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Abstract

Numerical simulations using CFD methods are performed for wind turbine
applications. The aim of the project is to get a better understanding of the wake
behaviour, which is needed since today’s industrial design codes for wind power
applications are based on the BEM (Blade Element Momentum) method. This
method has been extended with a number of empirical corrections not based
on physical flow features. The importance of accurate design models does
also increase as the turbines become larger. Therefore, the research is today
shifting toward a more fundamental approach, aiming at understanding basic
aerodynamic mechanisms. The result from the CFD simulation is evaluated
and special interest is given to the circulation and the position of vortices.
From these evaluations, it will hopefully be possible to improve the engineering
methods and base them, to a greater extent, on physical features instead of
empirical corrections.

The simulations are performed using the program ”EllipSys3D” developed
at DTU (The Technical University of Denmark). The Actuator Line Method
is used, where the blade is represented by a line instead of a large number of
panels. The forces on that line are introduced by using tabulated aerodynamic
coefficients. In this way, the computer resource is used more efficiently since
the number of node points locally around the blade is decreased, and they can
instead be concentrated in the wake behind the blades.

An evaluation method to extract values of the circulation from the wake
flow field is developed.

The result shows agreement with classical theorems from Helmholtz, from
which it follows that the wake tip vortex has the same circulation as the max-
imum value of the bound circulation on the blade.

Descriptors: Wind Energy, Wind Turbine, Wake, Circulation, Vortex, CFD,
EllipSys3D, Actuator line.
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Nomenclature

Roman letters

a Axial induction factor [-]
a′ The local speed ratio [-]
b Blade index [-]
A, A2 Turbine area [m2]
B Number of blades [-]
c Chord [m]
Cd Drag coefficient [-]
Cl Lift coefficient [-]
cm Mean chord [m]
Cp Power coefficient [-]
CT Thrust coefficient [-]
CT1 Empirical thrust coefficient [-]
d Prantl disc distance [m]
dFD Section drag force [N]
dFL Section lift force [N]
dFN Section thrust force [N]
dFT Section torque force [N]
D Drag force [N/m]
eL Lift unit vector [-]
eD Drag unit vector [-]
f Areal loading [N/m2]
f´ Volume force [N/m3]
F Prantl’s tip loss factor [-]
F Loading [N/m]
Hafter Total head behind ACD [N/m2]
Hbefore Total head in front of ACD [N/m2]
L Lift force [N/m]
ṁ Mass flow rate [kg/s]
N Number of blade sections [-]
p∞ Undisturbed pressure [N/m2]
p2 Pressure close before turbine [N/m2]
p3 Pressure close behind turbine [N/m2]
p4 Pressure far behind turbine [N/m2]
P Rotor power [W]
Q Torque [Nm]
r Radial position [m]
R Turbine radius [m]
Rw Radial position in wake [m]
S Integration path [m]
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T Thrust force [N]
U∞ Undisturbed wind speed [m/s]
Urel Relative wind velocity [m/s]
U2 Wind velocity close before turbine [m/s]
U3 Wind velocity close behind turbine [m/s]
U4 Wind velocity far behind turbine [m/s]
W Induced velocity [m/s]

Greek letters

α Angle of attack [-]
γ Angle behind ACL [◦]
Γ Circulation [m2/s]
ε Gaussian smearing function [-]
ζ Vorticity [1/s]
θp Section pitch angle [◦]
θp,0 Blade pitch angle [◦]
θT Twist angle [◦]
λ Tip speed ratio [-]
λr Axial induction factor [-]
µ Non-dimensional radial position [-]
ν Kinematic viscosity [m2/s]
ρ Density [kg/m3]
σ Turbine solidity [-]
σ′ Local solidity [-]
ω Angular velocity [rad/s]
Ω Angular velocity [rad/s]
φ Relative wind angle [◦]
φtip Relative wind angle at blade tip [◦]
Ψ Stream function [m3/s]

Acronyms

ACD Actuator Disc
ACL Actuator Line
BE Blade Element
BEM Blade Element Momentum
CDS Central difference Schemes)
DES Detached-Eddy Simulation
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
DTU The Technical University of Denmark
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2 1. INTRODUCTION

1.1. Some historical remarks

Today wind turbines are the largest rotating machines on earth. They are also
the oldest device for exploring the energy of the wind on land. In fact, the only
older device for exploring wind energy in general is the sailing ship. The first
documented use of wind energy on land was made in 947, [Wizelius]. It was
a windmill in Persia close to the border of Afghanistan. However, it is said
that some type of windmill was used as early as 3000 years ago in China and
Japan, [Wizelius]. Wind turbines have without any doubt been very important
for the evolution of modern society. The turbine will also turn out to be very
important in the future.

1.2. The aim of the project

The knowledge about the wind power technology has increased over the years.
Lanchester [Lanchester 1915] and Betz [Betz 1920] were the first to predict the
maximum power output of an ideal wind turbine. The major break-through
was achieved by Glauert who formulated the Blade Element Momentum (BEM)
method in 1935 [Glauert 1935], which will be discussed in section 2.2.6.

Today’s design codes are still based on the Blade Element Momentum
method (BEM). It has however been extended, to allow for dynamic events,
with patch work and add hoc engineering methods, sometimes of doubtful
quality.

Therefore, the aerodynamic research is today shifting toward a more fun-
damental approach since the basic aerodynamic mechanisms are not fully un-
derstood and the importance of accurate design models increases when the
turbines are becoming larger.

Recently, complete Naiver Stokes calculations have been performed and
today supercomputers opens new possibilities.

The aim of this project is to evaluate existing aerodynamic simulation
methods to hopefully be able to run simulations that give satisfactory results
making it possible to evaluate the flow field behind the turbine, i.e. the wake.
From these simulations, the physical behaviour of the wake will be studied.
Particular attention will be given to the circulation close behind the blades.

1.3. The AEROBIG project

This project is a part of the AEROBIG project which involves five persons;
Project manager Björn Montgomerie, Professor Dan Henningson, Hans Ganan-
der, Ingemar Carlén and Stefan Ivanell. The aim of AEROBIG is to develop
design codes that are more accurate than existing codes. Physical features
rather than empirical corrections will be utilized to a greater extent. Hans
Ganander and Ingemar Carlén, Teknikgruppen, deals with the solid mechani-
cal aspects of the project, Björn Montgomerie, FOI, deal with the designing of
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the aerodynamic engineering methods. The task of this part of the project is
then to evaluate the circulation in the wake with the best tool available to give
a better understanding of the physics close behind the blades.

Results from the AEROBIG project, other than this report, are found
in references [Montgomerie 2004a], [Montgomerie 2004b], [Åhlund], [Carlén
2005a], [Carlén 2005b] and [Ganander].

1.4. Introduction to the functioning of modern wind turbines

In this section the basic features of a modern wind turbine is described. The
aim here is to give a brief explanation of how a modern turbine works, not only
in an aerodynamic sense, but also in general. This section is mostly written
as a brief background for readers who are familiar with aerodynamics but who
lack knowledge about wind turbines in general.

Wind turbines transform the energy in the wind to useful energy. Older
turbines, like a windmill or a pump station transformed the energy into mechan-
ical energy. Today’s modern turbines transform the energy to electric power.
This transformation consists of many complicated steps. Today’s turbines are
advanced machines that use the latest available technology in many different
fields, for example aerodynamics, mechanics, machine technology, electro tech-
nology, control systems, solid mechanics etc. If one also considers that they
are the largest existing rotating machines, and that increasing size invites more
complicated dynamics, one can understand that it is a challenge for engineers
to design one.

When the wind is caught by the blades of the turbine, the blades are
affected by a force which makes them rotate for the same reason that makes an
airplane flying. I.e. the aerodynamic lifting force is used to drive the rotor, thus
generating the shaft torque, which is then transferred into the generator. Some
turbines have a gearbox, some do not, depending on the type of generator.

The three most common setups are described here;

• Type 1: A classical turbine with gearbox, ”The Danish model”. The
shaft from the turbine is connected to a gearbox, which by a number of
steps, typically 3, increases the rotational velocity of the outgoing axle,
which then is connected to the generator. The generator itself is then
connected to the electrical grid. There is off course a number of different
ways to construct the generator and the connection to the electrical grid
but that has been left out in this report.

• Type 2: A turbine without gearbox. Here the axle is connected directly
to the generator. Because of the low rotational velocity, same as for
the turbine, this results in a much larger multi-pole generator. The
need to encase this large generator leads to a larger nacelle. In fact,
the multi-pole generator seems to outweigh the combination of gear box
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and standard 4-pole generator.

• Type 3: Hybrid. This third type is a combination of the previous two. It
does have a gearbox as type 1 but with fewer steps, typically one. This
means a smaller gearbox but since the angular velocity is not increased
as much as for type 1, the generator is in this case larger than for type
1, but not as large as for type 3.

Almost all modern turbines have variable angular velocity. This means that
the turbine is resilient to the variable wind. A sudden increase in wind speed
can be absorbed by an increase in angular velocity instead of producing a large
torque on the power train. The variable angular velocity therefore decreases
the fatigue loading on the turbine.

The turbine must yaw into the wind at all times. On top of the nacelle
there is an anemometer and a wind vane which measures wind speed and the
direction of the wind. When the wind direction changes the nacelle is turned
by, typically 2 or 4, electric motors. These motors are positioned inside a cog
ring at the top of the tower.

A turbine starts when the mean velocity in the wind is about 3-5 m/s. The
turbine then transforms as much energy as possible until the rated power to
the generator is reached. Then the excess power must be avoided somehow.
There are typically three ways to do that.

• Stall control
When stall control is used, the blades are aerodynamically designed to
lose lift force at a certain angle of attack. The turbine is therefore con-
structed in a way that makes sure that when the limit on the generator is
reached, then the angle of attack where the stall effect starts is reached
too. When the wind then increases even more, then the lift force of
the blades also decreases because of increasing stall. Stall is achieved by
maintaining constant rotor RPM while the increasing wind speed causes
increasing of the angle of attack radial distribution.

• Pitch control
When pitch control is used, the blades are turned (pitched) to loose lift
force.

• Active stall
Active stall control triggers stall intentionally. Once in stall only very
small pitch excursions are required to give shorter response times than
these of pitch-to-avoid stall control.

Irrespective of control system, the turbine is stopped at a critical wind
speed, typically 25 m/s, for safety reasons.
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All turbines have two independent brake systems. The brake systems are
used for emergency stops and when maintenance is needed. The turbines are
equippt with an aerodynamic and a mechanical brake. The design of the aero-
dynamic brake depends on the control system, a stall controlled turbine has
pitchable blade tips. A pitch controlled turbine turns the whole blades.

The mechanical brake system consists of a disk brake. For turbines with
gearbox the brake is positioned on the axle, with highest rotational velocity, out
from the gearbox. In that way the brake efficiency is increased, the drawbacks
is that if the gearbox for some reason breaks, the mechanical brake is out of
function. For turbines without gearbox the brake is positioned on the main
axle.

When a turbine is stopped in a controlled way, the aerodynamic brake
reduces the angular velocity to a great extent, before the mechanical brake is
applied. If an emergency occurs both brake systems are activated at the same
time.

