introduced according to 7 = ) /T—1. N Of
Pj(l) and 7 are then Taylor expanded to second order in /. The resulting

T-independent part will be treated below. The 7-dependent part of the
force (12) becomes

@)
—a,vV1+ TN PyngdS
Ny
()
1 1N 1 1
= —aTET[l]PM’nde—OéT ET[I]N—[];] + (57'[2] — gT[QH) PyyngdS. (13)

Here, the subscript [n] in 7,) denotes the contribution of order " to

7 (and similarly for N@). We shall postpone the treatment of (13) to
Section 5, where the heat conduction equation for the sphere is solved.
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To calculate the incident particle and momentum flux from the mov-
ing Maxwellian N and P{", the distribution function is expanded (here

U=—/m/2kpT (v+ Rw x n))

fl€)=n (%kBT) - exp [— (Ci — Uz’)Q]

m

to second order in U, and get
f= f(O) [1 —2C,U; — U +2 (C,'ui)Q] .

(4)

Using this expansion, we get N and Pji according to

NGO = Ny, [1 — alyny + (Uknk)Q] (14)

i 2
PY = Py[-n; + = Uy + nillyng) = 2nplils]. (15)

J NS
These expressions are then substituted into formula (12). The first order
in U the well-known linear damping force derived by Epstein [12] is

obtained
8R? s
—Tn\/Zﬂ'kaT(l + gOtT)’Ui. (16)

The second order contribution becomes

1 3 1
3 [— (2 — 5(17) ninjng = 50 (0kmi + diknj) | Usdj PprdSS.

Now we use
Ul; =
m 2
m (vivj + R EiklWENE€jmnWm Ny + R’Uiejklwknl + R’Ujeiklwknl) .
From symmetry follows that the first two terms within the bracket will
not contribute to the force. It is impossible to construct a force to second
order that does not mix w and v. Using Py = nkgT'/2, the remaining
contributions are written
1 3 1
—ERmn [(2 - §QT> ninng + Tl (0jkm5 + 6iknj) | (Vi€jimwinm
+Vj€imwinm,) dS. (17)

In expression (17), the first term within the bracket will give rise to
terms proportional to €;;y f g MM N,mdS, which vanish since the tensor
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f g ninjngmdsS is totally symmetric. The second term can be simplified,
and (17) becomes

1
—§mnaTR (ekﬂ/ nynydSviw; + eijl/ nmldSvkwj> .
S S

The second term within the bracket vanishes since the tensor f s nimdS
is symmetric. For the sphere the following identity holds:

4
/ nin;dS = — R%5;;.
s 3

This can be understood by forming the trace of the equality. Thus the

force becomes 9
T
- ?RanaTlemwlvma

or

2
—aT§WR3mnw X v. (18)

5. Effects of the nonuniform heating of the moving sphere
5.1. Heat conduction equation

To calculate (13) we need the surface temperature of the sphere. To
that end, the heat equation is solved for the sphere.

We assume that the heat conduction is much faster than the rate
of change of w and v. An inertial coordinate frame moving with the
sphere with its origin at the center of the sphere is introduced. In this
frame we naturally choose e, parallel to w. The stationary heat equation
describing the heat flux within the rotating sphere then takes the form

or 9
Wy 5= EV*r, (19)
where 7 = Tp/T — 1. Here Ty is the temperature field within the
sphere, ¢ = w and k = k/pcy, where £ is the heat conductivity, p is the
density of the body and ¢, is the heat capacity of the body. The term
on the left-hand side stems from the convective time derivative due to
the rotation.

The angular part of the heat equation (19) is solved by spherical
harmonics Y}, (0, ¢) with [ = 0,1,2 (higher /-terms will not enter into
the solution since the boundary condition (25) is truncated at 42). The
integer m takes the values — < m < [. The value of m characterises the
spherical harmonic and should not be confused with the molecular mass,
although we have used the same notation for both. The radial part of
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the solution depends on the m-value. This is due to the fact that the
heat equation distinguishes between rotation parallel and anti-parallel
to w through the term wd7/0¢. The variables are separated according
to

2 l
T = Z Z le(T)Ylm(07 ¢)7
l

=0 m=—1

and after substitution into (19), the equation for Ry, (r) becomes

%% [7‘2le(7")] - |:l(l:; ) + Zm%] Ry (r) = 0. (20)

The solution to this equation is, for [ # 0, given by

Rin(r) = A (1‘%‘;(””3/ |m|“’TR2r) , (21)

where j;(z) is the spherical Bessel function of order [, and where sgn(m)
is the sign of m. For the case of m = 0, we obtain

