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Abstract

When investigating the properties of real world mechanical systems, their dy-
namical behaviours are of importance. Most systems are found to have nonlin-
earities, due to e.g. the geometry of the system, nonlinear damping and stiffness
in the materials, or the presence of friction and impacts between details in their
design. Especially, nonsmooth systems with friction and impacts, which are
examples of strong nonlinearities, can exhibit complex dynamics, and are the
kind of systems considered in the present thesis. The focus of the thesis is on
the complex response, better known as chaos, and in particular to characterise
the response using the concept of fractal dimension. This allows an estimation
of the minimum number of effective state variables of the underlying dynamical
system, and can be used to distinguish between random and chaotic motion.

Two systems are considered; a simple impact oscillator setup and a pan-
tograph from a railway train. Experimental measurements are compared with
numerical simulations of mathematical models.

The oscillator consists of a pendulum excited by a shaker. Impacts between
the two results in harmonic, subharmonic as well as chaotic responses for the
pendulum’s motion. A very good correlation between experimental and numer-
ical results is found, and successful estimations of the attractors’ dimensions
are performed. The estimated dimensions are in agreement with the minimum
number of state variables used in the mathematical model.

For the pantograph, various sources for nonlinearities are present, e.g. fric-
tion in the suspensions and the dampers, impacts in subsystems and at the
excitation, and nonlinear characteristics of the air-suspension, which provides
up-lift force to the pantograph’s structure. A mathematical model is devel-
oped of a subsystem in the pantograph, and the results shows a qualitative
good agreement with the experimental, with harmonic, subharmonic as well as
chaotic responses. Frictional effects are found to be of significant importance,
at low excitation frequencies, and the impacts are the major reason for chaotic
response (for the cases investigated). Successful estimations of the attractors’
dimensions are performed, indicating the need for a minimum of three to four
state variables, depending on the attractor analysed, to describe the underlying
dynamical system.

Keywords: Nonlinear dynamics, nonsmooth dynamics, discontinuities, fric-
tion, impact, chaos, correlation dimension, fractals
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Preface

This thesis considers the dynamics of systems with impacts and friction, and
techniques for the analysis of data from experimental measurements and nu-
merical simulations of such systems. An introduction to the field is given in the
first chapters, using examples from the appended work as described below.

Report A. Johan Eriksson, 'Dimension Estimation of an Impact Oscillator,
an Ezperimental and Theoretical Approach’; (2004)

Paper A. Johan Eriksson, Arne B. Nordmark and Lars Drugge, *An FExperi-
mental and Numerical Study of Pantograph Dynamics, with the Application of
Dimension Estimation’, (2005)
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PREFACE



Chapter 1

Introduction

1.1 Background

In our daily life we all experience mechanical devices, such as trains, cars, mo-
torbikes and bicycles. It is often that we do not reflect about the performance of
the device, unless it breaks or there is a need for maintenance, and why should
we be bothered? This is not the case for an engineer, who in the design stage
of the product has to consider its future application, reliability, ease of repair
and dynamic response. To enhance the understanding of a device, in the design
stage or when modifying an existing design for better performance, engineers
normally rely on the derivation and simulation of mathematical models. The
complicity of the mathematical model depends on the aim of the investigation,
e.g. if an existing product is to be evaluated and redesigned, a close correla-
tion between the behaviour of the product and mathematical model is usually
desired. If instead an investigation of certain phenomena’s is carried out, a
simplified model with the major characteristics of the system under considera-
tion can fulfil the requirements. The reason to use a simplified model is that
it contains less parameters, which opens up the possibility for a more detailed
analysis of chosen parameters’ importance. The latter choice of model is an
approach commonly used in basic research.

Almost all real world products include nonlinearities, which for mechani-
cal systems can be due to their geometrical design, the use of materials with
nonlinear stiffness and damping, and friction and impacts between parts in the
design. Mechanical systems with nonlinearities may exhibit complex behaviour
and show sensitive dependence to changes in initial conditions, better known as
chaos, and parameters. This argues for an investigation of the possible dynamics
that can occur in the system under consideration. The development of realistic
mathematical models rely on input from experimental data, since it is often
not obvious which properties are of importance for the dynamics of the real
system. When a good understanding of the system’s characteristics is achieved,
this information can be used in the derivation of new mathematical models or
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when updating old ones. Simulations can then be performed to evaluate a new
design, before building a real product, or in an investigation of the dynamics in
an existing.

1.2 Scope and Aim

This work focuses on the nonlinear behaviour of mechanical systems with friction
and impact. The systems are experimentally investigated and the results eval-
uated using numerical simulations of mathematical models. Nonlinear methods
of data analysis, such as correlation dimension, are applied to the experimental
and numerical time series data, to quantify the underlying dynamics of the me-
chanical systems under investigation. The aim of the studies is to analyse the
effects nonlinear elements introduce into mechanical systems, and further the
understanding of their importance in the development of mathematical models
of the systems studied.

The research has been performed through the studies of two mechanical sys-
tems, as presented in Report A and Paper A in Appended Work. Report A
consider an experimental and numerical study of an impact oscillator, previ-
ously investigated in Stensson and Nordmark [1], and the mathematical model
is the same as derived and used in that study. A very good correlation was found
between the experimental and numerical results. In Paper A a pantograph cur-
rent collector from a railway train is considered. An experimental study of the
pantograph is carried out and a mathematical model of a subsystem in the pan-
tograph is derived and evaluated. The mathematical model successfully predicts
the qualitative behaviours found in the experimental study, and the correlation
dimension estimation is successful for applications to numerical as well as ex-
perimental data. Frictional effects are found to be of a major importance at
low excitation frequencies and impacts are the reason for chaotic response of
the system.

In the following chapters, a short introduction to the field of dynamical
systems and the methods used when evaluating them is given, followed by a
summary of the appended work. Finally a concluding discussion and recom-
mendations for future work is given.



Chapter 2

Mechanical Systems

2.1 Dynamical Systems

Dynamical systems concerns the evaluation of systems in time, and there are
two main types that are widely studied, Strogatz [2]; differential equations and
iterated maps. The differential equations describe the system’s continuous time
evaluation and for iterated maps the time is discrete. Differential equations are
the most commonly used method in science and engineering, with the major
distinction between partial differential equations (PDE) and ordinary differen-
tial equations (ODE). The ODE’s are only dependent on one variable, the time
t, in difference with the PDE’s, which depends on space as well as time vari-
ables. The ODE’s are used in this work, and an example of the nonautonomous
(time-dependent) equation of motion for a forced harmonic oscillator is given
by a second-order ODE

mx + bx + kx = F cos wt,

2
Whereéc:@andbézdx

7 FToR (2.1)

If three new variables are introduced, x1=z, xo=z and x3=wt, the equation
can be rewritten as

:i’1 = X2
&y = (—kxy —bxs + Fcoszs)/m (2.2)
dj?) = w,

which is a three-dimensional autonomous system of first order equations. The
equations are made autonomous by introducing the variable 3, i.e. time does
not appear explicit in the equations any longer. The variables xq, zo and x3
are referred to as state variables and their continuous time evaluation draws
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a trajectory in a phase space, spanned by the coordinates x1, x2 and z3. An
example of a two dimensional projection of such a trajectory is seen in figure 1.

X1
(x, (0.X,()
(x,(0).,(0))

Figure 1. A phase space trajectory

The trajectory’s long time evaluation in phase space forms the steady state
solution of the dynamical system, the attractor. The dimension of this phase
space is the same as the number of state variables needed to describe the dy-
namical system, in this case three. The dynamical system of can Eq. (2.2) be
rewritten in a more general formulation as

x =f(x) x€R", (2.3)

where x is the state vector, f is the forcing function and R™ known as the state
space, of dimension n. The complexity of the dynamical system depends on
the dimension of the system and the smoothness and nonlinearity of the forcing
function. The nonlinear system considered so far is referred to as smooth, with
equations that are everywhere differentiable. Systems that experience sudden
changes in state variables or the vector field, typically caused by impacts or
friction, are known as nonsmooth. These kind of nonlinearities can be treated
using events to switch vector fields or make jumps in state space, e.g. for the
impact oscillator considered in Report A, where the impact is modelled using
a coefficient of restitution and by switching the sign of the pendulum’s velocity
when impact with the excitation occur.

A very convenient property of a linear system is that it can be broken down
into parts, which are solved separately using methods like Laplace transforms
and Fourier analysis, before they are recombined into an answer (superposition).
If instead a nonlinear system is considered, it is very hard or even impossible to
obtain an analytical solution, thus they are normally analysed using numerical
solutions or perturbation methods.

The response of a harmonically excited nonlinear system can, due to small
changes in a parameter value, change its steady state period of motion. A one
periodic response is a motion that repeats once every excitation cycle, in differ-
ence with a two periodic that repeats once every second excitation cycle, etc.
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The latter case is an example of a subharmonic response, which is a motion that
has a period n times the excitation’s. If a system changes its response from one-
to two-periodic motion, it has undergone a periodic doubling. Another possible
response is quasiperiodic motion, of two fundamental frequencies. This corre-
sponds to a motion of the trajectories on a closed two-dimensional torus in phase
space. In the literature, quasiperiodicity and period doublings are reported as
contributing factors that a system destabilises and its motion becomes chaotic,
see for example Thomsen [3]. For impacting systems, low velocity "grazing"
impacts, as analysed by Nordmark [4], can cause instability to the system, with
possible chaotic motion as a result.

Impacting systems usually exhibit several attractors, with the result that dif-
ferent initial conditions can lead to completely different asymptotic behaviour.
This argues for the importance to choose initial values that are representative for
the real system under investigation. Chaotic systems are characterised by sen-
sitive dependence on initial conditions, which is not the case for linear systems,
whereby a small perturbation of the initial values will cause the trajectories to
diverge exponentially fast as time evolves. An example of typical responses from
an impact oscillator is seen in figure 2, review Report A for details.
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Figure 2. Numerical examples of time histories from an impact oscillator

The forcing of the oscillator is a harmonic sinusoidal signal and the impacts
between the excitation and oscillator result in a periodic, subharmonic as well
as chaotic response of the system. In the chaotic time history, an example of the
divergence that occurs between two trajectories, due to a small perturbation in
the initial values, is presented.
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2.2 Graphical Representation of Results

In the analysis of nonlinear systems, it is convenient with graphical representa-
tion of the results. The time history is one way to do this, but when the motion
becomes high-periodic or chaotic it is hard or even impossible to draw conclu-
sions about the periodicity of the motion. An alternative is a two-dimensional
projection of the state-space trajectories onto a phase plane, or the more pow-
erful method by sampling a section of the phase plane trajectories once every
excitation period. The latter representation is a Poincaré section, which reveals
information of the periodicity of the motion and allows the investigator to dis-
tinguish between low dimensional chaos and truly random signals. The time
histories earlier considered are presented by these techniques in figure 3, using
a nondimensional relative displacement and velocity representation as defined
in Report A.
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Figure 3. Numerical examples of phase plane trajectories and Poincaré sections from
an impact oscillator

Analysing the figures, the trajectory of a one periodic motion draws a closed
orbit in the phase plane, with a corresponding single point in the Poincaré sec-
tion. For a change in parameter value, the motion becomes three periodic and
the trajectory intersects with itself. The intersections of the trajectory are a
result of projecting the dynamical system’s attractor, based on three state vari-
ables, onto a surface. In the Poincaré section, where one dimension is removed
due to the sampling of the trajectory, three points are seen and corresponds to
the period of the motion. For the chaotic signal, the phase plane representation
more or less fills the plane of projection, which indicates the need for an em-
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bedding in three dimensions. If instead the attractor in the Poincaré section is
analysed, a complex and irregular structure is observed, which has led people
to call them strange. For an increasing amount of points, corresponding to a
longer simulation time of the system, more and more details are added to its
structure. If a small portion of the attractor is blown up, a sheet-like structure
(fractal) that repeats for even smaller length scales is seen (self-similarity), but
of course is limited by the resolution of the data. If a chaotic attractor, from a
dynamical system of more than three state variables, is considered, the attrac-
tor would fill out a surface in the Poincaré section. Then, signs of the fractal
structure or self-similarity will be hard to distinguish. This is an example of
the limitation of the graphical representation, which is restricted to analysis of
strange attractors that lives in a phase space of a maximum of three dimensions.
Random and quasiperiodic motions are other responses that might appear as
chaotic in the phase plane representation. If these responses are analysed in a
Poincaré section, the random motion will fill a surface and the underlying dy-
namical system appear as high dimensional, in difference with the quasiperiodic
response where the points that will form a closed curve.

In the analysis of a nonlinear dynamical system, an investigation of the
response of the system for variations in parameter values is crucial. The bi-
furcation diagram is a representation used for this purpose, where a chosen
variable’s steady state response, sampled from a Poincaré section, is presented
as a function of a chosen parameter. An example is given in figure 4, where
the impact oscillator’s Poincaré displacement data is presented as a function of
excitation frequency.

Bifurcation diagram
14 T T T T

10

<6

-2
1.5 2 25 3 3.5 4 4.5 5

Figure 4. Numerical bifurcation diagram from an impact oscillator

Analysing the figure, information about periodicity of the motion, regions
of chaotic motion and the presence of periodic windows is obtained. Although
the graphical methods discussed can give indications for the presence of chaotic
motion, there is a need for more sophisticated methods to rule out that the
analysed motion does not come from an attractor of high periodic, random or
quasiperiodic motion.
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2.3 Analysis of Results using Fractal Dimension

Traditional linear methods, like power spectrum analysis, will give a broad spec-
trum of frequencies for chaotic motion and the results are hard to quantify. If
instead nonlinear methods, like Lyapunov exponents and fractal dimension, are
applied more information can be revealed from the motion analysed. The Lya-
punov exponent is a measure of the exponential divergence for nearby chaotic
trajectories due to their sensitive dependence on initial conditions, as discussed
above, i.e. chaotic motion has a positive Lyapunov exponent. For a more de-
tailed review of the concept and how to apply it to an experimental time series
see Kantz and Schreiber [5].

