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Abstract
A numerical high order difference method is developed for solution of the incom-
pressible Navier–Stokes equations. The solution is determined on a staggered
curvilinear grid in two dimensions and by a Fourier expansion in the third
dimension. The description in curvilinear body-fitted coordinates is obtained
by an orthogonal mapping of the equations to a rectangular grid where space
derivatives are determined by compact fourth order approximations. The time
derivative is discretized with a second order backward difference method in a
semi-implicit scheme, where the nonlinear terms are linearly extrapolated with
second order accuracy.

An approximate block factorization technique is used in an iterative scheme
to solve the large linear system resulting from the discretization in each time
step. The solver algorithm consists of a combination of outer and inner itera-
tions. An outer iteration step involves the solution of two sub-systems, one for
prediction of the velocities and one for solution of the pressure. No boundary
conditions for the intermediate variables in the splitting are needed and second
order time accurate pressure solutions can be obtained.

The method has experimentally been validated in earlier studies. Here it is
validated for flow past a circular cylinder as an example of a physical test case
and the fourth order method is shown to be efficient in terms of grid resolution.
The method is applied to external flow past a parabolic body and internal
flow in an asymmetric diffuser in order to investigate the performance in two
different curvilinear geometries and to give directions for future development of
the method. It is concluded that the novel formulation of boundary conditions
need further investigation.

A new iterative solution method for prediction of velocities allows for larger
time steps due to less restrictive convergence constraints.

Descriptors: Navier–Stokes equations, compact high order difference meth-
ods, approximate factorization, curvilinear staggered grids, spectral methods,
boundary conditions.



Preface

This thesis considers the description and validation of an incompressible Navier-
Stokes solution method. It is based on compact high order difference operators
in two dimensions and a Fourier expansion in one dimension. This discretiza-
tion allows for treatment of two dimensional curvilinear domains with a third
periodic dimension. The thesis contains the following papers:

Paper 1. Brüger, A., St̊alberg, E., Nilsson, J., Kress, W., Gustafs-

son, B., Lötstedt, P., Johansson, A. V. & Henningson, D. S. 2004
A hybrid high order method for incompressible flow in complex geometries
/version 2. TRITA-MEK 2005:06.
Paper 2. St̊alberg, E., Brüger, A., Lötstedt, P., Johansson, A. V.

& Henningson, D. S. 2004 High order accurate solution of flow past a circular
cylinder. Accepted to J. Sci. Comput.
Paper 3. St̊alberg, E., Brandt, L. & Brüger, A. 2005 Applications of
a high order method for fluid flows in complex geometries. Internal report.

iv



PREFACE v

Division of work between authors

Dan Henningson (DH) and Arne Johansson (AJ) formulated the goal and main
strategy of a method designed for simulations of turbulent flow phenomena in
complex geometries. The novel boundary conditions formulation come from
Bertil Gustafsson (BG), Jonas Nilsson (JN) and Wendy Kress (WK). The for-
mulation of an approximate factorization as a preconditioner in an iterative
scheme is done by Per Lötstedt (PL). WK and PL are responsible for the
stability analysis.

Large parts of the implementation was done by JN and Arnim Brüger (AB)
and in the later stage by Erik St̊alberg (ES).

The main writing of paper 1 was done by AB, ES and JN. Contributions
regarding the stability analysis come from WK and PL. BG was responsible
for the boundary conditions formulation. AJ and DH was responsible for the
choice of numerical method.

DH and AJ formulated the idea of the study in paper 2. The necessary
implementations for this study was done by ES and AB and the simulations
was done by ES. The writing was done by ES, AB and PL.

The writing of paper 3 was done by ES with feedback from Luca Brandt
(LB). Numerical experiments for flow past a parabolic body was done by ES
and LB. The asymmetric diffuser flow numerical experiments was done by ES
and the grid was generated with an numerical conformal mapping by AB and
ES. Necessary implementations was done by ES.
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Part 1

Summary





CHAPTER 1

Introduction

Research of the behaviour of liquids and gases is important from many different
practical aspects such as design of aircraft, road vehicles and processes in the
chemical industry. Studies in the area of fluid mechanics can also be motivated
from a more fundamental point of view since there are fluid flow regimes where
the underlying physics are not completely understood. Consider for example
the complexity of the fluid motion connected to an aircraft under operative
conditions. Aerodynamic forces will as a consequence of the design of the
aircraft produce lift. Simultaneously, the vehicle will experience flow resistance.
In order to achieve smaller fuel consumption, drag forces have to be reduced
which in a longer run will decrease the economic and environmental costs. One
way of reducing the drag on the aircraft is to postpone the transition from the
well ordered laminar flow to the chaotic turbulent state in a thin layer close to
the aircraft. At the same time the flow enters the transitional and turbulent
regime the scientist enters the mystery of turbulence.

In general it is not possible to find analytical solutions to the governing
equations. The scientists are left with experimental measurements and numer-
ical methods and today these two methods live in a symbiosis. This thesis
describes a numerical method for simulation of fluid flows. Focus is put on a
method for turbulent flow in complex geometries. Turbulence involves a broad
range of scales in both time and space including high-frequency fluctuations of
random nature. The broadband phenomena in turbulence requires large res-
olution during long time integration to be accurately captured and put high
demand on the available computer power.

One way to handle the inherent complexity of turbulence is to average the
equations which means that models have to be incorporated to account the ef-
fects of turbulence. A more accurate and expensive way is to use models only for
the fine-scale turbulent structures which means that the large energy-carrying
scales are captured directly. This is referred to as large-eddy simulation, LES.
The most demanding and accurate way to solve the governing equations is
without any averaging as in the method described in this thesis. This is called
direct numerical simulation, DNS.

3
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The incompressible Navier–Stokes equations in dimensionless form are

∂

∂t
u + (u · ∇)u +∇p− 1

R
∇2u = 0 , (1.1)

∇ · u = 0 . (1.2)

where u = (u v w)T is the velocity vector and p the pressure. The Reynolds
number R quantifies the ratio between inertial and viscous forces. The range of
scales, and accordingly the computational cost, increases rapidly with increas-
ing Reynolds number.

There are many different available solution methods for the Navier–Stokes
equations. One category uses Fourier expansions and has shown to be a very
efficient technique for turbulent simulations. Fourier discretization employed in
all three space dimensions was used in an early study by Orszag & Patterson
(1972) and this method is still used today but with much higher Reynolds
numbers. However, this cannot be used in context with complex geometries.
Spectral element methods used in for example Fischer et al. (2002) can be
applied to complex geometries. It combines the geometric flexibility of finite
elements with the efficiency of spectral methods. High order accurate finite
differences of compact type allow for geometric flexibility and have almost
spectral properties, see Lele (1992).

The standard indicator for accuracy of finite difference approximations is
order of accuracy which constitutes a relation between mesh refinement and
accuracy. A mesh refinement of a factor two using a second order accurate
discretization would result in an accuracy improvement by a factor four and
for a fourth order accurate scheme this factor would be 16.

Temporal and spatial accuracy verifications in a two dimensional formula-
tion of the method presented in this thesis can be found in Nilsson et al. (2003)
and Brüger et al. (2005) and in Brüger et al. (2004) a similar investigation
is done in three dimensions. A stable formulation of boundary conditions is
presented in Kress & Nilsson (2003) and in Brüger (2004) turbulent channel
flow in a minimal unit is studied.

The method is here presented in three spatial dimensions. In paper 3 nu-
merical experiments of the method is presented. It involves two cases with
major configuration differences. The first is two dimensional flow past a para-
bolic body as an example of an external flow problem in a curvilinear geometry.
The second application is three-dimensional flow in an asymmetric diffuser. A
validation of the two dimensional formulation of the method is presented in pa-
per 2 for laminar flow past a circular cylinder. It is a widely used test case for
numerical algorithms since both curvilinear coordinates and complex physics
are involved. For a certain range of Reynolds numbers the flow is globally unsta-
ble and alternating vortices are convected downstream from the cylinder. This
is called the von Kármán street and Acheson (1990) tells the story from von
Kármán (1954). The interest in the vortex shedding phenomenon stems from
about 1911 when von Kármán was a graduate assistant in Ludwig Prandtl’s
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laboratory in Göttingen where Prandtl’s doctoral candidate Karl Hiemenz ex-
perimentally investigated the pressure distribution on a circular cylinder. The
flow in the channel oscillated violently and Prandtl told him: ’Obviously your
cylinder is not circular’. After careful machining of the cylinder the flow con-
tinued to oscillate and Hiemenz was told that the channel was not symmetric.
Hiemenz adjusted the channel and every morning von Kármán asked him, ’Herr
Hiemenz, is the flow steady now?’ he answered sadly, ’It always oscillates’.



CHAPTER 2

The numerical method

Finite difference schemes can be either explicit or implicit. An explicit scheme
of arbitrary order of accuracy expresses the derivatives as an weighted sum of
the nodal values. Implicit schemes, also known as compact schemes, express a
weighted sum of the derivatives as a weighted sum of the nodal values.
Also the time discretization of the governing equations can be explicit or im-
plicit. An explicit method would put a strong condition on the maximum time
step due to stability constraints. An fully implicit method allows for large
time steps but need solutions of nonlinear systems at each time level. Here, a
semi-implicit method is used where the nonlinear terms are treated explicit.

2.1. Time discretization

For time discretization a backward differentiation formula (BDF) is used. BDF
methods have good stability properties and a second order accurate method is
used, BFD-2. Higher order time advancement would allow for larger time steps
applied to wall bounded turbulent flow, see Kress & Lötstedt (2004). However,
this would require more memory storage compared with lower order methods
and for other flow regimes, such as transitional flow, the time step has to be
smaller for good accuracy.

The time derivative in the momentum equations discretized with BDF-2 is

∂un+1

∂t
=

3un+1 − 4un + un−1

2∆t
+ O(∆t2), (2.1)

where n is the discrete time level and ∆t the time step. The explicitly treated
nonlinear terms are extrapolated to time level n + 1 from the two preceding
time levels

[(u · ∇)u]n+1 = 2 [(u · ∇)u]n − [(u · ∇)u]n−1
. (2.2)

The requirement of a divergence free velocity field is enforced implicit and the
semi-implicit time discretized Navier–Stokes equations read

3
2
un+1 + ∆t∇pn+1 − ∆t

R
∇2un+1 =

2un − 1
2
un−1 + ∆t [(u · ∇)u]n−1 − 2 ∆t [(u · ∇)u]n , (2.3a)

∇ · un+1 = 0 . (2.3b)

6
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x

y

−z

Figure 2.1. 3D physical space defined by a 2D curvilinear geometry.

2.2. Orthogonal coordinate transformation

Consider a physical space (x, y, z) defined to be curvilinear in two dimensions
(x, y) including a periodic spanwise direction z without geometry dependence
as in figure 2.1. By using a mapping from physical space to an equidistant
Cartesian space (ξ, η, ζ) classical schemes can be used to discretize the equa-
tions in curvilinear coordinates. ζ = z since the method only is curvilinear in
the (x, y) plane. In order to reduce the number of terms in the mapping an or-
thogonal transformation is used. For a general case where analytical mapping
functions are unknown a numerical algorithm can be used. An example of grid
generated by the method of Driscoll & Trefethen (2002) can be found in paper
3.

2.3. Space discretization on staggered grid

When solving the incompressible Navier–Stokes equations on a collocated grid,
which means that the unknowns are discretized on the same grid points, it is a
well known fact that parasitic fluctuations not corresponding to the physical so-
lution occurs. A staggered grid as in figure 2.2 where the different variables are
represented on alternating grid points avoid this oscillatory solutions without
the use of filtering schemes or artificial viscosity.

u

v

p/w

Figure 2.2. Staggered grid.

For space discretization on the curvilinear grid in two space dimensions
fourth order accurate compact finite differences are employed. High order meth-
ods reduce the number of grid points per smallest length scale in comparison
with low order methods for the same accuracy. This is of primary importance
since the available memory is limited. Most differencing schemes do well for low
frequency functions. However, the solution of nonlinear differential equations
often contain several frequencies. Low order explicit schemes suffer from large
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dispersion errors resulting in bad resolved high wavenumber waves. Compact
schemes are known to have good dispersive properties, see Lele (1992), and
the relation between the unknown derivative f ′ for a function f using a fourth
order accurate discretization is

1
6
f ′

i−1 +
2
3
f ′

i +
1
6
f ′

i+1 =
1
2h

(fi+1 − fi−1), (2.4)

where h is the grid spacing. A thorough description of the compact difference
operators for first and second derivatives on the staggered grid can be found
in paper 1. In order to solve the systems resulting from the compact difference
approximations closed systems of the form Pf ′ = Qf are needed. Since no
boundary conditions for the derivatives f ′ are available one-sided stencils are
used.

In the same manner as for the derivatives interpolations between staggered
grid locations adopt sixth order accurate compact operators. For solutions of
the tridiagonal systems generated by the compact operators, LU factors of the
system matrices are used in forward and backward substitution steps.

Under the assumption that the spanwise length of physical space zl is large
enough to capture all relevant scales in the problem the spanwise dimension can
be considered homogeneous (statistically independent of spatial position) and
a discretization by expanding the unknowns in Fourier modes is used. For a
variable f at grid point (xj , yk, zl) the inverse Fourier transform in the spanwise
direction is

f(xj , yk, zl) =
Nz/2−1∑

m=−Nz/2

f̂(xj , yk) eiβmzLl/Nz . (2.5)

Nz is the number of grid points in the spanwise direction and βm the discrete
wavenumbers. The resulting discrete system will be solved in Fourier trans-
formed space. In order to avoid evaluation of convolution sums in Fourier
transformed space the nonlinear terms are computed in physical space by first
transforming the variables at time levels n and n − 1 back to physical space.
Then all necessary operations are performed in physical space and finally the
explicitly treated terms at time level n + 1 are transformed to Fourier space.
Methods known as Fast Fourier Transforms (FFT) are used to transform the
variables between Fourier and physical space, see Canuto et al. (1988).

2.4. Boundary conditions

A numerical method for a differential equation is said to be well posed if an
unique solution to the problem exists which depends continuously on the ini-
tial and boundary data. This means that small changes in the initial and
boundary data result in small changes in the solution. Gustafsson & Nilsson
(2000) propose a well posed boundary condition formulation for the steady
Stokes equations. Kress & Nilsson (2003) generalize the formulation to involve
the linearized Navier–Stokes equations for staggered grids with one periodic
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direction. On a Cartesian domain Ω = 0 ≤ x ≤ 1, 0 ≤ y ≤ 2π where the ve-
locity components are prescribed on all boundaries, i.e. Dirichlet boundary
conditions, the continuous formulation is

u(0, y)− 1
2π

∫ 2π

0

u(0, y)dy = g0(y) , u(1, y) = u1(y) ,

v(0, y) = v0(y) , v(1, y) = v1(y) , (2.6)
w(0, y) = w0(y) , w(1, y) = w1(y) ,∫ 2π

0

u(0, y)dy +
∫ 2π

0

p(0, y)dy = q0 ,

where
∫ 2π

0
g0(y)dy = 0. q0 is an arbitrary constant. An extension of the formu-

lation to involve cases where derivatives of the velocity components, Neumann
conditions, are prescribed can be found in paper 1. Small perturbations in the
discrete version of (2.6) will still give a solvable system. The system matrix is
non-singular and the equations can be solved to machine precision.



CHAPTER 3

Solution procedure

The numerical solution of equations (1.1) and (1.2) is not easy to obtain since
the resulting discrete system is large and indefinite, see Perot (1993). In order
to satisfy an incompressible velocity field it would be necessary to update a
simultaneous solution for velocities and the pressure. By interpreting the role
of the pressure in the momentum equations (1.1) as a projection operator (see
Kim & Moin 1985) of an arbitrary velocity field onto a divergence–free coun-
terpart, an operator splitting scheme can be defined. Projection or fractional
step methods integrate the equations in a segregated manner by first solving a
convection–diffusion equation to predict intermediate velocities, which are then
projected onto the space of divergence–free velocity fields by solving a Poisson
equation for the pressure.

3.1. Approximate factorization

From the proposed semi-implicit method it is evident that, in each time step, a
system of linear equations has to be solved for the unknowns. After elimination
of boundary values the Fourier transformed solution vector Û at time step n+1
satisfies ⎛

⎝ A 0 G

0 Ã iβ∆tI

D iβD̃ −E

⎞
⎠

︸ ︷︷ ︸
MR

⎛
⎝ ûn+1

1

ŵn+1

p̂n+1

⎞
⎠

︸ ︷︷ ︸
Ûn+1

=

⎛
⎝ b̂∗

1

b̂∗w
b̂∗2

⎞
⎠

︸ ︷︷ ︸
b̂

, (3.1)

where b̂ consists of the explicitly treated nonlinear terms from time steps n and
n−1 and boundary data. G and D are the discretized gradient and divergence
operators in the (ξ, η) plane. I is the identity matrix and û1 = (û, v̂)T . A and
Ã have the structure

A =
3
2
I +

∆t

R
β2I − ∆t

R
L , (3.2)

where L approximates the Laplace operator in the (ξ, η) plane. E stems from
the boundary condition formulation for the pressure and E = 0 for β �= 0.
Due to the implicit difference operators MR is not known explicitly and an
approximated system matrix M∗ with corresponding LU factors is constructed,

10



3.1. APPROXIMATE FACTORIZATION 11

see Perot (1993)

M∗ =

⎛
⎝ A 0 0

0 Ã 0
D iβD̃ I

⎞
⎠

⎛
⎝ I 0 γG

0 I γiβ∆tI
0 0 Q

⎞
⎠

=

⎛
⎝ A 0 γAG

0 Ã γiβ∆tÃ

D iβD̃ −E

⎞
⎠ , (3.3)

where Q = −E − γ DG + γβ2∆t D̃ and γ is set to

γ =
1

3
2 + ∆t

R β2
(3.4)

for BDF-2. In this approximate factorization no boundary conditions for the
intermediate variables are needed since they are defined by the matrices in the
semi-implicit discretization and the pressure is second order time accurate.
System (3.1) is solved in a fixed point iteration scheme with iteration index k
using the approximate factorization of MR. In this outer iteration a correction
z(k) is computed as

Û(k+1) = Û(k)+z(k) = Û(k)+M∗−1
(
b̂−MRÛ(k)

)
= Û(k)+M∗−1

r(k) (3.5)

where r(k) is the residual from iteration k.
With r(k) = (r(k)

1 , r
(k)
w , r

(k)
2 ) and z(k) = (z(k)

1 , z
(k)
w , z

(k)
2 ) one outer iteration

involves the following steps

1. Solve Ay(k)
1 = r(k)

1 . 5. z
(k)
w = y

(k)
w − γiβ∆tz

(k)
2

2. Solve Ãy
(k)
w = r

(k)
w . 6. z(k)

1 = y(k)
1 − γGz

(k)
2 .

3. y
(k)
2 = r

(k)
2 −Dy(k)

1 − iβD̃y
(k)
w . 7. Û(k+1) = z(k) + Û(k).

4. Solve Qz
(k)
2 = y

(k)
2 . 8. r(k+1) = b̂−MRÛ(k+1).

If the residual r(k+1) is within the specified convergence threshold, Ûn+1 =
Û(k+1), otherwise k ← k + 1 and a new outer iteration is started at 1.
All sub-matrices in (3.3) are real and the equations are separately solved for the
real and imaginary parts in order to avoid complex arithmetics. The dominat-
ing computational work in one outer iteration is to iteratively solve the linear
subsystems in steps 1, 2 and 4. The systems in step 1 and 2 are advection-
diffusion equations for u, v and w. In step 4 a system related to the Poisson
equation is solved and the solution is then used to project the predictions
made in 1 and 2 on a divergence–free space. From the well posed formulation
of boundary conditions (2.6) Q is nonsingular and a solution z

(k)
2 in 4 is guaran-

teed, see Brüger et al. (2005). A description of the iterative solution techniques
of the subsystems in 1, 2 and 4 is the objective in the following section.
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3.2. Iterative technique for subsystems

The matrices A and Ã have structures as in (3.2) and are diagonally dominant
for large wavenumbers β. By neglecting the Laplace operator L in the (ξ, η)
plane the inverse of the diagonal, γI, can be used as a preconditioner in fixed
point iteration schemes for the A systems. In Kress & Lötstedt (2004) it is
shown that the fixed point iterative solver with diagonal preconditioner will
converge if ∆t/(Rh2) < 3/16 where h is the grid spacing. This is a severe lim-
itation on the maximum allowable time step ∆t particularly for cases with low
Reynolds numbers and high spatial resolution. The stabilized bi-conjugate gra-
dient (Bi-CGSTAB) iterative solver is less restrictive in terms of the maximum
time step. In paper 1 a comparative study of the performance for the fixed
point and Bi-CGSTAB iterative solvers for the A systems can be found and it
is shown that Bi-CGSTAB is the more efficient choice. For detailed description
of the Bi-CGSTAB routine, see van der Vorst (1992) and Greenbaum (1997).

The system Qz2 = y2 is similar to a Poisson equation but Q is not symmet-
ric due to the formulation of boundary conditions. The Bi-CGSTAB routine
is here used as iterative solver since it is suitable for non-symmetric system
matrices.

As preconditioner to the Bi-CGSTAB routine incomplete LU factors (ILU)
of the system matrices are used, see Meijerink & van der Vorst (1977). Since
the system matrices A, Ã and Q are not known explicitly the ILU factorizations
is based on an explicit second order accurate discretization of those matrices.



CHAPTER 4

Summary of Papers

Paper 1

This paper is a complete description of the numerical method. Basic aspects
of the modular implementation in the Fortran90 language are described. Rig-
orous descriptions of the compact difference operators on staggered grids and
the boundary conditions formulation are presented. The approximate factor-
ization technique with its associated block LU factorization is formulated and
efficiency measures using two different iterative solution methods for prediction
of velocities are shown.

