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CHAPTER 1

Introduction

The curiosity to investigate and need to describe the world surrounding us are
key elements of human nature. Despite the continuous advancements in science
and technology, there are still some areas that will never be fully understood or
satisfactory described. Fluid mechanics, in general, or more popularly named
aerodynamics, and more specific turbulent flow is one of these areas.

As you step outside and feel the breeze hit your face, you experience a
turbulent flow that surrounds us. The leaves falling from the trees have com-
plicated vortical structures in the turbulent wake forming on the upper side,
forcing them into the characteristic dance towards the earth. Even in your
office, you can hear the noise from the ventilation and the cooling fans of the
computers. These noises are, to some extent, generated by the chaotic motion
of the air.

The exact equations describing fluid flow, the Navier-Stokes equations of
momentum and continuity, have been known for a very long time . The dif-
ference in sizes of the vortices, or rather the ranges of spatial and temporal
scales, in a turbulent flow are so great that it is only possible to compute or
simulate all details of the motion of a fluid for a restricted class of flows, such
as boundary layers, wakes and jets. The main restriction is the ratio of inertial
forces to viscous forces in the fluid, called Reynolds number. For low Reynolds
numbers the viscous forces maintain an ordered flow which follows well-ordered
streamlines. As the inertial forces increase, the stability of these streamlines
deteriorates and the motion of a fluid particle becomes chaotic. Here, it is
meaningful to introduce the concept of scales to the flow. In such a flow, that
we refer to as turbulent, we can observe a range of scales (or eddy sizes). This
range increases with increasing Reynolds number. A characteristic feature is
the energy flux from large to smaller scales through the cascade process. This
breakdown of large eddies to subsequently smaller ones also means that the
small scales have a universal character with a high degree of independence of
initial conditions and geometrical restrictions of the global flow.

Even though fluid flow is governed by a specific set of equations, the char-
acteristics of the turbulent motion are not uniquely defined. According to
Tennekes & Lumley (1972), the nature of turbulence can be characterized by
the following:
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• Turbulent flow is irregular and one has to rely on statistical methods to
describe the behavior.

• High levels of fluctuating vorticity in three dimensions giving rise to the
vortex stretching mechanism.

• Turbulence is a feature of a flow of a continuum. The smallest length
scales are far greater than the molecular counterparts.

• The instabilities in a turbulent flow occur at high Reynolds numbers.
• To be turbulent, the flow has to exhibit diffusive effects which causes

rapid mixing and increased rates of e.g. heat transfer.
• Without a continuous feed of energy, the turbulence rapidly dies out.

This is due to the dissipative nature of the flow.

The effort to accurately calculate fluid flows relies on the computations of the
system of governing partial differential equations (PDE).

For engineering flow predictions, the mean flow field is obtained through
solution of the Reynolds averaged Navier-Stokes equations. These equations
contain the Reynolds stress tensor that has to be described through turbulence
modeling. The aim of this type of modeling is to construct a closed set of
differential and algebraic relations from which the Reynolds stress tensor, and
thereby the mean flow, can be determined.

The complexity of the complete set of model equations for the mean flow
and turbulence quantities can be considerable, depending on the choice of level
in the hierarchy of single-point models, since they are based solely on statistical
moments evaluated at a single point. Several books and review papers on this
topic have appeared recently (Piquet (1999), Johansson (2002)) although the
first steps in this field were taken more than a century ago. The development
of models for actual computational fluid dynamics (CFD) calculations can be
said to have been established in the 1970’s. Since then, a variety of different
types of models have been developed, including models for compressible flow,
passive and reactive scalars etc.

A general trend in turbulence modeling has been to aim for a higher degree
of generality than in earlier models. For instance, the satisfaction of physical
realizability constraints can significantly reduce the need for ad-hoc damping
functions in the vicinity of solid walls. The price to pay is often a higher degree
of complexity of the models.

The applications of CFD in industry ranges from internal flows, e.g. in ven-
tilation systems, computer housings and engine air intakes, to external flows,
mostly associated with aerospace applications like airfoil or aircraft aerody-
namics but also wind-energy power-plants and automotive (cars and trucks)
design. The demands on lower fuel consumption for new cars can be achieved
in part by reducing the aerodynamic drag. The aerodynamic noise generated
at high speeds on the Shinkansen and TGV trains in Japan and France is clas-
sified as noise-pollution and must be improved in order to reduce the impact
on the surroundings.
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The framework of equations governing fluid flow can be expanded to in-
clude the transport of passive scalars. The definition of a passive scalar is a
quantity that is affected by the flow without itself affecting the flow. Typical
examples of approximations of passive scalars in air are temperature, moisture
concentration of pollution particles. This approximations have some restric-
tions since buoyancy effects may enter when heat, or temperature is involved,
and the pollution particles must be small enough not to be affected by gravity.

The development, testing and validation of turbulence models can be very
time consuming. Thanks to the concept of automated code generation, the
time spent on this process can be reduced significantly. By defining the model
in a clear readable format at the highest possible level, effort can be spent on
the formulation of equations instead of numerical implementation and the risk
of human introducing human errors is thereby reduced.



CHAPTER 2

Governing equations

Fluid flow is governed by the Navier-Stokes equations for momentum and con-
tinuity. In tensor formulation for an incompressible fluid they read

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+

∂

∂xj
(2νs̃ij) (2.1)

∂ũi

∂xi
= 0 (2.2)

with ũi and p̃ as the instantaneous velocity components and pressure field.
The constants for density and kinematic viscosity are denoted ρ and ν, s̃ij ≡
1
2 (ũi,j + ũj,i) is the instantaneous strain rate tensor. This set of equations
governs turbulent flow ranging from the smallest scales of space and time,
the Kolmogorov scales, to the scales of the geometry to be computed. The
size of the smallest eddies decrease as the Reynolds number increased. The
whole range of scales is taken into account in Direct Numerical Simulations
(DNS). This approach in today feasible only for a few simple geometries and
for low to moderate Reynolds numbers. In the statistical approach to flow
prediction we introduce a split of the instantaneous quantity into an average
and a fluctuating part. In the case of the Navier-Stokes equations ũi = Ui + ui

and p̃ = P + p. By inserting this decomposition and taking the ensemble
average the Reynolds Averaged Navier-Stokes (RANS) equations for the mean
velocity field are obtained

DUi

Dt
= −1

ρ

∂P

∂xi
+

∂

∂xj
(2νSij − uiuj) (2.3)

∂Ui

∂xi
= 0 (2.4)

where ui = p = 0 and the mean strain rate is defined as Sij = 1
2 (Ui,j + Uj,i).

The last term in equation (2.3), −uiuj , is the single-point velocity fluctua-
tion correlation which is the source of turbulence modelling in computational
fluid dynamics (CFD). We refer to -ρuiuj as the Reynolds stress tensor. In
equation (2.3), D/Dt is not the exact material derivative, instead it denoted
the derivative following the mean flow, hence D/Dt = ∂/∂t + Uj(∂/∂xj).
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2.1. Reynolds Stress Models
There are several levels of modelling to consider when solving for the Reynolds
stress tensor. From the complex second order closures in differential Reynolds
stress model (DRSM) where six transport equations for uiuj have to be solved
for 3d (four equations in 2d), down to relatively simple eddy-viscosity models
with a linear relation for the Reynolds stresses in mean strain rate Sij . If
instead the Reynolds stress anisotropy tensor aij is used, where

aij =
uiuj

K
− 2

3
δij (2.5)

and K denote the kinetic energy of the turbulent eddies, K = 1
2uiui, an al-

gebraic expression (ARSM) can be obtained. With an appropriate choice of
model parameters, an explicit algebraic model (EARSM) is reached where aij

is a function of the mean strain and rotation rate tensors, Sij and Ωij . The
most straightforward approach is to use the Boussinesq hypothesis, or eddy-
viscosity assumption, and introduce an eddy viscosity νT , which in contrast to
the molecular viscosity ν is a property of the flow rather than of the fluid.

The RSM usually need additional equations to close the system of equa-
tions. This is most commonly handled by transport equations for the velocity
and lengthscale determining quantities. The velocity scale is solved implic-
itly in DRSM, thus only one lengthscale determining equation is needed. For
EARSM and eddy viscosity models a two-equation system based on the turbu-
lence kinetic energy for the velocity scale and some other quantity, such as ε,
denoting the dissipation rate of K.

Near-wall correction terms can be introduced at any level of modelling
to better describe the large gradients in most quantities close to solid wall.
This is commonly called low-Reynolds number corrections and based on a local
Reynolds number formulated to decrease in the proximity of walls. Different
versions of low-Re models for DRSM, EARSM and two-equation turbulence
models are presented in sections 2.1.2, 2.1.5 and 2.2.1.