Fractal dimension provides a way to quantify the self-similarity in a geomet-
rical object, and the dimension is a measure of the minimum number of state
variables needed to describe the underlying dynamical system. If the time series
data from the attractors in figure 3 are analysed, the one- and three-periodic
responses will yield a dimension d=1, and the chaotic motion a noninteger di-
mension between d=2 and 3. The noninteger dimension is evidence for a fractal
attractor, and the dimension known as fractal dimension. If the value is rounded
to the next higher integer, the minimum number of state variables is obtained.
In the dimension estimation of an attractor from a quasiperiodic signal, of two
fundamental frequencies, a dimension d=2 is expected. The reason for this is
that the trajectories are attracted to a surface in phase space.

If instead a random signal is considered, the dimension will be equivalent to
the phase space the signal is embedded in. The reason for this is that the points
will fill its full embedding space, and this property of fractal dimension can be
used to distinguish between random and chaotic motion.

Several estimators exist that can be used in the measurement of the fractal
attractor’s dimension, e.g. capacity dimension, similarity dimension, Haussdorf
dimension, information dimension, pointwise dimension and correlation dimen-
sion. Farmer et al. [6], gives a detailed review and investigates different esti-
mators, and in many cases they yield a similar result. A trajectory on a fractal
attractor can visit some of the attractor’s regions more often than others. This
is not accounted for in the capacity, similarity and Haussdorf dimension that
only considers the geometry of the attractor. The information and correlation
dimension accounts not only for the geometry of the attractor, but also the
frequency the trajectory visits its different sections. The correlation dimension
is used in the investigations performed in this work, and a short review of the
method is given below.

2.3.1 Pointwise and Correlation Dimension

In the estimation of the correlation dimension, the Grassberger and Procaccia
[7] approach is the most commonly used due to its efficiency compared to other
methods. The general procedure of the estimator is as follows; a ball of radius
€ is centred at x on the attractor, as exemplified in figure 5.
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- T

Figure 5. Numerical Poincaré section from an impact oscillator

Now let N, (g) denote the number of points on the attractor inside the ball,
then the number of points in the ball typically grows as a power law when
increasing the value of ¢

N, () o e, (2.4)

where d, denotes the pointwise dimension at z. Since the value for the pointwise
dimension can vary significantly over the attractor one averages N, (&) over many
points  and the resulting C(e) is known as the correlation sum

N N
CEO = g 2 O Ok lxi—x) (25)

i=1 j=i+1

where O is the Heaviside step function, ©(z)=0 if + <0 and ©(z)=1 for = >0.
The sum counts the pairs (x; — x;) whose distance is smaller than . For an
infinite amount of data (N — o00) and for small ¢, the resulting C(¢) is expected
to scale as a power law

C(e) o e, (2.6)

and the correlation dimension d can be defined as

_ 0logC(e,N)
d(N,e) = ologe (2.7)
d=lim lim d(N,e). (2.8)

e—=0 N—oo

The calculation of the correlation sum involves, by definition, the use of phase
space vectors as locations of the points on the attractor. Since it is seldom the
case that all the relevant variables can be measured in an experimental set-up,
there is a need for attractor reconstruction. Takens [8] showed that it is possible
to reconstruct the full dynamics in an auxiliary phase space, using the method
of delay vectors. A sampled time series of a chosen variable, y,, is used for this
purpose

Xn = (yn—(m—l)rd’yn—(m—Q)‘rd ..... ,yn—‘rdayn)’ (29)
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where x,, is the observable state variable at discrete time n, 74 is the delay time
and m is referred to as the embedding dimension. The method has been shown
to yield reliable information for the understanding of the underlying dynamical
system, if the dynamical invariant set is low-dimensional and the noise level is
low. The delay time is in this work chosen primarily as the first zero-crossing
of the auto-correlation function in combination with visual inspection of the
reconstructed attractor embedded in two-dimensions.

Once the attractor is reconstructed by the embedding procedure, the estima-
tion of the correlation dimension is performed in two steps. First the correlation
sum C(e), Eq. (2.5), is determined for a range of €, where the minimum value is
below the noise level of the original signal, y,,, and the maximum value typically
the magnitude of the signal, for several values of m. The next step is to inspect
C(m,e) for indications of self-similarity, which corresponds to the power law
region in a plot of log C'(g) vs. loge. The self-similarity is even better visualised
by the plateau in the plot of d(N, ¢) vs. loge. If the indications are convincing a
value for the correlation dimension can be estimated. The box-assisted approach
suggested by Kantz and Schreiber [5] is used in this work. The algorithm was
chosen due to its simplicity, and if the points in the data set are not too clus-
tered the operation count will be o IV for N points. It is generally faster than
multidimensional trees, if the data sets are low-dimensional, which can achieve
a performance with the number of operations proportional to N log N. If the
correlation sum is evaluated directly, as two nestled loops, it will contain about
N?/2 terms for N points. This naive implementation was initially considered,
but the computation was found to be very time consuming.



Chapter 3

Systems Studied

The first of the two experimental systems considered is a simple impact oscil-
lator set-up, designed for the investigation of certain phenomena’s that occur
in impacting systems, Stensson and Nordmark [1]. The oscillator consists of a
pendulum and a shaker, which provides forcing to the system through a moving
impact surface. The second system is a pantograph current collector, Schunk
WBL88/X, which provides electric power to a railway train from the overhead
catenary system. The pantograph is an engineering system, built up by a frame
linkage that supports a head frame, at which carbon collector strips are at-
tached. An example of the device, on the roof of an X2000 train, is seen in
figure 6.

Figure 6. A pantograph current collector on the roof of an X2000 train

11
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3.1 Impact Oscillator

The schematic design of the impact oscillator is seen in figure 7. The oscillator
consists of a pendulum, built up by a metal sphere (4) and a leaf spring (3),
with an initial clearance to a base (2). The base is attached to a shaker (1),
which provides sinusoidal forcing to the system, and is massive in comparison
with the metal sphere. The reason to make it massive is to minimise the effects
of impact on its motion.

Figure 7. The schematic design of a simple impact oscillator’s experimental setup

3.1.1 Experiment

In the experimental set-up of the impact oscillator, a displacement transducer,
(5) in figure 7, measures the motion of the base. An additional measurement of
its velocity is provided through a laser (6). The velocity of the pendulum mass
is measured with a second laser, also placed at (6), and the displacement data
achieved through integration.

When performing experimental measurements, it is crucial to have a good
understanding of the characteristics of the system considered. With some prior
knowledge, it is easier to evaluate the different behaviours found and to conclude
about their origin. It is also of importance to get realistic parameters from the
system if numerical models are to be developed. With this in mind, prepara-
tory experimental measurements were carried out in order to characterise the
system. From free decay measurements of the pendulum, the natural frequency
and damping could be determined. The coefficient of restitution was estimated
from measurements of the relative velocity between pendulum and base, before
and after impact. In the measurements of the system’s response, the following
procedure was used. The amplitude of the shaker was initially increased until
impact with the pendulum occurred. The transients were allowed to die out
before a measurement was recorded, followed by a step change in the frequency
and the procedure’s latter part repeated. The responses found in the system
were harmonic, subharmonic as well as chaotic.
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3.1.2 Modelling

The mathematical model of the impact oscillator is the model previously derived
in Stensson and Nordmark [1], with the significant parameters presented in
figure 8.

-

z(t)=Acoswt

b
—>

Figure 8. The significant parameters for the mathematical model

yt)

In the model, the base provides harmonic excitation to the pendulum’s mass,
m. Small deflections are assumed of the leaf spring, at which the mass is at-
tached, whereby a linear model can be used. The distance marked with b in the
figure corresponds to the equilibrium standoff distance between the mass and
the base, i.e. the excitation is provided through impacts between the two. In
the model, the impacts are modelled using a coeflicient of restitution, e, which
assumes an instantaneous change in velocity when impacts occur

Vout = —€EVin, (31)

where v;,, is the relative velocity before impact and v, the corresponding ve-
locity after impact. The coefficient e then represents the loss of energy in the
impact, and the impact law introduces a nonsmooth nonlinearity into the model.
The dynamics of the system are assumed to be dominated by the first mode of
the beam, since the other modes will be damped out quickly, whereby an or-
dinary differential equation can be formulated to describe the dynamics of the
system. The equation is given in a non-dimensional form, based on the natural
frequency and the equilibrium standoff distance, see Report A. For details about
the derivation of the equation and an extensive review of the system’s dynamics,
from experimental and numerical investigations, see Stensson and Nordmark [1].

3.1.3 Examples of Results

The results presented in figure (2)-(5) are all from numerical simulations of the
impact oscillator. In figure 9, w=3.98, the corresponding experimental result for
the chaotic attractor is presented, but in a different scaling of the figure. The nu-
merical attractor, w=2.56, in figure 9 is to be compared with the experimental,
w=2.34, in the same figure.
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Experimental Attractor w=3.98 Numerical Attractor w=2.56 Experimental Attractor w=2.34
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Figure 9. Experimental and numerical Poincaré sections from an impact oscillator

The experimental and numerical results does not show a perfect match for
the parameter values used, but the agreement between the structure of the
attractors must be considered as very good.

An example from a dimension estimation, performed on the experimental
w=2.34 attractor is presented in figure 10.

Correlation sum w=2.34 Dimension estimate w=2.34

InC(e)

35 2 05 1 -3 2 1 0 1
In(g) Ine)
Figure 10. Correlation sum log/log plot and dimension estimation from the
experimental attractor at w=2.34

Time series data was used in the estimation and analysing the plateau, found
in the scaling region -3<In(e)<-2, in the dimension estimate plot a fractal di-
mension d. ~2.5+0.05 can be estimated.
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3.2 Pantograph

The pantograph’s schematic design is seen in figure 11. It consists of a head and
frame assembly, where the frame assembly consists of two frames, an upper (8)
and a lower (9) that connects to one another, the ground and the head frame
(1) with y-axis rotational joints. An air-spring provides up-lift force to the
structure, and two friction dampers (11) are attached between the lower frame
(9) and the ground. A third friction damper (7) connects between the upper
(8) and head frame (1). The design, where a bar link (10) connects from the
lower frame (9) to the ground, restricts the head frame’s motion to displacement
along the z-axis.

Figure 11. Schematic view of the pantograph assembly, where (1) is the head frame,
(2) a carbon collector strip, (3)-(6) suspensions, (7) the connection point for the
friction damper between upper and head frame, (8) upper frame, (9) lower frame,
(10) bar link, (11) friction dampers and the location of the air-suspension, (12) the
leaf springs and (13) is one of the rigid links.

The head assembly includes two carbon collector strips, where the one marked
(2) is referred to as the contact strip back (csp) and the other as the contact strip
front (esy), and a head frame (1), at which the strip ends are suspended. The
suspensions are built up by leaf springs (12) and rigid links (13), which allow
an x-rotational and z-translational motion of the strip, and their location on
the strip referred to as the left (3)(4) and right (5)(6) side (csy;, cspi, €S r, CSpr)-
The motion of the strip is limited by the head frame in upward displacement,
referred to as the upper limit, and a lower leaf spring (12) in downward dis-
placement, referred to as the lower limit, introducing a piecewise linear stiffness
in the suspension.
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3.2.1 Experiment

In the experimental set-up, a hydraulic actuator, marked (1) in figure 12, was
placed in a rigid foundation built around the pantograph. The actuator provides
sinusoidal excitation of the pantograph, applied at the contact strips, through
an aluminium beam (3). The motion of the excitation is measured by an inter-
nal displacement transducer in the hydraulic actuator, and contact sensors (2)
indicate when the lower limits are reached or if contact loss occurs between the
excitation beam and the strips.

%5

el Ly
Figure 12. The experimental set-up, where (1) indicates the hydraulic actuator, (2)
is one of the excitation contact sensors, (3) is the aluminium excitation beam and (4)
one of the inductive displacement transducers.

At each of the contact strips suspensions and head frame’s ends, inductive
displacement transducers are located (4). The ones attached to the contact strip
measures its displacement vs. the head frame and the ones attached to the head
frame measures displacement vs. ground.

In the preparations, before evaluating the systems response, measurements
were performed to provide information about the system’s characteristics. The
suspensions were investigated to find the corresponding stiffness in the different
regions for the; free leaf spring, lower limit and upper limit, that produces a
piecewise linear stiffness of the suspension. The friction in the suspensions was
estimated from free decay measurements of the contact strip, and found to vary
significantly depending on the amount of force used when attaching them to
the head frame and contact strip. To measure the contact strip’s inertia, it was
pivoted at its centre of mass and springs with known stiffness attached at each
of its ends. Free decay measurements were performed, from which the contact
strip’s inertia could be estimated.

In the experimental runs, the excitation of the pantograph was applied at
the centre of the contact strips. To better understand the complex dynamics of
the pantograph, the head frame was fixed to ground in some of the measurement
cases. In the measurements, the pantograph was excited at a fixed amplitude
and frequency for some time, to allow transients in the dynamics to die out,
before a recording was performed. A step change in frequency was undertaken
and the same procedure repeated. A dynamical system can have more than
one response at a certain frequency, something that might be missed using the
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present method of frequency sweep, and could possibly had been found starting
with the same initial conditions or perturbing the pantograph during run.

In the measurement results, harmonic, subharmonic as well as chaotic and
possible quasiperiodic responses were found.

3.2.2 Modelling

The mathematical model represents the experimental case when the head as-
sembly is fixed to ground, without considering the frame assembly, and limited
to one contact strip. The reason to restrict the model to the head assembly is
that is it desirable to find out whether a simple model can be used to predict
the complex dynamics, found in the experimental measurements on the panto-
graph. The model consists of a rigid beam, which represents the contact strip,
with rotational and translational freedom around its centre of mass. The beam
is suspended at it ends in suspensions with piecewise linear stiffness, friction
and viscous damping. The friction is modelled using a smooth step-function
for a more efficient numeric handling. The viscous damping model is a result
of fitting numerical results to experimental, and its force decay for increased
velocity.

An additional mass my is included in the model to represent a bending
oscillation in the beam, as a result of experimental measurements indicating
that such a frequency is excited in the contact strip during run. In figure 13 a
schematic picture of the subsystem is presented, and seen from the front, i.e.
what appears to be the right side is actually left.

z=Asin(wt)+z,
M T

Figure 13. Schematic drawing of the mathematical model, with significant
parameters

The excitation of the model is provided through a stiff mass-less spring and
damper element, providing a force at the mass ms, which allows loss and impact
between the contact strip and excitation.