Paper 2

The aim of this paper is to apply the high order method to flow around a
circular cylinder, which is a test case well documented by both numerical and
experimental data. This flow problem fits well as two dimensional validation
experiment since it exhibits unsteady separation and is laminar up to a cer-
tain Reynolds number. At low Reynolds numbers ( 3 ≤ R = U∞ d/ν ≤ 45 ),
two attached eddies appear behind the cylinder, where U∞ is the free-stream
velocity, d the diameter and ν the kinematic viscosity. These eddies become
larger with increasing Reynolds numbers. For R ≥ 45 the flow becomes glob-
ally unstable and vortex shedding occurs. We present numerical simulations of
flow past a circular cylinder at Reynolds numbers in both the stable and the
vortex shedding regime. The results agree very well with the data known from
numerical and experimental studies in the literature.

Paper 3

The method is in this paper applied to two different flow configurations in order
to investigate the performance and to give directions for future improvements.
The first case is external laminar flow past a parabolic body. It poses problems
in terms of in- and outflow boundary conditions as well as solution of flow
with a stagnation point. The second case is three-dimensional flow in a plane
asymmetric diffuser and the efficiency is challenged in terms of computer time.
The asymmetric diffuser grid is generated with a numerical conformal mapping
technique.

13



CHAPTER 5

Conclusions and outlook

An accurate discretization of the incompressible Navier–Stokes equations in
primitive variables has been developed. The discretization combines a fourth
order compact difference method on a two dimensional curvilinear staggered
grid with a spectral approximation in the third dimension. The time discretiza-
tion is semi-implicit and second order accurate.

An approximate factorization type preconditioner of the system matrix is
used in an outer iterative scheme. The arising sub-systems for the velocities
and the pressure are solved in sets of inner iterations.

A well posed description of boundary conditions for the incompressible
Navier–Stokes equations is used.

A two dimensional version of the high order method is applied for flow past
a circular cylinder. The validation includes both the steady and unsteady flow
regime and match very well the data known from other numerical simulations
and experiments. It is also shown that the results are achieved with much
fewer grid points than those reported from studies performed with low order
methods.

The present state of the code is an existing three-dimensional version. With
the implementation of a Bi-CGSTAB iterative solution algorithm for prediction
of velocities it is shown that time steps close to the stability limit can be
used, if this is allowed by accuracy considerations. DNS of turbulent flow
phenomena in geometries and for Reynolds numbers of todays interest need
highly optimized and efficient codes. Focus should first be put on the efficiency
on a single processor since the most important impediment to good parallel
performance is a poor single node performance. A starting point in terms of
performance monitoring is to use a profiling software in order to determine the
actual behaviour of the code. Optimized arithmetic libraries such as BLAS
(Basic Linear Algebra Subroutines) can be used to increase efficiency of often
used matrix and vector operations.

The most time consuming part of the code is in the solution algorithm for
the pressure. Multigrid methods are known to result in considerably speed-up
for elliptic partial differential equations like this.

In order to perform large scale computations a parallelization standard has
to be chosen. The methods of interest are OpenMP for shared memory and MPI
for distributed memory machines. A natural strategy would be to parallelize

14
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over the wave numbers from the Fourier discretization. Since the work load is
wave number dependent this would result in an uneven load distribution. A
block parallelization in the two dimensional domain would result in even work
load but is more advanced since the implementation has to be on compact
difference operator level.

The formulation of boundary conditions needs further investigations and
modifications. It results in a well posed system of equations but artificial
boundaries demanding more advanced and flexible treatment than the stan-
dard Dirichlet and Neumann conditions are not obvious how to handle. An
open question is how the formulation interact with a buffer zone or similar
technique used to prevent convective wave reflections or upstream propagation
of information from the outflow boundaries.

Starting from the predictions that the fast performance increase of super-
computers will continue, the ultimate situation would be to know all advantages
and disadvantages of different numerical methods and formulations. This is not
the case and we need to be prepared to adjust our methods during the way to
larger and more efficient simulations.
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A hybrid high order method for incompressible
flow in complex geometries / version 2

By Arnim Brüger1, Erik St̊alberg1, Jonas Nilsson2,
Wendy Kress2, Bertil Gustafsson2, Per Lötstedt2,

Arne V. Johansson1 and Dan S. Henningson1

A numerical method is presented for solution of the incompressible Navier–
Stokes equations in primitive variables. The method can be applied to three-
dimensional, internal or external flows with one ore more periodic directions.
Well posed formulations of the boundary conditions are used. The discretiza-
tion is of hybrid type consisting of compact high order difference operators
applied to a two dimensional curvilinear domain and a Fourier expansion in
the periodic direction. Parasitic checkerboard oscillations in the pressure are
suppressed by staggering the grid locations. Orthogonal transformations are
used between computational and physical space. For stability reasons the lo-
cal representation of velocities is chosen. The time derivative is discretized
with the second order backward difference method in a semi-implicit scheme.
An approximate factorization method is applied in order to solve the resulting
large linear system of equations. It is based on a block LU factorization of
an approximated system matrix. The solution procedure is formulated in an
iterative scheme combining inner and outer iterations. The inner iterations
consist of the solution of three subsystems, two for the velocities and one for
the pressure.

1Department of Mechanics, KTH, SE-10044 Stockholm, Sweden
2Department of Information Technology, Scientific Computing, Uppsala University, P. O.
Box 337, SE-75105 Uppsala, Sweden.
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Preface

The present document is a revised version of the report about the hybrid high
order incompressible Navier-Stokes solver developed in a cooperation project
between the Department of Mechanics, KTH and the Department of Infor-
mation Technology, Uppsala University. The documentation focuses on the
numerical implementation in the Fortran90 language. The main differences in
the text compared to the first version are the description of the solution tech-
nique for prediction of velocities and an extended description regarding the
boundary conditions. The formulation of the underlying equations in orthogo-
nal curvilinear coordinates has also been enhanced.

1. Introduction

Solution of the Navier–Stokes equations in turbulent flow applications requires
accurate resolution of both the large and the small scale fluctuations. Any
standard local discretization technique of second order accuracy can achieve
the desired level of numerical error by increasing the number of discretization
points, but only at the expense of efficiency loss. This is why still at this point of
time it is solely the spectral methods that achieve reasonable Reynolds numbers
in direct numerical simulation (DNS) of turbulent flows. The downside is that
we lack good numerical experiments in complex geometries, which can not be
described with global discretization techniques.

Comparably few approaches exist, where focus is put on both numerical
accuracy and flexibility concerning the geometry. In the method described here,
we aim at accuracy which is not significantly inferior to that of spectral methods
and we offer to choose geometries that can be defined by two dimensions. Our
hybrid numerical method is designed from the scratch and combines a high
order compact discretization technique in the two dimensional curvilinear space
with an expansion in Fourier modes in the third direction, which is assumed to
be homogeneous.

The goal with this approach is neither to achieve higher Reynolds numbers
nor to compete with the efficiency of a purely spectral method. We aim at
simulations in body-fitted coordinates with flow exposed to an environment
closer to realistic situations involving curvature and non-trivial boundaries.

The potential in higher order approaches to the Navier–Stokes equations
is documented in a number of successful studies as in Gullbrand (2000), Visbal
& Gaitonde (2002), Bhaganagar et al. (2002), Nagarajan et al. (2003), Piller
& Stalio (2004).

Related work in iterative and fractional step solution techniques can be
found in Brown et al. (2001), Greenbaum (1997), Kim & Moin (1985), Perot
(1993), Strikwerda & Lee (1999), van Kan (1986).

Discussion of spectral methods can be found in Canuto et al. (1988), for
description of high order discretizations see e.g. Lele (1992), Fornberg & Ghrist
(1999).
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A number of related investigations and numerical examples have been pro-
vided in context with the development of the method proposed here, see Brüger
(2004), Brüger (2002), Brüger et al. (2002), Brüger et al. (2005), Brüger et al.
(2004), Göran (2001), Gustafsson & Nilsson (2002), Gustafsson & Nilsson
(2000), Gustafsson et al. (2003), Kress & Lötstedt (2004), Kress & Nilsson
(2003), Nilsson (2000), Nilsson et al. (2003) and St̊alberg et al. (2004).



26 Arnim Brüger et al.

2. Discretization method

2.1. Governing equations

The continuous three-dimensional problem to be solved is described by the
incompressible, time-dependent Navier–Stokes equations

∂u
∂t

+ N (u) + L(u, p) = 0, (1)

and the condition
∇ · u = 0, (2)

which explicitly enforces a divergence free field of the components of the velocity
vector u = (u, v, w)T . p is the scalar pressure field divided by density and
R = Ubl/ν is the flow Reynolds number based on characteristic velocity and
length scales Ub and l and kinematic viscosity ν. N are the nonlinear terms

N (u) = u · ∇u, (3)

and L are the linear terms including the gradient of the pressure

L(u, p) = ∇p− 1
R
∇2u. (4)

The physics of turbulent flow are entirely contained in these equations provided
that all fluctuating scales are resolved in both time and space. The remain-
ing error of a direct simulation is then within the accuracy of the numerical
discretization and solution techniques.

2.2. Boundary conditions

The specification of boundary conditions for the incompressible Navier–Stokes
equations should be handled with care as we learn from numerous discussions in
the literature, see e.g. Peyret & Taylor (1983), Ferziger (1987), Rempfer (2003).
The formulation used here is based on the ideas of Gustafsson & Nilsson (2000)
where a non-singular formulation of boundary conditions was suggested for the
steady Stokes equations. A direct generalization of this type to the linearized
Navier–Stokes is found in Kress & Nilsson (2003). The problematic nature
inhering the divergence form is demonstrated considering a two dimensional
domain Ω = {0 ≤ x ≤ 1, 0 ≤ y ≤ 2π}, which is periodic in y direction. The
integration of the divergence condition (2) leads to the expression∫ 2 π

0

u(0, y)dy =
∫ 2 π

0

u(1, y)dy, (5)

which is a restriction in the choice of the boundary data. When velocities
conditions only were set along the boundaries, the system of equations resulting
from the discretization would become singular.

Kress & Nilsson (2003) propose a formulation that removes the restriction
and that allows small perturbations in the boundary data without causing
instabilities in the solution. The idea behind is to include a condition on the
pressure in order to obtain a well posed linear system of equations. By means of
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an integral formulation of the boundary data, one degree of freedom is released
and the pressure condition can be specified.

Two types of boundary conditions are considered when investigating in-
ternal flow problems as in e.g. channel flow. For certain problems, Dirichlet
conditions can be specified at the walls and at both inlet and outlet. The
continuous formulation is here

u(0, y)− 1
2π

∫ 2π

0

u(0, y)dy = g0(y) , u(1, y) = u1(y) ,

v(0, y) = v0(y) , v(1, y) = v1(y) , (6)
w(0, y) = w0(y) , w(1, y) = w1(y) ,∫ 2π

0

u(0, y)dy +
∫ 2π

0

p(0, y)dy = q0 ,

with
∫ 2π

0 g0(y)dy = 0. The more common condition at the outlet is to pre-
scribe derivatives of the velocity components, i.e. the Neumann condition. The
continuous formulation is

u(0, y) = u0(y) ,
∂u(1, y)

∂x
− 1

2π

∫ 2π

0

∂u(1, y)
∂x

dy = g1(y) ,

v(0, y) = v0(y) ,
∂v(1, y)

∂x
= v1(y) ,

w(0, y) = w0(y) ,
∂w(1, y)

∂x
= w1(y), (7)∫ 2π

0

∂u(1, y)
∂x

dy +
∫ 2π

0

p(1, y)dy = q0 .

with
∫ 2π

0 g1(y)dy = 0. q0 in (6) and (7) is an arbitrary constant.
For a Neumann condition with zero derivative of the velocity components pre-
scribed, g1 = v1 = w1 = 0.

2.3. Staggered grids

v

u

p/w

Figure 1. The staggered grid

Solution of incompressible flow may induce parasitic fluctuations in the
pressure, which is not detected by the numerical scheme. This problem occurs
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on standard grids and can be tackled by means of filter functions. A cleaner
way to circumvent pressure oscillations is to stagger the variables. Figure
1 shows the arrangement of variables in the staggered grid. The number of
pressure discretization points in the two dimensional domain, that may be
mapped to the physical curvilinear space are Nx Ny in x, y dimension and the
corresponding grid spacings are dx, dy. The pressure points are located in the
center of the cells assigned to (i dx, j dy) with (i = 0 . . .Nx−1, j = 0 . . .Ny−1)
and the velocity points are distributed around them at different positions. u
and v are assigned to (i dx − 0.5 dx, j dy) with (i = 0 . . .Nx, j = 0 . . .Ny − 1)
and (i dx, j dy − 0.5 dy) with (i = 0 . . .Nx − 1, j = 0 . . .Ny), respectively. The
location of the w component coincides with the one for the pressure. It implies
that the first momentum equation is solved on the u-points, the second on v
and the third and the divergence condition is enforced on the p/w-positions.

2.4. Time integration

For the time integration, one has the choice of explicit, implicit, or semi-implicit
schemes. For explicit schemes, the time step restriction is often of the form
∆t ≤ c R ∆x2, where c is a constant. Especially for locally refined meshes in
space this can be a very severe limitation resulting in long computing times.
Fully implicit schemes on the other hand require the solution of a nonlinear
system of equations in each time-step. We use a semi-implicit scheme, where
the nonlinear convection terms are treated in an explicit manner, and all other
terms are treated implicitly.

We use a second order time discretization scheme in which the time deriv-
ative is approximated by a backward differentiation formula, BDF2

∂un+1

∂t
=

3un+1 − 4un + un−1

2∆t
+ O(∆t2), (8)

where n indicates the time level. The system of equations is treated implicitly
except for the nonlinear terms. In order to achieve second order in time so-
lutions the following linear extrapolation from the two preceding time steps is
used

Nn+1 = 2 N n − N n−1 + O(∆t2) (9)

The implicit-explicit time discretized scheme reads

3
2
un+1 + ∆tLn+1 = 2un − 1

2
un−1 −∆t N n+1 (10)

∇ · un+1 = 0. (11)

Remark that the gradient of the pressure appears in Ln+1 and thus is treated
implicitly. The divergence condition (11) is enforced implicitly.

In Kress & Lötstedt (2004), a stability analysis for a class of semi-implicit
integration schemes including the scheme described above is performed using
Fourier analysis, see also Gustafsson et al. (2003).
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Figure 2. Stability domain for BDF-2 and different θ. Close
up view for small θ (left) and for larger θ (right). λx = ∆t

∆x ,
λy = ∆t

∆y .

In figure 2.4 the boundary of the stability domain for the above scheme is
shown for different values of θ = ∆t

R ∆x2 . The time stepping scheme is stable if

∆t is chosen such that
(
u ∆t

∆x , v ∆t
∆y

)
lies inside the lines depicted in the figure.

It can be shown that the time step restriction due to stability can be relaxed
considerably compared to explicit schemes. Furthermore, it is always possible
to choose a sufficiently small ∆t so that the integration is stable and then ∆t
will be proportional to ∆x2/3R−1/3. For the case where ∆x << R−1/2, which
includes the case of locally highly refined grids the stability condition can be
further relaxed.

2.5. Coordinate transformation

A key requirement to our numerical method is the capability to handle complex
geometries. We allow to define a particular geometry by two dimensions. The
mapping from the equidistant (Cartesian) computational space to the curvilin-
ear physical space is performed by an orthogonal transformation. The advan-
tage is to reduce the number of terms to evaluate. It remains to find suitable
orthogonal transformations for a particular geometries. Conformal mappings
have this property and numerical algorithms exist to compute the desired grids,
see for example Driscoll & Trefethen (2002).

Starting from the Navier–Stokes equations in Cartesian coordinates one ap-
plies an orthogonal transformation between computational (ξ, η, ζ) and physical
space (x, y, z)

x = x(ξ, η, ζ),
y = y(ξ, η, ζ). (12)

Because of the two dimensionality of the geometries, we have z = ζ.
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At this point one has the choice between a global or a local formulation
of velocity components. The global one is based on applying the chain rule
to all space derivatives whereas the local one makes the velocities pointing in
the coordinate directions ξ and η. Nilsson (2000) performed a stability analysis
for the Stokes equations for local and global coordinate transformations and
showed that the problem of spurious oscillations remained, when the global for-
mulation was used. Applying the local transformation leads to a more complex
structure of the Laplace operator, but the formulation of the convective terms is
simpler than in the global approach. We obtain the transformed Navier–Stokes
equations in the form

∂u
∂t

+ N ∗(u) + L∗(u, p) = 0, (13)

∇ · u = 0, (14)

where N ∗(u) are the transformed nonlinear terms and L∗(u, p) the trans-
formed linear terms. The divergence reads now

∇ · u =
1

n1n2

(
∂

∂ξ
(n2u) +

∂

∂η
(n1v) + n1n2

∂

∂z
w

)
, (15)

and the pressure gradient is

∇p =
(

1
n1

∂p

∂ξ
,

1
n2

∂p

∂η
,

∂p

∂z

)T

, (16)

including the scale factors of the orthogonal transformation

n1 =
√

x2
ξ + y2

ξ , (17)

n2 =
√

x2
η + y2

η. (18)

where subscript ξ and η denotes derivative.
In the orthogonal coordinate system ξ = (ξ, η, ζ) we have

N ∗ = N ∗(u) =
∑

j

uj(∇u)ji =
∑

j

uj

nj

∂ui

∂ξj
+

ui

ni

uj

nj

∂ni

∂ξj
− uj

ni

uj

nj

∂nj

∂ξi
, (19)

see Redžić (2001). More specific we have the components

N ∗
ξ =

u

n1n2
(n2

∂

∂ξ
u + n1η Ev) +

Ev
n1n2

(n1
∂

∂η
u− n2ξ Ev) + w

∂

∂ζ
u, (20)

N ∗
η =

Eu
n1n2

(n2
∂

∂ξ
v − n1η Eu) +

v

n1n2
(n1

∂

∂η
v + n2ξ Eu) + w

∂

∂ζ
v, (21)

N ∗
ζ =

Eu
n1

∂

∂ξ
w +

Ev
n2

∂

∂η
w + w

∂

∂ζ
w, (22)
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where E is understood as generic interpolation operator between the nodes of
the staggered grid. The laplacian ∇2u can be written as

∇2u =
∑

j

(∇ · ∇u)jji =
∑

j

{
1

n1n2

∂

∂ξj

[
n1n2

n2
j

∂ui

∂ξj

]

+
niui

n1n2

∂

∂ξj

[
n1n2

n2
i n

2
j

∂ni

∂ξj

]
+

2
n2

i n
2
j

∂ni

∂ξj

∂

∂ξj
(njuj) (23)

− 2
nin3

j

∂nj

∂ξi

∂

∂ξj
(njuj) +

njuj

ni

∂

∂ξi

[
1

n1n2

∂

∂ξj

(
n1n2

n2
j

)]}
.

For convenience we rewrite

L∗ = ∇p− 1
n1n2R

B∗, (24)

where the components of B∗ = n1n2∇2u are

B∗ξ =
∂

∂ξ

(
n2

n1

∂

∂ξ
u

)
+

∂

∂η

(
n1

n2

∂

∂η
u

)
− n2

1 η + n2
2 ξ

n1n2
u + 2

n1 η

n1

∂

∂ξ
Ev

− 2
n2 ξ

n2

∂

∂η
Ev +

∂

∂ξ

(
n1 η

n1
− n2 η

n2

)
Ev + n1n2

∂2

∂ζ2
u (25)

B∗η =
∂

∂ξ

(
n2

n1

∂

∂ξ
v

)
+

∂

∂η

(
n1

n2

∂

∂η
v

)
− n2

1 η + n2
2 ξ

n1n2
v − 2

n1 η

n1

∂

∂ξ
Eu

+ 2
n2 ξ

n2

∂

∂η
Eu− ∂

∂ξ

(
n1 η

n1
− n2 η

n2

)
Eu + n1n2

∂2

∂ζ2
v (26)

B∗ζ =
∂

∂ξ

(
n2

n1

)
∂

∂ξ
w +

∂

∂η

(
n1

n2

)
∂

∂η
w

+
(

n2

n1

)
∂2

∂ξ2
w +

(
n1

n2

)
∂2

∂η2
w + n1n2

∂2

∂ζ2
w (27)

where

n1ξ =
xξxξξ + yξyξξ

n1
, (28)

n1η =
xξxξη + yξyξη

n1
, (29)

n2ξ =
xηxξη + yηyξη

n2
, (30)

n2η =
xηxηη + yηyηη

n2
, (31)
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2.6. Spanwise Fourier transform

We start with the discretization of the spanwise dimension, since it has special
properties. The geometries considered here are described in two dimensional
space which allows to assume that the turbulence is homogeneous in the third
spanwise direction. Provided that the computational box has a sufficient ex-
tension in spanwise direction periodicity may be assumed and the variables can
be expanded in Fourier modes. The computational grid contains Nz evaluation
points in physical space in the z-dimension at locations

zj =
2πj

Nz
j = 1, 2, 3, . . . , Nz. (32)

The coefficients of the discrete one dimensional forward Fourier transform are
then

û(x, y)k =
1

Nz

Nz∑
j=1

u(x, y) e−ikzj −Nz/2 ≤ k ≤ (Nz/2− 1). (33)

The system of equations will be treated in Fourier transformed space except for
the computation of the nonlinear convective termsN . In that case we transform
the necessary variables back to physical space and we can directly evaluate the
nonlinearities. Such methods are often referred as pseudo-spectral type. For
computation of the physical values we have the discrete one dimensional inverse
Fourier transform in spanwise direction

u(x, y, z) =
Nz/2−1∑

k=−Nz/2

û(x, y) eiβkzLj/Nz j = 1, 2, 3, . . . , Nz (34)

where zL is the spanwise box length and βk = 2πk/zL are the corresponding
wave numbers (the index k will be dropped for convenience).

