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Stockholm framlägges till offentlig granskning för avläggande av teknologie
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Feedback and Adjoint Based Control of Boundary Layer Flows

Mattias Chevalier
Department of Mechanics, Royal Institute of Technology
S-100 44 Stockholm, Sweden

Abstract
Linear and nonlinear optimal control have been investigated in transitional
channel and boundary layer flows. The flow phenomena that we study are
governed by the incompressible Navier–Stokes equations and the main aim with
the control is to prevent transition from laminar to turbulent flows. A linear
model-based feedback control approach, that minimizes an objective function
which measures the perturbation energy, can be formulated where the Orr–
Sommerfeld/Squire equations model the flow dynamics. A limitation with the
formulation is that it requires complete state information. However, the control
problem can be combined with a state estimator to relax this requirement. The
estimator requires only wall measurements to reconstruct the flow in an optimal
manner.

Physically relevant stochastic models are suggested for the estimation prob-
lem which turns out to be crucial for fast convergence. Based on these models
the estimator is shown to work for both infinitesimal as well as finite amplitude
perturbations in direct numerical simulations of a channel flow at Recl = 3000.

A stochastic model for external disturbances is also constructed based on
statistical data from a turbulent channel flow at Reτ = 100. The model is
successfully applied to estimate a turbulent channel flow at the same Reynolds
number.

The combined control and estimation problem, also known as a compen-
sator, is applied to spatially developing boundary layers. The compensator is
shown to successfully reduce the perturbation energy for Tollmien–Schlichting
waves and optimal perturbations in the Blasius boundary layer. In a Falkner–
Skan–Cooke boundary layer the perturbation energy of traveling and stationary
cross-flow disturbances are also reduced.

A nonlinear control approach using the Navier–Stokes equations and the
associated adjoint equations are derived and implemented in the context of di-
rect numerical simulations of spatially-developing three-dimensional boundary
layer flows and the gradient computation is verified with finite-differences. The
nonlinear optimal control is shown to be more efficient in reducing the distur-
bance energy than feedback control when nonlinear interactions are becoming
significant in the boundary layer. For weaker disturbances the two methods
are almost indistinguishable.

Descriptors: transition control, flow control, feedback control, optimal con-
trol, objective function, Orr–Sommerfeld/Squire equations, boundary layer
flow, Falkner–Skan–Cooke flow, Navier–Stokes equations, Riccati equation, ad-
joint equations, DNS, estimation, LQG.



Preface

This thesis considers the study of feedback and adjoint based control in different
boundary layer flows. The thesis is divided in two parts where the first part
is an introduction to the research topic and an overview and summary of the
present contribution to the field of fluid mechanics. The second part consists
of five papers. A guide to the papers and the contributions of different authors
is included in the last chapter of part one.

The five papers in part two are adjusted to comply with the present thesis
format for consistency, but their content have not been altered compared to
published versions except for minor refinements and corrections.

Stockholm, November 2004
Mattias Chevalier
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Part 1

Overview and summary



CHAPTER 1

Overview

1.1. Introduction

The interest in controlling complex physical phenomena has grown as the need
for and the possible benefits from this knowledge have become clearer, both
economically but also environmentally. The field of aerodynamics is no excep-
tion. For example, large amounts of money could be saved if one could lower
the fuel consumption of an airplane by just a fraction. Controlling the flow
around the aircraft might be one way to achieve that.

A fluid motion over any surface includes a thin region, called a boundary
layer, in which the flow is accelerated from rest to the freestream velocity a
short distance above the surface. If disturbances are introduced in the bound-
ary layer, for example through wall roughness, acoustic waves, or freestream
turbulence, these disturbances can lead to transition from laminar to turbulent
flows. A flow is laminar when the fluid motion is smooth and regular. The
turbulent state on the other hand is characterized by rapidly varying velocities
in both time and space. The transition phase that occurs between the laminar
and turbulent flow has been and still is an area of intensive research. Through
a better physical understanding of transition to turbulence it is also easier to
understand how to control the different phases.

In many aerodynamic applications it is preferable to have a laminar flow
since the friction drag gets lower. For example by extending the laminar flow
regions on wings the drag can be reduced and the fuel consumption would de-
crease as a consequence. In other applications a turbulent flow state is prefer-
able, for example in combustion engines where optimal mixing is desirable.

The transition phase is especially interesting, in terms of control, because
we have the prospect of preventing or delaying transition to turbulence by
controlling strong inherent instabilities using only minute control efforts.

Flow control, as a concept, covers all kinds of efforts to control flow phe-
nomena. Interest in different aspects of flow control goes back hundreds of
years and this interest has now grown into a well-established research area.
The notion of flow control includes a wide variety of both methods and appli-
cations and a classification of those methods is useful. The first distinction is
whether energy is fed into the flow or not. In passive control methods the flow
field is altered without any energy addition. One classical example is the golf
ball that would fly shorter if it had no dimples. The dimples trigger turbulence

2



1.2. OPTIMAL CONTROL 3

which in turn delay separation and drag is reduced. In active control methods,
an energy input to the flow is required. This can be done in two ways, either
in a predetermined manner, open loop, or in a closed loop form, where some
measurements are input to the control loop. The latter method is also known
as feedback control, which emanates from the fact that measurements of the
state is fed back to the controller that reacts on the basis of that information.

To construct effective control algorithms a thorough understanding of the
underlying physics is needed. However since flow phenomena can be complex
and non-intuitive the optimal control can be difficult to find solely based on
intuition and knowledge. Therefore we would like to construct the control
algorithm in such a way that as little as possible a priori knowledge about
the flow is needed. This can be achieved by incorporating modern control
theories that more systematically approach the design of the controller. This
has been done during the last decade, however, to be able to apply these more
advanced feedback flow control algorithms, appropriate sensors and actuators
that can sense and act on sufficiently small scales in the flow, are needed. A
rapid development in Micro-electro-mechanical systems (MEMS) technology
has lead to laboratory experiments with promising devices.

In this thesis different methods of optimal control have been investigated by
means of numerical experiments. The main aim has been to prevent transition
to turbulence in boundary layer flows by applying blowing and suction control
on the boundary. The final goal is to be able to apply the control algorithms to
engineering applications but more work has to be done before active optimal
control algorithms have reached that state.

Due to the fact that we study flow control through numerical simulations
we are limited to low Reynolds numbers and simple geometries. On the other
hand, as opposed to an experiment, we can get complete information about
the flow state at all times which makes it easier to evaluate and understand
different control strategies.

1.2. Optimal control

During the last decade, new approaches to solve flow control problems have
emerged. By formulating the flow control problems as optimization problems
where one wants to minimize or maximize some flow properties, one obtains a
problem similar to what is studied in optimal control theory. The early pub-
lications regarding optimal flow control problems, such as Abergel & Temam
(1990), Glowinski (1991), Gunzburger et al. (1989), Sritharan (1991a), Sritha-
ran (1991b), and Gunzburger et al. (1992) are mostly concerned with theoret-
ical aspects of the optimal control problem. Once the theoretical foundation
was built, subsequent publications present results from numerical simulations
where the optimal control for different flow configurations was computed.

When formulating an optimal control problem we need to have a model
that describes the dynamics of the flow. We also need an objective function
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that determines what we want to target with the control. Finally we also need
to decide the means of control.

A major distinction is whether the governing equations are linear or non-
linear. The nonlinear optimization problems are computationally expensive
to solve and the control works only for the very conditions it is designed for.
This condition can be relaxed however through a robust control formulation,
see e.g. Bewley et al. (2000). Examples of nonlinear control are given Joslin
et al. (1997) where the optimal control of spatially growing two-dimensional
disturbances in a boundary layer over a flat plate is computed. In Berggren
(1998) the vorticity is minimized in an internal unsteady flow using blowing
and suction on a part of the boundary and in Bewley et al. (2001) a turbulent
flow at Reτ = 180 is completely relaminarized also using blowing and suction
control which was shown in a direct numerical simulations. Other examples
of successful application of nonlinear optimal control are given in Collis et al.
(2000) where the flow dynamics is modeled in large eddy simulations and in He
et al. (2000) where two different control approaches are successfully tested to
reduce the drag resulting from the flow around a cylinder. The first approach
is to use cylinder rotations to control the flow and the other is to use blowing
and suction on parts of the cylinder wall.

The first linear feedback control schemes based on modern control the-
ory are reported in Hu & Bau (1994) and Joshi et al. (1995). In these works
closed loop control is achieved by stabilizing unstable eigenvalues. In Joshi
et al. (1995) also model reduction is applied. In Bewley & Liu (1998) the
control and estimation problem were studied separately for single wavenumber
pairs. Transfer functions were used to evaluate the performance. The linear
controller was then applied to larger problems. In Högberg et al. (2003b) re-
laminarization of a turbulent channel flow at Reτ = 100 was demonstrated and
in Högberg & Henningson (2002) different transition scenarios were controlled
in spatially developing boundary layer flows. Non-paralllel flows were also tar-
geted in Cathalifaud & Bewley (2004a) Cathalifaud & Bewley (2004b) where
the flow dynamics were modeled by the Parabolized stability equations (PSE).

The state feedback controller has showed to work well even for flows where
nonlinear interactions take place we. However in real application the complete
state information is seldom available. The full state information requirement
can be relaxed through the use of a state estimator. The state estimator re-
constructs the flow state based on wall measurements. The controller and
estimator was combined into a compensator and tried in direct numerical sim-
ulations in Högberg et al. (2003a) but room for improvement in terms of the
estimator efficiency.

The key to successful implementation of optimal control algorithms to engi-
neering applications in the future is that appropriate sensors and actuators can
be manufactured small and fast enough to target the small scales of turbulent
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flows and to a low cost. The MEMS technology has been shown promising re-
sults but much work remains to be done, see e.g. Ho & Tai (1998) and Yoshino
et al. (2003).

An overview of much of the most recent progress in the field of flow control
is given in Kim (2003). Other recent reviews are given in e.g. Hinze & Kunish
(2000), Bewley (2001), Högberg (2001).

1.3. Outline

In chapter 2 a linear optimal control problem is stated and the state feedback
control and state estimation approaches used in order to solve the problem
are discussed. Chapter 3 introduces the nonlinear optimization problem and
presents a standard solution procedure that has been used in the present work.
In both chapter 2 and chapter 3 some related results are shown. Chapter
4 gives a short description of the different flow solvers that have been used
for the direct numerical simulations presented in this thesis. A summary and
conclusions are given in chapter 5 which is followed by chapter 6 describing
the different authors contributions to the papers presented in part two of the
thesis.



CHAPTER 2

Linear control

The problem of linear model-based feedback control based on noisy measure-
ments can be decomposed into two independent subproblems: first, the state
feedback control problem also referred to as full information control, in which
full state information is used to determine effective control feedback, and, sec-
ond, the state estimation problem. In the state estimation problem wall mea-
surements are continuously used to force a real-time calculation of the flow
system in an optimal sense such that the calculated estimated flow state even-
tually approximates the actual flow state.

Once both subproblems are solved, one can combine them to control a flow
based on noisy wall measurements of the flow system. The overall performance
of the resulting linear feedback control scheme is limited by the individual per-
formance of the two subproblems upon which it is based. For the application
of linear control theory to wall-bounded flows, though encouraging results have
been obtained previously on the state feedback control problem (see, for ex-
ample, Bewley & Liu (1998) and Högberg et al. (2003a)), more effective state
estimation strategies are needed.

In order to apply linear feedback control theory we need a linear system
of equations describing the flow, an objective function which determines what
the control should target, means of control, and models for the unknown dist-
urbances acting on the flow.

The starting point when designing the state-feedback controller is the Orr–
Sommerfeld/Squire equations which govern the evolution of small perturbations
of the wall-normal velocity and wall-normal vorticity (v, η) in a laminar flow
with the streamwise velocity component U = U(y) and the spanwise velocity
component W = W (y). Control will be applied through blowing and suction
distributed over the complete wall or on parts of the wall. Furthermore, only
zero-mass flux control will be allowed since we primarily target the strong
instabilities already in the flow with minute energy expenditure and not to
adjust the mean flow. The Orr–Sommerfeld/Squire equations are

( ˙̂v
˙̂η

)
=
(LOS 0

LC LSQ

)
︸ ︷︷ ︸

LOSS

(
v̂
η̂

)
, (2.1)

6
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where the Orr–Sommerfeld (LOS), the Squire (LSQ), and the coupling (LC)
operators are

LOS = ∆̂−1[−i(kxU + kzW )∆̂ + ikxU ′′ + ikzW
′′ + ∆̂2/Re],

LSQ = −i(kxU + kzW ) + ∆̂/Re,

LC = i(kxW ′ − kzU
′),

(2.2)

and where {kx, kz} is the wavenumber vector, ∆̂ denotes the horizontally
Fourier transformed Laplacian and the wall-normal derivatives are indicated
by (′). This system is accompanied by the following boundary conditions for
the boundary layer flow

v̂(0, t) = ϕ, Dv̂(0, t) = 0, η̂(0, t) = 0,

v̂(y, t) = 0, Dv̂(y, t) = 0, η̂(y, t) = 0, as y → ∞.
(2.3)

The control enters the system through the boundary condition on the wall-
normal velocity ϕ. The Reynolds number Reδ∗

0
is based on the freestream

velocity and the displacement thickness at x = 0 denoted δ∗0 . For the channel
flow configuration the freestream boundary condition is replaced by a no-slip
condition identical to the lower wall boundary condition. In the channel flow
the Reynolds number Recl is based in the centerline velocity and half-channel
width h. Details regarding the linearization for the channel flow can be found
in paper 1 and paper 2 and linearization in boundary layer flows can be found
in paper 4.

2.1. Controller

In order to apply linear control theory to a dynamical system we need to put
it on state space form

q̇ = Aq + Bu + B1f, q(0) = q0,

r = Cq + g,
(2.4)

where q is the state. The external disturbances, denoted by f , force the state
through the input operator B1, and q0 is the initial condition. The operator
B1 transforms a forcing on (u, v, w) to a forcing on (v, η). The control signal
u affects the system through the input operator B. Operator C extracts the
measurements from the state variable, and g adds a stochastic measurement
noise with given statistical properties. The noisy measurement is then r. Once
we have the physical model on this form, we can apply the tools from control
theory, see for example Lewis & Syrmos (1995).

To fit the Orr–Sommerfeld/Squire equations with the accompanying bound-
ary conditions we transform the blowing and suction boundary condition to a
volume forcing. Since the system of equations is linear we can use the super-
position principle and divide the flow in a homogeneous and a particular part.
One valid solution to the particular problem is a stationary solution where the
boundary condition is unity. This gives a system where the state q is defined



8 2. LINEAR CONTROL

as

q =

⎛
⎝v̂(y, t)

η̂(y, t)
ϕ(t)

⎞
⎠ , (2.5)

and operator A and B as

A =
(LOSS 0

0 0

)
, B =

(−qp

1

)
, u = ϕ̇ (2.6)

. We also define (
v̂
η̂

)
=
(

v̂h

η̂h

)
+ ϕ

(
v̂p

η̂p

)
= qh + ϕqp. (2.7)

Furthermore we are free to choose LOSSqp = 0 which simplifies the system to
solve.

The next step toward defining the optimization problem is to choose the
objective function we want to minimize. In this study we have chosen to min-
imize the perturbation energy

J =

∞∫
0

(q∗Qq + l2u∗u) dt (2.8)

where l2 is included to penalize the time derivative of the control ϕ̇

Q =
(

Q Qqp

q∗p (1 + r2)q∗pQqp

)
, (2.9)

where the term r2 is an extra penalty on the control signal ϕ̂, itself and where

(
v̂∗ η̂∗)Q

(
v̂
η̂

)
= ||q||E = 〈q, q〉E =

1
8k2

1∫
−1

(
k2|v̂|2 +

∣∣∣∣∂v̂

∂y

∣∣∣∣2 + |η̂|2
)

dy,

(2.10)
is the kinetic energy of the flow perturbation where k2 = k2

x + k2
z . We now

want to find the optimal K(t) that feeds back the control based on the state q
as

u = K(t)q. (2.11)
A detailed derivation of the optimal feedback can be found in Lewis & Syrmos
(1995). The lifting procedure as well as the complete derivation of the optimal
controller can also be found in, for example, Högberg et al. (2003a) and Högberg
(2001). The optimal feedback is given through the non-negative self-adjoint
solution of a differential Riccati equation (DRE)

∂X

∂t
+ A∗X + XA − 1

ε
XBB∗X + Q = 0. (2.12)

However to simplify the control problem we assume that T → ∞ which means
that the optimal feedback gain is computed for an infinite time horizon of the
objective function. This gives us the algebraic Riccati equation (ARE)

A∗X + XA − 1
ε
XBB∗X + Q = 0 (2.13)
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where X again is the non-negative and self-adjoint solution. Note that the
linear feedback law is the same regardless of what kind of disturbances that are
present in the flow and is thus computed once and for all for a given base flow.
From linear control theory it follows that the optimal choice of control gain K
with respect to the chosen objective function is

K = − 1
l2

B∗X. (2.14)

The feedback gain K computed for a sufficient range of wavenumber pairs are
then Fourier transformed in the horizontal directions gives us a physical space
control law which was first reported in Högberg et al. (2003a).

2.2. Estimator

One of the primary challenges of the state estimation problem is that its fram-
ing is based centrally on quantities which are difficult to model, namely the
expected statistics of the initial conditions, the sensor noise, and the exter-
nal disturbances acting on the system. The state estimation problem may
be thought of as a filtering problem; that is, the estimator uses the governing
equation as a filter to extract, from the available noisy measurements of a small
portion of the dynamic system, that component of the measurements which is
most consistent with the dynamic equation itself. In other words, the estima-
tor uses the governing equation to extract the signal from the noise, and in the
process builds an estimate of the entire state of the system.

We now construct an estimator, analogous to system (2.4), of the form

˙̂q = Aq̂ + Bu − v, q̂(0) = 0,

r̂ = Cq̂.
(2.15)

The dynamic operator A and operator B are the same as in system (2.4).
Added to this system is also a feedback forcing term v defined as

v = Lr̃ = L(r − r̂), (2.16)

proportional to the difference between the measurements of the flow and esti-
mated flow. The feedback operator L is left to be specified and the choice is
crucial for fast convergence of the estimator toward the actual flow.

Once we have supplied models for the statistical quantities of the initial
condition q0, the unknown external forcing f , and the unknown sensor noise
g we can apply linear control theory to formulate and solve an optimization
problem which gives an optimal L such that the estimator converges to a good
approximation of q. The different statistical models we have chosen are briefly
described in the following sections. More detailed descriptions of all the mod-
els are found paper 1. Paper 2 contains a detailed modeling of the external
disturbances in a turbulent channel flow.
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2.2.1. Measurements

The present work attempts to develop the best possible estimate of the state
based on measurements of the flow on the wall(s). As discussed in paper 1, and
in greater detail in Bewley & Protas (2004), the three measurements assumed
to be available at the walls are the distributions of the streamwise and spanwise
skin friction and pressure fluctuations.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τx = τxy|wall =
1

Re

∂u

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kxD2v − kzDη)|wall ,

τz = τzy|wall =
1

Re

∂w

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
1

Re

1
k2

D3v|wall .

2.2.2. Stochastic framework

The flow system that we want to estimate is affected by an unknown initial
condition, the unknown external disturbances that disturb the evolution of the
state, and the unknown sensor noise that corrupts the measurements. Since
the estimator is intended to converge effectively over a large number of possible
realizations, a statistical description (mean and covariance) of these unknown
quantities may be used to tune the feedback in the estimator design. The
estimator which we will design, also known as a Kalman filter, will be optimal
in the sense of obtaining the most accurate estimate possible over a large set of
realizations of the system in which the initial conditions, external disturbances,
and sensor noise have the assumed statistical properties.

In order to express the stochastic quantities we define the expectation
operator E[·] as the average over all possible realizations of the stochastic input
in question. In the present formulation it is the covariance that needs to be
modeled carefully.

2.2.3. Modeling of the initial condition

The aim is to construct an estimator that works well for a range of possible
initial conditions. We know however from flow physics that some initial con-
ditions are more likely to appear. We thus construct a covariance model for
the initial condition so that we can combine random modes with flow struc-
tures that we expect to appear, as for example Tollmien–Schlichting waves,
streamwise vortices, or streaks depending on the specific flow conditions. The
covariance of the initial condition is denoted S0.

Note that the specific initial condition for each wavenumber pair {kx, kz} is
given only through its shape (of the coherent structures of the forcing) whereas
amplitude and phase are random. Furthermore we assume that the mean of
the initial condition is zero which means that there is no preferred structure.
Due to the fact that the initial condition is always zero in the estimator S0 also
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represents the covariance of the state estimation error. Details on the modeling
of the initial condition can be found in paper 1.

2.2.4. Modeling of external disturbances in transitional flows

We assume that the external disturbances f = (f1, f2, f3)T in equation (2.4)
is a zero-mean (E[fj(x, y, z, t)] = 0) stationary white Gaussian process with
auto-correlation

E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t
′)] = δ(t − t′)︸ ︷︷ ︸

Temporal

Qfjfk
(y, y′, rx, rz)︸ ︷︷ ︸
Spatial

, (2.17)

where δ(·) denotes the Dirac δ-function. The derivation for the equations for
the covariance of the state is simplified by the assumption of a white random
process in time. This assumption is valid when the characteristic time scales of
the external disturbances are short compared with the time scales of the flow
system. When this is not the case an additional filter can be added that colors
the external disturbances (see e.g. Lewis (1986)).

The corresponding quantity in Fourier space is the covariance operator
Rfifj

that we choose to model as

Rfjfk
(y, y′, kx, kz) = δjkd(kx, kz)My(y, y′).

To formulate a useful model of d = d(kx, kz) we want to parameterize
it in such a way that the expected energy of the disturbances can easily be
changed to fit different transition scenarios. For the boundary layer estimation
presented in paper 4 the expected energy is assumed to decay exponentially in
wavenumber space with the peak located at {k0

x, k0
z}

d(kx, kz) = exp

[
−
(

k0
x − kx

dx

)2

−
(

k0
z − kz

dz

)2
]

,

with the additional design parameters dx, and dz. The design parameter dy

determines the width of the two-point correlation of the disturbance in the
wall-normal direction according to

My(y, y′) = exp

[
− (y − y′)2

2dy

]
,

which means that we have localized structures in space.
In figure 2.1 examples of covariance models for both channel and boundary

layer flows are presented. Figure 2.1(a) and 2.1(c) show examples on how
δjkMy(y, y′) varies with y and y′ for j = 1, 2, 3 and k = 1, 2, 3 for channel and
boundary layer flows respectively. The corresponding amplitude distribution
as a function of wavenumber pair {kx, kz} are shown in 2.1(b) and 2.1(d) for
channel and boundary layer flows. The covariance model in Figure 2.1(d) is
constructed to account for inflectional instabilities in a Falkner–Skan–Cooke
boundary layer, see section 2.7.2. Note that other choices of d and My can be
made which might be experimented with in future work.



12 2. LINEAR CONTROL

(a) (b)

(c) (d)

y

y

y
y′ y′ y′

y

y

y
y′ y′ y′

kx

kz

Figure 2.1. Statistical model for the external disturbances
Rfjfk

(y, y′, kx, kz) = δjkd(kx, kz)My(y, y′) acting on system
(2.4). (a) Example of the y-variation of Rfjfk

for channel
flow. (b) Example of the amplitude d as a function of the
wavenumber pair {kx, kz} for channel flow. (c) The y-variation
of Rfjfk

used for the estimation of cross-flow vortices in a FSC
boundary layer flow. (d) The amplitude function for the same
case as in (c). Note that the peak is translated to wavenumber
pair {0.25,−0.25} in order to sense the dominant eigenmode
for this particular setup in an efficient manner.

2.2.5. Modeling of external disturbances in turbulent flows

A turbulent flow that has reached statistically steady state can be naturally
fit into the framework of state feedback with time-independent feedback gains
L. In the stochastic forcing vector f in equation (2.4) we now include the
statistics of the nonlinear terms of the Navier–Stokes equations that are missing
in the linear dynamic operator A. Jovanović & Bamieh (2001) proposed a
stochastic disturbance model which, when used to force the linearized open-
loop Navier–Stokes equation, led to a simulated flow state with certain second-
order statistics (specifically, urms, vrms, wrms, and the Reynolds stress −uv)
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which to a certain degree matched statistics from DNS of a turbulent flow at
Reτ = 180.

The system model considered in this work is the Navier–Stokes equation for
the three velocity components {U, V,W} and pressure P of an incompressible
channel flow, written as a (nonlinear) perturbation about a base flow profile
ū(y) and bulk pressure variation p̄(x) such that, defining⎛

⎜⎜⎝
U
V
W
P

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u
v
w
p

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

ū(y)
0
0

p̄(x)

⎞
⎟⎟⎠ ,

where {u, v, w, p} denote the fluctuating components of the flow, we have

∂u

∂t
+ū

∂u

∂x
+ v

∂ū

∂y
= −∂p

∂x
+

1
Re

∆u + f1, (2.18a)

∂v

∂t
+ū

∂v

∂x
= −∂p

∂y
+

1
Re

∆v + f2, (2.18b)

∂w

∂t
+ū

∂w

∂x
= −∂p

∂z
+

1
Re

∆w + f3, (2.18c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.19)

where

f1 = −u
∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
− ∂p̄

∂x
+

1
Re

∂2ū

∂y2
,

f2 = −u
∂v

∂x
− v

∂v

∂y
− w

∂v

∂z
,

f3 = −u
∂w

∂x
− v

∂w

∂y
− w

∂w

∂z
.

(2.20)

The base flow profile ū(y) is defined as the mean flow,

ū(y) = lim
T→∞

1
T Lx Lz

T∫
0

Lx∫
0

Lz∫
0

U dz dx dt,

and p̄(x) is selected to account for the mean pressure gradient sustaining the
flow.

We will assume that f = (f1, f2, f3)T is essentially uncorrelated from one
time step to the next (that is, we assume that f is “white” in time) in order
to simplify the design of the estimator. We proceed by developing an accurate
model for the assumed spatial correlations of f . As the system under consider-
ation is statistically homogeneous in the x- and z-directions, the covariance of
the stochastic forcing f may be parameterized in physical space as in (2.17).
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The statistics of f is gathered in direct numerical simulations of turbulent
channel flow at Reynolds number Reτ = 100. As the system under consid-
eration is statistically homogeneous, or “spatially invariant”, in the x- and
z-directions, it is more convenient to work with the Fourier transform of the
two-point correlation Qfifj

rather than working with Qfifj
itself, as the calcu-

lation of Qfifj
in physical space involves a convolution sum, which reduces to a

simple multiplication in Fourier space. The Fourier transform of Qfifj
, which

we identify as the spectral density function Rfifj
, is defined as

Rfifj
(y, y′, kx, kz) =

1
4π2

Lx/2∫
−Lx/2

Lz/2∫
−Lz/2

Qfifj
(y, y′, rx, rz) exp[−ikxrx−ikzrz] drxdrz.

(2.21)
Note that we neglect correlations between different wavenumber pairs as this
is not needed the way we build the estimator. The spectral density function
can thus be written

Rfifj
(y, y′, kx, kz) = lim

T→∞
1
T

T∫
0

fi(kx, y, kz)f∗
j (kx, y′, kz) dt. (2.22)

For each wavenumber pair {kx, kz} we now have a matrix of covariance
data Rfifj

= Rfifj
(y, y′, kx, kz) which can be seen for different wavenumber

pairs in figure 2.2. The data is then used in the optimization problem when
computing the feedback gains. The resulting estimation gains are well resolved
for the range of wavenumber pairs used in the DNS. The gains transformed to
physical space convolution kernels are shown in figure 2.3 for the v (left column)
and η (right column) components of the flow and for the three measurements
τx, τz, and p. The maximum amplitude as a function of wavenumber pair
{kx, kz} is shown in figure 2.4.

All turbulent direct numerical simulations are performed with the code
briefly described in chapter 4 and more thoroughly in paper 2.

2.2.6. Modeling of sensor noise

All three wall measurements described in section 2.2.1 are assumed to be cor-
rupted by sensor noise. The noise for each sensor is modeled as a random
process, white in both space and time, and where the amplitude determines
the quality of each sensor. The measurements are also assumed to be indepen-
dent of each other. The covariance of the noise vector g, appearing in system
(2.4), can thus be described in Fourier space by a diagonal 3 × 3 matrix G
whose diagonal elements α2

ι are the variances of the individual sensor noise.
When the signal-to-noise ratio is low the measured signal should be fed

back gently into the estimator. If the signal-to-noise ratio is high we trust the
signal and thus it can be fed back with more strength.
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Figure 2.2. The covariance of f̂ , taken from DNS, at
wavenumber pair {0.5, 1.5}, {3, 1.5}, and {10, 30} in figure (a),
(b), and (c) respectively. The nine “squares” correspond to the
correlation between the different components of the forcing
vector. From top to bottom and left to right the components
are f1, f2, and f3 on each axis. The width of each side of
each square represents the width of the channel, [−1, 1]. The
variance is seen along the diagonal of each square. The left
column contains the real part and the right column represents
the imaginary part.
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Figure 2.3. Isosurface plots of steady-state estimation con-
volution kernels relating the measurements τx, τz, and p at
the point {x = 0, y = 0, z = 0} on the wall to the estimator
forcing on the interior of the domain for the evolution equation
for the estimate of (left) v̂ and (right) η̂. Positive (green) and
negative (yellow) isosurfaces with isovalues of ±5% of the max-
imum amplitude for each kernel are illustrated. The kernels
are based on statistical data gathered from turbulent direct
numerical simulations.
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kx

kz

Figure 2.4. Maximum amplitude of turbulent covariance
data as a function of wavenumber pair {kx, kz}. The corre-
sponding two-point correlations along the wall-normal coordi-
nate are shown in figure 2.2.

For transitional flows an intermediate level of feedback is desired in the
estimator design due to the fact that if the feedback becomes too strong it may
knock the estimated flow out of the small perturbation neighborhood assumed
in the linear model used in the design process. On the other hand if it becomes
to weak the convergence in the estimator may be both slow and inaccurate. For
given covariances of the initial conditions and external disturbances we thus
have the means, through the sensor noise, to tune the feedback strength into
the estimator.

2.2.7. Kalman filter

Kalman filter theory, combined with the models outlined in sections 2.2.3, 2.2.4,
and 2.2.6 for the statistics of the unknown initial conditions q0, the unknown
external forcing f , and the unknown sensor noise g respectively, provides a
convenient and mathematically-rigorous tool for computing the feedback oper-
ator L in the estimator described above such that q̂ converges to an accurate
approximation of q. Note that the volume forcing v used to apply corrections
to the estimator is proportional to the measurement error r̃ = r − r̂.

The solution of the Kalman filter problem in the classical, finite-dimensional
setting is well known (see, e.g., Lewis & Syrmos (1995) p. 463–470). The cor-
responding operator equations applicable here, though more involved to derive,
are completely analogous (see Balakrishnan 1976).

From linear control theory is follows that the covariance S(t) = Rqq(t) of
the flow state q(t) is governed by the Lyapunov equation

Ṡ(t) = AS(t) + S(t)A∗ + BRB∗, S(0) = S0. (2.23)
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The covariance P (t) = Rq̃q̃(t) of the state estimation error q̃(t) = q(t) − q̂(t),
for a given L(t), is governed by the Lyapunov equation

Ṗ (t) = A0(t)P (t) + P (t)A∗
0(t) + BRB∗ + L(t)GL∗(t), P (0) = S0, (2.24)

where A0(t) = A+L(t)C. The optimal L(t) that minimizes the expected energy
of the state estimation error at all times (that is, which minimizes the trace of
P (t)) is given by the solution of the differential Riccati equation (DRE)

Ṗ (t) = AP (t) + P (t)A∗ + BRB∗ − P (t)C∗G−1CP (t), P (0) = S0, (2.25)

where
L(t) = −P (t)C∗G−1. (2.26)

Note that the expressions in equations (2.23), (2.24), and (2.25) are iden-
tical in both the finite-dimensional and infinite-dimensional settings.

Note also that, for a linear, time-invariant (LTI) system (that is, for A, B,
C, R, G independent of time), the covariance of the estimation error, P (t), and
the corresponding feedback which minimizes its trace, L(t), follow a transient
near t = 0 due to the effect of the initial condition S0, eventually reaching a
steady state for large t in which Ṗ (t) = 0 and L̇(t) = 0. In order to minimize
the magnitude of the transient of the trace of P (t), it is necessary to solve
the differential Riccati equation given above. If one is only interested in min-
imizing the trace of P (t) at statistical steady state, it is sufficient to compute
time-independent feedback L by solving the algebraic Riccati equation (ARE)
formed by setting Ṗ (t) = 0 in (2.25).

2.2.8. Extended Kalman filter

The Kalman filter is an “optimal” estimator (in several rigorous respects—see
Anderson & Moore (1979) for a detailed discussion) in the linear setting. When
a Kalman filter is applied to a nonlinear system, its performance is typically
degraded, due to the fact that the linear model upon which the Kalman filter is
based does not include all the terms of the (nonlinear) equation governing the
actual system. A common approach to partially account for this deficiency is to
reintroduce the system nonlinearity to the estimator model after the Kalman
filter is designed. This approach is called an extended Kalman filter, see e.g.
Gelb (1974). This type of estimator is identical to the Kalman filter except
that the nonlinearity in the system is also present in the estimator model when
marching in time. The extension makes some sense: if the estimate of the state
happens to match the actual state, no feedback from measurements is required
for the extended Kalman filter to track the subsequent flow state. This is not
the case for the standard (linear) Kalman filter.

2.3. Compensator

The compensator combines the full information controller described in section
2.1 with the state estimator described in section 2.2 in the sense that the esti-
mated flow state in the estimator is fed into the controller. Since the estimator
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Figure 2.5. Compensator configuration. The upper box rep-
resents the “real” flow where the light grey rectangle along the
wall is the measurement region and the corresponding dark
grey rectangle is the control area. In the beginning of the box
a perturbation is indicated as a function of the wall-normal
coordinate. This perturbation will evolve as we integrate the
system in time. The estimated flow system is depicted in the
lower box. Here the volume force that is based on the wall
measurements and the estimation gains is shown as a grey
cloud in the computational domain.

only relies on different measurements of flow quantities at the wall the require-
ment of complete flow information to compute a control is relaxed which closes
the gap to experimental realization of the control algorithm. Note however that
instead a real-time calculation of the estimator flow system has to be done.

The compensator algorithm is depicted in figure 2.5. The “real” flow could
be an experimental setup where only wall information is extracted. However,
so far in our studies the “real” flow has always been a computer simulation.
The algorithm can be summarized in the following steps:

1. Extract wall measurements in both “real” and estimated flow
2. Compute the estimator volume forcing based on precomputed estima-

tion gains and the difference of the wall measurements from the “real”
and estimated flow

3. Apply the volume forcing to the estimator flow to make it converge to
the “real” flow

4. Compute control signal based on the reconstructed state in the estimator
5. Apply the control signal in both the “real” and estimated flow
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2.4. Numerics

In order to compute the optimal control and feedback gains from the ARE or
the DRE, it is necessary to discretize the operator form of the equations (2.13)
and (2.25) and solve them in the finite-dimensional setting. However, in order
to be relevant for the PDE problem of interest, the resulting feedback gains
must converge to continuous functions as the numerical grid is refined.

2.4.1. Spatial discretization

We need to build discrete system operators for A, B, B1, C, their respective
adjoints as well as the energy measure Q in the objective function and the
disturbance covariances R, G, and S0. In all our studies, the discrete operators
are obtained through enforcement of the Orr–Sommerfeld/Squire equations at
each point of a Gauss–Lobatto grid using a Chebyshev collocation scheme,
taking

fi = f(yi), yi = cos
iπ

N
, i = 0, . . . , N,

where N + 1 is the number of grid points in the wall-normal direction. The
discrete operators and differentiation matrices are determined using the spec-
tral Matlab Differentiation Matrix Suite of Weideman & Reddy (2000). This
suite provides differentiation matrices invoking clamped boundary conditions
(f(±1) = f ′(±1) = 0), using the procedure suggested by Huang & Sloan (1993),
to give an Orr–Sommerfeld/Squire matrix with satisfactory numerical proper-
ties, avoiding unstable or lightly-damped spurious eigenmodes. The first-order,
second-order, and third-order differentiation matrices so obtained, denoted D1,
D2, and D3 respectively, are combined according to the equations given pre-
viously to compute the discrete matrices A, B, and C in a straightforward
fashion.

Necessary adjoint operators are defined in a discrete sense meaning that
they are the conjugate transpose of the operator itself. The integration weights
W (yj) for the Chebyshev grid with the Gauss–Lobatto collocation points are
computed using the algorithm from Hanifi et al. (1996). These weights provide
spectral accuracy in the numerical integration used to assemble the energy
measure matrix Q.

2.4.2. Temporal discretization

When searching for the infinite time horizon control feedback or the estima-
tion feedback for statistically steady state we only solve the ARE defined in
equation (2.13). However, in paper 1 we also solve the time evolution of the
estimation feedback gains which requires the solution of the DRE defined as in
equation (2.25). One could directly march the DRE in time with, for example,
a Runge–Kutta method but instead we choose to march in time the Chan-
drasekhar equation, see Kailath (1973), which solves for the time derivative of
the estimation error covariance matrix, Ṗ(t). More details about the algorithm
are found in paper 1.



2.6. TURBULENT CHANNEL FLOW ESTIMATION 21

2.5. Transitional channel flow estimation

The stochastic models that are developed in paper 1, and briefly discussed in
section 2.2, are used to estimate infinitesimal as well as finite amplitude pertur-
bations in direct numerical simulations of a channel flow at Recl = 3000 based
on the centerline velocity and channel half width. The localized flow pertur-
bations studied in Henningson et al. (1993) are used to test the convergence of
the estimator.

The evolution of the energy of the state and estimation error for both
the moderate-amplitude and the small-amplitude perturbations are plotted in
figure 2.6. All curves have been normalized to unity at t = 0 to ease the com-
parison. The difference in normalized energy between the two cases is due to
nonlinear interactions that take place in the moderate-amplitude case (com-
pare the thick solid line and the thick dashed line). For both cases, the initial
stage of the evolution (during which nonlinear effects are fairly small) is well
estimated (thin lines). As the moderate-amplitude perturbation evolves and
its amplitude grows, nonlinear effects become significant, and the performance
of the linear estimator (thin solid line) is degraded as compared with the per-
formance of the linear estimator in the small-amplitude case (thin dashed line),
but still it is relatively good when compared to the flow energy.

By using an extended Kalman filter, as described in section 2.2.8, the
performance of estimator is improved when nonlinear interactions are present
in the flow to be estimated. This can be clearly seen in figure 2.6 where the
extended Kalman filter (thin dot-dashed line) is performing better than its
standard Kalman filter counterpart (the thin solid line) .

For these cases nine different set of estimation gains have been applied
which are the optimal gains at the times given in the following sequence
{1, 2, 3, 4, 5, 10, 15, 20, 60}. This sequence captures the fast initial transient in
the gains and converges to the steady state gains.

2.6. Turbulent channel flow estimation

By using statistics of nonlinear terms in the Navier–Stokes equations, as out-
lined in paper 2, into the state feedback optimization problem we can compute
well-resolved estimation gains for all three wall-measurements defined defined
in section 2.2.1. Here we have chosen to define the measurement vector r to
contain scaled versions of the wall values of the wall-normal derivative of the
wall-normal vorticity, ηy/Re, the second wall-normal derivative of the wall-
normal velocity, vyy/Re, and the pressure, p. Note that we can easily relate
this transformed measurement vector to the raw measurements of τx = uy/Re,
τz = wy/Re, and p on the walls, which might be available from an experiment.