In difference with the impact model for the impact oscillator, the impact
is here modelled using a smoother model. The excitation’s spring provides a
force as long as the mass msy is in contact with the excitation, in difference
with its viscous damper that only provides force under compression. The upper
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and lower limits are modelled as linear stiff springs, and provide force when
the beam’s end is in contact. The mathematical model, represented by three
second-order differential equations is found in Article A.

3.2.3 Examples of Results

Some examples of results from the pantograph investigation are now to be given.
The results come from the experimental case when the head frame is fixed to
ground, and are comparable with the numerical results. In the first example,
as seen in figure 14, the upper row corresponds to experimental results and the
lower to numerical simulations.
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Figure 14. Experimental and numerical results from the pantograph, w=0.8Hz

The response is seen to be periodic, and with a similar behaviour in the
experimental as in the numerical results. The oscillations in the velocity data
is an effect of the friction force, which is seen to have a significant effect on the
contact strip’s motion at this frequency.
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In the next example the motion is chaotic, as seen in figure 15.
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Figure 15. Experimental and numerical results from the pantograph, w=10.5Hz and
w=9.6Hz

The figure with the measurement from the beam centre is seen to have similar
dynamics to the corresponding simulation, with results from the mass ma.

An example of a dimension estimation, when applied to numerical Poincaré
data, is seen in figure 16. The true scaling region is found in the region
-4<In(e)<-2.5, and an estimation of the fractal dimension in this region yields
d.=1.2+0.1. This corresponds to a dimension d.=(1+1.2)£0.1 for the underly-
ing dynamical system.

0 Correlation sum 3 Dimension estimate
-2
2
= =
5] e’
£ 4 kel
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Figure 16. Log/log plot of the correlation sum and the dimension estimate using
numerical Poincaré data
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Chapter 4

Summary of Appended
Work

As a preliminary investigation, to test the experimental procedures and the
algorithms for data analysis, a system known to exhibit chaos was chosen, as
presented in Report A. The system is a simple impact oscillator set-up, which
consist of a pendulum with an initial clearance to its excitation, provided by a
shaker. The system is known to exhibit grazing and chaotic motion, and are
behaviours found in the results from the experimental investigation. Two major
regions with chaotic behaviour are found within the frequency range analysed,
and periodic windows occurs within these. A very good agreement in the struc-
ture of the experimental and numerically obtained attractors is found, but there
was a marked parameter value offset between the two. The focus of this report is
on the application of dimension estimation to the chaotic signals, experimental
as well as numerical, in order to estimate the fractal dimension of the attrac-
tors. The correlation dimension is chosen for this purpose, due to its efficiency
among other estimators, and applied to a single time series, reconstructed in an
embedding space using the method of delay coordinates. The results are com-
pared with estimations from Poincaré sections, which showed similar results.
The estimations using experimental and numerical data convincingly support
that the underlying dynamical system lives in a three dimensional state space.
These results, in combination with the convincing correlation, in the structure,
between numerical and experimental attractors supports the assumption that
the system’s dynamics is dominated by the first mode of the pendulum’s beam.
This was an assumption made by Stensson and Nordmark [1], in the design of
the mathematical model, based on an ordinary differential equation.

In Paper A, a pantograph from a railway train is investigated, which in dif-
ference with the system in Report A is an engineering system. The pantograph
was experimentally investigated, and a mathematical model of a subsystem
was developed and numerically analysed. The nonlinearities in this system are
mainly impacts and friction in suspension elements, friction in dampers, loss
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and impacts at the excitation and nonlinear characteristics in an air-spring.
The friction in the suspension elements was found to have a significant effect
on the behaviour of the contacts strip for low excitation frequencies. At higher
frequencies the impacts at the excitation and upper limits are the reasons for
subharmonic and chaotic response of the system. This was found to be the case
for the full system as well as for the subsystem. The importance of including
rotational as well as translational degrees of freedom for the contact strip in the
mathematical model is demonstrated by the experimental and numerical studies
of the system. When exciting the system near a translational natural frequency
of the strip/spring configuration, large amplitudes occur for the contact strips’
and the lower frame’s motion. Excitation near a rotational natural frequency
results in a marked decrease in the amplitude response of one side of the contact
strip’s motion together with increased amplitude for the other side. The experi-
mental investigation of the full system and for the subsystem showed harmonic,
subharmonic as well as chaotic and possible quasiperiodic behaviour. In the
numerical simulations harmonic, subharmonic and chaotic response was found,
but the possibility for quasiperiodic motion is not ruled out since investigations
of similar mathematical models, Jerrelind and Stensson [9], has reported the
presence of this behaviour.

4.1 Authors Contribution

Report A

J. Eriksson (JE) carried out the work with helpful guidance and feedback from
A. B. Nordmark (AN).

Paper A

All authors contributed in the planning of the experimental work, characterisa-
tion of the system and analysis of the data.

JE performed the dimension estimations, experimental measurements, numer-
ical simulations, and developed the mathematical model on the basis of the
results from the characterisation of the system.

The manuscript was prepared by JE, with feedback from AN and L. Drugge.



Chapter 5

Discussion and Outlook

This thesis considers the analysis of two nonsmooth mechanical systems, which
are expected to exhibit complex behaviours due to the presence of strong non-
linearities from friction and impacts. Chaotic responses have previously been
reported in systems with these characteristics, and the focus of this work is
particularly on the characterisation of this behaviour using fractal dimension
estimation. In the dimension estimations, correlation dimension was chosen and
implemented as the box-assisted approach proposed in Kantz and Schreiber [5].
The algorithm was successfully applied to time series and Poincaré data, from
experimental measurements and numerical simulations of mathematical models,
and predicted the minimum number of state variables to be used to describe
the underlying dynamical system.

The systems studied are a simple impact oscillator set-up and a pantograph
current collector from a railway train. From the results it is confirmed that
it is of importance to consider the possibility of complex response in systems
where impact between different parts is likely to occur. In the analysis of these
systems, simulations of mathematical models have been shown to predict the
behaviours found in the experimental systems.

The impact oscillator set-up is, due to its simplicity, suitable for experimental
analysis of impact phenomena. It is known to exhibit regions of chaotic motion,
and periodic windows within these. In impacting systems, grazing bifurcations
can result in destructive large amplitude motion. The same impact oscillator
set-up is being used in ongoing research for the application of control to this
phenomena.

Experimental investigations of the pantograph considered the full system,
as well as a subsystem. Nonlinearities from friction and impacts substantially
affected the contact strips’ responses, and activated rotational as well as transla-
tional motions in them. Resonance in the strip/spring configuration also affected
the strips’ behaviour, and resulted in large amplitude motion of the head frame
for low excitation frequencies. The lower frame’s motion was typically out of
phase with that of the excitation and contact strips above the first resonance in
the system, and this resulted in impacts at the excitation for lower frequencies
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than in the study of the subsystem. Impacts are the major reason for chaotic
motion of the contact strip, for the cases considered. An oscillation of the con-
tact strip’s centre point was found to be present from the measurements, most
likely to have its origin in bending of the strip. The oscillation was taken ac-
count for in a mathematical model of the subsystem, by including an additional
mass at the centre of the strip. The model is developed on the basis of experi-
mental measurements and includes the essential nonlinearities, found to be from
impacts and friction, and has rotational as well as translational degrees of free-
dom. The model can be enhanced to represent the full pantograph system, but
before this can be done there is a need for further experimental characterisation
of the system. The lower frame’s characteristics should be considered in this
analysis, and the impact and damping models updated with parameters from
a more detailed investigation. Another aspect to consider is the origin of the
oscillation found in the contact strip that was assumed to be due to bending,
since the possibility that a natural frequency is excited in the system responsible
for providing excitation is not ruled out. When a mathematical model of the full
pantograph system has been developed, more realistic forcing situations should
be considered and the model evaluated with experimental measurements.

Although successful dimension estimations of the fractal attractors, numer-
ical and experimental, have been performed, the application of the estimator
did not turn out to be straight forward. The estimations from experimental
attractors were applied to inductive transducer and laser data, with low noise
level and statistics from up to 6500 excitation cycles. Different samplings of
the signals, using Poincaré data as well as time series data with more than 40
points/excitation cycle, and variations in the embedding parameters were taken
into account. Still problems arise in the estimations, with the lack of convincing
plateaus indicating self-similarity in the attractor. The same problems arise for
the application to numerical data, from simulations using tight error tolerances,
with statistics from up to 12000 excitation cycles.

In some of the estimations, the application to Poincaré data resulted in the
most reliable results, and for others no convincing plateaus could be found. The
same was the case for applications to time series data. No rule of thumb in the
dimension estimation procedure can be concluded, since the parameters and
samplings to be used depend on the attractor under consideration. Another
drawback of the estimator is that the amount of data that can practically be
evaluated is limited due to the computing time. The problems, in combination
with the need for repeated estimations before convincing results are obtained,
are limitations of the estimator. The limitations and the practical implementa-
tion of the results are aspects that have to be addressed before the concept of
fractal dimension can be more widely used for engineering purposes.

For the studied systems, the most convincing plateaus were found for the
application to the attractors from the impact oscillator, and the results argued
for the need to represent the dynamics in a three dimensional phase space.
The same results were found for the application to experimental data from the
pantograph, but the attractors from numerical simulations indicated the need for
a phase space of three to four dimensions, depending on the attractor analysed.
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Abstract

An experimental and numerical study of the dynamics in an impact
oscillator has been carried out. T'wo major regions of chaotic motion were
found within the frequency range analysed and periodic windows occurred
within these. The numerically obtained attractors were in good agreement
with the experimental, with a very similar structure, but for a marked dif-
ference in frequency. The chaotic signals were analysed using the method
of correlation dimension, in order to estimate the fractal dimensions of
the attractors. In the dimension estimation, based on the use of a single
time series and the method of phase space reconstruction, the theoreti-
cal results verified the experimental and argued for a fractal dimension
d~2.420.1. The estimations were compared with the ones coming from
a single Poincaré section, and similar results were achieved. Rounding
the estimated value to the next higher integer gives a prediction that the
dynamics live in a three dimensional phase space, in agreement with the
number of states used for modelling the mathematical model.



1 Introduction

In this report a numerical and experimental study of the dynamics in a simple
impact oscillator set-up has been carried out. The dynamics of the attractors
was reconstructed in an auxiliary phase space, using a single time series, and
their fractal dimensions estimated using the method of correlation dimension
[1].

The dynamical system’s continuous time evolution can be described by a set
of first-order autonomous ordinary differential equations

dx

dr
2D 1 1 2D

du = ——u- —2x+a{<1— —2> cosH+—sin0}
w w w

dr w
do
dr 1 1)

If initial conditions are given to the states (z, u, 6), the trajectory of the
system can be determined. The system discussed shows phase space contraction,
due to the damping term, and the long time solutions of such a system can be
described by attracting sets in phase space, the attractors.

If no forcing is applied to the system the attractor will typically be an orbit
in phase space. If instead periodic forcing is applied, the attractor can exhibit
a very complex and much more irregular structure, which has led people to
call them strange. The attractor is then better known as a fractal and their
existence in a physical context was first shown by [2].

The dimension of a dynamical system corresponds to the number of states
needed to fully uncover the system’s dynamics, in this example the three de-
scribed above. If the dimension of an attractor is evaluated, the orbit would
yield a dimension one to be compared with the fractal that has a non-integer
number between two and three. If the non-integer value is rounded to the next
higher integer, the number of states needed to describe the dynamics is achieved.

The method of correlation dimension has become the most popular when
estimating the fractal dimension of an attractor, due to its relatively high com-
putational efficiency and that it is easy to implement. The method has suc-
cessfully been applied within various fields, such as gearbox fault diagnosis [3]
and rolling bearing condition monitoring [4]. The reason for using it is that a
prediction of how many state variables that is needed to describe the underlying
dynamical system can be estimated, which in combination with the ability of
the estimator to distinguish between random or chaotic motion provides useful
information for engineers when modelling dynamical systems.



2 Experiment

2.1 The Experimental Setup

The experimental rig contains a mass, coming from a steel ball bearing, attached
to a spring made out of shim steel with dimensions 0.5x12.9x160 mm?. Two shim
steel beams with thickness 0.1mm were attached to the spring, using double-
sided adhesive tape, in order to increase the damping.

The external forcing of the mass is achieved using an electro-magnetic shaker
from Briiel & Kjaer, type 4809, and was sinusoidal. A large mass, referred to
as the base, was attached to the shaker armature. This in order to make the
base massive in comparison with the pendulum’s, marked (4) in figure 1, and
minimise the effects of impacts on the motion of the excitation. The impact
head is made out of aluminium in order to avoid magnetic effects from the
shaker. The different parts of the experimental setup can be seen in figure 1.

Figure 1. The experimental setup. Number (1) is the electro-magnetic shaker, (2) is
the base, (3) is the spring, (4) is the mass, (5) is the inductive displacement
transducer and (6) are the lasers.

The motion of the base was measured in [V /mm] using an inductive displace-
ment transducer, Solartron DFGb5.0, and the velocity measured in [V/(mm/s)]
using a laser, Polytec PDV100. The velocity of the ball was measured in
[V/(mm/s)] with a laser, Polytec OFV303, and the displacement automatically
integrated in the same equipment. The signal generation and the collection
of the data were performed using a dynamic signal and system analyzer from
Siglab, sampling the signals from the measurement devices with 2.56kHz, con-
nected to a computer with a measurement card, SlimSCSI 1460D, from Adaptec.
The power amplifier connected to the electro-magnetic shaker, is from Briiel &
Kjaer, type 2718.

When measuring data in an experimental system there will always be sources
of errors, such as noise and resolution of the AD-converter.

2.2 The Experimental Methodology

At a fixed frequency the amplitude of the shaker was increased until the base
impacted with the mass, initially at rest. The system was run for some time to



allow a warm up before the measurements were started. Then the frequency was
increased in steps and an investigation of the motions occurring at the different
frequencies carried out. Some time were given between the measurements, after
a step change in frequency, to allow for the transient effects to die out and
possible parameter drift to stabilise.

Two different standoff distances were investigated, I: 6=0.2mm and II:
b=0.5mm, which must be considered as approximate values since they were
hard to measure exactly and might vary during the experimental run, especially
after a resonance peak. The frequencies investigated spanned from w =1.9-4.4.