2.6.1. Fourier transformed Navier–Stokes equations

We expand the set of equations (13) and (14) in spanwise Fourier modes and
obtain the transformed nonlinear and linear terms N̂ ∗ = N̂ ∗(û) and B̂∗ =
B̂∗(û)

N̂ ∗
ξ =

û

n1n2
(n2

∂

∂ξ
û + n1η E v̂) +

E v̂
n1n2

(n1
∂

∂η
û− n2ξ E v̂) + ŵiβû, (35)

N̂ ∗
η =

E û
n1n2

(n2
∂

∂ξ
v̂ − n1η E û) +

v̂

n1n2
(n1

∂

∂η
v̂ + n2ξ E û) + ŵiβv̂, (36)

N̂ ∗
ζ =

E û
n1

∂

∂ξ
ŵ +

E v̂
n2

∂

∂η
ŵ + ŵiβŵ, (37)
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B̂∗ξ =
∂

∂ξ

(
n2

n1

∂

∂ξ
û

)
+

∂

∂η

(
n1

n2

∂

∂η
û

)
− n2

1 η + n2
2 ξ

n1n2
û + 2

n1 η

n1

∂

∂ξ
E v̂

− 2
n2 ξ

n2

∂

∂η
E v̂ +

∂

∂ξ

(
n1 η

n1
− n2 η

n2

)
E v̂ − n1n2β

2û (38)

B̂∗η =
∂

∂ξ

(
n2

n1

∂

∂ξ
v̂

)
+

∂

∂η

(
n1

n2

∂

∂η
v̂

)
− n2

1 η + n2
2 ξ

n1n2
v̂ − 2

n1 η

n1

∂

∂ξ
E û

+ 2
n2 ξ

n2

∂

∂η
E û− ∂

∂ξ

(
n1 η

n1
− n2 η

n2

)
E û− n1n2β

2v̂ (39)

B̂∗ζ =
∂

∂ξ

(
n2

n1

)
∂

∂ξ
ŵ +

∂

∂η

(
n1

n2

)
∂

∂η
ŵ

+
(

n2

n1

)
∂2

∂ξ2
ŵ +

(
n1

n2

)
∂2

∂η2
ŵ − n1n2β

2ŵ (40)

The condition of divergence free velocity field reads

∇ · û =
1

n1n2

(
∂

∂ξ
(n2û) +

∂

∂η
(n1v̂)

)
+ iβŵ = 0, (41)

and we have the Fourier transformed pressure gradient

∇p̂ =
(

1
n1

∂p̂

∂ξ
,

1
n2

∂p̂

∂η
, iβp̂

)T

(42)

2.7. High order discretization

2.7.1. Space discretization

Padé operators are discussed in detail in Lele (1992). They are here used
throughout for computation of space derivatives in planes that can be subjected
to coordinate transformation. In any case, we need to solve systems of the type

Pf ′ = Qf (43)

in order to determine the derivative f ′ of a function f . For a first, staggered
derivative we have the operators P1 , Q1 for solution pressure derivatives and
P2 , Q2 applied to velocities. P̃ , Q̃ denote the regular (collocated) first deriva-
tives and R , S the regular second derivatives. Applied to the x− direction the
complete set of spatial fourth order operators reads

P1f
′ = Q1f :

P1f
′ =

⎧⎪⎨
⎪⎩

1
12672 (24f ′

− 1
2

+ 528f ′
1
2
) ,

1
24 (f ′

i− 1
2

+ 22f ′
i+ 1

2
+ f ′

i+ 3
2
) , i = 0, . . . , Nx − 1 ,

1
12672 (528f ′

Nx− 1
2

+ 24f ′
Nx+ 1

2
) ,

(44)

Q1f =

⎧⎪⎨
⎪⎩

1
12672∆x(−577f0 + 603f1 − 27f2 + f3) ,
1

∆x(fi+1 − fi) , i = 0, . . . , Nx − 1 ,
1

12672∆x(−fNx−3 + 27fNx−2 − 603fNx−1 + 577fNx) .
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P2f
′ = Q2f :

P2f
′ =

⎧⎪⎨
⎪⎩

1
24f ′

1 ,
1
24 (f ′

i−1 + 22f ′
i + f ′

i+1) , i = 1, . . . , Nx − 1 ,
1
24f ′

Nx
,

(45)

Q2f =

⎧⎪⎨
⎪⎩

1
576∆x (f− 1

2
− 27f 1

2
+ 27f 3

2
− f 5

2
) ,

1
∆x(fi+ 1

2
− fi− 1

2
) , i = 1, . . . , Nx − 1 ,

1
576∆x (fNx− 5

2
− 27fNx− 3

2
+ 27fNx− 1

2
− fNx+ 1

2
) .

P̃ f ′ = Q̃f :

P̃ f ′ =

⎧⎪⎨
⎪⎩

1
108 (6f ′

0 + 18f ′
1) ,

1
6 (f ′

i−1 + 4f ′
i + f ′

i+1) , i = 1, . . . , Nx − 1 ,
1

108 (18f ′
Nx−1 + 6f ′

Nx
) ,

Q̃f =

⎧⎪⎨
⎪⎩

1
108∆x (−17f0 + 9f1 + 9f2 − f3) ,

1
2∆x (fi+1 − fi−1) , i = 1, . . . , Nx − 1 ,

1
108∆x (fNx−3 − 9fNx−2 − 9fNx−1 + 17fNx) .

(46)

Rf ′′ = Sf :

Rf ′′ =

⎧⎪⎨
⎪⎩

1
100 (f ′′

0 + 10f ′′
1 ) ,

1
10 (f ′′

i−1 + 10f ′′
i + f ′′

i+1) , i = 1, . . . , Nx − 1 ,
1

100 (10f ′′
Nx−1 + f ′′

Nx
) ,

(47)

Sf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1200∆x2 (145f0 − 304f1 + 174f2 − 16f3 + f4) ,

6
5∆x2 (fi−1 − 2fi + fi+1) , i = 1, . . . , Nx − 1 ,

1
1200∆x2 (fNx−4 − 16fNx−3+
+174fNx−2 − 304fNx−1 + 145fNx) .

These operators can simply be applied to the y-coordinate by changing ∆x to
∆y and replacing the number of grid points in x-direction Nx with Ny , the
number of points in y-direction.

2.7.2. Solution of tridiagonal systems

As described above the implicit formulation of spatial derivatives results in a
linear system of equations with a tridiagonal system matrix. The computation
of spatial derivatives is one of the most often called routines at execution. Still
the number of the various system matrices is limited and the corresponding op-
erators are repeatedly applied. Hence, instead of saving the actual tridiagonal
operators the LU factors of the system matrices are computed at initialization
which just requires a forward and backward substitution step each time we
solve a tridiagonal system.
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2.7.3. Padé interpolations

Because of the staggered representation of grid data there is a need to interpo-
late between u, v and p positions. To maintain high accuracy the interpolations
are constructed in compact form. Another advantage is that the interpolation
operators can be made periodic in the same manner as the compact derivatives.

In the case of interpolations between u and v locations, the Padé interpo-
lation has to be called twice, since it is applied in one dimension at a time.
The velocities are first interpolated to p nodes and then to the final position.
In order to reduce the error of interpolations to a level below the discretization
errors sixth order compact interpolation operators are used.

The operators E0,F0 perform the interpolation from u positions to p po-
sitions in the x direction. The same operator can be used to interpolate in y
direction from v to p and can simply be applied by substitution of Nx by Ny.

In the opposite direction we interpolate with the operators E1 and F1 from
p to u locations. Also here we can apply this operator to the interpolation from
p to v by changing the number of grid points and the direction. Because of the
sixth order expansion of E1 and F1 also the computation of the point next to
the boundary differs from the inner points. However the operators were derived
in a way that makes the structure of E1 similar to the ones in the previously
defined left hand side operators. In this way, the same tridiagonal solution
routine can be applied to the system.

E0p = F0u:

E0p =

⎧⎪⎨
⎪⎩

1
3 (3p0 + 7p1) ,
1
10 (3pi−1 + 10pi + 3pi+1) , i = 0, . . . , Nx − 1 ,
1
3 (7pNx−1 + 3pNx) ,

(48)

F0u =

⎧⎪⎨
⎪⎩

1
192 (+35u− 1

2
+ 420u 1

2
+ 210u 3

2
− 28u 5

2
+ 3u 7

2
) ,

1
20 (ui− 3

2
+ 15ui− 1

2
+ 15ui+ 1

2
+ ui+ 3

2
) , i = 0, . . . , Nx − 1 ,

1
192 (+3uNx− 7

2
− 28uNx− 5

2
+ 210uNx− 3

2
+ 420uNx− 1

2
+ 35uNx+ 1

2
) .
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E1u = F1p:

E1u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u− 1
2

+ 9u 1
2

,
1
10 (3u− 1

2
+ 10u+ 1

2
+ 3u+ 3

2
) ,

1
10 (3ui− 1

2
+ 10ui+ 1

2
+ 3ui+ 3

2
) , i = 1, . . . , Nx − 1 ,

1
10 (3uNx− 3

2
+ 10uNx− 1

2
+ 3uNx+ 3

2
) ,

9uNx− 1
2

+ uNx+ 1
2

,

(49)

F1p =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
64 (315p0 + 105p1 − 63p2 + 9p3 − 5p4) ,
1
20 (21p0 + 21p2 − 15p3 + 6p4 − 1p5) ,
1
20 (pi−1 + 15pi + 15pi+1 + pi+2) , i = 1, . . . , Nx − 1 ,
1
20 (pNx−5 + 6pNx−4 − 15pNx−3 + 21pNx−2 + 21pNx) ,
1
64 (−5pNx−4 + 9pNx−3 − 63pNx−2 + 105pNx−1 + 315pNx) .

2.7.4. Periodic operators

Periodic operators are useful for a number of flow problems that involve two
periodic dimensions. Examples are external flows that involve O-grids as
in St̊alberg et al. (2004), or turbulent flow in a straight or curved channel,
see Brüger (2004). From the previously defined non-periodic operators the
periodic formulations can easily be obtained by just considering the prescrip-
tion for inner locations. The major difference is to solve systems with periodic
tridiagonal matrices. The corresponding solution algorithm differs from the
one used for the non-periodic cases due to the extra elements in the lower left
and upper right corners of the system matrix.

2.8. Discrete form of the Navier–Stokes equations

Now the tools are available for spatial discretization of the terms N̂ ∗
(û) and

B̂∗(û). The components of N̂ ∗
= N̂ ∗

(û) in discrete form are

N̂ ∗
ξ =

û

n1n2
(n2P̃

−1
ξ Q̃ξû+n1η E v̂)+

E v̂
n1n2

(n1P̃
−1
η Q̃ηû−n2ξ E v̂)+ ŵiβû, (50)

N̂ ∗
η =

E û
n1n2

(n2P̃
−1
ξ Q̃ξv̂−n1η E û)+

v̂

n1n2
(n1P̃

−1
η Q̃ηv̂+n2ξ E û)+ ŵiβv̂, (51)

N̂ ∗
ζ =

E û
n1

P̃−1
ξ Q̃ξŵ +

E v̂
n2

P̃−1
η Q̃ηŵ + ŵiβŵ. (52)

Note that also the scale factors n1, n2 and their derivatives are discretized with
the same type of high order operators, not shown here for convenience. We
also keep the generic operator E for the interpolation between staggered grid
nodes.
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The discrete components of B̂∗ = B̂∗(û) are

B̂∗ξ = P̃−1
ξ Q̃ξ

(
n2

n1
P̃−1

ξ Q̃ξû

)
+ P̃−1

η Q̃η

(
n1

n2
P̃−1

η Q̃ηû

)
− n2

1 η + n2
2 ξ

n1n2
û

+ 2
n1 η

n1
P̃−1

ξ Q̃ξE v̂ − 2
n2 ξ

n2
P̃−1

η Q̃ηE v̂

+ P̃−1
ξ Q̃ξ

(
n1 η

n1
− n2 η

n2

)
E v̂ − n1n2β

2û, (53)

B̂∗η = P̃−1
ξ Q̃ξ

(
n2

n1
P̃−1

ξ Q̃ξv̂

)
+ P̃−1

η Q̃η

(
n1

n2
P̃−1

η Q̃ηv̂

)
− n2

1 η + n2
2 ξ

n1n2
v̂

− 2
n1 η

n1
P̃−1

ξ Q̃ξE û + 2
n2 ξ

n2
P̃−1

η Q̃ηE û

− P̃−1
ξ Q̃ξ

(
n1 η

n1
− n2 η

n2

)
E û− n1n2β

2v̂, (54)

B̂∗ζ = P̃−1
ξ Q̃ξ

(
n2

n1

)
P̃−1

ξ Q̃ξŵ + P̃−1
η Q̃η

(
n1

n2

)
P̃−1

η Q̃ηŵ

+
(

n2

n1

)
R̃−1

ξ S̃ξŵ +
(

n1

n2

)
R̃−1

η S̃ηŵ − n1n2β
2ŵ. (55)

The high order operators used so far are of collocated type. In the divergence
equation and in the pressure gradient we need to employ the staggered alter-
natives. The discrete divergence condition is

D̂∗
(û) =

1
n1n2

(
P−1

2 ξ Q2 ξ(n2û) + P−1
2 η Q2 η(n1v̂)

)
+ iβŵ = 0, (56)

and we have finally the discretized pressure gradient

∇p̂ =
(

1
n1

P−1
1 ξ Q1 ξ p̂,

1
n2

P−1
1 η Q1 η p̂, iβ p̂

)T

. (57)

2.9. More about boundary conditions

2.9.1. Continuous formulation

We need to specify more clearly how the boundary conditions depend on the
spanwise wave number β. So far the formulation was introduced just for the two
dimensional case. For simplicity, consider a Cartesian domain in Fourier space
Ω = {x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, β}. For Dirichlet boundary conditions on all
four boundaries in the (x, y) plane we have in the 3D method to differentiate
the cases



38 Arnim Brüger et al.

β = 0

û(x0, y)− 1
Ly

∫ y1

y0

û(x0, y)dy = g0(y) , û(x1, y) = û1(y) ,

v̂(x0, y) = v̂0(y) , v̂(x1, y) = v̂1(y) ,

ŵ(x0, y) = ŵ0(y) , ŵ(x1, y) = ŵ1(y) ,∫ y1

y0

û(x0, y)dy +
∫ y1

y0

p̂(x0, y)dy = q0 , (58)

û(x, y0) = û0(x) , û(x, y1) = û1(x) ,

v̂(x, y0) = v̂0(x) , v̂(x, y1) = v̂1(x) ,

ŵ(x, y0) = ŵ0(x) , ŵ(x, y1) = ŵ1(x) ,

β �= 0

û(x0, y) = û0(y) , û(x1, y) = û1(y) ,

v̂(x0, y) = v̂0(y) , v̂(x1, y) = v̂1(y) ,

ŵ(x0, y) = ŵ0(y) , ŵ(x1, y) = ŵ1(y) ,

û(x, y0) = û0(x) , û(x, y1) = û1(x) , (59)
v̂(x, y0) = v̂0(x) , v̂(x, y1) = v̂1(x) ,

ŵ(x, y0) = ŵ0(x) , ŵ(x, y1) = ŵ1(x) .

Ly is the length of the path of integration, q0 is an arbitrary constant and∫ y1

y0
g0(y)dy = 0. In a similar way the Neumann conditions are defined.

2.9.2. Discrete formulation of boundary conditions

The dashed line in figure 3 represents the physical boundary and it is obvi-
ous that boundary data on u and v needs to be interpolated to its staggered
position.

u
v
p/w

Figure 3. Outer point on staggered grid.

Let us introduce the discrete generic operators IE for the interpolation of
boundary data, IB for the discretization of the streamwise derivative at the
outflow and II for the numerical integration along boundaries. Then we can
reformulate the boundary data ((58), (59)) for the discrete case. The Dirichlet
conditions are
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β = 0

IE0(ûjk)− 1
Lη
II(n20k

IE0(ûjk), ∆η) = g0(ηk) ∀k �= kp ,

II(n20k
IE0(ûjk), ∆η) + II(n20k

p̂0k, ∆η) = q0 k = kp ,

IE1(ûjk) = û1(ηk) ,

v̂0k = v̂0(ηk) , v̂Nxk = v̂1(ηk) ,

ŵ0k = ŵ0(ηk) , ŵNxk = ŵ1(ηk) , (60)
ûj0 = û0(ξj) , ûjNy = û1(ξj) ,

IE0(v̂jk) = v̂0(ξj) , IE1(v̂jk) = v̂1(ξj) ,

ŵj0 = ŵ0(ξj) , ŵjNy = ŵ1(ξj)

with II(g0k, ∆η) = 0. and Lη = II(n20k
, ∆η)

β �= 0

IE0(ûjkβ) = û0(ηk, β) , IE1(ûjkβ) = û1(ηk, β) ,

v̂0kβ = v̂0(ηk, β) , v̂Nxkβ = v̂1(ηk, β) ,

ŵ0kβ = ŵ0(ηk, β) , ŵNxkβ = ŵ1(ηk, β) ,

ûj0β = û0(ξj , β) , ûjNyβ = û1(ξj , β) , (61)

IE0(v̂jkβ) = v̂0(ξj , β) , IE1(v̂jkβ) = v̂1(ξj , β) ,

ŵj0β = ŵ0(ξj , β) , ŵjNyβ = ŵ1(ξj , β)

kp is an arbitrary point at the inflow boundary, where the pressure condition is
specified. For the Neumann outflow boundary condition we here assume that
the derivatives are set to 0, i.e. g1 = v1 = w1 = 0 in (7), and that all other
boundaries in the (x, y) plane is Dirichlet boundaries

β = 0

IE0(ûjk) = û0(ηk) ,

∀k �= kp IB1(ûjk)− 1
Lη
II(n2Nxk

IB1(ûjk), ∆η) = 0 ,

k = kp II(n2Nxk
IB1(ûjk), ∆η) + II(n2Nxk

p̂Nxk, ∆η) = q0 ,

v̂0k = v̂0(ηk) , IB1(v̂jk) = 0 ,

ŵ0k = ŵ0(ηk) , IB1(ŵjk) = 0 , (62)

ûj0 = û0(ξj) , ûjNy = û1(ξj) ,

IE0(v̂jk) = v̂0(ξj) , IE1(v̂jk) = v̂1(ξj) ,

ŵj0 = ŵ0(ξj) , ŵjNy = ŵ1(ξj)

with Lη = II(n2Nxk
, ∆η)
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β �= 0

û0kβ = û0(ηk, β) , IB1(ûjkβ) = 0 ,

IE0(v̂jkβ) = v̂0(ηk, β) , IB1(v̂jkβ) = 0 ,

ŵ0kβ = ŵ0(ηk, β) , IB1(ŵjkβ) = 0 ,

ûj0β = û0(ξj , β) , ûjNyβ = û1(ξj , β) , (63)

IE0(v̂jkβ) = v̂0(ξj , β) , IE1(v̂jkβ) = v̂1(ξj , β) ,

ŵj0β = ŵ0(ξj , β) , ŵjNyβ = ŵ1(ξj , β)

IB involves the coefficients to discretize the Neumann condition and kp is an
arbitrary point on the Neumann boundary. The operators IE and II are
discussed more thorough in section 3.5.4.

2.10. Solution procedure

We have, so far, presented the linear and the nonlinear terms L̂ and N̂ in
Fourier space because of the spectral spanwise dimension in our discretization
method. Assume, that we can provide the right hand side of our discretized
linear system of equations in Fourier space in a specific time level, we can with
the help of a suitable solver determine the unknowns. The question is however,
how to effectively compute the right hand side, that includes the nonlinear
terms N̂ . Evaluating the convolution sums in spectral space is expensive since
it takes O(N2) operations (see, e.g. Canuto et al. (1988)). The more efficient
way is to use Fast Fourier Transforms (FFT) to bring the variables back to
physical space, where the multiplications can easily be performed, and finally
transform forward to Fourier space in order to get the spectral right hand
side. The operation counts can then be reduced to O(Nlog2N) thanks to the
efficiency of the FFT algorithm, see e.g. Canuto et al. (1988).

The hybrid high order discretization method results in a linear system to
solve for each time step. Since we solve in Fourier space we get decoupled
systems for each spanwise Fourier mode

M(β)Ûn+1 = b̂n+1(β). (64)

Ûn+1 is the solution vector containing the velocity components and the pres-
sure. The right hand side b̂n+1(β) depends on the solution of the preceding
time levels only.
The basic steps to perform in the time integration loop are then

1. initialize û0, û1.
2. n = 1
3. inverse Fourier transform of ûn, ûn−1 and those spanwise, η and ξ

derivatives of ûn and ûn−1 , which are needed to compute N at the
discrete time levels n and n− 1.

4. compute N n+1 in physical space
5. compute bn+1

6. perform the Fourier transform to obtain b̂n+1(β).
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7. ∀β
solve linear system in Fourier space: M(β)Ûn+1 = b̂n+1(β).

8. n = n + 1
9. goto 3.

The solution of the linear systems in step 7 is discussed in the following chapter.

3. Approximate factorization and iterative solution

3.1. Algorithm

Our discretization technique leads to a large linear system of equations with a
constant system matrix that needs to be solved in Fourier space in each time
step. We can write the discrete form of (13) (14) in the following way

3
2
ûn+1 + ∆tL̂∗(ûn+1, p̂n+1) = b̂, (65)

D̂∗(ûn+1) = 0, (66)

where the right hand side b̂ consists of the nonlinear terms computed accord-
ing to (9) and the contribution from the discrete time derivative (8), i.e. the
solutions from the two preceding time levels. The components of L̂∗ = L̂∗(û, p̂)
are

L̂∗ξ =
1
n1

P−1
1 ξ Q1 ξ p̂n+1 − 1

n1n2R
B̂∗

ξ, (67)

L̂∗η =
1
n2

P−1
1 η Q1 η p̂n+1 − 1

n1n2R
B̂∗

η, (68)

L̂∗ζ = iβ p̂n+1 − 1
n1n2R

B̂∗
ζ . (69)

D̂∗ is the discrete divergence of û. The right hand side vector b̂ is constructed
according to (10), (11) including the solution of the two preceding time levels
and computation of the discrete nonlinear terms N̂ at both time levels. The
algorithm that computes the solution to (65), (66) is one of the key ingredients
in the numerical method. The two main requirements to fulfil in order to allow
large scale simulations are fast convergence and efficient memory allocation.