The resulting physical-space convolution kernels, shown in section 2.2.5,
are then used to estimate a turbulent channel flow at Reτ = 100 with both
Kalman and extended Kalman filters. In order to tune the available estimator
parameters the Reynolds number was kept low to ease the resolution require-
ments and hence the computational effort for the simulations.
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Figure 2.6. Evolution of the normalized flow energy (thick
lines) and normalized estimation error energy (thin lines) for
the case with moderate-amplitude initial conditions (solid) and
low-amplitude initial conditions (dashed). The evolution of the
normalized estimation error energy for the extended Kalman
filter in the case with moderate-amplitude initial conditions
is also plotted (thin dot-dashed line), illustrating a significant
improvement as compared with the performance of the cor-
responding Kalman filter (thin solid line) when nonlinearities
are significant.

In figure 2.4 the total energy of the estimation error, defined as

errntot
y (q, q̂) =

(∫ Lx

0

∫ Lz

0
(q̂ − q)∗Q(q̂ − q) dxdz

)1/2

(∫ Lx

0

∫ Lz

0
q∗Qq dxdz

)1/2
, (2.27)

is plotted versus the wall-normal coordinate. The actual and estimated state
are denoted by q and q̂ respectively. This is the quantity that we, in an av-
erage sense, are minimizing for in the construction of the optimal estimation
gains which makes it a relevant measure when evaluating the performance of
the estimator. Note that operator Q represent the energy inner-product in
(v, η) coordinates as defined in (2.10). Close to the wall the error is small but
it increases as we go further into the channel. The thin and thick lines are
from Kalman and extended Kalman filter simulations respectively. To further
investigate the impact of using estimation gains based on the statistics from
the present study or based on simpler models such as assuming spatially un-
correlated stochastic forcing we also test the estimator performance (shown as
dashed lines) for only one measurement. Based on a spatially uncorrelated sto-
chastic model and the numerical approach presented in section 2.4.1 it is not
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Figure 2.7. The total energy of the estimation error is shown
as a function of the wall-normal distance. The solid line de-
notes the error when all three measurements are applied in
the estimator. The dashed line represents the estimator per-
formance when using only the ηy measurement respectively.
The thick lines show the extended Kalman filter and the thin
lines the Kalman filter data.

possible to retrieve well-resolved gains for more than one measurement. The
major difference however comes from the fact that we now have estimation
gains for all three measurements which can be seen as the solid lines in figure
2.7. Despite the strong nonlinear interactions in the turbulent flow the Kalman
filter is performing surprisingly well compared to the extended Kalman filter.

2.7. Compensator results

A summary of the compensator results from paper 4 are discussed in the fol-
lowing section. For details about box sizes and resolutions and the numerical
parameters for the different disturbances see paper 4. The code used for the
compensator simulations are described in chapter 4.

Note, that in the work with compensators in spatially developing boundary
layers so far we let the estimator run for a while before we turn on the controller.
Once the estimator has converged we turn on the controller and we thereby close
the loop in figure1 2.5. This is done to give the controller better initial state
information. Note also that we let all perturbation types evolve long enough
so that they have propagated through the computational box before we turn
in the control. In future studies we will explore the limits of the compensator
in terms of how much information the controller needs in the initial transient
phase.

2.7.1. Parallel Falkner–Skan–Cooke boundary layer

To verify the compensator algorithm in the DNS code we tested it in a parallel
Falkner–Skan–Cooke (FSC) boundary layer flow with low-amplitude disturban-
ces. The base flow considered has a Reynolds number Reδ∗

0
= 337.9 based on
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Figure 2.8. Time evolution of the perturbation energy of
the uncontrolled unstable eigenmode at α = 0.25, β = −0.25
in a Falkner–Skan–Cooke boundary layer and the correspond-
ing controlled system. Solid: uncontrolled energy growth.
Dashed: full information control is applied. Solid-thin: energy
growth in the estimator when no control is applied. Dash-
dotted-thin: the estimation error when no control is applied.
Dashed-thin: compensator control is applied.

the displacement thickness, δ∗0 , and chordwise freestream at the beginning of the
computational box. There is also a spanwise velocity component W∞ = 1.442
of the base flow normalized with the chordwise freestream velocity. The ini-
tial condition is perturbed with an unstable eigenmode at wavenumber pair
{kx = 0.25, kz = −0.25}. Due to an inflection point in the base flow this
eigenmode grows exponentially in time as can be seen in figure 2.8. Both the
full information controller and the compensator control are able to switch the
exponential disturbance growth into decay. Since the initial condition in the
estimator is the base flow without any perturbations the compensator perfor-
mance is not as good as the full-state information in the beginning. Once the
estimate gets closer to the real flow the disturbance is decaying exponentially
when compensator control is applied.

2.7.2. Spatially developing Falkner–Skan–Cooke boundary layer

The same base flow setup as described in section 2.7.1 is used here with the
only difference that the flow is now developing downstream. A perturbation
with random spanwise distribution and randomly varying amplitudes develop
into traveling cross-flow vortices downstream.

The measurement region is located in x ∈ [40, 150] and the control is
applied in the strip x ∈ [175, 325]. In figure 2.9 the time averaged perturbation
energy as a function of the chordwise coordinate and integrated in the spanwise
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Figure 2.9. Time averaged perturbation energy for cross-
flow vortices in a spatial Falkner–Skan–Cooke boundary layer.
Solid: uncontrolled energy growth. Dashed: full information
control. Dash-dotted: energy growth and decay when com-
pensator control is applied.

direction is plotted for uncontrolled flow (solid) and full information control
(dashed) and compensator control (dash-dotted).

The perturbation energy in the estimator is shown as a dotted line. As
can be seen in the figure the performance of the two controllers are similar.
The compensator control is only slightly less efficient in reducing the perturba-
tion energy than the full information controller and they both turn exponential
growth in to decay. In figure 2.10(a) and (b) the wall-normal velocity compo-
nent is shown in a x–z plane at y = 0.5 for uncontrolled and compensator
controlled flow respectively. At the beginning of the control region, the control
is of opposition type since the light and dark regions are shifted over the control
domain.

Figure 2.11 shows the evolution of disturbance energy integrated in space.
During the first 2000 time units the “real” flow is run in parallel with the esti-
mator to let the estimator catch up. After about 500 time units the estimated
state has converged to the actual flow downstream of the measurement region.
At t = 2000 the compensator control is turned on and the disturbance energy
starts to decay.

2.7.3. Tollmien–Schlichting waves in a Blasius boundary layer

The Tollmien–Schlichting (TS) wave perturbation is applied and studied in
a Blasius boundary layer with zero streamwise pressure gradient. We also
assume no mean-flow component in the z-direction. The wave is introduced
by applying an oscillating volume force localized in the x- and z-direction in
the far upstream part of the computational box. The dimensionless oscillating
frequency is F = 200 where F = 1062πfν/U2

∞ and where f is the frequency
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Figure 2.10. Snapshots of the wall-normal velocity compo-
nent at y = 0.5. The flow state is depicted in part (a). In
(b) the effect of the compensator control is shown. In the con-
trolled flow the control has been applied for 2000 time units
i.e. all the transient effects that occur due to the startup of
the control with the perturbations present have settled down.
The control is applied in x ∈ [175, 325]. The black to white
scale lies in the interval v ∈ (−0.00045, 0.00045).
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Figure 2.11. Time evolution of the disturbance energy in-
tegrated throughout the computational box. During the first
2000 time units the flow is uncontrolled. At time t = 2000 the
compensator control is turned on. Solid: energy in the “real”
flow. Dashed: energy in the estimator.

and ν is the kinematic viscosity. Branch I for this TS-wave is located at x = 27
and extends to branch II at x = 219. The measurement region is x ∈ [40, 150]
and the control region is x ∈ [175, 325] which means that they both overlap the
exponential growth region between branch I and branch II.

In figure 2.12 the uncontrolled energy growth and decay is plotted as a solid
line. The volume forcing does not impose a clean TS-wave from the beginning
which explains the initial transient and but further downstream a TS-wave is
emerging and we get the expected exponential growth. The dashed and dash-
dotted lines show the energy growth which is soon turned into decay in the
beginning of the control region when the full information and compensator
control are applied. The difference between the full information control and
compensator control is due to the approximative flow state from the estimator
the compensator control is based on. However, despite the approximative flow
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Figure 2.12. Spatial evolution of the perturbation energy of
a TS-wave in a spatially growing boundary layer. Solid: un-
controlled energy growth. Dashed: energy growth and decay
when full information control is applied. Dash-dotted: energy
growth and decay with compensator control.

state information the compensator is are able to turn the exponential growth
into exponential decay.

2.7.4. Streamwise streaks in a Blasius boundary layer

A transient growth scenario is studied where optimal perturbations are develop-
ing downstream to form streamwise streaks. The spatial optimal perturbation
(see Andersson et al. (1999) and Luchini (2000)) with maximum growth at
x = 237 is introduced in the fringe region.

The measurement region is located in x ∈ [0, 300] and the control is applied
in two different simulations at x ∈ [300, 450] and x ∈ [300, 750] respectively. In
figure 2.13 the disturbance energy integrated in time and spanwise direction, is
shown. Both the full information control (dashed) and the compensator control
(dash-dotted) equally well manage to lower the disturbance amplitude over the
control strip. The longer interval is shown with thin lines and the short interval
is represented with thick lines. Right behind both the control strips however
there is a stronger dip for the full information controller. Eventually the dis-
turbance energy starts to increase again but without reaching the amplitude
levels for the uncontrolled flow. Note that the gains are computed for a flow
linearized around the same streamwise position at x = 375.
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Figure 2.13. The energy of the optimal spatial perturbation
at x = 237.24 as a function of downstream position. Solid:
uncontrolled energy growth. Dashed: full information con-
trol applied in region x ∈ [300, 450]. Dash-dotted: compen-
sator control with the measurement region x ∈ [0, 300] and
the control region x ∈ [300, 450]. Thin-solid: estimator en-
ergy. Thin-dashed: full information control applied in region
x ∈ [300, 725]. Thin dash-dotted: compensator control with
the measurement region x ∈ [0, 300] and the control region
x ∈ [300, 725].



CHAPTER 3

Nonlinear control

The goal of an optimal controller is to minimize or maximize an objective
function. When formulating such a problem, three important decisions are
needed, governing equations, an objective function to determine what we want
to control, and means of control. For a particular flow geometry with given fluid
properties, each choice has to be made with care. The state equation should
of course model the appropriate physics. This choice also indirectly affects
the choice of methods to use when solving the optimal control problem. If
we are working with nonlinear governing equations, such as the Navier–Stokes
equations, we have to use an iterative procedure to solve the optimization
problem and retrieve the optimal control, as opposed to the linear controller
which can be applied online in a feedback loop. This is further described in
chapter 2. In this chapter two different nonlinear optimization problems are
stated, solution strategies are described and some results are presented. In
terms of nonlinear control the main effort has been directed toward finding
optimal blowing and suction profiles in boundary layer flows. An initial study
to find optimal initial conditions is also described. The complete descriptions
of the nonlinear optimization studies are found in paper 5.

3.1. Governing equations

3.1.1. Blowing and suction control

The governing equations are the incompressible Navier–Stokes equations, here
written on dimensionless form,⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
+ (u · ∇)u = −∇π +

1
Re

∆u,

∇ · u = 0,

u|t=0 = u0,

(3.1)

where u = (u1, v, w) is the velocity vector and π is the pressure. Periodic
boundary conditions in x- and z-directions, and control through blowing and
suction together with a no-slip condition for the directions parallel to the wall
gives the complete set of boundary conditions. The numerical scheme is further
described in chapter 4.

To get the desired effect out of the control one needs to choose what prop-
erties of the flow to target. This choice is formulated as an objective function
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which in this particular case has the form

J(ϕ) =
ε

2

T c
2∫

T c
1

∫
Γ

|v|2 dΓ dt +
1
2

T o
2∫

T o
1

∫
Ω

|u − uT |2 dQ, (3.2)

where (T c
1 , T c

2 ) is the control time period and (T o
1 , T o

2 ) is the observation time
period. The target velocity profile is denoted by uT and the control, which is
the wall-normal velocity on the wall, is denoted by v. A regularization term
with penalty parameter ε is also added to put a limit on the control strength.
The choice of objective function is usually a non-trivial matter due to the
complicated physics present in aerodynamic flows.

3.1.2. Initial condition control

The derivation and implementation of finding the optimal initial condition that
gives the highest energy amplification is done for channel flows. The non-
dimensional, incompressible Navier–Stokes equations with Reynolds number,
Re, based on the centerline velocity and half the channel height are,⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
+ (u · ∇)u − 1

Re
∆u + ∇π = −∇P,

∇ · u = 0,

u|t=0 = ϕ + uT (0),

(3.3)

where u = (u1, v, w) is the velocity vector, π is the pressure and ∇P represents
the pressure gradient driving the flow and can either be constant or used to
ensure constant mass flux. The control ϕ is entering the equations through the
initial condition as a disturbance on top of a laminar flow. Periodic boundary
conditions are assumed in the x- and z-directions and no-slip conditions for the
directions parallel to the walls.

The objective function J measures the ratio in disturbance energy at final
and initial time

J(ϕ) = −

∫
Ω

|u(T ) − uT (T )|2 dΩ

∫
Ω

|ϕ|2 dΩ
. (3.4)

Time T denotes the final simulation time. The target velocity profile denoted
uT represents the laminar flow field.

3.2. Nonlinear optimization problem and the gradient

Once the objective functions (3.2) and (3.4) are defined we can formulate the
nonlinear optimization problem as: find ϕ∗ which satisfies

J(ϕ∗) ≤ J(ϕ) ∀ ϕ ∈ Uad (3.5)

where Uad has been used to denote the set of admissible controls.
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To solve the nonlinear optimization problem (3.5) we use a gradient based
approach. The gradient of the objective function, ∇J , is defined by

δJ(ϕ) = lim
s→0

J(ϕ + s δϕ) − J(ϕ)
s

= 〈∇J, δϕ〉

=
〈

∂J

∂ϕL
, δϕ

〉
+
〈

∂J

∂ϕU
, δϕ

〉
,

(3.6)

where δϕ is the first variation of the control. The functional δJ is the first
variation of J with respect to δϕ. The gradient may be expressed in terms
of the solution of an adjoint equation. The complete derivation of the adjoint
equations and the corresponding gradients are given in paper 5 in this thesis.
Here we only state the final gradient expressions that rely on the adjoint state
p and adjoint pressure denoted σ.

For the blowing and suction control the gradient becomes
∂J

∂ϕ
=
∫
Γc

ψ
(
εϕT ψ − σ

)
dΓ, (3.7)

where ψ denotes the base functions for the control and Γc denotes the control
interval.

For the initial condition control we can identify the gradient of the objective
function (3.4) to be

∂J

∂ϕ
=

1
c

[a ϕ − b p(0)] ,

where the constants a, b, and, c are defined as

a =
∫
Ω

|u(T ) − uT (T )|2 dΩ, b =
∫
Ω

|ϕ|2 dΩ, and c =

⎡
⎣∫

Ω

|ϕ|2 dΩ

⎤
⎦2

.

The first term of the gradient is due to the normalization of the objective
function. Note that when we have reached optimum and the gradient is zero
the initial condition is equal to the adjoint field times a scaling factor. Thus
the optimality condition reads

ϕ

E′(0)
=

p(0)
E′(T )

, (3.8)

where E′ denotes the disturbance energy.
Note that we discretize the expressions for the adjoint equations and the

gradient that have been derived on the “continuous” level.
As mentioned the non-linearity in the state equation prohibits direct solu-

tion of the nonlinear optimization problem. Instead an iterative procedure is
needed to find the optimal control. The general procedure is described in Fig-
ure 3.1. First, the governing equations (GE) are solved with an initial guess of
ϕ. From the solution of the governing equations one can solve the correspond-
ing adjoint equations (AE). Once the state and adjoint state are solved, we can
construct the gradient of the objective function with respect to the control. We
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Figure 3.1. The optimization procedure. The control is de-
noted ϕ. The gradient of the objective function with respect to
the control ϕ is denoted ∇J where J is the objective function.
The governing equations and associated adjoint equations are
denoted GE and AE respectively.

can then update the control with, for example, a conjugate gradient method
or a quasi-Newton method. The whole loop is repeated until a satisfactory
control is found.

The drawback with this kind of control is that it will only work under ex-
actly the very conditions the control is constructed for. On the other hand, no
a priori knowledge of the control is needed, and the performance obtained with
the nonlinear optimization procedure often far exceeds the result from other
simplified control finding approaches. One obvious application is to determine
an upper limit of what is possible to achieve with a certain control scheme,
something that might aid in the search for more efficient direct methods of
control. Note however that this approach can be extended to a robust formu-
lation that accounts for the worst case disturbances which makes the resulting
control more general. This is described in Bewley et al. (2000). Another im-
portant issue for adjoint based control schemes is the choice of inner products.
This choice could have impact a large impact on the convergence rate of the
iterative process and also on how well the “optimal control” will work, see e.g.
Protas & Bewley (2002).

3.3. Computational issues

The computational effort to solve the adjoint state is comparable to the solution
of the state equation. Thus, the gradient can be determined by roughly the
computational cost of solving two state equations, this cost being independent
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of the number of degrees of freedom of the control parameterization. Note that
the adjoint equations are always linear equations.

For unsteady simulations where the temporal history of the state equation
is needed in the adjoint state computation the storage requirement can be
very large. However, this requirement can be lowered using a checkpointing
technique, see e.g. Berggren (1998). The price for the decreased storage demand
is increased execution time. A memory reduction from N to

√
N , increases the

computational cost with about a factor two.
Another important issue when deriving the discrete adjoint equations to

be solved numerically is in what order the discretization takes place. One
way is to discretize the expressions for the adjoint equations and the gradient
that have been derived on the “continuous” level. An alternative is to dis-
cretize the Navier–Stokes equations and the objective function and derive the
adjoint equations and the gradient expression on the discrete level. The latter
approach leads to more accurate gradient directions, but is difficult to apply
for the present discretizations. Issues related to the errors introduced by the
approximative (continuous) formulation are discussed in e.g. Glowinski & He
(1998) and Gunzburger (1998). The use of the continuous formulation is mo-
tivated by the findings in Högberg & Berggren (2000) where one conclusion is
that it is sufficient to use the approximative (continuous) formulation in order
to control strong instabilities. It was noted that in such cases, most of the
reduction of the objective function is achieved in the first few iterations, and
additional iterations only result in a fine tuning of the control. The drawback
is that it will require more iterations to reach the true optimal solution, if it is
even possible, than with the discrete formulation.

3.4. Results

3.4.1. Blowing and suction control

An example of nonlinear optimal control in action is shown in Figure 3.2 where
cross-flow vortices in a Falkner–Skan–Cooke boundary layer are developing
downstream. In the left plot the flow is uncontrolled whereas the nonlinear
optimal control is active in the right plot. The results are taken from simula-
tions in paper 5.

Two other examples are where two different Tollmien–Schlichting waves are
introduced in Blasius boundary layer, one weak, and one stronger wave where
nonlinear coupling effects start to appear. The weak TS-wave is generated by
an oscillating two dimensional volume force with the dimensionless frequency
F = 200, where F = 2πfν/U2

∞ × 106. The volume force is centered at x = 20
and decays exponentially in both the x- and y-direction.

Domain and resolution data for the TS-wave simulations are given in paper
5. The Reynolds number at x = 0 in the computational box is 468.34 for
both weak and strong disturbance. In the construction of the linear feedback
kernels, the base flow profile is taken at x = 150. For the nonlinear optimization
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Figure 3.2. Snapshot of the wall normal velocity component
in an x–z plane at y = 0.5 without control (left) and with non-
linear control (right). The control is applied in x ∈ (145, 295).
The black to white scale lies in the interval v ∈ (−0.001, 0.001).

problem, we specify the observation interval in space and time to x ∈ [75, 375]
and t ∈ [0, 750], respectively.

In Figure 3.3 the streamwise disturbance energy development of weak TS-
waves are plotted. A small transient can be seen in the beginning of the energy
curve, an effect that is due to the fact that we do not force a clean TS-wave.
However, as the disturbance evolves downstream, a pure TS-wave emerges.
The flow is perturbed just upstream of branch I of the neutral stability curve,
which is at around x ≈ 27, and the disturbance grows exponentially shown,
as the solid line in Figure 3.3. The growth ends when branch II is reached
at about x ≈ 219. See for example Schmid & Henningson (2001) for details.
The dashed line is the disturbance energy development with linear control
active. Note that the exponential growth is switched to an exponential decay.
With the nonlinear optimal control applied, the energy development follows
the dash-dotted line. Since the energy levels are low and thus nonlinear effects
negligible, we can conclude that the deviations originate from differences in the
optimization problem and the limitations of the linear control. Analyzing the
control signals shows no major differences between the two control approaches.
The nonlinear control acts stronger in the beginning of the simulation and also
stronger at the upstream part of the spatial control interval. These effects are a
direct consequence of the limitations of the linear control problem formulation.

3.4.2. Initial value control

In this case the initial condition is constructed out of random modes to see
whether the gradient procedure can find the optimal condition “far” from the
optimum. For this particular case the gradient is reduced a factor 2000 and we
reach a growth factor of in energy of 440.8 which is in good agreement with
what linear stability theory predicts.

In figure 3.4 the starting initial condition and final optimal condition are
shown. The optimal condition might still be improved somewhat though by,
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Figure 3.3. The spatial energy growth of a linear (a) and
weakly nonlinear (b) TS-wave perturbation in a Blasius bound-
ary layer without control from case 4 (solid), with linear con-
trol from case 5 (dashed), and nonlinear control from case 6
(dash-dotted). Control is applied in x ∈ [75, 225]. The TS-
wave is generated at R = 950 for α = 0.30. The linear con-
troller is centered at x = 150.
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Figure 3.4. Contour plots of the wall-normal velocity compo-
nent. The initial condition before (left) and after optimization
(right).

for example, storing more forward velocity field. Note that these results are
only a justification of the implementation.



CHAPTER 4

Direct numerical simulations

4.1. Pseudo-spectral collocation algorithm

All direct numerical simulations (DNS) of the three-dimensional, time-dependent,
incompressible Navier–Stokes equations presented in paper 1, paper 3, paper
4, and paper 5 are performed with different versions of a pseudo-spectral algo-
rithm which was first developed as a channel flow solver, described in Lund-
bladh et al. (1992). Based on the channel code a separate solver for boundary
layer flows was developed which is reported in Lundbladh et al. (1999).

The time marching is performed with a four-step low-storage third-order
Runge–Kutta method for advective terms and a Crank–Nicolson scheme for the
viscous terms. A spectral method described in Canuto et al. (1988) is used with
a Fourier discretization in streamwise and spanwise directions, and a Chebyshev
collocation method in the wall-normal direction. The aliasing errors that are
introduced when transforming the nonlinear terms back to Fourier space can
be removed by increasing the physical space resolution by a factor 3/2 in the
streamwise and spanwise directions. This can also be used for the Chebyshev
polynomials. The discretization of, and the solution procedure for, the Navier–
Stokes equations are described in Lundbladh et al. (1992). A similar algorithm
was used by Kim et al. (1987).

Due to the fact that a spectral discretization has been used in the horizontal
directions, which by definition means that we need a periodic flow in these
directions, and the fact that we want to be able to simulate spatially evolving
flows an additional non-physical forcing was added to the momentum equations
in a downstream strip of the flow. The forcing blends the downstream base flow
to the prescribed inflow condition and removes any disturbances in that the
domain with a minimum of upstream influence. This is known as a fringe region
technique and is described further in Lundbladh et al. (1999) and analyzed by
Nordström et al. (1999). A similar technique was used by Bertolotti et al.
(1992). The incompressible Navier–Stokes equations with the fringe forcing
can be written as

∂u

∂t
= NS(u)+λ(x)(u − uλ) + F,

∇ · u = 0,
(4.1)
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Figure 4.1. The computational box [0, Lx] × [0, yfst] ×
[−Lz/2, Lz/2] for the boundary layer flow case. The fringe
forcing is applied in the region [xf
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2 ]× [0, yfst]× [−Lz/2, Lz/2] where the amplitude
is a smooth function λ(x) with support in [xf
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2 ].

where λ(x) is a non-negative function and which is nonzero only at the end
of the computational domain. The outflow and inflow conditions are deter-
mined by the desired velocity distribution uλ. The additional forcing term
F = [F1, F2, F3] is used for different things in spatial and temporal simula-
tions. In temporal simulations it enforces a parallel mean flow whereas in the
spatial simulations perturbations can be introduced with it.

The computational box is depicted in figure 4.1. For the solid walls no-
slip boundary conditions are used. The freestream boundary condition in the
boundary layer code, applied at y = yfst has to be sufficiently high in order not
to influence the computational results. One choice used here is the Neumann
boundary condition as an artificial freestream boundary. In order to decrease
the box size in the wall-normal direction a generalization of the boundary con-
dition used by Malik et al. (1985) can also be applied. It is an asymptotic
condition that for each wavenumber pair exactly matches a potential flow so-
lution decaying with the wall distance.

In the spatially evolving flows disturbances can be introduced into the flow
by applying a volume forcing, either in the fringe region, or somewhere in the
“physical” part of the flow domain, or by adjusting the boundary conditions in
order to specify blowing and suction at the wall. In temporal flows disturbances
are introduced through the initial condition. Different means of forcing are
described in paper 4.



38 4. DIRECT NUMERICAL SIMULATIONS

To solve the nonlinear optimization problem outlined in chapter 3, we
need to compute the adjoint Navier–Stokes equations. The adjoint equations
are solved in the same way as the Navier–Stokes equations, but with small
modifications. However, the implementation of the optimization problem also
requires the addition of a gradient based optimization routine as an outermost
loop in the computations, which iteratively marches the Navier–Stokes equa-
tions forward in time and the adjoint Navier–Stokes equations backward in
time, in order to compute gradient information which in turn is used to im-
prove the control. For this purpose a limited memory quasi-Newton method
is used. The algorithm, L-BFGS-B (Byrd et al. (1994)), is available on the
Internet (the web-link is given in the reference list next to Byrd et al. (1994))
and was used without modifications. It is an algorithm well suited for large
nonlinear optimization problems, with or without bounds on the control vari-
ables. The BFGS method successively computes secant approximations of the
Hessian matrix as the iterations proceed. The algorithm has been shown to
work well for many different types of optimization problems. Paper 5 deals
with the adjoint related simulations.

To solve the state estimation problem, additions were made to the code so
that two “independent” simulations could be run side-by-side. Wall measure-
ments are extracted from both simulations and this information is then used
together with the estimation feedback law, that has been outlined in chapter
2 and further described in paper 3 and paper 4, to compute the additional
volume forcing term applied to the estimator to make that flow converge to the
actual flow.

4.2. Pseudo-spectral finite difference algorithm

The DNS of turbulent channel flow reported in paper 2 were performed with
the code of Bewley et al. (2001) which is also a pseudo-spectral code with
3/2 dealiasing in the streamwise and spanwise directions. In the wall-normal
direction a second-order finite difference technique is applied which is energy-
conserving. The time integration is performed with a hybrid second-order
Crank–Nicolson and third order Runge–Kutta method developed by Aksevoll &
Moin (1995). In this scheme, the wall-normal derivatives are treated implicitly
to improve the stability properties of the code when using blowing and suction
boundary conditions at the walls. The pressure is updated through a fractional
step method which also ensures the incompressibility condition.

Additions to this code were made in order to investigate estimator per-
formance as well as computing two-point correlation of the forcing vector f
described in section 2.2.5.

All the turbulent channel flow simulations are performed for constant mass-
flux flow at Reτ = 100 in a computational box of size 4π×2×4π/3 in x×y×z
respectively. The resolution is 42 × 64 × 42 Fourier, finite difference, Fourier
modes. The Reynolds number in the turbulent simulations is kept quite low at
this stage for reasons of computational expediency.



CHAPTER 5

Conclusion and summary

The main work in this thesis has been devoted to studies of two different op-
timal control approaches where the objective has been to estimate and control
transitional channel and boundary layer flows. Both approaches aim at finding
the optimal blowing and suction control continuously distributed over the walls
bounding the flow.

In the first approach we construct a linear optimization problem where the
Orr–Sommerfeld/Squire equations are used to model the small perturbation
dynamics and an objective function that measures the perturbation energy is
chosen. By using tools from linear control theory it is possible to solve the
optimization problem off line and construct a feedback control law based on
solution of the optimization problem.

In the first study we use linear control theory to solve the optimization
problem. Since the linear state-feedback control requires complete flow field
information we combine it with a state estimator where noisy measurements
of skin-friction and pressure are measured and used to reconstruct the state.
The formulation of the state estimator is based on expected statistics of the
initial conditions, the sensor noise, and the external disturbances acting on the
system. The performance of the estimator is directly related to how well these
statistical models describe flow. In the present work physically relevant models
are suggested which give good performance of the estimator in transitional
channel flows.

The importance of proper stochastic modeling of the sensor noise and the
external disturbances is further stressed when a turbulent channel flow is esti-
mated based on similar noisy wall measurements.

Based on the same idea with physically relevant parameterization of the
stochastic models for the sensor noise and the external disturbances as for the
estimator in channel flow it is demonstrated that the estimator also works in
spatially developing boundary layer flows. Furthermore the estimator is com-
bined with linear feedback control into a compensator where the controller
is based on the reconstructed state in the estimator. The compensator con-
trol is shown to work well for different transition scenarios such as Tollmien–
Schlichting waves, optimal perturbations, inflectional instabilities in the form
of cross-flow vortices in Falkner–Skan–Cooke boundary layers.
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In the second part of the study we formulate and solve a nonlinear opti-
mization problem which means that we can use the full incompressible Navier–
Stokes equations to model the flow. The objective function, which is the quan-
tity we want to minimize, is defined to measure the perturbation energy. A
standard method to solve this type of optimization problem is to iteratively
solve the Navier–Stokes and adjoint Navier–Stokes equations to compute gra-
dient information of the objective function with respect to the control param-
eterization which can then be used to update the control signal.

The strength of the nonlinear method is that we can take the complete
flow physics into account and that we can optimize basically any property of
the flow by constructing the proper objective function. The main drawback
when applied to flow control is that it cannot be used online and that it is a
computationally expensive method.

The nonlinear optimal control is compared with a linear optimal control
computed for the same flow configuration and it is shown that the performance
is similar for linear perturbations whereas when the disturbances get stronger
the nonlinear optimal control is able to do better. However the main conclusion
from this study is that the linear controller performs surprisingly well even when
nonlinear interactions start to take place.
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Papers and authors contributions

Paper 1
State estimation of wall bounded flow systems. Part 1. Laminar flows
J. Hœpffner (JH), M. Chevalier (MC), T. R. Bewley (TB) & D. S. Hen-

ningson (DH). Submitted to J. Fluid Mech.
This paper considers the estimation problem, using a Kalman filter based on the
linearized Navier–Stokes equations and appropriate stochastic models for the
relevant statistics of the initial conditions, sensor noise, and external disturban-
ces acting on the system. We show that a physically relevant parameterization
of these statistics is key to obtaining well resolved feedback kernels with ap-
propriate spatial extent for all three types of flow measurements available on
the wall. The control theory aspects have been investigated by JH as well as
implementation and testing of the plain Kalman filter. The estimator has been
implemented and tested by MC in direct numerical simulations. The paper has
mainly been written by JH in collaboration with MC, TB, and DH.

Paper 2
State estimation of wall bounded flow systems. Part 2. Turbulent flows
M. Chevalier (MC), J. Hœpffner (JH), T. R. Bewley (TB) & D. S. Hen-

ningson (DH). Submitted to J. Fluid Mech.
This work aims at estimating a turbulent channel flow at based on a time his-
tory of noisy wall measurements of the flow. We do this by applying a plain
Kalman and an extended Kalman filter based on the linearized Navier–Stokes
equations together with a stochastic model based on statistics gathered from a
direct numerical simulations (DNS) of the same turbulent flow we aim to esti-
mate. The implementation of the estimator and gathering of the statistics have
been performed by MC. The implementation to solve the optimal estimation
gains is done by JH. All direct numerical simulations are is done by MC. The
writing has been done mainly by MC in collaboration with JH, TB, and DH.
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Paper 3
Linear compensator control of a pointsource induced perturbation in a Falkner–
Skan–Cooke boundary layer
M. Högberg (MH), M. Chevalier (MC) & D. S. Henningson (DH).
Phys. Fluids 2003 15, 2449–2452
A pointsource induced perturbations on an infinite swept wing is controlled us-
ing linear control theory. Based on wall measurements in a spatial simulation of
localized disturbances in a Falkner–Skan–Cooke boundary layer, an extended
Kalman filter is used to estimate the full three-dimensional wave packet. The
estimated field is in turn used to calculate a feedback control which changes
the growth of the disturbance into decay. The implementation of the controller
and estimator was done by MH. Simulations were performed by MH and MC.
Writing was done mainly by MC in collaboration with MH and DH.

Paper 4
Linear feedback control and estimation applied to instabilities in spatially de-
veloping boundary layers
M. Chevalier (MC), J. Hœpffner (JH), E. Åkervik (EÅ) & D. S. Hen-

ningson (DH). To be submitted
This paper considers the estimation problem, using a Kalman filter based on
the linearized Navier–Stokes equations and appropriate stochastic models for
the relevant statistics of the sensor noise and external disturbances acting on
the system. The compensator is applied and tested on a range of different types
of transition scenarios. The estimator was implemented and verified by MC
in a direct numerical solver. JH implemented the algorithm to compute the
optimal estimation gain. The direct numerical simulations were performed by
MC and EÅ. The writing of the paper was mainly done by MC in collaboration
with JH, EÅ and DH.
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Paper 5
Adjoint based control of channel and boundary layer flows
M. Chevalier (MC), M. Högberg (MH), M. Berggren (MB) &

D. S. Henningson (DH). TRITA-MEK 2004:12
The implementation and verification of different adjoint based control strate-
gies are reported. The performance of a linear and nonlinear optimal controller
is compared for a few different flow cases. The adjoint channel flow solver to
optimize blowing and suction control in the boundaries was implemented by
MH. The corresponding adjoint solver for boundary flows was implemented by
MC. The adjoint channel code that optimizes the initial condition to maximize
the energy growth was implemented and tested by MC. The writing was mainly
done by MC and MH in collaboration with DH and MB. The comparison be-
tween the linear and nonlinear optimal control has been published as an AIAA
paper at the 3rd Theoretical Fluid Mechanics Meeting, St. Louis, MO (AIAA
2002-2755). The development and testing of the adjoint solvers is published as
a technical report at the Swedish Defence Research Agency (FOI-R--0182--SE),
2001.

The papers are re-set to the present thesis format.
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State estimation in wall-bounded flow systems.
Part 1. Laminar flows
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In applications involving the model-based control of transitional wall-bounded
flow systems, one often desires to estimate the interior flow state based on
a history of noisy measurements from an array of flush-mounted skin-friction
and pressure sensors on the wall. This paper considers the estimation problem,
using a Kalman filter based on the linearized Navier–Stokes equations and
appropriate stochastic models for the relevant statistics of the initial conditions,
sensor noise, and external disturbances acting on the system. We show that a
physically relevant parameterization of these statistics is key to obtaining well
resolved feedback kernels with appropriate spatial extent for all three types
of flow measurements available on the wall. The effectiveness of the resulting
Kalman and extended Kalman filters that implement this feedback is verified
for both infinitesimal and finite-amplitude disturbances in direct numerical
simulations of a perturbed laminar channel flow. The consideration of time-
varying feedback kernels is shown to be particularly advantageous to accelerate
the convergence of the estimator from unknown initial conditions. A companion
paper (Part 2) considers the extension of such estimators to the case of fully-
developed turbulence.

1. Introduction

The feedback control of fluid flow systems is a problem that has received grow-
ing attention in recent years and has been approached in a number of different
manners. One approach is to design controls based on physical insight of domi-
nant flow mechanisms, as by the wave superposition principle (see, e.g., Thomas
(1990)). Another approach is to use adaptive or genetic techniques to attempt
to learn an effective control strategy by trial and error (see, e.g., Lee et al.
(1997)). It is also possible to leverage linear control theory, basing the control
algorithm on the linearized Navier–Stokes equations governing small perturba-
tions to the flow system, a mathematical statement of the control objective,
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Sweden
†The Swedish Defence Research Agency (FOI), SE-172 90 Stockholm, Sweden
‡Flow Control Lab, Dept of MAE, UC San Diego, La Jolla, CA 92093-0411, USA
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and a mathematical model of the relevant statistical properties of the unknown
initial conditions, sensor noise, and external disturbances acting on the system.
The present paper follows this latter approach. Recent reviews of related flow
control efforts can be found in, for instance, Bewley (2001), Gunzburger (1996),
and Kim (2003).

The problem of linear model-based feedback control based on noisy mea-
surements can be decomposed into two independent subproblems: first, the
state-feedback (a.k.a. full-information) control problem, in which full state in-
formation is used to determine effective control feedback, and, second, the state
estimation problem, in which measurements are continuously used to “nudge”
a real-time calculation of the flow system in an appropriate manner such that
the calculated flow state eventually approximates the actual flow state.

Once both subproblems are solved, one can synthesize them to control a
flow based on limited noisy measurements of the flow system. The overall
performance of the resulting linear feedback control scheme is limited by the
individual performance of the two subproblems upon which it is based. For the
application of linear control theory to wall-bounded flows, though encouraging
results have been obtained previously on the state-feedback control problem
(see, for example, Bewley & Liu (1998) and Högberg et al. (2003)), the devel-
opment of effective state estimation strategies remained, until now, largely an
open problem. In the present paper, we therefore focus on the state estimation
problem exclusively.

One of the primary challenges of the state estimation problem is that its
framing is based centrally on quantities which are challenging to model, namely,
the expected statistics of the initial conditions, the sensor noise, and the ex-
ternal disturbances acting on the system. The state estimation problem may
actually be thought of as a filtering problem; that is, the estimator uses the
governing equation itself as a filter to extract, from the available noisy mea-
surements of a small portion of the dynamic system, that component of the
measurements which is most consistent with the dynamic equation itself. In
other words, the estimator uses the governing equation to extract the signal
from the noise, and in the process builds up an estimate of the entire state of
the system. The purpose of the estimator at time t is to filter the measure-
ments gathered prior to time t to estimate the instantaneous state of the flow
field. The purpose of the state-feedback controller at time t, on the other hand,
is to apply forcing to the flow such that the subsequent evolution of the flow,
after time t, exhibits favorable characteristics. Thus, the controller is based
on a metric defining these favorable characteristics (the objective function),
whereas the estimator is based on a model describing, to the extent that they
are known, the statistical properties of the unknown quantities affecting the
system.

Some attention has been paid in the literature to the creative choice of
objective functions for the control problem. Kim & Lim (2000), for exam-
ple, performed a numerical experiment which applied body forcing via linear
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feedback everywhere on the interior of a turbulent channel flow. This linear
feedback was constructed to exactly cancel the linear coupling term [C in (2)] in
the nonlinear simulation, with the result that the turbulent flow relaminarized.
This result lends credibility to the idea of using a more sophisticated objective
function which targets this linear coupling (more precisely, one which targets
the non-normality of the system eigenvectors) rather than using an objective
function which simply targets the energy of the flow perturbations directly.
The appropriate selection of the objective function is thus seen to be not a
trivial problem, and is closely linked to our understanding of the relevant flow
physics. The problem of disturbance modeling for the state estimation prob-
lem, which is also inherently linked to our understanding of the relevant flow
physics, is perhaps even more subtle.

The importance of appropriate disturbance modeling was previously inves-
tigated by Jovanović & Bamieh (2001a). In this work, a stochastic disturbance
model was proposed which, when used to force the linearized Navier–Stokes
equation, led to a simulated flow state with certain second-order statistics
(specifically, urms, vrms, wrms, and the Reynolds stress −uv) that mimicked,
with varying degrees of precision, the statistics from a full DNS of a turbulent
flow at Reτ = 180.

The present work represents the next natural step in this vein, that is, the
development of appropriate disturbance parameterizations that facilitate the
calculation of well-resolved feedback kernels for the flow estimation problem
that both converge upon grid refinement and eventually decay exponentially
with distance from the origin (that is, from the corresponding sensor loca-
tion). These feedback kernels, in turn, facilitate accurate estimation of the
state itself when a simulation of the state estimate is coordinated with wall
measurements from an actual flow (or a separate direct numerical simulation
thereof). Further, the tuning of this disturbance parameterization allows for
the tuning of the spatial extent of the resulting feedback convolution kernels
in order to modify the communication architecture required in an “overlapping
decentralized” implementation of the resulting estimator in hardware (that is,
large-scale implementation via an interconnected array of identical tiles, each
with actuators, sensors, and control logic incorporated, that communicate only
with their neighbors, as described in detail in Bewley (2001)).