No filtering has been applied to the measured time series used in the dimen-
sion estimations, but the results presented in the next section has been filtered
using a 3 point averaging filter to smoothen up the trajectories.

2.3 Examples of Experimental Results

Four different ways of presenting the results will be used here: time histories,
phase-plots, Poincaré sections and bifurcation diagrams. The bifurcation dia-
gram is simply a way to give an overview of the systems behaviour under the
variation of a parameter, here represented by the displacement component of
the Poincaré data versus the frequency ratio w. The Poincaré data is collected
whenever the phase of the excitation is 7/2(mod 27), in the equations of motion
(corresponding to the time when the base passes the equilibrium position, going
from positive to negative displacement). The relative displacement and velocity
between the mass and the base is used in the phase- and Poincaré plots to allow
for comparison with results from the mathematical model. The impact occurs
for =0 in the experimental data, but due to the difficulties in the integration
of the velocity data a minor variation is noticed. The bifurcation diagrams for
standoff distance I and II are shown in figure 2.
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Figure 2. Experimental bifurcation diagrams. (a) Standoff I: b6=0.2mm, (b) Standoff
II: b=0.5mm

In the bifurcation diagrams, two major regions for chaotic motion occurred,
and periodic windows within these. A single dot at a certain frequency cor-
responds to a period one motion, two dots to a period two motion etc. The
variables y and z on the axis in the plot represents the motion of the mass
respectively the motion of the ball.

Looking closer into the motion at a frequency in the first chaotic regime for
standoff distance IT, here w=2.34. Figure 3(a) shows a typical time history
of the system, where the periodically oscillating curve corresponds to the base
motion and the other curve represents the resulting chaotic motion of the mass.
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In the phase plot, figure 3(b), a discontinuous change in velocity can be
detected at the moment of impact between the ball and base. The attractor in
figure 3(c) shows a curled up fingerlike structure, which is a sign of the mass
undergoing a rapid series of impacts and a common behaviour in impacting
systems.

If a frequency w=3.98, in the second chaotic regime for standoff distance I,
is analysed, a second finger appears on the attractor in figure 4(a), due to the
increased sampling in the Poincaré section.
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Figure 4. Experimental attractors standoff distance I, (a) w=3.98, (b) w=4.03



For w=4.03 and standoff distance I, figure 4(b), the attractor has divided
up into three disconnected structures. The sharp corners indicate that the mass
undergoes low velocity impacts, so called "grazing". Looking into a typical time
series for this frequency, the low velocity- and rapid series of impacts can be
identified in the region 0.05< ¢ <0.1 in figure 5(a).
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Figure 5. Experimental signal at w=4.03, standoff distance I. (a) Time history, (b)
Phase plot

The noise and problems in the integration procedure makes it hard to dis-
tinguish the impacts in the time history, but if the region around zero velocity
and displacement in the phase plot, figure 5(b), is analysed a clearer picture of
the discussed behaviour is seen.

3 Numerical Simulation of the System

3.1 The Mathematical Model

The mathematical model of the mechanical system considered in this report is
based on the use of an impact law. The impact law introduces a discontinu-
ous change in velocity at the moment of impact between the mass and base,
which is moving harmonically at a fixed frequency. The mass is attached to a
spring/beam, which is assumed to be linear for small deflections and the equi-
librium distance between the mass and the base is called b.
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Figure 6. The significant parameters

The higher modes of the beam are quickly damped out, whereby an assump-
tion is made that the dynamics of the system is dominated by the first mode.
Therefore an ordinary differential equation can be derived for the system [5],
and is given in a non-dimensional form based on the natural frequency and the
equilibrium standoff distance:

d*x 2D dx 1 B 1 1 2D
F—i— o dr —i—ﬁx = a{( — F) COST—I—?SIHT}
z > -1
(%) - (&) @
dr just after impact (at x=-1) dr just before impact (at x=-1)
where
x(t) = (y-z)/b, the non-dimensional displacement
z(t) = Acos(wt), the motion of the base [m]
y(t) = the motion of the mass [m]
b = the equilibrium distance between mass and base [m]
e = the coefficient of restitution
wy, = the undamped natural frequency of the mass/beam system [rad/s]
a = A/b, the non-dimensional amplitude ratio
w = w/wy,, the non-dimensional frequency ratio
D = the non-dimensional damping ratio
T = wt, the non-dimensional time

3.2 Simulations

The bifurcation diagram in figure 7 was made by numerically solving the dif-
ferential equations with an ode45 solver in the Matlab software package, using
the non-dimensional frequency ratio as a bifurcation parameter. The Poincaré



displacement data was collected using an event function, after the transients
had died out. The values of the non-dimensional parameters were calculated
according to the experimental measurements, see Appendix

e=0.82
D=0.078
and a=1.1

The initial conditions used were x(0)=1, dx/d7(0)=L.

Figure 7. Numerical bifurcation diagram

The same characteristics as for the experimental diagrams are seen, with
two major regions of chaotic motion and periodic windows within these. The
attractors from the Poincaré sections were analysed at the different frequen-
cies in the bifurcation diagram, in order to look for similarities with the ones
coming from the experiment. A perfect match was not achieved between the
experimental and numerical results, where the chaotic regimes are pushed to-
wards slightly higher frequencies than in the experiment. This can be due to
uncertainties in the measured parameter values, which might change with the
forcing frequency. Although a good match with the experimental attractors is
found for the frequencies w=2.56, 4.52 and 4.68 as seen in figure 8.



x
Figure 8. (a) Phase plot w=2.56, (b) Attractor w=2.56, (c) Attractor w=4.52, (d)
Attractor w=4.68

4 Dimension

4.1 Fractal Dimension

Fractal dimension is a way to quantify the self-similarity of a geometrical object.
There are many different ways to do this for a fractal set, and more information
about the methods can be found in for example [6] and [8]. One way is using
the method of correlation dimension, introduced by [1], which has become a
standard due to its efficiency compared to others.

4.2 Pointwise and Correlation Dimension

The Grassberger-Procaccia approach is to fix a point x on the attractor. If
N, (¢) denotes the number of points on the attractor inside a ball of radius
about x, then the number of points in the ball typically grows as a power law
when increasing the value of ¢
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N,(g) oc gde, (3)

where d, denotes the pointwise dimension at . Since the value for the pointwise
dimension can vary significantly over the attractor one averages Nj(e) over
many points x and the resulting C(e) is known as the correlation sum. The
basic formula is

9 N N
Cle) = NN -1 Z Z O(e — [Ixi — 1)), (4)
i=1 j=1i+1
where © is the Heaviside step function, ©(z)=0 if x <0 and ©(x)=1 for = >0.
The sum counts the pairs (x; — x;) whose distance is smaller than . For an
infinite amount of data (N — o00) and for small e, C is expected to scale as a
power law

C(e) o &, (5)
and the correlation dimension d can be defined as
_0InC(g,N)

d(N,e) = S (6)

d=lim lim d(N,e). (7)

e—0 N—oo

4.3 Correlation Sum from a Time Series

The calculation of the correlation sum involves, by definition, the use of phase
space vectors as the locations of points on the attractor. In an experimental
rig it is seldom the case that all the relevant variables can be measured. The
most common way to solve this problem is to reconstruct the full dynamics in
an auxiliary phase space, using a continuously sampled time series of a single
variable and the method of delay coordinates, as introduced by [7]

Xp = (xn—(m—l)rda Tp—(m=2)Ta,e..., Tn—7q>s xn)a (8)

where x,, is the observable state variable at discrete time n, 74 is the delay time
and m is referred to as the embedding dimension. The method has been shown
to yield reliable information for the understanding of the underlying dynamical
system, if the dynamical invariant set is low-dimensional and the noise-level is
low.

4.3.1 Embedding

The most important embedding parameter in attractor reconstruction is mry,
i.e. the product of the embedding dimension and the delay time. Choosing a
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good window m74 highly affects the calculation of d and for some choices a mea-
surable plateau, indicating self-similarity in the data for d(N,e¢), is completely
absent even when examining high-quality data, see [9].

In [7] it was shown that the reconstructed attractor almost always is topo-
logically equivalent to the original state space of a dynamical system, as long
as m>2d+1. Although other studies have shown that many systems can be
embedded in fewer dimensions.

In practice a value is chosen for the delay time 7, and then the dimension
d is calculated for increasing m. In theory the choice of 74, considering infinite
and noise-free data, is arbitrary [10] [6]. Since infinite and noise-free data do
not occur in reality a good choice facilitates the analyses. There is no trivial
choice for 74, but for too small values problems with strong correlations between
successive elements of the delay vectors occur, and all the vectors z,, are clustered
around the diagonal in the R™, unless m is very large. For too large values of
T4 the vectors will be unrelated and the points will fill the R™, destroying the
fractal structure of the attractor confined to small length scales.

Many authors suggest the use of mutual information [11] or the auto-correlation
function when determining the optimal 74, but [9] shows that none of them are
consistently successful.

In this report, the first zero crossing of the auto-correlation function has
primarily been used, in combination with visual inspection of the attractor in a
two-dimensional embedding. The 74 obtained with this method has been com-
pared with the value for the first minimum of the mutual information function,
and should give a good estimate for finding a compromise between the extremes
of too small and too large 74. Even though a good estimate of 74 might have
been found it must be verified that d is consistent under reasonable changes in
the embedding procedure.

Once the attractor is reconstructed by the embedding procedure the estima-
tion of the correlation dimension is performed in two steps. First the correlation
sum C(e), Eq. (4), is determined for the range of €, where the maximum value
is chosen according to the magnitude of the signal and the minimum somewhere
below the noise-level in the data, for several values of m. The next step is to in-
spect C(m,¢) for indications of self-similarity. If the indications are convincing
a value for the correlation dimension can be estimated.

4.3.2 Temporal Correlations

The estimator, Eq. (4), has been shown to be biased towards too small di-
mensions, due to temporal correlations of the data when the pairs entering the
formula are not statistically independent. This is due to the fact that data
which is close in time is also close in space, as an effect of the continuous time
evolution. In the estimation of correlation dimension the geometrical structure
of the fractal attractor and the frequency at which the dynamically independent
trajectories visits various sectors in phase space are to be analysed. If care is not
taken pairs from dynamically dependent trajectories will enter the algorithm.
These have nothing to do with the attractor’s fractal structure and will result
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in a serious underestimation of the dimension. The behaviour is exemplified in
figure 9, where a 2-D projection of a reconstructed attractor is shown. The cir-
cles represents different values for € and A and B are different points for which
the algorithm is trying to find neighbours.

Figure 9. Temporal correlations

For point B there are still some neighbouring points on dynamically inde-
pendent trajectories, while all the neighbouring points for A are on the same
trajectory and thereby simulate a dimension of 1. This problem was solved
by [12] by excluding the pairs which are close, not because of the attractor
geometry but since they are correlated. This is usually the case when they are
close in time, thus Eq. (4) is modified so that the second sum starts after some
correlation time tpmin = NminAt has elapsed. This introduces a time separation
between the points x; and x; in the time ordered vectors

9 N N
e D LS

No exact rule of thumb considering the choice for ny,;, exists, but a recom-
mendation nyi, > 74 is given. The space time separation plot was introduced
by [13] as a method to estimate a safe value for the correlation time tip.

After taking account to the temporal correlations in the data the correlation
sum can be evaluated for the reconstructed attractor. The result is plotted as
a log/log plot and a power-law behaviour should be found within some scaling
region, typically for a small length scale e for experimental data. The power-law
behaviour of C(g), which is the signature of self-similarity in the data, can best
be found plotting the slope d(¢) of the log/log plot of C(g). Then a plateau of
d(e) = algl—fis) corresponds to the power-law behaviour of C(g).

When analysing the local slopes for d(e), three different regions can be dis-
tinguished, see figure 10.
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figure 10. (1) Macroscopic regime, (2) True scaling range, (3) Noise regime

The finite size of the attractor obviously introduces a cut-off in the graph.
For large € the macroscopic structure gives a value which varies with € and m.
For smaller length scales the true scaling range is found once the attractor is
fully unfolded, i.e. the embedding m is large enough, and the value for d(e)
should remain approximately constant when increasing m. If this is the case
and the plateau is convincing enough a value for the fractal dimension of the
attractor may be estimated. On smaller length scales, the effect of noise and lack
of neighbours will destroy the fractal structure, and the local scaling exponent
will reach the value of the embedding dimension. The different regions discussed
very much depend on the quality and amount of data fed to the algorithm.

4.3.3 Data Requirements

Paper [14] discusses the data requirements for a reliable estimation of the cor-
relation dimension, but no general rule of thumb can be given since the require-
ments depend on the attractor to be reconstructed.

Number of Data Points Needed The number of data points to be used
very much depends on the structure of the attractor, and the distribution of
the points. If the orbits rarely visit the areas with fractal structure there is a
need for a very large number of points to resolve the attractor’s dimension, if
possible at all. Paper [15] states that "...experience also indicates the need for
more experience...".

So, the only way to be sure that the number of points used is enough is to
look for convincing evidence of self-similarity in the results. If a too small data-
set is used, the scaling region for the plateau will decrease and the value for d(¢)
will typically increase with increasing m. An incorrect value for the estimation
of d might be the result, since the scaling region investigated is not confined to
the small length scales and therefore is not a property of the self-similarity in
the attractor. An example of a failure estimating the fractal dimension for a
simple five-dimensional system can be found in [16].
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The Effect of Noise The effect of noise is another aspect that highly influ-
ences the performance of the correlation integral. This is investigated in [17]
and [18] for some familiar dynamical systems, and the results indicate an in-
crease in fractal dimension for noisy attractors. The larger the noise level, the
smaller the plateau for d(g) will be. This results in a destroyed fractal structure
of the attractor, and will cause the curves in the dimension estimation graphs to
strive towards the embedding dimension for length scales below the amplitude
of the noise. If the plateau is hard to distinguish there is a need to apply noise
reduction to the data.

The Effect of Filtering Linear filtering methods is as a rule not recom-
mended to deterministic chaotic data [15], since it can artificially increase the
measured correlation dimension. Instead of using linear filtering [10] suggests
the use of nonlinear noise reduction methods, to recover the self-similarity of
the underlying dynamical system.