2.1.1. Differential Reynolds stress model

A differential transport equation for the fluctuating velocity field can be derived
in the same way as the RANS equations (2.3), expressed as

Duiuj

Dt
= Pij + εij + Πij +

∂

∂xk

(
ν

∂uiuj

∂xk
− Jijk

)
(2.6)

with the terms on the right hand side corresponding to production, dissipation,
pressure-strain rate correlation, viscous diffusion and spatial redistribution due
to inhomogeneities. Both the production term and the viscous diffusion are
defined in known quantities, while the other three terms need to be approx-
imated. E.g. the spatial redistribution tensor Jijk, which contains the triple
velocity correlation uiujuk. The production tensor is uniquely defined as

Pij = −uiukUj,k − ujukUi,k (2.7)
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where Ui,j is the mean velocity gradient tensor. A lot of efforts have been
put into the modelling of εij and Πij . Without going into too many details
of modelling of the pressure-strain rate correlation, we can state that it may
be lumped together with the dissipation rate anisotropy eij = εij/ε− 2

3δij . A
general expression for the combined term that is linear in the Reynolds stress
tensor is

Π
ε
− e = −1

2

(
C0

1 + C1
1
P
ε

)
a + C2S (2.8)

+
C3

2

(
aS + Sa− 2

3
tr{aS} I

)
− C4

2
(aΩ−Ωa)

where C0
1–C4 are model dependent. Most linear models may be written in this

form. Bold face matrix notation is introduced in (2.8) for brevity, where e.g.
aS denotes the inner product aikSkj . In the model of Launder et al. (1975)
(LRR), the dissipation rate tensor was assumed to be isotropic (eij = 0) and
the pressure-strain rate tensor was split int a slow and rapid part. The Rotta
model was adopted for the slow part with the constant c1 while the constant
c2 controlled the rapid part, see details in Paper 3. The values for c1 and c2

originally proposed in the LRR model were 1.5 and 0.4 respectively but later
increased to 1.8 and 5/9 by Wallin & Johansson (2000). The original LRR
model also contained a wall-reflection term for obtaining the correct behavior
in boundary layers. However, the wall-reflection term is not needed with the
recalibrated c1 and c2 and is, thus, not further considered in this study. In
Paper 3 the value of c2 = 0.6 was used to compare with an attempt to lower
the effective turbulence viscosity in an ERASM framework. The model with
the higher (modified) values is here denoted mod-LRR. A non-linear model
was proposed by Speziale et al. (1991) (SSG), linearized around equilibrium
homogenous shear flow by Gatski & Speziale (1993) (lin-SSG). Later Craft &
Launder (1996) proposed a low-Re model including expressions also for the
dissipation and redistribution tensors.

The exact expression for the spatial redistribution term contains a triple
velocity correlation uiujuk as well as pressure-velocity correlations,

Jijk = −uiujuk − 1
ρ

(pujδik + puiδjk) . (2.9)

This shows one of the closure problems with this level of turbulence modelling.
Launder et al. assumed that the pressure fluctuations could be neglected and
modelled the remaining the triple velocity correlation. Daly & Harlow (1970)
proposed a turbulent diffusion term formulated for an arbitrary scalar, here
adopted to the uiuj-tensor as

Dt
ij =

∂

∂xk

(
cs

K

ε
ukul

∂uiuj

∂xl

)
(2.10)

with cs as a model parameter.
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All of the above described models include the modelling of a lengthscale de-
termining quantity, here symbolised by ε. Paper 3 shows how an expression for
the inverse turbulence time-scale can be used instead, including re-calibration
of diffusion parameters cs and cω.

2.1.2. Low-Reynolds number DRSM

The original LRR model is not valid through the viscous sub-layer and was
formulated with a wall-function boundary condition. That is that the boundary
condition is prescribed at the innermost part of the logarithmic region of the
boundary layer. In order to improve the near-wall behavior of the above stated
DRSM, so that the model can be solved all the way down the wall, Shima
(1988) introduced near-wall corrections, including the damping function fw, to
the LRR model. fw depends on the wall-distance Reynolds number Rey as

fw = exp
(
− (cfwRey)4

)
, Rey =

√
Ky

ν
(2.11)

where cfw = 0.015 and y denotes the wall-normal distance. The value of cfw

was calibrated together with an ε-equation, but is re-calibrated to 0.040 in
Paper 3 for the use of mod-LRR in combination with a transport equation for
the inverse of the turbulence timescale, ω ∼ ε/K. The procedure to determine
the wall-normal distance in complex geometries is explained in section 2.4 and
Paper 5.

Craft & Launder (1996) concluded that the introduction of wall-normal
distance was undesirable since ”these geometry-specific quantities may be dif-
ficult, or impossible, to define uniquely”. Instead low-Reynolds number effects
were modelled by normalized turbulence lengthscale gradients defined as

di =
Ni

0.5 + (NkNk)0.5
where Ni =

∂
(
K1.5/ε

)
∂xi

. (2.12)

The model was improved further by Craft (1998), with a low-Re expression for
the correlation between the fluctuating pressure and velocity pui.

If the DRSM is modified to incorporate near-wall damping, this must also
be accounted for in the lengthscale determining equation, see section 2.2.

2.1.3. Algebraic Reynolds stress model (ARSM)

Introduction of the anisotropy tensor aij , yields a separation of the amplitude-
related effects from energy redistribution-related effects. The transport equa-
tion for the anisotropy tensor can be derived from equations (2.5) and (2.6),
see e.g. Sjögren (1997), and the the weak-equilibrium assumption, which states
that the advection and diffusion of the anisotropy are negligible, hence

uiuj

K
(P − ε) = Pij − εij + Πij (2.13)

An implicit algebraic relation for the Reynolds stress anisotropy tensor is
obtained by inserting the definition of the production tensor Pij together with



8 2. GOVERNING EQUATIONS

equation (2.8) into equation (2.13).

Na = −A1Ŝ + (aΩ̂− Ω̂a)−A2

(
aŜ + Ŝa− 2

3
tr{aŜ}I

)
(2.14)

N = A3 + A4
P
ε

(2.15)

with the non-dimensionalized mean strain rate denoted Ŝ = τS with turbulence
time scale τ = K/ε and the production to dissipation ratio defined as P/ε ≡
−tr{aŜ}. The An-coefficients are directly related to the Cn-coefficients in (2.8),
see Paper 2.

2.1.4. Explicit algebraic Reynolds stress model (EARSM)

The implicit ARSM equation (2.14) can be expressed in an explicit form, see
Wallin & Johansson (2000), if c2 = 5/9 and consequently A2=0. The 2d form
of the EARSM can be written as

a = β1Ŝ + β2

(
Ŝ2 − 1

3IISI
)

+ β4

(
ŜΩ̂− Ω̂Ŝ

)
(2.16)

with the functions βn depend on the second invariants of Sij and Ωij . This
method has also been extended to 3d mean flows where the relation for aij

consists of five tensor terms for the particular choice of c2 = 5/9, see Wllin
& Johansson. β2 = 0 for the choice of c2 = 5/9, but will have a non-zero
contribution close to walls in the low-Re formulation, see section 2.1.5

To simplify the implementation described in chapter 4 and mimic the eddy
viscosity formulation of the Reynolds stress, following the work of Wallin &
Johansson (2000), the right hand side of the EARSM equation (2.16) is split
into two parts as

a = β1Ŝ + a(ex) or uiuj = −2νT Sij + Ka(ex)
ij +

2
3
Kδij (2.17)

with νT = − 1
2β1Kτ corresponding to the eddy-viscosity concept first intro-

duced by Boussinesq. The turbulence timescale is set to K/ε or equivalently
1/(β∗ω).

2.1.5. Low-Reynolds number EARSM

To account for low-Re effects, the EARSM was modified by introducing a
damping function f1, depending on the wall-distance Reynolds number Rey ≡√

Ky/ν as
f1 = 1− exp

(
−Cy1

√
Rey − Cy2Re2

y

)
(2.18)

with y denoting wall-normal distance. The turbulence time scale is also modi-
fied according to Durbin (1993), expressed using either ε or ω as

τ = max
(

K

ε
,Cτ

√
ν

ε

)
=

1
β∗ω

max

(
1, Cτ

√
β∗

ReT

)
(2.19)

where the turbulence Reynolds number is defined as ReT = K/(ων).
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The anisotropy expression from equation (2.17) is hereby modified to in-
clude damping as

a = f1β1Ŝ + a(ex) (2.20)

with f1 entering the expression for the turbulence viscosity as νT = − 1
2f1β1Kτ .