It appears as if little has been accomplished to date in terms of the inves-
tigation of appropriate disturbance models for specifically the flow estimation
problem in the published literature. Bewley & Liu (1998), Joshi, Speyer &
Kim (1999), and Högberg et al. (2003) all modeled the covariance of the exter-
nal disturbances at a single wavenumber pair {kx, kz} in a channel flow with
a simple identity matrix after the problem was discretized in the wall-normal
direction. This assumption effectively implies a constant variance of distur-
bances at each gridpoint in the wall-normal direction and zero correlation of
the disturbances at different gridpoints above the wall. Unfortunately, this co-
variance model does not converge to a resolved covariance distribution as the



56 J. Hœpffner, M. Chevalier, T. R. Bewley & D. S. Henningson

wall-normal grid is refined. We now understand that, as a consequence, this
model was responsible for restricting the effectiveness of the resulting estima-
tors in our previous work, and also led to realization problems that required us
to limit the number of wall measurements that we could account for while still
obtaining convergence of the feedback kernels upon refinement of the numerical
grid.

In the present paper, we propose an improved parameterization of the
external disturbances (that is, random volume forcing on the interior of the
flow domain) that may be used to model the effects of wall roughness, acoustic
waves, and neglected dynamics, as well as appropriate parameterizations of
the unknown initial conditions and sensor noise. This improved disturbance
parameterization converges to a continuous function upon grid refinement, and
allows us to account for all three flow measurements available at the wall (that
is, streamwise and spanwise wall skin friction and wall pressure).

In previous studies, only time-constant feedback kernels have been con-
sidered in the estimator. By introducing time-varying feedback kernels into
the estimator, the present paper incorporates plausible models of the statistics
of the unknown initial conditions on the flow in order to maximize the speed
of convergence of the estimator from unknown initial conditions. As a conse-
quence, the initial transients in the estimation error are shown to be greatly
diminished.

In the present paper, we design and test an estimator for the early stages of
transition in a laminar 3D plane channel flow (again, see Part 2 of this study for
the case of fully-developed turbulence). After describing the system of interest,
we propose a stochastic model for the flow’s initial conditions, external dist-
urbances, and sensor noise in §2.4. An appropriate Kalman filter is designed
in §2.5 in order to determine suitable estimator feedback. After a discussion
of the numerical methods employed, we test the estimator in numerical simu-
lations of the linearized system at isolated wavenumber pairs in §3. We then
inverse Fourier transform the estimator feedback rules determined on a large
array of wavenumber pairs to obtain well resolved, spatially localized feedback
convolution kernels in physical space for all three of the measurable quantities
on the wall (streamwise and spanwise wall skin friction and wall pressure), as
discussed in §4.1. The resulting Kalman filter for the entire 3D channel, and
an extended Kalman filter that additionally incorporates the nonlinearity of
the full system, are tested in direct numerical simulations of the full nonlinear
Navier–Stokes system for both infinitesimal and finite-amplitude perturbations
of a laminar channel flow in §4.2 and §4.3.

2. Formulation

2.1. Flow configuration and governing equations

This paper considers the 3D flow between two infinite flat plates (at y = ±1)
driven by a pressure gradient in the streamwise (x) direction. Scaling the time
variable appropriately, the mean velocity profile is given by U(y) = 1− y2. For
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computational efficiency, we model the flow as being periodic in the horizontal
directions x and z, using a computational domain of sufficient extent in these
directions that this non-physical assumption does not significantly affect the
statistics of the flow. This approach allows all variables with spatial variation
to be expanded in Fourier series. Thus, the state vector describing the wall-
normal velocity vmn(y, t) and wall-normal vorticity ηmn(y, t) on the interior of
the domain at each wavenumber pair {kx, kz}mn may be denoted by

qmn(y, t) =
(

vmn(y, t)
ηmn(y, t)

)
.

The evolution of the flow can then be written with the linear terms, M and
L, on the left-hand side and the nonlinear terms, N , on the right-hand side,
in addition to an external forcing term emn to account for unmodeled effects,
yielding

d
dt

Mqmn + Lqmn︸ ︷︷ ︸
Linear dynamics

=
∑

k+i=m
l+j=n

N(qkl, qij)

︸ ︷︷ ︸
Nonlinear coupling

+ emn(y, t)︸ ︷︷ ︸
External forcing

, (1)

where

M =
( −∆ 0

0 I

)
and L =

( L 0
C S

)
. (2)

The operators L, S, and C relate to the Orr–Sommerfeld/Squire equations and
are defined as ⎧⎪⎨

⎪⎩
L = −ikxU∆ + ikxU ′′ + ∆2/Re,

S = ikxU − ∆/Re,

C = ikzU
′.

The Laplacian operator is denoted ∆ = D2 − k2, where D and D2 represent
first- and second-order differentiation operators in the wall-normal direction,
and k2 = k2

x +k2
z . The Reynolds number Re is based on the centerline velocity

and channel half-width. The double convolution sum in (1) represents the
nonlinear “triad” interactions. The boundary conditions on v and η correspond
to no-slip solid walls

v = Dv = η = 0 at y = ±1.

In the following, the right hand side of (1) will be lumped into a forcing
function fmn(y, t), thereby restricting the flow model to the linear terms, ac-
counting for both the nonlinear terms and the external disturbances with a
stochastic model. Suppressing the {}mn subscript for clarity, the resulting flow
model can be written as

d
dt

Mq + Lq = Tf(y, t), (3)

where the operator

T =
(

ikxD k2 ikzD
ikz 0 −ikx

)
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transforms the forcing f = (f1, f2, f3)T on the evolution equation for the ve-
locity vector (u, v, w)T into an equivalent forcing on the (v, η)T system (see,
e.g., Jovanović & Bamieh (2001b) for derivation of this transformation).

2.2. Measurements

The choice of the measurements to be taken in order to obtain the state estimate
(without knowledge of the initial conditions of the flow) is ultimately a matter
of practicality. In the present work, we will consider an idealized problem in
which the continuous distributions of streamwise and spanwise skin friction and
pressure on the wall are available as measurements in order to estimate the state
of the flow away from the wall. This information is mathematically complete in
the following sense: if this information is uncorrupted by noise and the external
forcing on the system is known exactly, the entire state of the flow (even in the
fully turbulent regime, and at any Reynolds number) is uniquely determined
by these measurements at the wall in an arbitrarily small neighborhood of time
t (without knowledge of the initial conditions), as shown by Bewley & Protas
(2004). However, in any practical problem, the measurements are corrupted
by noise, the modeling of the system is not precise, and there are external
disturbances on the system which are not accounted for. Thus, in the practical
setting, it is essential to filter the measurements appropriately to reconcile the
noisy measurements of the system with an approximate dynamic model of the
system. The Kalman filter used in the present paper is a mathematically-
rigorous tool to achieve this reconciliation.

In our previous formulations of the estimator problem, as discussed in
Högberg et al. (2003), only the feedback gains using the measurement ηy, the
first wall-normal derivative of η, were used. In §2.4, we develop an improved
formulation based on a more realistic model of the statistics of the external
disturbances such that we may now compute well-behaved feedback kernels
that converge upon grid refinement for any measurement constructed as a linear
combination of the state variables and their derivatives. In particular, the
three available measurements at the wall, the streamwise and spanwise wall
skin friction and the wall pressure, are related to the quantities v and η in the
state model as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τx = τxy|wall =
1

Re

∂u

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kxD2v − kzDη)|wall ,

τz = τzy|wall =
1

Re

∂w

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
1

Re

1
k2

D3v|wall .

Note that these equations are easily verified using the Taylor series expansions
for v(y) and η(y) near a solid wall, as written out in, e.g., §2.2 of Bewley &
Protas (2004). In the formulation shown in the remainder of §2, for clarity, we
focus on the feedback rules related to measurements made at the lower wall
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only. The extension of this formulation to the case in which measurements are
taken at both walls of the channel, as considered in the simulations reported
in §3 and §4, is straightforward.

2.3. Stochastic setting

As described earlier, the modeling of the relevant statistical properties of the
stochastic forcing function f in (3), which accounts for the effects of external
disturbances on the system, is one of the key steps in the framing of the present
estimation problem.

In the present stochastic framework, the mean of any quantity of interest
may be obtained using the expectation operator E[·], defined as the average
over all possible realizations of the stochastic inputs. In particular, the mean
of f is modeled as zero, that is, E[f ] = 0.

In the present formulation, it is the covariance of f that needs to be mod-
eled carefully. Since f is a continuous function of the spatial coordinate y, the
appropriate definition of the covariance in this problem is somewhat abstract, as
discussed in detail in Balakrishnan (1976). As shown in Balakrishnan (1976),
once this abstraction is made, the resulting Kalman filter in this spatially-
continuous formulation is found to be analogous to its well-known counterpart
in the finite-dimensional setting. In order to proceed with the modeling of
the statistics of f , it is necessary to have a clear understanding of what the
covariance means in the spatially-continuous setting.

In the spatially-discrete setting, if u and v are two zero-mean, random
vectors of length n1 and n2 respectively, their covariance Ruv is defined as a
matrix of size n1 × n2 such that Ruv = E[uv∗], where the symbol ∗ applied to
a vector or scalar denotes conjugate transpose. The covariance of a zero-mean
random vector u is defined as Ruu = E[uu∗].

To extrapolate these definitions to the spatially-continuous setting (see,
e.g., Balakrishnan 1976, p. 267), we make use of inner products with arbitrary
test functions chosen from the same Hilbert spaces as the random functions
we are considering. That is, if ξ and η are two zero-mean random functions
in Hilbert spaces H1 and H2 respectively, then their covariance Rξη is defined
such that

〈x,Rξηy〉1 = E[〈x, ξ〉1〈y, η〉∗2] ∀(x, y) ∈ H1 × H2 , (4)

where 〈·, ·〉1 and 〈·, ·〉2 denote appropriate inner products in the Hilbert spaces
H1 and H2 respectively. Thus, the covariance Rξη is seen to be a linear operator
from H2 to H1; this is analogous to the spatially-discrete setting, in which the
covariance is a matrix which when multiplied by a rank n2 vector results in a
rank n1 vector. Further, if ξ and η are taken to be simple vectors u and v in
the above expression, the inner products may be defined using the simple form
〈x , y〉 = x∗y , and the spatially-continuous definition of the covariance reduces
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immediately to the usual definition given in the spatially-discrete setting:

〈x , Ruvy〉 = x∗Ruvy

〈x , Ruvy〉 = E[(x∗u) (v∗y)] = x∗E[uv∗]y

}
⇒ Ruv = E[uv∗].

We will subsequently need to express the covariance of a linear transforma-
tion of a random process f of known covariance Rff . Letting g = Hf where
H is a linear differential operator, it follows from (4) that

〈x,Rggy〉 = E[〈x, g〉〈y, g〉∗] = E[〈x,Hf〉〈y,Hf〉∗]
= E[〈H∗x, f〉〈H∗y, f〉∗] = 〈H∗x,RffH∗y〉
= 〈x,HRffH∗y〉

⎫⎪⎬
⎪⎭ ⇒ Rgg = HRffH∗,

(5)
where H∗ denotes the adjoint of H; note that the adjoint of a linear operator
H : H1 → H2 with inner products 〈·, ·〉1 and 〈·, ·〉2 on H1 and H2 respectively
is defined by the equality

〈y,Hx〉2 = 〈H∗y, x〉1 ∀(x, y) ∈ H1 × H2 .

A significant feature of the definition of the covariance is its relation to
the expected value of the energy. In the spatially-discrete setting, defining the
energy using an unweighted inner product, we may define the trace such that

tr(Ruu) �
∑

i

〈δji, (Ruu)jk δki〉 =
∑

i

(Ruu)ii

= E[u1u
∗
1 + u2u

∗
2 + . . . + unu∗

n] = E[E(u)],

where E(u) denotes the energy of the vector u. In the spatially-continuous
setting, the corresponding definition is

tr(Rξξ) �
∫
Ω

〈δ(x − x′), Rξξδ(x − x′)〉dx′

=
∫
Ω

E
[〈δ(x − x′), ξ(x)〉 〈δ(x − x′), ξ(x)〉∗]dx′

= E
[ ∫

Ω

ξ(x′)ξ∗(x′)dx′
]

= E[E(ξ)].

Accounting for a weighting function in the definition of the energy in these
relations is straightforward.

2.4. Models for the stochastic inputs

The flow system that we desire to estimate is affected by its unknown initial
conditions, the unknown external disturbances that disrupt the evolution of the
state, and the unknown sensor noise that corrupts the measurements. Since the
estimator is intended to converge effectively over a large number of different
realizations, a statistical description (mean and covariance) of these unknown
quantities may be used to tune the feedback in the estimator design. The
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estimator which we will design, also known as a Kalman filter, will be optimal
in the sense of obtaining the most accurate estimate possible over a large set of
realizations of the system in which the initial conditions, external disturbances,
and sensor noise have the assumed statistical properties.

2.4.1. Modeling of the initial conditions

For the purpose of the present work, we will model the mean of the unknown
initial condition as zero (that is, we assume there is no preferred phase in the
initial flow structures) and its covariance as S0. Since the initial condition
in the estimator is always zero, S0 also represents the covariance of the state
estimation error at t = 0.

We want to design an estimator that performs well over a large range of
possible initial conditions. It is natural to assume that the initial conditions are
completely “random”, however, we know from our understanding of the flow
physics that there is a tendency for some specific types of flow disturbances to
be present in any given flow. For example, Tollmien–Schlichting (TS) waves
are likely to be present if the environment is characterized by acoustic waves,
streaks are likely to be present if the environment is characterized by high levels
of free-stream turbulence, and streamwise vortices are likely to be present if the
environment is characterized by wall roughness. The specific initial conditions
which we expect to see at each wavenumber pair in a particular problem (though
at an unknown phase and amplitude), and for which we would like to tune the
estimator to be particularly efficient at capturing, will be denoted here by
s = smn(y).

We will model the initial conditions q0 at each wavenumber pair as a lin-
ear combination of a component qs of a specified profile s (but with random
magnitude and phase) and a component qr constructed by a random linear
combination of the first p eigenmodes ξj = ξj

mn(y), normalized to unit energy,
of the system matrix M−1L in (3) such that

qs = θ0 s , qr =
1
p

p∑
j=1

θjξ
j ,

where the coefficients θj , j ∈ {0, . . . , p} are uncorrelated complex scalar random
variables with zero mean and unit variance. The initial condition q0 is then
modeled as a linear combination of these two components such that

q0 = c1 (c2qs + (1 − c2)qr) .

The design parameter c1 > 0 is used to specify the expected amplitude of
the initial conditions at this wavenumber pair, and the design parameter c2 ∈
[0, 1] is used to specify the relative importance of the components qs and qr

in the initial conditions. The corresponding covariance of the unknown initial
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conditions is given by

S0 = Rq0q0 = c1

⎛
⎝c2Rss + (1 − c2)

p∑
j=1

Rξjξj

⎞
⎠ . (6)

Note that we expect the energy of the initial conditions at both large wavenum-
ber pairs and small wavenumber pairs to be small. We may account for
this in the present model of the initial conditions by allowing c1 to vary in
a wavenumber-dependent fashion. In the present work, we will model this
dependence with the function

c1(kx, kz) = ca k2
c e−k2

c+1 with k2
c = (kx/cx)2 + (kz/cz)2,

where the design parameters cx and cz may be tuned to select the peak of the
expected energy of the initial condition in wavenumber space and the design
parameter ca scales the overall amplitude of the initial conditions. Many other
assumed forms for c1(kx, kz) are of course also possible, and may be experi-
mented with in future work.

2.4.2. Modeling of the external disturbances

We will assume the external disturbance forcing f = (f1, f2, f3)T in (3) to
be a zero-mean (E[fj(x, y, z, t)] = 0) stationary white Gaussian process with
auto-correlation

E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t
′)] = δ(t − t′)︸ ︷︷ ︸

Temporal

Qfjfk
(y, y′, rx, rz)︸ ︷︷ ︸
Spatial

,

where δ(·) denotes the Dirac δ-function. The assumption of a “white” time cor-
relation eases the derivation of the equations for the covariance of the state, and
is appropriate when the characteristic time scales of the external disturbances
are short as compared with the characteristic time scales of the flow system.
When this is not the case, the approach developed herein may be extended to
incorporate an additional filter in order to “color” the external disturbances
with appropriate self-correlation time scales (see, e.g., Lewis & Syrmos (1995)).

The remaining property to be described is the spatial extent of the two-
point, one-time, auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator of the form
discussed in §2.3, obtained for any wavenumber pair {kx, kz} via the following
integration over the homogeneous directions

Rfjfk
(y, y′, kx, kz) =

∫ ∫
Qfjfk

(y, y′, rx, rz)e−i(kxrx+kzrz)drx drz.

Our model for the covariance of f assumes that the disturbance has a localized
structure in space (i.e., the two-point correlation of the disturbance decays
exponentially with distance) and that the correlations between forcing terms
on different velocity components are zero. In the present work, we assume a
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Figure 1. Sketch of the assumed covariance of the unknown
external disturbance f in Fourier space at a single wavenumber
pair {kx, kz}, taking dy = 0.1 (left), and the variation of the
amplitude of this forcing with wavenumbers kx and kz, taking
dx = 0.5 and dz = 3 (right).

model for the covariance of the external forcing f which is of a similar form to
that assumed for the covariance of the initial conditions by taking

Rfjfk
(y, y′, kx, kz) = d1 δjkMy(y, y′),

where

d1(kx, kz) = da k2
d e−k2

d+1 with k2
d = (kx/dx)2 + (kz/dz)2

and the y variation of Rfjfk
is given by the function

My(y, y′) = e−(y−y′)2/2dy . (7)

Note that we will denote R = Rff = diag(Rf1f1 , Rf2f2 , Rf3f3) in the sections
that follow. The design parameters dx and dz may be tuned to select the
peak of the expected energy of the disturbance forcing in wavenumber space,
the design parameter dy governs the width of the two-point correlation of the
disturbance in the wall-normal direction, and the design parameter da scales
the overall amplitude of the disturbance forcing. The variation of δjkMy(y, y′)
as a function of y and y′, for the three different values of j and the three
different values of k, is depicted graphically in Figure 1a, and the variation of
k2

de−k2
d as a function of kx and kz is depicted graphically in Figure 1b. As with

the modeling of the covariance of the initial conditions, many other assumed
forms for d1(kx, kz) are also possible, and may be experimented with in future
work.

2.4.3. Modeling of the sensor noise

Each of the three measurements is assumed to be corrupted by sensor noise,
modeled as independent, white (in both space and time), random processes, the
amplitude of which is determined by the assumed quality of the sensors. The
covariance of the sensor noise vector g can thus be described in Fourier space
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by a diagonal 3 × 3 matrix G whose diagonal elements α2
ι are the variances of

the sensor noise assumed to be associated with each individual sensor

Rgι(t),gκ(t′) = δικδ(t − t′)α2
ι ,

where δικ denotes the Kronecker delta. Thus, in the present work, we assume
that the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can
be better trusted. For a given covariance of the initial conditions and external
disturbances, the tuning of the assumed overall magnitude of the sensor noise
in the Kalman filter design thus provides a natural “knob” to regulate the mag-
nitude of the feedback into the estimator. Note that an intermediate amount
of feedback is desired in the estimator design: if the feedback is too weak, the
estimator will not converge very quickly or very accurately, and if the feedback
is too strong, it may knock the estimated flow out of the small perturbation
neighborhood assumed in the linear model used in its design.

2.5. The Kalman filter

Noting that the Laplacian ∆ in the operator M in the forced linear equation
(3) may be inverted by enforcement of the homogeneous boundary conditions
on Dv, we may write

q̇ = −M−1L︸ ︷︷ ︸
A

q + M−1T︸ ︷︷ ︸
B

f,

and thus the general state-space formulation for the evolution of the flow state
q = qmn(y, t) at each wavenumber pair {kx, kz}mn may be written{

q̇ = Aq + Bf, q(0) = q0,

r = Cq + g;
(8)

note that q is a continuous function of both the wall-normal coordinate y and
time t in this formulation. The measurement vector r is constructed using the
matrix C, defined here as

C =
1

Re

1
k2

⎛
⎝ ikxD2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0

⎞
⎠ .

This matrix extracts the two components of wall skin friction and the wall
pressure from q.

We now build an estimator of the analogous form{
˙̂q = Aq̂ − v, q̂(0) = 0,

r̂ = Cq̂,
(9)

with feedback
v = Lr̃ = L(r − r̂). (10)
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Kalman filter theory, combined with the models outlined in §2.4 for the
relevant statistics of the unknown initial conditions q0, the unknown exter-
nal forcing f , and the unknown sensor noise g, provides a convenient and
mathematically-rigorous tool for computing the feedback operator L in the es-
timator described above such that q̂ converges to an accurate approximation of
q. Note that the volume forcing v used to apply corrections to the estimator is
proportional to the “innovation process” r̃ = r − r̂, that is, the difference be-
tween the measurements of the actual system and the corresponding quantity
in the estimator model.

The solution of the Kalman filter problem in the classical, finite-dimensional
setting is well known (for a succinct presentation, see, e.g., Lewis & Syrmos
(1995) p. 463-470). The corresponding operator equations applicable here,
though more involved to derive, are completely analogous (see Balakrishnan
1976). Thus, we will not rederive these equations here. The main results, in
both the finite-dimensional and infinite-dimensional settings, are:

1. the covariance S(t) = Rqq(t) of the flow state q(t) is governed by the
Lyapunov equation

Ṡ(t) = AS(t) + S(t)A∗ + BRB∗, S(0) = S0, (11)

2. for a given L(t), the covariance P (t) = Rq̃q̃(t) of the state estimation
error q̃(t) = q(t) − q̂(t) is governed by the Lyapunov equation

Ṗ (t) = A0(t)P (t) + P (t)A∗
0(t) + BRB∗ + L(t)GL∗(t), P (0) = S0, (12)

where A0(t) = A + L(t)C, and
3. the value of L(t) which minimizes the expected energy of the state es-

timation error (that is, which minimizes the trace of P (t)) is given by
the solution of the differential Riccati equation (DRE)

Ṗ (t) = AP (t) + P (t)A∗ + BRB∗ − P (t)C∗G−1CP (t), P (0) = S0, (13a)

L(t) = −P (t)C∗G−1. (13b)

Note that, for a linear, time-invariant (LTI) system (that is, for A, B, C,
R, G independent of time), the covariance of the estimation error, P (t), and
the corresponding feedback which minimizes its trace, L(t), follow a transient
near t = 0 due to the effect of the initial condition S0, eventually reaching a
steady state for large t in which Ṗ (t) = 0 and L̇(t) = 0. In order to minimize
the magnitude of the transient of the trace of P (t), it is necessary to solve
the differential Riccati equation given above. If one is only interested in min-
imizing the trace of P (t) at statistical steady state, it is sufficient to compute
time-independent feedback L by solving the algebraic Riccati equation (ARE)
formed by setting Ṗ (t) = 0 in (13a).
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2.6. Numerical issues

2.6.1. Spatial discretization

In order to actually compute the feedback in this problem, it is necessary to
discretize the DRE given in operator form in (13) and solve this equation in
the finite-dimensional setting. However, in order to be relevant for the PDE
problem of interest, the resulting feedback gains must converge to continuous
functions as the numerical grid is refined.

Thus, to proceed, we first need to build the discrete counterparts of the
system operators A, B, C, and their respective adjoints as well as the distur-
bance covariances R, G, and S0. In the present work, the discrete operators are
obtained through enforcement of the Orr–Sommerfeld/Squire equations at each
point of a Gauss–Lobatto grid using a Chebyshev collocation scheme, taking

fi = f(yi), yi = cos
iπ

N
, i = 0, . . . , N,

where N +1 is the number of gridpoints in the wall-normal direction. The dis-
crete operators and differentiation matrices are determined using the spectral
Matlab Differentiation Matrix Suite of Weideman & Reddy (2000). In partic-
ular, this suite provides fourth-order differentiation matrices invoking clamped
boundary conditions (f(±1) = f ′(±1) = 0), using the procedure suggested by
Huang & Sloan (1993), to give an Orr–Sommerfeld matrix with satisfactory nu-
merical properties, avoiding unstable or lightly-damped spurious eigenmodes.
The first-order, second-order, and third-order differentiation matrices so ob-
tained, denoted D1, D2, and D3 respectively, are combined according to the
equations given previously to compute the discrete matrices A, B, and C in
a straightforward fashion. The calculations reported in this paper use, where
needed, the discrete definition for the adjoint of a matrix, that is, its conju-
gate transpose. The integration weights W (yj) for the Chebyshev grid with
the Gauss–Lobatto collocation points are computed using the algorithm from
Hanifi, Schmid & Henningson (1996). These weights provide spectral accuracy
in the numerical integration used to assemble the energy measure matrix Q.

2.6.2. Solution of the DRE

The calculation of the differential Riccati equation (DRE) is accomplished in
this work using the Chandrasekhar algorithm developed by Kailath (1973).
This elegant algorithm solves a factored form of the DRE at the heart of the
Kalman filter as given by the spatial discretization of the operator equations
in (13a)-(13b). It is particularly efficient when these factors are of low rank,
which happens to be the case in the present study.

The main idea in the Chandrasekhar algorithm is to solve an evolution
equation for a factored form of the time derivative of the estimation error
covariance matrix, Ṗ(t). Since it is symmetric, Ṗ(t) can be factored as

Ṗ = L1L
∗
1 − L2L

∗
2 = YHY ∗, Y =

(
L1 L2

)
, H =

(
I 0
0 −I

)
, (14)
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where the rank of L1L
∗
1 is the number of positive eigenvalues of Ṗ and the rank

of L2L
∗
2 is the number of negative eigenvalues of Ṗ.

By spatial discretization of (13a), differentiation of both sides, and substi-
tution of the factorization given above, assuming the system is LTI (that is,
that A, B, C , R, and G are independent of time), it is straightforward to verify
that (13a)-(13b) is equivalent to the solution of the following system:{

L̇(t) = −Y (t)HY ∗(t)C∗G −1 , L(0) = −P(0)C∗G−1 ,

Ẏ (t) = (A + L(t)C )Y (t) , Y (0)HY ∗(0) = Ṗ(0),
(15)

where Ṗ(0) is easily determined from the spatial discretization of (12) evaluated
at t = 0.

The key to the efficiency of this scheme is to exploit the possibility for an
accurate low-rank approximation of Y . After an eigenvalue decomposition of
Ṗ(0) to determine L1 and L2, we can perform a singular value decomposition
of the matrices L1L

∗
1 and L2L

∗
2 and discard the singular vectors associated with

small singular values, constructing an approximation of Y with the remaining
singular vectors. In §4, singular values less than 0.01% of the initial Ṗ matrix
norm were discarded, resulting in a reduction of the rank of Y by approximately
75%. The computations of §3 requires great accuracy and where conducted by
directly marching in time the Riccati equation.

In the present work, time integration of the DRE is performed using a stan-
dard explicit fourth-order Runge–Kutta scheme. When only constant feedback
gains are to be used, we can either march the DRE to steady state using the
Chandrasekhar algorithm or solve directly the ARE via standard techniques
based on Schur factorization (see Laub (1991)).

2.6.3. Computation of the expected energy

In the discretized setting, the expected energy of the state q can be extracted
from the discrete covariance matrix S by use of the energy measure matrix
Q such that E[E(q(t))] = tr(QS(t)), where E(q(t)) denotes the instantaneous
energy of the state q at time t. The expected energy of the state estimation
error q̃ can be found in a similar manner, E[E(q̃(t))] = tr(QP(t)).

The time evolution of the expected energy may be computed using the
Chandrasekhar method. For example, the expected energy of the state q can
be marched forward in time from E[E(q(0))] = tr(QS0), its value at t = 0, via
time integration of d

dtE[E(q)] = tr(QṠ(t)), where Ṡ = YHY ∗, and where the
evolution equation for Y (t) is simply d

dtY (t) = AY (t), with Y (0) determined
by the factorization Y (0)HY ∗(0) = Ṡ(0) and Ṡ(0) determined by evaluation of
(11) at t = 0. The expected energy of the state estimation error q̃ can be found
in a similar manner, marching forward in time from E[E(q̃(0))] = tr(QS0) at
t = 0 via time integration of d

dtE[E(q̃)] = tr(QṖ(t)), where Ṗ = YHY ∗ with,
for L(t) specified, Y (t) evolving according to d

dtY (t) = (A + L(t)C )Y (t) with
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Y (0) determined by the factorization of Ṗ(0), which itself is determined by
evaluation of (12) at t = 0.

3. Fourier-space characterization

By Fourier transforming in the x- and z-directions all variables with spatial
variation (that is, the state, the disturbances, the measurements, and the con-
trol), the linearized 3D estimation and control problems completely decouple at
each wavenumber pair {kx, kz}, as observed in Bewley & Liu (1998). Thus, the
present section characterizes the performance of the estimator derived in the
previous section on the linearized system in Fourier space at three individual
wavenumber pairs (kx, kz) = (0, 2), (1, 0), and (1, 1), where this performance
is characterized most clearly. In §4, we inverse transform a large array of
such feedback gains to physical space, obtaining more readily implementable
spatially-localized 3D convolution kernels, and consider their effect on direct
numerical simulations of the full nonlinear system.

Unless stated otherwise, the results reported are computed for R = 3000,
a subcritical Reynolds number characterized by transient growth phenomena.
The design parameters for the stochastic model for the initial conditions (see
§2.4.1) are chosen to be c2 = 0.5, ca = 4, and cx = cz = 1.7. The design
parameters for the stochastic model for the external disturbances (see §2.4.2)
are chosen to be da = 0.033, dx = 0.5, dz = 3, and dy = 0.1. The design
parameters for the stochastic model for the sensor noise (see §2.4.3) are chosen
to be α2

1 = α2
2 = 0.002 (for the shear-stress measurements) and α2

3 = 20 (for
the pressure measurements).

These choices for the design parameters of the stochastic models of the
initial conditions, external disturbances, and sensor noise are the result of a
combination of parametric tuning and physical arguments. For example, the
choice c2 = 0.5 reflects a 50% confidence in the “specific form” of the assumed
statistics of the of the initial conditions. Figure 2 compares the variation with
wavenumber of the expected covariance of the initial conditions and disturbance
forcing in the model used in this work; these variations excite the wavenumber
ranges of interest for the estimation of localized disturbances and the account-
ing for the early effects of nonlinearity in the transition problem, as studied
in §4.2 and §4.3. The amplitude parameters for the initial condition, ca, and
the external forcing, da, are chosen such that the flow energy initially grows
and then slightly decays to statistical steady state, for the wavenumber pair
showing the greatest potential for transient growth, (kx, kz) = (0, 2).

The initial conditions used for the tests at isolated wavenumber pairs are
the “worst-case” initial conditions at these wavenumber pairs, i.e., the initial
conditions that, leveraging the non-normality of the dynamic operator A to the
maximum extent possible, lead to the largest possible transient energy growth.
Such initial conditions are of particular concern in a flow transition scenario,
as described in, e.g., Schmid & Henningson (2001).



State estimation. Part 1. Laminar flows 69

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5

k
z

k
x
 

Figure 2. Contour plot of the variation of amplitude of the
initial conditions, taking cx = cz = 1.7 (dashed) and external
disturbance forcing, taking dx = 0.5, and dz = 3 (solid), as a
function of the wavenumbers kx and kz. Note that the peak
amplitudes are near the design values of kc and kd, as defined
in §2.4.1 and 2.4.2, with reduced amplitudes for smaller and
larger values of kc and kd. The expected covariance of the
initial condition is modeled with equal extent in the streamwise
and spanwise directions, while the expected covariance of the
disturbance forcing is tuned for structures that are elongated
in the streamwise direction.

The plots in this section show the evolution of the expected value of the
energy of both the flow state and the state estimation error for initial condi-
tions, sensor noise, and external disturbances distributed as described in the
stochastic models presented in §2.4. Thus, these plots can be interpreted as
an average over a large number of realizations of these stochastic inputs. They
illustrate the effectiveness of the estimator feedback in the presence of the types
of disturbances for which the estimator feedback was designed, namely, uncor-
related, zero-mean, random Gaussian distributions of the same covariance as
specified in the estimator design.

3.1. Evolution of the expected energy of the flow state and the state estimation
error

Figure 3 shows the evolution of both the expected energy of the flow state and
the expected energy of the state estimation error using time-varying feedback
gains for three cases, each of which including the effect of sensor noise:
1) Nonzero initial conditions with zero external disturbances (dot-dashed curves):
the expected energy of the state estimation error follows an initial transient,
eventually tending exponentially to zero at the decay rate of the least-stable
eigenmode of A + LC since there is no additional excitation. In all flows con-
sidered, the expected energy of the state estimation error is rapidly reduced to
over two orders of magnitude below the expected energy of the flow state.
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Figure 3. Evolution of the expected energy versus time for
three flows of interest at three representative wavenumber
pairs: (top) (0,2), (center) (1,1), and (bottom) (1,0). The sto-
chastic inputs driving each simulation are: (solid) initial condi-
tions plus external disturbances, (dashed) external disturban-
ces only, (dot-dashed) initial conditions only; note that each
simulation accounts for the effect of sensor noise corrupting
the measurements. Thick lines represent the expected energy
of the flow disturbance and thin lines represent the expected
energy of the estimation error.

2) Nonzero external disturbances with zero initial conditions (dashed curves):
the expected energy of the estimation error monotonically increases towards a
statistical steady state. In the flow considered at wavenumber pair (0,2), the
expected energy of the state estimation error rapidly approaches a value close to
two orders of magnitude below the expected energy of the flow state, indicating
effective estimator convergence. In the flows considered at wavenumber pairs
(1,1) and (1,0), however, the expected energy of the state estimation error is
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Figure 4. Maximum (thick lines) and statistical steady state
(thin lines) of the total expected energy of the flow (solid)
and the estimation error (dashed) over a range of wavenumber
pairs for (a) kx = 0 with varying kz, and (b) kz = 1 with
varying kx.

nearly as large as the expected energy of the flow state itself, indicating poor
convergence of the estimator in these particular flows. This issue is discussed
in §3.2.
3) Both nonzero initial conditions and nonzero external disturbances (solid
curves): as expected, due to the linearity of the system and the additive effects
of the stochastic inputs on the expected energy of the system, this case is given
precisely by the sum of cases (1) and (2).

It is also worth noting that the transient in the expected energy of the
state estimation error is not only of lower amplitude, but is typically much
faster than the transient in the expected energy of the flow state.

Figure 4 shows how the peak and statistical steady state of the expected
energy of the flow state and state estimation error depend on the wavenumber
pair, quantifying the effects seen in Figure 1 for a range of different wavenum-
bers.
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3.2. The difficulty of detecting structures in the center of the channel with
wall sensors

The reason the estimator discussed in the previous section fails to converge
effectively in the flows at wavenumber pairs (1, 1) and (1, 0) when external
disturbances are present is interesting. Bewley & Liu (1998), hereafter referred
to as BL98, studied extensively the Kalman filter problem in the present flow
system for the following two cases:

case (i): Re = 10000, (kx, kz) = (1, 0),
case (ii): Re = 5000, (kx, kz) = (0, 2).

As shown in Figure 1b of BL98, the leading eigenvectors of A in the (1, 0)
case include several “center” modes with nearly zero support near the wall∗.
These modes, which are absent in the (0, 2) case, would be continuously excited
by the external disturbances, and are nearly impossible to detect with wall
measurements even if the sensor noise is very low. To quantify this notion, the
corresponding “modal observation residuals” gκ are tabulated for both cases in
Tables 1 and 2 of BL98.

Because of the presence of these nearly-unobservable center modes, the
estimation problem is inherently difficult at certain wavenumber pairs when
both external disturbances and sensor noise are present. Thus, the failure of
the Kalman filter developed here to converge accurately for the externally-
disturbed flows in the (1, 0) case and the (1, 1) case, which is characterized by
similar unobservable center modes, is a reflection of the fundamental difficulty
of this estimation problem when only wall measurements are employed, and is
not a shortcoming of the estimation strategy applied in the present work.

To investigate the excitation of the flow by external disturbances which do
not significantly excite such center modes, we may augment the definition of
My in (7), which models the wall-normal distribution of the covariance of the
external disturbances f , as

My
augmented = C(p)

(
y + y′

2

)2p

My.

The parameter p may be chosen to tune the profile of the external disturbances,
with uniform intensity in y if p = 0 or with intensity increasing near the walls
if p > 0, as shown in Figure 5. In the simulations reported here, the coefficient
C(p) is selected such that the total expected energy of the flow is identical in
each case.

The effect of this biasing of the external disturbances towards the walls is
plotted in Figure 6. For the three wavenumber pairs tested, Figure 6 illustrates
the wall-normal distribution of the expected energy of both the flow and the
estimation error at statistical steady state. The flow is forced both with the
external disturbance with p = 0 (solid lines) and p = 5 (dashed lines).

∗Note that the shapes of these modes are only weak functions of Reynolds number, so the
same general comments hold true for the Re = 3000 case studied here.
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Figure 5. The wall-normal distribution of the variance in the
augmented form of the external disturbance parameterization.
Four cases are shown, corresponding to p = 0, 1, 3, 5.

For the wavenumber pair (0,2), the biasing of the external disturbance
towards the walls has relatively little effect. In both cases tested, most of the
energy of the resulting flow perturbation is located in the region of high shear,
as explained by the lift-up effect. This perturbation is easily detected by the
sensors on the walls, so the corresponding expected energy of the estimation
error is relatively small.

For the wavenumber pair (1,0), on the other hand, the biasing of the ex-
ternal disturbance towards the walls has a relatively strong influence on where
the expected energy of the flow is located. When excitation is present in the
center of the channel (for p = 0), it is seen that the expected energy of the flow
is relatively large near the center of the channel. In this case, the estimator
performance is poor, and the value of the expected energy of the estimation
error is relatively large, especially near the center of the channel. On the other
hand, when the excitation is focused near the walls of the channel (for p = 5),
the so-called “center modes” are not excited, and the estimator performance is
very substantially improved.

The characteristics of the case at wavenumber pair (1,1) are essentially
intermediate between the two other cases, at (1,0) and (0,2).

These results are further reinforced in Table 1, where the total expected
energy of the estimation error is tabulated for p = 0, 1, 3, and 5. When the
external disturbances are uniformly distributed across the channel (for p = 0),
the estimator performance is substantially degraded for the (1,0) and, to a
lesser extent, the (1,1) cases as compared to the (0,2) case, as already seen
in Figure 6. As the excitation is focused closer to the walls (that is, as p is
increased), the estimator performance is substantially improved, as the nearly
unobservable center modes are no longer excited.

The flow structures that typically play the dominant role in the transi-
tion process (and, thus, the flow structures which we are most interested in
estimating accurately in the present work) are elongated in the streamwise di-
rection. That is, the modes of maximum concern in the transition process are
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Figure 6. The distribution in y of the expected energy at
statistical steady state of the flow (thick lines) and the esti-
mation error (thin lines) for three wavenumber pairs: (top)
(0,2), (center) (1,1), and (bottom) (1,0), and for two different
wall-normal distributions of the external perturbations: p = 0
(solid) and p = 5 (dashed).

the highly non-normal modes at relatively small kx and large kz. Fortunately,
this is the wavenumber regime that is not characterized by the problematical
center modes that are nearly impossible to estimate based on wall measure-
ments alone. Thus, the estimator developed and tested here appears to be
promising for estimating the components of the state that are most relevant
to the transition problem. It is also significant to point out that, to model the
effects of wall roughness in linearized Navier–Stokes models, it is common prac-
tice to tune the parameterization of the external disturbances to focus them
near the wall, as done here for large values of p. In this setting, the resulting
flow disturbances are well estimated at all wavenumber pairs, as reflected in
Table 1.