Both brake systems are ”active”, i.e. a force is acting to deactivate them.
Therefore, if something goes wrong, for example a power failure, the brakes are
applied automatically without any applied force or control system.

The largest turbine built today has a generator of about 5 MW. A turbine of
that size will in a generally good wind site produce about 10 GWh of electrical
energy per year. This is sufficient to provide the energy for 500 electrically
heated normal size one-family houses in Sweden, or for 2000 houses with other
heating system, or for 5000 flats.
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This chapter will treat the basic theory for different classical aerodynamic
models. The following models will be treated:

• One-Dimensional Momentum Theory
• Ideal Horizontal Axis Wind Turbine with Wake Rotation
• Blade Element Method (BE)
• Blade Element Momentum Method (BEM)

For readers familiar with wind energy aerodynamics, this chapter could be
omitted without causing any misunderstanding in the following chapters. The
theory in this chapter has been summarized from references [Glauert 1935],
[Freris], [Burton et al], [Wilson 1998] and [Manwell et al].

2.1. Basic definitions

Tip speed ratio

The tip speed ratio is a very important parameter. It expresses the ratio
between the tip speed and the undisturbed wind speed.

λ =
ΩR

U∞

(2.1)

where Ω is the angular velocity, R the radius of the blades and U∞ the
undisturbed wind speed. The tip speed ratio dictates the operating condition
of a turbine and it affects a number of flow parameters that will be discussed
later.

Turbine solidity

The turbine solidity is defined as the ratio between the blade area to the area of
the disk. It is the primary non-dimensional factor which describes the geometry
of the turbine.

σ =
Total blade area

Disc area
(2.2)

Local turbine solidity

The local turbine solidity is defined in the same manner as the turbine solidity,
only now defined locally at certain radius.

σ′ =
Bc(r)

2πr
(2.3)

where B is the number of blades and c the chord of the blades.
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Power coefficient

The power coefficient corresponds to the relation between the rotor power and
the power in the wind:

Cp ≡
P

1
2AρU3

∞

(2.4)

where ρ is the air density, A the turbine area, U∞ the free stream velocity.

2.2. Aerodynamic models

2.2.1. One-dimensional momentum theory and the Betz limit

This model, originated by Rankine [1895] but generally attributed to Betz
[1926], is based on linear momentum theory. Originally it was developed to
predict performance of ship propellers. The model uses a tube-like control vol-
ume. A uniform ”actuator disk”, which creates a discontinuity of the pressure,
represents the turbine.

This model uses a number of assumptions that gives a more simple model.
The model gives results, which to a first approximation are in good agreement
with measurements, and these results are often used as a reference.

The following assumptions are used:

• The flow passing trough the disk can be separated from the rest of the
flow by a well defined stream tube.

• Entirely axial flow
• Homogeneous, incompressible, steady flow
• No friction drag
• An infinite number of blades, i.e. the velocity is constant over the disk

area and the thrust uniform on the disk area
• Rotation imposed on the flow as it passes through the disk is neglected,

i.e. a non rotating wake.
• The static pressure far upstream and far downstream of the rotor is equal

to the undisturbed ambient static pressure, more comments about it in
section 2.2.3.

For steady state flow (ρAU)∞ = (ρAU)4 = ṁ where ṁ is the mass flow
rate and the index 4 notes the position according to figure 2.1. The thrust
force is therefore equal to the mass flow multiplied with the change in velocity.

T = ṁ(U∞ − U4) (2.5)

Applying requirements for continuity, momentum balance, and energy bal-
ance to the flow, the thrust and power can be determined if the assumptions
above are fulfilled.

Firstly, from the momentum theorem, the thrust is:
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2 3 4¥

Actuator disk

PressurePressure

Figure 2.1. The actuator disc concept.

T = U∞(ρAU)∞ − U4(ρAU)4 (2.6)

where ρ is the air density, A the cross section area, U∞ the free stream
velocity and U2, U3, U4 the velocities at different locations according to figure
2.1.

Secondly, from the consideration of the pressure drop caused by the actua-
tor disk, which represents the turbine, the thrust can also be derived by using
the Bernoulli function separately on each side of the turbine.

In the stream tube upstream of the disk:

p∞ +
1

2
ρU2

∞
= p2 +

1

2
ρU2

2 (2.7)

In the stream tube downstream of the disk:

p3 +
1

2
ρU2

3 = p4 +
1

2
ρU2

4 (2.8)

Since, two of the assumptions for this model are that p∞ = p4 and that
the velocity across the disk remains the same (U2 = U3), the thrust can also
be expressed as:

T = A(p2 − p3) (2.9)

If one solves equation (2.7) and (2.8) for (p2−p3) and substitutes that into
(2.9) one obtains:

T =
1

2
ρA2(U

2
∞

− U2
4 ) (2.10)

Combining (2.5) and (2.10) gives:
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ṁ(U∞ − U4) =
1

2
ρA2(U

2
∞

− U2
4 ) (2.11)

Recognizing that ṁ = ρA2U2 or ṁ = ρA3U3 (lets use index 2 for the disk
from now on), one gets the result generally known as Froude’s theorem.

U2 =
U∞ + U4

2
(2.12)

The interpretation of this expression is that the velocity at the disk is the
average of the free stream and far wake velocities, so the total velocity change
from free-stream to far-wake is twice the change from free stream to the disk.

Now introducing the axial induction factor which is a measure of the tur-
bine influence to the wind and is defined as:

a =
U∞ − U2

U∞

(2.13)

which gives:
U2 = U∞(1 − a) (2.14)

U4 = U∞(1 − 2a) (2.15)

The theory is applicable when a is between 0 and 0, 5 since the velocity
has slowed to zero behind the rotor for higher values, which is not physically
possible. In fact, the theory breaks down about a = 0.35.

From the first law of thermodynamics assuming isothermal flow and ambi-
ent pressure in the far wake, power is equal to the thrust times the velocity at
the disk.

P =
1

2
ρA2(U

2
∞

− U2
4 )U2 =

1

2
ρA2(U∞ − U4)(U∞ + U4)U2 (2.16)

substituting equation (2.14) and (2.15) gives:

P =
1

2
ρA2U

3
∞

4a(1 − a)2 (2.17)

Using equation (2.4) gives the power coefficient for the actuator disk:

Cp =
P

1
2ρU3

∞
A2

= 4a(1 − a)2 (2.18)

The power coefficient corresponds to the rotor power divided by the power in

the wind. If we put
dCp

da = 0 we will get a for maximum Cp.

dCp

da
= 4(1 − a)2 − 8a(1 − a) = 4(1 − 4a + 3a2) = 0 (2.19)
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which gives a maximum Cp when a = 1
3

Cpmax
=

16

27
(2.20)

The results shows that with the given assumptions, the maximum theoret-
ical power production is 16/27 of the power in a circular stream-tube with a
constant cross section area equal to the disk area. If the free stream velocity is
U∞, then the velocity at the disk is 2

3U∞ and at the end of the stream tube it is
1
3U∞. Therefore, because of continuity, the tube has a cross section area that is
2/3 of the disk area upstream of the disk and twice the disk area downstream.
Cpmax

is generally known as the Betz limit.

The thrust force can be expressed in a similar manner as the power. The
non-dimensional thrust coefficient corresponds to the thrust force divided by
the dynamic force and can be expressed as:

CT =
T

1
2ρU2

∞
A2

(2.21)

Combining equation (2.10) and (2.15) gives:

T =
1

2
ρA2U

2
∞
{4a(1 − a)} (2.22)

which gives:

CT =
1
2ρA2U

2
∞
{4a(1 − a)}

1
2ρU2

∞
A2

= 4a(1 − a) (2.23)

In figure 2.2 it is possible to see that the highest power is reached when
a = 1/3. There are, however, effects that decrease the maximum power that
have not been considered here, for example, wake rotation, finite number of
blades and profile drag.

2.2.2. Ideal horizontal axis wind turbine with wake rotation

In the previous model the flow behind the rotor was assumed to be non-rotating.
In reality, the flow behind the rotor rotates in the opposite direction to the
rotor, as a reaction to the torque exerted by the flow on the rotor.

The energy extraction by the rotor will be less if one considers the gen-
eration of rotational kinetic energy than if one neglects it as in the previous
model.

There is a close relation between the generated kinetic energy in the wind
turbine wake and the torque. The kinetic energy in the wake will be higher
if the torque is higher. Therefore, a machine with low rotational speed and
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Figure 2.2. Momentum Theory. The theory is, however, not
valid for large values of a, more comments about it later.

high torque will have higher energy losses than a machine with high rotational
speed and low torque.

In this model, the control volume is divided into partial stream tubes with a
radial differential extent, see figure 2.3. The energy equation can now be applied
in sections before and after the blades to derive an expression for pressure
difference across the blades, [Glauert 1935].

U¥

Actuator disk

z

r

2
3

4

¥

U¥

dr

U¥(1-a) U¥(1-2a)

Figure 2.3. Control volume that moves with the angular ve-
locity of the blades.

The following assumptions are made:

• The partial stream tubes are assumed to slide without friction, or other
interference, on each other.
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• The pressure in the far wake is equal to the pressure in the free stream
[Wilson et al., 1976]. Further comments in section 2.2.3.

• The pressure, wake rotation and induction factors are all assumed to be
a function of radius.

The angular velocity of the air relative to the blades increases from Ω to
Ω + ω through the disk. The axial velocity on the other hand does not change
as rapidly through the disk.

Bernoulli’s equation can be applied on each side of the turbine disc. Let u
and v be respectively the axial and radial components of the fluid velocity.

Hbefore = p∞ +
1

2
ρU2

∞
= p2 +

1

2
ρ(u2

2 + v2
2) (2.24)

Hafter = p2 − p′ +
1

2
ρ(u2

3 + v2
3 + ω2

3r2
3) = p4 +

1

2
ρ(u2

4 + ω2
4) (2.25)

where Hbefore and Hafter is the total head before and after the turbine
disc and p′ the pressure difference across the disc.

Hafter − Hbefore = −p′ +
1

2
ρω2

3r2
3 (2.26)

which shows that the decrease of total head on passing thought the turbine
disc exceeds the trust per unit area p′ by a small term representing the kinetic
energy of the rotational motion imparted to the fluid by the torque of the
turbine. The expression for the total pressure head also gives:

p∞ − p4 =
1

2
ρ(u2

4 − U2
∞

) +
1

2
ρω2

4r2
4 − (Hafter − Hbefore) (2.27)

p∞ − p4 =
1

2
ρ(u2

4 − U2
∞

) +
1

2
ρ(ω2

4r2
4 − ω2

3r2
3) − p′ (2.28)

Applying Bernoulli’s equation to the flow relative to the turbine blades
which are rotating with the angular velocity Ω, the relative angular velocity
increases from Ω to (Ω + ω) and hence the decrease of pressure is:

p′ = −ρ(Ω +
1

2
ω)ωr2 (2.29)

The resulting thrust on an annular element, dT , is:

dT = (p2 − p3)dA =

{

ρ(Ω +
1

2
ω)ωr2

}

2πrdr (2.30)

We now introduce the angular induction factor which is defined in the same
manner as the axial induction factor, only now for the angular component.
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a′ =
ω

2Ω
(2.31)

The induced velocity at the rotor now consists of two components, i.e. the
axial and angular components. The axial component is still aU∞, the angular
component can be expressed as rΩa′.

