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c©Kenta Inagaki 2005

Universitetsservice US–AB, Stockholm 2005



Mechanical models for electrical cables

Kenta Inagaki
Department of Mechanics, Royal Institute of Technology
SE-100 44, Stockholm, Sweden

Abstract

A theoretical and experimental study of mechanical properties of electri-
cal cables with multi order helical structure has been performed. Relations
between applied deformations and local strains in the first order helical struc-
ture have been developed. The model is then generalized with a hierarchical
approach where the strains at any order helical structure are expressed as
functions of strains in the upper order helix under the assumption that all
components are sticking to each other.

The force balance between the strains and the friction forces is considered.
When the cable is exposed to small bending curvature, the slippage of the
component is prevented by the frictional force. At this stage, the components
of the cable behave as solid beams. Slippage occurs between the components
when the tensile force in the components overcomes the frictional force. This
state occurs at sufficiently large bending curvatures and results in a vari-
able bending stiffness varying with the magnitude of the applied bending
curvature.

The response of the cable to pure bending is measured and the data is
evaluated using the theoretical model described above. Magnitudes of un-
known properties of the cable are estimated by comparing the theoretical
and experimental data. To utilize the model in terms of life time estimation,
a number of parameters were suggested to relate the mechanical properties
of the cable to wear and fatigue. A parametric study has been done to in-
vestigate how these parameters are affected by changing cable properties or
the loading condition.

Descriptors: Electrical cable, Industrial robot, Multi order helical struc-
ture, mechanical model, fatigue
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Chapter 1

Introduction

Although an electrical cable is used to carry electric power or signal from one
point to another and is normally dimensioned with respect to its electrical
properties, in certain applications, such as in industrial robots, Fig. 1.1, it
is subject to external mechanical stresses and forced motion. To supply the
electrical motors located close to the joints of an industrial robots, the cable
is mounted on the arms through a number of mounting points at which the
movement is restricted partly or completely. The operation of the robots,
shown schematically in Fig. 1.2, involves large movements. Thus, the cables
are exposed to simultaneous bending and torsion at large magnitudes. The
deformation of the cable implies that the stress and strain are introduced in
the internal components and this leads to fatigue and wear related problems
limiting the usage period. Current methodology for design of cables is reliant
on the experience from previous designs and on time-consuming cable fatigue
testing. The capability of available theoretical models estimating the life time
of the cable is poor and needs improvements before models can be used for
accurate engineering work.

This thesis concerns modeling of mechanical properties of cables, in par-
ticular those influencing the life-time and aims at building up theories and
providing models that can be used for a theoretical evaluation of the prop-
erties of cables. The final goal of the work is to estimate the life time of
the cable theoretically and present a complete description of behavior of the
cable as a response to imposed deformations and stresses.

There is a large variety of cables with different electrical and mechanical
properties, see e.g. Fig. 1.3. A typical structure of cables used for industrial
robots is shown in Fig. 1.4(a). In general, the design consists of conductors
(1), tape (2), fillers (3), shield (4) and a jacket (5). The jacket serves several
purposes. It protects the vital parts of the cable from external loads and
environmental effects, preserves the cross sectional layout of the cable and
thereby keeping the internal organization of the components unchanged and
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Figure 1.1: Industrial robots.

Figure 1.2: Industrial robot in work.
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increases the bending radius of the cable and thus reduces internal stresses
and strains induced by bending.

A shield is put between the jacket and the tape to protect the surround-
ings from the electromagnetic field generated by conductors and protect the
conductors from electromagnetic disturbance at the same time. The tape is
used to hold the components together during the assembly of the cable and
it also plays a role in reducing the friction between conductors and a shield.
Fillers are introduced in order to make the cable geometrically symmetric
and possibly more compressible.

Conductors are the essential pars of a cable and could have a complex
internal structure. These carriers of electric power or signals are wrapped
helically around the core of the cable. Conductors consist of copper wires
bundled to form a helical structure and are wrapped together by an insula-
tion material. That forms a helix-in-helix structure being the characteristic
structure of the electrical cable; here, it is called second level helical struc-
ture. For the sake of simplicity, the component with the first order helical
structure is called conductor and the second order helical structure is called
wire in what follows. The configuration of the centerline of a helix is deter-
mined by the distance from the center of helix and the lay angle which is
illustrated in Fig. 1.4(b).