The damping function also enters into the extra anisotropy aex.

2.2. The ’velocity’ and ’lengthscale’ equations
In all Reynolds stress closures described in section 2.1, there is still one more
quantity needed to close the system of equations. The most widely used is
the dissipation rate of turbulence kinetic energy, ε, but the value of ε when
approaching solid walls remains finite. Other quantities mentioned earlier are
the turbulence time scale τ or its inverse ω.

Implementing the six additional transport equations in 3d (four equations
in 2d) required for the DRSM or ARSM models will require a large additional
computational effort. The use of an EARSM or simple eddy-viscosity model
will instead require only two transport equations, one each to determine the
velocity and lengthscales of the modelled turbulence. The velocity scale is
commonly taken as

√
K and the transport equation for the kinetic energy

can be derived from equation (2.6) by substituting K = 1
2uiui. The choice

of auxiliary lengthscale-determining parameter is connected to the dissipation
term in the K-equation. The most widely used is the dissipation rate ε, but
also the inverse of the turbulence time scale ω (Wilcox (1993)) and v2 − f by
Durbin (1995) have been proven appropriate. Recently, Hanjalić et al. (2004)
proposed a modification to the v2 − f by introducing ξ = v2/K.

We will here focus on the transport equation for ω to close the system
of equations. The Wilcox (1993) low-Reynolds number formulation was used
with near-wall behavior mimicked through the use of the turbulence Reynolds
number ReT = K/(ων). The baseline Wilcox-model for K and ω is defined as

DK

Dt
= P − β∗ωK +

∂

∂xk

[(
ν +

νT

σK

)
∂K

∂xk

]
(2.21)

Dω

Dt
= Pω − βω2 +

∂

∂xj

[(
ν +

νT

σω

)
∂

∂xj
ω

]
(2.22)

The production terms of turbulence kinetic energy, P, and inverse turbulence
time-scale, Pω, are formulated as

P = −uiuj
∂Ui

∂xj
, Pω = γ

ω

K
P (2.23)

where the ratio ω/K in the definition of Pω also can be expressed as 1/νT .
The latter expression can be considered more appropriate when comparing
with later proposed formulations of the ω-equation. Alternative formulations
have been proposed by e.g. Menter (1994), Bredberg et al. (2002) and Hellsten
(2004). Menter used the eddy viscosity expression and introduced a blending
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function between boundary layer flow and outer flow. With the blending func-
tion the K-ω equations are solved close to solid walls and transforms into a
K-ε formulation far away from walls. A similar approach was used by Hellsten,
who used the Wallin & Johansson EARSM for the eddy viscosity expression.
The Bredberg et al. model originated from a paper by Peng et al. (1997)
who derived a K-ω model from a low-Re K-ε model. These are described in
detail in Paper 4. It is worth mentioning here that all models have added a
cross-diffusion term, defined as

CDω = σd
1
ω

∂K

∂xj

∂ω

∂xj
(2.24)

with σd as model parameter, to obtain a consistent behavior of ω in the interface
between boundary layer and free-stream in external flows. The expression for
the turbulence viscosity differ depending on the level of Reynolds stress model.
A list of the formulations of νT is found in Paper 4.

2.2.1. Low-Reynolds number K-ω model

Wilcox (1993) introduced damping functions for the α and β∗-coefficients in
equations (2.21) and (2.22) based on the turbulence Reynolds number ReT as

α∗ =
α∗0 + ReT /Rk

1 + ReT /Rk
(2.25)

α =
5
9

α0 + ReT /Rω

1 + ReT /Rω

1
α∗

(2.26)

β∗ =
9

100
5/18 + (ReT /Rβ)4

1 + (ReT /Rβ)4
(2.27)

β = 3/40
σ∗ = σ = 1/2 α∗0 = β/3 α0 = 1/10

Rk = 6 Rω = 2.7 Rβ = 10
ReT = K

ων

(2.28)

The value of Rβ has been changes from the original value 8.0 determined by
Wilcox since Wallin & Johansson (2000) concluded that Reβ = 10 gives better
agreement for the mean streamwise velocity profile in the log-layer when using
EARSM to model the Reynolds stresses. The near-wall correction coefficients
α, α∗ and β∗ are independent of wall normal distance function, in contrast to
the f1 wall damping function of the EARSM, but instead contain the turbu-
lence Reynolds number, or equivalently the ratio K/ω. The near-wall limiting
behavior of K and ω are proportional to y2 and y−2 respectively, hence ReT →0
as y→0.

2.3. Splitting the ω-equation
The near-wall behavior of ω is singular as y → 0, were y is the wall normal
distance. One can show that K → y2 and ε→ y0. Combining ε = β∗ωK with
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the asymptotic behavior of β∗→ β/3, as seen from eq. (2.27), we obtain the
near wall behavior as

ω =
6ν

βy2
y+ < 2.5 (2.29)

This, however, causes numerical difficulties since ω →∞ as y → 0. The de-
struction term in the ω-equation (2.22) behaves as y−4 and the same is true
for the diffusion term. To handle this a splitting of ω is desirable. An alternate
expression for ω is derived in Paper 4 by decomposing ω into two parts as

ω = ω̃ + ωwall (2.30)

with ωwall is equal to the expression given by equation (2.29) in the whole do-
main, and ω̃ has Dirichlet condition at walls, i.e. ω̃ = 0 for y = 0. The method
to obtain the wall-normal distance necessary to evaluate ωwall is derived in Pa-
per 5. A short description of the advantages of introducing the decomposition
are found below.

Substituting ω = ω̃ + ωwall into equation (2.22) transfer the problem from
calculating large values of ω close to the wall to handling the prescribed function
ωwall. Even though ωwall∼ y−2, the second and fourth terms of the right hand
side of equation (2.22) are of order y−4, but

βω2
wall =

(6ν)2

βy4

ν
∂2ωwall

∂y2
= 6ν

6ν

βy4

⇒ βω2
wall = ν

∂2ωwall

∂y2
(2.31)

which yields a modified equation for ω as

Dω̃

Dt
= Pω − β

(
ω̃2 + 2ω̃ωwall

)
+∇ [(ν + σνT )∇ω̃] +∇ [σνT∇ωwall] (2.32)

The eddy viscosity, νT , should tend to zero as y3, which means that the last
term in equation (2.32) vanishes at the wall. In the EARSM context two terms
on the right hand side are still singular at the wall (∼ y−1). An expression for
the near-wall behavior of ω̃ is obtained from this condition, and depends on
the choice of eddy-viscosity model.

The value of ωwall at the boundary now becomes unimportant since it is
only necessary to compute the behavior of ω̃ as y→ 0. The near-wall resolution
of ω is no longer the limiting factor, but rather the resolution of the near-wall
peak of K, as concluded i Paper 4. The shear stress model by Menter need
two nodes below y+ = 3 while Hellsten used an equivalent sand roughness to
determine the wall-value of ω. For simplicity the boundary value for ωwall was
set to (60ν)/(βy2

1), where y1 denotes the distance from the wall to the closest
node.

It is shown in Paper 4 that the decomposition can be introduced in most ω-
equations to date, e.g. Menter (1994), Hellsten (2004) and the low-Re EARSM
and K-ω platform used i Papers 1–4.
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2.4. Wall-normal distance function
One of the problems with implementation of turbulence models in CFD codes
is that the introduction of damping functions, such as f1 in equation (2.18), in-
troduces the need to uniquely define the wall distance, which has to be defined
specifically for each mesh or flow-case. By introducing the concept of propa-
gating front methods, described by Sethian (1996) this can easily be computed.

The idea of Level Set methods and Fast marching methods was originally
used to solve the problem of interface tracking. This was intended to be ap-
plicable to e.g. two phase flow or particle tracking. The approach used in this
paper was to formulate a scalar equation for φ, which in each gridpoint would
contain a value equal to the shortest distance to any wall. The wall boundary
condition was naturally set to φwall = 0. This was obtained by defining an
equation where the absolute value of the gradient of φ must be equal to 1 in
all gridpoints, or F |∇φ| = 1, where F is the propagation speed. The evolution
equation of φ is therefore formulated

φt − (1− F |∇φ|) = 0 (2.33)

with φt denoting time derivative and where the solution propagates along the
wall normal. Ideally F = 1.0, but to damp noise and avoid swallow-tail effects
in the numerical scheme, a damping term is added by restating F = 1−µφ∇2φ.

