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Abstract

A method has been developed for flexible modelling of multi-component twin-
wire blade formers. Features such as suction devices, loadable blades, curved
blades, and partial contact between the blades and the forming fabrics are eas-
ily incorporated. New results include a series of calculations demonstrating
the non-trivial interaction between the pressure pulses when the blades are
positioned successively closer together, the effects of suction on the pressure
pulse generated by a blade applied to the opposing wire, and how blades of
modest curvature do not necessarily stay in contact with the fabric along their
full width and the implications of this on the pressure gradients in the machine
direction.

The behaviour of the fibre mats as they experience the first of the blade
pulses (after having been formed over a roll) is then considered in detail. Typ-
ically, the thickness of the mats decreases during the pulse, which reduces the
rate of deposition of new fibres onto the webs. The amount of fibres in the
sheets therefore changes marginally. Nevertheless, the resistance to drainage
presented by the fibre network is seen to increase significantly due to the low
permeability in highly compressed layers of the mat. As a result of the pressure
gradients in the machine direction, the shear stresses in the plane of the fibre
sheets can attain several hundred Pascal next to the forming fabrics.

Further, a model for sheared consolidation of flocculated suspensions is
presented that extends the concept of a concentration dependent yield stress,
previously employed in studies of uniaxial consolidation, to comprise flocculated
phase shear strength. Rate-dependent viscous stresses are also incorporated.
The theory is applied to the problem of combined compression and shearing of
a strongly flocculated suspension contained between two plates, one being fixed
and acting as a perfectly permeable filter, the other movable and acting as a
piston by which the load is applied. Qualitatively, the evolution of the volume
fraction of solids exhibits the same behaviour as during uniaxial consolidation
without shear. Applying shear is however predicted to increase the rate of the
drainage process, due to a reduced load bearing capacity of the flocculated
phase, and correspondingly higher pore pressures.

Descriptors: blade forming, pressure distribution, interaction, suction, drainage,
filtration, sheared consolidation, shear strength, plastic deformation, floccu-
lated suspension, soil mechanics, two-fluid model, mixture model



Preface

This thesis deals with models for the process referred to as ‘blade-forming’, that
is employed in papermachines to drain the fibre suspension and build up the
paper sheet. It is also concerned with the behaviour of flocculated fibre suspen-
sions (of which the fibre webs in the paper machine is an example) during filtra-
tion. The research was conducted within the framework of FaxénLaboratoriet,
a centre of excellence located at the Royal Institute of Technology in Stockholm,
Sweden.

The thesis is divided into two parts. In the first of these, an introduction is
given to the science of papermaking. A summary of the research conducted by
the thesis author and his co-workers is also given, with the objective to clarify
its context. The second part consists of five appended scientific papers. When
necessary, these have been reset in the format of the thesis.

Stockholm, March 2005
Claes Holmquist

Appended papers:

Paper 1. HorLMmqQvisT, C., DAHLKILD, A. & NORMAN, B., 2005 A flexible
approach for modelling flow in multi-component blade formers. Submitted to
Nordic Pulp & Paper Research Journal

Paper 2. SHuGAI, G., HoLMQVisT, C. & VYNNYCKY, M., 2002 Analysis of
a model for twin-wire forming. In Proceedings of the 12" ECMI Conference,
Jurmala, Latvia

Paper 3. HoLmqQvisT, C., DAHLKILD, A., 2005 Fibre mat behaviour in
twin-wire formers. To be submitted

Paper 4. HormqvisT, C., DAHLKILD, A., 2005 Consolidation of sheared,
strongly flocculated suspensions. To be submitted

Paper 5. HoLmqQvisT, C., DAHLKILD, A.; 2005 Influence of viscous stresses
on the sheared consolidation of flocculated suspensions. To be submitted
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Overview and summary






CHAPTER 1
Papermaking and forming

This thesis is concerned with mechanical models for the forming of paper. It is
a fair guess that most readers will have at least some knowledge of mechanics in
general, since it is one of the fundamental, and classical, engineering sciences.
For this reason, it is also easy to find good introductions to the topic. A
reader who is not acquainted with the manufacturing of paper will, however,
find it harder to come across a presentation of the science of papermaking.
To set the stage for the presentation of the work that has been undertaken, I
therefore think it is appropriate to dedicate the first chapter of the thesis to
an introduction to the modern paper manufacturing process. As will become
evident, the drainage process referred to as ‘blade forming’ is given a more
lengthy presentation, since it has been the main focus area of the conducted
research.