Figure 1.3: Various cables.

Mechanical properties of components with internal helical structure have
been investigated in several scientific papers, most of which oriented towards
steel wire ropes designed to carry axial loads. Very little published work
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(a) General cross section of a cable.

α

(b) Illustration of a lay angle.

Figure 1.4: Geometry of a cable.

dealing with mechanical aspects of electrical cables was found. The most im-
portant mechanical differences between steel wire ropes and electrical cables
are the following ones:

1. Electrical cables are constructed from several materials, both metallic
and non-metallic.

2. Electrical cables can be concentric or non-concentric. However, geomet-
rically concentric cables are generally not concentric in terms of stiff-
ness, density and friction as filler threads are mixed with conductors.
Steel wire ropes are always concentric with respect to all mechanical
properties.

Despite the differences mentioned above, the structural similarities sug-
gest that wire rope theory could be used for electrical cables to some extent,
possibly with some modification. The main basic theory for analyzing helical
structures was made by Costello [1]. The wire rope is regarded as a collection
of many individual helical wires and the nonlinear equations of equilibrium
for thin rods are applied. The equations of equilibrium have been linearized
by Velinsky et al. [2] taking radial contraction into account. It was also
generalized for multi strand wire rope.

The relation between applied deformation and resultant force has been
derived assuming that no friction works within the cable. Two extreme cases
of cables for bending was clearly stated by Utting and Jones [3]. Upper
bound of the bending stiffness is defined with Bernoulli-Euler hypothesis,
where the cross sectional planes of the cable remain plane after bending. It
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is assumed that the cable behaves as a solid beam, i.e. no slippage occurs
between components, which yields maximum bending stiffness.

The other extreme situation is the case where no friction force works.
Each component is free to slip with respect to its neighbors, which implies
minimum bending stiffness. In practice, bending stiffness will be between
these two extreme values.

Leclair [4] developed a theoretical model for single-layer helical strands
that provides an upper bound of the relative motion between wires in bending
by considering the geometry of the deformation. The equilibrium equations
were solved taking the friction between the core and the wire into consider-
ation.

Lanteigne [5] obtained the axial strains in a first level helical structure,
consisting of several concentric layers of wires, through geometrical consid-
erations. A general stiffness matrix was obtained through investigation of
the strains, and a rudimentary treatment of internal friction and slippage in
the structure was included. In that paper, the stick-slip transition was also
proposed.

In a multi layer strand, all layers are initially in the no-slip state. As the
imposed bending curvature increases, the outer layer reaches a point where it
is in a full-slip state, with the wires bent independently with respect to their
own bending axis. Papailiou [6] developed another model for bending which
takes into account the slippage. In his model, a variable bending stiffness has
been introduced which considers the inter layer friction and it also considers
the additional pressure caused in the individual wires from outer layers.



Chapter 2

Proposed approach

In this thesis, the existing models are extended to take multi layer and multi
order helical structure of the cable into account. Based on the model devel-
oped by Lanteigne, the relation between the applied deformation to the cable
and the strains in the conductors in sticking state is formulated. Then the
same formulae are applied to the conductor deformation and the strains in
wires. Repeating this procedure hierarchically, strains in the helical structure
of any order can be obtained as a function of the global deformations.

As the second step, the model developed by Papailiou is extended to
consider the transition from sticking state to slipping state for a multi or-
der helical structure. Maximum friction force, which is produced between
neighboring layers, is specified from the force balance on the small segment
of conductors. The force caused by bending is also calculated, which is
obtained from hierarchical model mentioned above. The slippage of the con-
ductor occurs when the frictional force is overcome by the force caused by
bending.