RlO(T) == Al()‘l“l. (22)

5.2. Boundary condition

The unknown amplitudes A;,, should be determined by the boundary
condition that expresses the net energy flux through the surface of the
sphere. First we denote the influx of kinetic energy from the gas to
a resting surface element with outward normal n by E(). Due to
Maxwell’s boundary condition, we get E® = (1-— ozT)E(i) + aTE](\V/[V),
where E](\‘/'[V) = 2kgT™ NW is the energy leaving the surface by the dif-
fusely reflected stream. Here N is given by (14). Thus the net influx
of energy becomes

E=EY _E0 = ¢, [E(i) . 2kBT<W)N<i)] . (23)

The incident energy can be calculated for the moving gas[13, 14], and
we get to second order

EW = —/ mcQCinifd?’c =
¢in;<0 2
5 1., 3 9
Ey |1 - Z\/Eanj + §u + 2 Uin;)7| . (24)

The left side of (23) must equal —xn - VI'™). Ordinary spherical coor-
dinates are now introduced, with r = /22 + y2 + 22 /R.
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The boundary condition is now found to be (note that here, U =

—+/m/2kgT (v + Rw X n))
3

gT_X[1—§fu n+ u2 S@-ny?

—(1+7) (1—x/7ru-n+(U-n)2)]- (25)

k kT
X:aTn BRHL. (26)
K 2™m

The order of magnitude of x is (¢sR/k) - (mn/p), which according to our
assumptions is < 1. In (25), terms independent of n are proportional
to Ypp, terms linear in n corresponds to I = 1, and those quadratic in n
corresponds to [ = 2. We have

Here

1
Yoo = ——
00 ,_471'

Y10 = ” ‘/1—’)’1, —’)’L
Yier = F\/ = o (nm + iny)
)
Y20: 16 (2-3"1 —3’)’1,)
15 : 2 2
Yor1 = F g(nwﬂ:my) 1 —n3 —nj
15 .
Yoio = \/32—7T(n$:|:1ny)2

As mentioned earlier, the heat equation (19) distinguishes between
positive and negative values of m as the body rotates itself.

5.3. Temperature distribution on the surface of the body

On the body surface the temperature to first order in &/ becomes

NZ3 Im(z)
= R — - 27
= "4 X\ 9,7 e(z)n + ——(wxmn)| v, (27)
where the complex number z is given by
(5 /45)
2= f (28)

X (52 45) \/7 17\/:
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where j1(z) is the spherical Bessel function corresponding to [ = 1, and
71 (z) is its derivative. z is plotted in fig 1.

Note that to this order the solution has vector character correspond-
ingtol=1.

To second order in U, we get three different solutions corresponding
tol = 0,1,2. Here, we only seek the [ = 1 part of the distribution, as
this is the only part that will contribute to the force (13). The remaining
parts (I = 0,2) of the temperature field will give a force that vanishes
when integrated over the sphere.

The | =1 part becomes
m Im(z)
. . 2
kT Re(z)n + » (wxn)| - (wxv) (29)

The first of the terms will give another contribution to the transversal
force. The second term will result in a force proportional to w.

T[Q] = —XR

5.4. Forces from the temperature field

We can now from these expressions calculate the force (13). Three dif-
ferent terms are obtained:

o o2, [T
ar 12pR 2kBTXRe(Z)U (30)

1, [2nkpT 1
—|-Oé7—E7TR mny |Re(z) + - mlm(z)] w X v (31)
—aT§WR3mnx¥ w X (w X v). (32)

The complex number z is given by (28), and is plotted in fig 1. The
first term (30) is a contribution to the damping force, that depends on
w through z. The second (31) is a transversal force. The third force is
proportional to w X (wx v) = (w+v)w —w?v, and has thus a contribution
in both the direction of w as well as in the direction of v.

6. Results for the force on the sphere

The total force becomes

s T™m
F=—a,--pR*/
ar 12pR 2kBTXRe(Z)U

2
—angﬂR?’mn wXv
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FIGURE 1. The real and imaginary part of z plotted against
VwR2]k, for x = 0.01. As JwR2/k — 0, Re(z) — (1 4+ x)™*
and Im(z) — 0. As \/wR?/k — o0, both Re(z) and Im(z) tends to

zero ~ \/wRZ/k_l.

1 Im(z)

—aTgwR?’mnx— w X (WX v). (33)

Here the dimensionless number £ is given by

k
E=1- ix Re(z) +1/ 27TﬂfT ﬁIm(z)] ) (34)

where y is given by (26), and where the complex number z is given by
(28).