4.4 Dimension Analysis of an Impact Oscillator

As a first example an attractor reconstruction of the attractor w=2.34, using
the displacement signal, was carried out. A value for the delay time was chosen
according to the first zero crossing of the autocorrelation function, yielding
7=13, to be compared with the value achieved for the first minimum of the
mutual information function, 7=17. The number of points in the data sets used
is 76800, which corresponds to about 30 points/driving-cycle. Figure 11(a)
shows a 2-D projection of the true attractor whilst figures 11(b) and (c) show
the reconstructions.

(@]

Figure 11. Attractors w=2.34 (a) Original attractor, (b) Reconstructed attractor
7=13, (c) Reconstructed attractor 7=17.

Computation of the correlation integral, equation 9, was performed using
the box-assisted algorithm described in [10]. The procedure by which the cor-
relation integral is computed is illustrated in figure 12, where (a) and (b) show
the log/log plots of the correlation integral. The scaling region is chosen by
examining figures (c¢) and (d), which illustrates the slopes of (a) and (b) as a
function of the length scale.
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Figure 12. Correlation integral results of the experimental displacement data,
w=2.34,(a) The log/log plot, 7=13, (b) The log/log plot, 7=17, (c) The local slopes
of (a), (d) The local slopes of (b)

To find a final measure of the correlation dimension, the slopes of figure
12(c) and (d) has to show a convincing plateau. For the data sets analysed here,
the true scaling region is found in the region -3<log(g)<-2. The two different
estimations indicate approximately the same dimension, where d~2.5+0.05, so
the use of the auto-correlation function seems to yield a good estimation for the
delay time.

At large embeddings, the scaling region decreases and is confined to larger
e, as a result of the lack of neighbouring points. For an increased number of
points, corresponding to increased statistics in the data, a larger scaling region
would have been preserved for even higher embeddings.

Analysing figures 12(c) and (d), the three regions previously discussed can be
detected. In the microscopic regime for embedding dimension m=2, the curves
are seen to strive towards the embedding dimension, since the attractor is not
fully unfolded. The fluctuations in the curves are due to the lack of neighbouring
points.

Comparing the results with an estimation using the velocity signal, figure 13,
the results yields a slightly lower dimension d~:2.3540.05 in the scaling region
around 0<log(e)<1. The delay time used was 7=10.
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Figure 13. Correlation integral results of the experimental velocity data at w=2.34,
(a) The log/log plot, (b) The local slopes of (a)

Comparing the estimations for w=2.34 with an estimation performed on
the Poincaré section, the results argues for a dimension d~(141.5)%0.05 in the
scaling region around -4<log(e)<-2, figure 14.
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Figure 14. Correlation integral results of the experimental Poincaré section, w=2.34,
(a) The log/log plot, (b) The local slopes of (a)

The results from the numerically generated data, w=2.56, are seen in figure
15. A delay time 7=8 was used for the displacement data and 7=11 for the
velocity data. The result yields very much the same behaviour as for the exper-
imental data, where the estimation from the velocity signal indicates a slightly
lower dimension than the one from the displacement signal.
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Figure 15. Correlation integral results of the numerical data at w=2.56, (a) The
log/log plot of the displacement signal, (b) The log/log plot of the velocity signal, (c)
The local slopes of (a), (d) The local slopes of (b)

The estimation yields a dimension d~2.45+0.05, in the approximate scal-
ing region -3<log(e)<-2, for the displacement signal and d~2.35+0.05 for the
velocity signal.
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Figure 16. Correlation integral results of the numerical Poincaré section, w=2.56, (a)
The log/log plot, (b) The local slopes of (a)

The Poincaré section estimates a dimension d~(1+1.45)40.05 in the scaling
region around -4.3<log(e)<-3.5.

18



The next estimation, figure 17, was performed using the experimental attrac-
tors at w=3.98, corresponding to a sampling of about 15 points/driving-cycle.
The delay times used were 7=23 for the displacement signal and 7=9 for the
velocity signal.
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Figure 17. Correlation integral results of the experimental data at w=3.98, (a) The

log/log plot of the displacement signal, (b) The log/log plot of the velocity signal, (c)
The local slopes of (a), (d) The local slopes of (b)

The scaling region for the displacement signal is less defined in this estima-
tion but indicates a dimension d~2.54+0.05 in the region -3.3<log(e)<-2.6. For
the velocity signal the plateau is found for -1<log(e)<0 and the dimension can
be estimated to d=2.45+0.05. The Poincaré dimension estimation argues for a
slightly lower dimension around d=s(14+1.35)+0.05 in the scaling region around
-2.8<log(e)<-1.5, see figure 18.
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Figure 18. Correlation integral results of the experimental Poincaré section, w=3.98,
(a) The log/log plot, (b) The local slopes of (a)

For the estimation using the numerically generated data from the attrac-
tor w=4.52, see figure 19, the scaling region is found around -2<log(s)<-1 for
the displacement signal and -3<log(e)<-2 for the velocity signal, indicating the
dimensions d~:2.4540.05 and d~2.3.
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Figure 19. Correlation integral results of numerical data w=4.52, (a) The log/log
plot of the displacement signal, (b) The log/log plot of the velocity signal, (c) the

local slopes of (a), (d) the local slopes of (b)
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The Poincaré dimension estimation argues for a dimension around
d~(141.45)40.05 in the scaling region around -4.5<log(¢)<-3.5, figure 20.
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Figure 20. Correlation integral results of the numerical Poincaré section, w=4.52, (a)
The log/log plot, (b) The local slopes of (a)

5 Discussion and Conclusions

An experimental and numerical study of the dynamics in an impact oscillator has
been carried out. The results has been analysed using the method of correlation
dimension, in order to investigate the fractal dimension of the chaotic attractors.
A very good match between the experimental and theoretical dynamics was
achieved, where the attractors showed very similar structure. In the dimension
analyses, the sampling of the time series was found to be an important issue
since the number of points that can practically be evaluated are limited due to
the computing time for large time series. If the formula for the correlation sum
C(e) is evaluated directly as two nestled loops it will contain about N2/2 terms
for N points, which makes the computation very time consuming. The use of
multidimensional trees can achieve a performance with the number of operations
proportional to N log N, which is the best performance for sets with arbitrary
distribution. The box-assisted approach used in this report is preferred due to
its simplicity and it is generally faster for rather low-dimensional sets. For data
sets where the points are not too clustered the operation count will be oc N for
N points [10].

If a too high sampling is used the statistics in the analyses are limited and
convincing plateaus, indicating self-similarity in the attractor, will not be found.
The curves will typically have a slope, resulting in less defined plateaus, and
a dimension estimation cannot be performed. For the attractors considered
in this report the number of points used were about 80000, with a sampling
corresponding to 17-30 points/driving-cycle yielding 2600-4400 driving-cycles
in the estimation depending on the attractor analysed.

For all analyses, the attractors were fully reconstructed at an embedding
dimension m=>5, but the recommendation [7] yielding m=7 was used in the
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analyses to make sure that the dimension remained approximately constant for
increasing embeddings. The results from the estimations indicates a fractal
dimension of about d=2.440.1, which was verified by the estimations from the
Poincaré sections. The estimations coming from the velocity signal resulted in
a slightly lower value than the ones coming from the displacement signals. A
good agreement between the experimental and theoretical estimations was found
and the results verifies that the dynamics lives in a three dimensional space, in
agreement with the number of states used when modelling the equations.
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7 Appendix

7.1 Experimentally Obtained Parameter Values
7.1.1 Natural Frequency and Damping

The damping in the spring mass system was measured using the logarithmic
decrement method. An exponential decay curve was fitted to the amplitude
response of a free oscillation in the spring/mass system, see for example [19].
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Figure 21. A free decay of the mass/spring system

The decay curve x has the following relation to the damping and undamped/
damped natural frequencies

z = zoe Pt =goeCwnt

Wy = wn\/l—g2

The damped natural frequency is achieved from the free decay by measuring
the period time T, for an oscillation

o
.

and the values for the damping ¢ and undamped natural frequency w,, can be
calculated
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Several measurements were done and averaged, resulting in the values ¢ =
0.078 and w,, = 3.67Hz for the damping coefficient and the natural frequency.

(=
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7.1.2 Coefficient of Restitution

The coefficient of restitution was measured by taking the ratio of two consecutive
velocities, before and after impact. As an example the relative velocity, before
and after impact, is analysed.

dy/df-dz/at

Figure 22. Relative velocity for the impacting system

For the first impact, figure 22, the in-velocity is approximately 15 mm/s and
the out-velocity about 12 mm/s, yielding a coefficient of restitution e = 0.8.
An average over several measurements and different in-velocities was done and
the resulting ratio found to be about 0.82. Indications that the coefficient
of restitution varies with in-velocity, yielding a larger value for low velocities,
were seen but the uncertainty in the measurement results lead to the use of an
averaged value.

7.1.3 Equilibrium Standoff Distance between Mass and Base

The amplitude of the base was increased until impact occurred with the mass,
originally at rest. The value for the base amplitude when this happens was
taken as the static equilibrium standoff distance. This value can only be taken
as an approximation, since the value might change during the run and especially
after a resonance peak.
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Abstract

The performance of the current collection for a railway train depends
on the interaction between the pantograph and its catenary system. As
there is a demand for increased speed of the trains new challenging prob-
lems arise, whereby a good understanding of the systems’ dynamic perfor-
mance is of importance. In this study an experimental investigation of a
Schunk WBLS88/X pantograph is performed, with the focus on its complex
behaviour. In particular, the complex response known as chaos is charac-
terised using the method of correlation dimension. A mathematical model
is developed of a subsystem and the numerical results are compared with
experimental. A qualitative good agreement is found in the results, and
effects from friction and impacts are found to highly affect the behaviour
of the system.

1 Introduction

A pantograph current collector is the system that provides the electric power
from the overhead catenary system to a railway train. Due to the demands for
increased speed of the trains, and compatibility with other countries’ catenary
systems challenging problems arise. The problems are for example unsatis-
factory current collection, arcing and increased wear. The current collection
depends on the interaction between the pantograph and the catenary system,
whereby a good understanding of their dynamical properties is crucial. Since
different countries have their own standards for the catenary system and the
economic considerations involved making changes to it, the research of today is
focused on the performance of the pantograph. In the analysis of pantograph
dynamics, there is a need for experimental measurements and development and
simulation of mathematical models.



Pantograph models previously reported in the literature spans from sin-
gle mass models to four mass models, with linear and nonlinear geometry and
suspension elements. The driving of the models varies from simple force and
displacement excitation to more advanced methods, with a finite element model
of the catenary system. Drugge et al. [1] analysed the behaviour of the contact
strip, using a single degree of freedom model (SDOF) with translational free-
dom, suspended in a nonlinear suspension element. Harmonic, subharmonic as
well as chaotic response is reported for periodic forcing of the model. A linear
SDOF model with parametric forcing is considered by Wu and Brennan [2],
where an analytical investigation of the pantograph-catenary system’s stabil-
ity is performed. The finite element method is used to determine the catenary
characteristics, and Floquet theory when studying the coupled system. Jerre-
lind and Stensson [3] developed a single mass model of the head assembly, with
translational and rotational freedom around its centre of mass. Symmetric and
asymmetric forcing is considered and the focus of the study is on the coupling
effects, introduced by the two interacting piecewise linear suspension elements
in the model. The results show harmonic as well as subharmonic, quasiperiodic
and chaotic response, when harmonic forcing is applied, and conclusions are
drawn that models with uncoupled motion cannot even be used as a worst case
measure.

The single mass models can provide understanding of a subsystem in the
pantograph, but if the full systems behaviour is to be evaluated the minimum
requirement is the use of a two mass model, so that the motion of the frame
assembly is included in the study. Drugge and Stensson [4] used a two DOF
pantograph model when investigating the effects of catenary damping on the
subsequent oscillatory motion of catenary systems. Single and multiple panto-
graph operation were considered and the results compared with experimental,
from full scale field measurements. Eppinger et al. [5] reviewed different models
ability to predict the pantograph’s behaviour. An asymmetric nonlinear three
DOF model is developed and experimental evaluation of the results performed.
The results argues for the use of a three DOF model, if frequencies above the first
resonance are considered, since the analytical and experimental results shows
that motion of the upper and lower frame will typically be out of phase above
this frequency.

A three DOF model with nonlinear geometry, damping and stiffness is for-
mulated in Seering et al. [6], and numerical results evaluated with experimen-
tal. Responses from the model and experimental data showed harmonic and
subharmonic motion under harmonic excitation. Another paper investigating a
three-dimensional pantograph is found in Lesser et al. [7], where the rotation
of the contact strip was taken into account. A moving load excitation, along
the contact strip, was used and the results showed that the major motion of
the pantograph was due to rotation of the contact strip. The results argue
for inclusion of contact strip rotation if a realistic model is to be developed.
Larsson and Drugge [8] performed a parameter study of the suspensions in the
head assembly, using a three dimensional pantograph model. The important
parameters were found to be the viscous damping and friction.



In Poetsch et al. [9] a review of existing pantograph model designs is found.
The limitations of the pantograph-catenary systems are outlined and proposals
for active control concepts discussed. Pracik and Furmanik [10] developed a
nonlinear four DOF model, with translational freedom. The model is built up
by four masses where two represents the frame assembly and the other two
the contact strips, and the results showed non-harmonic response for harmonic
excitation.

The authors claim the use of the correlation dimension method, but no
results from dimension estimations are presented. This is the only paper found
that reports application of the correlation dimension method to measurement
data from a pantograph, and that method is used in this report.

The pantograph considered in this report is a Schunk WBL88/X, built up
by several parts. On top is a head assembly, which consists of two contact strips
(that collects the electricity from the catenary system) supported in suspensions
attached to a head frame. The head assembly is supported by a frame assembly,
built up by two hinged links, with an air-suspension that provides up-lift force
to the structure. In this work an experimental investigation of the pantograph’s
behaviour at different frequencies is carried out. To provide better understand-
ing for the origin of some behaviour of the pantograph, investigations are also
performed with the head assembly fixed to ground. A mathematical model of
the latter case is developed and numerically analysed. The model is, due to the
decoupling in the head assembly, restricted to one contact strip with transla-
tional and rotational freedom around its centre of mass. An additional mass,
with vertical freedom, is added at the centre of the contact strip, to simulate
a bending oscillation in the strip. The model includes nonlinearities, such as
possible loss and impact at the excitation, friction and piecewise linear stiffness.
The forcing is applied at the additional mass through a stiff periodically excited
suspension element.