Once the behavior of all conductors are specified, the same calculation
is applied to wires. The result of the calculation on the conductor works as
an imposed condition on wires, i.e. elongating and twisting strains of the
conductor, to which the wire belongs, affect the pressure between the wires
and the curvature applied to the wire can be calculated from the applied
curvature on the conductor. The comparison of the frictional force and the
force caused by the wire deformation shows if the slippage takes place and
the tensile force on the wire cross section is calculated.

This model is applicable for any order helical structure although only
the second helical structure is studied in detail. When the strains in the
highest order helical structure caused by cable deformation are calculated,
the bending stiffness of the cable is calculated as an entire response of the
cable. The bending stiffness can be a good object to compare theoretical and
experimental results.

6
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The response of the cable to pure bending is measured in simple test
as shown in Fig. 2.1 and the data is evaluated using the theoretical model
described above. The pressure caused by the jacket and the insulation is
not measured explicitly, but instead, theoretical model is used to estimate
its magnitude. It is worth mentioning that the internal pressure in the ca-
ble is parameter depending on both the configuration of the cable and the
manufacturing process.

Figure 2.1: Test rig for bending.

Based on the detailed knowledge of the mechanical properties of the cable,
a number of parameters can be defined to relate these properties to the life-
time of the cable. The magnitude of the maximum stress in wires and where it
occurs are suggested as one of the key properties. It is strongly related to the
fatigue which can cause cracks and also tells where the breakage might occur.
Another property of interest is the number of the slipping wires because the
slippage of the wire lead to wear damage inside the cable. The developed
model is used to study how these key properties are affected by changing an
external loading condition or the configuration of the cable geometry.



Chapter 3

Results and Discussion

The model developed in this study is applied to the actual cable and the
result is shown in this section. Fig. 3.1 shows axial strains occurring in
a wire in sticking state, where the cable is exposed to a combination of
elongation, twisting and bending. The axial strains are presented for different
combinations of lay angle, where α1 and α2 are the lay angles of conductor
and wire, respectively.

From Fig. 3.1, it can be found that the strain consists of a low frequency
and a high frequency component. For the case α1 = 1 degree and α2 = 5
degree, the two frequencies are clearly separated and could easily be distin-
guished, where as in the case α1 = 5 degree and α2 = 1 degree, the two
frequencies are close which is reflected in Fig. 3.

It can also be noticed that the amplitude of the high frequency component
is reduced by using a smaller lay angle for the first order helix. This is because
this component is governed by curvatures on the first order helix. Using a
larger lay angle for the second order helix gives a higher frequency and it
also affects the amplitude, which is prominent when the lay angle of the first
order helix is relatively large.

It can be expected from the figure that the maximum stress, which occurs
in the wire, has a positive correlation with the lay angles of both first and
second order helix while the influence of the second order helix is relatively
smaller than that of the first order helix.

Fig. 3.2 shows variation of bending stiffness of the electrical cables used
in industrial robots as a function of curvature. These results are calculated
using assumed values for the pressure as the pressure from both jacket and
insulation material are unknown. It is worth noting that the pressure is an
important parameter depending on the manufacturing process.

Both cables are showing constant, high stiffness within a small range of
curvature. That can be related to the fact that all of the conductors are in a
sticking state. When the curvature reaches a limiting value, a number of the
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Figure 3.1: Wire strain profile for different lay angles for first and second level
helix.

conductors enters the slipping state and consequently the value of the bending
stiffness decreases. The theoretical values are compared with experimental
data to validate the model. The assumed values for the pressure are adjusted
so that the theoretical cable response meet the experimental result as shown
in Fig. 3.3.

Using detailed models presented in this work, the order of magnitude for
a number of parameters describing mechanical properties of cable with strong
influence on the life-time of the cable can be estimated.

In Fig. 3.4, the maximum stress occurring in the wire cross section is
shown. One important feature is that the maximum stress does not neces-
sarily occur in the outermost wires in the outermost conductors. The reason
is that the inner wire is radially compressed not only by the pressure from
insulation material but also by the outer conductors. Consequently, the ef-
fect of the friction can be larger in an inner layer which results in a larger
stress.