3.3. The utility of time-varying gains in the estimator

The feedback gains L determined by the Kalman filter, computed according
to (13a)–(13b), are inherently a function of time. Thus, as stated previously,
in order to minimize the trace of P (t) during the transient which ensues after
the estimator is turned on, it is necessary to use time-varying feedback gains.
However, for large times, P (t) and L(t) eventually approach constants as the
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(kx, kz) (0,2) (1,1) (1,0)
p = 0 28.8 289.5 548.4
p = 1 26.4 112.0 178.4
p = 3 16.3 38.3 43.8
p = 5 12.4 17.9 16.7

Table 1. The total expected energy of the estimation error
at statistical steady state for three wavenumber pairs and four
wall-normal distributions of the variance of the external dist-
urbances. For each case, the magnitude of the external dist-
urbances was scaled so that the total expected energy of the
flow was 1000.
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Figure 7. Comparison of the expected energy of the estima-
tion error using the time-varying gains (thick lines) and con-
stant gains (thin lines) for three wavenumber pairs: (0,2) solid,
(1,1) dash-dot and (1,0) dash.

estimation error approaches statistical steady state. Thus, if one is not in-
terested in minimizing this transient, one can simply apply constant feedback
gains designed to minimize the expected energy of the state estimation error
at statistical steady state.

It is interesting to compare the possible utility of time-varying gains for
the control and estimation problems. Consider first the problems of optimal
control and optimal estimation over the finite time horizon [0, T ]. As already
seen, the optimal estimation (Kalman filter) problem is solved by a DRE that
marches forward in time from t = 0 to t = T . On the other hand, the optimal
control problem is solved by a (closely-related) DRE that marches backward in
time, from t = T to t = 0. For time invariant systems over a long time horizon
(that is, for large T ), the resulting feedback gains for the estimation problem
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exhibit a transient near t = 0 and approach a constant for the remainder
of the march towards t = T , whereas the resulting feedback gains for the
control problem exhibit a transient near t = T and approach a constant for
the remainder of the march towards t = 0. In the limit that T → ∞, the
transient in the gains in the control problem becomes unimportant; however,
the transient in the gains in the estimation problem is still significant, especially
if one is concerned with how rapidly the estimator converges after the estimator
is turned on. Failure to appreciate this point can lead to the implementation of
constant-gain estimators which do not converge as rapidly as one might desire.

In our previous research on dynamic compensation (Högberg et al. (2003)),
constant feedback gains for both the control and estimation problems were used,
taking no account of the transient due to the initial condition in the estimator.
The full-state feedback control problem was found to be solved successfully
with this approach for a large number of relevant flow cases. However, the state
estimation problem was not found to be solved effectively by this approach, and
was left as an important open problem.

It is now clear that we cannot expect optimal estimator performance during
the initial transient when using constant estimation gains if the initial condi-
tion has a significant effect on the flow. This can be seen in Figure 7, where
the evolution of the expected energy of the estimation error is plotted for the
case of constant gains (thin lines) and the time-varying gains (thick lines).
Both the constant and the time-varying gains give identical expected energy
of the estimation error at large times, but the peak in the expected energy of
the estimation error at short times is substantially diminished when the time-
varying gains are employed. By taking the covariance of the initial condition
into account, the utilization of the time-varying gains gives us a direct means
to leverage any knowledge we might have about the expected structure of the
initial conditions in the flow case of interest.

3.4. Relative importance of the different measured quantities

As described in the introduction, the new disturbance parameterization pro-
posed in the present work allows us now to feed back into the estimator all
three types of measurements available at the wall, that is, the streamwise skin-
friction τx, the spanwise skin-friction τz, and the wall pressure p. Figure 8
explores the relative importance of each of these individual measurements in
the convergence of the estimator for the three wavenumber pairs studied pre-
viously. It is seen that the measurement of τx is the most significant for the
estimator convergence for wavenumber pairs with relatively small kx; as men-
tioned in the last paragraph of §3.2, one might consider these modes as the ones
of maximum concern in the early stages of transition. Physically, one might
say that, in this case, the estimator can leverage the strong streamwise skin
friction footprint associated with the streamwise streaks created be the lift-up
of low momentum fluid by low amplitude streamwise vortices. With the present
parameterization (high expected noise variance for the pressure measurement),
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Figure 8. Expected energy of the flow (solid thick line) and
estimation error when (solid thin line) all measurements are
used, (dashed line) only measurements of τx are used, (dot-
dashed line) only measurements of τz are used, and (dotted
line) only measurements of wall pressure are used, at the
wavenumber pairs (top) (0,2), (middle) (1,1), and (bottom)
(1,0).

the pressure do not contribute significantly to the estimation performance, but
in a sense, pressure might be thought of as an “integral” quantity that is more
significantly affected by flow events focused farther from the wall.

The evolution in time of the peak amplitudes of the feedback gains for
the three different types of measurements, as well as the variance of the mea-
sured signals (that is, the expected value of the measurement signal squared),
is depicted in Figure 9 for the wavenumber pair (0, 2). It is seen that the tran-
sient in the feedback gains due to the effects of the initial conditions is clearly
significant.
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Figure 9. Time evolution of the peak absolute value of the
gains and the variance of the measurements for the wavenum-
ber pair (0,2). (a) Peak absolute value of the gains for the
measurements of (dot-dashed) τx, (dashed) τz, and (dotted)
wall pressure. (b) Variance of the measured signal (thick lines)
and the measurement error (thin lines), with same line types
as in part (a).

3.5. The effectiveness of freezing selected gains based on the unsteady solution
of the DRE

The present section attempts to give some practical insight into the behavior
of selected feedback gains chosen from snapshots of the full solution of the
DRE. To this end, the expected energy of the estimation error when using
constant gains that were determined from snapshots of the unsteady solution
to the DRE is illustrated in Figure 10. It is seen that, when gains from early
in this time evolution are used, the early stages of the transient are estimated
effectively, but there is increased error in the estimate as statistical steady
state is approached. When gains from later in this time evolution are used, the
estimate of the transient is degraded, but the estimate of the statistical steady
state is significantly improved.

4. Physical-space characterization

In the previous section, the estimator was tested in the linear setting in Fourier
space at individual wavenumber pairs. In this section, we inverse transform
the gains computed on a large array of wavenumber pairs to obtain spatially-
localized convolution kernels in physical space (§4.1). We then investigate
the estimation (in physical space) of two flows of interest, one at very small
amplitude, in which nonlinear effects may be neglected (§4.2), and one at a
finite amplitude, in which nonlinear effects are significant (§4.3).
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Figure 10. Energy of the expected estimation error for gains
selected from the time-varying solution to the DRE and ap-
plied as constant-gain feedback, tested at the wavenumber pair
(0,2). Gains are selected from times 20, 40, 60, and 80 (solid
lines, with later times in the direction of the arrow), as com-
pared with the (constant) solution of the ARE (◦) and the full
(time-varying) solution of the DRE (+).

4.1. Physical-space feedback convolution kernels

The feedback gains for the estimator, as formulated in §2 and tested at in-
dividual wavenumber pairs {kx, kz}mn in §3, are functions of the wall-normal
coordinate y. By computing such feedback gains on a large array of wavenum-
ber pairs and then performing an inverse Fourier transform in x and z, 3D
(physical-space) feedback convolution kernels are obtained. Such convolution
kernels relate the measurement at a given sensor location on the wall to the
forcing of the estimator model in the vicinity of that point, and eventually
decay exponentially with distance far from the corresponding sensor. For fur-
ther discussion of the interpretation of such convolution kernels, the reader is
referred to Bewley (2001) and Högberg et al. (2003).

The results presented in this section were computed with p = 0, i.e. assum-
ing a constant amplitude of the external disturbance forcing in the wall-normal
direction.

4.1.1. Time variation of the kernels

To illustrate the time variation of the kernels computed via solution of the
DRE, the evolution in time of the kernels corresponding to the measurement
of the streamwise skin friction is shown in Figure 11. Note that the shape of
this kernel varies rapidly near t = 0, then gradually approaches a steady-state.
Also note that, near t = 0, the kernel is similar in its streamwise and spanwise



80 J. Hœpffner, M. Chevalier, T. R. Bewley & D. S. Henningson

extent, but, as time evolves, the kernel becomes elongated in its streamwise
extent. This is consistent with the fact that structures with relatively small kx

are persistent in time and typically dominate such flows.

4.1.2. Steady-state shapes of the kernels

The time-varying kernels computed via the solution of the DRE eventually
converge to steady-state. Figure 12 shows these steady-state shapes for each
of the three measurement and the two evolution equations. Note the close
correspondence between the steady-state kernels for the τx measurement in
Figure 12 and the corresponding kernels at t = 60 in Figure 11.

It is important to note that the spatial extent of the convolution kernels
is related, to some degree, to the correlation length scales chosen during the
disturbance parameterization defining the estimation problem. Specifically,
the parameters dx, dy, and dz parameterizing the correlation length scales
of the disturbances in §2.4.2 have a direct effect on the spatial extent of the
present kernels. For example, Figure 13(a) shows, for three different values of
dz, the spanwise extent of the pressure kernel forcing the streamwise velocity
component of the state estimate, integrated in the streamwise and wall-normal
directions. It is clear that, when designing feedback for disturbances which are
more “spread out” in the spanwise direction (that is, disturbances with greater
two-point correlation length scales in the spanwise direction), the corresponding
convolution kernel has a broader spanwise extent. It is also seen that this
broader kernel has a lower peak amplitude, since the corresponding forcing is
more distributed.

The streamwise extent of the kernel is less sensitive to the streamwise
correlation length scale of the disturbances, but is a strong function of the
Reynolds number. In a flow with a higher Reynolds number, the effect of flow
advection is more pronounced, and information from wall sensors can be related
to the interior flow structures responsible for this wall footprint that have since
advected further downstream. This effect can be clearly seen in Figure 13(b),
which shows the same kernel as in Figure 13(a) but integrated in the spanwise
and cross-flow directions for three different Reynolds numbers.

4.2. Estimation of an infinitesimal localized flow perturbation

The localized flow perturbation studied by Henningson, Lundbladh & Johans-
son (1993) is now used to test the convergence of the estimator in physical
space. In this section, we will consider the direct numerical simulation of an
infinitesimal flow perturbation, so that nonlinear effects in this section can
effectively be neglected.

Recall that the estimator initializes the state estimate as zero; that is, it
assumes no a priori knowledge of the location of the initial flow perturbation.
In the following, we explore different models for the assumed covariance of the
initial estimation error by varying the design parameter c2 in (6). This param-
eter effectively reflects our level of confidence in our knowledge of the relevant
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Figure 11. The time-varying kernel for times (top to bottom)
t = 0, 15, 30, 45, and 60, relating the streamwise component
of the shear stress measurement at the point {x = 0, y =
−1, z = 0} on the wall to the estimator forcing on the interior
of the domain for the evolution equation for the estimate of
(left) (v̂) and (right) (η̂). Visualized are positive (dark) and
negative (light) isosurfaces with isovalues of ±5% of the max-
imum amplitude for each kernel illustrated.
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Figure 12. The steady-state convolution kernels relating the
(left) τx, (center) τz, and (right) p measurements at the point
{x = 0, y = −1, z = 0} on the wall to the estimator forcing
on the interior of the domain for the evolution equation for
the estimate of (top) v̂ and (bottom) η̂. Visualized are positive
(dark) and negative (light) isosurfaces with isovalues of ±5%
of the maximum amplitude for each kernel illustrated.
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Figure 13. Decay of the pressure kernel forcing the stream-
wise velocity component of the state estimate, (a) integrated
in the streamwise and wall normal direction for (solid) dx =
dz = 0.2, (dashed) 0.7, and (dot-dashed) 1.3, and (b) inte-
grated in the spanwise and wall-normal directions for (solid)
Re = 3000, (dashed) 2000, (dot-dashed) 1000.

statistical properties of the initial conditions, ranging from 0.05 (little specific
knowledge of the statistical properties of the initial conditions) to 1 (accurate
knowledge of these statistics, but no knowledge of the actual location of the
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Figure 14. Energy content (in Fourier space) of the initial
condition for the case studied in §4.2 & §4.3.

initial flow perturbation). For the simulations reported here, the exact initial
condition of the flow perturbation, described below, is used as the “specific”
component s in the parameterization of the initial covariance of the estimation
error, P (0), for the purpose of the computation of the feedback kernels.

The external disturbance forcing of the flow considered in this section is
taken as zero, so the resulting simulation might be characterized as a “de-
terministic” case with no stochastic forcing. The initial condition of the flow
considered in this section consists of an axisymmetric disturbance of the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ψ =

1
2
εf(y)r2e−(r/l)2 ,

f(y) = (1 + y)2(1 − y)5,

(u, v, w) = (− x

r2
ψy,

1
r
ψr,− z

r2
ψy).

(16)

Here (x, y, z) are the streamwise, wall-normal, and spanwise coordinates respec-
tively, r2 = x2 + z2, and (u, v, w) are the corresponding velocity components.
The horizontal extent of this perturbation may be adjusted with the parameter
l, which is set equal to 1 for the presented simulations so that the maximum
energy of the initial flow perturbation in Fourier space is at the wavenumber
pairs showing the greatest transient energy growth, as illustrated in Figure 14.
The parameter ε scaling the amplitude of the initial flow perturbation is taken
as 0.001.

Five different estimators, as formulated in the previous sections with feed-
back gains computed by selecting c2 = 0.05, 0.1, 0.25, 0.5, and 1 respectively,
were tested on the problem of estimating this flow. It is seen in Figure 15
that the variation of c2 between 1 and 0.25 had a relatively small effect on the
resulting estimator performance, and that all four of the estimators tested in
this range significantly outperformed the estimator that used only the steady
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Figure 15. The time evolution of the energy of an infini-
tesimal localized flow perturbation (thick solid line) and the
energy of the estimation error of the same flow using (dashed
line) the steady state kernels determined from the solution of
the ARE as well as (thin solid lines) a gain scheduled set of ker-
nels computed using values of c2 = 0.05, 0.1, 0.25, 0.5, and 1,
increasing in the direction of the arrow. Note that the energy
E has been normalized by energy of the initial flow perturba-
tion.

state kernels (dashed line), which does not depend on the parameterization of
the statistics of the initial conditions. On the other hand, the estimator in
the case with c2 = 0.05 significantly under-performed the others, indicating
that, when no useful information is available concerning the statistics of the
initial conditions, one might be better off simply using the steady-state kernels
computed via solution of the ARE.

Figure 16 visualizes the evolution of this flow perturbation (left) as it
evolves from the initial conditions provided, as well as the evolution of the state
estimate (right) as it evolves from the initial condition of zero and is forced by
the feedback of the measurement error term as formulated in (9)-(10). It is seen
that, by time t = 60, all of the major features of the flow are apparently well
reproduced by the state estimate. Additionally, as seen in Figure 15, the time
t = 60 is rather early in the evolution of the flow perturbation—the energy of
the flow perturbation is still growing substantially at this point, while the en-
ergy of the state estimation error is by now decaying exponentially, indicating
successful convergence of the estimator.

4.3. Estimation of a finite-amplitude flow perturbation

We now test the same estimator as used previously on the problem of estimating
a flow with the same initial conditions as considered in §4.2, but with an initial
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Figure 16. Evolution of a localized disturbance to the state
(left) and the corresponding state estimate (right) at time t = 0
(top), t = 20 (middle), and t = 60 (bottom), computed with
c2 = 0.08. Visualized are positive (light) and negative (dark)
isosurfaces of the streamwise component of the velocity. The
isovalues are ±10% of the maximum streamwise velocity of the
flow during the time interval shown.
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amplitude now almost an order of magnitude larger, such that nonlinear effects
play a significant role. We take ε = 0.00828, which corresponds to a maximum
wall normal velocity of 0.0117 at t = 0 (this is approximately ≈1.2% of the
maximum velocity of the mean flow).

As in §4.2, the direct numerical simulation reported here used the code de-
scribed in Lundbladh et al. (1992), which uses a pseudo-spectral scheme with
Fourier, Chebyshev, and Fourier techniques in the streamwise, wall-normal,
and spanwise directions respectively. The time advancement was a third or-
der Runge–Kutta method for the nonlinear terms and a second order Crank–
Nicolson method for the linear terms. The box size is 48× 2× 24 and the grid
resolution is 96 × 65 × 192.

As mentioned in the third paragraph of §3, the estimator used in this work
has already been designed to handle well the leading-order effects of nonlinear-
ity. Since we know from Henningson et al. (1993) that nonlinear effects will
be most pronounced at wavenumber pairs with lower kx and higher kz than
the initial conditions, we have tuned the covariance of the external disturbance
model upon which the estimator is based to account specifically for unmodeled
dynamics at these wavenumbers, as depicted in Figure 2. The model for the
external disturbances accounts here for a forcing of higher amplitude than for
the tests on single wavenumber pairs of §3, with da = 0.25, and located closer
to the walls, with p = 1. With this choice of parameters, the expected flow
energy grows due to the initial condition, and continues to grow due to the
forcing f , in a way similar to the nonlinear evolution of the flow.

The evolution of the energy of the state and the estimation error for both
the moderate-amplitude case (§4.3) and the small-amplitude case (§4.2) are
plotted in Figure 17. To facilitate comparison, all curves have been normalized
to unity at t = 0. Note the significant difference in the normalized energy
evolution of the state in the two cases considered (compare the thick solid line
and the thick dashed line); this reflects the significant effects of nonlinearities in
the moderate amplitude case. For both cases, the initial stage of the evolution
(during which nonlinear effects are fairly small in both cases) is well estimated
(thin lines). As the moderate-amplitude perturbation evolves and its amplitude
grows, nonlinear effects become significant, and the performance of the linear
estimator (thin solid line) is degraded as compared with the performance of
the linear estimator in the small-amplitude case (thin dashed line).

The Kalman filter is an “optimal” estimator (in several rigorous respects—
see Anderson & Moore (1979) for a detailed discussion) in the linear setting.
As seen in Figure 17 and discussed in the previous paragraph, when a Kalman
filter is applied to a nonlinear system, its performance is typically degraded,
due to the fact that the linear model upon which the Kalman filter is based
does not include all the terms of the (nonlinear) equation governing the actual
system. A common (though somewhat ad hoc) patch which partially accounts
for this deficiency is to reintroduce the system nonlinearity to the estimator
model after the Kalman filter is designed. This approach is called an extended
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Figure 17. Evolution of the normalized flow energy (thick
lines) and normalized estimation error energy (thin lines) for
the case with moderate-amplitude initial conditions (solid) and
low-amplitude initial conditions (dashed). The evolution of the
normalized estimation error energy for the extended Kalman
filter in the case with moderate-amplitude initial conditions
is also plotted (thin dot-dashed line), illustrating a significant
improvement as compared with the performance of the cor-
responding Kalman filter (thin solid line) when nonlinearities
are significant.

Kalman filter. This type of estimator is identical to the Kalman filter except for
the presence of the system’s nonlinearity in the estimator model. This addition
makes some sense: if the estimate of the state happens to match the actual
state, no feedback from measurements is required for the extended Kalman
filter to track the actual flow state. This is not the case for the standard
(linear) Kalman filter. As seen clearly in Figure 17, the extended Kalman filter
(thin dot-dashed line) enjoys a substantial performance improvement compared
with its standard Kalman filter counterpart (the thin solid line) for estimating
finite-amplitude flow perturbations when nonlinearities in the system model
are significant.

5. Conclusions

A canonical feedback control problem in fluid mechanics, which undoubtedly
sets the stage for several follow-on flow control problems that incorporate
greater geometric complexity, is the feedback control of a near-wall flow system
based on limited noisy measurements from flush wall-mounted sensors in order
to stabilize the flow and inhibit transition to turbulence. In such problems, it is
natural to apply model-based linear control theory, as the equations of motion
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of the system are well known and the linearization of these equations are valid,
at least during the early stages of the transition process when all flow pertur-
bations are small. The mathematical framework for the linear control theory
we have chosen to apply in the present study, commonly called “optimal” or
“H2” control theory, is well known in both the finite- and infinite-dimensional
setting. However, the fact that the flow system is infinite dimensional and that
regularity issues play a very subtle roll in the well posedness of this control
problem in the infinite-dimensional setting, compounded by the fact that the
theory of well posedness of the equations of motion of the system of interest
(that is, the 3D Navier–Stokes equation) is not yet even complete, leads to
some peculiar challenges in the well-posed framing and subsequent numerical
solution of this challenging flow control problem.

Via the so-called Separation Principle, such linearized flow control prob-
lems in the optimal setting break up into two independent subproblems: control
of the flow with whatever actuators are available based on full state informa-
tion, and estimation of the full flow state with whatever sensors are available.
Once both subproblems are solved effectively, they may be combined to develop
a dynamic compensator to control the flow system using limited actuation au-
thority (with, for example, actuators mounted on the walls) based only on
limited noisy measurements of the flow (with, for example, sensors mounted on
the walls). In previous work, excellent results had been obtained on the full-
state feedback control problem, but certain unresolved difficulties remained
on the estimation problem. The present work thus focused exclusively on the
estimation problem.

The first important development in this work was the introduction of a
physically relevant parameterization of the external disturbances acting on the
system that converges upon refinement of the numerical grid. This disturbance
parameterization is fairly generic, and can easily be used to leverage one’s
physical insight concerning the initial conditions likely to be encountered in a
given flow (for example, Tollmien–Schlichting (TS) waves, streaks, or stream-
wise vortices). Also, the disturbance parameterization can be tuned in order to
modify (at least, to some degree) the spatial extent of the resulting convolution
kernels.

Using this disturbance parameterization, together with appropriate param-
eterizations of the initial conditions and the measurement noise, feedback gains
for the estimation problem were computed (using a efficient Chandrasekhar
method) for the near-wall flow system in Fourier space on a large array of
(decoupled) wavenumber pairs {kx, kz}, then inversed transformed to obtain
physical-space convolution kernels. The improved disturbance parameteriza-
tion proposed in this study facilitated, for the first time, the computation of
measurement feedback gains in the discretized problem that converged upon
grid refinement (and thus are relevant for the infinite-dimensional problem upon
which the numerical problem solved in the computer was derived) for all three



State estimation. Part 1. Laminar flows 89

types of measurements that are available on the wall (that is, streamwise and
spanwise wall skin friction and wall pressure).

The second significant development in this work was the recognition that
for the problem of transition control, though time-invariant feedback gains
(computed from a corresponding algebraic Riccati equation) are sufficient for
the full-state feedback control problem, time-varying feedback gains (computed
from a differential Riccati equation) are necessary for the estimation problem
in order to minimize the initial transient in the estimation error when the
estimator is turned on.

The estimator feedback rules that resulted from these two developments
were tested extensively in both in Fourier space (in the linearized setting) and
in physical space (in direct numerical simulations of both infinitesimal and
finite-amplitude disturbances for which the effects of nonlinearity are signif-
icant). The estimator was shown to perform well for all cases studied ex-
cept when the external disturbances excited center modes, which can happen
sometimes for wavenumber pairs with relatively large streamwise component
(that is, for modes which are relatively large in their spanwise extent). Fortu-
nately, it was recognized that such cases are not the primary cases of interest
in most transition scenarios. It was also found that, when the flow perturba-
tions were large enough that the nonlinearities of the system were significant,
an extended Kalman filter which incorporated the system nonlinearity in the
estimator model outperformed the standard (linear) Kalman filter.

The reader is referred to Part 2 of this study for a summary of recent
work considering the extension of such estimation strategies to the problem of
fully-developed near-wall turbulence.
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State estimation in wall-bounded flow systems.
Part 2. Turbulent flows
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This work extends the estimator developed in Part 1 of this study (Hœpffner et
al., J. Fluid Mech., submitted) to the problem of estimating a turbulent channel
flow at Reτ = 100 based on a history of noisy measurements on the wall. The
key advancement enabling this work is the development and implementation of
an efficient technique to extract, from direct numerical simulations, the relevant
statistics (mean and covariance) of an appropriately-defined “external forcing”
term on the Navier–Stokes equation linearized about the mean turbulent flow
profile. This forcing term is designed to account for the unmodelled (nonlinear)
terms during the computation of the (linear) Kalman filter feedback gains at
each wavenumber pair {kx, kz}. The statistics of this forcing term are found
to have some similarities to the parameterization of the external disturban-
ces considered in Part 1 of this study, which dealt with the estimation of the
early stages of transition in the same domain. Three key steps were identified in
obtaining adequate estimator performance in the near-wall region: 1) lineariza-
tion the flow system about the mean turbulent flow profile, accounting for the
statistics of the additional forcing term during the computation of the feedback
gains, 2) extraction of these statistics from a direct numerical simulation, and
3) incorporation of the nonlinearity of the actual system into the estimator
model at the final step in the development of the estimator (using an extended
Kalman filter). Upon inverse transform of the resulting feedback gains com-
puted on an array of wavenumber pairs, we obtain, as in Part 1, effective and
well-resolved feedback convolution kernels for the estimation problem.

It is demonstrated that by applying the optimal feedback gains, for all three
measurements, satisfactory correlation between the actual and estimated flow
is obtained in the near-wall regions. The correlation eventually decays as the
wall distance increases but the decay sets in later compared to using estimation
gains based on a statistically uncorrelated stochastic models. Both Kalman and
extended Kalman filters are evaluated and naturally the extended filter is giving
better correlations between the actual and estimated flow, however the Kalman
filter gives good performance in the near-wall regions.
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1. Introduction

This paper builds directly on Part 1 of this study (Hœpffner et al., J. Fluid
Mech., submitted, hereafter referred to as Part 1). It extends the estimator
developed there, for the case of perturbed laminar channel flow, to the problem
of fully-developed channel-flow turbulence. The reader is referred to Part 1 for
related general references, background information on optimal state estimation
(Kalman filter) theory, and a description of what it takes to apply this theory
to a well-resolved discretization of a fluid system in a manner that is consistent
with the continuous PDE system upon which this discretization is based (that
is, in a manner such that the resulting feedback convolution kernels converge
upon refinement of the numerical grid). The present paper effectively picks up
where Part 1 left off, and treats specifically the issues involved in extending the
estimator developed in Part 1 to the problem of estimating a fully-developed
turbulent channel flow based on wall measurements.

1.1. Model predictive estimation

There are two natural approaches for model-based estimation of near-wall tur-
bulent flows: model predictive estimation and extended Kalman filtering. Bew-
ley & Protas (2004) discusses the model predictive estimation approach, which
is based on iterative state and adjoint calculations, optimizing the estimate of
the state of the system such that the nonlinear evolution of the system model,
over a finite horizon in time, matches the available measurements to the max-
imum extent possible. This is typically accomplished by optimizing the ini-
tial conditions in the estimator model in order to minimize a cost function
measuring a mean-square “misfit” of the measurements from the correspond-
ing quantities in the estimator model over the time horizon of interest. This
optimization is performed iteratively, using gradient information provided by
calculation of an appropriately-defined adjoint field driven by the measurement
misfits at the wall. The technique provides an optimized estimate of the state
of the system which accounts for the full nonlinear evolution of the system, al-
beit over a finite time horizon and providing only a local optimal which might
be far from the actual flow state sought. The technique is typically expen-
sive computationally, as it requires iterative marches of the state and adjoint
fields over the time horizon of interest in order to obtain the state estimate;
for this reason, this approach is often quickly disqualified from consideration
as being computationally intractable for practical implementation. The model
predictive estimation approach is closely related to the adjoint-based approach
to weather forecasting, commonly known as 4D-var. For further discussion of
model predictive estimation as it applies to near-wall turbulence, the reader is
referred to Bewley & Protas (2004).
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1.2. Extended Kalman filtering

The extended Kalman filter approach, which is the focus of the present paper,
is described in detail in Part 1 of this study. To summarize it briefly, the
estimation problem is first considered in the linearized setting. Define r̂m as
the Fourier transform of the vector of all three measurements available on the
walls in the actual flow system at wavenumber pair {kx, kz}, and define r̂ as
the corresponding quantity in the estimator model. At each wavenumber pair
{kx, kz}, a set of feedback gains L is first computed such that a forcing term
v̂ = L(r̂m − r̂) on the (linearized) estimator model results in a minimization of
the energy of the estimation error (that is, this feedback minimizes the trace
of the covariance of the estimation error, usually denoted P ), assuming the
flow state itself is also governed by the same linearized model. This is called a
Kalman filter, and the theory for the calculation of the optimal feedback gain
L in the estimator is elegant, mathematically rigorous, and well known∗.

Upon inverse transform of the resulting feedback gains computed on an
array of wavenumber pairs, we seek (and, indeed, find) well resolved feedback
convolution kernels for the estimation problem that, far enough from the origin
(that is, from , decay exponentially with distance from the origin. The reader
is referred to Bamieh (1997), Bewley (2001) and Högberg et al. (2003a) for
further discussion of

1. the technique used to transform feedback gains in Fourier space to feed-
back convolution kernels in physical space,

2. interpretation of what these convolution kernels mean in both the con-
trol and estimation problems, and

3. description of the overlapping decentralized control implementation fa-
cilitated by this approach, which is built from an interconnected array
of identical tiles, each with actuators, sensors, and control logic incor-
porated, that communicate only with their neighbors.

Ultimately, the estimator feedback v̂ = L(r̂m−r̂) is applied to a full (nonlin-
ear) model of the flow system. This final step of reintroducing the nonlinearity
of the system into the estimator model results in what is called an extended
Kalman filter. In practice, the extended Kalman filter has proved to be one of
the most reliable techniques available for estimating the evolution of nonlinear
systems.

1.3. On the suitability of linear models of turbulence for state estimation and
control

As described in the previous section, the feedback kernels used in the extended
Kalman filter are calculated based on a linearized model of the fluid system.

∗For a succinct introduction in the spatially-discrete (ODE) setting, see, e.g., p. 463–470
of Lewis & Syrmos (1995). For a more comprehensive presentation in the ODE setting,
see Anderson & Moore (1979). For the corresponding derivation in the spatially-continuous
(PDE) setting, see Balakrishnan (1976).
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Thus, the applicability of the extended Kalman filtering strategy to turbulence
is predicated upon the hypothesis that linearized models faithfully represent at
least some of the important dynamic processes in turbulent flow systems.

The fluid dynamics literature of the last decade is replete with articles
aimed at supporting this hypothesis. For example, Farrell & Ioannou (1996)
used these linearized equations in an attempt to explain the mechanism for the
turbulence attenuation that is caused by the closed-loop control strategy now
commonly known as opposition control. Jovanović & Bamieh (2001) proposed
a stochastic disturbance model which, when used to force the linearized open-
loop Navier–Stokes equation, led to a simulated flow state with certain second-
order statistics (specifically, urms, vrms, wrms, and the Reynolds stress −uv)
that mimicked, with varying degrees of precision, the statistics from a full DNS
of a turbulent flow at Reτ = 180.

Clearly, however, the hypothesis concerning the relevance of linearized
models to the turbulence problem can only be taken so far, as linear mod-
els of fluid systems do not capture the nonlinear “scattering” or “cascade” of
energy over a range of length scales and time scales, and thus linear models
fail to capture an essential dynamical effect that endows turbulence with its
inherent “multiscale” characteristics. The key philosophy of the present work
(and, indeed, the key philosophy motivating our application of linear control
theory to turbulence in general), is that the fidelity required of a model for
it to be adequate for control (or estimator) design is in fact much lower than
the fidelity required of a model for it to be adequate for accurate simulation of
the system. Thus, for the purpose of computing feedback for the control and
estimation problems, linear models might well be good enough, even though
the fidelity of linear models as simulation tools to capture the open-loop statis-
tics of turbulent flows is still the matter of some debate in the fluids literature.
All that the feedback in an extended Kalman filter has to do is to give the
estimator model a “nudge” in approximately the right direction when the state
and the state estimate are diverging. The extended Kalman filter contains the
full nonlinear equations of the actual system in the estimator model, so if the
state and the state estimate are sufficiently close, the estimator will accurately
track the state, for at least a short period of time, with little or no additional
forcing necessary.

Stating this philosophy another way, in the control problem, the model
upon which the control feedback is computed need only include the key terms
responsible for the production of energy. Since the nonlinear terms in the
Navier–Stokes equations are conservative, and thereby do not contribute di-
rectly to energy production, we can expect that a linear model may suffice.
For Navier–Stokes systems near solid walls, there is evidence that this is in fact
true, at least for sufficiently low Reynolds number. Kim & Lim (2000) showed
that interior body forcing (applied everywhere inside the flow domain) that was
constructed to exactly cancel the linear coupling term in the linear part of the
nonlinear Navier–Stokes equation (that is, canceling the LC term in (4)) was
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sufficient to completely relaminarize the turbulent flow. Högberg et al. (2003b)
showed that blowing and suction distributed on the channel walls that was de-
termined using full-information linear control theory (scheduling the feedback
gains based on the instantaneous shape of the mean velocity profile) was also
sufficient to completely relaminarize the turbulent flow.

The present work on the estimation problem is based on the related philos-
ophy that, in a similar manner, the model upon which the estimator feedback
is computed need only capture the key terms responsible for the production of
energy in the system describing the estimation error.

1.4. The problem of nearly unobservable modes

The problem of estimating the state of a chaotic nonlinear system based on
limited noisy measurements of the system is inherently difficult. When posed
as an optimization problem (for example, in the model predictive estimation
approach described previously), one can expect that, in general, multiple local
minima of such a nonconvex optimization problem will exist, many of which
will be associated with state estimates that are in fact poor. These difficulties
are exacerbated in the case of the estimation of near-wall turbulence by the
fact that turbulence is a multiscale phenomenon (that is, it is characterized
by energetic motions over a broad range of length scales and time scales that
interact in a nonlinear fashion), with significant nonlinear chaotic dynamics
evolving far from where sensors are located (that is, on the walls).

As illustrated, e.g., in Figure 1b of BL98 (that is, Bewley & Liu 1998),
quantified by the “observation residual” in Table 1 of BL98, and discussed fur-
ther in Part 1, even in the laminar case, at kx = 1, kz = 0 a significant number
of the leading eigenmodes of the system are “center modes” with very little sup-
port near the walls, and are thus are nearly unobservable with wall-mounted
sensors. As easily shown via similar plots in the turbulent case at the same
and higher bulk Reynolds numbers, an even higher percentage of the leading
eigenmodes of the linearized system are nearly unobservable (that is, have very
little support near the walls) in the turbulent case, with the problem getting
worse as the Reynolds number is increased. We thus see that the problem of
estimating turbulence is fundamentally harder than the problem of estimating
perturbations to a laminar flow even if the linear model of turbulence is con-
sidered as valid, simply due to the heightened presence of nearly unobservable
modes.

In the present work we focus our attention primarily on getting an accurate
state estimate fairly close to the walls, where the sensors are located. This is
done with the idea in mind that, in the problem of turbulence control (which is
our ultimate long-term objective in this effort, and the reason we are pursuing
this line of investigation in the first place), it is the near-wall region only that,
on average, turbulence “production” substantially exceeds “dissipation”, as
pointed out in Jimenez (1999). Thus, we proceed with the objective that, if we
can
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1. estimate the fluctuations in the near-wall region with a sufficient degree
of accuracy, then

2. subdue these near-wall fluctuations with appropriate control feedback,

then we will have a net stabilizing effect on the turbulent motions in the entire
flow system, even if we don’t completely relaminarize the turbulent flow. It is
thus, we hypothesize, unnecessary for us to estimate the precise motions of the
flow far from the wall in order to realize our ultimate objective in this work.
Flow-field fluctuations far from the wall, which will not be estimated accurately
in this work, will (through nonlinear interactions) act as disturbances to excite
continuously the state estimation error, while feedback from the sensors will
be used to subdue continuously this error in the near-wall region.

1.5. Comparison of the estimation and control problems applied to near-wall
turbulence

Another significant difference between the turbulence control and turbulence es-
timation problems is that, in the control problem, once (if) the control becomes
effective, the system approaches a stationary state in which the linearization
of the system is valid. In the estimation problem, on the other hand, even if
the estimate at some time is quite accurate, the system is still moving on its
chaotic attractor, so the linearization of the system about some mean state is
not strictly valid. Thus, in this respect, it is seen that the turbulence esti-
mation problem might be considered as being fundamentally harder than the
turbulence control problem.

1.6. Outline

A brief review of the governing equations and some of the particular properties
of the extended Kalman filter used in this work is given in §2. Section 3
collects and analyzes the relevant statistics from a direct numerical simulation
of a turbulent channel flow at Reτ = 100 in order to build the estimator. The
statistical data from §3 is then used in §4 to compute feedback gains (in Fourier
space) and kernels (in physical space) for the estimator. The performance of the
resulting estimator is evaluated via DNS in §5, and §6 presents some concluding
remarks and suggestions for future improvements.

2. Governing equations

2.1. State equation and identification of terms lumped into the “external
forcing” f

The system model considered in this work is the Navier–Stokes equation for
the three velocity components {U, V,W} and pressure P of an incompressible
channel flow, written as a (nonlinear) perturbation about a base flow profile
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ū(y) and bulk pressure variation p̄(x) such that, defining⎛
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where {u, v, w, p} denote the temporally-fluctuating components of the flow,
we have
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∂v

∂t
+ū

∂v

∂x
= −∂p

∂y
+ µ∆v + n2, (1b)

∂w

∂t
+ū

∂w

∂x
= −∂p

∂z
+ µ∆w + n3, (1c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2)

where

n1 = −u
∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
− ∂p̄

∂x
+ µ

∂2ū

∂y2
,

n2 = −u
∂v

∂x
− v

∂v

∂y
− w

∂v

∂z
,

n3 = −u
∂w

∂x
− v

∂w

∂y
− w

∂w

∂z
.

(3)

By selecting the base flow profile ū(y) as the mean flow,

ū(y) = lim
T→∞

1
T Lx Lz

T∫
0

Lx∫
0

Lz∫
0

U dz dx dt,

and selecting p̄(x) to account for the mean pressure gradient sustaining the flow,
it follows that the mean value of the terms {n1, n2, n3}, in addition to the mean
value of the fluctuating velocity components, {u, v, w}, are zero everywhere.
Note that we assume no-slip solid walls (U = V = W = u = v = w = 0 on y =
±1) and that periodic boundary conditions are applied in the x and z directions
to the perturbations variables {u, v, w, p}. This facilitates decomposition of the
perturbation problem (1) in the x and z directions using a Fourier series.

We now apply such a Fourier decomposition to (1), using hat subscripts
(̂ ) to denote the Fourier representation. The system may then be trans-
formed to {v̂, η̂} form in a straightforward fashion. Applying the Laplacian
∆ = ∂2/∂y2 −k2, where k2 = k2

x +k2
z , to the Fourier transform of (1b), substi-

tuting for ∆p̂ from the divergence of the Fourier transform of (1), and applying
the Fourier transform of (2) gives the equation for v̂. Subtracting ikx times the
Fourier transform of (1c) from ikz times the Fourier transform (1a) gives the
equation for η̂ = ikzû− ikxŵ. The result is the linear Orr–Sommerfeld/Squire
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equations at each wavenumber pair {kx, kz} with an extra term accounting for
the nonlinearity of the system(

∆ 0
0 I

)( ˙̂v
˙̂η

)
=
(LOS 0

LC LSQ

)(
v̂
η̂

)
+
(

ikxD k2 ikzD
ikz 0 −ikx

)⎛⎝n̂1

n̂2

n̂3

⎞
⎠ , (4)

where
LOS = −ikxU∆ + ikxU ′′ + ∆2/Re,

LSQ = −ikxU + ∆/Re,

LC = −ikzU
′,

(5)

where {n̂1, n̂2, n̂3} are given by the Fourier transform of (3), taking (from the
Fourier transform of (2) and the definition of η̂)

û =
i

k2

(
kx

∂v̂

∂y
− kz η̂

)
, ŵ =

i

k2

(
kz

∂v̂

∂y
+ kxη̂

)
,

and where, with the walls located at y = ±1 and the velocities normalized
such that the peak value of ū(y) is 1, Re is the Reynolds number based on
the centerline velocity and channel half-width. Note that, for kx = kz = 0, it
follows immediately from the definition of this system that v̂ = ω̂ = 0 for all y.
For all other wavenumber pairs, multiplying (4) by the inverse of the matrix
on its LHS, it is straightforward to write the governing equation as

˙̂q = Aq̂ + Bn̂, (6)

where

q̂ =
(

v̂
η̂

)
, n̂ =

⎛
⎝n̂1

n̂2

n̂3

⎞
⎠ , A =

(
∆−1LOS 0

LC LSQ

)
,

B =
(

∆−1 ikxD ∆−1 k2 ∆−1 ikzD
ikz 0 −ikx

)
.