1.1. Outline of the process from tree to product

There is no precise definition of paper. However, common to all products
referred to by that name is that they are nested structures of slender particles,
fibres, that are held together without the requirement of other components
than the fibres themselves. In most cases these have a biological origin, but
synthetic fibres are sometimes used as well.

After first having been developed in China in the 2" century AD, paper-
making has evolved to the interdisciplinary high technology process it is today.
The large majority of paper products are wood based, and their production can
be divided into three significantly different parts, each of which corresponds to
an increased degree of refinement of the raw material:

e Forestry.
e Pulp production.
e Paper production.

During the pulp production, the fibres in the wood are freed through either
mechanical or chemical treatment. If this is not carried out on site, they are
delivered to the paper mill either as a concentrated suspension, or in the form of
dry sheets. At the mill, the pulp is transformed into a dilute suspension and is
then processed. Although the techniques employed to produce different paper
qualities (called grades) is more or less the same, the characteristics of the final
products differ a lot in terms of mechanical and other properties. The dry

1



2 1. PAPERMAKING AND FORMING

mass per unit area, i.e. the ‘grammage’, of board is e.g. about 200-400 g/m?,
whereas that of tissue is only 14-25 g/m?. The different stages of the paper
production are in order:

e Stock preparation.
Dissolving the pulp, Refining, Adding additives, Screening.
e Forming.
Dilution, Deaeration, Ejection onto the forming fabrics, Dewater-
ing.
Wet pressing.
Drying.
Possibly calandering and/or coating.
Rolling.

The step referred to as ‘forming’, will now be discussed in further detail.

1.2. The forming section

The internal structure of the fibre network constituting the paper is to a dom-
inating extent determined in the forming zone of the paper machine. An ex-
ample of a modern design of this section is illustrated in figure 1.1. In the
remaining parts of the process only the structure in the thickness direction
(referred to as the ‘z-direction’, or ‘ZD’) can be influenced. Consequently,
the forming zone has a critical influence on many, but not all, of the impor-
tant properties of the final product. These include the grammage distribution,
called formation, and the strength of the paper. As a result, it is of paramount
importance to a papermaker to understand the forming part of the process.
This need is the underlying motivation for conducting the research presented
in this thesis.

The fibre mass concentration of the thick stock entering the forming section
is 3-4%. It is then diluted with water that has been drained at positions further
downstream in the forming process, called ‘white water’; to a concentration of
0.1-1% depending on which grade is being produced. This diluted suspension
passes several cleaning/screening devices that remove contaminants before it is
fed into a nozzle in the part of the machine referred to as the ‘headbox’. The
nozzle ejects the suspension upon permeable fabric(s), where the dewatering
will take place. The forming fabrics are by papermakers also referred to as
‘wires’. In the thesis, the two terms are used interchangeably.

The headbox plays an important role in the forming process. A schematic
illustration of its design is given in figure 1.2. The downstream end is a narrow
slit, typically about 10 mm high and 10 m wide. It is important to have an
uniform flow across the exit, and the upstream part of the headbox is there-
fore usually a tapered header, the purpose of which is to create an uniform
pressure across the machine width (the ‘cross direction’, or ‘CD’). Whatever
non-uniformities remain after the tapered header are further reduced by the
stepwise enlargement of the flow channels between the header and the noz-
zle. This part of the headbox is referred to as the ‘tube bank’. Finally, the
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FIGURE 1.1. Tlustration of a roll-blade twin wire forming sec-
tion (the Duoformer CFD forming unit by Voith).