The result presented in Fig. 3.4 consists of five distinguishable parts.
From Fig. 3.5, it can be found that the number of slipping wires is first
constant and equal to zero. After that the curvature has reached a threshold
the wires start to slip and the number of slipping wires increases until nearly
all of the wires in the outer layer of each conductor come into the slippage
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state. The wires at the second layer of each conductor start to slip when the
bending curvature of the cable has become large enough. After that all wires
at the second layer have reached the slippage state, the number of slipping
wires becomes constant at least up to a curvature of 10m−1.

Due to the internal pressure created by the outer layers of conductors,
the critical value of curvature for slippage is larger in the inner layers. The
conditions for slipping of layers 3, 4 and 5 are never satisfied within the
realistic range of the curvature. For this particular case, the outermost wires
in the conductors shifts to slippage mode within the range 0.2 < κ < 0.6, and
the wires in the penultimate layers start to slip within the range 1.3 < κ < 2.

The average value of tensile stress in the wires is shown in Fig. 3.6. It is
clear that the slope decreases as the curvature increases due to the effect of
wire slippage.
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Concluding remarks

A new model for analyzing complex structure of cables were developed.
Strains in helical structure of any order are expressed with a hierarchical
approach, where the strains in the helix of arbitrary order is calculated as
functions of the strains in the helix of next upper order. Together with the
geometrical approach, the effect of the friction between components were
taken into account. This model enables to introduce a variable bending stiff-
ness for the cable taking sticking and slipping of wires into account and also
calculate some key properties which are strongly related to the lifetime of
the cable. This model can be used to find a good configuration of the cable
geometry depending on the possible loading condition and the requirement
of the cable.

A new methodology for evaluating cables was suggested which involves
pure bending or pure twisting tests. It was found in the bending test that
radial compressibility of the cable significantly affects the behavior. Absence
of a compressible core filler implied that internal stresses were increased with
bending even more than the case with compressible core filler. This method-
ology enables to investigate the quality of the cable with simple tests.

13



Chapter 5

Summary of papers

5.1 Paper A

Method to relate the global deformations to the local strains have been devel-
oped for multi level helical structures of any order. The applied deformation
is expressed as combination of tension, torsion and bending. In the proposed
method, the relation between applied deformation and induced strain in the
first level helix is formulated and it is applied to calculate strains in the
conductor. Once the deformed state of each conductor is found, the strains
working in conductors are interpreted to the strains in wires and they define
the conditions and the same process is repeated to calculate the response
of wires. In a step-by-step manner, the method is generalized so that the
mechanical response of helical structure of any order is computed.

The model is used in a parametric study of a second order helical structure
subjected to small amounts of tension combined with severe torsion and
bending. It has been shown that increasing lay angles generated larger strains
in wires. Increasing the radius of the second level helix also implied larger
strains whereas the change of the radius of the first order helix did not affect
the strains.

5.2 Paper B

Simple tests have been done for three specimens of cables. A method to
evaluate the internal mechanical response is developed and it is applied to
the experimental results. Theoretical maximum and minimum stiffness of
the cable is calculated based on the hierarchical model developed in paper-
A. The theoretical values are related to the measured value to calculate the
maximum stress in the cable. It is shown that the incompressible cable
without core filler suffers from larger internal stress compared to the cable

14
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which has compressible core filler.

5.3 Paper C

The model developed in paper-A is extended to take frictional effect into
account, which is of particular interest in bending. In order to calculate
quantitatively the force and stress situation, the force balance working in the
small segment of conductor is considered, where the pressure from the jacket
is included. This model is first applied to the outermost conductor and the
inner layer conductor is considered next.

Once the calculation has been done for all layers, the same approach is
repeated for wires in the similar way as in paper-A. Then the response of the
cable is obtained as a sum of responses from each wire. The pressure from the
jacket and insulation material was not explicitly measured but was estimated
by comparing theoretical bending stiffness and experimental values.

Maximum stress, average stress and the number of slipping wires in the
cable, which are calculated in this model, are suggested as key parameters in
terms of life time expectation. The parametric study is done to investigate
how the cable geometry and loading condition affects these properties.
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