We have already seen that due to our assumption that the heat
conduction of the sphere is much faster than the rate of change of the
velocity and the angular velocity, x < 1. Thus the first and the third
contribution to the force (33) will be small as they are proportional to
Xx- Further, £, given by (34), is for the same reason close to unity in
(33).

In the limit of infinite thermal conductivity, x tends zero. Thus the
forces parallel to v and w vanish. In the same limit, ¢ tends to unity
and the total force (33) is reduced to

2
F = —aT§WR3mnw X v, (35)



Force on spinning sphere 101

which is the force (18) obtained in Section 4.

7. Conclusions

Apparently the transversal force derived here will have the opposite
sign compared to the corresponding force in the hydrodynamical limit.
It is interesting to note that the transversal force will vanish in some
intermediate region of the density. Where this critical point is met
requires however further investigation.

Just as there is a simple explanation of the ordinary Magnus effect in
terms of Bernoulli’s theorem there is a simple and natural explanation of
the effect found here. The gas molecules will hit the sphere preferentially
on that hemisphere which faces into the head wind, and these molecules
are likely to be deflected in the spinward direction. Therefore the sphere
will tend to be deflected in the opposite direction. This is an intuitive
justification of the results of the present work.
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Effects of the reversed Magnus force on
a Kepler orbit in a rarefied gas

By Karl I. Borg and Lars H. Soderholm

Department of Mechanics
Royal Institute of Technology
SE-100 44 Stockholm, Sweden

The force and torque acting on a spinning sphere with homogeneous
surface temperature moving with arbitrary speed in a rarefied gas are
calculated. It is found that the transversal component of the force is the
same as the corresponding force in the small speed limit. The torque is
found to have two components: one perpendicular to the velocity and
one parallel to the velocity. The effects of this force and torque acting
on a spinning sphere in an initially circular orbit are investigated using
perturbation theory. The result is that the orbital plane will rotate
slowly.

1. Introduction

It is well-known that a sphere rotating in a fluid will experience a trans-
verse force, that is, a force perpendicular to its velocity. This force is
usually referred to as the Magnus force or the Robins effect [1]. Rubinov
and Keller [2] calculated the effect in the fluid dynamical limit using the
Navier-Stokes equations, assuming a small Reynolds number, Re, and

105
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found that the force acting on a sphere of radius R, velocity v, and
angular velocity w, is given by

F =[1+O(Re)|nR*mnw x v, (1)

where m is the mass of a molecule and n is the number density of
molecules.

In a recent paper by the present authors together with H. Essén [3],
it was shown that for a body of moderately high thermal conductivity,
the transverse force experienced by a rotating sphere moving through
a rarefied gas with a speed small compared to the thermal speed, the
Magnus force is reversed, and is given by

2
F = —aTégwR?’mnw X v,

where «; is the accommodation coefficient of tangential momentum, and
where the dimensionless factor £ is close to unity, but depends on w and
on k, the heat conductivity of the body. The Magnus force thus changes
sign when the gas is rarefied.

In the present work, the transverse force acting on a spinning sphere
moving in a rarefied gas is calculated for all speeds. Also, the total
torque acting on the rotating sphere is calculated. In doing this, we
shall assume that the temperature is homogeneous over the surface of
the sphere. The gas is taken to be rarefied enough for the mean free path
of the gas to be large compared to the radius of the sphere. Therefore we
employ the method of free molecular flow [4]. The distribution function
describing the stream of molecules incident on the body surface can then
be approximated by the distribution function of the gas in the absence
of the body. Maxwell’s boundary condition will be used, for which a
fraction 1 — a, of the stream of molecules incident on the body surface
is reflected specularly, i.e. like a ball elastically hitting a solid wall,
and a fraction a, of the stream reaches thermal equilibrium with the
surface, and is reflected like a local Maxwellian. The parameter ., is
the accommodation coefficient of tangential momentum. Further, we
assume complete energy accommodation. For further results on this
method, see Schaaf [5].