φt − (1− |∇φ|) = µφ∇2φ (2.34)

with µφ acting as an artificial viscosity, set proportional to the local length of
the element sides in the mesh. By letting the φ-equation (2.34) reach steady
state before any flow calculations were performed, φ was used as wall normal
distance in the expressions for f1 (2.18) and ωwall (2.29).

Solving equation (2.34) in any geometry, regardless of complexity or spatial
dimensions and with solid wall boundary conditions as stated above, gives
the possibility to freely introduce algebraic expressions based on wall normal
distance without prior knowledge of the exact domain shape.

See Paper 5 for more details.

2.5. Scalar flux modelling
Once the set of equations governing the flow has been determined, the behavior
of additional quantities can be determined by the use of the underlying flow
field. One example is the transport of a passive scalar. Typical practical
examples of quantities that can be passive scalars are fluid temperature (if
buoyancy or heating through friction are neglected), seeding particles in water
and pollution transported through the air from industrial areas. The inclusion
of the word passive indicates that the scalar is affected by the flow but in turn
does not affect the flow. The scalar Θ̃ and the governing advection-diffusion
equation can be decomposed in to a mean and a fluctuating part, Θ̃ = Θ + θ,
in the same way as the velocity and momentum equations in the fluid model.
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Instead of viscosity, there will be a molecular diffusivity, denoted α and the non-
dimensional quantity related to the diffusion is the Prandtl number Pr = ν/α.
The Reynolds averaged transport equation for Θ is

DΘ
Dt

=
∂

∂xj

(
α

∂Θ
∂xj

− ujθ

)
(2.35)

where −ujθ denote the scalar flux vector. The most common interpretation of
the passive scalar is temperature and this term is then the turbulent heat flux
vector.

Similar to the Reynolds stress models described above, the scalar flux vec-
tor can obtained by models ranging from complex differential scalar flux models
dependent on Reynolds stresses and mean scalar gradient to the simple eddy-
diffusivity assumption. Several proposed models have been calibrated against
DNS and LES of turbulent channel flows and homogenous shear flows, e.g. by
Daly & Harlow (1970), Kim & Moin (1989), Kawamura et al. (1999) and Wik-
ström et al. (2000). Analogous to K and ε of the turbulent flow equations are
the scalar variance Kθ = 1

2θ2 and its dissipation εθ. These are also modelled by
transport equations, and formulations have been proposed by e.g. Abe et al.
(1996), Nagano & Shimada (1996) and Rokni & Sundén (2003).

In Paper 5, the explicit algebraic scalar flux model described by Wikström
et al. (WWJ-EASFM), modified by Högström et al. (2001), was used to model
passive scalar transport in the asymmetric diffuser. Högström et al. (2001)
investigated a variant of the explicit algebraic scalar flux model proposed by
Wikström et al. where the time scale ratio r, defined as the ratio between the
scalar ant turbulence time scales or

r =
τθ

τ
=

Kθ/εθ

K/ε
(2.36)

was assumed to be constant, thus eliminating the need to model transport
equations for Kθ and εθ. The combined model, described in detail in Paper 5,
is defined as

uiθ = KτDijΘ,j (2.37)

with the dispersion tensor Dij defined as

Dij = (1− cθ4)A−1
ik

(
akj + 2

3δkj

)
(2.38)

The expression for A−1
ij derived by Wikström et al. is explicit in the Reynolds

stress anisotropy and gradients of the mean flow and mean scalar fields as

A−1
ij =

(
G2 − 1

2Q1

)
δij −G (cSSij + cΩΩij) + (cSSij + cΩΩij)

2

G3 − 1
2GQ1 + 1

2Q2
, (2.39)

with

G =
1
2

(
2cθ1 − 1− 1

r
+

PK

ε

)
(2.40)
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Sij =
1
2

K

ε
(Ui,j + Uj,i) , Ωij =

1
2

K

ε
(Ui,j − Uj,i) (2.41)

cS = 1− cθ2 − cθ3, cΩ = 1− cθ2 + cθ3 (2.42)
Q1 = c2

SIIS + c2
ΩIIΩ, Q2 = 2

3c3
SIIIS + 2cSc2

ΩIV (2.43)

and the second and third order tensor invariants are expressed as

IIS = tr{S2}, IIΩ = tr{Ω2}, IIIS = tr{S3}, IV = tr{SΩ2}. (2.44)

Again drawing parallels to the EARSM K-ω platform for the turbulent flow, the
dissipation was expressed as ε ∼ ωK. A−1

ij . The EASFM described by (2.39)–
(2.44), without the Högström et al. modification, was calibrated against DNS
in homogenous shear flow, turbulent channel flow at Reτ = 265 and wake flow.
This is compared to a eddy-diffusivity model (EDM) where the scalar flux
vector was assumed proportional to the mean scalar gradient, uiθ ∼ ∂Θ/∂xi.



CHAPTER 3

Numerical treatment

In this chapter the numerical aspects will be described in some detail. As a
prelude, we will briefly recapitulate the finite element method, We will then
describe the solver used for the Navier-Stokes equations and some numerical
issues in the K-ω and EARSM formulations.

The finite element method was first developed to solve problems in struc-
tural mechanics, but was also adopted to solve fluid mechanic problems. In
finite difference or finite volume methods, one takes the existing equations and
replace derivatives with appropriate discrete counterparts containing values of
unknowns at a number of adjacent points. The finite element approach is
somewhat different in that the mathematical problem is converted to varia-
tional form and an approximate solution is found as a sum of a finite number
of base functions.

3.1. Finite Element Method (FEM)
To introduce the weak form of a partial differential equation, PDE, let us look
at a very simple example, the heat equation on vector form with Neumann
boundary condition.

∂θ

∂t
= α∇2θ in Ω (3.1)

with Dirichlet boundary condition

θ = 0 on Γ0 (3.2)

and Neumann boundary condition

α
∂θ

∂n
= q on Γ1 (3.3)

In (3.1) θ denotes the temperature, α is a (constant) thermal diffusivity and in
(3.3) n is the wall normal direction. Introducing a test function η∈V , where V
is a given set of admissible functions, and integrating over the domain Ω gives∫

Ω
η
∂θ

∂t
dV =

∫
Ω

αη∇2θdV (3.4)

Partial integration of the right hand side of (3.4) yields: Find θ∈V such that∫
Ω

η
∂θ

∂t
dV = −

∫
Ω

α∇η∇θdV +
∫

Γ1

ηqdS η∈V (3.5)

15
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Equation (3.5) is the weak form of the PDE (3.1) with the Neumann boundary
condition (3.3) incorporated in the boundary integral obtained from equation
(3.5) by using Greens formula.

The introduction of V as a set of admissible functions needs some further
explanation. For the volume integral to be bounded on Ω, the test function has
to be differentiable and square integrable on Ω, hence V is the Hilbert space
H1

0 defined as

H1
0 (Ω) = {η ∈ H1(Ω) : η = 0 on Γ0}

with

H1(Ω) = {η ∈ L2(Ω) :
∂η

∂xi
∈ L2, i = 1, .., d}

L2(Ω) = {η :
∫

Ω
η2dV <∞}

and d denoting the number of spatial dimensions.
To obtain an approximate solution of these equations, the continuous do-

main Ω is divided into a finite set of m elements, forming the discretized domain
Th. In the 2D case with triangular elements the discretized domain is the set
Th = {K1, . . . ,Km} of Km non-overlapping triangles Ki. The corners of these
triangles form a set of n nodes of the mesh. Also, let h denote the longest
element side found among the elements in Th. The space Vh ⊂ V denotes the
space consisting of piecewise polynomials. Even more specifically, let P 1 ⊂ Vh

denote the subspace of piecewise linear test functions.
For a triangle K with the nodes Nj , j=1,2,3, the base functions λi ∈ P 1

satisfy

λi(Nj) = δij (3.6)

or put into words, the base function for node i is equal to 1 on the node and 0
on any other node. From this, η(1x) ∈ P 1 is then represented as

η(1x) =
3∑

i=1

η(Ni)λi(1x) (3.7)

The exact shape of the base function between nodes depend on the needed
accuracy. The most widely used types are piecewise polynomials with constant
(P 0), linear (P 1) or quadratic (P 2) behavior between nodes. For a detailed
description, see Gresho & Sani (1998).

In the computations of the turbulent channel flow and asymmetric diffuser
described in chapter 5, linear P1 elements have been used for all equations. This
was possible through the introduction of a fractional step method, described
in section 3.2.1.
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3.2. Weak form of the Navier-Stokes equations
The incompressible Navier-Stokes equations have been defined in chapter 2,
and are restated here on tensor form for convenience.