suspension is accelerated to the required speed in the nozzle. Although the
concentration is usually low in the headbox, the fibres still have a tendency
to form clusters, called flocs, which will result in bad formation in the paper
sheet (i.e. uneven grammage distribution). The elongating flow in the nozzle
has a positive effect on the dispersion of the fibres, and helps to minimise this
problem. In addition, the acceleration dampens the relative turbulence levels
in the flow, which is necessary to obtain a jet of good quality, and velocity
non-uniformities in the CD are further reduced. However, a disadvantage of
the headbox is that the extensional flow causes anisotropy in the fibre orien-
tation. The fibres are aligned in the direction of flow (the ‘machine direction’,
or ‘MD’), which for some products has a negative effect on product quality.
Experimental studies of the flow in the headbox include the works by Chuang
(1982), Shands (1991) and Parsheh (2001). Among the numerical treatments,
one can mention those by Farrington (1991), Bandhakavi & Aidun (1999) and
Parsheh (2001).

The jet from the headbox impinges at a narrow angle on a forming fabric
moving at a speed of up to 30 m/s, depending on the capacity of the machine
and the grade that is being produced. As instabilities in the jet might impair
the homogeneity of the paper sheet (cf. the study on the hydrodynamics of
the liquid jet by Soderberg 1999), the distance travelled by the jet is kept
to a minimum, normally 10-20 cm. Often, a speed difference is intentionally
maintained between the jet and the fabric in order to favourably influence
the structure and properties of the sheet. When the jet hits the fabric, the
drainage starts. The water passes through the wire, while the fibres are left
on the surface, resulting in the build up of a fibre mat. In the rest of the
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FIGURE 1.2. A schematic illustration of a headbox and its
different parts: The tapered header, the tube bank and the
nozzle.

forming section, through the action of different dewatering devices (presented
in the following paragraphs), the drainage of the suspension continues till a
fibre network with an average concentration of about 4 % occupies the region
between the wires. Thereafter, a thickening process takes place during which
the concentration rises till a sheet of about 20 % fibre mass concentration has
been formed. After this the sheet is passed on to the press section.

The easiest way to achieve drainage is to move the wire horizontally and
let the pressure head, created by gravity, force the water in the suspension
through the fibre mat and the wire. An increased pressure difference across the
wire can be obtained by applying suction to the bottom side of the fabric. This
method, called Fourdrinier forming, was the one first used to produce paper in
a continuous process, and is still widely used, often in combination with other
techniques. The machine speeds obtainable in this way are however limited by
the instability of the free surface of the suspension residing on top of the wire.
To overcome this problem, twin-wire forming was introduced in the 1950’s and
is now the predominant choice when new machines are built. Overviews of the
history of forming and different machine designs have been given by Norman
(1989) and Malashenko & Karlsson (2000).

1.3. Twin-wire forming

The basic principle of twin-wire forming is that both sides of the suspension
are in contact with a wire at all times. This was not a new idea when practical
designs first appeared. However, early attempts had not been successful due to
the lack of insight that one must always (at any given position along the MD)
allow at least one of the wires to automatically adjust its lateral position as a
function of the current operating conditions. Drainage is achieved by deflecting
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the path of the fabrics, which are pre-stressed to a tension of about 5-10 kN
per metre width, thus creating a positive pressure difference between the region
enclosed by the wires and the surroundings. Compared to Fourdrinier forming,
twin-wire forming yields considerably higher dewatering rates. This is due to
the fibre mats building up on both of the wires simultaneously. In addition, the
flow resistance presented by the mat and wire on either side is significantly less
than that presented by a single wire and mat after the same amount of total
drainage. Another advantage is that carefully performed twin-wire forming
gives a paper whose two sides have a more equal structure than does Fourdrinier
forming.

1.3.1. Roll forming

During roll forming, the drainage pressure is achieved by wrapping the fabrics
over a cylindrical roll, as seen in figure 1.1. In early twin-wire formers, this was
the only means employed to achieve drainage. By using a roll with permeable
surface, two-sided dewatering can be obtained. Roll forming is a quite gentle
method in the sense that the pressure gradients in the MD are not as severe
as when blades are applied to the fabrics (cf. section 1.3.2). Further, the
amplitude of the dewatering pressure is somewhat lower, of the order 10 kPa,
than during blade forming. This yields a good retention of the fibres, the fibre
fragments (referred to as ‘fine material’) and the additives in the suspension,
which at higher pressure levels to a larger extent would follow the water through
the wires. However, as pressure gradients play an important role in breaking
up fibre flocs, their absence yields flocculation and a final paper with bad
formation. For studies of the pressure distributions and the drainage rates
during roll forming, the reader is referred to the works by Martinez (1998),
Zahrai et al. (1998), Dalpke et al. (2004) and Holm (2005).