3.2. Linear system of equations

We rewrite the linear system in the following matrix vector representation⎛
⎝ A 0 G

0 Ã iβ∆tI
D iβI 0

⎞
⎠
⎛
⎝ ûn+1

1

ŵn+1

p̂n+1

⎞
⎠ =

⎛
⎝ b̂1

b̂w

0

⎞
⎠, (70)

where û1 = (û, v̂)T . We have

A =
3
2
I − ∆t

Rn1n2
(B̂ξ + B̂η). (71)
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Ã is the corresponding operator resulting from the w equation and has similar
properties. We find the estimate

A, Ã ∼ 3
2
I +

∆t

R
β2 I − ∆t

R
L. (72)

D is the divergence operator and G represents the gradient on the pressure.
L is a discrete Laplace operator corresponding to the 2D (ξ, η) case. The
solution vector U consists of the first two velocity components in u1, the w
component and the pressure p. The right hand side vector b includes the
explicitly computed nonlinear terms with the solutions from the two preceding
time levels. The system matrix M is of the size ((Nx + 1)×Ny + (Ny + 1)×
Nx +2Nx×Ny)2 and is too large to be stored. It is not known explicitly due to
the compact difference schemes. What is easier to provide are matrix - vector
products which advises the use of iterative solution methods.

3.3. Reduction of boundary data

The system (70) includes not only the idealized operators A and Ã but also the
boundary data. In order to obtain operators with a clean structure the data is
formally segregated in inner and boundary locations.

We rearrange the system (70) as follows⎛
⎜⎜⎜⎜⎝

A0 0 A1 0 G

0 Ã0 0 Ã1 iβ∆tI
A2 0 C 0 E

0 Ã2 0 C̃ 0
D0 iβI D1 iβI 0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

⎛
⎜⎜⎜⎜⎝

ûn+1
1

ŵn+1

ˆ̃un+1

ˆ̃wn+1

p̂n+1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

b̂1

b̂w

ˆ̃b
ˆ̃
bw

0

⎞
⎟⎟⎟⎟⎟⎠ , (73)

where the data on inner grid locations is kept in u1 and w, whereas the bound-
ary data is put in ũ and w̃. The matrices A and Ã in the system (70) are now
split into those parts that discretize the inner data (i.e. A0 and Ã0) and those
operators that act on the boundary data (A1 and Ã1). The same principle is
applied to the divergence operator. The advantage is that the operators A0

and Ã0 have undisturbed diagonally dominant structures.
In the present arrangement we can see the matrices A2, Ã2, C and C̃, that

stem from the high order interpolation of the boundary data. Note that the
actual value of a variable on the physical boundary has to be extrapolated to its
position on the numerical boundary of the staggered grid. A2 and Ã2 contain
the coefficients of the interpolation that belong to data values on inner grid
locations, whereas C and C̃ consist of the coefficients of the interpolation on
the outermost grid location.

The matrix E involves an implicit condition on the pressure and E �= 0 is
applied only for β = 0. If E = 0 would be chosen for β = 0 the pressure solu-
tion would become under-determined and would include an unknown additive
constant. Moreover, it causes problems in the solver, since the system matrix
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becomes singular. In a particular simulation any condition on the pressure
could be chosen that leads to a non-singular system matrix of the discretized
equations and the systems can be solved to machine precision. Note, that E is
in our method specified directly from the formulation of boundary conditions
(58). This coherence of solver and boundary conditions is explained in more
detail in Brüger et al. (2005).

We now remove the boundary data from the solution vector by solving
formally for ũ

ˆ̃un+1 = C−1(ˆ̃b−A2ûn+1
1 − Ep̂n+1) (74)

and analogically for w̃

ˆ̃wn+1 = C̃−1(ˆ̃bw − Ã2ŵ
n+1). (75)

Equations (74), (75) are introduced in the remaining equations for u1, w and
p. The reduced system reads now⎛
⎝ A0 −A1C

−1A2 0 G−A1C
−1E

0 Ã0 − Ã1C̃
−1Ã2 iβ∆tI

D0 −D1C
−1A2 iβ(I − C̃−1Ã2) −D1C

−1E

⎞
⎠

︸ ︷︷ ︸
MR

⎛
⎝ ûn+1

1

ŵn+1

p̂n+1

⎞
⎠

︸ ︷︷ ︸
Ûn+1

=

⎛
⎝ b̂∗

1

b̂∗w
b̂∗2

⎞
⎠

︸ ︷︷ ︸
b̂

,

(76)
including the modified right hand sides

b̂∗
1 = b̂1 − Ã1C̃

−1 ˆ̃b, (77)

b̂∗w = b̂w −A1C
−1ˆ̃bw, (78)

and
b̂∗2 = −D1C

−1 ˆ̃b− iβC̃−1ˆ̃bw. (79)

In order to simplify the notation we introduce the following operators

Â = A0 −A1C
−1A2, (80)

D̂ = D0 −D1C
−1A2, (81)

Ĝ = G−A1C
−1E, (82)

Ê = D1C
−1E, (83)

ˆ̃A = Ã0 − Ã1C̃
−1Ã2, (84)

and we can write the system as
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⎛
⎜⎝ Â 0 Ĝ

0 ˆ̃A iβ∆tI

D̂ iβ(I − C̃−1Ã2) −Ê

⎞
⎟⎠

︸ ︷︷ ︸
MR

⎛
⎝ ûn+1

1

ŵn+1

p̂n+1

⎞
⎠ =

⎛
⎝ b̂∗

1

b̂∗w
b̂∗2

⎞
⎠ . (85)

3.4. Block LU factorization

An approximate factorization of MR in 85 is constructed in a manner similar
to Perot (1993)

L=

⎛
⎜⎝ Â 0 0

0 ˆ̃A 0
D̂ iβ(I − C̃−1Ã2) I

⎞
⎟⎠,

U =

⎛
⎝ I 0 γĜ

0 I γiβ∆tI
0 0 Q

⎞
⎠ ,

where
Q = −Ê − γD̂Ĝ + γβ2∆t(I − C̃−1Ã2). (86)

The approximated system matrix

M∗ = LU =

⎛
⎜⎝ Â 0 γÂĜ

0 ˆ̃A γiβ∆t ˆ̃A
D̂ iβ(I − C̃−1Ã2) −Ê

⎞
⎟⎠

has the following approximation error compared to the initial reduced system
matrix

M∗ −MR =

⎛
⎝ 0 0 e1

0 0 e2
0 0 0

⎞
⎠.

The errors in the approximation can be reduced by a reasonable choice of the
factor γ. With (72) and since Ĝ is of order ∆t/h, we get an estimate for the
error e1

e1 = γÂĜ− Ĝ = Ĝ(γÂ− I). (87)
If we choose

γ =
1

3/2 + ∆t
R β2

, (88)

the error e1 reduces to

e1 ∼ O
(

γ∆t2

h3 R

)
. (89)

An analysis of the error e2 leads to the estimation

e2 ∼ O
(

γβ∆t2

h2 R

)
. (90)
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3.5. Iteration prescription

We derive an iterative algorithm based on a fixed point iteration scheme with
iteration index k for the reduced right hand side b̂ to solve

MRÛ = b̂. (91)

The solution vector Ûk+1 is the sum

Ûk+1 = zk + Ûk, (92)

where Ûk is the known solution from the preceding iteration level and zk is
the contribution from the present iteration. Thus, we want to solve for zk in

MRzk = b̂−MRÛk = rk, (93)

where rk is understood as the residual resulting from iteration k. An approxi-
mate solution is

zk = M∗−1
(
b̂−MRÛk

)
, (94)

or written as fixed point iteration

Ûk+1 = Ûk + M∗−1
(
b̂−MRÛk

)
. (95)

With exact or approximate LU factors of the system matrix considerable speed
up of the iterative solver can be achieved. The general iteration prescription is
then

1. r0 = b̂−MRU0

2. Lyk = rk

3. Uzk = yk

4. Ûk+1 = zk + Ûk

5. rk+1 = b̂−MRÛk+1

6. if ||rk+1|| ≤ ε then Ûn+1 = Ûk+1 else k ← k + 1, goto 2,

where ε is the convergence criterion. Within one outer iteration we have to
solve iteratively for the large systems in the steps 2 and 3, i.e. the forward and
backward substitution using the LU factors of M∗.

3.5.1. Forward and backward substitution

The system to be solved in step 2 reads⎛
⎜⎝ Â 0 0

0 ˆ̃A 0
D̂ iβ(I − C̃−1Ã2) I

⎞
⎟⎠

⎛
⎝ y1

yw

y2

⎞
⎠ =

⎛
⎝ r1

rw

r2

⎞
⎠ . (96)

The computational work to be done is the solution of the two A systems, which
can be understood as a predictor step for the velocities u and v and for the w
component. In the formal back substitution step 3 we solve the system⎛

⎝ I 0 γĜ
0 I γiβ∆tI
0 0 Q

⎞
⎠

⎛
⎝ x1

xw

x2

⎞
⎠ =

⎛
⎝ y1

yw

y2

⎞
⎠ . (97)



46 Arnim Brüger et al.

The over-all dominating work load is the solution of

Qx2 = y2. (98)

Due to the structure of Q we denote this system further on as DG system. Step
3 finds a correction to the predicted velocities and enforces the zero divergence
condition.

3.5.2. A systems

The first time consuming part of the solution process is solving iteratively for
the two subsystems

(A0 −A1C
−1A2)y1 = r1, (99)

and

(Ã0 − Ã1C̃
−1Ã2)yw = rw. (100)

Both system matrices have a similar structure ∼ 3/2 I + ∆tβ2/R I −∆t/R L.
L is the discrete Laplace operator in the corresponding 2D (ξ, η) case. Two
different iterative solution routines are implemented. The first is a fixed point
iteration scheme preconditioned with the inverse of the diagonal γI, see (88).
However, the maximum time step may at certain conditions be limited by
the fixed point iteration scheme of the A systems and not as expected by the
CFL criterion. In Kress & Lötstedt (2004) the convergence of the fixed point
iterative solver with diagonal preconditioner is studied and shown to converge
if

∆t

R h2
<

α0

12 β0
i

(101)

where α0 and β0
i are coefficients in BDF methods and ∆t/(R h2) < 3/16 for

BDF2. h is the grid spacing and for small Reynolds numbers with high spatial
resolution the restriction (101) on ∆t is too high.
The second implementation of iterative solver for the A systems is the Bi-
CGSTAB routine, see van der Vorst (1992) and Greenbaum (1997), which is
less restrictive than (101) and allows the use of time steps around the theoret-
ical CFL criterion if this is accurate enough.
In order to speed up the convergence of the Bi-CGSTAB method one can pro-
vide the routine with the approximate LU factors of the system matrices. Since
we do not have the explicit form of the system matrices in (99) and (100), the
factorizations of A is based on an explicit 2nd order accurate representation of
the system matrices. Then it is factorized once by an incomplete LU decom-
position (ILU) and given to the solution routine. The ILU factorization can be
based on the explicit 2nd order representation of 3/2 I + ∆tβ2/R I −∆t/R L
or the diagonal 3/2 I + ∆tβ2/R I, i.e. with the Laplace term excluded. See
section 5.4.2 for practical details regarding the ILU factorization.
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3.5.3. DG system

The first step in the backward substitution is the solution of system (98) which
is [
−γ(D0 −D1C

−1A2)G + γβ2∆t(I − C̃−1Ã2)−D1C
−1E

]
x2 = y2. (102)

For the solution a Bi-CGSTAB method is used for three main reasons. The first
is that the left hand side matrix is non-symmetric, the second is that one can
not explicitly compute its transpose and the third is that the number of extra
vectors for intermediate results are limited. Other iterative methods require the
matrix to be symmetric and positive definite (the conjugate gradient method
CG) or to have access to the transpose (the quasi-minimum residual method
QMR). The GMRES method is more demanding with respect to work space
for the iterations. A possible alternative is the transpose-free QMR algorithm.

The Bi-CGSTAB routine is preconditioned with an ILU decomposition of
the DG matrix in (102) based on an explicit 2nd order accurate representation
in a similar manner as for the A system. The 2nd order discretization has been
shown to be spectrally equivalent to the fourth order method for a straight
channel, see Brüger et al. (2005).

Detailed descriptions of the applied iterative solution routines can be found
in Greenbaum (1997).

3.5.4. Interpolation of boundary data

We take a closer look at the matrices A2 and C and their origin. Since the
physical and numerical boundaries in the staggered grid do not generally coin-
cide, boundary data need to be interpolated as figure 4 illustrates. A quantity

physical boundary

Figure 4. Numerical and physical boundary in the staggered grid

f̃ is in computational space interpolated by a suitable high order formula to
the physical grid boundary as in

f̃0 = IE(f̃−h
2
, · · · , f̃N) = b1f̃−h

2
+ b2f̃ h

2
+ b3f̃ 3h

2
+ · · ·+ bN f̃ (1+2(N−2)) h

2
. (103)

Figure 5 shows the outer points in the staggered grid. The dashed line repre-
sents the physical boundary. Further on, we denote the upper, lower, left and
right wall as north (N), south (S), west (W) and east (E) position. We see that
the interpolation of u boundary data has to be done at locations (W) and (E),
whereas the v data has to be interpolated at the walls (S) and (N).
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w

v

u
N

S

W E

Figure 5. Outer points in staggered grid

3.5.5. The matrix A2

Due to the splitting in inner and outer grid points the matrix A2 appears as
a sub-matrix of the system matrix. A2 holds the interpolation coefficients of
formula (103) that are operating on inner grid locations.

In the execution of the solver we need to provide A2z, where z is a vec-
tor defined on inner grid points. The result of A2z is equal to zero for the
points that coincide with the physical boundary except for those with bound-
ary condition that is not of Dirichlet type. For those grid points that involve
interpolation there are two cases to distinguish. The first is simple and this is
when no boundary integral is applied. Then, we just apply the part of formula
(103) that operates on inner grid locations, (2 . . .N). The exception appears
only for wave number β = 0 at the boundary, where an integral condition is
set.

Consider the case that the u− ∫
u condition is set at the inflow boundary.

Then we have to compute the part of the interpolation operating on inner
grid locations to obtain the first term in u − ∫

u. To compute the integral
contribution we have again to perform the inner part of the interpolation,
integrate it and subtract its result from the first term. Note, that in one point
of the boundary where the integrals are applied we substitute the boundary
condition with just the contribution from the velocity integral in order to end
up in formulation (58).

3.5.6. The matrix C and its inverse

Another consequence of the grid point division in inner and outer points is that
we have to apply the operation C−1z in the solver algorithm, where z is an
arbitrary vector containing data on outer grid locations.

To handle the matrix C involves some effort in the case that the integral
formulation of boundary conditions is chosen (58). Here, we discuss the struc-
ture for two dimensional channel flow, where the integral form is applied to the
inflow data at boundary (W).

The general structure of C is shown in figure 6. The part of C that acts on
data without integral coupling is simple. The off-diagonal elements come from
the computation of the corner points. For this data we can explicitly compute
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C0

C1

Figure 6. A sketch of the structure of the matrix C for the
2D channel flow case with an integral coupling of u points.
C0 couples the outer points of u at (W) due to the boundary
integral except for the corner points that are coupled through
C1 with the boundaries (N) and (S).

the result of C−1z. In channel flow this is the case with the v velocity data at
(S) and (N) and to the u data at the outflow (E). Define in the following z0

as a grid function z0 = z0(ξi, ηj). At all those boundary points except for the
corners we simply perform b−1

1 z0. At the corner positions we get the relation

C−1z0(ξ1, ηj) |corner= b−1
1

(
−

N∑
i=2

biz0(ξi, ηj)

)
(104)

C0 and C1 come from the integral coupling of boundary points (in this case
at the inflow). The sub-matrix C1 is the part of the integral that is computed
on the (N) and (S) boundary of the channel. This operation can explicitly be
performed in contrast to the inversion of C0.

In order to provide a complete description of C0 we need to come back to
the boundary conditions (58). Before we introduce the discrete formulation a
fourth order numerical integration is needed. We derive the formula from the
Euler-MacLaurin relation∫ yM

y0

f̃(y)dy = ∆y

(
f̃0

2
+ f̃1 + f̃2 + · · ·+ f̃M−1 +

f̃M

2

)
−∆y2

12
(f̃ ′

M−f̃ ′
0)+O(∆y4).

(105)
Using one-sided second-order stencils to approximate the derivatives in the
above equation the numerical fourth order integration is obtained

II(f̃ , ∆y) := ∆y

(
3
8
f̃0 +

2
3
f̃1 +

23
24

f̃2 + f̃3

+ · · ·+ f̃M−3 +
23
24

f̃M−2 +
2
3
f̃M−1 +

3
8
f̃M

)
. (106)
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For convenience we write the integration formula as the sum

II(∆y, f̃) :=
M∑

k=1

akf̃k ∆y (107)

We can now find the discrete formulation of boundary conditions for u at the
inflow

N∑
i=1

biui,k − 1
Ly

M∑
k=1

(
akn2(k)∆y

N∑
i=1

biui,k

)
= w0(yk) (108)

Note, that (108) is in one point substituted by another condition in order to
set the pressure integral. The contribution of the left hand side in equation
(108) that couples points on the boundary is entering the matrix C0. Since this
matrix is time independent it is computed just once and immediately factorized
in LU factors. Each time we have to invert C in the solution algorithm the
result of C0−1z0 is conveniently obtained by forward and back substitution
with the help of the LU factors of C0. In order to compute the factorization
C0 is set up according to the fourth order integration formula (106).

The 3D case differs just slightly from the described 2D case. The boundary
points of the w component coincide with the physical boundary. In the Dirichlet
case there appear just additional identity elements come into the diagonal.
Observe that the integral coupling is just used for the spanwise wave number
β = 0. In all other cases C is inverted explicitly.

4. Implementation

4.1. Program structure

The typical flow problems to be investigated are of the type shown in figure 7.
This is internal flow, where the streamwise x coordinate and the wall normal y
direction together describe the curvilinear 2D domain. The flow has a homo-
geneous, periodic spanwise dimension z that allows to expand the unknowns
in Fourier modes.

x

y

−z

Figure 7. Flow configuration for internal 3D flow

Figure 8 shows a sketch of the general program structure. In each time
integration step n we have to transform the solution of the preceding time
levels back to physical space in order to conveniently evaluate the convolution
sums in the nonlinear part of the Navier–Stokes equations.
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At first the inverse Fast Fourier Transform (FFT) of the unknowns com-
puted at time steps n and n − 1 are performed. Additionally, the spanwise
derivatives are needed to compute the nonlinear terms. Since the FFT has to
access data in the spanwise direction we get the data in (xz) planes out of the
main storage, then compute the FFT of the data and finally put back the (xz)
plane to the main storage. This has to be repeated for a number of Ny (xz)
planes.

In our hybrid discretization technique the only decoupled coordinate di-
rection is the spanwise. Both the computation of the nonlinear and the linear
terms requires the solution with the Padé operators in the curvilinear (xy)
space. Note that in contrast to standard, explicit difference methods we couple
all points in the (xy) domain through tridiagonal systems. Hence, we need to
step through the 3D space by picking (xy) planes, computing the right hand
side of the large linear system in time step n and putting it back to the main
storage.

Before we are able to solve the implicit linear part of the equations, we have
to call the forward FFT in order to transform the right hand side to Fourier
space. The FFT requires again the treatment of (xz) planes. Finally we pick
(xy) planes from the main storage in order to solve iteratively for the unknowns
in time step n. Also here we have fully coupled (xy) planes.

main storage

main storage

main storage

main storage
get xz

get xy

get xz

get xy

put xy

put xz

put xy

put xz
bwd FFT

nonlinear

fwd FFT

solve linearz

z

y

y

n <− n+1

Figure 8. The general program structure in the time inte-
gration loop
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The implementation is done in the Fortran90 language with a modular
structure. Focus is put on achieving the degree of object orientedness per-
mitted by Fortran90. To some extent we can generate black boxes, that hide
information from the user by generic functions and derived data types. In the
following the relevant modules and some of their more important derived data
types and generic functions are presented. (INT) denotes integer data.

4.2. Parameter module

This module is used to read in and access input data except for those that are
related to the solver routines. For simplicity the set of parameters is gathered
in a single derived type PARAM which reduces the number of variables that
have to be given to subroutines.

Float variables are represented in the self defined real kind (RK) format.
If float values are specified, they must be tagged with the (RK) suffix.
Derived data types: PARAM

PARAM

Contents Type Description

Nx, Ny, Zmax INT The number of grid points in x and y direction
and the maximum spanwise wave number

x min, x max, RK The geometrical bounds in
y min, y max ξ and η direction in computational space

dx, dy RK The grid spacings in ξ and η direction

k max INT The maximum number of time steps

count INT Output to file after count time steps

dt RK Time step

Re RK The flow Reynolds number

gridnum INT Analytical or numerical conformal mapping

φ RK Turning angle of mean flow

Generic functions:
Generic function name Description

READ PARAMS reads data from file param.dat

4.3. Grid function module

Self defined data types for grid functions are of great advantage in context
with the staggered arrangement of variables in the computational grid. We
define grid functions for three different types of grids (u-, v-, p- nodes) which
have locally defined dimensions. In this way we achieve that index mismatches
are widely eliminated. A convenient way of handling a full solution field in
a (xy) plane is the use of the derived type GF VECTOR which combines a
U MATRIX a V MATRIX and two P MATRIX types (one for w and one for
p). (xz) planes are needed for computation of the FFTs and can be assigned
to XZVP MATRIX (v, w, p nodes) or XZU MATRIX types (u nodes). For a
specific variable we have the three-dimensional main storages U MATRIX3D,
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V MATRIX3D and P MATRIX3D (for w and p, respectively).

Note: Define for the following description of grid functions N as the number
of pressure grid points in ξ direction and M as the number of pressure grid
points in η direction, valid on a non-periodic grid. Nx, Ny are the local values
in the specific grid function, dependent on type and periodicity.