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+

∂

∂xj
(2νs̃ij) in Ω (3.8)

∂ũi

∂xi
= 0 (3.9)

with boundary conditions
ũi = u0

i on Γ0 (3.10)

ũi = 0 on Γ1 (3.11)

nj
∂ũi

∂xj
= 0, p̃ = 0 on Γ2 (3.12)

with indices 0, 1 and 2 on Γ representing inlet, solid wall and outlet boundaries
respectively. To obtain a weak form of (3.8)-(3.12) the test function η ∈ V
was introduced as explained in the previous section and integrated over the
domain. Find ũi∈V such that∫

Ω
η
∂ũi

∂t
dV+

∫
Ω

ηũj
∂ũi

∂xj
dV+

∫
Ω

η
∂p̃

∂xi
dV =

∫
Ω

η
∂

∂xj
2νs̃ijdV ∀η∈V (3.13)∫

Ω
η
∂ũi

∂xi
dV = 0 (3.14)

or equivalently, expanding s̃ij = 1
2 (∂ũi/∂xj + ∂ũj/∂xi)∫

Ω
η
∂ũi

∂t
+ ηũj

∂ũi

∂xj
dV = −

∫
Ω

η
∂p̃

∂xi
dV

−
∫

Ω
ν

∂η

∂xj

(
∂ũi

∂xj
+

∂ũj

∂xi

)
dV +

∫
Γ

νη

(
∂ũi

∂xj
+

∂ũj

∂xi

)
njdS (3.15)∫

Ω
η
∂ũi

∂xi
dV = 0 (3.16)

Since η = 0 on Γ0,1 and ∂ui/∂n=0 on Γ2, the boundary integrals are eliminated.

3.2.1. Fractional step method in time

Time derivatives are approximated by a finite difference,

∂ũi

∂t
→ ũn

i − ũn−1
i

∆t
(3.17)

with ũn
i as the unknown for which the equation is solved, ũn−1

i denoting the
solution at the previous time step and ∆t the time increment.

Guermond & Quartapelle (1997) introduced an incremental fractional step
method where the velocity field at time iteration n is obtained by first calcu-
lating an intermediate velocity field ûn

i . For convenience, let N and L denote
the advection and diffusion terms of equation (3.15) at this moment. The time
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discretized form of the Navier-Stokes equations, combining equations (3.15),
and (3.17), then take the form∫

Ω
η
ûn

i − ûn−1
i

∆t
dV + N =

−
∫

Ω
η
∂p̃n−1

∂xi
dV −

∫
Ω

η
∂

∂xi

(
p̃n − p̃n−1

)
dV + L (3.18)

where the pressure at time n is rewritten as p̃n = p̃n−1 +(p̃n− p̃n−1). Using the
same base function for velocity and pressure is always unstable (Gresho & Sani
(1998)), but stabilization can be achieved by ’regularizing’ the incompressibility
constraint by a adding a laplacian of the pressure to the right hand side.∫

Ω
η
∂ũn

i

∂xi
dV =

∫
ηεp

∂2p̃n

∂xi∂xi
(3.19)

with εp as a strictly positive regularization parameter of order O(h2).
The fractional step method divides equation (3.18) into a three step pro-

cedure. First the viscous step, accounting for the viscous diffusion and the
convection, then a Poisson equation for the pressure update and finally the
convection step determining the divergence free end-of-step velocities. The in-
termediate step velocity ûn

i , introduced to equation (3.18), will ultimately be
solved for through∫

Ω
η
ûn

i − ûn−1
i

∆t
dV +

∫
Ω

ηûn−1
j

∂ûn
i

∂xj
dV =

−
∫

Ω
η

∂

∂xi

(
2p̃n−1 − p̃n−2

)
dV −

∫
Ω

∂η

∂xj
2νŝn

ijdV (3.20)

yielding the equation for the fractional time step velocity only. After solving
for ûn

i the continuity equation is replaced by the Poisson pressure equation by
taking the gradient of equation (3.22) and substituting the end-of-step velocity
expression from the continuity equation (3.19), hence∫

Ω
η

∂2

∂xi∂xi

(
p̃n − p̃n−1

)
dV =

1
∆t

[∫
Ω

η
∂ûn

i

∂xi
dV +

∫
Ω

ηεp
∂2p̃n

∂xi∂xi
dV

]
(3.21)

The end-of-step velocity is finally obtained from∫
Ω

η
ũn

i − ûn
i

∆t
dV = −

∫
Ω

η
∂

∂xi

(
p̃n − p̃n−1

)
dV (3.22)

The split scheme now consists of the three steps above:

1. Solve equation (3.20) for ûn
i . Note that the convection and viscous terms

are solved implicitly using a GMRES solver.
2. Solve (3.21) for p̃n using a preconditioned CG solver.
3. Calculate corrected velocities ũn

i from (3.22)

As shown by Guermond & Quartapelle (1997), this procedure greatly reduces
spurious pressure waves since ũn

i was eliminated from (3.20).
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3.3. Boundary conditions
No slip conditions are used at solid walls, implying that mean velocities and
Reynolds stresses are zero at walls. The use of the K − ω formulation with
decomposed ω-equation as turbulence model enabled integration down to the
walls and consequently K|wall = ω̃|wall = 0. The boundary value of ωwall can
be set to an arbitrary large number since it is, by definition, singular on the
boundary and the behavior up to the last grid point is prescribed.

The set of unknowns are all (except the pressure) described on the in-
let, while at outlet boundaries the Neumann condition is applies, defined by
equation (3.12). The pressure is set equal to zero on the outlet.

3.4. Distance function
To obtain the distance to the closest wall at any point in the computational
domain, regardless of the shape of the domain, a distance function was com-
puted. The derivation and background is found in section 2.4 as well as Paper
5. The differential equation is restated here for convenience, with φ denoting
the wall normal distance.

∂φ

∂t
− (1− |∇φ|) = µφ∇2φ (3.23)

With the 2-norm of the gradient expressed as |ξ| = ξ2/
√

ξ2 and replacing ξ
with ∂φ/∂xj , the variational form of equation (3.23) was stated as∫

Ω
η
φn − φn−1

∆t
dV −

∫
Ω
ηdV +

∫
Ω

η

 ∂φn

∂xj

∂φn−1

∂xj√
∂φn−1

∂xj

∂φn−1

∂xj
+ εφ

dV =

−
∫

Ω
µφ

∂φn

∂xj

∂η

∂xj
dV

(3.24)

The parameter εφ , 1 is introduced to avoid dividing by zero at peaks and
ridges in the φ-field, where |φ| is close to 0. φ was first computed by solving the
time dependent equation (3.24) to steady state. Since (3.24) is independent
of the flow, the solution for the distance function was used without further
updates throughout the solution of the flow problem. The propagation speed
of the distance function is equal to one, hence the time needed to reach steady
state equals half the estimated maximum distance between two solid walls. The
computational effort required for this procedure is negligible compared to the
effort to obtain the flow solution.



CHAPTER 4

Automated code generation

As the system of equations gets more and more complex, the derivation of the
equations and the conversion from partial differential equations to a working
computer code can be very time consuming. Also the risk of introducing er-
rors is high, especially as the dimensions of the problem increases. By using
symbolic computation coupled with automated code generation, the possibility
arises to express the equations in more general and symbolic format.

Using the femLego toolbox, based on the work of Amberg et al. (1999),
together with Maple, the partial differential equations, the boundary conditions
and initial conditions as well as the method of solving each equation can all be
specified in a Maple worksheet. The finite element code is generated, using the
femLego toolbox, from that sheet. Maple presents the equations in a readable
and easily edited format and it is possible to put the documentation of the
mathematical part of the project within the script. It also gives the advantage
of deriving the equations in the language of applied mathematics.

4.1. Example PDE: The heat equation
The heat equation has been defined (3.1-3.3) and put on weak formulation
(3.5) in the previous chapter. It is here used to show how easy and flexible
the environment can be to work with. Though we will only describe the solu-
tion procedure of a single equation PDE, it is easily expanded to systems of
equations.

The computational domain in this example is a 2D rectangle with a heated
left wall (Θ = T1 on Γ1) and a cold isothermal object inside (Θ = T2 on Γ2).
The horizontal walls are insulated (∂Θ/∂n=0 on Γ3) and the left wall has a
prescribed heat flux (α∂Θ/∂n = q on Γ4). The geometry is shown in figure 4.1
and the Maple worksheet for the complete problem in figure 4.2. The necessary
steps and definitions in the process are described in section 4.2.