2. The distribution function

If we introduce a frame of reference with origin at the centre of the
sphere, the velocity of a point x; on the surface of the sphere is given
by v; + €;jpwjTk. For a sphere, the vector from the centre of the sphere
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to a point on the surface can be written as z; = Rn;, where n is the
unit normal in the point, and R is the radius. It is convenient to make
the calculations in a frame of reference in which the surface element is
momentarily at rest. In this frame, the surrounding gas has the velocity

u; = —(v;+Re;jrwing). The gas is described by the distribution function
kT ~/? m(c; — u;)?
fle)=n ( m ) P %kpT @)

Here, n is the number density of the gas, kp is Boltzmann’s constant, T’
is the temperature, m is the mass of a gas molecule and ¢; is the velocity
of a gas molecule. This is the Maxwell distribution function describing
a gas in local equilibrium subjected to the homogeneous flow u;. The
number density is given by

nz/f(c)d3c,

where d3c is the element of volume in velocity space. We introduce

the non-dimensional velocities C; = ¢;/ % and U; = u;/ %. For

a mono atomic gas, V = U/\/%TBT = \/EM, where M is the Mach-
number, here based upon the translation of the body. We also define
a corresponding dimensionless variable based on the angular velocity

according to W; = w;R/4/ %%T.

3. The force on a body surface element

We shall now calculate a general expression for the net force exerted by
the surrounding gas on a resting surface element d.S; = n;dS. Here n; is
the unit outward normal of the surface element. This force is given by
the difference of the momentum brought to the surface element by the
incident stream of gas molecules and the momentum carried out by the
reflected stream, and can be written

aF, = [p{ - P] as, (3)

where the momentum flux incident on the surface element Pk(i) is given

by

P]gl) — _/ mcijnjf(i)dsc- (4)

;<0
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If the surrounding gas is described by a resting Maxwellian distribution,
P,Sl) takes the value —Ppsn;, where

1
Py = 5nkgT. (5)
The momentum flux carried out by reflected molecules P,gr) is given by

P,gr) = / mcijnjf(r)d3c. (6)
cini>0

Here, f® and () are the distribution functions of the stream of molecules
incident and reflected on the surface element. Since the body is small

compared to the mean free path of the gas, and as the body is convex, the

incident stream of molecules can be approximated by the distribution

function describing the gas in the absence of the body, that is, f) = f.

The reflected stream of gas molecules is given by Maxwell’s boundary

condition, cf Kogan [4]. One part is specularly reflected. The remaining

part has reached thermal equilibrium with the surface, and is reflected

as a Maxwellian. Thus we have

FO(e) = (1 - ar)fV(c - 2(c - n)n)
+a,n™ 2rkpT™ _3/2 ex o me (7)
T m P\ " 2kp1™ )

where o, is the accommodation coefficient of tangential momentum.
T™) is the temperature of the surface of the body. The unknown number
density n(") is determined from the condition that the net particle flux
through the surface vanishes, that is, 0 = N () — N where the incident
particle flux N is given by

N = —/ ejng fOd3e. (8)
¢jn;i<0
For a Maxwellian distribution at rest N() takes the value
kT
Ny = —— 9
M=o (9)
The reflected particle flux N®) is found from (7) to be

NO = (1 - a,)NO ¢ aTN](\)’[V), (10)
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where N ](VVIV ) is given by (9) but with wall-values of 7" and n. Therefore,
due to conservation of gas molecules at the surface, n(™) fulfils

k}BT(W)

(i) — p(w)
N n Sy

(11)
We are now in a position to calculate the net momentum flux trans-

ferred to the surface element according to (3). In the case of pure specu-
lar reflection, it is given by 2nkn]P( . In case of purely diffuse reflection,
the corresponding momentum can be written PJ(VI )n,, where Pjg/[) (5)

(w)

with wall-values of T and n. P,;’ can be written

P(W) _ T(W) N(l)
M T Ny

Here, (11) has been used. The force on the surface element (3) is thus

dF, = [ (1-ay) 2nknJP(i)

-l-aT( pY ,/ N(l Mnk)]ds (12)

The first term is the momentum transferred to the body from the spec-

ularly reflected stream. The second term, aTP,gl), is the part of the
incident momentum to be reflected diffusely. The last term is the mo-
mentum carried out from the surface by the diffusely reflected stream.
Note that Njs and Pjs depend on the gas parameters only. The influence
of the wall is collected in 7). We shall assume that the temperature is
constant over the surface of the sphere. The case of a perfect conductor
is treated in Section 5.