Derived data types: U MATRIX, V MATRIX, P MATRIX,
GF VECTOR, U MATRIX3D, V MATRIX3D,
P MATRIX3D, XZU MATRIX, XZVP MATRIX

U MATRIX
Contents Type Description

Nx, Ny INT Local number of grid points,
non-periodic: Nx=N+1, Ny=M
x-periodic: Nx=N-1, Ny=M,
y-periodic: Nx=N+1, Ny=M-1

W RK 2D array (Nx × Ny) of grid function values

V MATRIX

Contents Type Description

Nx, Ny INT Local number of grid points,
non-periodic Nx = N, Ny = M+1
x-periodic: Nx=N-1, Ny=M+1,
y-periodic: Nx=N, Ny=M-1

W RK 2D array (Nx × Ny) of grid function values

P MATRIX

Contents Type Description

Nx, Ny INT Local number of grid points,
non-periodic: Nx = N, Ny = M
x-periodic: Nx=N-1, Ny=M,
y-periodic: Nx=N, Ny=M-1

W RK 2D array (Nx × Ny) of grid function values

GF VECTOR
Contents Type Description

Nx, Ny INT Number of grid points, Nx = N, Ny = M
Dx, Dy RK Grid spacing in computational space
U U MATRIX 2D array on u-nodes
V V MATRIX 2D array on v-nodes
W W MATRIX 2D array on p-nodes
P P MATRIX 2D array on p-nodes
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U MATRIX3D
Contents Type Description

Nx, Ny INT Number of grid points, Nx = N+1, Ny = M
x-periodic: Nx=N-1, Ny=M, y-periodic: Nx=N+1, Ny=M-1

Nz INT Maximum spanwise wave number
W RK 3D array of grid function values

V MATRIX3D

Contents Type Description

Nx, Ny INT Number of grid points, Nx = N, Ny = M+1
x-periodic: Nx=N-1, Ny=M+1, y-periodic: Nx=N, Ny=M-1

Nz INT Maximum spanwise wave number
W RK 3D array of grid function values

P MATRIX3D

Contents Type Description

Nx, Ny INT Number of grid points, Nx = N, Ny = M
x-periodic: Nx=N-1, Ny=M, y-periodic: Nx=N, Ny=M-1

Nz INT Maximum spanwise wave number
W RK 3D array of grid function values

XZU MATRIX

Contents Type Description

Nx INT Number of grid points, Nx = N+1,
x-periodic: Nx=N-1, y-periodic: Nx=N+1

Nz INT Maximum spanwise wave number
W RK 2D array of grid function values

XZVP MATRIX
Contents Type Description

Nx INT Number of grid points, Nx = N,
x-periodic: Nx=N-1, y-periodic: Nx=N

Nz INT Maximum spanwise wave number
W RK 2D array of grid function values

Most of the generic functions listed here do work for all kinds of grid func-
tion types. The function ADD GF adds e.g. grid functions of types U MATRIX,
V MATRIX, P MATRIX or GF VECTOR dependent on which types are specified
as arguments. The allocation of memory for derived types is performed in the
generic CREATE GF routines and memory can be released in DESTROY GF. The
listed get and put functions are used to access the main storage.
Generic functions:
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Generic function name Description

CREATE GF allocates memory for any type of grid function
DESTROY GF deallocates memory for any type of grid function
WRITE GF save grid function to ascii file
READ GF read grid function from ascii file
SAVE GF save grid function to binary file
LOAD GF read grid function from binary file
ASSIGN GF perform Y = a, Y = X or Y = a X
ADD GF compute Y = X + a Y
ADD ACC GF compute Y = Y + a X
MULTIPLY GF compute Y = X * Z (point-wise multiplication)
NORM GF compute l2 norm of a grid function
DOTPROD GF compute dot product
INT GF interpolation between grid functions

by splines or Lagrange
GET XY get xy plane from 3D main storage
PUT XY put xy plane in 3D main storage
GET XZ get xz plane from 3D main storage
PUT XZ put xz plane in 3D main storage

4.4. Grid generation module

The task of this module is to provide the grid data for a specific simulation.
Since the geometries are described in two dimensions, it is not too memory
consuming to save the data statically in a derived type GRID. GRID includes the
physical node locations, the scale factors of the orthogonal transformation and
the necessary derivatives of the scale factors on the staggered locations. For a
specific geometry the grid data is initialized with the CREATE GRID function. For
grids generated with a numerical conformal mapping the staggered grid data
is read from file and all necessary scale factors are computed with compact
difference operators. For cases when analytical conformal mappings can be
found the grids are constructed in the grid generation module according to a
number of provided stretching functions in the ξ and η directions chosen at run
time level from the parameter input file.
Derived data types: GRID

GRID

Contents Type Description

UX, UY U MATRIX Physical grid on u nodes
UN1, UN2 U MATRIX Scale factors on u nodes
UN1 ETA, UN2 XI, UN2 ETA U MATRIX Derivatives of scale factors
VX, VY V MATRIX Physical grid on v nodes
VN1, VN2 V MATRIX Scale factors on v nodes
VN1 ETA, VN2 XI, VN2 ETA V MATRIX Derivatives of scale factors
PX, PY P MATRIX Physical grid on p nodes
PN1, PN2 P MATRIX Scale factors on p nodes
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Specific functions:

Function name Description

CREATE GRID creates the grid data
DESTROY GRID releases grid data memory

4.5. FFT module

The FFT module does not include derived data types. Generic interfaces exist
that compute the spanwise Fast Fourier Transform of a grid function in 3D
space. Those are applied to either u, v or p grid functions and step (xz)
plane wise through the 3D space. The three steps are: getting a (xz) plane,
compute the forward or backward FFT and then to put back the (xz) plane
to the main storage. This is what the generic functions INVFFT and FWDFFT
are constructed for. For computation of the right hand side we need also the
spanwise derivatives of grid functions. For this application a modified version
of INVFFT is of use. INVFFTD adds a spectral differentiation step after the (xz)
plane is picked from 3D space and before it the inverse Fourier transform is
performed.

Note, that in physical space we separate the data in odd and even points (in
the FFT direction), whereas in Fourier space, the data is explicitly decomposed
in real and imaginary parts.
Generic functions:

Generic function name Description

INVFFT inverse Fast Fourier Transform of 3D field
INVFFTD compute first spanwise derivative of 3D field and

then perform inverse Fast Fourier Transform
FWDFFT Fast Fourier Transform of 3D field

Specific functions:

Specific function name Description

VRFFTI initialisation of FFT routines
VRFFTF forward FFT of 2D field in one dimension
VRFFTB backward FFT of 2D field in one dimension

The routines INVFFT, INVFFTD and FWDFFT call the routines VRFFTF and VRFFTB
in each xz plane for forward or inverse Fourier transformation, respectively.
Those where used in e.g. Lundbladh et al. (1992). VRFFTF and VRFFTB can
separately be used for e.g. transformation of boundary conditions.

4.6. Compdiff module

In this module the discretization coefficients and algorithms are provided for so-
lution of the tridiagonal systems that are obtained from the implicit or compact
formulation of space derivatives. Note that also the Padé form of interpolations
ends in the same type of linear system. In general we have to solve a linear
system

Pf ′ = Qf, (109)
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where P is a tridiagonal matrix. Dependent on boundary conditions and peri-
odicity the first and last row entries in P may differ. In the case of non-periodic
boundary conditions and for a fully symmetric system matrix the derived type
SYM TRI OP can be used. TRI OP describes a general non-periodic, symmetric
or non-symmetric tridiagonal matrix P . The periodic counterpart to TRI OP
is the PER TRI OP type, where the matrix has entries in the lower left and the
upper right corner. Dependent on the matrix type, different solution routines
are chosen for the system (109). The right hand side matrix Q is saved in a sim-
ple sparse format and does in the same way depend on periodicity. DIFF OP
and PER DIFF OP are the operators that match TRI OP and PER TRI OP.
For computation of 6th order Padé interpolations, we use PER DIFF OP 6 and
DIFF OP 2.
Any kind of operator can be created or destroyed with the generic functions
CREATE COMPDIFF and DESTROY COMPDIFF. Creating a high order operator in-
cludes computing the LU factorization of the matrix. The factors are saved in
the diagonal and the sub- and super-diagonal for the general TRI OP type and
in the diagonal and sub-diagonal for the SYM TRI OP type. When periodic
operators are used, the system matrix is divided in blocks according to figure
9.

Figure 9. Periodic system matrix

The system can then be written in the form

(
A1 A2
A3 A4

)(
x1
x2

)
=

(
b1
b2

)
, (110)

The algorithm rewrites the system as

x1 + A1−1A2x2 = A1−1b1
A3x1 + A4x2 = b2

Solving the first equation for x1 in terms of x2 and putting it into the second
equation leads to an explicit equation for x2.

Generally all the systems of type (109) are solved in two steps

b = Qf (111)
solve: Pf ′ = b (112)

Derived data types: SYM TRI OP, TRI OP, PER TRI OP, DIFF OP,
DIFF OP 2, PER DIFF OP, PER DIFF OP 6
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SYM TRI OP
Contents Type Description

TYPE CHAR Operator P in symmetric Padé system Pf ′ = Qf
dependent on order of derivative and staggered/nonstagg.

N INT Size of the tridiagonal linear system
D, E RK 1D arrays, D: diagonal, E: super-diagonal of tridiag. system

TRI OP

Contents Type Description

TYPE CHAR Operator P in Padé system Pf ′ = Qf
dependent on order of derivative and staggered/nonstagg.

N INT Size of the tridiagonal linear system
DL, D, RK 1D arrays, DL: sub-diagonal D: diagonal, DU: super-diag.,
DU, DU2 DU2: second super-diagonal of tridiagonal system

PER TRI OP
Contents Type Description

TYPE CHAR Operator P in periodic Padé system Pf ′ = Qf
dependent on order of derivative and staggered/nonstagg.

N INT Size of the periodic tridiagonal linear system
A1, A2, A3 RK 1D arrays, A1: sub-diagonal A2: diagonal, A3: super-diag.
WORK2, RK
WORK3 1D arrays, work space for split of system matrix
WORK4 RK Work space, one matrix element

DIFF OP

Contents Type Description

A RK Operator Q in non-periodic Padé system Pf ′ = Qf
stored in 5 × 3 array

I0, I1, I INT Help 1D arrays of length 3

DIFF OP 2
Contents Type Description

A RK Operator E2 in non-periodic Padé interpolation E1fi = E2f
stored in 5 × 6 array

I0, I1, I INT Help 1D arrays of length 5

PER DIFF OP
Contents Type Description

A RK Operator Q in periodic Padé system Pf ′ = Qf
stored in 1D array of length 3

I0, I1, I INT Help values

PER DIFF OP 6
Contents Type Description

A RK Operator E2 in periodic Padé interpolation E1fi = E2f
stored in 1D array of length 5

I0, I1, I INT Help values
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Both of the two steps (111, 112) are performed by one single generic rou-
tine APPLY COMPDIFF. Step 1 is a sparse matrix vector multiplication with the
matrix Q stored in arrays with either 3, 5 or 1 rows dependent on which type
is needed. 1 row of coefficients is sufficient in the case of periodic operators.
3 rows are used in all 4th order operators. 5 rows are needed in the 6th order
interpolations. Step 2 performs the the solution of the tridiagonal system by
application of the LU factors of the system matrix.
Generic functions:

Generic function name Description

CREATE COMPDIFF creates any derived operator type
DESTROY COMPDIFF releases memory of any derived operator type
APPLY COMPDIFF two specific types of functions are involved

MULTIPLY: sparse matrix-vector multiplication
b = Bf in Padé system Af ′ = Bf
SOLVE: solution of the system Af ′ = b by
forward/bwd substitution using the LU factors

4.7. PDE module

The PDE module stands for discretization of the partial differential equations,
that describe the physics. Here, we define two essential data types. M MATRIX
contains the compact difference operators that are necessary for computation
of the linear part of (70), i.e. the matrix-vector multiplication M x, where x is
an arbitrary solution vector.

The difference operators needed for construction of the right hand side b
in (70) are available in the N OPERATOR. The types of the specific difference
operators in M MATRIX and N OPERATOR change when periodic directions
are defined as listed in the tables.

Creator and destructor routines exist for M MATRIX and N OPERATOR.
The M MATRIX type is used in the routines COMPUTE D0 D1 for computation
of the divergence in curvilinear 2D space, in COMPUTE G, that determines the
gradient of the pressure, in COMPUTE A0 A1 G for computation of the Laplace
term and the pressure gradient and in the generic function COMPUTE A0 A1
which computes the Laplace term for either (u, v)T or (w)T .

The N OPERATOR is applied in the routine COMPUTE NLIN, which is an
interface for computation of the right hand side by advancing (xy) plane-wise
through the 3D domain. COMPUTE NLIN calls the routine COMPUTE RHS which
computes the right hand side in a particular (xy) plane. COMPUTE RHS itself
is generic and depends on the choice of backward difference scheme for time
integration (BDF-1 or BDF-2).

Furthermore, we have the generic interpolation routine INT PADE6. It uses
6th order accurate Padé schemes to interpolate between any grid locations. For
interpolation from u to v locations and vice versa two Padé solutions are called,
since the interpolation works via p locations.



60 Arnim Brüger et al.

Derived data types: M MATRIX, N OPERATOR

M MATRIX
Contents Type Description

AN INT Number of coefficients for extrapolation
of boundary data

A RK 1D array, size AN. High order coefficients for extrapolation
of boundary data

UN INT Number of coefficients for Neumann
boundary condition, staggered

BC OUT U RK 1D array, size UN,
coefficients for Neumann boundary condition, staggered

VN INT Number of coefficients for Neumann
boundary condition, collocated

BC OUT V RK 1D array, size VN,
coefficients for Neumann boundary condition, colloc.

non-periodic

PUx, PVx TRI OP 1st derivative, collocated, u/v nodes, x dir.
PUy, PVy TRI OP 1st derivative, collocated, u/v nodes, y dir.
PPx, PPy TRI OP 1st derivative, collocated, w/p nodes, x/y dir.
RUx, RVx TRI OP 2nd derivative, collocated, u/v nodes, x dir.
RUy, RVy TRI OP 2nd derivative, collocated, u/v nodes, y dir.
GUx TRI OP 1st derivative, staggered, p nodes, x dir.
GVy TRI OP 1st derivative, staggered, p nodes, y dir.
GPx TRI OP 1st derivative, staggered, u nodes, x dir.
GPy TRI OP 1st derivative, staggered, v nodes, y dir.
UF0, VF0 TRI OP Interpolation, p/w nodes, from u/v nodes
UE0, VE0 TRI OP Interpolation, u/v nodes, from p/w nodes
QUx, QVx DIFF OP 1st derivative, collocated, u/v nodes, x dir.
QUy, QVy DIFF OP 1st derivative, collocated, u/v nodes, y dir.
QPx, QPy DIFF OP 1st derivative, collocated, (p/w) nodes, x/y dir.
SUx, SVx DIFF OP 2nd derivative, collocated, u/v nodes, x dir.
SUy, SVy DIFF OP 2nd derivative, collocated, u/v nodes, y dir.
HUx DIFF OP 1st derivative, staggered, u → p/w nodes, x dir.
HVy DIFF OP 1st derivative, staggered, v → p/w nodes, y dir.
HPx DIFF OP 1st derivative, staggered, p → u nodes, x dir.
HPy DIFF OP 1st derivative, staggered, p → v nodes, y dir.
UF1, VF1 DIFF OP Interpolation, u/v nodes, to p/w nodes
UE1, VE1 DIFF OP 2 Interpolation, p/w nodes, to u/v nodes
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ξ-periodic

PUx, PVx PER TRI OP 1st derivative, collocated, u/v nodes, x dir.
PUy, PVy TRI OP 1st derivative, collocated, u/v nodes, y dir.
PPx PER TRI OP 1st derivative, collocated, w/p nodes, x dir.
PPy TRI OP 1st derivative, collocated, w/p nodes, y dir.
RUx, RVx PER TRI OP 2nd derivative, collocated, u/v nodes, x dir.
RUy, RVy TRI OP 2nd derivative, collocated, u/v nodes, y dir.
GUx PER TRI OP 1st derivative, staggered, p nodes, x dir.
GVy TRI OP 1st derivative, staggered, p nodes, y dir.
GPx PER TRI OP 1st derivative, staggered, u nodes, x dir.
GPy TRI OP 1st derivative, staggered, v nodes, y dir.
UF0 PER TRI OP Interpolation, p/w nodes, from u nodes
VF0 TRI OP Interpolation, p/w nodes, from v nodes
UE0 PER TRI OP Interpolation, u nodes, from p/w nodes
VE0 TRI OP Interpolation, v nodes, from p/w nodes
QUx, QVx PER DIFF OP 1st derivative, collocated, u/v nodes, x dir.
QUy, QVy DIFF OP 1st derivative, collocated, u/v nodes, y dir.
QPx PER DIFF OP 1st derivative, collocated, p/w nodes, x dir.
QPy DIFF OP 1st derivative, collocated, p/w nodes, y dir.
SUx, SVx PER DIFF OP 2nd derivative, collocated, u/v nodes, x dir.
SUy, SVy DIFF OP 2nd derivative, collocated, u/v nodes, y dir.
HUx PER DIFF OP 1st derivative, staggered, u → p/w nodes, x dir.
HVy DIFF OP 1st derivative, staggered, v → p/w nodes, y dir.
HPx PER DIFF OP 1st derivative, staggered, p → u nodes, x dir.
HPy DIFF OP 1st derivative, staggered, p → v nodes, y dir.
UF1 PER DIFF OP 6 Interpolation, u nodes, to p/w nodes
VF1 DIFF OP Interpolation, v nodes, to p/w nodes
UE1 PER DIFF OP 6 Interpolation, p/w nodes, to u nodes
VE1 DIFF OP 2 Interpolation, p/w nodes, to v nodes

periodic η operators definied in a similar manner

N OPERATOR

non-periodic

Contents Type Description

PUx, PVx TRI OP 1st derivative, collocated, u/v nodes, x dir.
PUy, PVy TRI OP 1st derivative, collocated, u/v nodes, y dir.
PPx, PPy TRI OP 1st derivative, collocated, w/p nodes, x/y dir.
UF0, VF0 TRI OP Interpolation, p/w nodes, from u/v nodes
UE0, VE0 TRI OP Interpolation, u/v nodes, from p/w nodes
QUx, QVx DIFF OP 1st derivative, collocated, u/v nodes, x dir.
QUy, QVy DIFF OP 1st derivative, collocated, u/v nodes, y dir.
QPx, QPy DIFF OP 1st derivative, collocated, (p/w) nodes, x/y dir.
UF1, VF1 DIFF OP Interpolation, u/v nodes, to p/w nodes
UE1, VE1 DIFF OP 2 Interpolation, p/w nodes, to u/v nodes

ξ and η periodic operators defined
in similar manner as in M MATRIX type

Generic functions:
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Generic function name Description

INT PADE6 6th order Padé interpolation
between any staggered grid locations

COMPUTE RHS compute rhs of linear system ( BDF-2 or BDF-1)
COMPUTE A0 A1 compute the Laplace term including the diagonal term

from the time derivative, works for (u, v)
and (w) part of solution vector

Specific functions:

Specific function name Description

CREATE M MATRIX create high order operators in system matrix
DESTROY M MATRIX release all high order operators in system matrix
CREATE N OPERATOR create all necessary high order operators for rhs
DESTROY N OPERATOR release all high order operators for right hand side
NUMINT numerical integration routine
COMPUTE D0 D1 compute the divergence of a velocity field (u,v)
COMPUTE G compute the pressure gradient
COMPUTE A0 A1 G compute the Laplace term including the diagonal

term and the pressure gradient (u,v)
COMPUTE NLIN compute the rhs of the 3D system of equations:

pick xy plane, compute rhs, put back xy plane
RHS INT replaces the boundary condition in the right hand side

by the integral formulation for the β = 0 case
SET BC set boundary conditions in physical space
VEL INIT create initial velocity field

4.8. Solve module

This module contains the routines necessary to iteratively solve the linear sys-
tem (65). For convenience, we define the type PRECOND that contains the
time independent data used in the solvers.

In PRECOND we have the convergence tolerances and iteration limits for
the outer iteration, the solution of the A systems and the DG systems. The
criterion controls both the real and the imaginary solvers.

Further on, the data for the incomplete LU factorization of the DG sys-
tem matrix is provided. The factorization of the DG matrix can be based on
a 2nd or 4th order discretization of the Laplace operator and is saved as its
LU factors. The approximation of the DG matrix depends on periodicity in
ξ or η direction and of the spanwise wavenumber. The explicit setup of DG
is performed in modified sparse row format (MSR), while the LU factors are
returned in compressed sparse row format (CSR). CSR is also the format ap-
plied in the algorithm computing the forward backward substitution using the
LU factorization. In the PRECOND type we also choose between fixed point
iteration and Bi-CGSTAB solution routine for the A systems. LU factors of
the A system matrices are based on either γI (cf. (88)) or explicit 2nd order
approximation of (72) in a similar manner as for the DG matrix.
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We also save the LU factorization of the C matrix (see 3.5.6), which is con-
stant in time. C holds the coefficients of the boundary extrapolation and bound-
ary conditions that act on the outer boundary locations. The PRECOND type
is created and released by the routines CREATE PRECOND and DESTROY PRECOND.

The routines used in the solution algorithm are COMPUTE LIN for (xy) plane
wise solution of the linear system. COMPUTE LIN calls SOLVE3D in a particular
(xy) plane and its corresponding wavenumber. SOLVE3D itself performs the
outer iteration algorithm, which calls the generic solver routine SOLVE A SYS.
It is applied to the solution of both the (u, v) and the (w) velocity prediction.
The second system to solve is the pressure-Poisson system (102) for which the
routine BICGSTAB3 is used. In the Bi-CGSTAB algorithm we need to solve
systems of the type DGx = b with the help of the incomplete LU factors of
DG. The corresponding routine is DG ILU SOLVE.