The expression for thrust now becomes:

dT = 4a′(1 + a′)
1

2
ρΩ2r2πrdr (2.32)

The thrust force was in the linear momentum model determined to be
1
2ρAU2

∞
{4a(1 − a)} which gives dT to:

dT = 4a(1 − a)
1

2
ρU2

∞
2πrdr (2.33)

Now combining the two expressions for thrust gives:

a(1 − a)

a′(1 + a′)
=

Ω2r2

U2
∞

(2.34)

The tip speed ratio, λ, is defined as the ratio of the blade tip speed to the
the free stream wind speed.

λ =
ΩR

U∞

(2.35)

In the same manner, the local speed ratio is defined as the ratio of the
blade speed, at an intermediate radius, and the free stream wind speed.

λr =
Ωr

U∞

=
λr

R
(2.36)

Equation (2.34) now becomes:

Ω2r2

U2
∞

= λ2
r (2.37)

Considering the conservation of angular momentum, the torque exerted on
the rotor, Q, must equal the change in angular momentum of the wake. The
torque on a annular area element is:

dQ = dṁ(ωr)(r) = (ρU22πrdr)(ωr)(r) (2.38)

Since U2 = U∞(1 − a) and a′ = ω/2Ω, this expression reduces to:

dQ = 4a′(1 − a)
1

2
ρU∞Ωr22πrdr (2.39)
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The power generated at each element, dP, is given by:

dP = ΩdQ (2.40)

Using equation (2.40), (2.36) and (2.39) gives dP as follows:

dP =
1

2
ρAU3

∞
{

8

λ2
a′(1 − a)λ3

rdλr} (2.41)

The contribution to the power from each annular ring is dependent of the
axial and angular induction factors and the tip speed ratio, i.e. the direction
and magnitude of the airflow at the rotor plane is determined by the induction
factors.

Each annular ring gives the following contribution to the power coefficient:

dCp =
dP

1
2ρAU3

∞

(2.42)

Cp now becomes:

Cp =
8

λ2

∫ λ

0

a′(1 − a)λ3
rdλr (2.43)

To integrate this expression one needs to relate a, a′ and λr. From equation
(2.34) and (2.37) one gets:

a′ = −
1

2
±

√

1

4
+

a(1 − a)

λ2
r

(2.44)

The double root will however only be defined for positive values. The
minus sign between the two terms can therefore be neglected. Cp will reach its
maximum value when a′(1− a) in equation (2.43) is greatest. Substituting the
value of a′ into a′(1 − a) and extracting λr yields:

λ2
r =

(1 − a)(4a − 1)2

1 − 3a
(2.45)

which defines the axial induction factor as a function of the local speed
ratio at maximum power. If λ2

r then is substituted into equation (2.36) and
(2.34) one obtain the angular induction factor for maximum power as a function
of the axial induction factor.

a′ =
1 − 3a

4a − 1
(2.46)

By differentiation of equation (2.45) one obtains a relationshup between
dλr and da at maximum power production.
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2λrdλr = {
6(4a − 1)(1 − 2a)2

(1 − 3a)2
}da (2.47)

Substituting that into equation (2.18) gives:

Cp,max =
24

λ2

∫ a2

a1

{
(1 − a)(1 − 2a)(1 − 4a)

1 − 3a
}2da (2.48)

Note that the expression only is defined for values of a1 > 0, 25 and a2 <
1/3. a1 corresponds to λr = 0 and a2 to λr = λ.

The result is, see [Eggleston and Stoddard 1987]

Cp,max =
8

729λ2

64

5
{x5 +72x4 +124x3 +38x2−63x−12ln(x)−4x−1}x=0,25

x=(1−3a2)

(2.49)

where x = (1 − 3a).

The power coefficient from the two previous models have been plotted in
figure 2.4.
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Figure 2.4. Power coefficient and induction factors
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When the rotation of the wake is not included, Cp is constant at 16/27 ≈
0, 59 for all tip speed ratios, this value is generally expressed as Betz limit.
When the wake rotation is considered, the value of the power decreases when
the tip speed ratio decreases, here expressed as Glauerts limit.

The tip speed ratio for the wake rotation model has also been plotted for
different blade positions in figure, 2.4. The Betz axial induction factor, a = 1/3
does correspond quite well to the wake rotation model when the distance from
the hub is quit large, at least for quit large tip speed ratios.

2.2.3. Far wake pressure

In previous models, the momentum balance is taken over a stream tube of
the form seen in figure 2.1 which in principle is not possible. This is however
common in literature. In reality, the pressure varies on the mantle area of the
stream tube. It is however possible to overcome this by considering a much
larger stream tube, where the pressure disturbance will decay as 1

r2 . Normally
this effect is neglected since it is small.

2.2.4. Blade element model

So far we modelled the turbine without considering the blades themselves. In
the momentum theory the forces were derived by considering conservation of
momentum.

In the blade element method the forces are expressed as functions of lift
and drag coefficients. This method will however also consider the angle of
attack. The basic idea is to split the blades into N sections. Thereafter the
forces are calculated at each element. The total force will be given by the sum
of all elements of one blade multiplied by the number of blades.

There is however still a number of assumptions and simplifications that
has to be made.

• First, the aerodynamic interaction between the blades is neglected.
• Second, the forces are only determined by the lift and drag characteris-

tics of the airfoil shape of the blades.
• This model does also assume that the wind is orthogonal to the plane

of rotation. It is, however, possible to make the model more general so
it can handle different yaw angles.

To model the forces correct one has to analyze the different forces involved
carefully. When considering the different forces, three different system are
defined, green, red and blue. See figure 2.5.

The green system represents the wind velocity. The relative wind, Urel, to
the blade is the result of axial and angular contributions. The axial velocity
at the blade is the free stream velocity retarded to U∞(1 − a) because of the
induction discussed in section 2.2.2. The angular contribution is a combination



2.2. AERODYNAMIC MODELS 19

dFN

Urel

dFL

qp

j

j

a

U (1-a)¥

-r (1+a´)W

P
lan

e o
f

R
o

tatio
n

Axial Wind Direction

C
hord

Line

dFD

dFT

Figure 2.5. Definition of forces, velocities and angles.

of angular velocity rΩ and angular induction a′rΩ also discussed in section
2.2.2.

The blue system is the blade forces orthogonal and parallel to the local wind
direction. dFL represents the lift force and dFD represents the drag force, both
at section N. The red system is the same forces as in the blue system only
transformed to be orthogonal and parallel to the plane of rotation. Therefore,
the dFT force represents the force contribution in angular direction from section
N, i.e. useful torque. The dFN force will in this case not lead to any useful
energy. It will give a thrust force to the tower.

The section pitch angle is represented by θp. (It is composed of the blade
root pitch angle and the local twist angle.)

φ represents the relative wind angle, i.e. the section pitch angle plus the
angle of attack, θp + α ,where α is the angle of attack.

From figure 2.5 one can determine the following relations:

tan φ =
U∞(1 − a)

Ωr(1 + a′)
=

1 − a

(1 + a′)λr
(2.50)

Urel =
U∞(1 − a)

sin φ
(2.51)
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dFL = Cl
1

2
ρU2

relcdr (2.52)

dFD = Cd
1

2
ρU2

relcdr (2.53)

dFN = dFL cos φ + dFD sinφ (2.54)

dFT = dFL sin φ − dFD cos φ (2.55)

The total force will be the sum of the contributions from all sections multi-
plied by the number of blades, B. For one section at radius r the normal force,
i.e. the force which will lead to a thrust force, will be:

dT = B
1

2
ρU2

rel(Cl cos φ + Cd sinφ)cdr (2.56)

The torque, Q, from a section at radius r will be:

dQ = BrdFT = B
1

2
ρU2

rel(Cl sin φ − Cd cos φ)crdr (2.57)

Equation (2.56) and (2.57) gives the torque and thrust of the turbine. If
these equations will be combined with the momentum theory one will obtain
the blade element momentum model which will discussed in section 2.2.6.

2.2.5. Blade shape

Before moving on to the blade element momentum method which can be con-
sidered quit complex, a simpler approximation for the blade shape is performed.
This method will derive the relation between the blade shape and performance
for the optimum Betz rotor. The method uses the following assumptions:

• The wake rotation is neglected, i.e. the a′ is set to zero.
• There is no drag, Cd = 0.
• The effects of finite number of blades is neglected.
• The induction factor a is 1/3 in each annular stream tube for Betz

optimal rotor.

To use this design method, the tip speed λ, the number of blades B, the
radius R and an airfoil with known lift and drag coefficients as function of angle
of attack must be chosen.

The angle of attack will be chosen so the assumption Cd = 0 becomes as
good as possible, i.e. the Cd/Cl term is minimized. With a = 1/3 one gets
from momentum theory and equation (2.33):
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dT =
8

9
ρU2

∞
πrdr (2.58)

and from blade element theory the equation (2.56), with Cd = 0 becomes:

dT = B
1

2
ρU2

rel(Cl cos φ)cdr (2.59)

By using equation (2.51) with a = 1/3, Urel can be expressed as:

Urel =
2U∞

3 sin φ
(2.60)

If eq. (2.58), (2.59) and (2.60) are combined one gets:

ClBc

4πr
= tanφ sin φ (2.61)

Then, to relate a, a´ and φ, equation (2.50) is used and can now be ex-
pressed as.

tan φ =
2

3λr
(2.62)

When combining eq. (2.61) and (2.62) and using that λr = λ(r/R), it is
possible to express φ and c as:

φ = tan−1 2

3λr
(2.63)

c =
8πr sin φ

3BClλr
(2.64)

Betz optimum blade design can now be calculated using equation (2.63)
and (2.64) together with geometrical relations from figure 2.5.

It can be seen that the blade design for an optimal Betz design have in-
creasingly large chord and twist angle as one gets closer to the hub.

2.2.6. Blade element momentum BEM model

This section will combine the results from the momentum and blade element
method. If the forces from momentum theory and blade element theory are set
to be equal. One can derive the flow conditions for a turbine design.

The analysis starts by considering equations derived both for momentum
theory with wake rotation and blade element theory.