4. Calculation of the force from a moving Maxwellian

For a moving Maxwellian, the influxes of particles N ) and momentum
PY can be calculated [4, 6] and are given by

NO = [ Ui — /il (1 -I-erf(—Un))]a (13)

Pi(i) _ %PM {(Uz — Upny) [e—uﬁ — Uy, (1 + erf(—Un))]

[u et — /1 (% +uﬁ) (1 +erf(—un))] nz} : (14)
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Here,

2 [T
erf(w):ﬁ i e " dt,

and the shorthand U,, = U;n,; is the normal component of the velocity.
Substituting these expressions into (12) yields

ar, = Pu {2 - ar) | Sothix(-th) - (1 + ext(-2) |

2 TW)
+Oér\/—7—ruz'X(—un) — O TX(—Un)ni ds, (15)
where the function x(z) has been introduced for convenience, and is
given by
x(z) = exp(—z?) + vz [1 + erf(z)] . (16)
This expression will now be integrated over the surface of the sphere to
give the total force acting on the body. In doing this, we make use of
the assumption that the temperature of the sphere is constant. This is
the case if the body is a perfect heat conductor. We first recall that

Uy = — (Vi + eijpWini) ,

where W; = \/m/2kpT Rw;. Consequently, U, = =V, = —V;n;. From
this substitution, the force is seen to contain one term linear in W; and
one independent of W;. The first term is given by

2 2
_aTPMﬁeijij/s [efv" + V7V (1 + erf(le))] ndS.

Here, S denotes the surface of the sphere. From symmetry it follows that
integrands odd in n cancel when integrated over the sphere surface. For
this reason, only the first part of the second term within the square
brackets will contribute to the force. Further, for a sphere, the following

identity holds:
4 2
/ nynpdS = R Otk
g 3

and thus this part of the force becomes

8TR?
_aTPMTGijijvka

or, expressed in dimensional variables,

2R3

—ar mnw X v. (17)
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Here we have used Py = nkgT'/2. This is a transverse force of opposite
direction compared to the so-called Magnus force acting on a spinning
ball in the continuum limit. This result coincides with the force obtained
in [3] for a perfect conductor under the assumption that v and wR are
much smaller than the thermal speed \/2kpT/m.

Using polar coordinates with V,, =V cos # the remaining part of the
force can be integrated. This gives the well-known result [4] for the drag
force

7'(']%2 2]{,‘BT
6 V omm

8+ m)ymna(V)w, (18)

where the coefficient a()) is given by

3 1+ a, 1 4
a(V) = 32 + 4r { B [\/Eerf(V) (—W + v + 4V>

2 1 47 T(w)
-y - A Sl
+2e¢ (V2 +2>] + 5\ 7 } (19)

The last term within the curly brackets depends on T¢"), the tempera-
ture of the surface of the body. It is calculated in Section 5 for the case
of a perfect conductor. The qualitative behaviour of a(V) is however
rather insensitive to the choice of model for 7"): using the speed de-
pendent perfect conductor model yields the same friction force as using
a constant value of T™"). The choice of model only affects the numerical
coefficient of a(V).

The torque dM; = Re;j;n;dF}) acting on a surface element dS can be
calculated in much the same way. From symietry the torque acting on a
sphere vanishes if w = 0, and thus only the part of the force depending
on w will contribute. Integrating dM; over the surface of the sphere
gives the torque:

M; =

ArR* 2kpT

1 1
—a, 3 nm p— |:bL(V) (dij — ﬁfuivj) + b||(V)F'Uz"Uj:| wj. (20)

Here

bL(V) = 634 [ﬁerf(w (% + % + 12v> _9e (% _ 6)] (21)
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and
3 -1 4 2 (1
bH(V) = 3—2 [ﬁerf(V) (W + g + 4V) + 2e (W + 2):| . (22)
The first contribution to the torque damps the component of w perpen-
dicular to the velocity, and the second term damps the component of w

parallel to the velocity. Note that the torque does not depend on the
temperature of the sphere’s surface.

5. Equilibrium temperature of a perfect conductor

The purpose of this section is to calculate the temperature of the sphere
under the assumption that the body is a perfect conductor, or put in
other words, has infinite thermal conductivity. First we denote the influx
of kinetic energy from the gas to a resting surface element with outward
normal n by E®. Due to Maxwell’s boundary condition, we get E() =
(1-a;)EY 4+ aTEI(\V/IV), where E](\V/[V) = 2kgT™ N is the energy leaving
the surface by the diffusely reflected stream. Here N is given by (4).
Thus the net influx of energy becomes

E=ED - EW = q, [E(i) - 2kBT<W)N(i)] . (23)

The incident energy can be calculated for the moving gas, and we get
[4, 7]

EO = —/ mCQCinifd?’c =
o

;<0 2
Epr |( 1+ U ) ™ — o 5 + 5l ) exf(—Un) | - (24)

For a perfect conductor, the temperature of the body adjusts itself so
that the total influx of energy equals the total outflux. Thus, (23) is
integrated over the sphere and equated to zero [7], and one obtains

2k T™ / Nigqs = / EW4s.
S S

Performing the integrals yields
TO) 1 y/merf(V) (3 + 28V + 4V*) + 2Ve (13 + 212)
T 8 vrerf(V) (1 +2V2) + 2VeV?

wW? merf(V) (1 — 3cos® ¢ + (1 + cos? ) V?) + 6Ve Y’ cos? ¢
2V? Vmerf(V) (1 4 2V2) + 2Ve~V?