Since the solution algorithm uses the form reduced by the boundary con-
ditions, we need routines for inversion of C and application of A2. Here, we
provide routines for the matrix vector products C−1x and A2x named INV C
and COMPUTE A2.
Derived data types: PRECOND
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PRECOND
Contents Type Description

MAXIT INT Outer iteration: maximum number of iterations
TOL RK Outer iteration: convergence tolerance
TOL TYPE INT Outer iteration: absolute/relative error
GAMMA RK Preconditioning factor (cf. (88))
A MAXIT INT A systems: maximum number of iterations
A TOL RK A systems: convergence tolerance
A TOL TYPE INT A systems: absolute/relative error
A SOL TYPE INT A systems: simple iteration or Bi-CGSTAB
A ILU TYPE INT ILU for A: choice of factorization algorithm
A EPS RK ILU for A: drop threshold for 2nd order ILU
A TYPE INT ILU for A: swith on and off 2nd order Laplace appr.
DG MAXIT INT DG systems: maximum number of iterations
DG TOL RK DG systems: convergence tolerance
DG TOL TYPE INT DG systems: absolute/relative error
DG TYPE INT ILU for DG: switch 2nd or 4th order Laplace appr.
DG NNZ INT ILU for DG: number of non-zero elements in DG

appr.
DG EPS RK ILU for DG: drop threshold in 4th order ILU
ILU TYPE INT ILU for DG: choice of factorization algorithm
ALU, JLU RK ILU: matrix stored in MSR format
AU ALU, AU JLU RK ILU for Au: matrix stored in MSR format
AV ALV, AV JLV RK ILU for Av: matrix stored in MSR format
AW ALW, AW JLW RK ILU for Aw: matrix stored in MSR format
NNZ INT ILU: length of ALU
JU INT ILU: array holding the pointers to rows of U
IPERM INT ILU: permutation array
DROPTOL RK ILU: threshold for dropping small terms
LFIL INT ILU: fill in parameter for L and U
ALPHA RK ILU: diagonal compensation factor
PERMTOL RK ILU: permutation tolerance (0: never permute)
NC INT Size of boundary value matrix C
CLU RK LU factorization of C stored in 2D array
CPIV INT Pivoting array for LU factorzation of C

Generic functions:

Generic function name Description

SOLVE B compute update in fixed point iteration (A system)
CREATE PRECOND create the preconditioner
DESTROY PRECOND release the preconditioner
SOLVE A SYS solve A system with fixed point iteration
A ILU SOLVE solve sysmtems Ay = b

in Bi-CGStab with ILU factors of A
INV C compute C−1x
NEG BC change sign of boundary data
COMPUTE A2 compute A2x

Specific functions:
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Specific function name Description

COMPUTE LIN solve entire linear system by stepping
xy plane wise through the 3D space

SOLVE3D solve linear system with
outer iteration scheme in xy plane

BICGSTAB3 solve pressure Poisson system with Bi-CGStab
DG ILU SOLVE solve system DGy = b

in Bi-CGStab with ILU factors of DG
COPY BC copy boundary data from a GF VECTOR to

another GF VECTOR
ADD UV INTERIOR the operation Z = aX + b Y is performed

for the interior velocity data (u,v) in a GF VECTOR
ADD W INTERIOR the operation Z = aX + b Y is performed

for the interior velocity data (w) in a P MATRIX
COMPUTE E compute the integral pressure condition that

replaces a velocity condition in one point

5. Operation

5.1. Compilation

Due to the modular structure of the implementation, the correct order in which
the modules are compiled is of importance. A top level makefile exists which
includes a preprocessor file (’preprocessing.pde’) and a makefile definitions file
(’makefile.defs’). The definition file varies with the platform on which the code
is compiled. A number of those is provided in the package. Especially the flags
for compilation of the modules may vary on different systems.

The modules are to be compiled in the sequence

1. parameter module
2. gf module
3. fft module
4. compdiff module
5. grid module
6. pde module
7. solve module
8. frhs module
9. main

The module frhs module is for inclusion of right hand side forcing terms and
is not described here.

In Fortran90 the most convenient way to specify the precision of float pa-
rameters is in the code, which makes an explicit specification of double precision
in a compiler flag unnecessary. Floats are in the implementation throughout
declared with the Fortran90 KIND command. Note that all assigned values
for parameters declared with KIND need to be marked with the corresponding
KIND suffix. Otherwise the variable might be reset to standard single precision.
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5.1.1. Preprocessing

In order to choose different source code portions the Fortran preprocessor is
used. When changes in the preprocessor are carried out, the code has to be re-
compiled entirely. The preprocessor specifications are therefore very essential
and have in general not to be changed under a set of simulations with a specific
problem.

The parameters in the preprocessor are COMP DIFF 44 for selection of
compact operators of either 4th order in the complete domain or of 4th or-
der accuracy in the interior and 3rd order at the boundaries, BC TYPE for
determining the inflow/outflow conditions and PER TYPE for specification of
periodicity.

Preprocessor flag Value Description

COMP DIFF 44 0 interior: 4th order accurate, boundary: 3rd order
1 interior: 4th order accurate, boundary: 4th order

BC TYPE 0 inflow: Dirichlet, outflow: Dirichlet
1 inflow: Dirichlet, outflow: Neumann
2 inflow: Dirichlet, outflow: convective

PER TYPE 0 ξ: non-periodic, η: non-periodic
1 ξ: periodic, η: non-periodic
2 ξ: non-periodic, η: periodic

5.2. Complex numbers

The main part of the code performs operations in Fourier space. Hence, it is
necessary to store both real and imaginary parts of the transformed quantities.
For performance reasons it is not advisable to use the complex data type pro-
vided by Fortran. Instead, complex numbers are stored in separate arrays for
the real and imaginary parts.

Recall that the system matrices appearing in the solution routines are real.
Therefore, we have duplicative calls of the A and DG systems to determine the
real and the imaginary solution.

5.3. To set boundary conditions

Boundary conditions are set in physical space. Together with the right hand
side they are transformed to Fourier space. There, the integrals are computed
for the zero wavenumber as described in section 2.9. The integral should always
be applied to the velocity component which is normal to the boundary. If one
periodic direction is used the integral condition is set on a boundary normal to
the periodic direction, see for example St̊alberg et al. (2004).
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Figure 10. Convergence in outer iterations dependent on
wavenumber, problem size 41× 41

5.4. Execution

5.4.1. Execution time

The major time consumption per time step is due to the solution of the pressure-
Poisson system. In addition, the work load is not independent of the wavenum-
ber. It turns out that the zero wavenumber is the one demanding most work.
All wavenumbers �= 0 give a contribution to the diagonal of the DG matrix.

Figure 10 shows the result from a solver test with a random right hand side
at R = 500 and problem size N ×M = 41× 41. The outer iterations converge
uniformly.

The A systems need 5 iterations with fixed point iteration scheme at all
wavenumbers and independently of the outer iteration. Figure 11 gives a clue
about how much more work has to be done for the zero wavenumber.

The data shown in figure 11 are taken from the real solvers. The imaginary
parts converge similarly.

5.4.2. Incomplete LU factorization

The DG system is solved with the Bi-CGSTAB routine, see Greenbaum (1997)
and van der Vorst (1992), preconditioned with incomplete LU factors (ILU)
based on an explicit second 2nd order accurate representation of the DG ma-
trix.
For the A systems the user has to choose between fixed point iteration and
an ILU preconditioned Bi-CGSTAB routine. The preconditioner for the fixed
point iteration scheme is γI, see (88).
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Figure 11. Convergence in pressure Poisson system depen-
dent on wavenumber, problem size 41× 41

The DG and A systems matrices depends on the square of the spanwise wavenum-
bers which enters the diagonal as an additive constant multiplied with a factor
containing the time step. Hence, the systems becomes more diagonally domi-
nant with increasing wavenumber.
The main parameters for ILU preconditioning of the A (99), (100) and DG
systems (102) are

i the number of ILU decompositions
ii the drop tolerance for small terms.

For optimal solutions ILU decompositions should be provided for each wavenum-
ber β. If this is possible depends primary on the spanwise resolution and on
how much memory may be used. An alternative is to share ILU factorizations
for some wavenumbers. For the smaller wavenumbers, the exact factorizations
should preferably be used. Elements smaller than the drop tolerance are ne-
glected in the ILU factors of the system matrices. A small tolerance results
in a good approximation and will sustain fast convergence but at the cost of
increased memory consumption.

5.4.3. Iterative solvers for the A systems

The time step at a certain simulation should be chosen so that the time in-
tegration is accurate enough, stable and quick convergence of iterative solvers
is achieved. At certain conditions the maximum time step can be limited by
the fixed point iteration scheme, see section 3.5.2. The Bi-CGSTAB routine is
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less restrictive in terms of the maximum time step and allows the use of time
steps close to the theoretical stability limit if this is considered to be accurate
enough.

In order to approximate the maximum time step in a general physical
domain with ∆x �= ∆y such that the time integration is stable the curves in
figure 2.4 are approximated by

f(θ) =

{
3
2

(
θ
2

)1/2
, θ < 2

5
6 + θ

3 , θ ≥ 2 .
(113)

However, the curves in figure 2.4 are computed on an equidistant grid and with

θ =
∆t

R (max(∆x, ∆y))2
(114)

the curves are favourable, i.e. the stability region is greater than in figure 2.4.
According to the Fourier analysis in Kress & Lötstedt (2004) the time integra-
tion is stable if (

u∆t

∆x

)2

+
(

v∆t

∆y

)2

≤ f2(θ). (115)

The maximum time step in each cell is then

(∆tmax)ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

9

8 R ( max[ (∆x)ij , (∆y)ij ] )2 c2
ij

, θ < 2

5

6 cij − 2
R ( max[ (∆x)ij , (∆y)ij ] )2

, θ ≥ 2 .
(116)

where

c2
ij =

(
uij

(∆x)ij

)2

+
(

vij

(∆y)ij

)2

. (117)

If the denominator in (116) for θ ≥ 2 is negative there is no bound on
(∆tmax)ij . The time integration is stable if ∆t < min[(∆tmax)ij ]. As a com-
parative study using the different iterative solvers for the A systems we consider
straight and constricting channel flow, see figure 12.

For the straight channel the in- and outflow boundary conditions are Poi-
seuille profiles rotated π/4 around the y-axis in order to achieve nonzero span-
wise velocity. The Nx × Ny × Nz = 81 × 41 × 2 grid is equidistant in the
streamwise direction x with spacing ∆x = 6.25 · 10−2 and in the wall normal
direction a hyperbolic stretching function is applied with minimum spacing
min[(∆y)ij ] = 1.70 · 10−3.

A constricting channel geometry is used as an example of a curvilinear grid,
see De A Mancera & Hunt (1997) and Brüger et al. (2002). The grid size is
Nx × Ny × Nz = 81 × 81 × 2 and the minimum mesh spacing in the x and y
directions are min[(∆x)ij ] = 3.69 ·10−1 and min[(∆y)ij ] = 8.70 ·10−3. In order
to study the impact of different boundary conditions two cases are studied.
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Figure 12. Geometries used for comparative study of differ-
ent iterative solvers for the A systems.

The first uses Dirichlet Poiseuille profiles on both in- and outflow boundaries
rotated π/4 around the y-axis. The second case has a Poiseuille profile with
zero w component as inflow condition and a Neumann outflow condition, i.e.
the streamwise derivatives of the velocity components are set to 0.

The Reynolds number is R = 100 in all numerical experiments and a sim-
ulation is considered as stable if the solvers converge to the specified tolerance
under 2000 time steps without visible instabilities in the solution. The conver-
gence tolerance is 10−9 in both inner (A and DG) and outer iterations. The
initial velocity and pressure fields are zero in all numerical experiments. In
addition to the maximum time step ∆tmax we measure the number of iter-
ations in the A systems (99) and (100) necessary to converge to the desired
tolerance. The computational cost is expressed in wall clock time (wct) for the
simulations normalized by wall clock time for the fixed point iteration alter-
native. The convergence of the DG system is here unaffected by the choice of
iterative solver for the A systems. Furthermore, we use wct/∆tmax as efficiency
measure, where wct/∆tmax for the fixed point iteration alternative is used as
normalization.

The fixed point iteration scheme is preconditioned with γI, see (88). As
preconditioning for the Bi-CGSTAB alternatives for the A systems we use
two different alternatives, A and B. Alternative A is based on ILU of the
explicit 2nd order representation of 3/2I + ∆tβ2/RI and alternative B is for
3/2I + ∆tβ2/RI −∆t/RL. Table 1 shows the results for the straight channel
case. The maximum time step based on the approximation (116) for the steady
state solution is min[(∆t)ij ] = 1.9 · 10−2. The fixed point iteration scheme
imposes a severe limitation on ∆tmax but the Bi-CGSTAB allow for time step
close to the stability criterion (116). B is the most efficient alternative for the
straight channel as a consequence of a better preconditioning. However, by
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Iterative solver
Fixed point iteration Bi-CGSTAB Bi-CGSTAB

A B
∆tmax 9.0 · 10−5 2.5 · 10−2 2.5 · 10−2

Ây1 = r1 iterations 44 60 37
ˆ̃Ayw = rw iterations 5 65 27
Relative wct 1.0 1.4 1.2
Relative (wct/∆tmax) 1.0 4.9 · 10−3 4.5 · 10−3

Table 1. Study of maximum time step and timing charac-
teristics using different iterative solvers for the A systems.
Straight channel with rotated Poiseuille profiles as in- and out-
flow boundary conditions.

Iterative solver
Fixed point iteration Bi-CGSTAB Bi-CGSTAB

A B
∆tmax 1.7 · 10−3 1.5 · 10−2 1.5 · 10−2

Ây1 = r1 iterations 43 14 29
ˆ̃Ayw = rw iterations 14 11 20
Relative wct 1.0 9.3 · 10−1 1.1
Relative (wct/∆tmax) 1.0 1.1 · 10−1 1.2 · 10−1

Table 2. Study of maximum time step and timing charac-
teristics using different iterative solvers for the A systems.
Constricting channel with rotated Poiseuille profiles as in- and
outflow boundary conditions.

slightly decreasing the time step in alternative A the number of iterations in
the A systems will decrease resulting in lower wct.

For constricting channel we do not get the same increase in maximum time
step using the Bi-CGSTAB routine as for the straight channel since the stability
criterion (116) is closer to the stability limit for the fixed point iteration scheme,
see table 2 and 3. The maximum time step based on (116) is ∆tmax = 1.1 ·10−2

for the case with tilted Poiseuille profiles as in- and outflow boundary conditions
and ∆tmax = 7.2 · 10−3 for the Neumann outflow boundary condition case. In
this curvilinear geometry the preconditioning applied in A result in the most
efficient alternative.
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Iterative solver
Fixed point iteration Bi-CGSTAB Bi-CGSTAB

A B
∆tmax 1.7 · 10−3 1.0 · 10−2 1.0 · 10−2

Ây1 = r1 iterations 46 11 24
ˆ̃Ayw = rw iterations 0 0 0
Relative wct 1.0 9.2 · 10−1 1.0
Relative (wct/∆tmax) 1.0 1.6 · 10−1 1.7 · 10−1

Table 3. Study of maximum time step and timing charac-
teristics using different iterative solvers for the A systems.
Constricting channel with Poiseuille profile as inflow boundary
condition and Neumann condition on outflow boundary.
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A high order method is applied to time dependent incompressible flow around
a circular cylinder geometry. The space discretization employs compact fourth
order difference operators. In time we discretize with a second order semi-
implicit scheme. A large linear system of equations is solved in each time
step by a combination of outer and inner iterations. An approximate block
factorization of the system matrix is used for preconditioning. Well posed
boundary conditions are obtained by an integral formulation of boundary data
including a condition on the pressure. Two-dimensional flow around a circular
cylinder is studied for Reynolds numbers in the range 7 ≤ R ≤ 180. The results
agree very well with the data known from numerical and experimental studies
in the literature.

1. Introduction

High order finite difference methods have become a powerful tool for accu-
rate solution of the Navier–Stokes equations. In comparison with e.g. spec-
tral methods the decisive advantage is that non-trivial geometries can be de-
scribed by suitable coordinate transformations. Our aim is to validate such
a high order difference method with incompressible, time dependent flow past
a two-dimensional circular cylinder. For recent reviews of high order tech-
niques see Brüger et al. (2005), Piller & Stalio (2004). In fluid dynamics most
high order methods are developed for simulation of turbulent flow where accu-
racy and efficiency become particularly important. This is also the intention
with the present method which has been extended to three dimensions by a
Fourier expansion, see Brüger et al. (2004). In our case where the considered
geometries of the boundaries are of not too complicated shape, an accurate and
efficient method is to provide an orthogonal mapping from the physical to the
Cartesian computational domain. In that way the number of terms to evaluate
is reduced. The spatial derivatives are approximated by compact high order

1Department of Mechanics, KTH, SE-10044 Stockholm, Sweden
2Department of Information Technology, Division of Scientific Computing, Uppsala Univer-
sity, SE-75105 Uppsala, Sweden.
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difference operators. Parasitic oscillations in the pressure are inhibited by a
staggered grid arrangement of the unknowns. A semi-implicit second order ac-
curate time integration method is chosen in order to avoid the implicit solution
of non-linear equations. A well posed system of equations is achieved by a novel
formulation of the boundary conditions where one condition on the velocities
is substituted by a condition on the pressure. Considerable effort is devoted to
the construction of the solution algorithm. A combination of outer and inner
iterations is applied to solve the linear system of equations in each time step.
The outer iteration is preconditioned by an approximate block LU factorization
of the system matrix. The advantages over classical fractional step methods
are that the solution procedure does not require extra intermediate boundary
conditions and that second order time accurate pressure solutions can be ob-
tained. In Brüger et al. (2005) the iterative method is described and tested
for curvilinear geometries and the order of accuracy of the discretization is ex-
perimentally demonstrated. A description of the three-dimensional method is
found in Brüger et al. (2004).

Flow around circular cylinders is a test case widely used to validate nu-
merical methods. Numerous experimental, numerical and analytical studies
exist for both laminar and turbulent flows, see Roshko (1954) and Braza et al.
(1986).

2. Space and time discretization

We consider the equations that describe two-dimensional incompressible flow.
Denote the velocity components as u, v and p as the pressure. The Reynolds
number, R = U∞ d/ν, is obtained with the cylinder diameter d as length scale,
the far field velocity U∞ and kinematic viscosity ν. With v = (u v)T we arrive
at the non-dimensionalized incompressible Navier–Stokes equations

vt + N(v) + L(v, p) = 0, ∇ · v = 0 (1)
with the nonlinear and linear terms

N(v) = (v · ∇)v, L(v, p) = ∇p−R−1∆v.

A subscript in (1) denotes differentiation. The equations (1) are discretized
in time by extrapolation of the nonlinear terms N(v) from the levels tn−1

and tn to tn+1 and applying the second order backward differentiation formula
(BDF-2) to vt and L(v, p) at tn+1 to obtain

3
2
vn+1 + ∆tL(v, p)n+1 = 2vn − 1

2
vn−1 −∆t(2N(vn)−N(vn−1)). (2)

In addition to (2), vn+1 satisfies the discrete form of the divergence equation
in (1). The result is a linear system of equations to solve for vn+1 and pn+1 in
every time step. The method allows mapping of the equations from physical
space (x, y) into computational space (ξ, η) through an orthogonal transforma-
tion. The velocity components are defined locally in the coordinate directions
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ξ and η, respectively. A staggered grid type is used for discretization of the
transformed system of partial differential equations. With this formulation the
structure of the equations is similar to the Cartesian case, especially for the
gradient terms and the divergence, i.e.

∇pT =
(

1
n1

pξ,
1
n2

pη

)
, ∇ · v =

1
n1n2

(
∂

∂ξ
(n2u) +

∂

∂η
(n1v)

)
,

where n1 =
√

x2
ξ + y2

ξ and n2 =
√

x2
η + y2

η are the scale factors of the trans-
formation. However, the Laplace part becomes more complicated including
also first order derivatives. Two different fourth order compact operators are
defined, see Lele (1992), one for regular grids (3) and one for staggered grids
(4). For a function f and grid spacing h, we have the formulas

1
6
f ′

i−1 +
2
3
f ′

i +
1
6
f ′

i+1 =
1
2h

(fi+1 − fi−1), (3)

1
24

f ′
i−1 +

11
12

f ′
i +

1
24

f ′
i+1 =

1
h

(fi+1/2 − fi−1/2). (4)

No boundary conditions are available for the derivatives, and there we use
one-sided stencils, see Brüger et al. (2005). The grids used in the present
simulations have one periodic coordinate direction where the corresponding
solution routines are replaced by solvers with periodic tridiagonal matrices.
For interpolation between any positions in the staggered grid compact schemes
are used. For more details of the discretization method see Brüger et al. (2005)
and Brüger et al. (2002).

3. Well posed boundary conditions

The difficulty in specifying boundary conditions for the incompressible Navier–
Stokes equations in divergence form is discussed in Kress & Nilsson (2003).
The analysis reveals that we over-determine the prescription of velocity data,
while a condition on the pressure is lacking when solely velocities are specified
as boundary conditions.

We apply the approach of Kress & Nilsson (2003) to the circular cylin-
der case. By an integral formulation of velocity data one degree of freedom
is released that is replaced by a condition on the pressure. Due to the peri-
odicity of the azimuthal coordinate direction, boundary conditions are set on
the cylinder wall and on the farfield boundary only. In the computational do-
main Ω = {(ξ, η) ∈ [ξ0 ξ1]× [η0 η1]} the continuous formulation of Dirichlet
boundary conditions is
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u(ξ, η0) = u0(ξ), v(ξ, η0)− 1
lc

∫ ξ1

ξ0

v(ξ, η0)dξ = wc(ξ), (5)

u(ξ, η1) = u1(ξ), v(ξ, η1) = v1(ξ), (6)∫ ξ1

ξ0

v(ξ, η0)dξ +
∫ ξ1

ξ0

p(ξ, η0)dξ = pc , (7)

where
∫ ξ1

ξ0
wc(ξ)dξ = 0, pc is an arbitrary constant and lc =

∫ ξ1

ξ0
dξ. η = η0

and η = η1 correspond to boundaries on the cylinder wall and at the farfield
of the physical grid. Note that in the implementation condition (7) substitutes
condition (5) in one v point. Further discussion of similar types of boundary
conditions is available in Brüger et al. (2004).