When applying dimension estimation to a data set, a measure of the min-
imum number of state variables needed to describe the underlying dynamical
system is achieved. Another property of the estimator is that it can distin-
guish between chaotic and random motion that, in combination with infor-
mation about the minimum number of state variables needed, provides useful
information in the design stage of new simulation models.

2 Experimental Set-up

An experimental set-up of the pantograph, Schunk WBL88/X, was previously
designed and used for the study of the pantograph’s dynamical behaviour by
Harell et al [11]. This work focused on the coupling effects, introduced by the
interaction between piecewise linear suspension elements in the construction,
and gives a more detailed review of the experimental set-up. The pantograph
is built up of two subsystems; the head and frame assembly, with the schematic
structure as seen in figure 1. The frame assembly consists of two frames, an
upper (8) and a lower (9) that connects to one another, the ground and the



head frame (1) with y-axis rotational joints. An air-spring provides up-lift force
to the structure, and two friction dampers (11) are attached between the lower
frame (9) and the ground. A third friction damper (7) connects between the
upper (8) and head frame (1). The design, where a bar link (10) connects
from the lower frame (9) to the ground, restricts the head frame’s motion to
displacement along the z-axis.

Hesd Assembly

Figure 1. Schematic view of the pantograph assembly, where (1) is the head frame,
(2) a carbon collector strip, (3)-(6) suspensions, (7) the connection point for the
friction damper between upper and head frame, (8) upper frame, (9) lower frame,
(10) bar link, (11) friction dampers and the location of the air-suspension, (12) the
leaf springs and (13) is one of the rigid links.

The head assembly includes two carbon collector strips, where the one marked
(2) is referred to as the back contact strip (¢s,) and the other as the front contact
strip (csy), and a head frame (1), at which the strip ends are suspended. The
suspensions are built up by leaf springs (12) and rigid links (13), which allow
an x-rotational and z-translational motion of the strip, and their location on
the strip referred to as the left (3)(4) and right (5)(6) side (csyi, cspi, €S ¢r, CSbr).
The same front/back and left/right reference structure and numbering applies
to the head frame (1), (hff1, hfor, Rf¢r, hfor). The motion of the strip is limited
by the head frame in upward displacement, referred to as the upper limit, and a
lower leaf spring (12) in downward displacement, referred to as the lower limit,
introducing a piecewise linear characteristics in the suspension.

In the set-up a hydraulic system (MTS 458), with a signal generator (Briiel&
Kjaer Puls) and hydraulic actuator (MTS 242.01) marked with (1) in figure 2,
is used. The actuator, which is placed in a rigid foundation built around the
pantograph, provides a sinusoidal forcing to the strips via an aluminium beam
(3) attached to its piston.
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Figure 2. The experimental set-up, where (1) indicates the hydraulic actuator, (2) is

one of the excitation contact switches, (3) is the aluminium excitation beam and (4)
one of the inductive displacement transducers.

At each of the contact strips’ suspensions and head frame’s ends, inductive
displacement transducers (LVDT, Hottinger 1-WA /50&100MM-L) are located
(4). The ones attached to the contact strip measures its displacement vs. the
head frame and the ones attached to the head frame measures displacement vs.
ground. The motion of the excitation is measured by an internal displacement
transducer in the hydraulic actuator and, in difference with the experimental
set-up in Harell et al [11], contact sensors were added to indicate when the lower
limits are reached or if contact loss occurs between the excitation beam and the
strips, (2) in figure 2. The signals were recorded at a sampling rate of 6000Hz
using a recorder (Sony DAT) and the signal is amplified with an amplifier (MGC
plus, Hottinger).

Due to the complexity of the pantograph dynamics, the head frame was fixed
to ground in Case 2 and 3, see below, and for Case 3 csy was removed and an
additional measurement of the other strip’s centre point performed using a laser
(Polytec OFV303), measuring its velocity.

3 Experimental Methodology

During the experimental runs, the pantograph was excited at fixed amplitude
and frequency and the transients in the dynamics allowed to die out before a
measurement was recorded. The frequency was increased, whilst still exciting
the pantograph, between the measurements and the same procedure as men-
tioned above repeated.

By this methodology, an overview of the dynamical behaviour that occurs
at the frequencies investigated, when holding other parameters (such as the
amplitude) fixed, is achieved. Using the frequency sweep method it is possible
that some of the behaviours are missed, since co-existing solutions might be
present at certain frequencies. Those solutions could possibly have been found,
using the same initial conditions at every frequency considered or perturbing
the pantograph during run.

The results presented are 20s of the recording, if nothing else is mentioned,
and filtering is only applied before taking derivatives of the displacement trans-



ducer data, to compute the velocity. The filtering used is a 6th order low-pass
FIR filter, with a cut-off frequency at 100Hz. The laser velocity data is auto-
matically integrated in the laser and no post processing therefore needed.

In the experimental work three different cases are considered, all excited at
the centre of the strips, with configurations as presented in table 1.

Case Head Frame F,(N) A(mm)

1 Free 25 5
2a Fixed 6 5
2b Fixed 12 10

3 Fixed 25 5

Table 1. Description of the studied cases

The first case, referred to as Case 1, is on the full rig with the air-suspension
adjusted to provide a total up-lift force of 100N. The up-lift force is measured
at the contact points between the excitation beam and the strips, and results
in a preload of the strips. The preload is equivalent to F,=25N, in each of
the suspensions, when the excitation is at its static zero level, and results in
a compression of the suspensions. This allows impact at the suspensions lower
limits and an investigation of the pantograph’s dynamical behaviour under these
circumstances can be carried out.

In Cases 2 and 3 the head frame is fixed to ground. For Case 2, the zero
level of the excitation adjusted so that the excitation beam is just in contact
with the contact strip in the excitation’s upper turning point. This results in
a strip preload of F,,=6N and Fj,=12N at each of the suspensions, and allows
one side of the strip to impact at its upper limit.

For Case 3 csy is removed, to make sure that none of its dynamics is trans-
ferred via the excitation beam to the other contact strip. The zero level of the
excitation is adjusted to give a comparable situation to Case 1, with a preload
of F,,=25N, and an investigation whether similar situations arise as for the full
system can be carried out. In this case a laser, measuring the contact strip’s
centre’s velocity, provides additional information about its motion.

4 Pantograph Characteristics

To provide a better understanding of the experimental results and estimate pa-
rameters for the mathematical model to be developed, some of the pantographs
characteristics were analysed. The head assembly was taken apart, so that the
spring stiffness of the individual suspensions and the strip’s inertia could be
determined. The results from the stiffness measurements are presented in fig-
ure 3, where all four suspensions are found to have similar characteristics. A
small variation in the location of the lower limit is found for the suspension
at csyr, position (5) in figure 1, here marked with a dashed line. The mea-
surements yielded the approximate stiffness ky=47500N/m in the upper limit,
k=1150N/m for the free spring and k7, =7550N/m in the lower limit.
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Figure 3. The stiffness characteristics of the unloaded suspensions and a free decay
for contact strip back, where the dashed line is from the left side and the solid line
from the right

The friction present in the suspensions depends on the amount of force used
when attaching them to the head frame and the contact strips. For this reason,
a free decay measurement of the contact strip was preferred to one in the rig
previously used to determine their stiffness. Contact strip cs, was chosen for
this purpose and to prevent it from impacting with the upper limit an additional
mass of 1.6kg was added to it. Analysing a free decay, figure 3, the difference in
amplitude between two successive peaks should relate to each other as 4F/k,
Tedesco et al. [12], where Fy is the resulting friction force. Measurements from
the right and left side resulted in the approximate friction forces Fr, =1N and
Fy,=1.6N. To get a more realistic measure of the friction, analyses at various
frequencies would be needed and is not considered in this study.

To determine the contact strip’s inertia, I, it was pivoted at its centre of
mass and springs, with known stiffness, added at each side of the pivot point
at distance L, as seen in figure 4. The rigid links, that normally connects the
strip to the springs, were included in this test since they will affect the inertia.
A displacement transducer was placed at distance Lo, to measure the response
of the free decay. Two different setups with springs were used and several
measurements performed, to get an averaged value for the inertia coefficient.
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Figure 4. Contact strip suspended in springs and a free decay of the contact strip
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Analysing a free decay, the natural frequency, w,, can be determined and
using its relation to the spring stiffness, k, and strip length, Li: w,?=2kL,%/I,
Tedesco et al. [12], an averaged value I=0.78kgm? could be calculated. The
mass of the strip, including links, was found to be m=3.5kg.



5 Experimental Results

In this section four ways of presenting the results are used: phase plane plots,
time histories, maximum amplitude diagram and Poincaré sections. The phase
plane plots are simply the displacement plotted vs. velocity, time history is
time vs. displacement and the maximum amplitude diagram the frequency vs.
maximum displacement. The Poincaré section is a section of the phase plane
plot, sampled once every excitation cycle when the excitation is in its upper
turning point, and the results are from 2000 excitation cycles.

5.1 Casel

In the first example, see figure 5, the excitation frequency is 5.5Hz. The phase
plane plots for cs¢ and cs;, with their left and right side coordinates z¢;, zf,, b1,
Zpr, have a vertical line that indicate the location of the lower limit, which has
to be considered as approximate since it varies slightly between impacts. The
phase plane plots of the contact strips angles, 0y and 0, is approximated from
the transducer data, which has the following linearised relation to cs;’s angle:
0¢=(zf1 — z¢r)/(2L). The time history data of the excitation is marked with a
“W”, when there is a contact loss between the strip and excitation beam, and a
“o”  when back in contact, so that conclusions about the effects introduced by
loss and impact can be drawn.
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Figure 5. Case 1, 5.5Hz

When repeated loss and impacts occur, the marking for loss might appear
before the marking for contact, since 20s of the information is plotted over one
excitation cycle. Studying the figures, both of the contact strips sides are seen to
impact with the lower limit and typically lose contact with the excitation after
the excitation’s lower turning point. For csp, additional contact losses occur
after the turning point. The contact losses have its origin in a phase difference



between the motions of the contact strips and the head frame, where the head
frame is slightly delayed in comparison with the excitation and the strips. The
oscillation present in the orbits is a frictional effect and the contact strips has a
similar response, an effect even more pronounced in the next example at 6Hz,
see figure 6. Now the excitation is in contact during the whole run and a marked
decrease in the amplitude of the motion is noticed for csy, and csy;. The decrease
in amplitude is related to the contact strips rotational natural frequency and
will be discussed more in detail later. The inward bend in their orbits, has its
origin in the other side’s impact with the lower limit.

Phase plane plot cs M Phase plane plot cs M Phase plane plot 9'

600 600 04
Q

300 300 T 02
Q g g
€ =
£ £ 3

ES ES S 0
i <] S
Ked o =
g £ £

-300 -300 2-02
<

-600 -600 -04

10 o 10 20 -10 o 10 20 002 001 0 0.01 0.02
Displacement(mm) Displacement(mm) Angle(rad)
Phase plane plot cs or Phase plane plot cs bl Phase plane plot eb
600 600 04
@
300 300 T 02
Q @ g
£ € =
£ £ 3
E E 3 °
3 3 2
S k) I
° ] g
> 300 > 300 902
<
600 600 04
-10 o 10 20 -10 o 10 20 002 001 0 0.01 0.02
Displacement(mm) Displacement(mm) Angle(rad)

Figure 6. Case 1, 6.0Hz

In the third example at 8.3Hz, repeated contact loss occurs at the excitation
before, at and after its lower turning point, see figure 7. The loss is, again, due
to a phase difference in the motion between the head frame and the excitation,
where the frame still moves downwards whilst the strips and excitation moves
upward. The response of the strips has a period that repeats once every second
excitation cycle, i.e. they have undergone a period doubling, and behave almost
like single degree of freedom systems, due to their small angular motion.
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Figure 7. Case 1, 8.3Hz and 8.4Hz

When the frequency is increased to 8.4Hz, the response has become 3 peri-
odic, again as a result of repeated impacts with the excitation, see figure 7.

In figure 8 at 9.2Hz, the attractor looks chaotic and the strips repeatedly
impacts at the excitation and the lower stops.
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Figure 8. Case 1, 9.2Hz

Figure 9 shows the last results to be presented for the full system and comes
from measurements performed before sensors, indicating contact at limits and
excitation, were added to the experimental set-up. The results consider the
head frame’s amplitude response and allow an investigation of the frame assem-
bly’s importance over the frequency interval investigated. The change in the
set-up, caused by taking the pantograph apart and adding the sensors, affected
the pantograph’s behaviour at certain frequencies, but the major characteristics
of the results presented in figure 9 remains. Analysing the figure, three differ-
ent peaks occur in the measured data, with the maximum amplitudes in the
region 3.5-4Hz. The amplitudes, in this region, vary between A=9-11mm for
the different corners of the head frame, with a larger response for hfy, and hfy
than Afy,. and hfy;. This corresponds to an angular motion of the head frame
around its y-axis, as specified in figure 1. The large amplitudes is a result of the
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contact strips and springs translational natural frequency, which relates to the
undamped natural frequency as: w?=Fk/m, Tedesco et al. [12]. Using the para-
meters from the measurements presented in section 4, the resulting frequency
w,=4.1Hz is found in agreement with the results presented here.
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Figure 9. Maximum amplitude diagram for the head frame

The second peak, just below 6Hz, is an effect of the strips rotational natural
frequency, which relates to the undamped natural frequency as: w2=2kL?/I,
Tedesco et al. [12], resulting in w,=5.0Hz. At this peak the maximum ampli-
tudes are found for hfy, and hfy,, corresponding to an angular motion of the
head frame around its xz-axis. The third peak at 9Hz could possibly be due to
excitation of a natural frequency in the pantograph or caused by impact between
the strips and excitation.

5.2 Case 2

In Case 2, the configuration of the contact strips, with different equilibrium
points for the strips, resulted in non-impacting motion with the upper limit for
csy. Since the behaviour of the strip, whilst impacting with the upper limit,
is the scope of this case, csp is considered in the presented results. The results
showed a strong correlation between the strips motions, indicating the possibility
that dynamics was transferred between the two via the excitation beam. This
is an effect accounted for in Case 3 by removing csy.