From the momentum theory:

dT = 4a(1 − a)ρU2
∞

πrdr (2.65)
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Figure 2.6. Betz Design of a wind turbine blade

dQ = 4a′(1 − a)ρU∞Ωπr3dr (2.66)

and from blade element theory:

dT = B
1

2
ρU2

rel(Cl cos φ + Cd sinφ)cdr (2.67)

dQ = BrdFT = B
1

2
ρU2

rel(Cl sin φ − Cd cos φ)crdr (2.68)

The relative wind velocity in the equations from the BE-method can now
be expressed in terms of the free stream velocity, using equation (2.51):

dT = σ′πρ
U2
∞

(1 − a)2

sin2 φ
(Cl cos φ + Cd sinφ)rdr (2.69)

dQ = σ′πρ
U2
∞

(1 − a)2

sin2 φ
(Cl sinφ − Cd cos φ)r2dr (2.70)

where σ′ is the local solidity, defined by:

σ′ =
Bc

2πr
(2.71)

In the calculation of induction factors, a and a′, accepted practice is to
set Cd equal to zero, [Wilson and Lissaman]. This simplification introduces
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negligible errors for airfoils with low drag coefficients, [Manwell et al]. Equation
(2.66) from momentum theory and (2.70) from the BE-theory will now, with
Cd = 0, become:

dQ = 4a′(1 − a)ρU∞Ωπr3dr (2.72)

dQ = σ′πρ
U2
∞

(1 − a)2

sin2 φ
Cl sin φr2dr (2.73)

In the momentum theory one do, however, assume infinitely number of
blades. Therefore, when neglecting this, an approximation is made when equa-
tions from momentum theory is set to equal with equations from the blade
element theory. This does, however, give small errors since the a′ is small at
the tip and at the root where it is larger, it does have small impact because
of a small torque. When the equations describing the torque, from momentum
and blade element theory, are set to be equal, the result is:

a′

1 − a
=

σ′Cl

4λr sinφ
(2.74)

When doing the same for the thrust force one gets:

a

1 − a
=

σ′Cl cos φ

4 sin2 φ
(2.75)

From equation (2.74) and (2.75) one can get the following results:

Cl = 4 sin φ
cos φ − λr sin φ

σ′(sin φ + λr cos φ)
(2.76)

a =
1

1 + 4 sin2 φ/σ′Cl cos φ
(2.77)

a′ =
1

4 cos φ/σ′Cl − 1
(2.78)

a

a′
=

λr

tan φ
(2.79)

Equation 2.79 can be given a geometrical interpretation according to figure
2.7. The approximation of neglecting effects from discrete number of blades
(tip effects) does only hold when the angle, A, between the relative and induced
velocity in figure 2.7 is orthogonal.

When not neglecting the effect of discrete number of blades in the momen-
tum theory, equation 2.65 must be multiplied by the Prantl’s tip correction
function, F.
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Figure 2.7. Geometrical interpretation of equation 2.79.

F =
2

π
arccos(e−f ) (2.80)

where f is defined as:

f =
B

2

R − r

Rsinφtip
(2.81)

where B is the number of blades, R the turbine radius, φtip the tip pitch
angle. A description about the derivation of the Prantl’s tip correction function
is given in section 3.5.

When introducing Prantl’s tip correction, equation 2.75 is modified to:

a

1 − a
F =

σ′Cl cos φ

4 sin2 φ
(2.82)

This expression now contains all information needed for the blade design
if equation 2.79 is used as a relation between a and a′ with approximations
discussed above.
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2.3. Performance

To determine the performance, Cp, is calculated. From equation (2.72) the
torque developed by the blade elements of span-wise length dr is:

dQ = 4a′(1 − a)ρU∞Ωπr3dr (2.83)

The drag has however been excluded in this equation. When calculating
the torque caused by drag, the drag must however be included. Therefore, the
drag term is added to equation (2.83), see equation (2.68).

dQ = 4a′(1 − a)ρU∞Ωπr3dr − B
1

2
ρU2

relcCd cos(φ)rdr (2.84)

The complete rotor will then develop a total torque Q of; [Burton et al]

Q =
1

2
ρU2

∞
πR3λ

[

∫ R

0

( r

R

)2
[

8a′(1 − a)
r

R
−

Urel

U∞

B c
R

π
Cd(1 + a′)

]

d
( r

R

)

]

(2.85)

The total power developed by the rotor is the total torque multiplied by
the angular velocity of the rotor, i.e. QΩ:

Cp =
QΩ

1
2ρU3

∞
πR2

(2.86)

Solving the equations from the blade element momentum theory, for a
specific design, yields the power and torque coefficients which are functions of
the tip speed ratio.

In figure 2.8 a typical performance curve for a modern high-speed wind
turbine is shown.
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Figure 2.8. Cp values for a traditional wind mill compared
with modern 2 and 3 bladed turbines.
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The maximum power occurs when a, which normally varies with radius,
approaches the Betz condition of a = 1

3 .

2.4. Breakdown of the validity of the momentum theory

For heavily loaded turbines, when a and a′ are high, the momentum and vortex
theories cease to be applicable. This is because the momentum theory predicts
a reversal of the flow in the wake. Since that situation cannot occur, the wake
becomes turbulent and starts to entrain air from outside the wake by a mixing
process which re-energizes the slow moving air which has passed through the
rotor disk.

When comparing results from momentum theory with measurements, the
following approximation can be made of the thrust force coefficient. Let CT1

be the empirical value of CT when a = 1. The empirical correction should be
tangential to the momentum theory at the transition point. The equation for
the empirical correction is, [Freris].

CT = CT1 − 4(
√

CT1 − 1)(1 − a) (2.87)

and the value of a at the transition point is:

aT = 1 − 0.5
√

CT1 (2.88)
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Figure 2.9. Empirical correction to the momentum theory,
CT1 = 1, 816

CT1 must lie between 1.6 and 2. According to Anderson, [Anderson], CT1

should be 1.816 for the best fit.
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This chapter describes the effects of a discrete number of blades. When
the fluid passes trough the turbine some particles are interacting with the rotor
blades while some pass between them. Therefore, the loss of momentum will
differ between the particles in the fluid and the induced velocity will vary
around the disk.

To model the wake and include effects from discrete number of blades, the
wake behind the rotor can be represented by a vortex model. With a vortex
system the load can be calculated when the geometry of the wake is known. In
the case of a slender wing, the lifting line model derived by Prantl can be used.

3.1. Vorticity

The vorticity is defined as:

ζ = ∇× ~v (3.1)

A vortex can exist freely, as fluid rotating about a line which can be curved
or strait. The structure of the vortex is such that the tangential velocity is
inversely proportional to the distance from the vortex centre. This implies
that the velocity at the centre is infinite. This can of course not be true. The
vortex core is made up of a mass of fluid with a rigid body rotation, see figure
3.1.

S

v
v

®

Rigid body
rotation

Figure 3.1. Vortex structure and integration path.

The radius of the core depends upon the circumstances of the flow situation.
A vortex will move freely with the general fluid motion, although it will of
course contribute to the motion. The vortex can only arise in a viscous fluid.
However, if a vortex would arise in a inviscid fluid, it would require no input
of energy to sustain and therefore also have infinite tangential velocity at the
core. The core of a vortex must terminate at each end on a solid body or it
must form a closed loop. In idealized two-dimensional flow, a vortex core is
assumed to be infinitely long and strait in the third dimension.



3.3. HELMHOLTZ’ THEOREM 29

A vortex bound to a finite airplane wing or a wind turbine blade cannot
simply terminate at the wing/blade tip or at the blade root. Therefore, vortex
trails from each tip, or for the wind turbine also at the blade root. Theoretically,
they are stretched to infinity but, in practice, they are dissipated by viscosity
some distance behind the wing or blade, see figure 3.2.

Gmax

Gmax

Gmax

Figure 3.2. Left: Vortex trails from a wing. Right: Vortex
trails represented by vortex lines.

A number of studies been done in the vortex area. Dispersive and dissipa-
tive errors in numerical solutions of flow field describing a vortex that advects
in constant free stream been studied in detail by Efraimsson et al. [Efraimsson
et al]. The long time development of an isolated wing tip turbulent vortex has
been studied by RANS computations by Wallin and Girimaji, [Wallin, Giri-
maji].

3.2. Circulation

A useful quantity in the context of induction theory is the circulation, Γ. The
circulation is defined as the vorticity integrated over an open surface bounded
by S:

Γ =

∮

~vdS (3.2)

where ~v is the velocity along the curve S which encloses the vortex, see
figure 3.1.

Kutta and Joukowski showed that the lift per unit span on an airfoil is
proportional to the circulation bound to the wing/airfoil, [Mast].

~L = ρ~U∞ × ~Γ (3.3)

3.3. Helmholtz’ theorem

Theoretically, the bound circulation on the blade is equal to the circulation
behind the blade, i.e. in the wake. For inviscid flows, the sum of the tip
and root vortex should be zero, that is however not the case for viscous flows.
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The tip and root vortex do however, both for inviscid and viscous flows, have
different sense of rotation, i.e. different signs of the circulation. A steep decline
of circulation toward the tip will lead to a rapid concentration of the vortex
at the tip. (Occurring a few chords behind the tip) The sign of the circulation
gradient along the blade will also determine the sense of rotation of the vortex
behind the blade. This means that if there is more than one region with a
negative gradient, there will be more vortices than the tip and root vortex, see
figure 3.3:

Figure 3.3. Trailing circulation modeling

The figure 3.3 shows two different distributions of circulation. The left
shows a distribution with only one area of positive and negative gradient of
the circulation function. Therefore, it will also only be one area of positive and
negative rotations. The right figure does, however, show a distribution with
two areas with negative and positive gradient of the circulation function. That
distribution will give four vortices instead of two. The figure also shows an area
trailing the blade where the concentrated vortices are formed. The size of that
area is illustrated by the rapidity by with full circulation strength is attained,
as demonstrated in figure 5.18, where the tip vortex formation is seem to have
occurred where the plotted curve begins, i.e. at about 30◦ of azimuthal travel
after blade passage. The root vortex concentration occurs more slowly because
the radial circulation gradient is lower than at the tip.

The vortex is formed during a short time behind the blade, region 1 in
figure 3.3. In inviscid theory the circulation for the tip and root vortex should
both be equal to the maximum circulation along the blade. An explanation
of that is given in figure 3.2, where one can see that the maximum bound
circulation at the wing is reached when including all vortex lines along the
wing. The circulation in the wake must therefore also correspond to that value
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when considering all vortex lines leaving the wing. The vortex lines do however
in reality interact as shown in the left part of figure 3.2. When considering a
wind turbine blade, we have the same basic behaviour but instead of two tip
vortices, we have one root and one tip vortex from each blade.

In reality, the viscosity does, however, affect the vortices differently de-
pending on the flow field. Therefore, it is not possible to make any conclusions
about the dependence of the tip and root vortex other than that when neglect-
ing viscosity, one would expect the sum of the circulation of the tip and root
vortex to be approximately zero.

The tip vortices are shed into the wake in a continuous fashion and appear
to emanate from a curtain radius which is slightly smaller than the radius of the
turbine blade tips. (Difference between b and b´) The vortices also concentrate
to a root vortex. Therefore it is of great interest to simulate the behaviour of
the swirls and where the concentration toward the outer and inner vortex take
place.

Figure 3.4. The figure shows where the tip vortex for an
wing is located, [Montgomerie 2004a].

Figure 3.4 shows that when replacing the continuous distribution of the
circulation by a constant distribution corresponding to the Γmax value. The
wing can be replaced by an imaginary one, which will have the same lift force
as the physical one. The distance between the positions of the concentrated
tip vortices equals the span, b´, of the outer edges of the imaginary wing. A
similar but more complex theory can be applied to a wind turbine case.
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3.4. Experimental results

Wake structures have been studied in experimental setups. To get an idea of
the wake structure some experimental results are shown. In figure 3.5 the wake
structure is visualized by smoke. One can then see the smoke trails when the
smoke is sucked into the vortex core.