Note that the terms in this expression depend on the wavenumber pair being
considered, {kx, kz}, and that the state q̂ is a continuous function of both the
wall-normal coordinate y and the time coordinate t. Implementation of this
equation in the computer requires discretization of this system in the wall-
normal direction y and a discrete march in time t.

The present system may be linearized by replacing the exact expression
for n by an appropriate stochastic model, which we will denote f , thereby
obtaining the linear state-space model

˙̂q = Aq̂ + Bf̂, (7)

As the mean of n is everywhere zero, it is logical to select this stochastic model
such that E[f ] = 0, where the expectation operator E[·] is defined as the
average over many many realizations of the stochastic quantity in brackets.
The covariance of f will be modeled carefully based on the covariance of n
observed in DNS, as discussed further in §2.3.
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2.2. Measurements

The present work attempts to develop the best possible estimate of the state
based on measurements of the flow on the walls. As discussed in Part 1, and
in greater detail in Bewley & Protas (2004), the three measurements available
on the walls are the distributions of the streamwise and spanwise wall skin
friction and the wall pressure. This information is mathematically complete in
the following sense: if this information is uncorrupted by noise and the external
forcing on the system is known exactly, the entire state of the flow (even in the
fully turbulent regime, and at any Reynolds number) is uniquely determined by
these measurements at the wall in an arbitrarily small neighborhood of time t
(without knowledge of the initial conditions). However, the actual identification
of this state is quite another matter, as it reflects an ill-posed problem that is
hyper-sensitive to all sorts of errors (e.g., modeling errors, measurement errors,
numerical errors, series truncation errors, etc.). These errors are unavoidable,
even in relatively “clean” numerical experiments. Thus, the problem of esti-
mation may be viewed as a “smoothing problem”, or an attempt to reconcile
noisy measurements with an approximate dynamic model of the system.

In the present paper, we have chosen to transform the three measurements
available on the walls (of streamwise and spanwise wall skin friction and wall
pressure) to a slightly different form such that their effects on the estimation
of the system (7), which is in {v, η} form, is a bit more transparent. There
is a bit of flexibility here; in the present work, we have chosen to define this
transformed measurement vector r to contain scaled versions of the wall values
of the wall-normal derivative of the wall-normal vorticity, 1

Reηy, the second
wall-normal derivative of the wall-normal velocity, 1

Revyy, and the pressure, p.
Note that we can easily relate this transformed measurement vector to the raw
measurements of τx = 1

Reuy, τz = 1
Rewy, and p on the walls, which might be

available from a lab experiment, via the relation (in Fourier space)

r̂ �

⎛
⎝ 1

Re η̂y|wall

1
Re v̂yy|wall

p̂|wall

⎞
⎠ =

⎛
⎝ ikz −ikx 0
−ikx −ikz 0

0 0 I

⎞
⎠
⎛
⎝τ̂x|wall

τ̂z|wall

p̂|wall

⎞
⎠ � T

⎛
⎝τ̂x|wall

τ̂z|wall

p̂|wall

⎞
⎠ , (8)

and we may relate the transformed measurement vector r to the state q via the
simple relation

r = Cq + g with C =
1

Re

⎛
⎜⎜⎜⎝

0 ∂
∂y

∣∣∣
wall

∂2

∂y2

∣∣∣
wall

0

1
k2

∂3

∂y3

∣∣∣
wall

0

⎞
⎟⎟⎟⎠ , (9)

where g accounts for the measurement noise. The last row of the above relation
is easily verified by taking ∂/∂x of the x-momentum equation plus ∂/∂z of the
z-momentum equation, then applying continuity and the boundary conditions.

For the purpose of posing the present state estimation problem, the mea-
surements are assumed to be corrupted by uncorrelated, zero-mean, white
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Gaussian noise processes, which are assembled into the vector ĝ with an as-
sumed covariance (in Fourier space) of

G =

⎛
⎝α2

η 0 0
0 α2

v 0
0 0 α2

p

⎞
⎠ . (10)

Note that such an assumption of uncorrelated, white (in space and time) noise
is in fact a fairly realistic model for electrical noise in the sensors. Note also
that, for a given covariance of f , which we shall define in the following section,
the diagonal components of G effectively parameterize the balance between the
two types of stochastic forcing in this problem, the measurement noise g and
the stochastic forcing f , and thus reflect how much we “trust” our three types
of measurements. If our trust in the measurements is increased (that is, if
the diagonal components of G are reduced), then generally more feedback is
applied by the resulting Kalman filter gains in order to correct the estimator
more aggressively based on the information contained in the measurements.

A different parameterization for the noise covariance that might be of in-
terest in a practical implementation, in which the physical sensors measure τx,
τy, and p, is

G = T

⎛
⎝α2

τx
0 0

0 α2
τy

0
0 0 α2

p

⎞
⎠T ∗, (11)

where T is defined in (8) and the convenient relation given in (2.5) of Part 1
has been used to relate the covariance of the noise on the raw measurements
to the present formulation. This parameterization should also be explored
numerically in future work.

2.3. Extracting the relevant statistics for state estimation from resolved
simulations

The performance of the estimator may be tuned by accurate parameterization
of the relevant statistical properties of the forcing term f in the linearized
state model, in addition to adjusting the parameterization of the statistical
properties of the measurement noise g. These statistics play an essential role
in the computation of the Kalman filter feedback gains.

In the present work, we will assume that f is effectively uncorrelated from
one time step to the next (that is, we assume that f is “white” in time) in order
to simplify the design of the estimator. Subject to this central assumption, we
proceed by developing an accurate model for the assumed spatial correlations of
f . As the system under consideration is statistically homogeneous in the x and
z directions, the covariance of the stochastic forcing f may be parameterized
in physical space as

E[fi(x, y, z, t)fj(x + rx, y′, z + rz, t
′)] = δ(t − t′)Qfifj

(y, y′, rx, rz),
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where δ(t) denotes the Dirac delta and where the covariance Qfifj
is determined

by calculating the statistics of the actual nonlinear forcing term n in a DNS,

Qfifj
(y, y′, rx, rz) = lim

T→∞
1

T Lx Lz

T∫
0

Lx∫
0

Lz∫
0

ni(x, y, z)nj(x+rx, y′, z+rz) dz dx dt.

(12)
As the system under consideration is statistically homogeneous, or “spatially
invariant”, in the x and z directions, it is more convenient to work with the
Fourier transform of the two-point correlation Qfifj

rather than working with
Qfifj

itself, as the calculation of Qfifj
in physical space involves a convolution

sum, which reduces to a simple multiplication in Fourier space. The Fourier
transform of Qfifj

, which we identify as the spectral density function Rf̂if̂j
, is

defined as

Rf̂if̂j
(y, y′, kx, kz) =

1
4π

Lx/2∫
−Lx/2

Lz/2∫
−Lz/2

Qfifj
(y, y′, rx, rz) e−ikxrx−ikzrz drxdrz.

(13)
Note that, due to the statistical homogeneity of the system in x and z, the
spectral density function Rf̂if̂j

is a decoupled at each wavenumber pair {kx, kz},
and thus may be determined from the DNS according to

Rf̂if̂j
(y, y′, kx, kz) = lim

T→∞
1
T

T∫
0

n̂i(y, kx, kz)n̂∗
j (y

′, kx, kz) dt. (14)

Certain symmetries may be applied to accelerate the convergence of the
statistics determined from the DNS and to reduce the amount of covariance
data that needs to be stored, which is in fact quite large. Since Qfifj

is a
real-valued function, Rf̂if̂j

is Hermitian, so

Rf̂if̂j
(y, y′, kx, kz) = R∗

f̂if̂j
(y, y′,−kx,−kz). (15)

By (14), it follows immediately that

Rf̂if̂j
(y, y′, kx, kz) = R∗

f̂j f̂i
(y′, y, kx, kz). (16)

Due to the up/down and left/right statistical symmetry in the flow, it also
follows that

Rf̂if̂j
(y, y′, kx, kz) = ±R∗

f̂if̂j
(−y,−y′, kx, kz), (17a)

Rf̂if̂j
(y, y′, kx, kz) = ±R∗

f̂if̂j
(y, y′, kx,−kz), (17b)

Rf̂1f̂3
(y, y′, kx, kz) = Rf̂2f̂3

(y, y′, kx, kz) = 0, (17c)

where, in (17a), the minus sign is used for the cases {i = 2, j �= 2} and {i �=
2, j = 2}, and the positive sign is used for all other cases and, in (17b), the
minus sign is used for the cases {i = 3, j �= 3} and {i �= 3, j = 3}, and the
positive sign is used for all other cases. The reader is referred to, e.g., Moin
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& Moser (1989) for similar computations. Finally, for later use, the individual
components of the spectral density function Rf̂ f̂ at each wavenumber pair
{kx, kz} are denoted by

Rf̂ f̂ (y, y′, kx, kz) =

⎛
⎝ Rf̂1f̂1

Rf̂1f̂2
Rf̂1f̂3

Rf̂2f̂1
Rf̂2f̂2

Rf̂2f̂3

Rf̂3f̂1
Rf̂3f̂2

Rf̂3f̂3

⎞
⎠ .

3. Statistics of the nonlinear term n

We now perform a direct numerical simulation of the nonlinear Navier–Stokes
equation in a turbulent channel flow at Reτ = 100, gathering the statistics of
the nonlinear term n identified in (3), which combines all those terms which
will be supplanted by the stochastic forcing f in the linearized model (7) upon
which the Kalman filter will be based.

Note that all DNS calculations performed in this work used the code of
Bewley, Moin & Temam (2001). For the spatial discretization, this code uses
dealiased pseudospectral techniques in the streamwise and spanwise directions
and an energy-conserving second-order finite difference technique in the wall-
normal direction. For the time march, the code uses a fractional step implemen-
tation of a hybrid second-order Crank–Nicolson / third-order Runge–Kutta–
Wray method, as described in Aksevoll & Moin (1995). In all simulations, the
overall pressure gradient is adjusted at each time step in order to maintain a
constant mass flux in the flow, and a computational domain of size 4π×2×4π/3
in the x× y× z directions is used. The resolution is 42× 64× 42 Fourier, finite
difference, Fourier modes (that is, 64 × 64 × 64 dealiased collocation points).
The numerical scheme used to discretize the Orr–Sommerfeld/Squire equations
in this work is the spectral Differentiation Matrix Suite of Weideman & Reddy
(2000); for details on how that scheme has been applied to our estimation
problem, see Högberg et al. (2003a).

The covariance of the forcing term n = (n1, n2, n3)T identified in (3) was
sampled during a DNS calculation long enough to obtain statistical conver-
gence. During the simulation, the full covariance matrices were computed at
each wavenumber pair, creating a very large four-dimensional data set. The size
of the covariance data is Nx × Nz × N2

y for each correlation component of the
forcing vector (before exploiting any symmetries), where Nx, Ny, and Nz de-
note the resolution in the corresponding directions. As resolution requirements
of turbulence simulations increase quickly with increasing Reynolds number,
at higher Reynolds numbers it soon becomes necessary to represent only the
most significant components of these correlations via some sort of reduced-order
modeling technique, such as Proper Orthogonal Decomposition via the “snap-
shot” method. The symmetries mentioned in §2.3 were then applied in post
processing to improve the statistical convergence. These statistics are subse-
quently used in §4, where the optimal estimation feedback gains are computed.
In §5, the feedback gains so determined are used in order to estimate a fully
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turbulent flow based on wall measurements alone. Both Kalman filters and
extended Kalman filters are investigated.

In Figure 1 the magnitude of the spectral density function at four repre-
sentative wavenumber pairs {kx, kz} are plotted. As seen in the figure (plot-
ted along the main diagonal), the variance of the forcing terms is stronger in
the high shear regions near the walls, as expected. Note also that there is a
pronounced cross-correlation between f1 and f2, accounting for the Reynolds
stresses in the flow, with the other cross-correlations converging towards zero
as the statistical basis is increased. Figure 3a shows the corresponding varia-
tion of the maximum magnitude of the spectral density function as a function
of the wavenumbers kx and kz. As expected, the stochastic forcing is stronger
for lower wavenumber pairs.

Figure 2, a corresponding plot of the magnitude of the spectral density
function of the stochastic forcing model defined in Part 1 is given. Note that the
shape of this covariance model is invariant with {kx, kz}, it is only the overall
magnitude of this covariance model that varies with {kx, kz}, in contrast with
the covariance data determined from the DNS data, as reported in Figure 1.
Figure 3b shows the corresponding variation of the maximum magnitude of the
spectral density function as a function of the wavenumbers kx and kz.
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Figure 1. The magnitude of the spectral density function
Rf̂ f̂ (y, y′, kx, kz) of f̂ , computed from the DNS of a turbulent
channel flow at Reτ = 100, at wavenumber pairs {kx, kz} of
(a) {1.0, 3.0}, (b) {3.0, 1.5}, (c) {0.0, 1.5}, and (d) {4.0, 4.5}.
The nine “squares” correspond to the correlation between the
various components of the forcing vector; from furthest to the
viewer to closest to the viewer, the squares correspond to the
f̂1, f̂2, and f̂3 components on each axis. The width of each
side of each square represents the width of the channel, [−1, 1].
The variance is plotted along the diagonal of each square.
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Figure 2. The magnitude of the spectral density function
Rf̂ f̂ (y, y′, kx, kz) of f̂ , as parameterized in the laminar model
proposed in Part 1 of this study, taking p = 0 (left) and p = 3
(right); see Figure 1 for further explanation of the plot.

(a) (b)

kx

kz

Figure 3. The variation of the maximum amplitude of the
spectral density function as a function of the wavenumbers kx

and kz for the DNS data (left) and the statistical model of
Part 1 (right).
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4. Estimator gains and the corresponding physical-space
kernels

In previous studies the covariance Q has been modeled with a spatially uncor-
related stochastic forcing, as for example in Högberg et al. (2003a). With that
model it proved to be impossible to compute well resolved estimation gains for
more than one measurement (of ηy). In contrast, the present study models
the stochastic forcing Q based on R, as defined in (13) and determined from a
DNS database. Basing the stochastic model on the turbulent statistics makes
it possible to render well resolved gains for all three measurements, ηy, vyy,
and p. In Part 1 it is shown that well resolved estimation gains for the three
measurements τx, τz, and p, can be achieved by designing the covariance model
to be more physically realistic. The definition and solution procedure for the
state estimation problem in order to solve for the Kalman filter gains in the
estimator in the present work is identical to that described in Part 1 of this
study, to which the reader is referred for details.

Figure 4 illustrates isosurfaces of the physical-space convolution kernels
based on the statistics of the neglected terms in the linearized model, as de-
termined from DNS. (Note, however, that these gains are transformed to gains
based on ηy, vyy, and p in the estimator simulations presented in §5). Note
that these kernels depicted in Figure 4 are substantially different in shape from
those used in the laminar case, as reported in Figure 12 of Part 1; in particular,
note that they are generally more focused in the region adjacent to the lower
wall, likely as consequence of the fuller mean velocity profile about which the
system is linearized in the turbulent case.

The sensor noise, described in §2.2, is a natural “knob” to tune the strength
of the individual measurements as well as their relative strength. Note that
the sensor noise level will also affect the shape of the estimation gains. In an
attempt to make a reasonably fair comparison between the different stochastic
models we consider the following measure

J =

1∫
−1

Lx∫
0

Lz∫
0

L2
ηy

dx dy dz,

i.e., the integral in all three spatial directions of the gain corresponding to the ηy

measurement, Lηy
. Three cases were studied, as shown in Table 1. In all three

cases, the relevant α parameters were tuned so that the integrated strength J is
approximately equal. Each measurement captures different features of the flow
field and by this study we want to characterize what additional information we
get when the two new measurements are added and the covariance of the system
accurately modeled, rather than investigating how the strength is distributed
over estimator gains and how that affects the estimation process. Note that
the resulting strength of the gains require no adjustment of the time step in
the extended Kalman filter DNS to run properly.
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Figure 4. Isosurfaces of the physical space convolution ker-
nels determined for Reτ = 100 turbulent channel flow based
on the statistics of the neglected terms in the linearized model,
as determined by DNS and plotted in Figures 1 and 3a.
Shown are the steady-state convolution kernels relating the
(left) τx, (center) τz, and (right) p measurements at the point
{x = 0, y = −1, z = 0} on the wall to the estimator forcing
on the interior of the domain for the evolution equation for
the estimate of (top) v and (bottom) η. Visualized are positive
(dark) and negative (light) isosurfaces with isovalues of ±5% of
the maximum amplitude for each kernel illustrated. Note that
these kernels are substantially different in shape with those
used in the laminar case, as reported in Figure 12 of Part
1; in particular, note that they are generally more focused in
the region adjacent to the lower wall, likely as consequence
of the fuller mean velocity profile about which the system is
linearized in the turbulent case.

Case αη αv αp Q J1/2

1 0.1200 – – I 52
2 0.0037 – – Rf̂1f̂1

52
3 0.0030 0.0030 0.0075 Rf̂ f̂ 53

Table 1. The estimation simulations. For the cases when
using one measurement, only the corresponding α is relevant
since the other measurements are excluded from the C-matrix.
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5. Estimator performance

5.1. Estimator algorithm

In order to quantify the performance of the Kalman filter developed in this
work, we run two direct numerical simulations in parallel. One simulation
represents the “real” flow, where the initial condition is a fully developed tur-
bulent flow field. The other simulation is the estimated flow field. The real
flow is modeled by the the Navier–Stokes equations. In the estimator simula-
tions we have tested both the Kalman filters (with the state model being the
linearized Navier–Stokes equation) and extended Kalman filter (with the state
model being the full nonlinear Navier–Stokes equation). The initial condition
for the estimator simulations is a turbulent mean flow profile with all fluctuat-
ing velocity components set to zero. In both estimator simulations the volume
forcing v, defined in §1.2, is added. The additional forcing is based on wall
measurements and the precomputed estimation gains. For the Kalman filter
simulations we enforce the turbulent mean flow profile that we linearized about
and allow no nonlinear interactions to take place in the estimator, by scaling
down the fluctuations to a sufficiently small amplitude to suppress nonlinear
interactions (This method was necessary with the present version of our DNS
code to enforce a linear simulation).

To evaluate the performance of the Kalman and extended Kalman filters
the correlation between the actual and estimated flow is computed throughout
the wall-normal extent of the domain at each instant of time,

corry(s, ŝ) =

∫ Lx

0

∫ Lz

0
sŝ dx dz(∫ Lx

0

∫ Lz

0
s2 dx dz

)1/2 (∫ Lx

0

∫ Lz

0
ŝ2 dx dz

)1/2
, (18)

where s and ŝ represent either u, v, w, or p from the actual and estimated
flow, respectively. A correlation of one means perfect correlation whereas zero
correlation zero means no correlation at all.

Another useful quantity to study is the error between the actual and esti-
mated flow state, defined as

errny(s, ŝ) =

(∫ Lx

0

∫ Lz

0
(ŝ − s)2 dxdz

)1/2

(∫ Lx

0

∫ Lz

0
s2 dxdz

)1/2
. (19)

The error (19) ranges from zero, which means no error between the real and
estimated flow fields, and infinity. However the most pertinent quantity to
measure is the total energy of the error between the real and estimated flow
fields defined as

errntot
y (q, q̂) =

(∫ Lx

0

∫ Lz

0
(q̂ − q)∗Q(q̂ − q) dxdz

)1/2

(∫ Lx

0

∫ Lz

0
q∗Qq dxdz

)1/2
. (20)
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Figure 5. The figure shows corry(s, ŝ) for s = u, s = v,
s = w, and p obtained using Kalman filter. The solid line de-
notes estimation using all three measurements and noise sta-
tistics as discussed in §3. The dashed line denotes the es-
timator performance using only the ηy measurement. The
dash-dotted line is obtained using the spatially uncorrelated
stochastic model for noise statistics.

since this is the quantity that we, in an average sense, are minimizing for in the
construction of the optimal estimation gains. Operator Q represent the energy
inner-product in (v, η) coordinates (see e.g. Schmid & Henningson 2001).

5.2. One measurement — two stochastic models

To compare the gains based on a spatially uncorrelated stochastic model with
the estimation gains based on the stochastic model suggested in this study, we
first compare the performance of the estimator using only the ηy measurement.
This is because we only obtained a well-resolved estimation gain for the ηy

measurement when using the spatially uncorrelated stochastic model.
The correlation between the real and estimated flow, for one measurement,

is depicted in Figure 5 and Figure 6 for the Kalman and extended Kalman
filters respectively. The dashed lines represent the stochastic model developed
in this work whereas the dash-dotted lines represent the spatially uncorrelated
stochastic model. The correlation for the u-component is almost the same close
to the wall for the two filters but there is an increasing difference both for the
Kalman and extended Kalman filter as the wall distance increases. For v, w,
and p the difference is larger. In Figure 7 and Figure 8 we can see similar
trends for all the primitive variables and for both the Kalman and extended
Kalman filter. We anticipated a more pronounced difference between the two
stochastic models but apparently the importance of the stochastic model is not
crucial for the performance of the ηy measurement, alone.
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Figure 6. The figure shows corry(s, ŝ) for s = u, s = v,
s = w, and p obtained using extended Kalman filter. For a
definition of the curves see, Figure 5.
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Figure 7. The relative estimation error errny(s, ŝ), defined as
in equation (19) plotted for the Kalman filter. The solid line
denotes estimation performed with all three measurements and
gains based on turbulence statistics. The dashed line denotes
the estimator performance using only the ηy measurement.
The dash-dotted line is the correlation when using the spatially
uncorrelated stochastic model.

The correlation for the u-velocity component is close to one (perfect cor-
relation) while the other components show only weak correlation. This is due
to the fact that the streamwise disturbance velocity contains more energy than
the other components and that with only the ηy measurement we are missing
important information about the flow behavior.
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Figure 8. The relative estimation error, defined as in equa-
tion (19), plotted for the extended Kalman filter. For a defi-
nition of the curves see, Figure 7.
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Figure 9. The total energy of the estimation error is shown
as a function of the wall-normal distance. The solid line de-
notes the error when all three measurements are applied in
the estimator. The dashed and dash-dotted lines represent
the estimator performance when using only the ηy measure-
ment with the stochastic model based on turbulence statistics
and the spatially uncorrelated stochastic model respectively.
The thick lines show the extended Kalman filter and the thin
lines the Kalman filter data.

For both the estimators with the present ηy gains and the estimator with
gains based on the previous stochastic model, the correlation and error for the
u-component, decay quickly once we get beyond y+ ≈ 8 and in the center region
of the channel both the error and correlation measures are performing poorly.
v, w, and p are clearly not estimated very well with only the ηy measurement.
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Figure 10. The transient behavior of the total error energy
at y+ = 1.5, y+ = 5.5, y+ = 9.7, y+ = 31.5, and along the
channel centerline for case 3 in table 1. All three measurements
are used together with the Kalman filter.

p is constantly on a low level whereas v and w experiences a similar decay as
u once the wall distance increases.

5.3. Three measurements — one stochastic model

The performance of all three measurements combined, with the relative weight-
ing presented in table 1, are shown as solid lines in Figure 5 – 8. In these figures
it is clearly seen that the correlation and error between the real and estimated
flow for all quantities v, w, and p is greatly improved when the additional mea-
surements are included. The strongest improvement appears for the pressure,
due to the addition of a pressure measurement.

In Figure 9 the total estimation error, averaged in time, is plotted as a func-
tion of wall-normal distance . The thin lines show the Kalman filter results and
the thick lines the corresponding extended Kalman filter results. The improved
estimation possibilities with the stochastic model presented in this study over
a spatially uncorrelated one is clearly seen in Figure 9. The improvement is
more pronounced closer to the wall.

For both the estimator with the present ηy gains and the estimator with
gains based on the previous stochastic model, the correlation and error for the
u, v, and w quantities drop off quickly once we get beyond y+ ≈ 10 and in the
center region of channel both the error and correlation measures are performing
poorly.

The total energy of the estimation error displays a transient phase when
the two simulations are started. This transient is depicted in Figure 10 for the
Kalman filter simulation. Closer to the wall the transient is stronger and the
error reaches a lower level than further into the flow domain. The transient is
due to the fact that the estimated flow is initiated with only a turbulent mean
flow profile.
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Figure 11. Wall-normal velocity component v plotted at
y+ = 9.7 at an instant in time. In the top figure the flow
velocity itself is plotted. The middle plot shows the velocity
field reproduced by the extended Kalman filter, and the bot-
tom plot shows the velocity field reproduced by the Kalman
filter. The contour levels range from −1 to 1, where black and
white represent the lower and upper bound respectively.
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The performance of our estimator can be compared with the result reported
in Bewley & Protas (2004), where a turbulent channel flow at Reτ = 180 is
estimated from limited measurements as discussed in §1.1. The adjoint method
is computationally demanding but gives the optimal estimate of the flow at a
certain time with respect to the chosen objective function. Since the present
results are computed for a lower Reynolds number we can compare only quali-
tatively the performances. The adjoint simulation results show the same overall
trends both correlation as well as in terms of estimation error.

In Figure 11, an instantaneous plot of the v velocity component is shown
at y+ = 9.7 for the flow field and the two different filters (based on three
measurements). Similar structures are present in all three cases. At some
instants of time the Kalman filter even has a better match compared to the
extended Kalman filter with the real flow but Figure 11 gives an idea of the
general trend. The Kalman filter performance also deteriorates more quickly
as the wall normal distance is increased and the structures are slightly weaker
than in the extended Kalman filter.

6. Summary and conclusions

A key step in the framing the Kalman filter problem is the accurate statis-
tical description of the system dynamics not fully described by the estimator
model. The present paper has shown that, by determining the appropriate
second-order statistical information in a full nonlinear DNS of the channel flow
system, then incorporating this statistical information in the computation of
the estimator feedback gains, an effective estimator may be built based on all
three measurements available at the wall. For a given feedback amplitude, this
estimator provides a better correlation between the real turbulent flow and the
estimate thereof than the corresponding estimators considered for this problem
in previous work. Significant improvements are obtained, as compared with
estimators based on spatially uncorrelated stochastic models, in terms of both
the maximum correlation as well as how far into the channel an accurate corre-
lation extends. Also, the estimation gains may be transformed to physical space
to obtain well-resolved convolution kernels that eventually decay exponentially
with distance from the origin, thereby, ultimately, facilitating decentralized
implementation.

In Part 1 of this study, Hœpffner et al. (2004), the estimation of a perturbed
laminar flow was investigated, and it was shown that an artificial, but physically
reasonable, Gaussian distribution model for the spectral density function was
adequate to obtained effective, well-behaved estimation feedback kernels for the
problem of estimating the perturbed laminar flow. That result, together with
the result from the present study for the problem of estimating turbulence,
indicate that the choice of the disturbance model is quite significant in the
estimation problem, but a highly accurate statistical model is actually not
essential.



State estimation. Part 2. Turbulent flows 117

As expected, the (nonlinear) extended Kalman filter was found to out-
perform a (linear) Kalman filter on this nonlinear estimation problem. The
estimated state in the Kalman filter deteriorates more rapidly with the dis-
tance from the wall. The extended Kalman filter captures better the struc-
tures further into the domain, both in magnitude and phase. In terms of
both correlation and estimation error, we also observed an approximate cor-
respondence with the performance of the present extended Kalman filter with
the adjoint-based estimation procedure reported in Bewley & Protas (2004).
The adjoint-based approach is vastly more expensive computationally, and, at
least in theory, can account for the nonlinear dynamics of the system more
accurately, so this correspondence reflects favorably on the performance of the
present extended Kalman filter.

The admittedly artificial assumption of the external disturbance forcing
f̃ being “white” in time may be relaxed in future work, “coloring” the noise
with the time dynamics of f , by performing a spectral factorization of f in
both space and time and augmenting the estimator model to account for the
dominant time dynamics in f̃ . This approach, while in theory tractable for
this problem, involves estimators of substantially higher dimension than the
present (which is already large), and might facilitate substantial performance
improvements. Development of this approach is thus deferred for the time
being as a promising area for future work on this problem.

Acknowledgement

The authors sincerely acknowledge the funding provided by the Swedish re-
search council (VR), the Swedish defence research agency (FOI), and the Dy-
namics and Control directorate of the Air Force Office of Scientific Research
(AFOSR) in support of this work.

References

Aksevoll, K. & Moin, P. 1995 Large eddy simulations of turbulent confined coannu-
lar jets and turbulent flow over a backward facing step. Technical Report Report
TF-63. Thermosciences Division, Dept. of Mech. Eng., Stanford University.

Anderson, B. & Moore, J. 1979 Optimal filtering . Prentice-Hall.

Balakrishnan, A. V. 1976 Applied functional analysis. Springer.

Bamieh, B. 1997 The structure of the optimal controller of spatially invariant
ditributed parameter systems. In Proc. 36th IEEE Conf. on Decision and Con-
trol .

Bewley, T. R. 2001 Flow control: new challenges for a new Renaissance. Progress
in Aerospace Sciences 37, 21–58.

Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of
turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447,
179–225.



118 References

Bewley, T. R. & Protas, B. 2004 Skin friction and pressure: the “footprints” of
turbulence. Physica D 196, 28–44.

Farrell, B. F. & Ioannou, P. J. 1996 Turbulence suppression by active control.
Phys. Fluids 8, 1257–1268.

Hœpffner, J., Chevalier, M., Bewley, T. R. & Henningson, D. S. 2004 State
estimation in wall-bounded flow systems, Part 1. Laminar flows. J. Fluid Mech.
Submitted.
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Linear compensator control of a pointsource
induced perturbation in a Falkner–Skan–Cooke

boundary layer
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We focus on the problem of controlling pointsource induced perturbations on
an infinite swept wing using linear control theory. Based on wall measure-
ments in a spatial simulation of localized disturbances in Falkner–Skan–Cooke
boundary layers, an extended Kalman filter is used to estimate the full three-
dimensional wave packet. The estimated field is in turn used to calculate a
feedback control which changes the growth of the disturbance into decay. This
is the first time that optimal control and estimation concepts are successfully
applied to construct a dynamic output feedback compensator which is used to
control disturbances in spatially-developing boundary layers.

By applying control to flows with strong inherent instabilities, through
sensors and devices acting only on small parts of the flow, one may achieve
dramatic effects by only minute amounts of control energy expenditure. Such
control devices can be used in a wide variety of applications, for example,
maintaining laminar flow on aircraft wings, relaminarizing/decreasing drag in
turbulent flows and enhancing mixing in turbulent flows.

The linear optimal control approach introduced in Bewley & Liu (1998) was
in a recent study by Högberg & Henningson (2002) applied to a spatial bound-
ary layer to control a few different disturbance types. The control is shown to
work well. However, one drawback with this approach is that full state infor-
mation is needed when computing the optimal control. In the present study an
estimation technique and a full-state feedback controller are combined to ob-
tain a wall-information-based compensator. The same compensator approach
has been applied to temporal simulations of transitional channel flows in a re-
cent article Högberg et al. (2003). For the channel flow case, alternative but
similar approaches to developing a practical compensator have been pursued
by e.g. Cortelezzi et al. (1998) and Joshi et al. (1999). One difference is that

∗Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
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in the present work no effort is put into model reduction other than that ob-
tained from discretizing the continuous system. The aim is to first design a
compensator, still incorporating non-parallel and non-linear effects, and then
find a reduced order model for the compensator based on this system.

In order to investigate a compensator control scheme, direct numerical
simulations (DNS) are performed for a Falkner–Skan–Cooke boundary layer
flow with an adverse pressure gradient where a pointsource perturbation is
introduced upstream in the computational domain. This flow case has an
inviscid instability due to the inflection point in the base flow profile and a
disturbance can grow exponentially downstream. However, the disturbance
energy levels are chosen so that nonlinear interactions are negligible within the
limits of the computational box.

For design of the compensator system we use a model of the linearized
three dimensional, time dependent, incompressible Navier–Stokes equations in
the form of the Orr–Sommerfeld/Squire equations. The details of the problem
formulation and numerical issues regarding computations of feedback control
kernels can be found in Högberg & Henningson (2002). For the estimator
problem we refer to Bewley & Liu (1998) and Högberg et al. (2003). Here only
the main results from the derivation will be stated.

Control is introduced through a blowing and suction boundary condition
(ϕ) on the wall. The boundary condition is lifted through linear super-position
into the domain and the governing equations can be expressed in the standard
form for control theory for each horizontal wavenumber pair as,

˙̂x = Âx̂ + B̂φ̂, x̂ = [v̂, η̂, ϕ̂]T , φ̂ =
∂ϕ̂

∂t
,

where v̂ = v̂(y, t) and η̂ = η̂(y, t) are the wall-normal velocity and vorticity com-
ponents respectively. The operator Â represents the Orr–Sommerfeld/Squire
operator and B̂ represents the blowing and suction boundary control. If Z is
a stationary solution to the inhomogeneous Orr–Sommerfeld/Squire equation
with ϕ̂ = 1 the operators can be written,

Â =
[
N̂ 0
0 0

]
, B̂ =

[−Z
1

]
, where N̂ =

[LOS 0
LC LSQ

]
,

and LOS , LSQ and LC denote the different parts of the Orr–Sommerfeld/Squire
operator. Throughout the text hats (ˆ) will denote the Fourier coefficients of
the corresponding quantity.

Our goal is to minimize the objective function:

J(ϕ) =
1
2

T∫
0

∫
Ω

|u|2 dΩ dt +
�2

2

T∫
0

∫
Γ

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 dΓ dt

=
∑
α,β

1
2

T∫
0

(x̂∗Q̂x̂ + �2φ̂∗φ̂) dt,
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where u is the disturbance velocity vector, Q̂ is a measure of the energy of the
perturbation, and l is a parameter penalizing the magnitude of the control φ̂.
From linear control theory we know that if T → ∞ in the objective function
the optimal controller is given through

φ̂ = K̂x̂, where K̂ = − 1
�2

B̂X̂

and X̂ is the positive self-adjoint solution to the Riccati equation,(
X̂ Â + Â∗ X̂ − X̂

1
�2

B̂ B̂∗ X̂ + Q̂

)
x̂ = 0, ∀x̂.

To find the optimal forcing of our estimator we solve a similar problem
for the estimated flow x̂e. We now model the state equation and the wall
measurements ŷ of our system as disturbed by a random (zero-mean white
Gaussian) process ŵ such that

˙̂x = Â x̂ + B̂1 ŵ + B̂φ̂,

ŷ = Ĉx̂ + D̂ŵ,

where the operators B̂1 and D̂ are used to describe the variance of the noise in
the model. The noise is modeled to vary inversely proportional to the wavenum-
ber by introducing such a weighting in B̂1. The operator Ĉ takes wall measure-
ments of the wall-normal derivative of the wall normal vorticity. Furthermore,
the model of the estimated flow has the form

˙̂xe = Âx̂e + B̂φ̂ − ψ̂,

ŷe = Ĉx̂e,

ψ̂ = L̂∆ŷ = L̂(ŷ − ŷe),

where ŷe is the measurement in the estimator. An estimator forcing can be
computed for each wavenumber pair as

L̂ = − 1
α2

Ŷ Ĉ∗,

where Ŷ is the positive self-adjoint solution to the Riccati equation,(
N̂∗Ŷ + Ŷ N̂ − Ŷ

1
α2

Ĉ∗ĈŶ + B̂1B̂
∗
1

)
x̂h = 0, ∀x̂h,

and x̂h to denote the homogeneous part of the flowfield. The parameter α
models the assumed quality of the measurements.

The compensator problem is stated for a parallel flow. In order the extend
the use of the model to a spatially evolving flow two locations need to be
specified, one for the control and one for the estimator, where the local velocity
profiles are taken to be used in the Orr–Sommerfeld/Squire operator. The flow
is then assumed to be locally parallel around these locations in order to solve the
control or estimation problem. Based on this this assumption the controller
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Figure 1. Isosurfaces of control kernels of v (left) and η
(right) computed with � = 100 for base flow at position
x = 150. Contour levels at ±80(≈ 25% of the maximum abso-
lute value ) and ±1.3(≈ 25%) for v and η respectively.

and estimator will have good performance close to the location where they
were computed whereas the performance will be degraded further away. This
is not expected to cause any problems since the actuation region is limited to
a strip on the wall centered at the location where the control was computed,
and the estimator only uses measurements from a corresponding measurement
region. Since we are using an extended Kalman filter (Gelb (1974)) the spatial
evolution and non-linear effects of perturbations generated by the estimator
forcing is correctly accounted for in the estimator.

By discretizing the problem we can compute the optimal controller and
estimator for a large array of wavenumber pairs we can combine them through
an inverse Fourier transform and get an approximation of their physical space
representation. Iso-surfaces of control convolution kernels for normal velocity
and normal vorticity are shown in Fig. 1. The control signal for each point on
the wall is computed through a three dimensional convolution integral of these
kernels and the corresponding velocity/vorticity components at each time step.
The corresponding estimator forcing is computed through a two dimensional
convolution of the forcing kernels, illustrated with the iso-surfaces in Fig. 2, and
the measurement error. The estimation kernel for v has a particularly elongated
shape and all kernels are aligned with the local direction of the freestream at
approximately 27 degrees.

Combining the controller and estimator results in an output feedback dy-
namic compensator. In this case we apply the estimator forcing given from
the linear problem in nonlinear, non-parallel DNS, and this is known as an
extended Kalman filter. Figure 3 illustrates the process of the compensator
where the upper boundary layer represents the flow we wish to control, the
“real” flow, and the lower one represents the estimated flow. The compensator
process can be written in the following three steps, also marked in the figure,

1. Compute the difference between the measurements from the estimator
flow and the “real” flow.

2. Compute and apply the estimator forcing to the estimated flow and then
compute the control signal based on the state in the estimator.
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Figure 2. Isosurfaces of estimator kernels of v (left) and η
(right) computed with α = 10 for base flow at position x = 50.
Contour levels at ±2187(≈ 25%) and ±13134(≈ 25%) for v and
η respectively. Notice that elongated shape of the kernel for v.
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Figure 3. The compensator procedure. Measurements (left
marked wall region) are made in the “real” disturbed flow (up-
per) and the estimated flow (lower). A volume forcing (light-
gray) is computed and an updated control (right marked wall
region) is applied to both flows.

3. Apply the computed control signal to both the “real” flow and the esti-
mator simulations.

In our numerical experiment we march two velocity fields simultaneously
forward in time by solving the incompressible Navier–Stokes equations. (Re-
member that we are using an extended Kalman filter.) One for the actual flow
where measurements are taken and one for the estimator in which we try to re-
construct the flow based on the measurements. A well established spectral DNS
code has been used in the simulations. The code uses a fringe region technique
(Nordström et al. (1999)) to make the flow field periodic in the streamwise
direction so that Fourier modes can be used. Information about the DNS code
can be found in e.g. Högberg & Henningson (2002).
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Figure 4. Isosurfaces of the normal velocity at ±8 × 10−4

for the real (left) and estimated flow (right) at three different
points in time. a) Estimated flow is started, the control is off
(t = 612). b) The control has been turned on (t = 1248). c)
The control lowers the disturbance amplitude over the control
area (t = 1800).

We have chosen to study a flow case with Reynolds number Reδ∗
0

= 499 at
x = 0 based on the displacement thickness δ∗0 at the same location. The box
size, also scaled with δ∗0 , is x ∈ [0, 400] in the streamwise direction, y ∈ [0, 10]
in the normal direction, and z ∈ [−100, 100] in the spanwise direction with a
resolution of 384 × 65 × 64 Fourier, Chebyshev, Fourier modes. An adverse
pressure gradient is applied in the streamwise direction with the parameter
m = −0.0312, where m is defined as,

U∞ = (x/x0 + 1)m
,

where x0 = 134. The spanwise freestream base flow component is constant
W∞ = 0.5. These parameters have been chosen in order to partly match an
experimental setup used in a study by Chernoray et al. (2001).
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Figure 5. Disturbance energy growth as a function of time.
The “real” flow (blue/solid) starts from a pure base flow. The
disturbance is then introduced and develops downstream. At
t = 600 the estimated flow is started (red/dashed). At t =
1200 the control is turned on and the disturbance energy starts
to decrease. For comparison the full information control case
is also plotted (dash-dot).