4.2. Description of the femLego syntax
4.2.1. Deriving the equations

With the help of the tensor operator package in femLego the equations can be
formulated in tensor form and complex tensorial expressions are easily defined.
The nabla operator ∂/∂xj is implemented as nab(...)[j] and the Einstein
summation rule is invoked by using the multiplication operator &t. The weak

20



4.2. DESCRIPTION OF THE FEMLEGO SYNTAX 21

Γ3

Γ3

Γ4
Γ2

Γ1

Figure 4.1. Domain and boundary notations used in the heat
equation example.

form of the equation is given by equation (3.5), which is restated here for
convenience. ∫

Ω
η
∂Θ
∂t

dV = −
∫

Ω
α∇η∇ΘdV +

∫
Γ4

ηqdS η∈V (4.1)

This is inserted under the heading ’Specify PDE’ in figure 4.2. Integrations
over volumes are denoted ElementInt() and over boundaries BoundaryInt().
Notice the use of &t to express∫

Ω
α∇η · ∇ΘdV (4.2)

as
ElementInt(alpha ∗ nab(eta(x, y))[j] &t nab(theta(x, y))[j])

which, after evaluating gradients and the scalar multiplication, generates the
output

−ElementInt
(
α

((
∂

∂x
η(x, y)

)(
∂

∂x
Θ(x, y)

)
+

(
∂

∂y
η(x, y)

)(
∂

∂y
Θ(x, y)

)))
The time derivative is approximated as a simple finite difference. Notice the
use of Θ(x, y) as the temperature at the new time step to be computed and
Θ0(x, y) as the temperature from the previous time step. In this example the
laplacian of the right hand side is expressed in terms of Θ(x, y), which makes
this an implicit term.

Equations, as well as boundary and initial conditions, may contain explicit
space and time dependencies, which are introduced using x, y or time in the
expressions. Some equations are simple relations that only need copying of
node values e.g. ωwall. For such expressions CopyEq(...) can be used instead
of ElementInt.

4.2.2. Defining the input lists

Under the heading ’Define input lists’ in figure 4.2, the equations that have
been defined are stored, together with the names of the unknowns etc. in
a set of lists that are used repeatedly as input in the sections below. The
equations are stored in the list eq list, which also specifies the order in which
the equations are solved in the case of a system of equations. The corresponding
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unknown for which each equation is solved for is listed in unknown list. The
variable name of the known solution from the previous time step is stored in
old unknown list. The definitions of the two unknown-lists correspond to the
notations Θn and Θn−1 used in chapter 3.

The list params list specifies scalar parameters introduced in the equa-
tions whose values have to be set before each calculation. This is convenient
for material properties of the fluid or boundary and initial values.

4.2.3. Specifying boundary and initial conditions

The Dirichlet boundary conditions are specified under the next heading in figure
4.2, named just that: ’Dirichlet boundary conditions’. The list DBCeq contains
an expression for each unknown which have non-zero Dirichlet boundary con-
ditions at any boundary. The parameter qBCval is used as a flag to associate
boundary conditions with different parts of the boundary. Several Dirichlet con-
ditions for one unknown can be specified by the use of tswitch(qBCval-n).
n = 1, . . . , N denotes numbers specified in the description of the mesh that
identify different parts of the boundary.

The need to lock only a single nodal value by a Dirichlet condition can
arise, for instance for the pressure in an internal flow. This is made available
by the command SinglePoint(unknown) for inclusion in DBCeq.

The expressions for the initial conditions are found under the heading
’Specify initial conditions’ in figure 4.2. These are specified in the same way as
the entries in the DBCeq-list.

4.2.4. Pre and post processing

Generation of the unstructured mesh and the boundary condition list for each
boundary and unknown have to be done separately. So far, the femLego can
read meshes created in Femlab or Gambit, but the open structure of femLego
gives the possibility to define generic import routines to accommodate other
mesh generators. In the section ’Specify input’ in figure 4.2 femLego commands
are called that incorporate the code to read meshes and input in a specific
format.

A parameter file named indata sample, containing among other things the
parameters listed in params list is produced. An example of the necessary
and auxiliary quantities can be found in table 4.1. The three first lines controls
the input, output, convergence tolerance and time parameters. The following
lines are added depending on the number of entries in the params list.

The post processing of data is not included in femLego, but output func-
tions support export of the results to be read by Femlab, Matlab, AVS or
OpenDX. The code that creates output for a specific application is included
by executing the appropriate femLego command under the heading ’Specify
output’.
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heat empty file save: outplotfile, infile
1.E-8 1000 tolerance and maxiter in cg:
0.1 25. 5. dt, endtime, plottime
1.96E-5 15.4 alpha, T1
4. 2. T2, Q

Table 4.1. Indata file with parameters defined in figure 4.2.

4.2.5. Creating the solver

Under the heading ’Specify linear algebra solvers’, the methods used to solve
the linear system of equations that arise are specified. Each equation is solved
one after the other in a split manner. The list solve list specifies the linear
solver that is to be used for each equation, in the order they are given in
eq list. Typical choices are the preconditioned conjugate gradient (iccg)
method for symmetric positive definite equations, or the generalized minimum
residual (gmres) method for non-symmetric equations. copy is used for an
equation defined with the CopyEq() keyword. This is useful in the case where
a variable is given by a simple algebraic expression which can be computed at
each node.

The full set of fortran files needed to compile the code are generated by
the mkFem(...) command, under the heading ’Creating the core of the solver’.
Here the name of the base function is specified together with a filename calling
a file that contains all the definitions that specify the particular finite element.

Once the code has been compiled, it can be executed together with an
indata file an a mesh file in the proper formats described above.
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> read(femLego);

Specify PDEs
> # Heat equation for temperature theta. Alpha is the thermal diffusivity.
> heateq:=ElementInt(eta(x,y)*(theta(x,y)-theta0(x,y))/dt)=-ElementInt(alpha*

nab(eta(x,y))[j] &t nab(theta(x,y))[j])+BoundaryInt(eta(x,y)*Q);

heateq








ElementInt

( )η ,x y ( )−( )θ ,x y ( )θ0 ,x y
dt

= := 

− +








ElementInt α









+











∂

∂

x
( )η ,x y











∂

∂

x
( )θ ,x y











∂

∂

y
( )η ,x y











∂

∂

y
( )θ ,x y ( )BoundaryInt ( )η ,x y Q

Define input lists
> eq_list:= [heateq]:
> unknown_list:=  [theta(x,y)]:
> old_unknown_list:=  [theta0(x,y)]:
> params_list:= [alpha,T1,T2,Q]:

Dirichlet boundary conditions
> # Dirichlet BCs;
> # DBCueq:= u(x,y)=x*qBCpara gives u=x on the boundary.

# Variables that dont appear on the left hand sides are 
# assigned the predfined value qBCval, which is read 
# with the mesh.

> DBCeq:= theta(x,y)=T1*tswitch(qBCval-1)+T2*tswitch(qBCval-2);
 := DBCeq =( )θ ,x y +T1 ( )tswitch −qBCval 1 T2 ( )tswitch −qBCval 2

> mkDirBC([DBCeq],unknown_list,old_unknown_list, params_list,‘2DP1_gsq_bsf‘):
adddbc
SPdirb

Specify initial conditions
> # Initial conditions. ic_eq is on the form ’unknown = expr’:
> # variables that do not enter in lhs of an ic_eq are given the intial # 

value 0:
> mkIC([ theta(x,y)=T1 ],  unknown_list, params_list , ‘2DP1_gsq_bsf‘);

Specify input
> # get files to read input from femlab. Input from Gambit also available;
> getFemLabInput(params_list):

indata_sample

Specify output
> FemLabPlot([theta(x,y)],[temperature],unknown_list);

Specify linear algebra solvers
> # set up different solvers to use with different equations:
> # Here incomplete Choleski preconditioned conjugate gradients 

# are used for both equations. 
> solve_list:=[iccg]:
> mkSolve(solve_list,eq_list);

dosolve 
solve 

Create the core of the solver
> # create residual computations etc:
> size_parameters:=mkFem(eq_list, unknown_list,

old_unknown_list, params_list, eta(x,y), ‘2DP1_gsq_bsf‘);
 

check include/size.h:
,nvar: 1
,nobf: 3

Figure 4.2. Maple worksheet for solving the heat equation.



CHAPTER 5

Results

In this chapter a short introduction to the asymmetric diffuser geometry is
made. A summary of the results from Papers 1–4 are presented, comprising
mean flow behavior, turbulence quantities, mean passive scalar and scalar flux
components.