. (25)
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Here 1) is the angle between VW and V. The dependence on W has been
collected in the second term.

To use (25) is a rough model, but it is apparent from (18) that the
model for the homogeneous temperature of the surface of the sphere only
affects the friction force in terms of a numerical coefficient. Neither the
the transverse force nor the torque depends on the value of T(%).

Substituting the expression for the temperature into a(V), the co-
efficient in the damping force (18), completes the expressions for the
forces and torques acting on a rotating sphere moving in a rarefied gas.
The coefficients a, by and b are plotted in figure 1 for the case where
|wR| < |v|: It is then legitimate to regard the second term in (25) as a
negligible correction to the first term. We end this section by calculating
the coefficients a, by and b in the supersonic limit (M— oc), and we
get

T+ 3v/m(l+ ;)

a(V) ~ 16 + 27 V, b (V)= %V, by (V) ~ ¥V .
11
10+
| i
ol T %} 7
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FIGURE 1. The coefficients a, b1 and b are plotted as functions
of V for a perfect conductor in the limit |wR| < |v|. In this figure,
a, = 1. In the supersonic limit, the functions a, b1 and b grow
linearly with the speed.
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It is interesting to compare the transverse force (17) and the fric-
tion force (18) to the corresponding forces in the fluid-dynamic limit.
The transverse force is in this limit given by (1). It has been shown
experimentally [8, 9, 10] that (1) is reasonable also for high Reynolds
numbers.

The drag force in the continuum limit is given by [10]

FD = —pT CD"U"U,

6m

Cp ~
D Rea

Re <1 and Cp~1, Re>1. (27)
It is apparent that for small velocities, both the the friction force (18)
and the corresponding fluid dynamic drag force (27) are linear in the
velocity, but the coefficients are different: the transverse force is for
small speeds larger compared to the drag force in the fluid-dynamic
limit than in the rarefied gas.

As the speed increases, both the fluid-dynamic drag forces and the
friction force (18) become quadratic in the speed. The speed at which
the transitions take place differs however between the two. In the fluid-
dynamic limit, the transition occurs when Re ~ 1, but in the rarefied
gas when the Mach number M ~ 1. Thus, for large but sub sonic speeds,
the transverse force is larger compared to the drag force in the rarefied
gas than in the fluid-dynamic limit.

6. Perturbation of Kepler orbit

In this section a spinning body moving in a circular orbit in the gravi-
tation field of the Earth, under the influence of the thermosphere [11] is
considered. As a starting point we review the Kepler problem (here G
is the gravitational constant, M is the mass of the Earth, and r is the
position vector of the satellite with respect to an inertial system with
its origin at the centre of gravity)

d’r _3
For a body in a circular orbit, the orbit radius ry and the period
time of the orbit 7y are related by Kepler’s third law:

aMg\"?
roz( 47r20) . (29)
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Now the influence of the thin thermosphere on the orbit of the body
is considered. For simplicity the body is chosen to be a spinning sphere
and thus we add to the Kepler problem (28) the damping force (18) as
well as the transverse force (17) calculated in a previous section. Further,
the torque (20) damping the angular velocity of the spinning sphere is
also taken into account. We assume that the sphere is homogeneous and
has the radius R, the density p and the homogeneous surface temper-
ature T™). The temperature and number density of the thermosphere
are denoted T and n. These vary over a 24-hour period, and we shall
here use time averages for the values of 7" and n. The number density
will decrease rapidly with height, and also the temperature 7" will vary
with height. We also allow 70") to vary with height. Now we define the
non-dimensional variables n* and T™ according to

n=mnon*(r) and T =TyT"(r), (30)

where ng and Ty are the initial values of the number density and the
temperature. Here we also define the non-dimensional temperature of
the sphere surface T("™)* according to T(™) = ToT(™)*(r).