1.3.2. Blade forming

An alternative technique to achieve drainage is blade dewatering. The wires
then follow an overall straight path, from which they are locally deflected by
ceramic blades that are applied across the CD. The principle of blade appli-
cation is illustrated in figure 1.3.c. In the figure, two wires pass a series of
three blades of which two are applied to the top fabric and one to the bottom
fabric. The deflection of the wires causes a pressure to be built up in the region
between them. The underlying mechanism is readily explained: Assume first
that the fabrics, and the suspension contained by them, move linearly past the
blades, on the verge of touching them but without actually doing so (figure
1.3.a). The pressure in the suspension will then be the same as outside of the
wires. If — hypothetically — the bottom blade could be used to push the lower
wire upwards without affecting the upper wire, a situation like the one in figure
1.3.b would occur (one could in this subfigure e.g. imagine the upper wire as a
permeable stiff wall). It is evident that the available cross section for the flow
of suspension has shrunk at the position of the middle blade. In order to adapt



6 1. PAPERMAKING AND FORMING

to this situation, the suspension must either pass through the wires, so that less
of it has to pass the middle blade, or it must push the upper fabric outwards
to create a larger cross section. In reality, both of these things happen simul-
taneously as illustrated in figure 1.3.c. The contraction experienced by the
flow results in a local increase of the pressure which, at the same time, forces
liquid through the fibre mats and the wires and displaces the opposing wire.
The fabrics, of course, resist displacement due to their tension. An interesting
question is why the suspension velocity does not increase at the blade, which
would also allow it to pass the narrow section. The answer is by no means
trivial. We give a tentative explanation by noting that if the wires are initially
parallel (as is the case if the pressure in the gap between the fabrics equals the
ambient pressure), the lower wire must at some point curve towards the upper
fabric. Since the fabrics are under tension, this implies that the pressure in
the gap at that position is higher than outside the fabrics. Consequently, the
velocity at that position is lower than far upstream of the blades, which means
that a deceleration takes place as opposed to the proposed acceleration.

a) cp
/ / / Wire

y

f‘ Suspension flow

——> MD

= = .
Blade Wire

i = =

FiGURE 1.3. The principle of blade dewatering. Note that
the proportions are not correctly reproduced. MD — Machine
Direction, CD — Cross Direction. The different figures a—c are
explained in section 1.3.2.

If expelled water adheres to the outer surface of the wires, it will remain till
it is removed by centrifugal effects, or it is deflected away by the next blade or
some other slicing device. This redirection, which is called ‘doctoring’, results
in a pressure build-up close to the tip of the blade. It will influence the pressure
difference across the wire and hence also the local drainage.

Figure 1.3 focuses on the situation in the region around the middle blade.
Naturally, the positions of the fabrics at the different blades are not independent
of each other. Moving the middle blade upwards will create restrictions on the
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flow at the upstream and the downstream blades as well, and, due to the
same mechanism as explained above, regions of locally high pressure will be
generated at these blades. However, the corresponding wire curvatures have
not been properly illustrated in the figure. Further, it is stressed that, unlike
in the figure, blade dewatering is a slender problem. The distance between the
wires is typically in the range 1-10 mm while the distance between the blades
is an order of magnitude larger. The extension of the blades in the MD is
normally 10-50 mm. All of this should also be put in relation to the width of
the machine in the CD, which on a large production unit can be up to 10 m.