A localized volume force generates a wave like disturbance at x = 20 and
z = −80. The wall measurements are taken over the interval x ∈ [0, 100] in
both simulations. From these measurements an error can be computed which
is used to compute the volume forcing in the estimator simulation. The control
is applied over the interval x ∈ [100, 200] in both simulations.

The disturbance energy growth is depicted in Fig. 5 as a function of time.
In the first third of the interval only the “real flow” is simulated without control.
At t = 600 also the estimator simulation is started and in Fig. 4a a snapshot at
t = 612 of the flow shows what the disturbance looks like in the two simulations.
Figure 4b shows a snapshot at t = 1248 where the control, which was turned
on at t = 1200, is beginning to make the disturbance decay directly over the
control area. In Fig. 4c (t = 1800) the remains of the downstream disturbance
have propagated out of the computational domain and the control dampens the
incoming disturbance effectively. In Fig. 5 the dash-dotted line corresponds
to the full information control case, when no estimator is used. It is barely
distinguishable, but the energy level is slightly lower than for the compensator
case. When comparing iso-surfaces at t = 1800 the full information case looks
identical to the flow in the estimator in Fig. 4c.

Successfully control of a wave-like disturbance in a spatial Falkner–Skan–
Cooke boundary layer flow through a combination of a full-state information
linear optimal control scheme and an estimator using only wall measurements
is for the first time presented in this paper. The performance of the general
approach of linear control and estimation demonstrated shows a great potential
for practical flow control, particularly for transition delay, in the future. The
next step in our approach is to do model reduction of the compensator trying
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to capture spatial and non-linear effects in a simulation of computationally
tractable size.
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Linear feedback control and estimation applied
to instabilities in spatially developing boundary

layers

By Mattias Chevalier∗†, Jérôme Hœpffner∗,
Espen Åkervik∗ and Dan S. Henningson∗†

To be submitted

This paper presents the application of feedback control to spatially developing
boundary layers. Development of a proper stochastic model for the external
sources of disturbances allows the efficient use of several wall measurement for
estimation of the flow evolution in transitional flow cases: the two components
of the skin-friction and the pressure fluctuation at the wall. Perturbations to
mean flow profiles of the family of Falkner-Skan-Cooke boundary layers are
estimated by use of wall measurements. The estimated state is in turn fed
back for control in order to reduce the kinetic energy of the perturbations.
The control actuation is achieved by means of unsteady blowing and suction
at the wall. Flow perturbations are generated at the upstream region in the
computational box and propagate in the boundary layer. Measurement are
extracted downstream over a thin strip, followed by a second thin strip where
the actuation is performed. It is shown that flow disturbances can be efficiently
estimated and controlled in spatially evolving boundary layers for a wide range
of mean flows and disturbances.

1. Introduction

There is much to be gained in the application of control to fluid mechanical
systems, the most widely recognized and targeted aim being the reduction of
skin friction drag on airplane wings. Flow control is a growing field and much
research effort is spent in both fundamental understanding and direct applica-
tion of control methods. For a review see e.g. Bewley (2001) and Högberg &
Henningson (2002).

Linear control theory gives powerful model-based tools for application of
control to fluid systems provided the system at hand can be well described
by a linear dynamic model. The theory of Linear-Quadratic-Gaussian control
(LQG) is one of the major achievement in the field of control theory. It gives
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a methodology to compute the optimal measurement based control when the
dynamic model is linear, the objective is quadratic, and the external sources of
excitations are stochastic. This theory is applied to boundary layer control in
the present work.

Feedback control design can be conceptually and computationally split into
two subproblems. The first one is to estimate the flow state from noisy wall
measurements. In our case, the state is the flow perturbation about the known
mean flow profile. The estimator is a simulation of the dynamic system that is
run in parallel to the flow. Its state is forced as a feedback of the measurements
in order to converge to the real flow state. The estimated state is in turn used
for feedback control of the flow which is the second one. The closed loop system
with estimation and control is commonly referred to as measurement feedback
control or compensator.

One of the major limitations to the application of control to spatially dis-
tributed systems (system in space and time, usually described by partial dif-
ferential equations) is the realization of the sensing and actuation that would
handle relatively fast events as well as small scales of fluid motion. In addition,
control over physical surfaces typically requires dense arrays of sensors and ac-
tuators. Recent development in MEMS technology and related research may
lead to solutions of this problem. For application of MEMS technology to flow
control see e.g. Yoshino et al. (2003).

Several recent investigations have pursued the application of LQG-type
feedback control to wall-bounded flow systems. A recent overview of this
progress is given in Kim (2003). Högberg & Bewley (2001) demonstrated
the localization of the feedback kernels. This property allows a local appli-
cation of the control, i.e. only the local properties of the system (dynamics,
disturbance sources and measurement information) are necessary for control
locally. The efficiency of the control scheme we use here was illustrated in
Högberg et al. (2003a), where relaminarization of a fully developed turbulent
flow was achieved. In Hœpffner et al. (2004) and Chevalier et al. (2004), the
focus was on the estimation performance. By introducing a relevant model for
the external source of disturbance, it was possible to improve the estimation
performance on both transitional and turbulent flows. Application of the full
information controller, also known as a linear quadratic regulator (LQR), to
spatially developing flows was first done in Högberg & Henningson (2002), and
extended to a simple flow case with both control and estimation in Högberg
et al. (2003b). The present paper builds on those two latter papers, applying
the recent improvement of the estimation.

The procedures of control design are based on the manipulations of a lin-
ear dynamic model for the flow system, which is typically of large order. In
the case of spatially invariant systems, i.e. system for which the dynamics is
independent of some spatial coordinates, the problem can be decoupled in a
parameterized family of smaller systems. In our case, we assume spatial ho-
mogeneity over the two horizontal directions. After Fourier transforming, this
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allows to design and tune the controller and estimator for individual wavenum-
ber pairs.

In a spatially developing flow like the boundary layer, this procedure can
still be used, even though the spatial invariance in the streamwise direction is
lost. Indeed, the localization of the control and estimation kernels ensures that
the feedback is local, so that the flow can be assumed to be locally parallel.
In Högberg & Henningson (2002), the actuation was successfully applied over
a strip parallel to the leading edge in Falkner–Skan–Cooke (FSC) boundary
layers, and the control feedback law was computed based upon the local Rey-
nolds number. In Högberg et al. (2003b), a measurement strip was added, and
the subsequent state estimate was used for control. The present paper aims at
the application of the recent development and improvement on the estimation
of the complex flow cases where the full information control was shown to be
successful in Högberg & Henningson (2002).

The structure of this paper is as follow. In §2, the flow system is described:
dynamics, input and output. In §3, we outline the main issues for the feed-
back control and estimation. The numerical method is described in §4. The
performance of the control in several flow cases is shown in §5, and concluding
remarks are given in §6.

2. System description

2.1. Flow dynamics

The Navier–Stokes equations are linearized about solutions of the FSC bound-
ary layer. Favorable and adverse pressure gradients can be accounted for as
well as the effect of a sweep. To obtain the family of FSC similarity solutions
we assume that the chordwise outer-streamline velocity obeys the power law
U∗
∞ = U∗

0 (x∗/x∗
0)

m and that the spanwise velocity W ∗
∞ is constant. In the

expression above, U∗
0 is the freestream velocity at the beginning of the com-

putational box and the asterisks (∗) denote dimensional quantities. Note that
the Blasius profile is a special case of FSC with zero cross flow component and
pressure gradient. If we choose the similarity variable η as

η(y∗) = y∗
√

m + 1
2

U∗∞
2νx∗

one can derive the following self-similar boundary layer profiles,

f ′′′ + ff ′′ + βh(1 − f ′2) = 0,

g′′ + fg′ = 0,

where the Hartree parameter βh relates to the power law exponent m as βh =
2m/(m + 1). The accompanying boundary conditions are

f = f ′ = g = 0, for η = 0,

f ′ → 1, g → 1, as η → ∞.



134 M. Chevalier, J. Hœpffner, E. Åkervik & D. S. Henningson

The complete derivation can be found in e.g. Schlichting (1979) and Cooke
(1950). From the FSC similarity solutions, we construct the nondimensional
velocity profiles

U(y) = f ′(η(y)), (1a)

W (y) =
W∞
U∞

g(η(y)), (1b)

for a fixed x and where y = y∗/δ∗0 . The velocity profiles (1a) and (1b) are then
used as base flow when constructing the linear dynamic model for the flow
disturbance and the initial conditions for the direct numerical simulations.

Once linearized, the system can be transformed to Fourier space by as-
suming local spatial invariance. This implies that the non-parallel effects are
small, i.e. the mean flow is slowly developing in the streamwise direction. Af-
ter transformation to the velocity–vorticity (v – η) formulation, we obtain the
Orr–Sommerfeld/Squire equations (see e.g. Schmid & Henningson 2001)(

v̇
η̇

)
=
(LOS 0

LC LSQ

)(
v
η

)
, (2)

where

LOS = ∆−1[−i(kxU + kzW )∆ + ikxU ′′ + ikzW
′′ + ∆2/Re],

LSQ = −i(kxU + kzW ) + ∆/Re,

LC = i(kxW ′ − kzU
′),

(3)

with the boundary conditions

v(0, t) = ϕ, Dv(0, t) = 0, η(0, t) = 0,

v(y, t) = 0, Dv(y, t) = 0, η(y, t) = 0, as y → ∞.
(4)

The control actuation affects the system through a non-homogeneous boundary
condition on wall-normal velocity ϕ (wall blowing and suction). The Reynolds
number Re is based on freestream velocity and displacement thickness at x = 0
(denoted δ∗0).

In order to fit the controlled Orr–Sommerfeld/Squire system into the for-
malism of (12) we perform a lifting procedure ((see e.g. Högberg & Bewley
2001)) where the control at the wall vwall now enters the flow through a vol-
ume forcing term instead of as an inhomogeneous boundary condition at the
wall. This is done by decomposing the flow state into homogeneous (subscript
h) and particular (subscript p) component(

v
η

)
=
(

vh

ηh

)
+
(

vp

ηp

)
ϕ. (5)

The augmented state q, incorporating the actuation variable thus reads

q =

⎛
⎝v(y, t)

η(y, t)
ϕ(t)

⎞
⎠ , (6)
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and augmented operator A and operator B can be written

A =
(LOSS 0

0 0

)
, B =

(−qp

1

)
, (7)

with

LOSS =
(LOS 0

LC LSQ

)
, (8)

and where the particular solution qp is chosen to satisfy the numerically conve-
nient equation LOSS qp = 0 with a unity boundary condition on the wall-normal
velocity at the wall. The Laplacian operator is denoted ∆ = D2 − k2, where
D is the wall-normal derivative and k2 = k2

x + k2
z .

2.2. Stochastic disturbances

2.2.1. Modeling of the external disturbances

The complete description of a dynamical system also includes a description
of its input (external sources of excitations) and its output (measurements,
possibly corrupted by noise). The performance of the state estimation relies
on the construction of a proper model for the flow disturbances. Indeed, if the
external sources of perturbations in the flow are well identified, it becomes an
easy task to estimate the flow evolution using a dynamic model of the system.

The external sources of perturbations in typical aeronautical applications
can be wall roughness, acoustic waves, and freestream turbulence. When using
a linear model of the flow, the nonlinear effects can be seen as additional
disturbances to the dynamic evolution.

We will assume the external disturbance forcing f = (f1, f2, f3)T in (18)
to be a zero-mean stationary white Gaussian process with auto-correlation

E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t
′)] = δ(t − t′)︸ ︷︷ ︸

Temporal

Qfjfk
(y, y′, rx, rz)︸ ︷︷ ︸
Spatial

,

where δ(·) denotes the Dirac δ-function.
The remaining property to be described is the spatial extent of the two-

point, one-time, auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator, obtained
for any wavenumber pair {kx, kz} via the following integration over the homo-
geneous directions

Rfjfk
(y, y′, kx, kz) =

∫ ∫
Qfjfk

(y, y′, rx, rz)e−i(kxrx+kzrz)drx drz.

Our model for the covariance of f assumes that the disturbance has a localized
structure in space (i.e., the two-point correlation of the disturbance decays
exponentially with distance) and that the correlations between forcing terms on
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different velocity components are zero. We assume a model for the covariance
of the external forcing f of the form

Rfjfk
(y, y′, kx, kz) = d(kx, kz) δjkMy(y, y′),

where

d(kx, kz) = exp

[
−
(

kx − k0
x

dx

)2

−
(

kz − k0
z

dz

)2
]

.

The model parameters k0
x and k0

z can be used to locate the peak energy of the
disturbances in Fourier space, and dx and dz to tune the width of this peak.
These parameters are specific for each flow case, e.g. for a typical TS-wave the
peak energy will be at k0

x = 0.3 and k0
z = 0, or for a typical streamwise streak,

the choice will be k0
x = 0 and k0

z = 0.5. The parameters for our flow cases are
given in table 2. The y variation of Rfjfk

is given by the function

My(y, y′) = w ((y + y′)/2) exp
[
− (y − y′)2

2dy

]
. (9)

where the design parameter dy governs the width of the two-point correlation
of the disturbance in the wall-normal direction. The function w(ξ) describes
the variances at different distances from the wall. In the present paper, the
estimator will be applied to disturbances inside the boundary layer, we thus
use the wall-normal derivative of the mean flow,

w(ξ) =
U ′(ξ)
U ′(0)

, (10)

so that the variance of the disturbance varies as the mean shear: greatest close
to the wall and vanishing in the freestream.

Other forms for d(kx, kz) are also possible, and may be experimented with
in future work. Note that we will denote R = Rff = diag(Rf1f1 , Rf2f2 , Rf3f3)
in the sections that follow.

2.2.2. Modeling of the sensor noise

The measurements used in this study are the streamwise and spanwise shear
stresses and wall pressure fluctuations.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τx = τxy|wall =
1

Re

∂u

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kxD2v − kzDη)|wall ,

τz = τzy|wall =
1

Re

∂w

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
1

Re

1
k2

D3v|wall .

which yields the following measurement matrix C

C =
1

Re

1
k2

⎛
⎝ ikxD2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0

⎞
⎠ .
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Figure 1. The covariance of f , for the FSC problem (cases
12–13 in table 1) is depicted in (a). The covariance is stronger
in the interior of the boundary layer. From top to bottom and
right to left each square represent to covariance for f1, f2, and
f3. The wavenumber space amplitude function is shown in (b).
The peak is moved to {0.25,−0.25} which is the mode that is
triggered in the FSC simulations.

Each of the three measurements is assumed to be corrupted by random
sensor noise processes, the amplitude of which is determined by the assumed
quality of the sensors. The covariance of the sensor noise vector g can thus be
described in Fourier space by a 3× 3 matrix G whose diagonal elements α2

ι are
the variances of the sensor noise assumed to be associated with each individual
sensor

Rgι(t),gκ(t′) = δικδ(t − t′)α2
ι , (11)

where δικ denotes the Kronecker delta. Thus, in the present work, we assume
that the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can be
better trusted. For a given covariance of the external disturbances, the tuning
of the assumed overall magnitude of the sensor noise in the Kalman filter design
thus provides a natural “knob” to regulate the magnitude of the feedback into
the estimator.

3. Compensation

The system is now described: its dynamics is governed by (2), it is excited by
external sources of disturbance as in (9) and the sensor information is corrupted
by noise as in (11). We can now apply the procedure of LQG control and
estimation.
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Our system can be written on the general state-space form
q̇ = Aq + Bu + B1f, q(0) = q0,

y = Cq + g,
(12)

where q is the state, A is the linear operator representing the dynamics of the
system. The external disturbances, denoted by f , force the state through the
input operator B1, and q0 is the initial condition. The operator B1 transforms
a forcing on (u, v, w) to a forcing on (v, η). The control signal u affects the
system through the input operator B. Operator C extracts the measurements
from the state variable, and g adds a stochastic measurement noise with given
statistical properties. The noisy measurement is then y. Once we have the
physical model on this form, we can apply the tools from control theory, see
for example Lewis & Syrmos (1995).

3.1. Controller

To construct an optimization problem we need to define an objective function.
The performance measure for optimality is chosen as a weighted sum of the
flow kinetic energy and the control effort. We thus aim at preventing small
disturbances from growing, and achieve this goal with the minimum possible
actuation energy. The objective functional thus reads

J =

∞∫
0

(q∗Qq + l2u∗u) dt (13)

where l2 is included to penalize the time derivative of the control ϕ̇, and

Q =
(

Q Qqp

q∗p (1 + r2)q∗pQqp

)
(14)

where the term r2 is an extra penalty on the control signal itself. The operator
Q represents the energy inner-product in the (v, η) space

(
v∗ η∗)Q

(
v
η

)
=

1
8k2

1∫
−1

(
k2|v|2 +

∣∣∣∣∂v

∂y

∣∣∣∣2 + |η|2
)

dy, (15)

with k2 = k2
x + k2

z .
We now want to find the optimal K that feeds back the state to update the

control u = Kq. It can be found as the solution of a algebraic Riccati equation
(ARE)

A∗X + XA − 1
l2

XBB∗X + Q = 0 (16)

where X is the unique non-negative self-adjoint solution. Note that the linear
feedback law does not depend on the disturbances present in the flow and is
thus computed once and for all for a given objective function and base flow.
The optimal control gain K is

K = − 1
l2

B∗X. (17)
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A sufficient range of wavenumber pairs are computed and after Fourier trans-
form in both horizontal directions, we obtain physical space control convolution
kernels. Examples of such control kernels are depicted in figure 2.

3.2. Estimator

We build an estimator analogous to the stochastic dynamical system (12) as

˙̂q = Aq̂ + Bu − L(y − ŷ), q̂(0) = q̂0,

ŷ = Cq̂,
(18)

where q̂ is the estimated state and ŷ represents the measurements in the esti-
mated flow.

Kalman filter theory, combined with the models outlined in §2.2.1 and
§2.2.2 for the statistics of the unknown external forcing f and the unknown
sensor noise g respectively, provides a convenient and mathematically-rigorous
tool for computing the feedback operator L in the estimator described above
such that q̂(t) converges to an accurate approximation of q(t) (see e.g. Lewis
& Syrmos 1995, p. 463–470). Note that the volume forcing v = L(y − ŷ)
used to apply corrections to the estimator trajectory is proportional to the
measurement error ỹ = y − ŷ.

The problem reduces to solving an algebraic Riccati equation similar to
equation (16)

0 = AP + PA∗ + BRB∗ − PC∗G−1CP, (19)

where P is the unique non-negative self-adjoint solution. The optimal gain L
that minimizes the expected energy of the state estimation error at steady state
is

L = −PC∗G−1. (20)

3.3. Extension to spatially developing flows

When solving the linear control problem and computing optimal control and
estimation gains we have linearized about a specific mean flow profile. When
the gains are applied in the control and measurement strip, the mean flow varies
along those regions i.e. errors will be introduced due to the changes of the
mean flow. Based on findings in Högberg & Henningson (2002), Högberg et al.
(2003a), Högberg et al. (2003b), and Chevalier et al. (2004) it was expected that
the controller and the estimator had some robustness properties with respect
to changes in the mean flow profile. Due to the fact that the convolution
kernels themselves, for proper choices of parameters, are localized indicates
that only local information is needed which relaxes the requirement of constant
mean flow profile. For all control and estimation gains used in this study the
mean flow profile in the center of the control and measurement regions have
been used except for the control gains for the longer control interval in the
optimal perturbation flow case where the same gains were used as for the
shorter interval.
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Figure 2. Steady-state control convolution kernels relating
the flow state v̂ (a) and η̂ (b) to the control at {x = 0, y =
0, z = 0} on the wall. Positive (dark) and negative (light)
isosurfaces with isovalues of ±20% of the maximum amplitude
for each kernel are illustrated.

The control and estimation convolution kernels for the Falkner–Skan–Cooke
boundary layer flow, described in §2, are depicted in figures 2 and 3.

4. Numerical issues

4.1. Direct numerical simulations

All direct numerical simulations have been performed with the code reported
in Lundbladh et al. (1992) and Lundbladh et al. (1999), which solves the in-
compressible Navier–Stokes equations

∂u

∂t
= NS(u)+λ(x)(u − uλ) + F,

∇ · u = 0,
(21)

by a pseudo-spectral approach. In order to allow spatially developing flows, a
fringe region technique as described in e.g. Nordström et al. (1999) has been
applied. This forcing is implemented in the term λ(x)(u−uλ), where λ(x) is a
non-negative function which is nonzero only in the fringe region located in the
downstream end of the computational box. The outflow and inflow conditions
are determined by the desired velocity distribution uλ. The other additional
forcing term F = [F1, F2, F3]T is used e.g. to enforce a parallel mean flow in
temporal simulations, or to introduce perturbations in the spatial simulations.

At the lower wall a no-slip boundary condition is applied where it is also
possible to apply zero mass-flux blowing and suction. An asymptotic freestream
boundary condition is used to limit the computational box in the wall-normal
direction, at a constant height from the lower wall (see e.g. Malik et al. 1985).

The computational domain is discretized in space by Fourier series in both
horizontal directions and with Chebyshev polynomials in the wall-normal di-
rection. The time integration is done using a four-step low-storage third-order
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Case Flow Perturbation Estimation Control
xm ∈ r2 l xc ∈

0 A Eigenmode − −
1 A Eigenmode − 0 102 [0, 25.14]
2 A Eigenmode [0, 25.14] 0 102 [0, 25.14]
3 B TS-wave − − − −
4 B TS-wave − 0 102 [175, 325]
5 B TS-wave [40, 150] 0 102 [175, 325]
6 C Optimal − − − −
7 C Optimal − 0 102 [300, 450]
8 C Optimal [0, 300] 0 102 [300, 450]
9 C Optimal − 0 102 [300, 750]
10 C Optimal [0, 300] 0 102 [300, 750]
11 D Random − − − −
12 D Random − 0 102 [175, 325]
13 D Random [40, 150] 0 102 [175, 325]

Letter Flow Resolution Box
A Temporal FSC 4 × 129 × 4 25.14 × 20 × 25.14
B Spatial Blasius 576 × 65 × 4 500 × 20 × 12.83
C Spatial Blasius 576 × 65 × 4 1128 × 20 × 12.83
D Spatial FSC 192 × 49 × 48 500 × 8 × 251.4

Letter Fringe
xstart xmix ∆mix ∆rise ∆fall

B 350 425 25 75 25
C 1028 1028 40 100 20
D 350 400 40 100 20

Table 1. The tables contain detailed information about all
the simulations performed in this study. Both the control and
estimation kernels are computed based on a velocity profile
from the centre of each domain except for cases 9–10 where the
same control kernels were used as for cases 7–8. The rise and
fall distance of the control region and the measurement regions
are always ∆x = 5. The domain xm denotes the measurement
region used in the estimator and the domain xc denotes the
region where blowing and suction is applied in the control part
of the simulations. The parameters ατx

, ατz
, and αp are the

sensor noises for each measurement which is used when com-
puting the estimation gains and determines their relative and
total strength. This is described in §2.2.2.
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Figure 3. Steady-state estimation convolution kernels relat-
ing the measurements τx, τz, and p at the point {x = 0, y =
0, z = 0} on the wall to the estimator forcing on the interior
of the domain for the evolution equation for the estimate of
(left) v̂ and (right) η̂. Positive (dark) and negative (light) iso-
surfaces with isovalues of ±10% of the maximum amplitude
for all kernels illustrated except for the τz kernel for η which
is plotted at ±20%.

Runge–Kutta method for the advective and forcing terms whereas the viscous
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terms are treated with a Crank-Nicolson method. The incompressibility con-
dition is enforced implicitly by expressing the flow state in the wall-normal
velocity and wall-normal vorticity state space.

4.2. Temporal simulations

To enforce parallel flow we add a volume forcing vector F = [F1, F2, F3]T ,
defined as

F1 = −∂U(y, t)
∂t

− 1
Re

∂2U(y, t)
∂y2

,

F2 = 0,

F3 = − 1
Re

∂2W (y, t)
∂y2

.

(22)

The velocity profiles U(y, t) and W (y, t) are given for a spatial position xr. To
further allow for a moving frame we make the following variable transformation
xr = x0 + ct where c is the reference frame speed and let U(xr, y) = U(x0 +
ct, y) = U(t, y)

Different flow cases are obtained by supplying different initial conditions.
We use here an eigenvector of the linearized Orr–Sommerfeld/Squire system
defined in (2) and (3).

4.3. Spatial simulations

4.3.1. Fringe region

By adding the fringe forcing mentioned in §4.1 we can enforce flow periodicity
and thus apply spectral methods to also solve spatially developing flows. The
fringe function is defined as

λ(x) = λmax

[
S

(
x − xstart

∆rise

)
− S

(
x − xend

∆fall

)]
(23)

where the step function S is defined as

S(x) =

⎧⎪⎨
⎪⎩

0, x ≤ 0,

1/
[
1 + exp

(
1

x−1 + 1
x

)]
, 0 < x < 1,

1, x ≥ 0.

(24)

The parameters xstart and xend define the start and end location of the fringe
domain. The parameters ∆rise and ∆fall define the rise and fall distance of the
fringe function respectively.

In order to enforce the inflow boundary condition at the downstream end of
the domain we construct the following blending function which gives a smooth
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Parameter Cases
3–5 11–13

x0 20 20.95
at 0.001
as 0.0001

xscale 5 10
yscale 1 1
zscale 0
zcenter 0 0
lskew

nmodes 21
tdt 1
ωh 0.093668

Table 2. Volume forcing parameters for the spatial simulations.

interpolation between two velocity profiles,

uλ = U(x, y) + [U(x − lx, y) − U(x, y)]S
(

x − xmix

∆mix

)
+ uf (x − lx, y, z, t),

wλ = W (x, y) + [W (x − lx, y) − W (x, y)]S
(

x − xmix

∆mix

)
+ wf (x − lx, y, z, t),

(25)
where lx is the box length in the streamwise direction. The parameters xmix

and ∆mix are both blending parameters. The former is the start of the blending
region and the latter is the rise distance of the blending. Additional forcing to
add streaks or different wave forms can be added through the velocity compo-
nents uf and wf , and vλ directly in the fringe.

4.3.2. Perturbations

To introduce perturbations into the spatially evolving flow an external volume
force can be applied locally in the computational domain. This forcing can be
applied either in the fringe region, as for the optimal disturbance case, or in
the physical flow domain.

For unsteady perturbations we use a random forcing, acting only on the
wall-normal component of the momentum equations

F rand
2 = at exp[−((x − x0)/xscale)2 − (y/yscale)2]f(z, t), (26)

where

f(z, t) = [(1 − b(t))hi(z) + b(t)hi+1(z)] (27)
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and
i = int(t/tdt),

b(t) = 3p2 − 2p3,

p = t/tdt − i,

(28)

where hj(z) is a Fourier series of unit amplitude functions with random phase
generated at every time interval j. Within each time interval tdt, the function
b(t) ramps the forcing smoothly in time. The maximum amplitude is deter-
mined by at and the forcing is exponentially decaying in both streamwise and
wall-normal direction centered at x0. The number of modes with non-zero am-
plitude is determined by the parameter nmodes. This forcing has been used to
generate the traveling cross-flow vortices described as cases 11–13 in table 1
with the corresponding parameters given in table 2.

Another option to generate perturbations is to use the harmonic forcing
function defined as

F harm
2 = as exp[−(y/yscale)2]g(x, z)r(t), (29)

where

g(x, z) =

{
cos[2π(z − x lskew)/zscale] exp[−((x − x0)/xscale)2], if zscale �= 0,

exp[−((x − x0)/xscale)2], if zscale = 0,

(30)
and

r(t) = cos(ωht), (31)

where ωh is the frequency of the forcing. For stationary forcing ωh is set to
zero. Also the harmonic forcing is exponentially decaying in both streamwise
and wall-normal direction whereas in the spanwise direction we can choose
whether to align the forcing with streamlines or have no spanwise dependence
at all.

4.3.3. Zero mass-flux actuation

The numerical model in the DNS does not allow for net inflow, we thus have
to enforce a zero-mass flux through the actuation strip by the transformation

ϕ̂(x, z) = (ϕ(x, z) + c)H(x), (32)

where

c = −

∫
z

∫
x

ϕ(x, z)H(x) dx dz

zl

∫
x

H(x) dx

(33)

and

H(x) = S

(
x − (xcenter − lcx)

∆x

)
− S

(
x − (xcenter − lcx)

∆x

)
. (34)
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The parameter S(x) is defined as in equation (24) and xcenter denotes the
center of the control interval. Parameters lcx and lcz are respectively the length
and width of the control domain and ∆x is the rise and fall distance of the
actuation.

4.4. Compensator algorithm

The compensator algorithm is depicted in figure 4. The “real” flow could be an
experimental setup where only wall information is extracted. In our studies the
“real” flow is represented by a DNS. The estimator is another DNS, which is
used to recover the state from sensor information. The compensation algorithm
can be sketched in the following steps

1. Take wall measurements in both flow and estimated flow
2. Compute the estimator volume forcing based on precomputed estima-

tion gains and the difference of the wall measurements from the flow
and estimated flow

3. Apply the volume forcing to the estimator flow to make it converge to
the flow

4. Compute the control signal as a feedback of the reconstructed state in
the estimator

5. Apply the control signal in both the flow and estimated flow

5. Flow cases

In order to evaluate the compensator performance in transitional flows we test
a range of different flow cases. To ease the comparison with the full information
controller results reported in Högberg & Henningson (2002) we study the same
flow cases and the same control parameters, r = 0 and l2 = 100 has been
used. However, the control region have been set further downstream to fit also
a measurement region in the computational domain. Note that in principle we
could have overlapping control and measurement regions. The computational
parameters for each flow type are listed in table 1.

5.1. Single eigenmode

To validate the numerical implementation of the control and the estimator forc-
ing we studied a temporal FSC boundary layer flow where the Reynolds number
at the beginning of the simulation box was Re = 337.9 with a freestream cross-
flow velocity component W∞ = 1.44232U∞(x = 0) and a favorable pressure
gradient m = 0.34207 as defined in §2.1. The same flow setup is also studied
in a spatial setting in §5.4. In this case of temporal flow the measurement and
control regions overlap since they both extend over the whole wall.

The initial disturbance is the unstable eigenvector associated with the
eigenvalue c = −0.15246 + i0.0382 that appears at kx = 0.25 and kz = −0.25.
The exponential energy growth of the uncontrolled eigenmode is depicted in
figure 5 as a thick solid line. In the same figure the full information controller
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Actual flow

Estimated flow
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Figure 4. Compensator configuration. The upper box repre-
sents the “real” flow where the light grey rectangle along the
wall is the measurement region (x ∈ [xm

1 , xm
2 ]) and the corre-

sponding dark grey rectangle is the control area (x ∈ [xc
1, x

c
2]).

In the beginning of the box a perturbation is indicated as a
function of the wall-normal direction. This perturbation will
evolve as we integrate the system in time. The estimated flow
system is depicted in the lower box. Here the volume force
that is based on the wall measurements and the estimation
gains is shown as a grey cloud in the computational domain.

is plotted as thick dashed line. The disturbance energy decays rapidly in time
and levels out. The thin lines are all related to the compensator simulation.
The thin solid line represents the disturbance energy in the estimator and it
increases initially to quickly align with the energy growth of the actual state.
This can also be viewed through the estimation error plotted as a thin dash-
dotted line which decays exponentially in time. The compensator control is
shown as the thin dashed line. Initially when the estimated state is poor the
controller is not very efficient. However as the estimated state improves the
compensator control is also improving.

5.2. TS-wave

The TS-wave perturbation is applied in a spatially developing Blasius boundary
layer which corresponds to setting m = 0 i.e. without pressure gradient in the
streamwise direction. We have no mean-flow component in the z-direction. The
wave is introduced by applying an oscillating volume force localized in x z far
upstream in the computational box. The dimensionless oscillating frequency is
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Parameter Cases
3 5 8 & 10 13

k0
x 0.25 0.28 0 0.25

k0
z −0.25 0 0.49 −0.25

dx 0.1 0.25 0.15 0.2
dy 0.1 0.1 0.1 0.1
dz 0.1 0.25 0.15 0.2
ατx

29.56 4 0.2 0.2
ατz

2.21 0.3 0.2 0.2
αp 14781.97 2000 300 30000

Table 3. Estimator model parameters. The parameters k0
x,

k0
z , dx, dy, and dz all relate to the covariance model of the

external disturbances and the parameters ατx
, ατz

, and αp

relate to the modeling of the sensor noise.
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Figure 5. Time evolution of the perturbation energy of the
uncontrolled unstable eigenmode at kx = 0.25, kz = −0.25 in a
FSC boundary layer and the corresponding controlled system.
Solid: uncontrolled energy growth (case 1). Dashed: full in-
formation control applied (case 2). Solid-thin: energy growth
in the estimator when no control is applied. Dash-dotted-thin:
the estimation error when no control is applied. Dashed-thin:
compensator control is applied (case 3). The simulations cor-
respond to cases 1–3 in table 1.
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Figure 6. Spatial evolution of the perturbation energy of a
TS-wave in a spatially growing boundary layer. Solid: no con-
trol. Dashed: energy growth and decay with full information
control. Dash-dotted: energy growth and decay with compen-
sator control .

F = 200 where F = 1062πfν/U2
∞. The unstable area for this waves extends

from Branch I at x = 27 (Re ≈ 507) to branch II at x = 219 (Re ≈ 723). The
measurement region is x ∈ [40, 150] and the control region is x ∈ [175, 325] so
that they both overlap with the exponential growth region. The simulation
parameters correspond to cases 4–6 in table 1 and the parameters defining the
volume forcing are stated in table 2.

Figure 6 shows the uncontrolled energy growth and decay as a solid line.
After a short spatial transient, the volume forcing induces a TS-wave with the
expected exponential growth. Dashed and dash-dotted lines show respectively
the energy evolution in the beginning of the control region when the full in-
formation and compensator control are applied. Despite the approximative
estimated flow state information, the compensator is able to turn the exponen-
tial growth into exponential decay.

Figure 7(a) shows a snapshot of an x–y plane of the wall-normal velocity
field . The forcing has been turned on long enough to let the waves propa-
gate through the whole computational box. In figure 7(b) the compensator
control have been turned on for 1341 time units which corresponds to twenty
periods of the forcing. Full information and compensator control have similar
performance.

The control signals for the full information control and the compensator
control are shown in figure 8. The control signals mimic waves with sharp peaks
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(a)

x

y

(b)

x

y

Figure 7. A snapshot of the wall-normal perturbation ve-
locity for controlled and uncontrolled TS-waves. (a) The TS-
wave at t = 1341 with no control. (b) Compensator control
applied during twenty TS-wave periods which corresponds to
1341 time units.

in the beginning and end of the control interval, probably due to the artificial
spatial cut-off out of the actuation strip.

5.3. Optimal perturbation

The compensator performance is also studied for transiently growing pertur-
bations, see i.e. Butler & Farrell (1992). The spatial optimal perturbations in
a Blasius boundary layer have been computed by Andersson et al. (1999) and
Luchini (2000). The optimal perturbation is introduced at x = −158.16 and
then marched forward to x = 0 with the technique developed in Andersson
et al. (1999). The perturbation is introduced in the fringe region to give the
proper inflow condition, see §4.3 and table 2 for numerical details and choice
of parameters. The perturbation is optimized to peak at x = 237.24.

The same base flow parameters have been used as was used for the TS-
wave simulations described in §5.2, but with a larger box size in the streamwise
direction. The local Reynolds number at inflow is Re = 468.34. The simulation
parameters are given in table 1 as cases 6–10.
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Figure 8. Control signal when the control has been turned on
for 1341 time units. Solid: full information control. Dashed:
compensator control.

In figure 9 the perturbation energy is defined as

E =

2π/β0∫
0

∞∫
0

(u2 + v2 + w2) dy dz, (35)

where the spanwise wave number is k0
z = 0.4897. The figure shows the energy

of the uncontrolled flow, full information control and compensator control once
steady state has been reached. Two different lengths of the control regions have
been implemented. Both types of controller for both control intervals work well
at reducing the perturbation energy. In the case with a narrow control strip
the perturbation energy starts to grow again since a stronger component of the
growing disturbance remains.

Note that the estimated flow energy does not reach the exact perturba-
tion energy level, but this does not seem to affect strongly the compensator
performance.

The control signal for the full information and compensator control cases,
for the control interval x ∈ [300, 750], are depicted in figure 10. The actuation
presents a peak at the beginning of the control region and then a fast decay
which levels out progressively. A similar feature is reported in Cathalifaud &
Luchini (2000) where control is applied over the whole domain.

5.4. Traveling cross-flow vortices

The FSC boundary layer flow studied in this paper is subject to several other
studies, for example Högberg & Henningson (1998) and Högberg & Henningson
(2002). Originally it was an attempt to reproduce experimental results where
traveling cross-flow modes have been observed (see e.g. Müller & Bippes 1988).
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Figure 9. Spatial energy evolution of the optimal pertur-
bation. Solid: no control. Dashed: full information control
applied in region x ∈ [300, 450]. Dash-dotted: compensator
control with measurement region xm ∈ [0, 300] and the con-
trol region xc ∈ [300, 450]. Thin-solid: estimated flow en-
ergy. Thin-dashed: full information control applied in region
x ∈ [300, 725]. Thin dash-dotted: compensator control with
the measurement region xm ∈ [0, 300] and the control region
xc ∈ [300, 725]. The flow cases correspond to cases 6–10 in
table 1.

A random perturbation in space and time that generates cross-flow vortices
downstream is applied, see equation 26 with parameters in table 2. The sim-
ulation box and other numerical details can be found as cases 11–13 in table
1.

In case 11 we compute the time evolution of the forcing as it develops
downstream and forms the cross-flow vortices depicted with a solid line in figure
11. In case 12 we apply full information control. Exponential decay replaces
then the uncontrolled exponential growth, as shown by the dashed line in figure
11. However almost adjacent to the downstream end of the control region the
disturbances start to grow exponentially. Indeed, this wave is unstable over the
whole box, and resumes growth behind the control strip. In the same figure
also the perturbation energy for the compensator is plotted as a dash-dotted
line.

The simulations are run until we reach a stationary state where we sample
and time average the disturbance energy in the streamwise direction as shown in
figure 13. The control gains are computed for the base flow at position x = 250
which is the center of the control domain x ∈ [175, 325]. The estimator gains
are centered at x = 95 and the measurements are taken in x ∈ [40, 150]. In
figure 13(a) the uncontrolled flow for the wall-normal perturbation velocity is
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Figure 10. The control signals for the optimal disturbance
case after initial transient. Dashed: full information control
applied in region x ∈ [300, 750]. Dash-dotted: compensator
control in domain x ∈ [300, 750].

plotted at y = 0.5. The corresponding plot for the compensated flow is depicted
in figure 13(b).

6. Conclusion

Based on findings on how to improve the performance of the state estimator,
reported in Hœpffner et al. (2004), combined with the state-feedback control
used in, for example, Bewley & Liu (1998) and Högberg & Henningson (2002)
viscous instabilities, non-modal transient energy growth and inflectional insta-
bilities in spatially developing boundary layer flows are controlled based on wall
measurement.