4. Solution algorithm

After space discretization of (1) and elimination of the boundary conditions
Brüger et al. (2005) a linear system of the form MU = g is to be solved in
each time step, where

M =
[

A G
D B

]
, U =

[
ṽn+1

pn+1

]
, g = g(ṽn, ṽn−1) =

[
g1

g2

]
.

Modified approximations of the gradient and the divergence are G and D. The
submatrix B is sparse and appears as a consequence of the implicit boundary
formulation of the pressure and the reduction of boundary data. ṽ in U rep-
resents the unknowns on inner grid locations only. A is block diagonal and
with L as the discrete Laplacian one block is similar to 3/2I−R−1∆tL in each
coordinate direction. An approximate factorization Perot (1993) of M is here
constructed as

M̃ =
[

A 0
D I

] [
I 2

3G
0 −(2

3DG−B)

]
=

[
A 2

3AG
D B

]
. (8)

In what is denoted as outer iteration we solve for the new iterate Uk+1

Uk+1 = Uk + z = Uk + M̃−1(g−MUk). (9)

z = (z1 z2)T is the update determined in iteration k. One or two fixed point
iterations usually suffice, except for the case of too small Reynolds numbers.
Using the factorization of M̃ in (8), there are block forward and back sub-
stitution steps. In the forward step a system is solved for prediction of the
velocities:

Ay1 = g1 , y2 = g2 −Dy1. (10)
The back substitution step includes an equation for the pressure and a projec-
tion of the solution onto the divergence-free velocity field.

−
(

2
3
DG−B

)
z2 = y2 , z1 = y1 − 2

3
Gy2. (11)
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The first equation in (10) is solved by fixed point iteration and is preconditioned
with an approximate inverse H of A. The simplest choice of H is 2

3I. Since D
and G are not known explicitly in (11), a suitable class of methods is of Krylov
type, where only calculation of

(
2
3DG−B

)
x for an arbitrary x is required for

the method to be applicable. The Krylov method in our implementation is Bi-
CGSTAB. For rapid convergence the pressure system in (11) is preconditioned
by an incomplete LU-factorization (ILU). For computation of ILU the matrix
DG needs to be provided explicitly. In the ILU factorization it is replaced
by the corresponding second order approximation which is easy to compute
explicitly. This is appropriate, because one can show that the second order
discretization is spectrally equivalent to our fourth order method. For more
details of the iterative method see Brüger et al. (2005).

5. Numerical experiments

With the above described method we simulate laminar flow past a circular
cylinder geometry. The experiments are performed in the laminar regime where
the assumption of two dimensional flow holds at a Reynolds number varying
between R = 7 and R = 180.

For comparison we consider numerical and experimental studies from Den-
nis & Chang (1970), Park et al. (1998), Williamson & Brown (1998) and William-
son (1989). The numerical method in Dennis & Chang (1970) employs standard
high order difference approximations and solves the steady Navier–Stokes equa-
tions. The unsteady simulation of Park et al. (1998) is run with a standard
second order difference discretization and a fully implicit solver allowing for
large time steps. The grid is of C-type with the outflow boundary only 20
diameters downstream of the cylinder. The grid resolution in Dennis & Chang
(1970) is comparable to the present study. Approximately ten times as many
grid points are used in Park et al. (1998).

The present study is split in two parts, one for R < 45 where the flow is
steady and the second at 45 < R ≤ 180 where the flow is unstable due to the
vortex shedding. The grids used are of O-type mapped by a polar coordinate
transformation.
The no slip condition is set at η = η0 leading to u0 = wc = 0 in (5) and the
far field boundary is assumed to be far enough from the cylinder to justify
the free stream condition. The local components u1(ξ) and v1(ξ) in (6) are
therefore prescribed to generate a streamwise velocity component equal to one.
In connection with Dirichlet far field boundary conditions as in the present
study the buffer zone technique is common. Here, a radial grid stretching
function is defined as in Zhang & Ko (1996) with rapidly increasing cell sizes
in the outer region where the velocity approaches the constant free stream
condition.

We consider in detail the pressure coefficient and dimensionless vorticity
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Cp =
p− p∞
1
2ρU2∞

, ω =
1

n1 n2

[
∂

∂ξ
(n2 v)− ∂

∂η
(n1 u)

]
, (12)

and the global drag and lift coefficients

CD =
1
2

∫ 2π

0

Cp w cos(ξ) dξ︸ ︷︷ ︸
CDp

− 2
R

∫ 2π

0

ωw sin(ξ) dξ︸ ︷︷ ︸
CDv

, (13)

CL = −1
2

∫ 2π

0

Cp w sin(ξ) dξ︸ ︷︷ ︸
CLp

− 2
R

∫ 2π

0

ωw cos(ξ) dξ︸ ︷︷ ︸
CLv

, (14)

where the subscript w denotes the cylinder surface, indices p and v label the
pressure and viscous contributions, respectively. These quantities are computed
with fourth order accuracy.

5.1. Steady flow regime

Results from numerical simulations are here presented at small Reynolds num-
bers 7, 10, 20 and 40 where the flow is steady. For comparison, simulations
from Dennis & Chang (1970) are considered. Our data come from simulations
with the grid size 90 × 45 in the ξ-η plane. The outer boundary is located at
40 cylinder diameters away from the cylinder.
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Figure 1. Left: The pressure coefficient on the cylinder sur-
face. ξ = 0 is the front stagnation point. Right: The vorticity
on the cylinder surface.

Cp ω

Table 1 summarises the quantities measured in our study and compares them
with numerical simulations of Dennis & Chang (1970). The pressure and vis-
cous drag coefficients, CDp , CDv defined in (13) are presented. Moreover, we
show Cp(ξ = π), the pressure coefficient at the rear of the cylinder. L/d is
the separation bubble length, measured as the distance from the center of the
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Present work Dennis & Chang (1970)
R CDp CDv Cp(ξ = π) L/d CDp CDv Cp(ξ = π) L/d
7 1.854 1.554 -0.851 0.67 1.868 1.553 -0.870 0.60
10 1.589 1.251 -0.726 0.79 1.600 1.246 -0.742 0.77
20 1.229 0.823 -0.581 1.40 1.233 0.812 -0.589 1.44
40 0.994 0.536 -0.482 2.63 0.998 0.524 -0.509 2.85

Table 1. Comparison of results at R = 7, 10, 20, 40 with data
from Dennis & Chang (1970)

cylinder to the point where the streamwise velocity is zero and normalized with
the cylinder diameter. The distribution of the pressure coefficient and vorticity
(12) on the cylinder surface as a function of the azimuthal coordinate is shown
in Figure 1. Cp and ω are plotted for R = 7, 10, 20, 40. The data from our sim-
ulations match the study in Dennis & Chang (1970) very well over the range
of investigated Reynolds numbers.
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Figure 2. Simulation at R = 40. Isolines of the pressure
coefficient Cp are plotted at levels between −0.7 and 0.1.
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In Figure 2 isolines of the pressure coefficient (12) are shown for R = 40 and
the recirculation zone with the characteristic vortex pair at R = 40 can be seen
in Figure 3. Dependence of the grid resolution is demonstrated for the R = 40
case. Three grid sizes are investigated, 72 × 32, 90 × 45 and 108 × 54. The
smallest grid cell in the fine grid is ∆ξ×∆η = 0.0228×0.0276 and in the coarse
grid 0.0344× 0.0491. The drag coefficient (13) is 1.546, 1.530 and 1.527 for the
coarse, medium and fine grid respectively. Assuming fourth order accuracy, the
extrapolated value when h → 0 is 1.525. The separation bubble length, L/d,
is 2.55, 2.63 and 2.66. We conclude that the variations are small, and in order
to limit the computational cost the medium grid is chosen for our simulations.
We have integrated the unsteady equations in time to obtain a stationary so-
lution for flow past circular cylinder. Another approach for this low Reynolds
number case is to solve steady equations directly as in Dennis & Chang (1970).
Our data are in good agreement with that study.

5.2. Vortex shedding regime

In this section results are shown from simulations with unsteady flow at the
Reynolds numbers 60, 100, 120, 160 and 180. At those conditions alternating
vortices are convected downstream from the cylinder, i.e. the well-known von
Kármán street. This phenomenon has been studied extensively with numer-
ical and experimental methods in e.g. Park et al. (1998), Williamson (1989)
and Williamson & Brown (1998). The characteristic frequency present in
the shedding is commonly expressed in the dimensionless Strouhal number
St = f d/U∞, where f is the measured frequency. Williamson & Brown (1998)
formulated a functional relationship between the Strouhal and the Reynolds
number by expanding data from two-dimensional computations and experi-
ments in powers of 1/

√
R,

St = 0.2731− 1.1129√
R

+
0.4821

R
. (15)

The present numerical simulations are carried out without imposing any pertur-
bation on the flow field. The flow is globally unstable, and even small numerical
errors are disturbing sufficiently to trigger the vortex shedding. R ≈ 180 marks
the upper end of the laminar regime. The grid used in the unsteady regime
is 130 × 90 with the farfield boundary located 80 diameters away from the
cylinder.
The Strouhal number determined from numerical experiments versus Reynolds
number is shown to the left in Figure 4 for Reynolds numbers up to 180.
Comparisons are included with the experimental data of Williamson (1989) and
the relation (15) from Williamson & Brown (1998). The instantaneous vorticity
field at R = 180 can be seen to the right in Figure 4. Table 2 shows the results
from our simulation in comparison with computational studies reported in Park
et al. (1998). CD and CDp are mean values and ·̂ denotes the amplitude of a
quantity. The data obtained with our fourth order method are in very good
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Figure 4. Left: �: present study; —: St = 0.2731− 1.1129√
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R Williamson & Brown (1998); ◦: experiments Williamson
(1989). Right: Snapshot of vorticity field at R = 180.

St

agreement with the second order accurate results reported in Park et al. (1998)
but with less than one tenth as many grid points.

Present work Park et al. (1998)
R 60 100 120 160 60 100 120 160
CD 1.39 1.32 1.31 1.31 1.39 1.33 1.32 1.32
CDp 0.954 0.972 0.981 1.02 0.96 0.99 1.01 1.04
ĈD · 103 1.31 9.00 14.2 29.3 1.4 9.1 15.2 29.3
ĈL 0.134 0.330 0.401 0.568 0.1344 0.3321 0.4103 0.5501

Table 2. Results from computations at R = 60, 100, 120, 160

6. Conclusions

A high order difference method comprising novel boundary conditions and solu-
tion techniques has been applied to incompressible flow past a circular cylinder.
The goal with this study is to validate the numerical method with a complex
physical flow problem. Numerical experiments have been performed for lami-
nar steady and unsteady flow in two dimensions. The results show very good
agreement with data from earlier experiments and numerical simulations in the
literature and our fourth order method allows us to use much fewer grid points
for comparable accuracy.

Acknowledgements

The authors wish to thank Jonas Nilsson from the Department of Petroleum
Engineering, Stanford University, and Bertil Gustafsson from the Department



86 Erik St̊alberg et al.

of Information Technology, Uppsala University, who have contributed with
many valuable ideas.

References

Braza, M., Chassaing, P. & Minh, H. 1986 Numerical study and physical analysis
of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid
Mech. 165, 79–130.
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Applications of a high order method for fluid
flows in complex geometries

By Erik St̊alberg, Luca Brandt and Arnim Brüger

Department of Mechanics, KTH, SE-10044 Stockholm, Sweden

A hybrid high order method for the solution of the incompressible Navier–
Stokes equations in curvilinear geometries is presented in connection with nu-
merical experiments. The discretization combines a fourth order compact dif-
ference method on a staggered, curvilinear grid with a Fourier expansion in
the third dimension. The time discretization is semi-implicit and second order
accurate. Numerical experiments for external flow past a parabolic body and
internal flow in a plane asymmetric diffuser are presented. Issues regarding
boundary conditions and grid generation for the two configurations are consid-
ered.

1. Introduction

A high order accurate pseudo-spectral method for simulation of incompressible
fluid flow in complex geometries is here presented in context with numerical
experiments. The geometries considered here are allowed to have curvature in
two dimensions where compact finite difference operators are used for approx-
imation of space derivatives. For three-dimensional flow problems the third
dimension is discretized using a Fourier expansion of the variables.

Compact finite difference operators are known to have near spectral prop-
erties, see Lele (1992), and allow at the same time for geometric flexibility in
comparison with standard spectral methods. The interest in using high order
methods stems from the fact that the same error level can be achieved with less
number of grid points, and thus less memory usage, in comparison with low or-
der accurate methods. Other approaches for simulation of fluid flow in complex
geometries using high order discretizations can be found in, for example, Visbal
& Gaitonde (2002) and Fischer et al. (2002).

Two distinct problems are addressed in this study. The receptivity to
external perturbations of the boundary layer forming on aerodynamic bodies
and the solution of flow in a plane asymmetric diffuser. To solve the first type
of problems one needs to compute the laminar flow around a body immersed in
a uniform free-stream, i.e. an external flow. This is usually a two dimensional
problem and it poses problems in terms of in- and outflow (non-reflective)
boundary conditions as well as solution of flow with a stagnation point. In
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the case of turbulent diffuser flow, conversely, the problem is three-dimensional
and the efficiency of the code is challenged in terms of computer time.

Theoretical studies of the receptivity problem have been followed by direct
numerical simulations only in the last decade. Buter & Reed (1994) studied
receptivity to free-stream vorticity for flow over a semi-infinite flat plate with
an elliptic leading edge using a vorticity-stream function formulation. Had-
dad & Corke (1998) simulated receptivity to free-stream sound on parabolic
bodies also in vorticity-stream function variables. Collis & Lele (1999) used a
compressible formulation in primitive variables to study surface roughness re-
ceptivity on a swept leading edge at low Mach numbers. The main advantage
of using a primitive variables formulation is that three dimensional problems
can be considered.

The first large eddy simulation of flow in asymmetric diffuser was performed
by Kaltenbach et al. (1999). Ohta et al. (2003) performed a direct numerical
simulation of this flow configuration by a fourth order explicit finite difference
method in primitive variables on a collocated grid arrangement.

The aim of this study is not to produce data to gain insight into the physics
of the flow problems considered here. We wish to investigate the present per-
formance of this specific method for two completely different flow cases and to
give directions for future improvements of the method.

2. Numerical method

Let v be the velocity vector, p the pressure and R the Reynolds number. By
defining the nonlinear and linear terms

N(v) = (v · ∇)v , L(v, p) = ∇p−Re−1∆v , (1)

the Navier–Stokes equations in primitive variables and dimensionless form are

vt + N(v) + L(v, p) = 0 , (2)
∇ · v = 0 . (3)

A subscript in equation (2) denotes differentiation. The equations (2) and (3)
are discretized in time by extrapolating N(v) from time tn−1 and tn to tn+1

and applying the second order backward differentiation formula (BDF-2) to vt

and L(v, p) at tn+1 to obtain
3
2
vn+1 + ∆tL(vn+1, pn+1) = 2vn − 1

2
vn−1 −∆t(2N(vn)−N(vn−1)) . (4)

In addition to (4), vn+1 satisfies the discretization of the divergence equation
(3). The result is a linear system of equations to solve for vn+1 and pn+1 in
every time step.

2.1. Space discretization and iterative solver in two dimensions

In two space dimensions, the equations are mapped from computational space
(ξ, η) into physical space (x, y) by an orthogonal transformation

x = x(ξ, η) , y = y(ξ, η) . (5)
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The transformed system of partial differential equations is discretized on a
staggered grid with grid size (∆ξ, ∆η). The local velocity components (ũ, ṽ)
in the (ξ, η) plane are assigned at the locations (ξi− 1

2∆ξ, ηj) and (ξi, ηj− 1
2∆η),

respectively, and the pressure values are assigned at a grid point (ξi, ηj). The
pressure gradient ∇p and divergence ∇ · v in (2) and (3) have the structures

∇p =
[

n−1
1 pξ,

n−1
2 pη

]
, ∇ · v =

1
n1n2

(
∂

∂ξ
(n2ũ) +

∂

∂η
(n1ṽ)

)
, (6)

where n1 =
√

x2
ξ + y2

ξ and n2 =
√

x2
η + y2

η are the scale factors of the trans-

formation (5). For space discretization in the (ξ, η) plane two different fourth
order accurate compact operators are defined, one for regular grids, see equa-
tion (7), and one for staggered grids, equation (8), see Fornberg & Ghrist (1999)
and Lele (1992). For a function f and grid spacing ∆ξ, we have the formulas

1
6
f ′

i−1 +
2
3
f ′

i +
1
6
f ′

i+1 =
1

2∆ξ
(fi+1 − fi−1) , (7)

1
24

f ′
i−1 +

11
12

f ′
i +

1
24

f ′
i+1 =

1
∆ξ

(fi+1/2 − fi−1/2) . (8)

In order to achieve closed systems of form Pf ′ = Qf for regular grids and
Rf ′ = Sf for staggered grids, one-sided stencils are used near boundaries,
see Brüger et al. (2005).

In the same manner as for the fourth order compact difference operators,
sixth order accurate compact interpolation operators are used for interpolation
between grid points on the staggered grid.

For boundary conditions, a formulation similar to the approach proposed
in Gustafsson & Nilsson (2000) for the steady Stokes equations is used. This
formulation has been generalized for the linearized Navier–Stokes equations
on staggered grids by Kress & Nilsson (2003). The formulation cover cases
where Dirichlet conditions for the velocities are prescribed as well as cases with
Neumann conditions. For the numerical experiments considered in this study,
Neumann boundary conditions for the velocity components are prescribed on
the outflow boundaries. In a computational domain Ω = {(ξ, η) ∈ [ξ0 ξ1] ×
[η0 η1]} and if all boundaries except from the outflow boundary ξ = ξ1 are
considered as Dirichlet boundaries for the velocity components the formulation
is

ũ(ξ0, η, t) = ũwest(η, t) , (9)

∂ũ(ξ1, η, t)
∂ξ

− 1
Lη

∫ η1

η0

n2(ξ1, η)
∂ũ(ξ1, η, t)

∂ξ
dη = 0 , (10)

ṽ(ξ0, η, t) = ṽwest(η, t) ,
∂ṽ(ξ1, η, t)

∂ξ
= 0 , (11)
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∫ η1

η0

n2(ξ1, η)
∂ũ(ξ1, η, t)

∂ξ
dη +

∫ η1

η0

n2(ξ1, η) p(ξ1, η, t)dη = q0 , (12)

ũ(ξ, η0, t) = ũsouth(ξ, t) , ũ(ξ, η1, t) = ũnorth(ξ, t) , (13)
ṽ(ξ, η0, t) = ṽsouth(ξ, t) , ṽ(ξ, η1, t) = ṽnorth(ξ, t) , (14)

where Lη =
∫ η1

η0
n2(ξ1, η)dη and q0 is an arbitrary constant. Note that in

the discrete case (12) substitutes condition (10) in one grid point. For extension
of the boundary condition formulation to three dimensional problems, see the
following section.

From (4) it is evident that a linear system of the form MU = b has to
be solved in each time step. In order to get a system matrix M consisting
of operators with clean structure, the unknowns are segregated in inner and
boundary data. The boundary data are then eliminated and we have

M =
[

A G
D −E

]
, U =

[
vn+1

pn+1

]
, b = b(vn,vn−1) =

[
b1

b2

]
. (15)

A has the structure

A =
3
2
I − R−1∆tL (16)

where L is the discrete Laplacian. G and D represents the discrete gradient and
divergence operators and E stems from the boundary condition formulation for
the pressure.

An approximate factorization of M is constructed similar to Perot (1993)

M∗ =
[

A 0
D I

] [
I 2

3G
0 − 2

3DG− E

]
=

[
A 2

3AG
D −E

]
. (17)

In an outer fixed point iteration a correction δU is computed as

U(k+1) = U(k) +δU(k) = U(k) +M∗−1
(
b−MU(k)

)
= U(k) +M∗−1

r(k) (18)

where r(k) is the residual from iteration k. If the residual is within the
specified convergence threshold Un+1 = U(k+1). As a result of the approximate
factorization two sub-systems are iteratively solved in each outer iteration, one
advection-diffusion system for prediction of velocities and one system related
to a Poisson equation for the pressure. The system matrices A and − 2

3DG−E
are not known explicit due to the compact difference approximations and the
iterative Krylov method Bi-CGSTAB (see van der Vorst 1992) only requiring
computation of matrix-vector products is used. Incomplete LU factors (ILU)
of the system matrices are used as preconditioning, see Meijerink & van der
Vorst (1977). The ILU factorizations are based on an explicit second order
accurate discretization of the matrices.



Applications of a high order method 93

2.2. Extension of the method to three-dimensional problems

For three-dimensional flow problems the variables are expanded in Fourier
modes in the periodic spanwise direction z. The inverse spanwise Fourier trans-
form of a variable f is

f(x, y, z) =
Nz/2−1∑

m=−Nz/2

f̂(x, y) eiβmzLl/Nz l = 1, 2, 3, ..., Nz. (19)

zL is the spanwise length of the domain, βm = 2πm/zL the spanwise wavenum-
bers and Nz the number of grid points in the spanwise direction.

The spanwise velocity component w is assigned at the same points as the
pressure, (ξi, ηj , zl). In the same manner as in (15) the linear system in three
dimensions is ⎛

⎝ A 0 G

0 Ã iβ∆tI

D iβD̃ −E

⎞
⎠

︸ ︷︷ ︸
M3D

⎛
⎝ v̂n+1

ŵn+1

p̂n+1

⎞
⎠ =

⎛
⎝ b̂1

b̂w

b̂2

⎞
⎠

︸ ︷︷ ︸
b̂3D

. (20)

with the approximate factorization

M∗
3D =

⎛
⎝ A 0 0

0 Ã 0
D iβD̃ I

⎞
⎠

⎛
⎝ I 0 γG

0 I γiβ∆tI
0 0 Q

⎞
⎠

=

⎛
⎝ A 0 γAG

0 Ã γiβ∆tÃ

D iβD̃ −E

⎞
⎠ , (21)

where Q = −E − γ DG + γβ2∆t D̃ and γ is set to

γ =
1

3
2 + ∆t

R β2
(22)

for time integration with BDF-2.
The system is solved in Fourier transformed space. The right hand side b̂3D

consists of the explicitly treated non-linear terms in (1) and in order to avoid
expensive convolution sums in Fourier transformed space a pseudo-spectral
approach is followed. The variables at time levels n and n− 1 are transformed
to physical space where the non-linear terms and the right hand side b3D at
time level n + 1 are constructed and b3D is finally transformed to Fourier
transformed space. Fast Fourier Transforms (FFT) are used to transform the
variables between Fourier and physical space, see Canuto et al. (1988).