When a volume of suspension travels past a series of blades, it will repeat-
edly be exposed to regions of high pressure resulting in dewatering. From the
point of view of the suspension volume, these regions will be experienced as
pulses in time, although they are a result of translation in the MD. This has
led to the use of the term ‘pressure pulse’ for the region of increased pressure in
connection with a blade. The pressure pulses are of a quite different nature than
the dewatering pressure achieved during roll forming. Measurements by e.g.
Zhao & Kerekes (1995) and Zahrai et al. (1997) have shown that the magnitude
of these pulses can be as high as 25 kPa or more, hence of significantly larger
magnitude than what has been reported for roll forming (although, during or-
dinary operational conditions, the amplitudes of the pulses are not necessarily
of such high values). Because of this, pure blade forming results in poor reten-
tion, since fibres, fine material and additives then have a high tendency to pass
through the fibre mat and the wire until the former has grown sufficiently thick.
In addition, the pressure pulses are generally quite localised, and will therefore
yield large pressure gradients in the MD. It is believed that this causes disrup-
tion of fibre flocs in the suspension, and that it explains the good formation
of the final paper sheet that can be obtained by using blades for dewatering
(Nordstrom 1995). The underlying mechanism is not yet properly understood.
One theory is that the elongational flow resulting from the pressure gradients in
the downstream region of a blade will stretch the flocs and possibly tear them
apart. The study by Bergstrom (2003) indicates that the rupture of flocs in
the forming section is due to a shearing mechanism. As a result of the drainage
flow, flocs get pinned to the fibre mat, after which they are exposed to the
velocity difference in the MD between the undrained suspension and the mat
residing on the fabric. If the relative velocity is of sufficient magnitude, the
floc can be torn apart. The behaviour of flocs experiencing pressure pulses has
also recently been studied by Akesson (2004).

In order to achieve a process with high retention in the forming section,
and an even grammage distribution in the final sheet, it is now common to
combine roll forming with blade forming (cf. e.g. figure 1.1). The idea is that
fibre mats should be built up on the wires during the roll forming in order
to generate sufficiently thick webs to prevent low retention in the subsequent
blade section. Only partial dewatering should take place over the roll though,
as the purpose of the following blade section is to break up fibre flocs in the
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remaining suspension. This would not be possible if the drainage has gone too
far.

Since the blades are not permeable, one might suspect that asymmetrical
drainage through the two fabrics has a detrimental effect on the quality of
the final paper. This is true to a certain extent, but if the blades are applied
alternately to the two wires, as in figure 1.3, a sheet with acceptable two-
sidedness is obtained.

According to Norman (1989) twin-wire blade formers were first developed
by Beloit and Black Clawson at the end of the 1960’s. At that time it was not
understood that the blades generated pressure pulses. In the Beloit Bel Baie
design the blades were not arranged in a straight configuration as is often done
today, but instead mounted so that they described a circular arc with the tips
lying on the circumference. The arc had a radius an order of magnitude larger
than that of a conventional forming roll. Indeed, the wires were wrapped over
the blades in order to mimic roll forming with a very large roll. The good
formation that was achieved was attributed to a dewatering pressure that was
thought to be of low amplitude and long duration, hence rather the opposite
of what is actually the case. Norman (1979) was the first to give a reasonably
accurate description of the physics of pulsating blade forming.

In the early designs incorporating deflection of the wires by blades, these
were mounted in fixed positions. Whenever blades were applied to both wires,
or blades were positioned on one side and other dewatering devices on the oppo-
site side, the process got very sensitive to changes in the operating conditions.
To understand this, one can e.g. look at the blade/counterblade arrangement
illustrated in figure 1.3. It is evident that no drainage pressure is generated in
the situation described by figure 1.3.a, where the blades are not acting on the
wires. However, if the operating conditions were changed so that the distance
between the incoming wires increased, while the blades remained in their posi-
tions, the blades would impose an obstruction to the flow and pressure pulses
would be generated as in figure 1.3.c. To reduce the sensitivity, adjustable
blades should be used, as suggested by Norman (1979). Baumann (1989) de-
scribed a forming section with fixed blades applied to one of the wires, and
flexible blades applied to the other side. These were pneumatically pushed
against the wire, and hence the forces by which the blades were applied could
be controlled. This has become standard practice.