The key to the improved performance of the estimator is the design of a
physically relevant stochastic model for the external sources of disturbances.
The external disturbances should account for as much as possible of the flow
system that cannot be taken into account in the linear dynamic model that
is used to formulate the control and estimator problem. For this purpose we
choose a correlation length which is weighted to be stronger in the interior of
the boundary layer than outside. We also choose an amplitude distribution in
wavenumber space such that it represents the main wavenumbers to be active in
the specific flow that we study. This procedure leads to well resolved estimation
gains for the three measurements streamwise and spanwise shear stresses and
pressure. Both the sensor noise and the external disturbances are assumed to
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Figure 11. Time averaged perturbation energy for cross-flow
vortices in a Falkner–Skan–Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. The simulations correspond to cases 11–
13 in table 1.
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Figure 12. Time evolution of the disturbance energy inte-
grated throughout the computational box. During the first
2000 time units the flow is uncontrolled. At time t = 2000 the
compensator is turned on. Solid: energy in the flow. Dashed:
energy in the estimator.

be white noise processes. The sensor noise becomes a natural parameter to
tune the strength of the feedback to the estimator.

Note that so far we have given the estimator ample time to converge before
turning on the compensator control except for in the temporal flow case. In
future work one could reduce the time frame for the estimator to converge as
well as experiment with smaller measurement regions.
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Figure 13. Snapshots of the wall-normal velocity component
at y = 0.5. The flow state is depicted in part (a). In (b)
the effect of the compensator control is shown. In both con-
trolled flows the actuation was applied for 2000 time units, and
reached its steady state. The black to white scales lies within
v ∈ [−0.00045, 0.00045].
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Optimal control by means of blowing and suction control of transition in chan-
nel flow and boundary layer flow is attempted. First the optimization prob-
lem is stated and the corresponding adjoint equations used to compute the
gradient of the objective function are derived for both the channel flow and
boundary layer flow problems. A solver for the adjoint equations has been
implemented in a spectral direct numerical simulation code used when solving
the Navier–Stokes equations. This method adapts naturally, without modifi-
cation, to nonlinearities such as a strongly varying mean flow. However, it is
computationally expensive and storage demanding, needing numerous solves of
the Navier–Stokes and associated adjoint equations.

To test the performance of the solver of the optimization problem for the
channel flow, the derived formulation is applied to different stages of the oblique
transition scenario. The boundary layer optimization problem is applied on dif-
ferent instabilities in parallel and spatially-developing three-dimensional bound-
ary layers. Both the channel and boundary layer flows are controlled through
blowing and suction at the wall.

Furthermore, for boundary layer flows the nonlinear optimization results
are compared with feedback controllers based on linear optimal control the-
ory. The feed-back operator is constructed from the Orr–Sommerfeld/Squire
equations. Assuming the flow to be locally parallel makes it feasible to solve
the associated Riccati equations for each wave number pair in the stream- and
spanwise directions. The feed-back is applied to a DNS of the flows mentioned
above. This method is much less computationally costly than the first nonlinear
method.

Finally, adjoint equations are also derived and implemented for an opti-
mization problem where the objective is to find the optimal initial condition
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that produces the highest energy growth at a specified time. This implemen-
tation is aimed for future studies of secondary instabilities on a streaky base
flow.

1. Introduction

In the last decade, one topic in fluid mechanics that has been subject to an
increasing interest is flow control. The fast development in computer perfor-
mance has made it possible to approach these problems from a numerical point
of view, and also to construct small devices to be used for measurements and
actuation in experiments. Mathematical aspects of the flow control problem
is the topic of the books edited by Gunzburger (1995) and Sritharan (1998).
Computational approaches to flow control are reviewed in the paper by Hinze
& Kunish (2000). Optimal control of channel flow using direct numerical simu-
lations was previously considered using by Bewley et al. (2001) and using large
eddy simulations by Collis et al. (2000). In addition to channel flow Joslin et al.
(1997) also considered the boundary layer case with a two dimensional flow in
direct numerical simulations.

In flow systems where strong inherent instabilities are present, like in a
transitional flow, small perturbations can alter the flow features dramatically.
In such flows, there is therefore a potential to improve the quality of the flow
using small devices with a localized action and with a minimum of energy ex-
penditure. This is one of the main ideas behind flow control. Such control
strategies could be used, for example, to reduce drag on bodies, increase lift on
wings, increase propulsion efficiency, heat- and mass-transfer reduction or en-
hancement, control of vortex shedding or to control separation and aeroacoustic
pressure fluctuations.

Generally, the different control techniques are divided into two groups.
The first group, where no auxiliary power is used, includes the passive control
methods. These methods are usually implemented through geometrical mod-
ifications. This has been the traditional way of controlling fluid mechanical
systems. The other large group of control methods is the active control meth-
ods where the control is adjusted dynamically to the state of the system. One
of the first attempts was, for example, to cancel TS waves by anti-phase modal
suppression to prevent transition. Early work is reviewed in Thomas (1990)
and a brief, later review is given in Metcalfe (1994). These efforts showed that
instabilities may indeed be significantly suppressed, but complete elimination
of the primary instability is not achieved.

As opposed to earlier attempts of controlling fluid flows, when thorough
understanding of the phenomena involved was necessary, optimal control theory
requires no a priori knowledge about the functional behavior of an effective
control. The theoretical framework is general and applies to a broad spectra of
applications where just a small selection is listed here: finding optimal shape of
wings under certain conditions (Jameson (1989)), minimizing the vorticity of
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an unsteady internal flow by manipulating the inlets (Berggren (1995)), as well
as controlling boundary layer transition (Joslin et al. (1997)) and turbulence
(Bewley et al. (2001)). Optimal control based on linear theory has also been
investigated and has shown to work very well in recent applications such as in
channel flow (Joshi et al. (1997), Bewley & Liu (1998) and Högberg & Bewley
(2001)). In this approach modern linear control theory is used to construct
feedback control laws for online control.

In this report both the linear control approach from Högberg & Bewley
(2001) and Högberg & Henningson (2002) and a nonlinear control approach
are applied to spatially evolving boundary layer flows in cases representing
three fundamentally different paths to transition. Our goal is to measure the
effectiveness of the optimal nonlinear controller versus the linear counterpart
and how much the restrictions in the linear optimal control limits its perfor-
mance. Note however that the two optimization formulations differ in terms of
objective functions. See text below for details.

This report summarizes the work from two different studies described in
Högberg et al. (2001) and Chevalier et al. (2002). It consider the problem of
control of transition from laminar to turbulent flow in channel and boundary
layers. In many applications there is a large potential benefit from the ability
to prevent transition whereas in other applications the turbulent state is the
desired one. Our objective is to delay or prevent transition at low Reynolds
numbers, particularly focusing on the bypass transition (Morkovin (1969)) sce-
narios, not originating from an exponential instability. The problem of by-
pass transition is important in many practical applications, and considerable
amounts of research has been done on this subject see e.g. the recent book by
Schmid & Henningson (2001). The second optimization problem aims at find-
ing the initial condition that gives maximum energy growth at a specified time.
Here only the optimization problem will be stated, the corresponding adjoint
will be derived, and the implementation verified. The derivation and imple-
mentation is primarily intended for future studies of secondary instabilities on
streaks.

In section 2 the different optimization problems are formulated and ex-
plained in detail, and a short description of the numerical methods used are
described in section 3 and 4.1. Section 5 contains some simple test cases to
verify that the implementations are working properly.

In section 6 the linear and nonlinear control approaches are applied to
three different flow scenarios and results from these simulations are presented.
Finally, a summary and conclusions follow in section 7.

2. Optimization problem formulations

The formulation of an optimal control problem is based on three important
decisions. The choice of governing equations, determining what means of actu-
ation to use, and what properties of the flow to control. For a particular flow
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geometry and with given fluid properties, these choices have to be made with
care.

In this work the governing equations are the incompressible Navier–Stokes
equations. In a recent study, successful application of feedback controllers com-
puted from the linearized Navier–Stokes equations was performed by Högberg
& Bewley (2001) in temporal channel flow. Changes in the mean flow is not
easily taken into account using this formulation. Thus, a proper treatment of
problems where this is important, such as a flow with local separation, requires
the use of the full Navier–Stokes equations.

Since no particular quantity is known that establishes where we are on
the path to transition the choice of objective function is difficult. The mean
skin friction drag could be used as an indicator, since it has a jump at tran-
sition, and can be used to define a transition point, as for example in Reddy
et al. (1998). On the other hand, Bewley et al. (2001) showed that the mean
drag was not a good choice for the objective function when the purpose was
to relaminarize turbulence in a channel flow, and concluded that the turbulent
kinetic energy was a more appropriate choice. Since we are interested in con-
trol of transition rather than turbulence, the energy of the deviation from the
mean flow appears to be an appropriate quantity to minimize. An increased
physical understanding of the transition process and the crucial mechanisms
of turbulence could provide a guide to the best choice of objective function as
pointed out by Kim & Lim (2000).

It is important to choose the properties of the control in such a way that
it is able to do its task in an efficient way. For our study, we have chosen to
use blowing and suction at the wall during a specified period in time. The
state of the flow is observed during another, possibly overlapping, period in
time. When a spatially rather than a temporally evolving flow is considered
it is physically meaningful to specify also the spatial extent of the control and
observation regions. The control is restricted to have zero mass flux, in order
to limit the ability to affect the mean flow and focus the control effort on the
perturbations.

The gradient of the objective function may be expressed in terms of the so-
lution of an adjoint equation. Here, we discretize the expressions for the adjoint
equations and the gradient that have been derived on the “continuous” level.
An alternative is to discretize the Navier–Stokes equations and the objective
function and derive the adjoint equations and the gradient expression on the
discrete level. The latter approach leads to more accurate gradient directions,
but it seems difficult to apply for the present discretizations. Issues related to
the errors introduced by the approximative (continuous) formulation are dis-
cussed in e.g. Glowinski & He (1998), Gunzburger (1995), and Gunzburger
(1998). The use of the continuous formulation is motivated by the findings in
Högberg & Berggren (2000) where one conclusion was that it is sufficient to use
the approximative (continuous) formulation in order to control strong instabil-
ities. It was noted that in such cases most of the reduction of the objective
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Figure 1. Geometry of flow domain Ω for channel flow simulations.

function is achieved in the first few iterations, and additional iterations only
result in a fine-tuning of the control. The drawback is that it will require more
iterations to reach the true optimal solution, if it is even possible, than with
the discrete formulation.

2.1. Nonlinear blowing and suction control

2.1.1. Governing equations

In this section we consider the channel flow problem and the details of the
method used to solve the optimization problem. The boundary layer problem
is basically an extension of the channel flow case. The differences are outlined
in section 2.1.3, and a full description of the boundary layer case is provided
in appendix Appendix A.

Our computational domain depicted in Figure 1 is

Ω = (−xL/2, xL/2) × (−1, 1) × (−zL/2, zL/2),

in x, y, z, and we define

ΓL = Ω(y = −1), ΓU = Ω(y = 1) and Q = Ω × (0, T ).

The non-dimensional, incompressible Navier–Stokes equations with a Reynolds
number, Re, based on the centerline velocity and half the channel height are,⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
+ (u · ∇)u − 1

Re
∆u + ∇π = −∇P in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(1)
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where u = (u1, v, w) is the velocity vector, π is the pressure and ∇P represents
the pressure gradient driving the flow and can either be constant or used to
ensure constant mass flux. Periodic boundary conditions in x and z, and control
through blowing and suction together with a no-slip condition for the directions
parallel to the wall gives the complete set of boundary conditions,

u|x=−xL/2 = u|x=xL/2,

u|z=−zL/2 = u|z=zL/2,

ei · u|y=−1 =

{
ϕT

LψL =
∑ML

m=1 ϕL,m(t)ψL,m(x, z) in (T c
1 , T c

2 ) for i = 2,

0 otherwise,

ei · u|y=1 =

{
ϕT

UψU =
∑MU

m=1 ϕU,m(t)ψU,m(x, z) in (T c
1 , T c

2 ) for i = 2,

0 otherwise,
(2)

where ei are unit basis vectors in the coordinate directions, and ψ are basis
functions for the control designed to have zero net mass flux. We can now
introduce the control variable ϕ defined as:

ϕ = (ϕL, ϕU )T ,

{
ϕL = (ϕL,1, . . . , ϕL,ML

)T ,

ϕU = (ϕU,1, . . . , ϕU,MU
)T .

To completely specify the optimal control problem we also need an objective
function. If we choose to minimize the energy of the deviation from a target
velocity distribution, the objective function is:

J(ϕ) =
ε

2

T c
2∫

T c
1

∫
Γ

|v|2 dΓ dt +
1
2

T o
2∫

T o
1

∫
Ω

|u − uT |2 dQ, (3)

where (T c
1 , T c

2 ) is the control time period and (T o
1 , T o

2 ) is the observation time
period. The target velocity profile is denoted uT . The optimization problem is
then: find ϕ∗ which satisfies

J(ϕ∗) ≤ J(ϕ) ∀ v(ϕ)|Γ ∈ Uad

where Uad has been used to denote the set of admissible controls which is a
subset of L2((T c

1 , T c
2 ); RML+MU ).

2.1.2. Derivation of objective function gradient

The gradient of the objective function ∇J is defined by

δJ(ϕ) = lim
s→0

J(ϕ + s δϕ) − J(ϕ)
s

= 〈∇J, δϕ〉

=
〈

∂J

∂ϕL
, δϕ

〉
+
〈

∂J

∂ϕU
, δϕ

〉
,

(4)

where δϕ is the first variation of the control. The functional δJ is the first
variation of J with respect to δϕ. To find an expression for ∇J we start by
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differentiating the objective function (3) to get,

δJ(ϕ) = ε

T c
2∫

T c
1

∫
Γ

δv v dΓ dt +

T o
2∫

T o
1

∫
Ω

δu · (u − uT ) dQ, (5)

where δv = e2 · δu and δu is the first variation of u with respect to δϕ. To
find an expression for the relation between δu and δϕ we differentiate state
equation (1),⎧⎪⎪⎨

⎪⎪⎩
∂δu

∂t
+ (δu · ∇)u + (u · ∇)δu − 1

Re
∆δu + ∇δπ = 0 in Q,

∇ · δu = 0 in Q,

δu|t=0 = 0,

(6)

and boundary conditions (2),

δu|x=−xL/2 = δu|x=xL/2,

δu|z=−zL/2 = δu|z=zL/2,

ei · δu|y=−1 =

{
δϕT

LψL =
∑ML

m=1 δϕL,m(t)ψL,m(x, z) in (T c
1 , T c

2 ) for i = 2,

0 otherwise,

ei · δu|y=1 =

{
δϕT

UψU =
∑MU

m=1 δϕU,m(t)ψU,m(x, z) in (T c
1 , T c

2 ) for i = 2,

0 otherwise.
(7)

Now we introduce a vector function p = p(x, y, z, t) such that ei · p = pi and
require p to satisfy the boundary conditions:

p|x=−xL/2 = p|x=xL/2,

p|z=−zL/2 = p|z=zL/2,

p|y=−1 = p|y=1 = 0.

(8)

The boundary conditions may be chosen during the derivation but in order to
simplify the presentation they are introduced already at this point. Taking the
dot product between p and equation (6) and integrating over Q yields∫

Q

p ·
(

∂δu

∂t︸︷︷︸
1

+ (δu · ∇)u︸ ︷︷ ︸
2

+ (u · ∇)δu︸ ︷︷ ︸
3

− 1
Re

∆δu︸ ︷︷ ︸
4

+∇δπ︸︷︷︸
5

)
dQ = 0. (9)

Then, step by step, we apply integration by parts to move derivatives from
δu to p. We start with the first term in the integral (9), containing the time
derivative:∫

Q

p · ∂δu

∂t
dQ =

∫
Ω

(p(T ) · δu(T ) − p(0) · δu(0)) dΩ −
∫
Q

δu · ∂p

∂t
dQ

=
∫
Ω

p(T ) · δu(T ) dΩ −
∫
Q

δu · ∂p

∂t
dQ,

(10)
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where we have used that δu(t = 0) = 0. Then consider the fourth and fifth
terms in integral (9), involving ∆δu and δπ:

− 1
Re

∫
Q

p · ∆δu dQ +
∫
Q

(p · ∇)δπ dQ

= − 1
Re

T∫
0

[∫
Γ

∂δu

∂n
· p dΓ −

∫
Ω

∇p : ∇δu dΩ
]
dt

+

T∫
0

[∫
Γ

n · p δπ dΓ −
∫
Ω

δπ(∇ · p) dΩ
]
dt

=

T∫
0

∫
Γ

p ·
(

n δπ − 1
Re

∂δu

∂n

)
dΓdt

+
1

Re

T∫
0

[∫
Γ

δu · ∂p

∂n
dΓ −

∫
Ω

δu · ∆p dΩ
]
dt −

∫
Q

δπ(∇ · p) dQ

=
1

Re

T c
2∫

T c
1

[
δϕT

L

∫
ΓL

ψL
∂p2

∂n
dΓ + δϕT

U

∫
ΓU

ψU
∂p2

∂n
dΓ
]
dt

− 1
Re

∫
Q

δu · ∆p dQ −
∫
Q

δπ(∇ · p) dQ.

(11)

where : denotes a complete contraction; that is,

∇p : ∇δu =
3∑

i,j=1

∂(ei · p)
∂xj

∂(ei · δu)
∂xj

. (12)

In the third equality of (11), we use the boundary condition on δu from (7)
and on p from (8).

We can simply rewrite the second term in (9):

∫
Q

p · (δu · ∇)u dQ =
∫
Q

δu · (∇u)T p dQ. (13)



Adjoint based control in channel and boundary layer flows 169

For the third term in (9), we use Gauss theorem, the boundary condition on p
in (8) and the incompressibility condition,∫

Q

p · (u · ∇)δu dQ

=

T∫
0

∫
Γ

(p · δu)(n · u) dΓ dt

−
∫
Q

(p · δu)(∇ · u) dQ −
∫
Q

δu · (u · ∇)p dQ

= −
∫
Q

δu · (u · ∇)p dQ,

(14)

Then by inserting (10), (11), (13) and (14) into (9) we get:∫
Ω

p(T ) δu(T ) dΩ

+
1

Re

T c
2∫

T c
1

[
δϕT

L

∫
ΓL

ψL
∂p2

∂n
dΓ + δϕT

U

∫
ΓU

ψU
∂p2

∂n
dΓ
]
dt

+
∫
Q

δu ·
(
−∂p

∂t
− 1

Re
∆p + (∇u)T p − (u · ∇)p

)
dQ

−
∫
Q

δπ (∇ · p) dQ = 0.

(15)

If we then require p to satisfy the adjoint equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∂p

∂t
− 1

Re
∆p + (∇u)T p − (u · ∇)p + ∇σ =

{
u − uT in (T o

1 , T o
2 )

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0,

(16)
with the boundary conditions from (8) and where σ is a scalar field (the “adjoint
pressure”). Then (15) becomes

T o
2∫

T o
1

∫
Ω

δu · (u − uT ) dQ −
∫
Q

δu · ∇σ dQ = 0, (17)



170 M. Chevalier, M. Högberg, M. Berggren & D. S. Henningson

since ∂p2/∂n is zero at the boundaries y = ±1. This follows from the fact that
the no-slip condition implies

∂p1

∂x
=

∂p3

∂z
= 0

on the walls and from the condition requiring p to be divergence-free. Also,
note that the initial condition for the adjoint equations (16) is set at t = T and
that the equations are integrated backwards in time.

Integrating the second term in the integral (17) by parts yields

−
∫
Q

δu · ∇σ dQ = −
T∫

0

∫
Γ

n · δu σ dΓ dt +
∫
Q

σ∇ · δu dQ

= −
T∫

0

∫
Γ

n · δu σ dΓ dt,

(18)

since ∇ · δu = 0. Inserting the boundary condition on δu from (7) into (18) we
get,

−
T∫

0

∫
Γ

n · δu σ dΓ dt

=

T c
2∫

T c
1

∫
ΓL

δϕT
LψLσ dΓ dt −

T c
2∫

T c
1

∫
ΓU

δϕT
UψUσ dΓ dt.

(19)

If we now insert (18) and (19) into (17) we get,
T c

2∫
T c

1

[
δϕT

L

∫
ΓL

ψLσ dΓ − δϕT
U

∫
ΓU

ψUσ dΓ
]

dt

+

T o
2∫

T o
1

∫
Ω

δu · (u − uT ) dQ = 0.

(20)

Finally we can now insert (20) into (5) using (2) to eliminate δu

δJ(ϕ) =
〈

∂J

∂ϕL
, δϕ

〉
+
〈

∂J

∂ϕU
, δϕ

〉

=

T c
2∫

T c
1

{
δϕT

L

[ ∫
ΓL

ψL

(
εϕT

LψL − σ
)

dΓ
]

+ δϕT
U

[ ∫
ΓU

ψU

(
εϕT

UψU + σ
)

dΓ
]}

dt.

(21)
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Figure 2. The computational domain. In the nonlinear opti-
mization problem the flow is observed in the region [xo

1, x
o
2] ×

[0, y∞] × [−zl/2, zl/2] × [T o
1 , T o

2 ]. For both optimization prob-
lems the control region is [xc

1, x
c
2] × [−zl/2, zl/2] × [T c
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2 ].

From expression (21) we can identify the gradient of the objective function (3),

∂J

∂ϕL
=
∫
ΓL

ψL

(
εϕT

LψL − σ
)

dΓ, (22)

and

∂J

∂ϕU
=
∫
ΓU

ψU

(
εϕT

UψU + σ
)

dΓ. (23)

The optimization procedure can now be summarized as follows: pick an initial
guess of the control, solve the Navier–Stokes equations (1), solve the adjoint
equations (16), compute the gradient (22)–23 of the objective function (3),
update the control and repeat as long as the optimization problem has not
converged.

Note that the adjoint equations are solved backwards in time and that the
velocity u appears in the equations. This means that we have to store the
temporal history of the velocity data from the solution of the Navier–Stokes
equations. Numerical issues related to this are discussed in section 4.1.

2.1.3. Extension to boundary layer

Only minor changes are needed to rephrase the channel flow problem to the
boundary layer flow depicted in Figure 2. A complete derivation of the bound-
ary layer counterpart of the channel flow optimization problem can be found
in Appendix A. In this section only the key differences will be pointed out and
commented.
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The growing boundary layer is modeled by⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ (u · ∇)u − 1

Re
∆u + ∇π = λ(x)(U − u) in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(24)

with periodic boundary conditions in the horizontal directions, that is, the x-
and z-directions,

u|x=−xl/2 = u|x=xl/2,

u|z=−zl/2 = u|z=zl/2.
(25)

The term λ(x)(U−u) is a forcing term used to make the flow situation sketched
in Figure 2 periodic, enabling the use of Fourier discretization in simulations of
the physical flow. This is known as a fringe region technique and is described
further in Lundbladh et al. (1999) and analyzed by Nordström et al. (1999).
Left to be specified are the conditions on the wall and in the free-stream.
On the wall the boundary condition for the horizontal velocities is a no-slip
condition and the wall normal velocity vc is given by the control. The free-
stream boundary condition should be applied at y = yfst where the flow is
not influenced by the existence of the boundary layer, but the simulation box
has to be of reasonable height. An artificial boundary condition modeling the
existence of the free-stream is thus used to allow truncation of this large domain.
Here a Neumann condition is used at the artificial free-stream boundary. This
choice requires that the simulation box is high enough for the perturbations in
the boundary layer not to influence the flow at the upper boundary.

u|y=yfst = U∞

(
which is approximated by

∂u

∂n

∣∣∣∣
Γu

= 0
)

,

u|Γc
= nvc,

u|Γl\Γc
= 0,

(26)

where Γu and Γl represent the upper and lower part of the boundary respec-
tively. The part of the boundary where control is applied is denoted Γc.

As for the channel flow case we expand the control vc in basis functions
ψl,m with zero mass flux, where ϕl,m are time dependent coefficients for the
basis functions,

vc(x, z, t) =

⎧⎪⎨
⎪⎩

ϕT
l ψl =

M∑
m=1

ϕl,m(t)ψl,m(x, z) in (T c
1 , T c

2 ),

0 otherwise.

(27)

Where we have introduced the control vector ϕl defined as:

ϕl = (ϕl,1, . . . , ϕl,M ).

Comparing with the corresponding equation for channel flow, equation (1) and
the associated boundary conditions, there are two differences. The boundary
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condition at the upper wall is now replaced by a free-stream velocity condition.
Also the aforementioned fringe forcing term which is needed only for spatial
simulations is added to the right hand side. The scalar function λ = λ(x) is
nonzero only in the fringe region and is defined as follows:

λ(x) = λmax

[
S

(
x − xstart

∆rise

)
− S

(
x − xend

∆fall
+ 1

)]
where λmax, xstart, xend, ∆rise and ∆fall are parameters used to specify the
strength, extent and shape of the fringe forcing. The S-function is defined as

S(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 r ≤ 0,

1
1 + exp(1/(1 − r) + 1/r)

0 < r < 1,

1 r ≥ 1.

Another difference from the channel flow problem formulation appears in
the second term of the objective function J , equation (3), where the observation
of state can now be limited in space as well as in time which yields,

J(ϕl) =
ε

2

T c
2∫

T c
1

∫
Γc

|vc|2 dΓ dt +
1
2

T o
2∫

T o
1

∫
Ωo

|u − uT |2 dQ, (28)

where (T c
1 , T c

2 ) is the control time period and (T o
1 , T o

2 ) is the observation time
period and Ωo is the part of the spatial domain Ω where the state of the flow
is observed. This is only used for spatial simulations.

As for the channel flow derivation, we get to the stage where the adjoint
equations with the variables p and σ are introduced:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂p

∂t
+ (∇u)T p − (u · ∇)p

− 1
Re

∆p + λ(x)p + ∇σ =

{
u − uT in (T o

1 , T o
2 ) × Ωo

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0.

(29)

along with the boundary conditions:

p|x=−xl/2 = p|x=xl/2,

p|z=−zl/2 = p|z=zl/2,

p|Γl
= 0,

p|y=yfst = 0,

(
which is approximated by

∂p

∂n

∣∣∣∣
Γu

= 0
)

.

(30)

As with the free-stream boundary condition in (26) we have introduced an
artificial boundary, to truncate the adjoint domain, where the adjoint “free-
stream” is modeled.
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Due to the fringe forcing, the additional term λ(x)p has to be included in
the adjoint equations. The forcing u−uT is now confined to the spatial domain
Ωo due to the variable spatial extent of the observation. These adjustments
lead to following the expression for the gradient:

∂J

∂ϕl
=
∫
Γc

ψl

(
εϕT

l ψl − σ
)

dΓ. (31)

2.2. Nonlinear initial condition control

2.2.1. Governing equations

Here we consider the optimization problem where we want to find the initial
condition that, at a specific time, maximizes the disturbance energy growth
between t = 0 and t = T . The optimization problem is stated for channel flow.

Our computational domain is defined as

Ω = (−xL/2, xL/2) × (−1, 1) × (−zL/2, zL/2),

in x, y, z, and we define

ΓL = Ω(y = −1), ΓU = Ω(y = 1), and Q = Ω × (0, T ).

The non-dimensional, incompressible Navier–Stokes equations with Reynolds
number, Re, based on the centerline velocity and half the channel height are,⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
+ (u · ∇)u − 1

Re
∆u + ∇π = −∇P in Q,

∇ · u = 0 in Q,

u|t=0 = ϕ + uT (0),

(32)

where u = (u1, v, w) is the velocity vector, π is the pressure and ∇P represents
the pressure gradient driving the flow and can either be constant or used to
ensure constant mass flux. The control ϕ is entering the equations through the
initial condition as a disturbance on top of a laminar flow. Periodic boundary
conditions in the x- and z-directions, together with a no-slip condition for the
directions parallel to the wall give the complete set of boundary conditions,

u|x=−xL/2 = u|x=xL/2,

u|z=−zL/2 = u|z=zL/2,

u|y=−1 = 0,

u|y=1 = 0.

(33)

To completely specify the optimal control problem we also need an objective
function. If we choose to maximize the disturbance energy growth the objective
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function is

J(ϕ) = −

∫
Ω

|u(T ) − uT (T )|2 dΩ

∫
Ω

|ϕ|2 dΩ
. (34)

Time T denotes the final simulation time. The target velocity profile is denoted
uT and represents the laminar flow field. The optimization problem is then:
find ϕ∗ which satisfies

J(ϕ∗) ≤ J(ϕ) ∀ ϕ ∈ Uad

where Uad has been used to denote the set of admissible controls (initial condi-
tions) which is a subset of L2(R3·Nx·Ny·Nz ).

2.2.2. Derivation of objective function gradient.

The gradient of the objective function, ∇J , is defined by

δJ(ϕ) = lim
s→0

J(ϕ + s δϕ) − J(ϕ)
s

= 〈∇J, δϕ〉 =
〈

∂J

∂ϕ
, δϕ

〉
, (35)

where δϕ is the first variation of the control. The functional δJ is the first
variation of J with respect to δϕ. To find an expression for ∇J we start by
differentiating the objective function (34) to get,

δJ(ϕ) =

a︷ ︸︸ ︷∫
Ω

|u(T ) − uT (T )|2 dΩ
∫
Ω

δϕ · ϕ dΩ
/⎡⎣∫

Ω

|ϕ|2 dΩ

⎤
⎦2

︸ ︷︷ ︸
c

−
∫
Ω

δu(T ) · (u(T ) − uT (T )) dΩ

b︷ ︸︸ ︷∫
Ω

|ϕ|2 dΩ /

⎡
⎣∫

Ω

|ϕ|2 dΩ

⎤
⎦2

︸ ︷︷ ︸
c

(36)

where δu is the first variation of u with respect to δϕ. To find an expression
for the relation between δu and δϕ we differentiate the state equation (32),

⎧⎪⎪⎨
⎪⎪⎩

∂δu

∂t
+ (δu · ∇)u + (u · ∇)δu − 1

Re
∆δu + ∇δπ = 0 in Q,

∇ · δu = 0 in Q,

δu|t=0 = δϕ,

(37)
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and boundary conditions (33),

δu|x=−xL/2 = δu|x=xL/2,

δu|z=−zL/2 = δu|z=zL/2,

δu|y=−1 = 0,

δu|y=1 = 0.

(38)

Now we introduce a vector function p = p(x, y, z, t) such that ei · p = pi and
require p to satisfy the boundary conditions:

p|x=−xL/2 = p|x=xL/2,

p|z=−zL/2 = p|z=zL/2,

p|y=−1 = p|y=1 = 0.

(39)

The boundary conditions may be chosen during the derivation but in order to
simplify the presentation they are introduced already at this point. Taking the
dot product between p and equation (37) and integrating over Q yields

∫
Q

p ·
(

∂δu

∂t︸︷︷︸
1

+ (δu · ∇)u︸ ︷︷ ︸
2

+ (u · ∇)δu︸ ︷︷ ︸
3

− 1
Re

∆δu︸ ︷︷ ︸
4

+∇δπ︸︷︷︸
5

)
dQ = 0. (40)

Then, step by step, we apply integration by parts to move derivatives from
δu to p. We start with the first term in the integral (40), containing the time
derivative:

∫
Q

p · ∂δu

∂t
dQ =

∫
Ω

(p(T ) · δu(T ) − p(0) · δu(0)) dΩ −
∫
Q

δu · ∂p

∂t
dQ

=
∫
Ω

(p(T ) · δu(T ) − p(0) · δϕ) dΩ −
∫
Q

δu · ∂p

∂t
dQ

(41)
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where we have used that δu(t = 0) = δϕ. Then consider the fourth and fifth
terms in integral (40), involving ∆δu and δπ

− 1
Re

∫
Q

p · ∆δu dQ +
∫
Q

(p · ∇)δπ dQ

= − 1
Re

T∫
0

[∫
Γ

∂δu

∂n
· p dΓ −

∫
Ω

∇p : ∇δu dΩ
]
dt

+

T∫
0

[∫
Γ

n · p δπ dΓ −
∫
Ω

δπ(∇ · p) dΩ
]
dt

=

T∫
0

∫
Γ

p ·
(

n δπ − 1
Re

∂δu

∂n

)
dΓdt

+
1

Re

T∫
0

[∫
Γ

δu · ∂p

∂n
dΓ −

∫
Ω

δu · ∆p dΩ
]
dt −

∫
Q

δπ(∇ · p) dQ

= − 1
Re

∫
Q

δu · ∆p dQ −
∫
Q

δπ(∇ · p) dQ.

(42)

where : denotes a complete contraction; that is,

∇p : ∇δu =
3∑

i,j=1

∂(ei · p)
∂xj

∂(ei · δu)
∂xj

. (43)

In the third equality of (42), we use the boundary condition on δu from (38)
and on p from (39).

We can simply rewrite the second term in (40)

∫
Q

p · (δu · ∇)u dQ =
∫
Q

δu · (∇u)T p dQ. (44)
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For the third term in (40), we use Gauss theorem, the boundary condition on
p in (39) and the incompressibility condition,

∫
Q

p · (u · ∇)δu dQ

=

T∫
0

∫
Γ

(p · δu)(n · u) dΓ dt

−
∫
Q

(p · δu)(∇ · u) dQ −
∫
Q

δu · (u · ∇)p dQ

= −
∫
Q

δu · (u · ∇)p dQ.

(45)

Then by inserting (41), (42), (44) and (45) into (40) we get

∫
Ω

p(T ) δu(T ) dΩ −
∫
Ω

p(0) δϕ dΩ

+
∫
Q

δu ·
(
−∂p

∂t
− 1

Re
∆p + (∇u)T p − (u · ∇)p

)
dQ

−
∫
Q

δπ (∇ · p) dQ = 0.

(46)

If we then require p to satisfy the adjoint equations

⎧⎪⎪⎨
⎪⎪⎩

−∂p

∂t
− 1

Re
∆p + (∇u)T p − (u · ∇)p + ∇σ = 0 in Q,

∇ · p = 0 in Q,

p|t=T = u(T ) − uT (T ),

(47)

with the boundary conditions from (39) and where σ is a scalar field (the
“adjoint pressure”). Then (46) becomes

∫
Ω

(u(T ) − uT (T )) · δu(T ) dΩ +
∫
Q

δu · ∇σ dQ −
∫
Ω

p(0) · δϕ dΩ = 0. (48)

Also, note that the initial condition for the adjoint equations (47) is set at
t = T and that the equations are integrated backwards in time.
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Integrating the second term in the integral (48) by parts yields

−
∫
Q

δu · ∇σ dQ = −
T∫

0

∫
Γ

n · δu σ dΓ dt +
∫
Q

σ∇ · δu dQ

= −
T∫

0

∫
Γ

n · δu σ dΓ dt = 0,

(49)

since ∇ · δu = 0 and due to the boundary condition on δu.
If we now insert (49) into (48) we get,∫

Ω

(u(T ) − uT (T )) · δu(T ) dΩ −
∫
Ω

p(0) · δϕ dΩ = 0. (50)

Finally, we can now insert (50) into (36) to eliminate δu

δJ(ϕ) =
〈

∂J

∂ϕ
, δϕ

〉
=

1
c

∫
Ω

[a ϕ − b p(0)] · δϕ dΩ. (51)

From expression (51) we can identify the gradient of the objective function
(34),

∂J

∂ϕ
=

1
c

[a ϕ − b p(0)] . (52)

The first term of the gradient is due to the normalization of the objective
function. Note that when we have reached optimum and the gradient is zero
the initial condition is equal to the adjoint field times a scaling factor. Thus
the optimality condition reads

ϕ

E′(0)
=

p(0)
E′(T )

, (53)

where E′ denotes the disturbance energy.

2.3. Feedback blowing and suction control

Also a linear optimization problem is solved in order to be able to make com-
parisons with the nonlinear control problem. By applying control theory using
the Navier–Stokes equations linearized around some mean flow, we can directly
compute an on-line feedback law. In recent studies, such linear feedback con-
trollers have shown to be effective for both channel and boundary layer flows.

A brief introduction to the linear control theory applied to flow control
problems can be found in Chevalier et al. (2002). More thorough descriptions
can be found in, for example, Högberg & Henningson (2002).

The control problem is solved for an array of wave number pairs, corre-
sponding to a sufficient resolution for the flow of interest, and the resulting
controllers are combined into a physical space controller through an inverse
Fourier transform. The feedback law is then represented as a convolution of
this physical space control law and the velocity field.
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The limitations of this approach are mainly that nonlinear as well as non-
parallel effects are neglected. The optimization is performed over an infinite
time horizon, and thus no guarantees can be made regarding instantaneous
behavior and initial transients.

3. Adapting to the simulation codes

3.1. Reformulation of the adjoint equations

To be able to use existing spectral channel flow and boundary layer flow codes
by Lundbladh et al. (1992) and Lundbladh et al. (1999) respectively, we need
to reformulate the adjoint equations into a similar form to the one used there.
The simulation code for the boundary layer problem is based on the channel
flow code and the solution procedure is identical. The Navier–Stokes equations
are implemented in a v − ω formulation, where linear and nonlinear terms are
treated separately. We can write the adjoint equations (16), (29) or (47) as,⎧⎪⎪⎨

⎪⎪⎩
−∂p

∂t
− 1

Re
∆p − H + ∇(u · p) + ∇σ = 0,

∇ · p = 0,

p|t=T = 0,

(54)

with the boundary conditions (8), (30) or (39), and where H in the following
denotes either Hch or Hbl corresponding to the forcing terms in the channel
and boundary layer cases respectively. In order to avoid derivatives of u in the
adjoint equations, terms involving such derivatives are reformulated. Using the
identity

u × (∇× p) − 2(∇p)T u + ∇(u · p) = (∇u)T p − (u · ∇)p

the forcing in the channel flow case is given by

Hch = −u × (∇× p) + 2(∇p)T u +

{
u − uT in (T o

1 , T o
2 ),

0 otherwise,

for blowing and suction control and

Hch = −u × (∇× p) + 2(∇p)T u,

for initial condition control. In the boundary layer case, again for blowing and
suction control, we use

Hbl = −u × (∇× p) + 2(∇p)T u − λ(x)p +

{
u − uT in (T o

1 , T o
2 ) × Ωo,

0 otherwise,

but apart from this, the procedure is the same in all cases. If we take the
divergence of equation (54) we get a Poisson equation for the adjoint pressure:

∆σ = ∇ · H − ∆(u · p). (55)
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We can then apply the Laplace operator to equation (54), take the second
component, and combine with (55) to get:

−∂∆p2

∂t
− 1

Re
∆2p2 −

(
∂2

∂x2
+

∂2

∂z2

)
H2 +

∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
= 0. (56)

Then we take the second component of the equation obtained by taking the
curl of equation (54) and again making use of (55) to get,

−∂(∇× p)2
∂t

− 1
Re

∆(∇× p)2 −
(

∂H1

∂z
− ∂H3

∂x

)
= 0. (57)

We can write equation (56) as a system of two second order equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∂φ

∂t
= hp2 +

1
Re

∆φ,

∆p2 = φ,

p2(y = ±1) =
∂p2

∂y
(y = ±1) = 0,

(58)

where

hp2 =
(

∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
. (59)

Written on the same form equation (57) reads:⎧⎨
⎩ −∂(∇× p)2

∂t
= h(∇×p)2 +

1
Re

∆(∇× p)2,

(∇× p)2(y = ±1) = 0,
(60)

where

h(∇×p)2 =
(

∂H1

∂z
− ∂H3

∂x

)
. (61)

Equations (58), (59), (60) and (61) are identical to those solved by the spectral
channel flow and boundary layer codes with slight changes to H and a negative
time derivative. Since the adjoint equations are solved backwards in time, we
can in practice use the same solver.

3.2. Gradient evaluation — blowing and suction control

In the gradient of the objective function for blowing and suction control we
need the adjoint pressure at the wall. This is not available directly since we
have eliminated the adjoint pressure term from the equations, and thus the
pressure is not computed explicitly. If we evaluate equation (16) or (29) at the
walls, we get

σx

∣∣∣∣
W

=
1

Re

∂2p1

∂y2

∣∣∣∣
W

+ v
∂p1

∂y

∣∣∣∣
W

,

σz

∣∣∣∣
W

=
1

Re

∂2p3

∂y2

∣∣∣∣
W

+ v
∂p3

∂y

∣∣∣∣
W

,

(62)

where W denotes the value at the wall and v is the wall normal velocity at the
wall, or rather the control input. Note that in the channel flow case there are
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two walls and in the boundary layer flow there is only one. Since the constant
part of the adjoint pressure disappears in the integral over the basis functions ψ
in (22) and (23) we can compute the objective function gradient by integration
of these adjoint pressure gradients at the wall.