In figure 3.6 one can also see how the vortex spirals interact downstream
and eventually pair up and desolve.

Figure 3.5. Wind tunnel measurement in wind tunnel LT5
at FOI, 2003, [Montgomerie, Dahlberg]

Figure 3.6. Wind tunnel measurement. [Alfredsson, Dahlberg]

Figure 3.7 shows a close up of the tip vortex, here illustrated by inserting
smoke into the flow field. The blade is positioned, to the right, outside the
picture. One relies that it is not trivial to model or simulate the complex
behaviour of the wake structure.
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Figure 3.7. Wind tunnel measurement in wind tunnel LT5
at FOI, 2003, [Montgomerie, Dahlberg]

Figure 3.8 shows how the tip and root vortices moves downstream. The
rotational direction of each vortex is noted by an arrow. As discussed before,
the circulation at the blades, in the wake, in both tip and root vortex, have
the same value, because of Helmholtz’ theorem, that states that for a inviscid
fluid vortices in a homogeneous medium always form a closed loop. A vortex
can only end in a surface, for example a tornado with the ground as a surface.

r
z

Figure 3.8. Since the blade tip follows a circular orbit it
leaves a trailing vortex of a helical structure. The trailing tip
vortex moves downstream.
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3.5. Tip-losses

If the axial flow induction factor a is large at the blades position, the inflow
angle φ will be small. The lift force in tangential direction will therefore also
be small. The torque will then be reduced which means reduced power. This
reduction does not only occur at the outermost part of the blades but is nor-
mally referred to as tip-losses. An interpretation of the inhomogeneous flow
over the disc can be seen in figure 3.9.

Uµ

Figure 3.9. The figure shows the deceleration of the flow,
which is not homogeneous over the disc. The maximum de-
celeration occurs on the blades themselves. The wake flow
reflects the same effect. Therefore, the change of momentum
flux (being equal to the rotor thrust) must be evaluated at
some downstream location with an inclusion of the deforma-
tion. The direction of the vectors, illustrating the deceleration,
in the figure is opposite to the physical direction.

In 1919 Lundwig Prandtl developed an ingenious approximation for the tip-
loss factor. It yields a rather simple analytical formula. Prandtl’s method was
inspired by the fact that no particle can pass thought the vortex sheet. Prandtl
replaces the sheet with solid discs moving with the wake velocity U∞(1 − a).
See figure 3.10.

The theory only applies to a fully developed wake. The distance between
each disc, d, is set to the flow direction pitch of the vortex sheets. The free
stream air seems to tend to weave in and out between the discs. Prantl’s tip-loss
correction function, F, for the trust when using momentum theory is defined
as:

F =
2

π
arccos(e−f ) (3.4)

where f is defined as:
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d
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r

Figure 3.10. Prantl’s tip loss approximation.

f =
B

2

R − r

Rsinφtip
(3.5)

where B is the number of blades, R the turbine radius and φtip the tip pitch
angle. F can be interpreted as the ration between the mean induced velocity
in the flow annulus to the induced velocity at the blades.

For mathematical details of Prandtl’s analysis, see Glauert [1935]
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This chapter deals with modern simulation methods based on numerical
methods.

4.1. Actuator disc method

4.1.1. Introduction

This numerical method combines experiences from CFD (Computational fluid
Dynamics) methods with experimental data by using airfoil data. The blades
are here represented by volume forces representing the force distribution on
the blades that act on the ambient air. This numerical approach to the actu-
ator disc concept been developed by Sørensen and colleagues, [J.N.Sørensen,
Myken], [N.N.Sørensen, Kock], [J.N.Sørensen, Shen, Munduate]. The main
idea is to solve the flow past a rotor without resolving the boundary layer on
the blades.

U¥

Actuator disk

Dr

z

r

Figure 4.1. Actuator Disc Concept

The presence of the rotor is modelled through body forces found from local
flow and airfoil data. Navies-Stokes equations are formulated as:

∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ

∂p

∂xi
+ fbody,i + ν

∂u2
j

∂x2
j

(4.1)

where fbody represents force extraction from the blades.

4.1.2. Definitions

The velocity notation according to figure 4.2 is introduced.

tan φ =
U∞ − Wz

Ωr + Wθ
(4.2)

a =
Wz

U∞

(4.3)
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Figure 4.2. Velocity notation, compare with figure 2.5

a′ =
Wθ

Ωr
(4.4)

U2
rel = (U∞ − Wz)

2 + (Ωr + Wθ)
2 (4.5)

Lift and drag forces per span wise length are found from tabulated airfoil
data as:

(L,D) =
1

2
ρU2

relcB(CLeL, CDeD) (4.6)

where CL and CD are functions of α and Re. The unit vectors eL and eD

are defined in the directions of lift and drag respectively. The Force per span
wise unit length is written as the vector sum:

F = L + D (4.7)

with
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Fz = L cos φ + D sinφ, Fθ = L sin φ − Dcosφ (4.8)

Then,

∆T = Fz∆r, ∆Q = Fθr∆r (4.9)

From the blade element momentum theory we know that the reduction from
free stream velocity throught the stream tube is 2Wz in the axial direction
because of axial momentum balance and 2Wθ in radial direction because of
angular momentum correspondingly. Then, for each annular element:

∆T = 2Wz∆ṁ (4.10)

∆Q = 2Wθr∆ṁ (4.11)

The blade element momentum method does, as discussed before, rely on
the following assumptions:

• Axial symmetry
• Inviscid flow
• The annular stream tubes are radially independent
• The influence from pressure forces on expanding stream tubes are ne-

glected.
• Induced velocity on the disc equals half the induced velocity in the far

wake

This method is still based on the same assumptions, the main difference be-
tween the methods is that the forces in the ACD method is based on measured
local values.

4.1.3. Applying forces

Volume forces are introduced to connect the simulation with the experimental
data used to represent the blades. The loading for an annular area of differential
size is:

f =
dF

dA
=

1

2
ρU2

rel

cB(CLeL + CDeD)

2πr
(4.12)

where f is defined in cylindrical coordinates as:

f = (fr, fθ, fz) (4.13)

and the resulting volume force:

f′ =
f

dz
(4.14)
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where the force components of F are determined from equations (4.2), (4.6)
and (4.8).

4.1.4. Numerical implementation

For a full description and numerical implementation of this model, see [Mikkelsen],
[Sørensen and Myken].

4.2. Actuator line method

4.2.1. Introduction

The main limitation in the actuator disc method is that the method distributes
the forces evenly in the tangential direction of the actuator disc. The influence
of the blades is therefore taken as an integrated quantity in the azimuthal direc-
tion. An extended three dimensional method, Actuator Line Method (ACL),
has however recently been introduced by Sørensen and Shen [Sørensen, Shen].
The limitation in the Actuator Disc Method, where the influence of the blades
is taken as an integrated quantity in the azimuthal direction, has now been
overcome by using techniques where volume forces are distributed along lines
representing each blade. A full CFD simulation would require a great number
of nodes at the blades to resolve the boundary layer. With this method, node
points could be saved at the blades. This method does therefore open new pos-
sibilities for turbine simulations with a well resolved wake. The drawbacks is
on the other hand that the method still is based on tabulated data from which
CL and CD are functions of α, therefore, they are dependent on the quality of
these experimental data.

This method has recently been implemented, by Mikkelsen [Mikkelsen],
into the EllipSys3D code. EllipSys3D is a general purpose 3D solver developed
by N.N.Sørensen and Michelsen, [N. N. Sørensen], [Michelsen 1992], [Michelsen
1994]. The flow solver is a multi block, finite volume discretization of the
Navier-Stokes equations in general curvilinear coordinates. The code is formu-
lated in primitive variables, i.e. pressure and velocity variables, in a collocated
storage arrangement. Rhie/Chow interpolation is used to avoid odd/even pres-
sure decoupling.

The presence of the rotor is modelled through body forces found from local
flow and airfoil data. Navies-Stokes equations are formulated as:

∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ

∂p

∂xi
+ fbody,i + ν

∂u2
j

∂x2
j

(4.15)

where fbody represents force extraction from the blades.

The numerical method use the 3rd order QUICK (Quadratic Upstream
Interpolation for Convection Kinematics) method for the convective terms and
2nd order CDS (Central difference schemes) for the diffusive terms.
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The calculation domain consists of a number of blocks with an equal
amount of points in each direction and block. The node points are distributed
non-equidistant. The block size together with the number of points in each
block control how gradients are captured at critical positions.

The actuator line method can handle both straight and bent lines, yawed,
coned and tilted flow situations. The following sub models could also be used
to get a more realistic flow situation.

• Elastic modal method
• Tower model - dipole and source
• Dynamic stall - Øye model
• Boundary layer or wind shear - power law

These models, suited to dynamic events, will, however, not be discussed
here, for a description, see [Mikkelsen].

The blade forces are determined in the same manner as for the actuator
disc method, see equation (4.6). There is however some modifications because
of the geometry. Figure 4.3 shows a coned rotor in a cylindrical coordinate
system (r,Θ, z), with velocity components U = (Ur, UΘ, Uz). A local coordi-
nate system, (s,n,τ), is introduced, where s is the span wise coordinate, n the
direction normal to the cone at the blade and τ the tangential direction. The
velocity components normal to the rotor are (Un, UΘ) where Un is determined
as:

Un = Uz cos β + Ur sin β (4.16)
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t

Figure 4.3. Geometry for coned actuator line

4.2.2. Applying forces

The aerodynamic forces that are distributed along the actuator line cannot only
be applied in the actuator line points because of numerical discontinuity. The
forces are therefore distributed among neighboring node points in a Gaussian
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manner. This is done by taking the convolution of the computed load frθz and
the regularization kernel ηε.

fbε = fbrθz ∗ ηε (4.17)

where the regularization kernel is defined as:

ηε(p) =
1

ε3π3/2
e−(p/ε)2 (4.18)

where p is the distance between cell centered grid points and points at the
actuator line. The regularized force then becomes:

f3D
ε =

B
∑

b=1

∫ R

s=0

∫ +∞

−∞

∫ +∞

−∞

Fb(s)ηε(p
b)dndτds (4.19)

Mikkelsen discovered that by using a 3D Gaussian smoothing results in
inconsistencies near the tip region, [Mikkelsen]. Therefore, a 2D Gaussian dis-
tribution is used on a 2D-plane orthogonal to the actuator line. This smearing
of the forces is therefore done globally, i.e. every node point at a plane orthog-
onal to the actuator line will be affected, even if the effect is negligible far from
the line, because of the Gaussian function. The 3D Gaussian, if applied, would
also increase the effective radius of the blade forces.