In the first measurement at 6Hz, figure 10, the response is a periodic motion
with repeated contact loss between the strip and excitation, before and after
the excitation’s upper turning point, and results in an inward bend in the orbit.
The vertical line in the phase plane plots indicates the position of the upper
limit.
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Figure 10. Case 2a, 6.0 and 6.5Hz

The decrease in amplitude, earlier reported for Case 1 in figure 6, is now seen
for the contact strip’s left side. When the frequency is increased to 6.5Hz, the
motion has undergone a period doubling, possibly caused by repeated contact
losses at the excitation or the left strip side’s impact with the upper limit.

Analysing the results from 7.0Hz in figure 11, contact losses typically occur

at and after the excitations upper turning point, and the contact strip repeatedly
impacts at the upper limit.
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Figure 11. Case 2a, 7.0Hz
The impacts results in a motion that looks quasiperiodic or chaotic, to be

studied more in detail in section 6.
If the amplitude is increased to A=10mm, referred to as Case 2b, and the
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strips excited at a frequency of 6.8Hz, the resulting motion looks chaotic. Both
strip ends impacts with the upper limit and repeated contact loss occur at the
excitation, see figure 12.
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Figure 12. Case 2b, 6.8Hz
5.3 Case 3

The focus of this case is on the behaviour of the contact strip when impacting
with the lower limit, and can be seen as a simplification of Case 1, which con-
sidered the full rig. Here cs; has been removed so that no dynamics, possibly
transferred between the two contact strips via the excitation beam, affects the
measurement. In the first results presented, figure 13, the excitation frequency
is 0.4Hz and the friction in the suspensions introduces an oscillation in the ve-
locity data of the phase plane plots. A more indicated jump in velocity is seen
for the left side as an effect of the larger friction force present in that suspension,
as previously concluded in section 4.

13



Phase plane plot cs. br 0.4Hz Phase plane plot cs b 0.4Hz Phase plane plot eb 0.4Hz

20 20 0.01
@
10 10 3 0005
Q g £
£ £
£ £ %
= o0 ES s
o o >
o o =
£ g £
10 10 20005
<
20 20 -0.01
-10 5 0 5 10 -10 5 0 5 10 2 -1 0 1 2
Displacement(mm) Displacement(mm) Angle(rad) %102
Phase plane plot cs. br 0.8Hz Phase plane plot cs b 0.8Hz Phase plane plot eb 0.8Hz
40 40 0.02
@
20 20 T 001
% % g
€ € =
13 £ °Q
s 0 s 0 S o
] k] 2
k) S o
] o S
= 20 > 20 3-001
<
-0 -40 -0.02
-10 5 0 5 10 -10 5 0 5 10 2 -1 0 1 2
Displacement(mm) Displacement(mm) Angle(rad) %102

Figure 13. Case 3, 0.4Hz and 0.8Hz

There is up/down symmetry in the contact strips displacement, clearly seen
from phase plane plot of the angular motion, and no loss or impact occur at
the excitation and lower limit at this frequency. The same applies to the results
at 0.8Hz and the results in figure 14, at 1.6Hz and 2.0Hz, with an approximate
symmetry remaining.
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Figure 14. Case 3, 1.6Hz and 2.0Hz

At 3Hz the symmetry breaks down, as seen in figure 15. The angular phase
plane plot clearly visualizes this, and the underlying reason is not obvious from
the measurements.
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At 6.0Hz the right side impacts with the lower limit, resulting in an inward
bend in the left side’s orbit. This as well as the marked decrease in amplitude,
for the opposite side to the impacting, are recognised from previous cases and
are more or less identical to the behaviour found at 6Hz for Case 1, as seen in

figure 6.

Analysing the measurements at 9Hz in figure 16, repeated losses with the
excitation, before and after the excitations lower turning point, occur and the
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Figure 15. Case 3, 3.0Hz and 6.0Hz

lower limit is reached at both sides of the strip.
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Figure 16. Case 3, 9.0Hz and 10.5Hz
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in the motion of the strip, since contact with the lower limit has previously not
affected the period. If the frequency is increased to 10.5Hz the motion looks
chaotic, with repeated impacts at the excitation and at the lower limit. Studying
the signals from the laser measurements in figure 17, the beam centre’s motion
is seen to differ from the excitation’s. The oscillation at 6Hz is recognised from
other measurements as well, and is possibly caused by bending of the contact
strip or excitation of a natural frequency in the system providing excitation to
the pantograph. To be able to conclude the actual reason for this behaviour,
there is a need for additional measurements of the excitation beam’s ends.

Laser and excitation 6.0Hz Laser and excitation 10.5Hz Poincare section laser
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Figure 17. Case 3, 6.0Hz and 10.5Hz

The jumps in the velocity field, at 10.5Hz, has its origin in the impacts
with the excitation, and the Poincaré section reveals the fractal structure of the
attractor and argues for a chaotic motion of the strip.

6 Modelling and Simulation
6.1 Mathematical Model

The mathematical model represents the head assembly, when fixed to ground,
without considering the importance of the frame assembly, and corresponds to
the experimental Case 3. The reason to restrict the model to the head assembly,
with only one contact strip, is that it is desirable to find out whether a simple
model could be used to get a better understanding for the underlying reasons
of the pantographs complex behaviour.

The model is built up by a rigid beam, with vertical and rotational freedom
around its centre of mass, suspended at its ends in suspension elements, as seen
in figure 18. The model is here seen from front, i.e. what appear to be the right
side is actually the left side. The suspensions are built up by piecewise linear
springs, friction and viscous damping elements.

The piecewise linearity of the springs is introduced into the model by the
additional springs placed at each side of the beam’s ends. The upper limit
is reached when the beam is displaced by x, in upward direction about its
equilibrium position, with the corresponding stiffness k,,, and the lower limit at
x; in downward displacement, with stiffness k;.

The friction force is modelled by a hyperbolic tangent function, to soften up
the step change in friction force, so that the numerics run more efficient and
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the viscous damping with a hyperbolic cosine function in the denominator. The
hyperbolic cosine function causes a decrease in damping force with increased
velocity, and is a result of fitting the numerical results to the experimental.

The beams angular displacement is assumed to be small, whereby lineariza-
tion of the equations has been performed, and the forces acting in the horizontal
direction are neglected.

To include the beam centre’s oscillation, present in the phase plane orbits
from the experimental measurements as seen in figure 17, an additional mass,
mso , with vertical freedom, is added at the beam centre. Its mass and spring
stiffness is matched with a natural frequency in the beam, found at 50Hz.

The excitation of the model is sinusoidal and applied at the beam centre
through a stiff mass-less spring and damper element, which applies a force to
the mass, mso, when in contact with the excitation, and allows loss of contact
and impact.

z=Asin(wt)+z,

Figure 18. Schematic drawing of the mathematical model, with significant
parameters

The mathematical model can be derived using three ordinary differential

equations and switching conditions, when loss or impact occurs at the excitation
as well as at the upper- and lower limits
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0=L(Fr—Fp)/I
T = (Fm —FL —FR)/m1
y = (_Fm - impact)/m2
z = Asin(wt) + 2o

A~~~
N =

= W
—_— — — ~—

where
Fr=xr-kp+ar-cp/cosh(z, - o) + Fy, -tanh(zr - B) + Fip, + Frp, (5)
Fr=agr -kr+ 2, cr/cosh(zr- o)+ Fy, - tanh(zgr - 8) + Fip + Frp, (6)

Fop =km - Tye + Cm - Tya (7)
—ke Loy — Ce - T2y  When x,y, ,,<0

Fimpact = —ke - T2y when z., < 0 and z.,>0 (8)
0 when x,,>0

and

Fy,, = (xp + x;)k; when x, < x; otherwise Fy,, =0 (9)

Fy,, = (xr + 1)k when zr < x; otherwise Fj,, =0 (10)

Fy,., = (zp — z,)k, when a > x, otherwise Fy, =0 (11)

Fy,., = (xr — x4 )k, when xg > z,, otherwise Fj,, =0 (12)

tp=x—0-L (13)

rp=x+6-L (14)

Tyy =Y — (15)

Try =27Y (16)

6.2 System Specification

The parameters used in the numerical simulations comes from section 3, and
the excitation suspension is modelled using a stiff spring and high damping
coefficient, with values as presented in table 2.
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Parameter Value Parameter Value

my 3kg Fy, 1.0N

I 0.78kgm?  ky, 47500N/m,
L 0.58m ke 7550N/m
kr, 1150N/m x4, 0.002m

kr 1150N/m 0.029m

cr, 16Ns/m  mo 0.5kg

CR 10Ns/m  kn, 50000N/m
a 40 Cm 50Ns/m
Jé] 10000 ke 150000N/m
Fy, 1.6N Ce 150Ns/m
A 0.005m

Table 2. The parameters for the numerical model

6.3 Numerical Results

Two different cases, comparable with the experimental, are considered in the
numerical analyses of the model built. The first Case A is to be compared
with the experimental results from Case 1 and 3, where impact with the lower
limit could occur, with 2p=0.022m causing a preload in each suspensions of
F,=25.3N. In the second Case B, one side of the beam is allowed to impact at
the upper limit, as in the experimental Case 2, and with zp=0.005m, resulting
in a preload of Fj,=5.75N. The initial conditions for the two cases are seen in
table 3, and the equations solved using the Matlab software package’s odedh
solver with a relative and absolute tolerance of 1-1077.

Case  x(0)  &(0) 6(0) 000) y(©0)  §(0)
A —0.022 A-w 0 0 —0.022 A-w
B —0.006 A-w 0 0 —0.005 A-w

Table 3. The initial conditions for the numerical model

6.3.1 Case A

The first results, presented in figure 19, clearly visualize the frictional effects
in the suspensions and the up/down symmetry previously seen in the measure-
ments. The contact at the excitation remains and no impact at the lower limits
occur. If compared with the results in figure 13 they show very much the same
behaviour.
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Figure 19. Case A, 0.2Hz and 0.8Hz

The same yields the results in figure 20, to be compared with the experi-
mental results found in figure 14 where the behaviour occurs at a slightly higher
frequency.
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Figure 20. Case A, 1.4Hz and 1.6Hz

At 2.1Hz the symmetry breaks down, but the contact at the excitation re-
mains and no impact with the lower limit occur. The response of the beam’s
right side is almost the mirrored image of the left, as seen in figure 21, and is
similar to the behaviour found at the experimental results in figure 15.
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Figure 21. Case A, 2.1Hz and 4.8Hz

The decrease in one side’s amplitude, as previously seen in all experimental
cases around 6.0Hz, is also found in the numerical simulations, at a frequency

of 4.8Hz.

A period doubling occur at 9.4Hz in figure 22, which is at a slightly higher
frequency than in the experimental Case 3 in figure 16, caused by the loss in
contact and impact at the excitation. When the frequency in increased to 9.6Hz
the resulting motion looks chaotic, as an effect of the repeated impacts with the

excitation.
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Figure 22. Case A, 9.4Hz and 9.6Hz

Analysing the motion of

mass mo at 2.1Hz in figure 23 the oscillation in



its orbit, previously seen in the experimental laser measurement in figure 17,
is seen. A similar motion occurs at 9.6Hz as for 10.5Hz in the experiment, see
figure 17, and the Poincaré section reveals a fractal attractor.
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Figure 23. Case A, 2.1Hz and 9.6Hz

6.3.2 Case B

The results in Case B are to be compared with the measurements from Case 2.
The response at 4.9Hz in figure 24 is periodic and similar to the experimental
results at 6.0Hz in figure 10. If the frequency is increased to 5.1Hz a periodic
doubling occur, in agreement with the measurement at 6.5Hz in figure 10.
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Figure 24. Case B, 4.9Hz and 5.1Hz

The attractors at 5.5Hz, in figure 25, looks chaotic, as found for Case 2b at
6.8Hz in figure 12, and the Poincaré Sections reveals the fractal structure.

22



Phase plane plot right side 5.5Hz Phase plane plot left side 5.5Hz Phase plane plot 6 5.5Hz
400

04
@
200 T 02
Q g g
€ =
s e [ 8 o
= = @
5 T 2
Ked o =
E £ £
B 200 202
2
<
-400 04
-15 -10 5 ) -15 -10 5 ) 001 -0.005 ) 0005  0.01
Displacement(mm) Displacement(mm) Angle(rad)
Poincare section right side 5.5Hz Poincare section left side 5.5Hz Loss and contact 5.5Hz
9
225 0
50 .
= . £ 2
g g £
£ -100 g c 4
= E g
8 -150 8™ g P
o o -
g 2 &
P a
200 o
10
250
-1 0 1 2 3 -4 3 2 -1 [ 1 [ 005 o1 0.15
Displacement(mm) Displacement(mm) Time(s)

Figure 25. Case B, 5.5Hz

7 Dimension Estimation

When dealing with deterministic dynamical systems it is convenient to classify
them according to their dynamical properties, after their transients has died out.
The dynamical properties can be described by means of its attractor, which is a
set that attracts the motion starting in the region of phase space. From a prac-
tical point of view we can divide the attractors into four basic classes: point
attractors, limit cycles, N-tori and chaotic attractors. The chaotic attractors
can exhibit a very complex and much more irregular structure than the others
mentioned, which has led people to call them strange, and are better known
as fractals. The first three attractors mentioned can be characterized using
traditional linear methods, like a power spectrum, but for the strange attrac-
tors nonlinear analysis has to be employed. Frequently used methods for this
purpose are dimension and Lyaponov exponents estimation. Fractal dimension
estimation is considered here and is a way to quantify the self-similarity of a
geometrical object. There are various methods that can be applied for this pur-
pose, see for example Ott et al. [13]. The method used here is the correlation
dimension and the approach suggested by Grassberger and Procaccia [14], which
has become standard due to its efficiency compared to others. The dimensions
of the attractors, as mentioned above, are for the first three an integer value, in
comparison with the fractal that has a non-integer value. The achieved value is
a measure of the minimum number of states needed to fully uncover the dynam-
ics of the attractor, and for the fractal this value is rounded to the next higher
integer.