5.1. Decomposition of ω

In the numerical solution of two-equation models, the requirement of the near-
wall node resolution, usually associated with the use of the ω-equation as
lengthscale determining equation, is very high due to the asymptotic near-
wall behavior of ω ∼ y−2. This requirement has been substantially relaxed by
the introduction of a decomposition of ω = ω̃ + ωwall. The y−2 dependency is
included in ωwall and ω̃ is the property that is solved. This is shown in Paper
4 where three ω-formulations are modified to include the decomposition. The
three formulations are the low-Re Wilcox (1993), Menter (1994) SST and Hell-
sten (2004). The near wall behaviors of the two parts of ω in turbulent channel
flow at ReH = 40 000 are shown in figure 5.1, results from. At y+ = 2.5 the
ratio ωwall/ω̃ = 20, satisfying the condition that ωwall should be the dominating
term for y+ < 2.5.

The slope of ω̃ in the near-wall region where ωwall is dominant is determined
by the relation

ω̃ ≈ − γ

2β
aijSij ∼ dn as d→ 0 (5.1)

and n = 0, 1, 2 depending on the choice of anisotropy formulation. The com-
puted near-wall behavior of ω̃ for different models is compared to the ana-
lytical relation (5.1) in figure 5.2. It was concluded in Paper 4 that the first
wall-normal node, y+

1 , could be placed at y+ = 5 if the decomposition was
employed. It was also shown that this distance was limited by the resolution
of K rather than ω̃.

5.2. Plane asymmetric diffuser geometry
The turbulent flow in an asymmetric diffuser contains a separated region along
the inclined wall if the inclination angle is large enough. The geometry was
initially used in experiments and computations by Obi et al. (1993b). Later
the ERCOFTAC organisation defined this as a standard test case based on the
geometry used by Obi. The diffuser geometry consists of three main parts.
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Figure 5.1. The magnitudes of (– · –) ω̃, (– –) ωwall and (—)
ω from the wall to the centerline.

100 101 102
10-1

100

101

102

y+

ω̃

Figure 5.2. ω̃ close to the wall for Menter SST (—), Hellsten
(– –) and Wilcox (– · –). Thick lines denote ω̃ and thin lines
the behaviour using the relation equation (5.1), i.e. dn, n =
0, 1, 2 respectively, as d→ 0.

First, a plane inlet channel long enough to achieve a fully developed turbulent
profile before entering the second part, the diffuser. An inlet length of 110H has
been used in the present calculations, agreeing with the ERCOFTAC guidelines.
The diffuser starts with an upstream corner on one of the walls, with corner
radius of 9.7H and ends with an identical corner and an exit channel with a
length of at least 60H. The expansion ration between inlet and exit channel is
4.7H.



5.2. PLANE ASYMMETRIC DIFFUSER GEOMETRY 27

The challenge for turbulence models is to predict the strong asymmetry in
the velocity profile and the location of the separation and reattachment points
of the separated region in this geometry. The separation point is pressure
induced, in contrast to other bench mark geometries such as the 2d backward-
facing step or the 3d surface mounted cube, where the separation points are
defined by sharp edges in the geometry.

Experiments were initially performed by Obi et al. (1993a) using 10◦ in-
clination angle and a Reynolds number of ReH = 40 000 based on the inlet
bulk streamwise velocity Ub and channel height H. Experiments have also been
carried out, using 10◦, by Buice & Eaton (2000). The 10◦ geometry has been
used as a test case for turbulence models by ERCOFTAC, with a workshop
comprising of K-ε and K-ω models. A large eddy simulation (LES) has also
been reported by Kaltenbach et al. (1999) at Reτ = 1 000 based on half in-
let channel height and inlet channel friction velocity. The results from LES
showed close agreement with experimental data from Buice & Eaton for the
mean velocity profiles, while a discrepancy was found in the location of the reat-
tachment point. Kaltenbach concluded that subgrid-scale modelling played an
essential role since sub-grid stresses contributed to up to 8% of the total shear
stresses. Apsley & Leschziner (2000) found that strain dependent coefficients
and anisotropy resolving models are needed to correctly capture the diffuser
flow. In their study, they compared eddy-viscosity models, anisotropy resolv-
ing models as well as differential Reynolds stress models. Iaccarino (2000) used
commercial CFD codes, implementing the v2 − f model proposed by Durbin
(1995) and the K-ε model. The K-ε model was unable to predict a separation
region, while the extent agreed within 6% for the v2− f model compared with
data from both Obi et al. and Buice & Eaton.

Computations for both inclination angles have been performed with the
full differential (DRSM) as well as explicit algebraic Reynolds stress models
(EARSM) and a comparison of the size of the separated region obtained in
experiments and in the computations is found in Paper 3.

Experimental data and computations in an asymmetric diffuser at 8.5◦
angel are presented in Paper 1. The smaller angle of 8.5◦ was used in the ex-
periments reported in Paper 1 to obtain a separation region that would be more
sensitive to control efforts and to facilitate the achievement of a high degree of
spanwise homogeneity. The turbulence model used was the EARSM of Wallin
& Johansson (2000) based on a platform consisting of the K-ω equations of the
Wilcox (1993) model. Both models included low-Reynolds number corrections
as described in chapter 2.

An additional computational study of the diffuser with heated walls has
been done in order to study the modelling of turbulent transport of a passive
scalar, such as temperature. The explicit algebraic scalar flux model by Wik-
ström et al. (2000) with modifications by Högström et al. (2001), described
in Paper 2 has been compared to an eddy diffusivity model (EDM) in the
asymmetric diffuser for several boundary conditions.
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5.3. Diffuser flow
The flow entering the diffuser stays attached to both walls until a large sep-
aration region forms on the inclined (upper) wall. This will contribute to a
concentration of high streamwise velocity near the straight wall and affects the
pressure recovery along both walls.

5.3.1. Mean flow

The streamwise and wall-normal extents of the separation region is defined by
the dividing streamline, Ψ0, which in turn is defined by the streamfunction Ψ
as

Ψ =
1

UbH

∫ y

0
U(y)dy (5.2)

with U denoting the mean streamwise velocity. Computations presented in
Paper 1 indicate that the limiting angle for a separation bubble to occur is 8◦.
This must be regarded only as an indication, since the size of the separation
region in severely underestimated by computations when compared to experi-
mental data for the 8.5◦ case. Figure 5.3 shows a comparison of the extent of
the separation region, found in Paper 3, between three variants of the EARSM,
the DRSM and experiments at both 8.5◦ and 10◦. It can be observed that the
wall-normal extent of the separation region found in the experimental data is
60% larger than any extent predicted by the flow model. By using the same
ω-equation and pressure-strain rate modelling in the DRSM as in EARSM 3, it
was shown that the algebraic assumption is a viable approach in this case. The
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Figure 5.3. Size of separation region at a) 8.5◦ and b) 10◦
predicted by (—) standard WJ EARSM, (—) EARSM type
2, (—) EARSM type 3 and (—) DRSM. Dashed lines indicate
region from experiments a) Paper 1 and b) Buice & Eaton
(2000)

main problem for any turbulence model has been to capture the magnitude of
the (negative) velocity in the separation region observed in the experiments,
see e.g. Hellsten & Rautaheimo (1999) and Paper 1.
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The mean streamwise velocity component in the 8.5◦ diffuser is shown in
figure 5.4a, where the asymmetry is reasonably well predicted. Standard eddy-
viscosity models show much more symmetric velocity profiles, see Hellsten &
Rautaheimo (1999). However, the discrepancy between experiments and com-
putation is evident considering the details close to the walls. The peak velocity
outside of the separation region occurs closer to the walls in the experiments,
again indicating a larger separation region. The development downstream of
the diffuser shows how the skewed velocity profile is maintained in the compu-
tations while a new symmetric profile is recovered in the measurements. The
agreement in wall-normal position of the peak velocity was improved by the
modified EARSM described in paper 3.
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Figure 5.4. Streamwise velocity 10U/Ub from EARSM for a)
the 8.5◦ case and b) the 10◦ case, 10U/Ub. Experiments (! in
Paper 1 for a) and (◦) data from Buice & Eaton (2000) in b)).

5.3.2. Turbulence quantities

The general behavior of the turbulent quantities are shown in figure 5.5, where
the streamwise turbulence kinetic energy K/U2

b and variances u2/U2
b and v2/U2

b
are shown compared to experiments in the 8.5◦ diffuser. The agreement for
the kinetic energy between computations and experiments is satisfactory in
the beginning of the diffuser, while the computations underestimate K from
x/H = 20 and downstream. Looking at each stress component, the main
contribution to this behavior for the standard EARSM is found in the u2-
component. The large values of u2 observed in the near-wall region in the
experiments are not apparent in the computations, while the agreement for
the v2-components is satisfactory. It was observed in Paper 1 that P, the
production of K, showed good agreement with experiments, indicating that
the diffusion model may have to be changed to improve the agreement. The
modifications of the standard WJ-EARSM proposed in Paper 3 improved both
u2 and K.
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Figure 5.5. Experimental data (!) and WJ-EARSM (—)
predictions for turbulence quantities for the 8.5◦ case: a) tur-
bulence kinetic energy (500K/U2

b ), b) variance of the stream-
wise velocity component 500u2/U2

b c) variance of the wall-
normal (y-direction) velocity component (500v2/U2

b ). Dotted
line shows zero-level at each position.