By taking the convolution of the computed load frθz and the 2D regular-
ization kernel ηε. The loading for the b’th actuator line is received as:

f2D,b
ε = fbrθz ∗ η2D

ε (4.20)

where the 2D regularization kernel is defined as:

η2D
ε (p) =

1

ε2π
e−(p/ε)2 (4.21)

The resulting loading is:

f2D
ε =

B
∑

b=1

∫ +∞

−∞

∫ +∞

−∞

Fb(s)η2D
ε (pb)dndτ (4.22)

The 2D Gaussian distribution is controlled by the parameter ε. The choice
of ε will also affect the numerical discontinuity at the tip, as a result of a 2D
distribution. The choice of the value of ε will therefore be critical and will,
especially, have great impact on the wake structure. This will be discussed
further in section 5.4.

When the simulation starts, an initial velocity is introduced in the entire
flow field, i.e. the free stream velocity. Then local velocities and angles of attack
at blade positions are extracted. From tabulated airfoil data that originate
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Figure 4.4. The figure shows the actuator line concept. Each
blade is represented by a line with Jrot number of points.
Forces at each actuator point is Gaussian distributed at all
points, sp, positioned at a plane orthogonal to the actuator
line. The plane is infinite.

from full scale measurement one can then compute local volume forces. These
volume forces are then imported into the flow field, at actuator line positions
and to a plane orthogonal to the actuator line, controlled by the regularization
kernel. Then next iteration begins. A new velocity field is reached and new
local velocities and angles of attack are reached and so on.

4.3. Overview of CFD methods

The methods in the previous sections, ACD and ACL, are both based on the
CFD method. They do, however, not use any turbulence model as is common
when running CFD simulation. It is of course possible to do so, but for appli-
cations explained so far there is no real motivation to do so. This section will
deal with other questions where turbulence models are important. This section
is written as an orientation to problems in connection with CFD methods.

As discussed before, during recent years progress have been made in the
field of numerical predictions of wind turbine blade aerodynamics. Because of
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high Reynolds numbers, O(106), the turbulence length and time scales span
many orders of magnitude. Therefore, the Reynolds Averaged Navier-Stokes
(RANS) methods are the most applied methods if a description of the whole
flow field is desired. The problems that still need to be solved are:

• Growth and separation of the boundary layer
• Momentum transfer after separation

For attached flows, or thin shear flows, around blades. Steady RANS sim-
ulations with a proper turbulence model are known to perform well. Even if
pressure gradients cause small regions of separation, unsteady RANS simula-
tions can predict the flow properly. But for flows with massive separation, the
flow becomes highly unsteady, both steady and unsteady RANS models fail to
predict the correct separation leading to an overestimation of lift.

In CFD simulations using previously described models, i.e. ACD and ACL,
the mechanical power has been predicted using CFD on a full wind turbine
rotor. The results indicate that for low wind speeds, where the flow is mostly
attached, the mechanical power is predicted well compared with measurements.
For high wind speeds, on the other hand, the flow is over predicted. Here the
flow is separated. [N.N.Sørensen, J.Johansen]

According to N. N. Sørensen and Johansen, [N.N.Sørensen, J.Johansen],
this is primarily caused by two factors:

• First, the RANS simulation produces too much viscosity, causes a pre-
dicted lift which is too high.

• Secondly, the turbulence model does not correctly take into account the
transport of momentum in the far field. This is due to the fact that
turbulence modelled in a RANS simulation is assumed isotropic, which
will force the flow to be kept artificially two-dimensional. In reality, the
flow is definitely three-dimensional.

A new approach was introduced by N. N. Sørensen and Johansen, [N. N.
Sørensen, J.Johansen]. As opposed to RANS, which is time averaged, LES,
which is a space averaging, is used. Here the large eddies are resolved and
only the smaller eddies are modelled assuming isotropic turbulence. Now, the
correct three-dimensionality of the flow is predicted. The eddies close to the
wall are however very small for Reynolds number relevant for wind turbine
applications. Therefore, the LES is impractical solution method with respect
to computational cost since very small grid cells and also small time steps would
be required to resolve the small eddies. One way to circumvent the problems
with LES is to combine the LES model with RANS. Use RANS model in the
boundary layer but LES model in the far field. In this way the small attached
eddies in the boundary layer will be modelled using RANS turbulence model
and the detached eddies in the far field will be resolved using a LES approach.
The new model is called ”Detached-Eddy Simulation”, (DES).
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The CFD code EllipSys3D was used in the simulations. The SIMPLE al-
gorithm is employed for the pressure/velocity coupling and solutions of the
momentum equations are obtained using a second order upwind differenc-
ing scheme (SUDS) or a third order quadratic upwind interpolation scheme
(QUICK). The RANS computations are employing the two-equation k - ω SST
model by Menter [Menter]. The Detached-Eddy Simulation (DES) is based on
the Spalart-Allmaras, (S-A) one-equation RANS model. [Spalart, Allmeras],
which is reduced to a LES-like model in the farfield by a simple ”switch”.

Figure 4.5. DES Simulation performed by [N.N.Sørensen, J.Johansen]

Figure 4.5 shows the result from a DES simulation for a constant chord
wing. The three-dimensionality using the DES model can be seen. The un-
steady RANS simulation will however maintain two-dimensional even at highly
separated flows. N. N. Sørensen and Johansen concluded that the DES model
proposed by Spalart et al. [Spalart et al] captures the three-dimensionality of
the flow physics well. The change from RANS to LES region has however to
be investigated further.

4.4. Summary of classical and numerical models

The discussed models could be summarized as:

• Blade Element Momentum Method (BEM)
• Actuator Disk Method (ACD)
• Actuator Line Method (ACL)
• Full CFD simulation (CFD)
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where all except the last, the CFD simulation, are based on tabulated
airfoil data of some sort. To set up a full wake simulation using CFD methods
where the blades, or at least one because of periodicity, must be fully resolved
require a lot of computer recourses. As known, the evolution in that area does
go fast, so who knows what the future might give.

Presented models do all have their advantages when looking at different
aspects of the turbine. When creating new wind turbine design codes many
fields of interest must be fulfilled. There are many complicated features that
must be introduced as engineering methods in these codes. All these features
are however not the topic of this report. A few examples are however introduced
below.

4.4.1. 3D effects

The flow at the blade tip- and root is three-dimensional. Due to centrifugal and
Coriolis forces, the boundary layer at the root has a span wise direction while
the flow just outside the layer is chord wise. This effect delays stall. Therefore,
when considering this effect, one reaches higher lift forces compared to a 2d
flow case.

This effect i commonly referred to as the Himmelskamp-effect. For further
details about 3D effects, see [Snel et al].

4.4.2. Dynamic wake and stall

The induced velocities do not respond immediately to changes in loads. There-
fore there is a time delay before effects from changes in loads take effect in the
wake.

A time delay also exists in the separated boundary layer on an airfoil, when
the angle of attack is changed fast.

Both these time dependent behaviours must also be implemented in engi-
neering methods to describe the physical behaviour correctly, although this is
outside the scope of this investigation.
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5.1. Simulation setup

This section deals with choice of numerical method, numerical setup such as
grid design, simulation cases etc.

5.1.1. Numerical method

Previous chapters show available simulation tools, since one of the aims in
this project is to simulate the wake to make it possible to evaluate the wake
behaviour. The simulation method ”Actuator line” has been chosen since it
gives possibilities to resolve the wake well and at the same time does not require
a mesh of the blades themselves, which would require a lot of node points
localized at the blades surfaces.

The Actuator line method captures effects in the ambient flow from the
blades with the lowest computational requirements.

Simulations have been performed with the software EllipSys3D discussed
in chapter 4.2. One can generally say that the performed computation is an
inviscid DNS calculation since it uses a RANS code without turbulence models.

5.1.2. Computer setup

The simulation has been performed on a linux PC cluster at the Mechanical
Department at DTU. The cluster has been explicitly developed for EllipSys3D
and it has been built by Jess Michelsen. It contains 210 PC’s with Linux
Redhat 8 as an operating system. The cluster was taken into operation during
the time of this project.

5.1.3. Experimental data

Since the actuator line method uses tabulated airfoil data from measurements,
data with good quality must be used. Data from the turbine Tjaereborg have
been used for all simulations in this project.

The Tjaereborg turbine was operational between 1988 and 1998. During
these years extensive measuring and testing was performed on the turbine. The
turbine was localized 9 km southeast of the city of Esbjerg in the western part
of Denmark. Tjaereborg was a three-blade upwind horizontal axis turbine. The
blade profiles were NACA 4412-43 with a blade length of 29 m giving a rotor
diameter of 61 m. The chord length was 0.9 m at the tip, increasing lineary
to 3.3 m at hub radius 6m. The blades are twisted 1◦ per 3m. The tip speed
was 70.7 m/s and the rotor solidity was 5,9%. The rated power is 2 MW where
the output was controlled by a continuously variable pitch operating between 0
and 35 degree in production mode. The hub height is 60 m. [Tjaereborg Data]
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5.1.4. Initial and boundary conditions

The performed simulations only deals with axial flows. Therefore, it is possible
to reduce the mesh to a 120-degree slice with periodic boundary conditions to
account for the rest of the required cylinder volume.

All simulations were performed at operational conditions corresponding to
a free stream velocity of 10 m/s. The initial velocity is therefore set to 10
m/s. The actuator line was fixed in the mesh. The rotational reference frame
is created by an angular velocity at boundaries. The simulations are valid
for steady conditions only. No coning of the blades was simulated in these
computations.

5.1.5. Mesh

EllipSys3D is parallelized and uses MPI. EllipSys3D can, however, only han-
dle blocks with the same number of nodes on each block edge or side. The
distribution on each side of the block boundaries can, however, be nonlinear.

The mesh was created as a 5-block mesh to be able to capture large gradi-
ents in the wake.
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Figure 5.1. The figure shows the 5-block mesh and the dis-
tribution of the nodes. There are 96 nodes on each block side.
In total this mesh contains 963 · 5 ≈ 4.4 · 106 nodes.
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Figure 5.1 shows how the mesh is constructed. The aim is to resolve the
wake as faithfully as possible. Block number 2, 3 and 4 are therefore thin in the
z-direction to compress the node distance in the downstream direction. Blocks
2, 3 and 4 are equidistant in the z-direction. Blocks 1 and 5, including inlet
and outlet, have a non-equidistant mesh in the z-direction. Here, the nodes
are concentrated toward the turbine. In the radial direction, all blocks use the
same densification toward the centerline. The actuator line is positioned in
block 2, at the centre line and at 8 radii from the inlet.

5.1.6. Sensitivity

To evaluate the sensitivity of the grid four different meshes with different reso-
lutions were constructed; 48, 64, 80 and 96 nodes on each block side. The total
number of node points are then; 5.5 · 105, 1.3 · 106, 2.6 · 106 and 4.4 · 106.

To be able to evaluate the sensitivity of the Gaussian smearing function,
three different values of parameter ε were simulated.

The sensitivity of the Reynolds Number has also been studied. Six different
cases of Reynolds number been simulated, see figure 5.2. The effect of different
Reynolds number will be discussed more thoroughly in chapter 5.2.6.