23



7.1 Correlation Sum from a Time Series

The Grassberger-Procaccia approach is used to estimate the correlation dimen-
sion, as proposed in Kantz and Shreiber [15], and a brief review will now be
given. The calculation of the correlation sum involves, by definition, the use of
phase space vectors as the location of points on the attractor. In an experimen-
tal rig it is seldom the case that all relevant variables can be measured, whereby
reconstruction of the full dynamics in an auxiliary phase space is preferable. A
single, continuously sampled, time series and the method of delay coordinates
is used for this purpose, as introduced by Takens [16]

Xy = (l'n_(m—l)‘rd, Tpn—(m—2)7q,...., Tn—1q, xn)7 (]‘7)

where x,, is the observable state variable at discrete time n, 74 is the delay
time and m is referred to as the embedding dimension. From these vectors the
correlation sum can be formed:

9 N N
0(5) = (N — nmin)(N — onin — 1) Z Z @(6_ ” Xi —Xj ”)’ (18)

i=1 j=i+ i

where O is the Heaviside step function, ©(x)=0 if < 0 and ©(z)=1 for = > 0.
The estimator counts the pairs (x; — x;), whose distance is smaller than ¢, and
for a large amount of data (N — oo) and small €, the correlation sum is expected
to display a scaling

C(e) ox g, (19)
and the correlation dimension d can be defined as:
_ 0InC(e,N)

dc(N7 5) - W? (20)

d. = Ehi% A}gnoo d(N,e). (21)

When embedding the reconstructed attractor it is of a major importance to
choose a sensible value for the delay time 74. There are various suggestions in the
literature how to choose this value, but no trivial choice exists. For too small
values, problems with strong correlations between successive elements of the
delay vectors occur and the vectors z,, will be clustered around the diagonal in
the R™, unless m is very large. If instead a too large value is chosen, the vectors
will be unrelated and the points will fill the R™ and the fractal structure, which
is confined to small length scales, will be destroyed. Here the first zero crossing
of the auto-correlation function is used, in combination with visual inspection of
the attractor embedded in two-dimensions. Once a value for 74 is determined,
the correlation sum C(e) is calculated for increasing values of m. The result
is plotted as a log/log plot and a power-law behaviour should be found within
some scaling region, typically for a small length scale for experimental data.
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The power-law behaviour, which is the signature for self-similarity in the data,
can best be found plotting the slope d.(¢) of the log/log plot of C(g). A plateau
in the plot d.(¢) then corresponds to the power-law behaviour of C(e).

The reason for implementing a delay nmi,, as proposed by Theiler [17], in the
start of the second sum in Eq.(18), is that dynamically dependent trajectories
otherwise will enter the algorithm. These trajectories have nothing to do with
the geometrical structure of the fractal attractor, which is to be evaluated here,
and will result in a serious underestimation of the dimension. The value for nmin
is typically chosen so that a number of cycles are excluded in the estimation.

There is no rule of thumb considering the amount of data, N, to be fed to
the algorithm, an issue discussed by Albano et al. [18], since it depends on the
structure of the attractor considered and the distribution of the points. Theiler
[19] states that "...experience also indicates the need for more experience...", so
the only way to be sure that the number of points are enough is to look for
convincing evidence of self-similarity in the results.

Noise is another aspect that has to be considered in the estimation, since it
will cause the curves to strive towards the embedding dimension for length scales
below the amplitude of the noise, and is an issue analysed by Ben-Mizrachi et
al. [20] and Argyris et al. [21]. The results indicate that an increase in the
estimated dimension occur for noisy attractors. The larger the noise level is in
the data the smaller the plateau for d.(¢) will be, and if no convincing plateau
is found there is a need for noise reduction of the data. Kantz and Schreiber [15]
suggests the use of nonlinear noise reduction, to recover the self-similarity of the
underlying dynamical system, since linear filtering can artificially increase the
measured dimension, Theiler [19].

7.2 Dimension Analysis of Experimental Data

The first data considered is from the measurement at 9.2Hz in Case 1. The
data is sampled with approximately 11 points per cycle (ppc) and the total
number of data points used is N=60000. The first zero crossing of the auto-
correlation function suggests a value for the delay time of 74=3, which seems to
be a reasonable choice, as seen in figure 26, with a similar look to the original
attractor as seen in figure 8. If compared with the attractors reconstructed
with a 74=1 and 5, that reconstructions are more compressed, whereby 74=3 is
chosen for the dimension estimate. The algorithm by Kantz and Schreiber [15]
allows the user to set the minimum number of reference points, 7. min, Which
was chosen to 7. min=>58000. A value n.,,;,=400 was used and the embedding
dimensions m=2-8 considered. The lines in the correlation sum plot show m=2-
8, where the top line is for m=2, the second line m=3 etc. and in the opposite
order for the dimension estimate plot.
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Figure 26. Reconstructed attractors, log/log plot of the correlation sum and the
dimension estimate of Case 1 9.2Hz

Analysing the dimension estimate plot, the size of the attractor introduces a
cut-off at the positive end of the In(e)-axis. In the approximate region In(e)=0.5
to 2 the correlation dimension, d., indicates the dimension of the attractors large
structure, an orbit with d. =1, before the scaling region, corresponding to the
self-similarity of the attractor, is found at In(e)=-1 to 0. In this region the
curves are found to oscillate around a value of d.=2.440.1, and if the curves
corresponding to the correlation sum are analysed, they show a power-law be-
haviour in this region, in agreement with the theory. Below the scaling region
the experimental noise causes the curves to strive towards their embedding di-
mension.

In the next estimation the data from Case 2a at 7Hz is considered, with the
approximate sampling of 14ppc and a total of N=60000points. The delay time
was chosen to 74=4, using the same methodology as above, and the calculation
performed with n.,min=58000 reference points and m=2-7. The results are seen
in the upper two plots of figure 27, where the scaling region is found between
In(e)~-2 and 0. The dimension estimate argues for a correlation dimension just
above d. ~2, but a dimension d.=2 is not ruled out. If the dimension is two it
would mean that the dynamics is quasiperiodic, and lives on a 2-tori, i.e. the
attractor is not a fractal.
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Figure 27. Log/log plot of the correlation sum and the dimension estimate of Case

2a 7.0Hz

To get a better understanding of the dynamics an additional estimation was
performed, now with twice the sampling and number of points, with focus on
the true scaling region. The delay time is now 74=8, the embedding dimensions
m=2-7 and the number of reference points is n¢min=110000. The results are
presented in the second row of figure 27 and argue for a low dimensional chaotic
behaviour, with a dimension d. ~2.140.05, but the possibility of a quasiperiodic
behaviour is not totally ruled out.

In the next estimation the attractor found at 6.8Hz in Case 2b is analysed.
The sampling of the data is approximately 42ppc and the number of reference
points used ¢ i =80000. The value for the delay time is 74=8 with n4,;,=2000
and m=2-8. Analysing the results in the upper row of figure 28, the dimension
estimate again indicates a dimension d. =1 in the large scale region between
In(e)~0 and 1. The true scaling region is found below In(g)=-1.5, where the
dimension estimation argues for a value just below d.=3.
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Figure 28. Log/log plot of the correlation sum and the dimension estimate of Case
2b 6.8Hz

An additional estimation is performed on the same data, now with n. i, =115000
points and the scale restricted to the true scaling region. The results are pre-
sented in the second row of figure 28 and argues for a dimension d.=2.640.1.

In the final example of the estimations using experimental data the 10.5Hz
attractor, in figure 17, from Case 3 is considered.
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Figure 29. Log/log plot of the correlation sum and the dimension estimate of Case 3
10.5Hz
The laser velocity data is used, in comparison with the previous estimations

where displacement transducer data was considered. The approximate sampling
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of the data is 12ppc, with N=76000 number of points and 7. 1,;, =70000 reference
points used in the analysis. The delay time value was chosen to 74=3, and the
Nmin=200 points neglected before starting the second sum of the estimator. The
calculation considered the embedding dimensions m=2-10.

The results are presented in the upper two plots of figure 29, and the scaling
region found between In(g)~-0.5 and 0.5. Below this region the noise in the data
destroys the plateau. The results argues for a dimension d.=2.3+0.2, which is
also true for the estimation in the lower row of the figure. This estimation is
performed to see whether a better resolution of the plateau can be found, using
twice the sampling, number of points N, reference points n.min and delay time
74 of the data. The value 7, =1000 was used.

7.3 Dimension Analysis of Numerical Data

The dimension estimations performed on the numerical data comes from the
attractors at 9.6Hz in Case A and 5.5Hz in Case B. Starting with the 9.6Hz
attractor, as seen in figure 23, the Poincaré displacement data is considered.
The reason for this is that no reliable estimation results was obtained for the
full data set, which might be due to that the trajectories of the attractor rarely
visits the regions with fractal structure. When estimating the dimension from
a map-like data set, i.e. the sampling is 1ppc, like the one considered, there is
no reason to choose a value different to 74=1 for the delay time. In the estima-
tion N=11900points are used, neglecting the points from the first five cycles,
Nmin=D, before starting the second sum of the estimator. Embedding dimen-
sions m=2-7 are considered and 7. m,jz=11800 reference points searched. The
true scaling region is found, see figure 30, between In(¢)=s-4 and -2.5, arguing for
a dimension of the Poincaré data d.=1.240.1, which corresponds to a dimension
d.=(1+1.2)40.1 for the underlying dynamical system.
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Figure 30. Log/log plot of the correlation sum and the dimension estimate of Case A
9.6Hz

In the second data set, the attractor at 5.5Hz in figure 25 is considered. The
data is sampled at 20ppc, with a total of N=100000points, and a delay time
T4=2 used in the estimation. A value nmin=500 was chosen and n, min=40000
reference points searched in the estimation, performed over the m=2-10 embed-
ding dimensions. A convincing plateau is found in the scaling region between
In(g)~-1.5 and 0, see the plots in the upper row of figure 31, with a dimension of
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approximately d.=3.14+0.05. Below the scaling region the plateau, of the curves
with embedding dimension m=>5-10, is destroyed as a result of too few reference
points, but the scaling region is convincing over the interval investigated.

Correlation sum Dimension estimate

InC(€)
&
d.)

[
In(e)

0
In(e)

Correlation sum Dimension estimate

InC(g)
d (e)
»

1

o
4 3 -1 0 1 -4 -3 2 1 0 1

* In(e) In(e)
Figure 31. Log/log plot of the correlation sum and the dimension estimate of Case B

5.5Hz

In the lower row of the figure an estimation from the Poincaré data is seen.
The number of points used is N=11900, with a delay time 74=1, n¢ ni, =11800,
Nmin=5 and embedding dimensions m=2-7. The signal embedded at m=3 has
a scaling region between In(g)=-3 and -1, arguing for a dimension in agreement
with the previous estimation. The curves from the embeddings m=4-7 shows
a similar result, over a small part of the scaling region, before their plateaus
break down.

8 Discussion and Conclusions

The dynamics of a pantograph current collector from a railway train has been
studied with the focus on the complex dynamics, better known as chaos, and
in particular characterisation of this behaviour using the method of correlation
dimension. The system includes several sources for impacts and friction, which
are known to cause complex dynamics behaviour in other systems. In the study,
experimental measurements were performed of the full pantograph, as well as
for a subsystem. The reason for the latter measurements was to provide a
better understanding for the behaviour of the pantograph. A mathematical
model was developed of the subsystem, based on the experimental investigations,
and the results from numerical simulations compared with the experimental.
A qualitative good agreement was found between the two, with both systems
displaying harmonic, subharmonic, and chaotic responses. The experimental
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measurements also indicated quasiperiodic response, but the possibility that it
is chaotic is not ruled out.

Frictional effects in the suspension elements were found to be of significant
importance at low excitation frequencies e.g. see figure 13 and 19 where also
an up- and downward symmetry in the displacement of the contact strip’s ends
is seen. This symmetry breaks down as the frequency is increased, as seen in
figure 15 and 21.

At low excitation frequencies, below 5Hz, the lower frame is highly active
with large amplitude responses, due to excitation of a translational natural
frequency in the strip/spring configuration. The results from the amplitude
responses for the head frame, over the frequency interval investigated, are pre-
sented in figure 9.

A peak, related to the excitation of a rotational natural frequency in the
strip/spring configuration, is seen just below 6Hz in the figure. The excitation
of this natural frequency results in a marked decrease of one side’s motion of
the contact strip, as seen for the experimental cases in figure 6, 10 and 15, to
be compared with the numerical results in figure 21 and 24.

At higher frequencies, the motion of the lower frame will typically be out of
phase with the motion of the excitation and the strips, and results in impacts
at the excitation at lower frequencies than for the comparable investigation of
the subsystem in Case 3. The impacts at the excitation is the major reason
for subharmonic and chaotic responses of the contact strip for Cases 1, 3 and
A. Examples of the responses are seen in figures 7 and 8, where the contact
strips are found to have very small angular displacements and behaves almost
like single degree of freedom masses. For Case 2 and B, impacts with the upper
limits in combination with impacts at the excitation results in similar responses
of the contact strip, as seen in e.g. figures 10 and 11.

An oscillation of the contact strip’s centre point was found in the experi-
mental measurements, see figure 17, which is likely to have its origin in bending
of the strip. The oscillation is included as an additional mass, at the centre of
the strip, in the mathematical model, and the results from simulations showed
similar behaviour to the experimental, as seen in figure 23.

The dimension estimations from the experimental chaotic attractors indicate
the need for a minimum of three state variables to describe the underlying
dynamics of the attractors. This is in agreement with the observation of the
chaotic responses of the contact strips in Case 1 and, in particular, for strip
in Case 3, which were dominated by translational motion. This argues for
the possibility that a second order equation of three state variables could be
used to describe the studied motion. In the estimations using numerical data,
the dimension of the fractal attractor from Case A was in agreement with the
experimental results, in difference with the estimation of the fractal attractor
from Case B, which indicated the need for a minimum of four state variables.

The results from experimental and numerical simulations indicate the need
to include rotational as well as translational degrees of freedom of the contact
strip in a mathematical model of the pantograph. There is also a need to
include a representation of the lower frame, and the nonlinearities discussed,
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since they highly affect the responses and regions for nonlinear behaviours of
the pantograph. The effects possible introduced by bending of the contact strip
is not studied in detail, which in combination with the nonlinear characteristics
of the lower frame argues for further experimental and numerical investigations
of the studied system.
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