1.3.3. Suction shoes

Drainage can also be achieved by lowering the pressure outside one of the wires
as compared to the pressure on the opposite side (usually the atmospheric pres-
sure). This is the design principle of the ‘suction shoes’ sometimes employed in
the forming zone. By creating a low pressure inside the shoe, water is sucked
out through the adjacent fibre mat and wire. To increase the control of the
process, the shoe is usually divided into several compartments (‘boxes’), with
the possibility to set different pressures in each one of them. An illustration
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of this is seen in figure 1.1. The upstream and downstream edges of the boxes
can generate pressure pulses in the same way as blades do.



CHAPTER 2
Modelling of multi-component blade formers

In this chapter, a review is made of previous research on blade forming, after
which the study reported in Paper 1 is discussed. Both Paper 1 and Paper 2
treat the modelling of multi-component forming sections. The latter is con-
cerned with the asymptotic behaviour (far upstream and downstream of the
blade section) of essentially the same equations that are solved in Paper 1.
It provides insight into nature of the mathematical description, but will not
receive any attention in the introductory survey given in the present chapter.

The main concern has been the pressure distributions in the forming sec-
tion. Being able to determine the variation of the drainage pressure along the
MD is vital, if predictions are later to be made regarding issues like dewatering
rates and structural changes in the fibre sheets.

2.1. Research on blade forming and suction shoes
2.1.1. Establishing the pressure pulses

Although pressure pulses were predicted by Norman (1979), it was not until the
work by Sims (1985) that experimental evidence (for a Beloit Bel Baie blade
former) was published. A trailing pressure transducer was inserted through the
headbox into the region between the wires, where an increased pressure was
detected at each blade. The same technique was also used by Brauns (1986).
The amplitudes of the pulses were found to increase when the wire speed or
the tension in the wire opposing the blades was increased. Amplitudes of up
to 7.5 kPa were detected for some operating conditions. Brauns’ work is also
interesting because it investigates the effect of applying suction in between the
blades. Yet another experimental study using a trailing pressure probe is the
one by Bando et al. (1994). This technique is one of few available to measure
the pressure during blade forming due to the difficulty in accessing the region
between the wires. It has a drawback in that the position of the probe in
the ZD can be neither controlled nor determined. It is also unclear to what
extent the presence of the probe influences the flow of suspension, and thus the
measured pressure, at narrow gap sizes.

Another technique consists of drilling pressure taps (i.e. ‘holes’) through
the blades, to which a measurement device is connected. For obvious reasons,
the pressure distribution can then only be obtained in the region covered by the
surface of the blade. Such studies have been undertaken by Zhao & Kerekes

10
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(1995) and Zahrai et al. (1997), and it was found that the pressure pulses can
be of as large magnitudes as 25 kPa.

2.1.2. Analytical results

Zhao & Kerekes (1995) performed the first rigorous theoretical analysis of blade
dewatering. A quasi one-dimensional model was developed for an isolated blade
of infinitesimal extension in the MD. The wires extend an infinite distance in
the upstream and downstream directions, and approach and leave the blade
parallel at prescribed angles. The problem was treated like that of an inviscid
fluid translating between thin, perfectly flexible, moving walls of constant per-
meability. No effects of fibre web build-up on the drainage resistance (due to
deposition of fibres onto the wires) were included. An important condition for
the validity of the model is that the characteristic length scale in the MD is
much larger than the distance between the wires. The equations were linearised
and solved analytically, yielding pressure pulses located upstream of the blade.
It was noted that certain parameter combinations yield oscillatory solutions in
this region. Downstream of the blade, the analysis gave zero pressure differ-
ence across the fabrics and, consequently, straight wires. A comparison with
experimental data showed good agreement.

Moch (1995) constructed a one-dimensional model for the flow around a
single thin blade, including a variable permeability of the wires in order to
simulate the effect of fibre mat build-up. The pressure pulses were found to
become of larger amplitude and to extend for a shorter distance in the upstream
direction than when no fibres were deposited (as would be the case if the
suspension was replaced by pure water). Zhao & Kerekes (1996) performed a
study of the influence of suspension concentration on the pressure pulses by
using the model developed earlier (Zhao & Kerekes 1995), inserting different
values for the constant drainage resistance. They also concluded that increased
resistance gave pulses of larger magnitude. An attempt was made to relate the
calculated integrated velocity difference between the suspension and the wires
with experimental measurements of the formation, and a weak correlation was
reported.