4. Implementation issues

4.1. Simulation codes

The implementation of the adjoint solver is based on existing direct numeri-
cal simulation codes for channel and boundary layer flows. These codes have
been extensively used and are thoroughly verified. The channel flow code is
described in Lundbladh et al. (1992) and the boundary layer code in Lundbladh
et al. (1999). The time marching is performed with a third order Runge–Kutta
method for advective terms and a Crank–Nicolson scheme for the viscous terms.
A spectral method described in Canuto et al. (1988) is used with a Fourier dis-
cretization in x and z, and a Chebyshev method in y. The discretization of,
and the solution procedure for, the Navier–Stokes equations is described in
Lundbladh et al. (1992). The adjoint equations are solved in exactly the same
way, with the formulation of the equations described in section 3.1. For the
boundary layer case the code described in Lundbladh et al. (1999) is used and
since it is based on the channel flow code the implementation is similar.

The solution of the adjoint equations require knowledge about the full
state in space and time from the solution of the Navier–Stokes system. This
is achieved by saving a large number of velocity fields equidistant in time and
interpolating linearly in time when the adjoint equations are solved. This
introduces an error, but if the time step between saved field is small enough,
we expect a sufficiently accurate approximation. The number of saved velocity
fields can become large especially if the time domain is long. An efficient way
of reducing the memory requirement is to use a checkpointing technique, see for
example Berggren (1998). This decreases the memory requirement at the cost
of increased computational time. For the simple test cases presented in this
paper check-pointing has not been necessary, but for larger cases, especially
simulations requiring high spatial resolution, it will be needed.

4.2. Optimization routine

Optimization is performed with a limited memory quasi-Newton method. The
algorithm, L-BFGS-B (Byrd et al. (1994)), is available on the Internet (the
web-link is given in the reference list next to Byrd et al. (1994)) and was
downloaded and compiled without modifications. It is an algorithm well suited
for large non-linear optimization problems, with or without bounds on the
control variables. The BFGS method uses an approximation of the Hessian
matrix of the objective function, instead of the full matrix. The algorithm has
been shown to work well for many different types of optimization problems.
The flow of the optimization process is described in Figure 3. The limited
memory BFGS algorithm differs from the standard BFGS algorithm in that it
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Write results

Figure 3. The flow in the optimization with L-BFGS-B.

never stores the Hessian matrix. Instead only a certain number of gradient and
control updates from earlier optimization iterations are stored. These are then
used to build an approximation of the Hessian matrix. Consult Byrd et al.
(1994) for details. The inputs to the optimization routine are the control, the
gradient of the control and the value of the objective function. A new control is
then obtained as output and applied in the next iteration until the convergence
criterion has been met. There are a few different convergence criteria that can
be used simultaneously or separately such as the norm of the gradient and the
relative reduction of the objective function between iterations.

4.3. Implementation of blowing and suction control

The control is implemented as the Fourier coefficients of the v velocity at the
wall(s). The control function is discretized in time with a fixed time step that
can be used to change the time resolution of the control and there is one set of
coefficients for each control time. Linear interpolation is used for the control in
times between the discrete control times. The control always starts and ends
with zero velocity, and has zero mass flux. The time step in the solution of
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both the forward and adjoint equations is adjusted to be small enough to at
least resolve the control in time, even if the time step allowed for numerical
stability is larger.

When simulating a spatial boundary layer the control is applied only on
Γc which extends over the interval (xc

1, x
c
2) in the chordwise direction. In the

code a filtering is added to handle this, and to ensure that the zero mass flux
condition on the control is enforced,∫

Γl

vc dΓ = 0. (63)

The control is then modified to have zero velocity outside Γc,∫
Γl

ϕ̃T
l ψl dΓ =

∫
Γl

(ϕT
l ψl + c)χ(xc

1, x
c
2) dΓ = 0 (64)

which yields,

c = −

∫
Γl

ϕT
l ψl χ(xc

1, x
c
2) dΓ

∫
Γl

χ(xc
1, x

c
2) dΓ

, (65)

and where χ(r1, r2) = χ[r1, r2](r) is defined as:

χ[r1, r2](r) =

{
1 if r ∈ (r1, r2),
0 otherwise.

(66)

The procedure for modifying the control can be summarized as follows:

ϕ̂l
inverse FFT−−−−−−−−−→ ϕl

Filtering and mass flux correction−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ϕ̃l
FFT−−−→ ˆ̃ϕl

assuming that we denote the original Fourier space control with ϕ̂l and the final
control in Fourier space with ˆ̃ϕl. This final control constitutes the boundary
condition in the simulation when the spatial extent of the control is limited.

4.4. Objective function gradient of blowing and suction control

The gradient of the objective function is evaluated from the adjoint pressure
on the walls as described in section 3.2. When the adjoint equations are solved,
the adjoint pressure on the walls must also be computed simultaneously in the
control interval. Since the p1 and p3 velocities are available at each time step we
can compute the pressure gradients σx and σz using (62). The corresponding
pressure is then computed by integrating these gradients with the constant
part of the adjoint pressure set to zero, since it does not enter the gradient
computation. The adjoint pressure is then projected onto the basis functions
of the control using (22), (23) or (31). In the spatial boundary layer case the
gradient (31) is computed in Fourier space, but we should only integrate over
Γc. The gradient is transformed to physical space and there a step function
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which cuts out the region Γc is applied. This filtering procedure is similar to
that for the control. The resulting gradient is then transformed back to Fourier
space.

5. Verification

5.1. Gradient accuracy

To verify that the implementation is correct as well as that the problem has
been formulated correctly, one can check the accuracy of the gradient of the
objective function. By perturbing one degree of freedom of the control and
computing the resulting change in the objective function the gradient with
respect to that degree of freedom can be approximated. Performing this proce-
dure for all degrees of freedom gives the complete objective function gradient.
The gradient so computed can then be used to verify that the gradient obtained
from the adjoint equation approach is correct. This has been done at different
stages of the optimization process for a number of different cases, varying the
flow perturbation as well as the initial guess for the control. The accuracy
of the gradient direction for blowing and suction control is quantified by nor-
malizing the two gradients and computing the norm of the difference between
them. This difference is less than 1% for all channel and boundary layer flow
cases tested when the optimization routine is in the initial iterations. When
the gradient accuracy is computed for solutions close to the optimal solution,
the accuracy is degraded and the error can be as large as 10% − 20%. This
degraded accuracy slows down the convergence of the optimization routine and
makes it difficult to reach the true optimal solution.

5.2. Control of oblique transition in channel flow

As a first test case, we study the oblique transition scenario. Oblique waves are
introduced in the flow, where they grow and induce streamwise vortices. The
vortices then produce streamwise streaks that grow until they finally break
down and transition occurs. The threshold energies for this type of bypass
transition are studied in Reddy et al. (1998). The initial stage of this scenario
is the growth of oblique waves. If the amplitude is low, this is all that happens
before the flow returns to the laminar state. With a higher amplitude, the
oblique waves induce enough streamwise vorticity to generate streaks. The
streaks grow to a much higher amplitude than the oblique waves. If the initial
disturbance is large enough, we get transition to turbulence.

Testing the optimal control on this scenario is done at three different stages
and with different time resolution. First control is applied at the very beginning
where only the oblique waves are present, secondly the control is applied in
the beginning of the streak growth, where both streaks and oblique waves are
present. The last case application of the control to the growing streaks. The
results in this section were previously reported in Högberg et al. (2000).

Five different simulations are performed using the same initial condition.
The objective is to minimize the integral of the deviation from the laminar
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Figure 4. [a] Solid: the energy growth without control ;
dashed: case 1a ; dotted : case 2 ; dash-dot: case 3. [b]
solid: case 1a ; dashed: case 1b ; dotted: case 1c.

flow profile from time T o
1 to T o

2 = 100. The Reynolds number is 1500 and the
box size is 2π × 2 × 2π in x, y, z. In case 1a,b,c the control is applied from
time T c

1 = 0 until T c
2 = 50 in a,b and T c

2 = 25 in c. The objective function is
measured from T o

1 = 50 in case 1a and from T o
1 = 0 in cases 1b and 1c. For

cases 2 and 3 the control is applied from T c
1 = 25 and T c

1 = 50 respectively,
and the objective function from T o

1 = 50. The resulting control velocity in all
cases is of the order 2% of the centerline velocity. The reduction of the gradient
norm is about three orders of magnitude after 10-15 optimization iterations.

The energy evolution of the controlled flows is shown in Figure 4a. The
growth of the oblique waves is efficiently hindered by the control formulation
in 1a,b,c and the growth of streaks is eliminated also in cases 2 and 3. In case 2
the control is applied during the formation of the streaks. Initially the energy
is allowed to grow but then the growth is hindered by the control and energy
decays as. In case 3 the streaks have formed and are growing when control is
applied.

In Figure 4b the differences between the controlled flows in cases 1a,b and
c are shown. In case 1a the energy is not penalized by the objective function
initially as it is in 1b, and this results in lower energy after t = 50 than in case
1b. A higher temporal resolution of the control is applied during a shorter time
in case 1c. The result is a smoother energy curve but not as low energy at a
later time as in the other two cases.

5.3. Control in a parallel boundary layer flow

In order to evaluate this type of control strategy for a parallel boundary layer
flow we consider an inviscid instability. Inviscid instabilities can exist only if
the velocity profile has an inflection point. In a boundary layer flow with a
three-dimensional velocity profile, there is always a direction in which such an
inflection point exists. In this direction an unstable eigenvalue to the linearized
problem was found. The corresponding eigenmode is added to an undisturbed
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Figure 5. Solid: the disturbance energy growth with optimal
control ; dash-dot: the disturbance energy growth for temporal
FSC flow without control.

base flow, and the sum is then used as the initial velocity field for the simula-
tions. The base flow is chosen as a Falkner–Skan–Cooke (FSC) flow with the
same parameters as are used in the investigation by Högberg & Henningson
(2002) where the Reynolds number is Reδ∗

0
= 337.9. The spatial variation of

the chordwise mean flow is given through,

U∞ =
(

x

x0
+ 1

)m

,

where x0 = 354.0. Furthermore, the cross-flow velocity was W∞ = 1.44232 and
m = 0.34207. The box dimensions for our simulations are 25.14 × 20 × 25.14
measured in δ∗ with a resolution of 4 × 129 × 4 in x × y × z respectively. The
resolution in the y-direction is chosen fairly large to ensure high accuracy for
the y-derivatives needed in the adjoint computation.

For the temporal simulation we use the Falkner–Skan–Cooke flow at x = 0.
The eigenvalue of the mode used in the simulation is ω = (−0.15246+ i0.0382),
for the parameter choice α = 0.25, β = −0.25. The control is applied from
T c

1 = 0 to T c
2 = 150 and over the entire boundary (Γc = Γl). The objective

function is measured from T o
1 = 0 to T o

2 = 150 and over the whole spatial
domain (Ωo = Ω).

Figure 5 shows the disturbance energy growth due to the eigenmode and
also the result when the optimal control is applied. As we can see from the
figure the exponential energy growth is stopped almost immediately by the
control. The first energy peak is mostly due to the energy expenditure to exert
control. The maximum magnitude of the control is of the order of 0.02% of
the free-stream velocity. The gradient norm is reduced about two orders of
magnitude after 5-10 optimization iterations.
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Figure 6. Solid: the disturbance energy growth with optimal
control ; dash-dot: the disturbance energy growth for a spatial
Blasius boundary layer flow without control.

5.4. Control in a spatial boundary layer flow

A more general flow case to study is when we let the boundary layer grow in
the chordwise direction. For this case we have chosen to study a Tollmien-
Schlichting (TS) wave in a Blasius boundary layer. The dimensions of the
simulation box are 200×20×10 measured in δ∗0 with a resolution of 96×129×4
in x×y×z respectively. The TS wave is triggered by an oscillating volume force
at x = 10 which is slightly upstream of branch I, located at x ≈ 40 where it
becomes unstable. The volume forcing does not introduce a pure TS-eigenmode
into the flow and this will result in a varying growth of the total energy of the
perturbation.

The control is allowed to be active between T c
1 = 0 and T c

2 = 400 and is
located on Γc = (20, 70) × (−5, 5). The control is localized in space to give us
a region to observe its action downstream of the control area.

The observation time interval is also limited to give the control enough
freedom to act initially since we are more interested in the final results. Thus,
the objective function is measured from T o

1 = 380 to T o
2 = 400 over the do-

main Ωo = (20, 150)× (0, 20)× (−5, 5) that includes only the physical solution
meaning that the fringe region is omitted.

Without the control we can see how the disturbance energy grows in Fig-
ure 6, whereas with the optimal control applied on Γc the energy growth is
efficiently interrupted.

5.5. Initial condition control

To test the convergence of the iterative procedure to find the optimal initial
condition, several simulations have been run with different guesses of the initial
condition.
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Figure 7. Contour plot of the wall-normal velocity compo-
nent of the optimal initial condition that maximizes the dis-
turbance energy growth at t = 115.

The test cases are run at Re = 1500 in plane Poiseuille flow with a box
size xL = 6.2831853, zL = 3.1415927. The simulations are run to time T = 115
which should be close to where the maximum transient growth occurs. The
optimal initial condition amplifies the perturbation energy a factor 440.8.

5.5.1. Optimal initial condition

As a first test case we set the starting guess for the optimization to be the op-
timal perturbation as computed in for example Schmid & Henningson (2001).
The optimal perturbation, in figure 7, was computed by Carlo Cossu, private
communication. Contours of the wall-normal velocity component are shown.
As expected the optimization routine is not able to improve the initial condi-
tion.

5.5.2. Random initial condition

In this case the initial condition is constructed out of random modes to see
whether the gradient procedure can find the optimal condition “far” from the
optimum. From figure 8 it can be seen that the optimization procedure works
well. The maximum transient growth is a factor of 440.8 in energy and the
gradient has been reduced a factor 2000 which can be seen in figure 8.

In figure 9 the starting initial condition and final optimal condition are
shown. The optimal condition might still be improved somewhat though by,
for example, storing more forward velocity fields.

6. Linear versus nonlinear control

Flows with three fundamentally different mechanism for disturbance energy
growth are studied: TS waves, optimal disturbances, and stationary cross-flow
vortices. The TS wave and optimal disturbance are applied to a Blasius bound-
ary layer, and the cross-flow vortices to a Falkner–Skan–Cooke boundary layer.
Direct numerical simulations are performed for each one of these perturbations,
first without any control, then with linear control, and finally with nonlinear
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Figure 9. The initial condition before (left) and after opti-
mization (right).

control. The nonlinear optimization loop is initiated with the linear optimal
control. Note that the fringe region is excluded from the pictures below.

The energy measure that will be used in the following plots is

E(u(x)) =
1

y∞zl

∫
y

∫
z

(u2
1 + v2 + w2) dy dz. (67)

This energy measure naturally includes the control energy itself.

6.1. Tollmien–Schlichting waves

A TS wave is introduced in a Blasius boundary layer and develops as it prop-
agates downstream. The Blasius mean flow is a special case of the Falkner–
Skan–Cooke profiles without pressure gradient (m = 0) and with no mean flow
component in the z-direction.

Two different disturbances are applied, one weak TS wave, and one stronger
wave where nonlinear coupling effects start to appear. The weak TS wave is
generated by an oscillating two dimensional volume force with the dimensionless
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Figure 10. The spatial energy growth of a linear TS wave
perturbation in a Blasius boundary layer without control from
case 1 (solid), with linear control from case 2 (dashed), and
nonlinear control from case 3 (dash-dotted). Control is applied
in x ∈ [75, 225]. The TS wave is generated as a volume force
centered at x = 20 for F = 200. The linear controller is
centered at x = 150.

frequency F = 200, where F = 2πfν/U2
∞ × 106. The volume force is centered

at x = 20 and decays exponentially in both the x- and y-direction.
The stronger wave is generated in the fringe region by forcing toward the

least stable Orr–Sommerfeld–Squire eigenmode computed for α = 0.30 at R =
950, a Reynolds number that corresponds to a spatial location close to the end
of the computational box. This TS wave will then be exponentially unstable
in the computational box.

Domain and resolution data for the TS wave simulations is given in Table
1, cases 1-6. The Reynolds number at x = 0 is Re = 468.34 for both the weak
and strong disturbance. In the construction of the linear feedback kernels, the
base flow profile is taken at x = 150. For the nonlinear optimization problem,
we specify the observation interval in space and time to x ∈ [75, 375] and
t ∈ [0, 750], respectively.

In Figure 10 the streamwise disturbance energy development of weak TS
waves are plotted for cases 1-3 in Table 1. A small transient can be seen in the
beginning of the energy curve, an effect that is due to the fact that we do not
force a clean TS wave. However, as the disturbance evolves downstream, a pure
TS wave emerges. The flow is perturbed just upstream of branch I of the neutral
stability curve, which is at around R ≈ 507 (x ≈ 27), and the disturbance grows
exponentially shown, as the solid line in Figure 10. The growth ends when
branch II is reached at about R ≈ 723 (x ≈ 219). See for example Schmid



192 M. Chevalier, M. Högberg, M. Berggren & D. S. Henningson

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5
x 10

−3

x

E

Figure 11. The spatial energy growth of a weakly nonlin-
ear TS wave perturbation in a Blasius boundary layer with-
out control from case 4 (solid), with linear control from case
5 (dashed), and nonlinear control from case 6 (dash-dotted).
Control is applied in x ∈ [75, 225]. The TS wave is generated
at R = 950 for α = 0.30. The linear controller is centered at
x = 150.

& Henningson (2001) for details. The dashed line is the disturbance energy
development with linear control active. Note that the exponential growth is
completely removed and replaced by an exponential decay. With the nonlinear
optimal control applied, the energy development follows the dash-dotted line.
Since the energy levels are very low and thus nonlinear effects negligible, we
can conclude that the deviations originate from differences in the optimization
problem and the limitations of the linear control. Analyzing the control signals
shows no major differences between the two control approaches. The nonlinear
control acts stronger in the beginning of the simulation and also stronger at
the upstream part of the spatial control interval. These effects are a direct
consequence of the limitations of the linear control problem formulation.

With no control at all, the objective function is 5.291 · 10−4, and when the
linear control is turned on the value is reduced to 5.263·10−4. The relatively low
reduction of the objective function is due to the fact that the simulation time
is only as long as is needed for the control signal and the transients it cause to
propagate out of the computational box. This means that it is only at the last
part of the simulation all transient effects are gone and the disturbance energy
is kept on a low level. The nonlinear control reduces the objective function
value to 5.260 · 10−4.

In Figure 11, the disturbance energy development in the streamwise direc-
tion for cases 4-6 from Table 1 are plotted. Again, the dashed line denotes
the disturbance energy development with linear control turned on. Also for
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this much stronger TS wave, the exponential growth is completely suppressed.
The differences between the nonlinear control and the linear control is more
pronounced than for the weak wave. Initially, the nonlinear control signal is
higher over the whole control region. The downstream part of the control is
quickly dampened to the linear control levels whereas the upstream region stays
higher throughout the complete control time. Strong transients with nonlinear
interactions are produced by the upstream control. As these transients are
convected downstream there is a distinct difference in how the linear and non-
linear control behave. The nonlinear control signal becomes irregular whereas
the linear control stays more or less sinusoidal.

The objective function value is reduced from 0.564 to 0.204 by the linear
control and further down to 0.077 by the nonlinear control. The nonlinear
control was picked after 24 iterations in the optimization loop which still has
potential to decrease the value more.

6.2. Optimal disturbances

Here the performance of the controller for a transiently growing perturbation
is studied. The same base flow as for the TS wave simulations is used but now
with a larger box in the streamwise direction, see Table 1, cases 7-9, for details.

The spatial optimal perturbations in a Blasius boundary layer have been
computed by Andersson et al. (1999) and Luchini (2000). The particular op-
timal spatial perturbation used here is introduced at R0 = 395.4 and then
marched forward using the linear equations to the position where R = 468.34.
By introducing the optimal disturbance in the fringe region, we get a clean
perturbation already in the beginning of the computational box. The pertur-
bation is optimized to be the one with maximum growth at x = 237.24 in the
simulation box.

The linear control kernels are computed from the base flow at position x =
150. Furthermore, the spatial and temporal observation region is x ∈ [75, 975]
and t ∈ [0, 1500] respectively. The solid line in Figure 12 shows the disturbance
energy growth without any control. In the same figure, the dashed line marks
the evolution of the disturbance energy when linear control is applied, and
the dash-dotted line shows the nonlinear control after ten iterations in the
optimization loop. In these controlled cases, we still have transient growth,
although substantially weaker. Cathalifaud & Luchini (2000) have computed
the optimal control over the whole wall using the linearized boundary layer
equations as state equation. Their optimal control is similar in shape as to
what we have obtained.

After the disturbance energy reduction in the beginning of the control
domain, the nonlinear control causes the energy to start growing earlier than
the linear control does. This is an effect of our choice of spatial observation
region. To keep the disturbance from growing to fast behind the control region,
stronger control has to be applied, especially at the downstream part of the
control region.
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Figure 12. Spatial energy growth of a linear optimal distur-
bance in a Blasius boundary layer without control from case
7 (solid), with linear control from case 8 (dashed), and non-
linear control from case 9 (dash-dotted). Control is applied
in x ∈ [75, 475]. The optimal disturbance has the maximum
growth at x = 237.24. The linear controller is centered at
x = 150. E0 is the disturbance energy at R0 = 395.4.

No control, for the current observation region, gives an objective function
value of 8.955 · 10−4. Linear control lowers the objective function to 8.695 ·
10−4. After six optimization iterations for the nonlinear control, the objective
function reaches 8.531 · 10−4. The small reduction of the objective function
value is due to the fact that the observation time interval captures not only
the results at the end of the simulation but also the transient process when the
disturbance, already present in the flow, is acted on by the control. The energy
curves are just snapshots of the streamwise energy distribution in the flow at
the end of the simulation (T = 1500).

6.3. Cross-flow vortices

In a three dimensional boundary layer flow, where the direction of the base flow
is a function of the wall normal coordinate, the velocity profile usually has an
inflection point. This in turn means that there usually exists an inviscid inflec-
tional instability, see e.g. Gregory et al. (1955). This primary instability may
result in amplification of oblique traveling waves and of stationary vortices. Lo-
cal linear stability theory predicts non-stationary modes to be more amplified
than stationary modes. In the present work, we have chosen to study a sta-
tionary disturbance due to the somewhat smaller computational requirements
in such a flow.

If large enough amplitude of the disturbance is used, stationary nonlinearly
saturated cross-flow vortices will develop downstream. These instabilities have
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Figure 13. Spatial energy growth in the β = 1 mode of
cross-flow vortices in a Falkner–Skan–Cooke boundary layer
(m = 0.34207 and W∞ = 1.442) without control from case 10
(solid), with linear control from case 11 (dashed), and nonlin-
ear control from case 12 (dash-dotted). Control is applied in
x ∈ [145, 295]. The linear control kernels are computed with
base flow from position x = 220.

been thoroughly investigated both experimentally, by e.g. Lerche (1997) and
Kawakami et al. (1999), and numerically, by Högberg & Henningson (1998)
and Malik et al. (1999). In the present paper only results from lower amplitude
disturbance simulations are reported. To mimic a base flow prone to the above
behavior, a Falkner–Skan–Cooke boundary layer for an infinitely swept wing
with a positive pressure gradient is modeled. Stationary perturbations are
introduced in the beginning of the simulation box at Re = 337.34 with m =
0.34207 and W∞ = 1.442. The same flow case is studied numerically in Högberg
& Henningson (1998).

The box size, resolution, and other details are given in Table 1 as cases
10-12. The linear control kernels are constructed from the base flow profile
at x = 220. For the nonlinear optimization problem, we have chosen the
observation interval in space as x ∈ [145, 335] and in time as t ∈ [0, 800].

In Figure 13, the solid line shows the growth of the disturbance energy in
the β = 1 mode. As expected from linear stability theory, it grows exponen-
tially. When applying linear control, the energy growth is efficiently stopped
which is shown with the dashed line. However, immediately after we stop con-
trolling the flow, new cross-flow vortices begin to form, which is natural due to
the presence of an inflectional instability. The nonlinear control, shown as the
dash-dotted line in Figure 13, reduces the disturbance growth even further.
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Case Flow Perturbation Amp. Control
1 A TS wave none
2 A TS wave 0.0002 [75, 225]
3 A TS wave 0.0002 [75, 225]
4 A TS wave none
5 A TS wave 0.01 [75, 225]
6 A TS wave 0.01 [75, 225]
7 B Optimal none
8 B Optimal 0.00001 [75, 425]
9 B Optimal 0.00001 [75, 425]
10 C Cross-flow none
11 C Cross-flow 0.0002 [145, 295]
12 C Cross-flow 0.0002 [145, 295]

Type Flow Resolution Box
A Blasius 576 × 65 × 4 500 × 20 × 12.83
B Blasius 576 × 65 × 4 1128 × 20 × 12.83
C FSC 576 × 65 × 24 500 × 10 × 25.14

Table 1. Summary of different simulations. For all simula-
tions the linear control parameter equals l2 = 100. The non-
linear control parameter equals ε = 10−5. The two different
amplitudes for the TS wave simulations correspond to linear
and weakly nonlinear disturbances.

When no control is used the objective function is 5.593 and with linear
control on it reduces to 0.644. The nonlinear control then decreases it to 0.635
after two iterations.

As for the TS waves and optimal disturbances cases, transient effects linger
in the flow until the very last part of the simulation. Therefore, the reduction
in objective function is not as large as one might expect from the disturbance
energy plot, which again is a snapshot at simulation end time.

7. Summary and conclusions

First we conclude that optimal control of transition appears to be possible to
compute with the approximative discretized adjoint technique used in this work.
This was also what the preliminary study by Högberg & Berggren (2000) sug-
gested. In addition, the optimization problem was derived using the primitive
variables, velocity and pressure, but solved using a velocity–vorticity formula-
tion. This made it easy to implement a solver for the adjoint equations using
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already developed codes as templates. The adjoint solver thus benefited from
the efforts put into making the existing codes computationally efficient.

The optimization routine BFGS by Byrd et al. (1994) was found to perform
well for the present optimization problems. No modification of the code was
necessary.

The test cases for the boundary layer code provided confirmation that we
can solve a nonlinear optimization problem. From the simple parametric study
of control of oblique waves in channel flow we can draw the conclusions that
the temporal extent of the control appears to be more important than the
resolution. Also allowing a higher energy initially a lower energy at a later
time can be the result. Furthermore it appears that there is enough control
authority using blowing and suction on the wall to handle all the different stages
of the oblique transition scenario. Finally, the choice of objective function in
terms of time intervals is very important for the performance of the resulting
control.

The simple flow cases studied to test the code can now be replaced with
more complicated flows. In particular flows where non-linear effects are domi-
nating are of interest, and so are flows with spatial variations in the mean flow
profile.

Direct numerical simulations for three different flow cases have been per-
formed without any control, with an optimal control obtained through a linear
feedback loop, and with an optimal control computed from the full nonlinear
Navier–Stokes equations in an iterative procedure. The nonlinear optimization
problem is initiated with the linear control in order to speed up the conver-
gence process. Some of the smaller simulations have also been initiated from
zero control and they converged to the same control.

The results show that the nonlinear control improves the performance over
the linear control markedly in cases where nonlinear effects are significant. Also
for perturbations with a linear development there are differences, but a fine-
tuning of the parameter l in the linear control problem could possibly reduce
the difference.

The linear controller results are computed with the same tools as used in
Högberg & Henningson (2002) and works well for the studied cases despite its
limitations.

The nonlinear control has not been fully converged in any of the simulated
cases indicating that one would expect small adjustments to the disturbance
energy growth curves. However, the big changes in the control appear in the
first few iterations.

Simulations with disturbance amplitudes high enough so that nonlinear
effects are more pronounced, will be studied in future work, both for the optimal
disturbances and the cross-flow vortices.
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For nonlinear optimization simulations over larger time intervals and for
larger domains, the checkpointing technique mentioned in section 2.1 needs to
be applied.

Another important part of the nonlinear optimization problem, is the for-
mulation of the optimization problem itself and the choice of inner products
involved. This could have a large impact on the convergence rate of the iter-
ative process and also on how well the “optimal control” will work (see e.g.
Protas & Bewley (2002)).

For the linear optimization problem the next natural step is to attempt
to reduce the amount of information necessary when computing the control by
estimating the state of the flow based on realizable measurement data.
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Appendix A. Derivation of gradient for boundary layer

A.1. The governing equations

The domain where we solve the governing equations, given 0 < T < +∞, is

Ω = (−xl/2, xl/2) × (0, yl) × (−zl/2, zl/2),

Q = Ω × (0, T ).
(68)

The boundary of Ω is denoted Γ, and

Γl = Γ(y = 0), Γu = Γ(y = yl), (69)

and Γc ⊂ Γl represents the part of the lower boundary where control is applied.
For temporal simulations Γc coincide with Γl.

The governing equations for boundary layer flow are the same as for the
channel flow except for an extra term which is added to enforce periodicity of
the physical flow in the streamwise direction. This is only needed for spatial
simulations.⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
+ (u · ∇)u − 1

Re
∆u + ∇π = λ(x)(U − u) in Q,

∇ · u = 0 in Q,

u|t=0 = u0,

(24)

with periodic boundary conditions in the horizontal directions, that is, the x-
and z-directions,

u|x=−xl/2 = u|x=xl/2,

u|z=−zl/2 = u|z=zl/2.
(25)
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Left to be specified are the conditions in the free-stream and on the wall,

u|y=yfst = U∞

(
which is approximated by

∂u

∂n

∣∣∣∣
Γu

= 0
)

,

u|Γc
= nvc,

u|Γl\Γc
= 0.

(26)

In equation (24), U = U(x, y) is the velocity field that we force the solution
towards in the fringe region. Pressure is denoted π and the Reynolds number
Re is defined based on the free-stream velocity and the displacement thickness
δ∗. The scalar function λ = λ(x) is nonzero only in the fringe region and is
defined as follows:

λ(x) = λmax

[
S

(
x − xstart

∆rise

)
− S

(
x − xend

∆fall
+ 1

)]
,

where λmax, xstart, xend, ∆rise and ∆fall are parameters used to specify the
strength, extent and shape of the fringe forcing. The S-function is defined as,

S(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 r ≤ 0,

1
1 + exp(1/(1 − r) + 1/r)

0 < r < 1,

1 r ≥ 1.

As for the channel flow case we expand the control vc in basis functions
ψl,m with zero mass flux, and where ϕl,m are time dependent coefficients for
the basis functions,

vc(x, z, t) =

⎧⎪⎨
⎪⎩

ϕT
l ψl =

M∑
m=1

ϕl,m(t)ψl,m(x, z) in (T c
1 , T c

2 ),

0 otherwise.

(27)

Where we have introduced the control vector ϕl defined as:

ϕl = (ϕl,1, . . . , ϕl,M ).

A.2. The objective function

We minimize the deviation energy from a given target velocity distribution uT

and add a regularization term including an ε > 0:

J(ϕl) =
ε

2

T c
2∫

T c
1

∫
Γc

|vc|2 dΓ dt +
1
2

T o
2∫

T o
1

∫
Ωo

|u − uT |2 dQ, (28)

where (T c
1 , T c

2 ) is the control time period and (T o
1 , T o

2 ) is the observation time
period and Ωo is the part of the domain Ω where the state of the flow is
observed. The control problem can now be defined as:

Find ϕ∗ ∈ Uad such that

J(ϕ∗) ≤ J(ϕl) ∀ vc(ϕl) ∈ Uad,
(70)
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where ϕ∗ is the optimal control. The set of admissible controls is denoted Uad

and is a subset of L2((T c
1 , T c

2 ); RM ).

A.3. Derivation of the objective function gradient

We begin by differentiating the objective function (28)

δJ(ϕl) = ε

T c
2∫

T c
1

∫
Γc

δvc vc dΓ dt +

T o
2∫

T o
1

∫
Ωo

δu · (u − uT ) dQ, (71)

where the gradient of J is defined through the directional derivative of J in the
δϕl-direction as done in (4). The differentiated Navier–Stokes equations have
the form⎧⎪⎪⎨
⎪⎪⎩

∂δu

∂t
+ (δu · ∇)u + (u · ∇)δu − 1

Re
∆δu + ∇δπ = −λ(x)δu in Q,

∇ · δu = 0 in Q,

δu|t=0 = 0,

(72)

with the boundary conditions

δu|x=−xl/2 = δu|x=xl/2,

δu|z=−zl/2 = δu|z=zl/2,

δu|y=yfst = 0,

δu|Γc
= nδvc,

δu|Γl\Γc
= 0,

(73)

where

δvc(x, z, t) =

⎧⎪⎨
⎪⎩

δϕT
l ψl =

M∑
m=1

δϕl,m(t)ψl,m(x, z) in (T c
1 , T c

2 ),

0 otherwise.

(74)

Now, let us consider the adjoint variable p = p(x, y, z, t) and the adjoint
pressure σ = σ(x, y, z, t) and require p to satisfy the boundary conditions:

p|x=−xl/2 = p|x=xl/2,

p|z=−zl/2 = p|z=zl/2,

p|Γl
= 0,

p|y=yfst = 0.

(75)

The boundary condition at y = yfst can be approximated with the artificial
boundary condition

∂p

∂n

∣∣∣∣
Γu

= 0,

in the numerical simulations. With a sufficiently high box not only this condi-
tion will hold but also p and σ will approach zero.
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By multiplying the first equation in (72) with p and then integrating over
Q we obtain

∫
Q

p ·
(

∂δu

∂t︸︷︷︸
1

+ (δu · ∇)u︸ ︷︷ ︸
2

+ (u · ∇)δu︸ ︷︷ ︸
3

− 1
Re

∆δu + ∇δπ︸ ︷︷ ︸
4

+λ(x)δu︸ ︷︷ ︸
5

)
dQ = 0.

(76)

We apply integration by parts in space and time to move the derivatives from
u to the adjoint variable p. For clarity we perform this step by step for each
term. The first term gives

∫
Q

p · ∂δu

∂t
dQ =

∫
Ω

(p(T ) · δu(T ) − p(0) · δu(0)) dΩ

−
∫
Q

∂p

∂t
· δu dQ

=
∫
Ω

p(T ) · δu(T ) dΩ −
∫
Q

∂p

∂t
· δu dQ,

(77)
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where we have used the fact that δu(t = 0) = 0. Next, we consider the fourth
term

− 1
Re

∫
Q

p · ∆δu dQ +
∫
Q

p · ∇δπ dQ

= − 1
Re

T∫
0

⎡
⎣∫

Γ

p · ∂δu

∂n
dΓ +

∫
Ω

∇p : ∇δu dΩ

⎤
⎦ dt

+

T∫
0

⎡
⎣∫

Γ

p · n δπ dΓ dt −
∫
Ω

∇ · p δπ dΩ

⎤
⎦ dt

=

T∫
0

∫
Γu

p ·
(

n δπ − 1
Re

∂δu

∂n

)
dΓ dt +

1
Re

T∫
0

∫
Γ

∂p

∂n
· δu dΓ dt

− 1
Re

∫
Q

∆p · δu dQ −
∫
Q

∇ · p δπ dQ

=
1

Re

T∫
0

∫
Γu

∂p

∂n
· δu dΓ dt +

1
Re

T c
2∫

T c
1

⎡
⎣δϕT

l

∫
Γl

ψl∇p2 · n dΓ

⎤
⎦dt

− 1
Re

∫
Q

∆p · δu dQ −
∫
Q

∇ · p δπ dQ,

(78)

where p = (p1, p2, p3). In the second equality we used the boundary condition
(30) for p at y = 0 and enforced symmetry. In the third equality the condition
for δu at y = 0 in (73) was used. We also assumed that p goes to zero at the
artificial boundary y = yl. The : denotes a complete contraction defined as in
(12).

The next term to rewrite, in relation (76), is the second term

∫
Q

p · (δu · ∇)u dQ =
∫
Q

(∇u)T p · δu dQ. (79)
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Finally, we rewrite the third term in (76)

∫
Q

p · (u · ∇)δu dQ

=

T∫
0

∫
Γ

(p · δu)(n · u) dΓ dt

−
∫
Q

(p · δu)(∇ · u) dQ −
∫
Q

(u · ∇)p · δu dQ

=

T∫
0

∫
Γu

(p · δu)(n · u) dΓ dt −
∫
Q

(u · ∇)p · δu dQ,

(80)

where we have used the continuity condition on u and the boundary conditions
(30) for p. The fifth term needs no rewriting.

Substituting (77), (78), (79) and (80) into (76) yields

∫
Ω

p(T ) · δu(T ) dΩ +
1

Re

T c
2∫

T c
1

⎡
⎣δϕT

l

∫
Γl

ψl∇p2 · n dΓ

⎤
⎦dt

+
∫
Q

δu ·
(
−∂p

∂t
+ (∇u)T p − (u · ∇)p − 1

Re
∆p + λ(x)p

)
dQ

−
∫
Q

δπ∇ · p dQ +
1

Re

T∫
0

∫
Γu

∂p

∂n
· δu dΓ dt

+

T∫
0

∫
Γu

(n · u)(p · δu) dΓ dt = 0.

(81)

Now, require p to satisfy the adjoint equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂p

∂t
+ (∇u)T p − (u · ∇)p

− 1
Re

∆p + λ(x)p + ∇σ =

{
u − uT in (T o

1 , T o
2 ) × Ωo

0 otherwise
in Q,

∇ · p = 0 in Q,

p|t=T = 0,

(29)
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with the boundary conditions (30). With these assumptions equation (81)
becomes

T o
2∫

T o
1

∫
Ωo

δu · (u − uT ) dQ −
∫
Q

δu · ∇σ dQ

+
1

Re

T∫
0

∫
Γu

∂p

∂n
· δu dΓ dt +

T∫
0

∫
Γu

(n · u)(p · δu) dΓ dt = 0,

(82)

since p and ∂p2/∂n is zero on the boundary y = 0 due to the no-slip and
continuity conditions. The second term in (82) can be rewritten

−
∫
Q

δu · ∇σ dQ = −
T∫

0

∫
Γ

δu · nσ dΓ dt +
∫
Q

∇ · δu σ dQ

= −
T∫

0

∫
Γ

δu · nσ dΓ dt,

(83)

since ∇ · δu = 0. The final step is now to substitute the terms involving δu.
When that is done the second term in the perturbed objective function (71)
can be replaced with terms involving δϕ. Since δu is known on parts of the
boundary we can proceed as follows

−
T∫

0

∫
Γ

δu · nσ dΓ dt

= −
T∫

0

∫
Γu

δu · nσ dΓ dt +

T c
2∫

T c
1

⎡
⎣δϕT

l

∫
Γc

ψlσ dΓ

⎤
⎦dt.

(84)

Combining equation (83) and (84) and inserting that into (82) yield
T o

2∫
T o

1

∫
Ωo

δu · (u − uT ) dQ +

T∫
0

∫
Γu

δu ·
(

1
Re

∂p

∂n
− σn + (n · u)p

)
dΓ dt

+

T c
2∫

T c
1

⎡
⎣δϕT

l

∫
Γc

ψlσ dΓ

⎤
⎦dt = 0.

(85)

Applying the fourth boundary condition (30) for p together with the assumption
that also p = 0 and σ = 0 (see the beginning of the section) at y = yl we get

T o
2∫

T o
1

∫
Ωo

δu · (u − uT ) dQ = −
T c

2∫
T c

1

⎡
⎣δϕT

l

∫
Γc

ψlσ dΓ

⎤
⎦dt. (86)
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Remains only to substitute (86) into (71) which yields

δJ(ϕl) =

T c
2∫

T c
1

δϕT
l

∫
Γc

ψl

(
εϕT

l ψl − σ
)

dΓ dt (87)

where the gradient of the objective function can be identified as:

∂J

∂ϕl
=
∫
Γc

ψl

(
εϕT

l ψl − σ
)

dΓ. (31)

This is exactly the same expression for the gradient as for the channel flow case,
equation (22) and (23), except that this gradient is restricted to information
from Γc.
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