Case name

T48Bk5TyE1D2

T64Bk5TyE1D2Re4

T64Bk5TyE1D2Re5

T96Bk5TyE1D2Re1

T80Bk5TyE1D2Re4

T96Bk5TyE1D2Re2

T96Bk5TyE1D2Re3

T48Bk5TyE15D2

T64Bk5TyE15D2Re4

T96Bk5TyE15D2Re4

T48Bk5TyE2D2

T64Bk5TyE2D2Re4

T96Bk5TyE2D2Re4

48

64

64

96

80

96

96

48
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96

48

64

96

1

1

1

1

1

1

1

1.5
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3 10×
6
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6

6 10×
6

3 10×
4
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3

3 10×
6
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6

3 10×
6

3 10×
6

3 10×
6

3 10×
6
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6
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6
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Yes

Yes
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1, Nodes on each block side
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T96Bk5TyE1D2Re6 96 1 2d 15 10×
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Figure 5.2. Case table

All simulations have been performed with a 2d Gaussian distribution.
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Mikkelsen argues that the Prantl’s tip correction should be left out since
the 3D effect leading to tip losses is included in this method, [Mikkelsen]. It
has, however, later been shown that more accurate results have been obtained
when Prantl’s tip correction is included. [Private discussion with Sørensen and
Mikkelsen] This shows that the 3D effects leading to Prantl’s tip losses are
not included in the actuator line method itself. The correction by Prantl was
included in these simulations. No efforts have been made to investigate this
further. However, this is not scientific correct practice.
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5.2. Simulation results

This section gives an overview of the results from the simulations.

5.2.1. Pressure distribution

Figure 5.3 illustrates the actuator line with color coding for levels of the force
distribution. The contours between iso surfaces correspond to the pressure
levels according to the legend. The blade actuator line representation is rotated
30◦, out of the pressure distribution plane, in the direction of the viewer. It,
therefore, appears unexpectedly short in relation to the tip vortex train.

The figure shows the pressure build up in front of the turbine. The vorticity
spiral can be identified by the low pressure areas downstream of the actuator
line.
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Figure 5.3. Pressure distribution for the 96 point mesh sim-
ulation 30◦ after blade passage, Re = 3 · 106 (Re4).

5.2.2. Velocity distribution

Figure 5.4 illustrates the actuator line with an iso surface of the force distribu-
tion. The contour on that iso surface is the streamwise velocity distribution.
The plane, showing the velocity distribution, is rotated 30◦ from the plane
containing the actuator line also in this plot. The figure therefore shows the
actuator line 30◦ in front of the plane showing the velocity distribution.
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The figure shows the axial velocity distribution. The value 1 in the legend
corresponds to the free stream velocity, i.e. 10 m/s. Upon magnification of
selected details, it is possible to see that the rotation of the vortices are in
clockwise direction. The velocity in the wake is also reduced as expected.
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Figure 5.4. Streamwise velocity distribution for the 96 mesh
simulation 30◦ after blade passage, Re = 3 · 106 (Re4).

In figure 5.4 It is possible to see that the velocity in the centre line, i.e.
the root vortex, is high compared to the mean wake velocity. This is partly
because the nacelle is not present in this simulation. The flow field behind
a real turbine does, however, also have a root vortex which may accelerate
the flow. This have been varified by testing at FOI, [Dahlberg]. The correct
physical behaviour might therefore represent real flow.

5.2.3. Vorticity

Figure 5.5 shows an iso surface of the vorticity with a pressure distribution
on the iso surface. The x=0-plane also shows the pressure distribution. The
y=0-plane shows the streamwise velocity distribution.

By choosing the value of the parameter for the vorticity, the ”vortex spiral”
can be identified.

5.2.4. Position of the cores

The position of the centre of the vortex cores was extracted from the flow field.
The result shows that the position of the cores does not depend on the smearing



56 5. RESULTS

Y

Z

X

Frame 001  27 Jan 2005  volume solution

Figure 5.5. x=0-plane, pressure distribution; y=0-plane,
streamwise velocity; iso surface, constant vorticity with a sur-
face of a contour pressure distribution.

parameter, ε, see figure 5.6. Note that the radial position of the vortex core
starts close to the tip. In section 3.3 the radial position of the vortex core was
discussed. In this case, the vortex core does obviously originate close to the tip
of the blade at a slightly lesser radial position than the blade tip.
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Figure 5.6. Position of vortex cores
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5.2.5. Phase difference between tip and root vortex

Since the position of each vortex core is known, the phase difference between the
tip and root spiral could be calculated. Figure 5.7 shows how the root vortex
moves more slowly downstream compared to the tip vortex. The smearing
parameter, ε, does affect the phase difference between tip and root vortices.
Then this parameter affects the vortices to the extent that they actually moves
with different velocities. This qualitative behaviour is to be expected from
a theoretical standpoint using induction theory, where the tip vortex spirals
decelerate the whole flow in the wake.

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Phase difference between tip and root vortex

Deg. behind blade, γ

P
ha

se
 d

iff
er

en
ce

  [
R

]

96 eps=1
96 eps=2
96 eps=1.5

Figure 5.7. Phase difference between tip and root vortex
core. The phase difference is defined as the difference in axial
position between root and tip vortex, at the same rotational
angle behind the blade, i.e. the ACL. A smaller value of ε
represents a tighter volume force

5.2.6. Reynolds numbers dependence

Simulations with six different Reynolds number were performed, see figure 5.2.
Figure 5.8 and 5.9 show iso surfaces of the vorticity. Figure 5.9 has a higher
value of Reynolds number. One can see that for the case with higher Reynolds
number, the vortex spiral can be traced further downstream, as expected, since
the viscosity, in the Re3 case, to a greater extent destroys the structure of the
wake.

When investigating the dependence of the Reynolds number, the value of
the power coefficient, Cp (defined in equation (2.4)), was used in the analysis,
see figure 5.10.
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Figure 5.8. Iso surface of constant vorticity, ζ = 4.95, with
contour of streamwise velocity distribution. Re = 3·105 (Re3).
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Figure 5.9. Iso surface of constant vorticity, ζ = 4.95, with
contour of streamwise velocity distribution. Re = 3·106 (Re4).

Mikkelsen did the same type of analysis for the actuator disc method,
[Mikkelsen]. He shows that when reaching high enough Reynolds number, the
value of Cp converges toward a stationary value. The same behaviour can be
seen when using the ACL method. Therefore, the conclusion can be made,
that when using high enough Reynolds number, the Reynolds number does not
affect the power coefficient.

Figure 5.10 indicates that the change in the Cp value, for high Reynolds
number, decreases with increasing number of mesh points. Therefore, one can
conclude that the difference between the Cp curves, at high Reynolds number,
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Figure 5.10. Cp values dependency on grid size and Rey-
nolds number, i.e. viscosity. The viscosity for air is 16, 7 ·
10−6Nsm−2 which in this case corresponds to a Reynolds
number of ≈ 1.8 · 107. The experimental Cp at 10 m/s is
0.489.

is because of numerical diffusion. When reaching a stationary level of the Cp

value, i.e. independent of even larger grids, an Euler solution has been reached.

5.2.7. Grid dependence

In figure 5.10 one can see that the power coefficient depends on the grid size.
The value of Cp converges with higher numbers of grid points, however, the
converged value is about four percent lower than the experimental based value.
Mikkelsen, [Mikkelsen], showed that when using the ACD method, the devia-
tion from experimental values was in the same order but in the ACD case, the
power was overestimated instead as when using the ACL method, when the
power is underestimated.

However, power is extremely difficult to measure in reality frequently de-
pending on the accuracy of the anemometer used. The difference between
calculation in terms of Cp is, therefore, not necessarily indicative of calculation
inaccuracy.
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5.3. Evaluation method

Since one of the main aims with this project is to find and evaluate a method
which will make it possible to understand more about the flow in the wake
and especially circulation, see section 3.2. It is quite possible to study different
aspects of how this method can result in better understanding of the wake and
its circulation. This section will therefore deal with a method developed within
this project to evaluate the circulation. A knowledge of the positioning of the
vortices and their strength of circulation can be used as a base for engineering
methods utilizing induction theory for loads and performance prediction.

The performed simulations have given the entire flow field. When the
circulation is evaluated in the wake, an integration is performed around a loop,
enclosing the vortex. Each vortex is evaluated in terms of its circulation in a
plane perpendicular to the turbine disc, see figure 5.11.

r
z

g

Figure 5.11. The vortices are evaluated in planes orthogonal
to the turbine plane. Every third vortex originates from the
same blade. The angle between the blade, i.e. the actuator
line, and the location of the evaluated vortex in rotational
sense is defined as γ.

Figure 5.12 shows how the circulation is evaluated. The vortex created at
the tip, or at least close to the tip, is evaluated every 30◦ behind the blade.
The root vortex is evaluated in the same manner. As can be seen in figure 5.12
the vortices tend to be smeared out further downstream because of diffusion.
Therefore, it is more difficult to evaluate the circulation further downstream.
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The circulation is integrated at a specific value of the vorticity. In that way,
one makes sure that the integration is done in a coherent manner and can be
compared at different positions.

u30
u150 u270 u390

i30 i270i150

u30
u150 u270 u390

i30 i270i150

Figure 5.12. An integration is performed around each vortex
to get the circulation. u indicates the tip vortex, i the root
vortex, 30 150 etc represents degrees of azimuth behind the
actuator line. The red line represents the integration path.

Figure 5.13. An integration is performed around each vortex
to get the circulation, see equation 3.2 The red line represents
the integration path.

Figure 5.13 shows an area with a vorticity level that differs from the mean
value in the flow field, which is surrounded by an integration path. By choos-
ing the integration path in this way, one makes sure that the entire vortex is
surrounded by it.
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Figure 5.14 shows the mesh with 96 points at each block side. One can
see that the resolution, however, could be better. When evaluating the circula-
tion sensitivity to different parameters, the mesh size might affect the results.
The integration is performed by choosing a number of evaluation points at the
integration path. The values at these points are then reached by an interpola-
tion (2nd order) between surrounding grid points. A mesh with too few grid
point might therefore give numerical errors. The number of grid points does,
however, affect the computational time to a great extent.

X

Y
Z

Frame 001  23 Nov 2004  volume solution

Figure 5.14. Closeup of the mesh in the integration area.
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5.4. Evaluation of the circulation

This section shows results from the simulations with the evaluation method
described i the previous section.

5.4.1. Epsilon dependence

The sensitivity of the circulation with the respect to ε has been evaluated. The
evaluation was performed with three different grid sizes, 64, 80 and 96 node
points at each side of the blocks as discussed in section 5.1. The results can be
seen in figure 5.15.