5.3.3. Passive scalar modelling

The turbulent flow in the asymmetric diffuser, described in previous section,
was also used in calculation of passive temperature transport. Different tem-
perature boundary conditions were imposed at the walls and the turbulent
transport of the passive temperature was studied. The heat flux vector was
modelled using the algebraic scalar flux model (EASFM) with constant time
scale ratio described in Paper 2. A comparison of a standard eddy-diffusivity
model (EDM) and EASFM in prediction of the mean scalar Θ is shown in
figure 5.6 for both the 8.5◦ and 10◦ diffusers with a fixed difference ∆Θ be-
tween the upper and lower walls. From this it is clearly seen that the mean
scalar filed predicted by the EDM is barely affected by the presence of a sep-
aration region along the inclined wall. The mean scalar field obtained from
the use of EASFM shows a region of constant Θ forming at the separation
point and located at the dividing streamline in the wall-normal direction. The
wall-normal extent of this region grows in the streamwise direction in the re-
gion of separated flow. Downstream of the reattachment point this feature
slowly diminishes. The heat flux vector field, shown in figure 5.7, clearly shows
the advantage of using a more advanced scalar flux model, whose component
are not aligned with the mean scalar gradient. The EDM field in 5.7b is a
simple transport from the wall with high Θ to the wall with low Θ, implying
a dominant vθ component. In the case of EASFM, the two flux components
are large and of equal magnitude outside the separation region and with small
contributions inside the separation region.
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Figure 5.6. Comparison of temperature distribution (10Θ)
between EASFM (—) and EDM (– –) for the diffuser at a)
8.5◦ and b) 10◦.
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Figure 5.7. Scalar flux vector in part of the diffuser at 10◦
opening angle for a) EASFM and b) EDM. The axis are of
equal scale for the sake of comparison.



CHAPTER 6

Conclusions

The framework of automated code generation has significantly increased the
possibility to quickly and accurately implement several systems of equations
that govern turbulent flow. The momentum equations have been solved using
a fractional step method and the turbulence models comprise of differential
Reynolds stress model and explicit algebraic Reynolds stress models based in
the K-ω platform. Low-Reynolds number corrections have been included in
each model where appropriate, and a decomposition of the ω-equation has
been validated. A differential equation has been derived and verified to obtain
the closest wall-normal distance from any point in the computational domain,
regardless of number of spatial dimensions or geometric complexity.

The decomposition of ω has successfully been implemented in three widely
used formulations of the transport equation for ω and analysis show that it is
compatible with most formulations today, independent of level of the modelling
of the Reynolds stress anisotropy.

All models have been calibrated in fully developed plane channel flow and
used in asymmetric diffuser flow to asses the ability to predict flow separation.
Two inclination, or opening, angles have been used, 8.5◦ and 10◦. The low-Re
EARSM of Wallin & Johansson (2000) in combination with Wilcox (1993) low-
Re K-ω platform does not predict the same extent of the separation region as
observed in experiments at 8.5◦. The agreement can be improved by modify-
ing one of the model coefficients of the underlying pressure-strain rate model,
yielding higher levels of turbulence kinetic energy downstream of the separation
point. In the 10◦ case the wall-normal extent of the separated region shows
good agreement with experimental data from Buice & Eaton (2000), while the
location of the reattachment point is underestimated. This is also improved
with the modified EARSMs. It was also found that the results obtained by the
DRSM was rather consistent with the corresponding EARSM, indicating that
the algebraic assumption can be used in this case.

The explicit algebraic scalar flux model derived by Wikström et al. (2000)
has been used to model passive scalar transport in both fully developed tur-
bulent channel flow and asymmetric diffuser flow. Compared to an eddy-
diffusivity model, the advantages of this higher-order modelling for the scalar
flux has been shown for separated flows for several types of boundary condi-
tions.
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APPENDIX A

Pressure-sensitive paint

One possible measurement technique to obtain the pressure distribution on a
surface of complex geometry is the use of an optical/chemical approach in-
volving pressure-sensitive paint (PSP). The first article on the use of pressure-
sensitive paint in fluid flow was reported by Peterson & Fitzgerald (1980), where
the method was used to as a qualitative surface visualization technique. Today
the technique is used to obtain quantitative 2d pressure fields from an aero-
dynamic surface and has attracted interest from both the research community
and aircraft manufacturers since the early 90’s. The main area of application is
in wind-tunnel testing, but at least one system based on 35-mm film has been
developed for in-flight measurements, see Abbitt et al. (1996).

The principle approach when using the PSP is to form a surface coating
consisting of a luminescent dye in combination with a polymer primer. The
paint is exposed by a narrow band light source, where the appropriate exposure
wave length depending on the paint, ranging from 390 nm to 450 nm, while the
luminescent particles in the paint excite a ’red-shifted’ light (650–750 nm). The
intensity of the excited light is dependent on the local surface pressure, hence
the luminescence is quenched by the presence of oxygen. The light excited from
the paint is registered by a CCD-camera and the image is processed to obtain
a pressure map.

The pressure can be obtained either by registering the decay time, or life
time, of the excited light when the exposing light is delivered during a short
time, or by registering the intensity of the excited light integrated over a certain
exposure time with a continuous light source. Life time measurements are
recommended in transient or unsteady flow, where response times have been
reported in the range from 3 ms (Hubner et al. (1997)) down to 10 µs (Asai
et al. (2001)). Davies et al. (1995) concluded that the response time to a step-
change in pressure is proportional to the square of the paint thickness, with a
typical thickness of dye and primer less in the order of 20 µm.

The luminescence process was described by Morris et al. (1993) as a mech-
anism where the molecules of the luminescent dye can lose the excess energy
gained from the exposing light source by emitting a photon and return to the
ground state. Non-homogenous paint thickness and uneven illumination can
be compensated by comparing a ’wind on’ image with an image at constant,
often controlled, pressure. The relation between pressure p and intensity I is
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defined by
p

pref
=

n∑
i=0

ci

(
Iref

I

)i

, (A.1)

where subscript ’ref’ denotes the reference image and ci are calibration coeffi-
cients. In low-speed applications the variation in pressure is small and n = 1
is sufficient, called the Stern-Volmer relation. The transonic flow described in
Paper 6 included a large pressure gradient and n = 4 was used instead.

The main advantage of using PSP is, as stated above, the possibility to
obtain the pressure field of any aerodynamic surface, in contrast to the method
of using a distribution of discrete pressure-taps. The process of determining
where to put the taps and fitting them into the surface can be both complicated
and time consuming. In the paper by McLachlan & Bell (1995) it was estimated
that 30% of the cost of an aircraft wind tunnel model for determining surface
loads originated from pressure tap manufacturing and installation. The PSP
can applied to any surface, even at sharp corners, e.g. at the trailing edge of
an airfoil.

The are, however, several drawbacks. In high speeds, deformation of the
wind-tunnel model between wind-on and wind-off conditions make it difficult
to obtain accurate predictions. In many cases the PSP exhibit temperature-
sensitive characteristics, especially in low-speed flows. In Schanze et al. (1997),
the main conclusion was that the temperature sensitivity is dependent on the
diffusion time of oxygen trough the polymer binder. The use of dual life time
paints have been proposed by e.g. Hradil et al. (2002), Zelow et al. (2003) and
Gouterman et al. (2004) to remedy this problem.

With the development of more sensitive paints for low-speed applications,
the automotive industry have shown increasing interest. Morris (1995) con-
ducted PSP measurements on delta-wing shaped geometries down to Mach
0.5 (¡ 20 m/s). Measurements for automotive (Gouterman et al. (2004)) and
aeronautical (Engler et al. (2002)) applications have been performed down to
25 m/s. The temperature dependence on the pressure measurements is very
important in these flows and must be treated carefully, by e.g. dual lifetime as
described by Gouterman.

In Paper 6, experiments in a 2d transonic nozzle has been carried out
using PSP, pressure taps and thermocouples. Good agreement was achieved
through the arc-shaped nozzle for pressure obtained with pressure taps along
the centerline and PSP. The PSP data was transformed to Mach number using
isentropic relations and a good agreement was also obtained when comparing
with computational predictions.
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