From the friction force (18) we get a damping time given by

8 p ™ 1
R,/ , 31
8 + m mnyg 2kBTo n*(r) \/T*(r) 3D

where m is the mass of a gas molecule. We now assume that this damping
time is much larger than the period time of the unperturbed orbit 7.
This is the case for example for a satellite of a reasonable density with
the radius 1 m at the height of 130 km above the surface of the Earth.
Here we define the damping time 7, according to (31):

8 p [ mm
= ; 2
T 8 + ™ mny R 2kpThH (32)

It is now convenient to define the initial non-dimensional speeds

according to Vy = vo/m/2kpTy and Wy = Rwo\/m/2kpgTy, where v

is the initial speed and where wy = |wy|.

The non-dimensional variables
t* =2nt/79, " =7r/rp and w*=w/wp

are now introduced. Here we define the small parameter ¢ as the quotient
between the period time 7y and the damping time 71 according to

T0 ™\ Mmny 2kBT()TO
=—=(14+<) —/——. 33
¢ Ty (+8) P mm R (33)
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The corresponding non-dimensional equation of motion is then given
by (the *-superscript will be dropped in what follows):

d?r _3 dr dr
o —|r|"%r — 6n(r)k1V0|a|E

For convenience, the coefficients ki, ko, given by

3 4 | TW)(7) 4T,
ki = 2 1 )+ == , k= —Y—T
1= S an |2V +O‘)+3v\/ T(r) 2T 8%

have been introduced. We note that according to (25), for a perfect
conductor the square bracket has the constant value 2/ (14 ;) +27/3
in the supersonic limit.

—en(r)kaWow X % (34)

The initial conditions are chosen to be

dr
r =e, and i (35)
In the absence of the forces (17), (18) these initial conditions defines a
circular Kepler orbit. The time derivative of the angular momentum of
the sphere equals the torque. Therefore, imposing the same scaling on
this equation gives

dw; dr 1 1
5 = Vol 5| [ks (%‘ - Fvi'“j) + k4p“z"uj] wj (36)

where the coefficients k3 and k4 are given by

L VT 200, 5T 200,
57716 8+ YT 16 8+ x4

Here we have used that the moment of inertia of a sphere is 8pmR®/15.
At t = 0, w is the unity vector parallel to the initial angular velocity.
The character of the equation (34) suggests a multiple-scale solu-
tion, cf. Kevorkian and Cole [12]. Accordingly, in addition to the non-
dimensional time t we introduce a ’slow’ time # = ¢, which corresponds
to the typical time on which the damping from the thermosphere acts.
We now set 7 = rO(¢t,7) + er®(t,i) + .. and w = WO(¢t,7) +
ewW(t,1) 4 .. and seek a solution that to lowest order of approxima-
tion (¢ = 0) is a circle with slowly varying parameters, according to

7O (t,1) = r(¥) [cos B(t, T)e1 (F) + sin B(t, T)ea(1)] - (37)
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Substitution of this ansatz into the equation of motion (34) imposes two
conditions:

~ Q2 ~
. [0D(t,1) L 0%9(t,1)
3 ’ _ ’ _
1—17r (t) <T> =0 and ’l"(t)w =0.
The second equation can be integrated twice with respect to ¢, and yields
o(t, 1) = Q@) + (1),
where the angular frequency Q(f) and the phase ¢(f) are constants of
integration with respect to t. Then, from the first equation, we get
r(f) = Qi) %5 (38)
This is Kepler’s third law. The boundary conditions (35) are now im-
posed on this solution (as the solution is already a circle, it is sufficient
to apply only one of the two in (35)) and one obtains Q(0) = 1 and
#(0) = 0. Thus we get
(0 —
Q(f)~2/3 {cos [2)t + ¢(1)] e1(f) +sin [QE)t + ¢(T)] e2(D)} . (39)
The equation (36) becomes to lowest order
Ow )
ot
Thus the leading order term of the angular velocity only varies on the
slow time scale, that is w(®) = w(O)(#).

~ 0. (40)

To first order in & we get the following equation for »(1):
?r()
ot?
302 [sin (Qt + ) (rD - e) + cos (Q + ¢) (r™D) - e2)| {sin (U + ¢) 1
+cos (U + ¢) ez}
= n(r)k Vo223 [cos (Q + ¢) e1 — sin (U + §) ea]
—n(r) kW Q/3 [cos (Qt + ¢) (W x e1) —sin (U + ¢) (W x ez)]

+ Q2

—292/3% {[3Qt sin (Qt + ¢) — cos (At + ¢)]er
+[3Qt cos (Ut + ¢) + sin (Ut + ¢)]ea}
+201/3 [cos (Qt + ¢) % — sin (U + ¢) %]
—291/3% [sin (Qf + §) €1 + cos (1 + ¢) 2]
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The right-hand side of this equation contains the leading order so-
lution (9 (¢,7) given by the ansatz (39) containing the unknown slowly
varying parameters Q(%), ®(f), and e;(t), i = 1,2.