The boundary condition formulation for the zero wavenumber, β = 0, will
have the same structure as in the two dimensional case. By again assuming
that all boundaries in a (ξ, η) plane are considered as Dirichlet boundaries
except from the outflow boundary, ξ = ξ1, which is considered as a Neumann
boundary for the velocity components, the formulation in three dimensions is
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β = 0
ũ(ξ0, η, z, t) = ũwest(η, z, t) , (23)

∂ũ(ξ1, η, z, t)
∂ξ

− 1
Lη

∫ η1

η0

n2(ξ1, η)
∂ũ(ξ1, η, z, t)

∂ξ
dη = 0 , (24)

ṽ(ξ0, η, z, t) = ṽwest(η, z, t) ,
∂ṽ(ξ1, η, z, t)

∂ξ
= 0 , (25)

w(ξ0, η, z, t) = wwest(η, z, t) ,
∂w(ξ1, η, z, t)

∂ξ
= 0 , (26)∫ η1

η0

n2(ξ1, η)
∂ũ(ξ1, η, z, t)

∂ξ
dη +

∫ η1

η0

n2(ξ1, η) p(ξ1, η, z, t)dη = q0 , (27)

ũ(ξ, η0, z, t) = ũsouth(ξ, z, t) , ũ(ξ, η1, z, t) = ũnorth(ξ, z, t) , (28)
ṽ(ξ, η0, z, t) = ṽsouth(ξ, z, t) , ṽ(ξ, η1, z, t) = ṽnorth(ξ, z, t) , (29)

w(ξ, η0, z, t) = wsouth(ξ, z, t) , w(ξ, η1, z, t) = wnorth(ξ, z, t) . (30)

β �= 0

ũ(ξ0, η, z, t) = ũwest(η, z, t) ,
∂ũ(ξ1, η, z, t)

∂ξ
= 0 ,

ṽ(ξ0, η, z, t) = ṽwest(η, z, t) ,
∂ṽ(ξ1, η, z, t)

∂ξ
= 0 ,

w(ξ0, η, z, t) = wwest(η, z, t) ,
∂w(ξ1, η, z, t)

∂ξ
= 0 ,

ũ(ξ, η0, z, t) = ũsouth(ξ, z, t) , ũ(ξ, η1, z, t) = ũnorth(ξ, z, t) , (31)
ṽ(ξ, η0, z, t) = ṽsouth(ξ, z, t) , ṽ(ξ, η1, z, t) = ṽnorth(ξ, z, t) ,

w(ξ, η0, z, t) = wsouth(ξ, z, t) , w(ξ, η1, z, t) = wnorth(ξ, z, t) .

Again, (27) substitutes (24) in one grid point. In (20) E = 0 for β �= 0 since
the implicit integral condition on the pressure (27) only is applied for β = 0.
If E = 0 ∀β, Q in (21) would be singular, see Brüger et al. (2005). The
well posed formulation of boundary conditions resulting in E �= 0 removes this
singularity.

3. Laminar flow past parabolic body

Flow past parabolic bodies is an interesting test case since the flow proceeds
from stagnation point flow at the nose to Blasius flow far downstream without
separation, see Erturk et al. (2004). van Dyke (1962) pointed out that there is
no singularity at the nose as in the case of a semi-infinite flat plate. Flow past
parabolic bodies is used in receptivity studies, i.e. the study of the mechanism
by which disturbances in the free stream or on the body (surface roughness)
enter the boundary layer and excite unstable modes. The surface of a parabolic
body is continuous and infinitely differentiable which inhibit additional sources
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U∞

y

ξ̌ = 0
x

η̌ η̌ = r2

ξ̌

Figure 1. Schematic configuration of steady flow past para-
bolic body.

of receptivity in comparison with smooth leading edge attached to flat plate
geometries as in Buter & Reed (1994).

A conformal map exist between the parabolic coordinates and a rectangular
domain which makes this geometry suitable for our method.

3.1. Configuration

Consider the two dimensional flow past a parabolic body as in figure 1. The
parabolic coordinates are (ξ̌, η̌) and the body is located at η̌ = r2, where r
is the nose radius of curvature. The domain is limited to the upper half of
the flow field owing to the symmetry about the x-axis. The conformal map
between the physical and parabolic coordinates is

x =
1
2
(
r4 + ξ̌2 − η̌2

)
, y = ξ̌η̌. (32)

The parabolic coordinates (ξ̌, η̌) are transformed to computational space
(ξ, η) using hyperbolic stretching functions designed to cluster grid points near
the leading edge and in the boundary layer in a manner similar to Collis (1997).
The stretching function in the ξ direction is

ξ̌ =
ξ̌max

Ξ

{
cmξ + log

(
cosh [b (ξ − ξc)]
cosh [b (ξ + ξc)]

)}
, (33)

where ξ̌max is the maximum ξ̌ location and ξc the location of stretching tran-
sition (between fine and coarse grid) in computational space. b is a stretching
parameter.

Ξ = cm + log
(

cosh [b (1− ξc)]
cosh [b (1 + ξc)]

)
(34)

and

cm =
2b tanh(b ξc) +

(Nξ − 1)∆ξ̌min

ξ̌max

log
(

cosh [b (1− ξc]
cosh [b (1 + ξc)]

)

1− (Nξ − 1)∆ξ̌min

ξ̌max

(35)

with Nξ as the number of grid points in the ξ direction and ∆ξ̌min as the
minimum desired grid spacing in ξ̌. The stretching in the η direction is similar
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but with η̌ − r2 instead of ξ̌ and η̌max − r2 instead of ξ̌max. A typical mesh is
shown in figure 2.

−800 −400 0 400 800
0

400

800

1200

1600

y

x

Figure 2. A typical mesh used in flow past parabolic body
simulations. Each second grid line is shown.

The boundary condition formulation (9)–(14) is used with the modification

∂ṽ(ξ0, η, t)
∂ξ

= 0 (36)

in (11) in order to account for the symmetry condition at ξ0 = ξ̌0 = 0. ũwest = 0
for symmetry and ũsouth = ṽsouth = 0 from the no slip condition at the body.
The stream function for potential flow past a parabolic body is

Ψ = ξ̌
(
η̌ − r2

)
, (37)

see Davis (1972). The inflow velocity components are therefore based on po-
tential flow theory and are found to be

ũnorth(ξ̌) =
ξ̌√

ξ̌2 + η̌2
1

, ṽnorth(ξ̌) =
r2 − η̌1√
ξ̌2 + η̌2

1

. (38)

3.2. Results

Steady flow over an infinitely long parabolic body is considered in Davis (1972).
The infinite conformal space is mapped to a finite domain and a parabolic
approximation is used in vorticity-stream function formulation. Davis presents
the results in the variable

ωD ≡ −2x + 1√
2xR

ωw (39)
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where ωw is the wall vorticity. The streamwise coordinate direction is scaled
as

ξD ≡
√

2xR (40)
The results by Haddad & Corke (1998) showed excellent agreement with Davis
(1972) using a Nξ ×Nη = 500× 36 grid. Both results will be considered here
as exact solutions. The Reynolds number is R = 1000 based on the nose radius
of curvature r = 1 and the free-stream velocity U∞ = 1 in all computations
presented here. The initial conditions are zero velocity and pressure fields in
all computations. The integration of the flow to a steady state solution can be
interpreted as a instantaneously starting parabolic body. Thus, the flow field
should have physical relevance also during the transient phase to the steady
state solution.

10
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ωD

ωD(t = 136)
ωD(t = 850)
ωD(t = 1615)
Davis (1972)
Haddad & Corke (1998)

Figure 3. Scaled wall vorticity, ωD at different times in com-
parison with results from Davis (1972) and Haddad & Corke
(1998). The grid is 490× 40.

Figure 3 shows the result from a Nξ ×Nη = 490× 40 simulation with the
trailing edge of the body located at x = 2000. (∆ξ̌min, ∆η̌min) = (0.007, 0.003),
b = 4.0 and ξc = 0.80. The symmetry line is extended to the upstream position
x = −150. The solution at relative early times, here shown for t = 136,
reproduce the results reported in Davis (1972) and Haddad & Corke (1998)
at the leading part of the body. There is an over-prediction of scaled wall
vorticity (ωD) at the trailing edge. At later times, t = 850 and t = 1615,
the boundary layer is forming also at positions further downstream and ωD at
the trailing edge converges towards the steady state results known from the
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Figure 4. Convergence history for steady flow past parabolic
body. The grid is 490× 40.

literature. However, there is a long time effect in the flow which makes ωD

to increase at the leading edge. This could be a consequence of information
propagation from the artificial boundaries in the finite truncated domain.

In figure 4 the convergence history of the 490× 40 simulation can be seen.
It shows the logarithm of the root-mean-square time derivative of the local
velocity components. For a function f it is calculated as

log
[
rms

(
∂f

∂t

)]
= log

⎡
⎣∑

i,j

(
∆fi,j

∆t

)2

/N

⎤
⎦ , (41)

where N is the number of grid points. Isocontours of the pressure can be seen
in figure 5.

In figure 6 the inflow boundary is moved further away from the body in
order to investigate the effect of the inflow potential flow. The grid is 300× 70
and the inflow boundary has its leftmost point at x = −800 and the trailing
edge is located at x = 1000. The minimum mesh spacing in the (ξ̌, η̌) space
is (∆ξ̌min, ∆η̌min) = (0.0033, 0.004), the stretching parameter b = 3.0 and
the location of stretching transition is ξc = 1.0. The long time effect with
increasing ωD at the leading edge is still present and in fact even worse in this
configuration.

The location of the trailing edge of the body is of primary importance and
figure 7 uses the trailing edge position x = 10000 on a coarse 150 × 40 grid.
The inflow boundary is located at x = −500, (∆ξ̌min, ∆η̌min) = (0.05, 0.007),
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Figure 5. Pressure contours for flow past parabolic body.
The grid is 490× 40 and the contour level spacing is 0.0108.
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Figure 7. Scaled wall vorticity, ωD at different times in com-
parison with results from Davis (1972) and Haddad & Corke
(1998). The grid is 150× 40.

b = 3.0 and ξc = 1.0. As can be seen in figure 7 the long time effect at the
leading edge is present also for larger downstream domains.

3.3. Discussion

The 490 × 40 case shown in figure 3 is comparatively closest to the reference
cases among the results presented here. It is also the case with smallest desired
grid spacing in η̌. Smaller values of ∆η̌ has been tested (on smaller domains
in order to limit the computational costs) without further improvment with
respect to the reference cases. In addition, the 490× 40 case is the simulation
with largest number of grid points in the ξ direction. This indicates that long
domains together with relatively high resolution in the ξ direction is important
to achieve results close to the reference cases. The increase in ωD close to the
leading edge occurs later in time for domains with large distances to the in-
and outflow boundaries. It is therefore suggested that the increase is an effect
from both the in- and outflow boundary conditions.

The choice of outflow boundary conditions is not trivial since the viscously
dominated boundary layer intersects the boundary. Instead of using Neumann
boundary conditions on the velocity components on the outflow boundary the
following suggestion for convective outflow conditions could be used. Define
Nξmod and Nηmod to be the parts of the nonlinear terms in (1) that are convected
by ũ. The convective boundary condition then reads
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∂ũ(ξ1, η, t)
∂t

+ Nξmod(ξ1, η, t) = 0, (42)

∂ṽ(ξ1, η, t)
∂t

+ Nηmod(ξ1, η, t) = 0 . (43)

The modified nonlinear terms are extrapolated from time levels n and n −
1 to level n + 1 in the same manner as in (4) and the time derivatives are
approximated using BDF-2. The velocity components at the outflow boundary
are then prescribed as

ũn+1 =
4
3
ũn − 1

3
ũn−1 +

2
3
∆t

(
Nn−1

ξmod
− 2Nn

ξmod

)
, (44)

ṽn+1 =
4
3
ṽn − 1

3
ṽn−1 +

2
3
∆t

(
Nn−1

ηmod
− 2Nn

ηmod

)
. (45)

A buffer zone technique can be used to prevent reflections from the outflow
boundary to carry signals back to the domain, see the discussion in the next
section.

Regarding the steady state solution further convergence acceleration can
be achieved with local time stepping, i.e. the time step is a function of (x, y, t).
An estimate of how to compute the local time step can be found in Brüger
et al. (2005).

In order to solve flow past parabolic bodies with angles of attack both
the lower and upper half of the body has to be considered, i.e. no symmetry
condition should be used. Then it may be necessary to move the integrals in
the boundary condition formulation to either the body or the inflow boundary.
The reason for this can be explained by considering the case with zero angle
of attack (and no symmetry line). This flow should still retain symmetry but
there is an obvious symmetry break in the formulation if one of the outflow
boundaries is used as the boundary where the pressure is specified in one grid
point. An external flow configuration where the integral formulation is used on
the obstacle can be found in St̊alberg et al. (2004).

4. Flow in asymmetric diffuser

The flow in a plane asymmetric diffuser is interesting since diffuser flows appear
in many applications. Several experimental and numerical studies exist, see for
example Gullman–Strand et al. (2004), Ohta et al. (2003), Kaltenbach et al.
(1999) and Obi et al. (1993). A DNS of turbulent flow in an asymmetric dif-
fuser geometry using Reynolds numbers of interest is computational expensive
and need highly optimized codes running for long times on high performance
computers. In this study a low Reynolds number is used on a single workstation
in order to examine the performance of the present method.

4.1. Configuration

The configuration for flow in a plane asymmetric diffuser is shown in figure 8.
The flow is going from left to right and exhibits an adverse pressure gradient.
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Figure 8. The plane asymmetric diffuser configuration.

The conformal map between physical and computational space for this
geometry is not known and a numerical conformal mapping is applied. It is
based on numerical computation of the Schwarz-Christoffel transformation and
a MATLAB toolbox for this mapping is used, see Driscoll & Trefethen (2002).
Before applying the conformal map the computational space is stretched in the
ξ and η directions in order to cluster cells at the channel inflow part and in
the boundary layers. In the ξ direction, a modification of a stretching used
in Zhang & Ko (1996) is applied,

ξ̌ = ξmin + (ξmax − ξmin)
{

κ ξ + (1− κ)
[
1− tanh (τ (1− Λ))

tanh (τ)

]}
, (46)

with

Λ =
ξ − ξmin

ξmax − ξmin
. (47)

ξmin and ξmax are the minimum and maximum ξ locations. κ controls the
stretching position in ξ and τ the rate of stretching. κ = 0.50 and τ = 4.0 in this
study. In the η direction a hyperbolic-tangent function is applied, see Gullbrand
(2000),

η̌ =
1
2

⎧⎪⎪⎨
⎪⎪⎩1−

tanh
[
c

(
1− 2

η

ηmax

)]
tanh (c)

⎫⎪⎪⎬
⎪⎪⎭ , (48)

where ηmax is the maximum η location and c a stretching parameter. c = 2.1
in this study.

The resulting orthogonal grid, which is invariant in the spanwise direction,
is shown in figure 9 for each second grid line. Remark that three grids has to
be constructed in order to achieve a staggered grid arrangement. The opening
angle is 8.5 ◦, the grid size (151× 41× 32) in the x, y and z directions and the
geometry has a polygonal structure. The spanwise box length is here chosen
to be zL = π.

The boundary conditions are set as in (23)–(31) with ũsouth = ṽsouth =
wsouth = ũnorth = ṽnorth = wnorth = 0 from the no slip condition. For the
inflow boundary conditions, two different cases are considered. The first is a
Poiseuille profile and will, for low enough Reynolds numbers, result in a laminar
flow field without spanwise variation. In order to achieve a three-dimensional
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Figure 9. The asymmetric diffuser grid generated with nu-
merical conformal mapping. Each second grid line is plotted.
The actual grid size is (Nx ×Ny ×Nz) = (151× 41× 32).

flow field, the Poiseuille profile is perturbed by two oblique Tollmien-Schlichting
waves at the inflow. The Dirichlet boundary conditions on “west” in (23)–(31)
are then set to

ũwest(η, z, t) = ũpo(η) + ε ũots(η, z, t) , (49)
ṽwest(η, z, t) = ε ṽots(η, z, t) , (50)
wwest(η, z, t) = ε wots(η, z, t) , (51)

(52)

where ũpo is the Poiseuille profile and index “ots” label two oblique Tollmien-
Schlichting waves. ε� 1 and the addition of two oblique Tollmien-Schlichting
waves at ξ = ξ0, here shown for the ũ component, is

ũots(η, z, t) = REAL
{
ŭ(η)ei(βz−ωt) + ŭ(η)ei(−βz−ωt)

}
= (53)

= 2 cos(βz) [ ŭR(η) cos(ωt) + ŭI(η) sin(ωt) ] , (54)

where ŭ is the amplitude, β the spanwise wavenumber and ω the frequency of
the waves. Indices R and I label the real and imaginary parts of a function.

4.2. Results

Results from simulations with a Poiseuille inflow profile are shown in figures 10
and 11. Isocontours of instantaneous velocities and pressure are shown in
figure 10. Unsteadiness induced by laminar flow separation occurs on both
the upper and lower walls and large vortical structures are convected through
the domain. The Reynolds number is R = 550 based on the velocity scale
U = 1 and the half channel height h = 0.5. Figure 11 shows isocontours of
mean streamwise velocity. The mean is taken over a time period ∆t = 89.
The white region indicates flow in negative x direction. A separation bubble
appears quite far downstream on the inclined wall and relatively surprisingly,
a large separated region is also present on the upper straight wall.

Results from a simulation with a Poiseuille profile perturbed by two Tollmien-
Schlivhting waves can be seen in figure 12. The frequency of the waves is
ω = 0.4 with spanwise wavenumber β = 2 and the Reynolds number is R = 225.
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Figure 10. Asymmetric diffuser flow with Poiseuille inflow
profile. a: Isocontours of instantaneous streamwise (x) veloc-
ity. b: Isocontours of instantaneous wall normal (y) velocity.
c: Isocontours of instantaneous pressure. The Reynolds num-
ber is R = 550 based on U = 1.0 and the half channel height
h = 0.5.
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The isosurfaces in figure 12 represents perturbations from the spanwise mean
for each velocity component. Three dimensional perturbation structures are
convected through the domain and are slightly damped due to the low Rey-
nolds number.

4.3. Discussion

In this study the velocity components are prescribed by Neumann conditions
on the outflow boundary. In Kaltenbach et al. (1999) and Ohta et al. (2003)
convective conditions of the form

∂ui

∂t
+ Uc

∂ui

∂x
= 0 (55)

are used. Uc is the streamwise velocity integrated across the outflow plane. An
alternative to convective boundary conditions is to use non-reflective boundary
conditions such as buffer zone or mixed Neumann/viscous-sponge techniques,
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Figure 11. Asymmetric diffuser flow with Poiseuille inflow
profile. Contours of mean streamwise (x) velocity. The white
area represents flow in the negative x-direction. Remark that
the axis scaling are not equal. The Reynolds number is R =
550 based on U = 1.0 and the half channel height h = 0.5.

see Karniadakis & Triantafyllou (1992). A method similar to the technique
of Street & Macaraeg (1989) can eventually be used as buffer zone close to the
outflow boundary. This technique allows large vortical disturbances to convect
out of the domain without reflections, see Mittal & Balachandar (1996). It relies
on the fact that the source of reflections from the outflow boundary stems from
the elliptic nature of the equations. By smoothly attenuating the ξ elliptic
terms in the momentum equations (2) and the source term in the Poisson like
system for the pressure (with system matrix Q, equation 21) to zero in the
buffer region, the ellipticity in the ξ direction can be removed. However, it is
not clear how this technique will work together with the boundary conditions
formulation (23)–(31).

For turbulent simulations the inflow boundary conditions should preferably
be extracted from a fully developed turbulent simulation in a straight channel.
The wide range of space and time scales in a turbulent asymmetric diffuser
simulation requires long integration times with high resolution in order to ob-
tain converged statistics and therefore put high demands on both the efficiency
of the code and the performance of the computer.
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Figure 12. Asymmetric diffuser flow. Poiseuille profile per-
turbed by two oblique Tollmien-Schlichting waves is used as
inflow boundary conditions. a: Isosurfaces of instantaneous
streamwise (x) perturbations. Dark isosurfaces represents
−4.5 · 10−3 and light 5.0 · 10−4. b: Isosurfaces of instanta-
neous wall normal (y) perturbations. Dark isosurfaces repre-
sents −2.0 · 10−3 and light 1.0 · 10−4. c: Isosurfaces of in-
stantaneous spanwise perturbations. Dark isosurfaces repre-
sents −4.0 · 10−3 and light 3.5 · 10−4. The Reynolds number is
R = 225 based on U = 1.0 and the half channel height h = 0.5.
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5. Conclusions

A high order method consisting of compact high order difference operators in
a two dimensional curvilinear domain and Fourier series in the third homoge-
neous direction has been applied to flow past a parabolic body and in a plane
asymmetric diffuser. A well posed formulation of the boundary conditions for
the incompressible Navier–Stokes equations in primitive variables is used.

Steady state solutions for flow past a parabolic body on different sizes of
the domain and with different resolutions are compared with similar numerical
experiments known from the literature. Our solution diverge from the refer-
ence cases and it is suggested that this is an effect of the artificial boundary
conditions.

An orthogonal asymmetric diffuser grid is generated with a numerical con-
formal mapping. A two dimensional solution is obtained with a Poiseuille
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inflow profile and unsteady laminar separation occurs. In order to obtain three
dimensional effects the inflow profile is slightly perturbed and as a result three-
dimensional vortical structures are convected through the domain.

Suggestions regarding future improvements of the method are done in con-
nection with the two numerical experiments.
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