The solution converges when ε approaches one. The wiggles that appear
some distance downstream in figure 5.15 can probably be explained by too few
number of grid points when the circulation is integrated, see figure 5.14, and
because of increasing smearing of the cores further downstream. The com-
putation time does however increase rapidly with increasing number of grid
points.
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Figure 5.15. The figure shows simulations with the largest
mesh, i.e. 96 points at each block side, with different values
on ε. A small value of ε represents a tighter volume force
distribution around the blade.
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5.4.2. Grid dependence

The sensitivity of the circulation with respect to the grid resolution has also
been evaluated. The evaluation was performed with three different grid sizes,
64, 80 and 96 node points at each side of the blocks as discussed in section 5.1.
The results can be seen in figure 5.16.
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Figure 5.16. Simulation for the Tjaereborg turbine. Meshes
with 64, 80 and 96 node point on each block side have been
performed

The solution converges with greater grid size. The wiggles that appear
some distance downstream in figure 5.15 and 5.16 can probably be explained
by the same reason as when evaluation the dependence on ε. When using
a finer grid, the integration could be performed further downstream without
large fluctuations in the result. This is because the vortices are more concen-
trated further downstream with a finer mesh, and therefore it is also possible
to perform the integration further downstream.

5.4.3. Reynolds number dependence

As mentioned in section 3.2 the circulation at the tip and root should, at
least for inviscid flows, correspond to the maximum bound circulation at the
blade. The circulation at the blades is given in figure 5.17. The circulation
distribution represents the lift force; therefore, the lift force curve would have
a similar curvature. The maximum normalized circulation at the blade is 0.10.
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Figure 5.17. The figure shows the circulation distribution
along the blade calculated with a mesh of 80 and 96 node
points on each block side. Two different Reynolds number
have been used with the 96 point mesh.

A comparison between the results of the 96 point mesh and ε = 1 with the
maximum circulation at the blade can be seen in figure 5.18.

The wiggles starting about 500 degrees behind the blades for the root vortex
and about 800 degrees behind the blade for the tip vortex do most likely depend
on integration errors when integrating the circulation. At these positions the
vortex core starts to be smeared out and it is therefore also becoming difficult
to identify a good integration path.

The result does however correspond fairly well with classical theories from
Helmholtz. The tip vortex leaves the blade with a circulation value close to
the maximum bound circulation at the blades. The root vortex does, however,
leave the blade with a much lower value of the circulation. The circulation in
the root vortex does, however, increase rapidly and reaches values at the same
order as the bound circulation. The reason why the root vortex is smeared out
earlier than the tip vortex is partly because the vortex cores are located closer
together at the root and partly because of the radial gradient of the circulation.

The reason why the root vortex circulation grows faster with increasing
Reynolds number does however still need to be answered.
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Figure 5.18. The figure shows the circulation distribution in
the wake compared with the maximum circulation at the blade.

5.5. Evaluation of the vortex core

The vorticity and velocity in the vortex core were evaluated. Points along a line
in the radial direction were extracted, see figure 5.19. The choice of direction
of that line will affect the distributions since the vortices are not circular since
they are stretched in the streamvice direction. The velocity will also differ at
the same radius of the vortex.

Figure 5.20 shows the vorticity and velocity distribution in the vortex core
30◦ behind the actuator line in rotational sense, i.e. γ = 30◦ according to fig-
ure 5.11, with different Reynolds number. The vorticity in the centre increases
with increasing Reynolds number. One can also note that the radius of the vor-
tex core decreases with increasing Reynolds number. The velocity distribution
could be compared with figure 3.1. Negative values of vortex position corre-
spond to the core half closest to the centre line and vice versa. That is obvious
that the velocity distribution has a jump in velocity, compare with figure 3.1. It
is because this vortex is positioned in a velocity field that is not constant since
the outer part, positive vortex position, experiences a higher velocity than the
inner part, with negative vortex position. From velocity profiles, one can say
that the rigid body rotation area decreases while the gradient increases in the
rigid body area with increasing Reynolds number. These figures are, however,
to a great extent dependent on the grid size. In theory, the area below the
vorticity functions would be constant, i.e. a flow with low Reynolds number
means that the vortex is larger with a less intensive core. While a flow with
higher Reynolds number experiences vortices which are smaller but much more
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intensive in the vortex core. Therefore, the Reynolds number does not affect
the vortex strength but the radial distribution. A low Reynolds number in-
creases the diffusion of the vortex, therefore a low Reynolds number results in
a shorter lifetime of the distinct wake spiral.
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Figure 5.19. Definition of evaluation points in vortex area.
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Figure 5.20. The figure shows the vorticity and velocity dis-
tribution in the vortex core 30◦ behind the actuator line in
rotational sense at different Reynolds number with the 96 point
mesh.
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Figure 5.21 shows the vorticity and velocity distribution of the vortex core
positioned at different positions in the field when Reynolds number is Re6. The
vorticity and velocity distributions are plotted for core positions of γ equal to
30, 150, 270 degrees etc, where the angle γ is defined according to figure 5.11.
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Figure 5.21. The figure shows the velocity deviation from
the free stream velocity for a computation with Re6. The
velocity distributions been extracted from an vertical line thr-
ough each vortex core. The figure shows the velocity distri-
bution at different positions behind the actuator line. Each
position is noted by the angle γ in rotational sense, see figure
5.11.

In figure 5.21 one can see that the vorticity decreases downstream in the
wake, which is expected because of diffusion. It is also possible to see that the
velocity for positive core positions decreases downstream while the velocity for
negative core positions, i.e. closest to the centre line, seams to change less.
The outer part of the vortex cores tends to adapt the velocity toward the free
stream velocity.

The vorticity in the core centre was extracted from the flow field. The
results for cases with a Reynolds number of Re4 are shown in figure 5.22. The
figure shows that the vorticity increases with decreasing value of ε. One can
also note that the vorticity is dependent of the grid size. The level of the
vorticity in the core could therefore be said to in a great extent be dependent
of the smearing parameter and the mesh size.
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Figure 5.22. Vorticity in the vortex core. Left: Vortex de-
pendency of smearing function. Right: Vortex dependence of
grid size.
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6.1. Conclusions

Fulfillment of the aims

The aim of this project was partly to evaluate existing simulation methods to
be able to choose a method appropriate for the main aim, that is to get a better
understanding of the flow behavior in the wake. The results from the actuator
line method were very successful. Mainly because it gave results which made
it possible to track the tip and root vortex and therefore made it possible to
evaluate essential features in the wake. The method also made it possible to
run these simulations in reasonable computational times.

The method has been proved to give reasonable results compared with
measurements when considering power. An evaluation of the sensitivity of the
Reynolds number resulted in a greater understanding of the numerical method.
Some questions still remain considering the effect of different Reynolds numbers
when simulating the circulation.

An evaluation of numerical parameters such as ε and grid size resulted in
a greater understanding of sensitivities in the numerical method.

From the evaluation of the flow field in the vortex and its core it is possible
to conclude that the simulation resulted in a flow field that corresponds well
to expected vortex behaviour.

All this together gives a good foundation for future work in this area, since
the project resulted in:

• Knowledge of a suitable numerical method.
• Access to software and computer resources needed to perform simula-

tions. (Cooperation with DTU)
• Evaluation methods and code to extract circulation data in the wake.
• Some basic understanding of the wake structure.

Remaining questions

The results show that with a mesh of 96 node points on each block side and an ε
at a value of 1, gives a converging solution that corresponds fairly well to what
is expected from Helmholtz’ classical theorem. The result did however show a
slow decrease of the circulation downstream while neglecting the uncertain part
with wiggles, which starts about γ = 800 for the tip vortex. The question arises,
if the value of the circulation in the wake is less than the maximum circulation
at the blade only because of numerical errors or from viscous effects? As
discussed earlier, the circulation in the wake should correspond to the maximum
circulation on the blades at least in inviscid theory.

As mentioned above, the increasing growth of circulation with increasing
Reynolds number is an unanswered question. More effort is therefore needed
to understand this problem.
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The knowledge about the numerical behaviour, such as dependence of ε,
has increased during the project. The position and strength on the vortex cores
depends on the ε parameter, therefore it is necessary to verify and calibrate
this method by comparing it with results from full scale measurements.

This project gives, as mentioned, a good base for future work, where many
questions remains to be resolved.

Further work

Future work will be focused on verification of these results. However, today it
is not possible to compare with measurements since there are no experimental
wake data of good enough quality available.

Hopefully, the NREL project MEXICO could provide necessary experimen-
tal data, which will make it possible to compare these simulations with mea-
surement results of a at least model scale experimental set up. The MEXICO
project was originally scheduled to be finalized in 2003 but has been delayed
until 2005.

Future work, based on both numerical and experimental methods, will aim
at a better understanding of the physics of the wake. With increasing confi-
dence in the methodology developed during this effort, the numerical ”wind
tunnel” is seam to emerge. It is tentatively concluded that future data from
continued development of this method will be very useful in the development
of engineering methods for loads and performance prediction. Such engineer-
ing methods depend on vortices and induction theory where the Biot Savart’s
law is utilized. The CFD method presented here provides the vortex pattern
necessary for such development work.
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Montgomerie, B., Dahlberg, J-Å., Vortex Systems studies on small wind turbines,
Swedish Defence Research agency, FOI-R–0936–SE, 2003.

Snel, H., Houwink, R., Piers, W. J., Sectional prediction of 3D effects for seperated
flow on rotating blades., Proceedings of the ECWEC ’93 Conference, p395-9,
1993.

Spalart, P. R., Allmaras, S. R., One-equation Turbulence Model for Aerodynamic
Flows, La Recherche Arospatiale, 1:5-21, 1994.

Spalart, P. R., Jou, W-H., Strelets, M., Allmaras, S. R., Comment on the Feasibility of
LES for Wings, and on Hybrid RANS/LES approach, Proceeding of 1st AFOSR
Int. Conf. on DNS/LES, Ruston, LA, August 4-8. Greyden Press, Columbus,
OH, 1997.

Sørensen, J. N., Kock, C. W., A Model for unsteady rotor aerdynamics, Journal of
Wind Energy and Industry Aerodynamics, 58:259-275, 1995.

Sørensen, J. N., Shen, W. Z., Munduate. X., Analysis of wake states by a full-field
actuator disc model, Wind Energy, 1:73-88, 1998.

Sørensen, J. N., Myken A., Unsteady actuator disc model for horizontal axis wind
turbine, Journal of Wind Engineering and Industry Aerodynamics, vol. 39, 1992.

Sørensen, J. N., Shen, W. Z., Numerical Modeling of Wind Turbine Wakes, Journal
of Fluid Engineering, vol. 124, June 2002.

Sørensen, N. N., General perpose flow solver applied to flow over hills, PhD Disserta-
tion, Risø National Laboratory, Roskilde, Denamark, 1995.



BIBLIOGRAPHY 77

Sørensen, N. N., Johansen, J., Application of a Detached-Eddy Simulation model on
Airfoil Flows, IEA, 2000.

Vermeer, L. J., Sørensen, J. N., Crespo, A., Wind Turbine Wake Aerodynamics,
Progress in Aerospace science 39, p 486, 2003.

Wallin, S., Girimaji, S. S. Evolution of an Isolated Turbulent Trailing Vortex, AIAA
Journal, No 38, p657-665.

Wilson, R. E., Lissaman, P. B. S., Aerodynamic performance of wind turbines, Energy
research and development administration, ERDA/NSF/04014/1, 1976.

Wilson, R. E., Aerodynamic behavior of wind turbines, Wind turbine technology,
Spera D. A., 1998.

Wizelius, T., Vindkraft i teori och praktik, Studentlitteratur, Lund, 2002
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