The character of the left-hand side predicts an oscillatory solution for
(. Accordingly, the amplitude of this solution will grow without bound
with time if the right-hand side of the same equation contains ’driving’
terms oscillating with the same frequency. From demanding that such
terms in the right-hand side (r.h.s) vanish, one obtains equations for
the slowly varying parameters (%), ¢(f), and e;(f) in the leading order
solution (%), cf [12]. This is done by solving the equations

2w I
1 / (r.h.s)cos (Qt + ¢) dt = 1 /2 (r.h.s) sin (Qt + ¢) dt = 0.
0 0

™ ™

The equations we get are too few to completely determine all the un-
knowns. This is because a phase changing with time describes the same
thing as the basis vectors rotating about the axis normal to the orbital
plane. Therefore we further impose the restriction that the angular ve-
locity of the basis vectors lies in the orbital plane spanned by e; and e,.
Introducing for convenience the angular velocity ~ of the basis vectors
spanning the orbital plane according to

%:7xei, (1=1,2)
we get
(7 - %kgn(r)wow(o)) e =0, (i=12), (41)
%(;) N 3%”(7‘)161]}052(5)1/3 +han(r)Wow® - (e1 x e2),  (42)
and ~
%ﬁ = Shin(r)Ven (i)' (43)

Equation (43) predicts that (t) increases slowly with time. This
equation can be written in terms of the radius r by using (38) according
to

d’(;g) = —gkln(r)vor(t)lﬂ. (44)
Thus the orbit radius will decrease with time. The phase ¢(f) will,
according to (42), change with time. Further, the phase will depend on
the component of w perpendicular to the orbital plane. The equation
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(41) predicts that the orbital plane will rotate slowly with the angular
velocity

(0)
orbital plane’

1
¥ = Ean(r)Wow (45)

where w(()g])oital plane is the component of the initial angular velocity par-
allel to the orbital plane. There will thus be no rotation if the angular
velocity is normal to the orbital plane. Returning to dimensional units,
we get
Imn (o)

Y= 0471 7 Worbital plane” (46)
Note that « does not depend on the value of the temperature on the
sphere’s surface.

Let us estimate the rotation of the orbital plane when the radius of
the orbit contracts by Ar according to (the last expression is in dimen-
sional units)
~ y|Ar wo|R Ar
= ﬂ ~ —_—,

3] [vol -

v (47)
where 7 is the initial orbit radius, which is essentially the radius of the
Earth. Here we have used (45) and (44). In this expression, the variation
in the number density n(r) drops out. As an example, consider a satellite
in an orbit at the initial height ~300 km above the Earth, rotating
with 1 revolution per second (with wy parallel to the orbital plane). If
the satellite has the radius 1 m this means that the forces and torques
calculated in the previous section are valid down to the height ~ 130 km,
where the mean free path of the gas is ~10 m. For this case the orbit
of the satellite, when contracting from 300 km to 130 km, will rotate an
angle ~ 3 -107% radians. This corresponds to the orbit turning ~20 m,
which in this context is a small effect.

FIGURE 2. The orbit in the figure above shows the evolution of
an initially circular Kepler orbit of a sphere due to the damping and
the action of the transverse force. The simulation exposes a slowly
contracting orbit radius in a slowly rotating orbital plane. For this
orbit, the angular velocity of the sphere has been exaggerated in
order to produce a clearly visual effect on the orbit.
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A simulation of the equations of motion, (34) and (36), yields the
orbit shown in figure 2.

7. Conclusion

The force and torque acting on a rotating sphere of high conductivity are
calculated. The force gets two contributions: one damping force parallel
to the negative of the velocity, another is a transverse force. The torque
damps the rotation and is found to have two contributions: one in the
direction perpendicular and one parallel to the velocity.

It is shown that these forces and torques, when applied to a spinning
sphere in a circular orbit, apart from slowly contracting the orbit radius
also make the orbital plane of the sphere to slowly rotate with an angular
velocity parallel to the projection of the angular velocity of the sphere on
the orbital plane. A rough estimate of the rotation angle of the orbital
plane when the orbit radius has contracted by Ar is given by

[wol R Ar
lvg| 7’

where wy and vy are the initial rotation and velocity of the sphere, R
its radius, and where r is the radius of the Earth.
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