Zahrai & Bark (1995) presented a two-dimensional analysis of the appli-
cation of a thin blade. The combined wire/fibre mat structure was considered
to be inertialess and of negligible thickness, with constant permeability. The
suspension was modelled as an inviscid fluid. A regular perturbation analysis,
using the angle of deflection of the wires as the perturbation parameter, resulted
in a linear analytical solution. Upstream of the blade, they found only small
gradients in the ZD, and the solution agreed well with the one-dimensional
analysis by Zhao & Kerekes (1995). The main difference was that the one-
dimensional model predicted a slightly higher pressure amplitude. However,
downstream of the blade, the two-dimensional analysis yielded quite large gra-
dients in the ZD. Notably, there was a region close to the blade in the ZD, that
extended a short distance downstream of the point of application, where the
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pressure was lower than outside of the wires. This is due to the acceleration
of the flow around the corner formed by the wire when the thin blade is ap-
plied to it. In their study, Zahrai & Bark (1995) made no assumption about
the magnitude of the ratio between the length scales in the MD and the ZD.
As a consequence, they were able to include the bending stiffness of the wires
in their analysis. It was found that it had no influence outside a very small
region close to the (thin) blade. A more accurate criterion for the appearance
of oscillations in the dependent variables than that derived by Zhao & Kerekes
(1995) was given as well. Among the first two dimensional models of blade de-
watering should also be mentioned the study by Nigam & Bark (1997), where
potential flow theory was used to study blade dewatering with a single flat or
cylindrically curved blade. Linear analytical results were obtained through a
perturbation analysis.

2.1.3. Numerical results

Zahrai & Bark (1996) and Zahrai et al. (1997) developed a numerical method
for solving the non-linear equations describing the two-dimensional flow over a
blade of arbitrary shape. It was applied to a flat and to a triangular blade, and
the results were compared with experimental data obtained using blades with
pressure taps. Good and reasonable agreement was found for the triangular
and the flat blade, respectively. During the numerical simulations, the drainage
resistance was assumed to be constant.

Green & Kerekes (1996) numerically solved a one-dimensional non-linear
model for a single thin blade incorporating a variable permeability for the
wire/fibre mat. The same conclusions were drawn regarding the influence of
fibre mat build up as those made by Moch (1995). In the model, the wire/fibre
mat was attributed a constant mass per unit area, and it could be concluded
that the influence of fabric-inertia on the calculated variables was small. The
influence of wall shear stress was accounted for in a rudimentary way. By testing
viscosity values of different magnitudes, it was concluded that this parameter
had a negligible influence on the pressures calculated with their model. An
indication of the effects of doctoring of drained water was found by prescribing
a pressure distribution on the outside of the wire in contact with the blade. It
was concluded that, as a result, the amplitude of the pressure pulse increased.
Green et al. (1997) developed the model to deal with a blade of finite extension
in the MD. Like Zahrai & Bark (1996) and Zahrai et al. (1997) they observed
that, unless the blade is of short length, it produces two pressure pulses — one
that is associated with wrap of the wires around the front edge and one with
wrap around the back edge. The model was also used to study the effect of
blade wear (Green & Roshanzamir 1997).

Roshanzamir et al. (1998) performed viscous two-dimensional simulations
with a blade of finite extension in the MD. The wire/fibre mat was given a
finite but constant thickness, and a constant flow resistance. This was the first
treatment including viscosity in a rigorous way, albeit under the assumption
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that the suspension behaves like a Newtonian fluid. Hence, an estimate of
the shear in the suspension was obtained. The viscosity level did however
not influence the calculated pressures. Roshanzamir et al. (1999) extended
the model to include effects of doctoring of water drained upstream of the
blade. Although the pressure building up on the outside of the wire due to
the deflection of the approaching water was limited to a very short distance
upstream of the blade, it was found that it can significantly affect the amplitude
of the pressure pulse in between the wires, thus confirming what was indicated
by Green & Kerekes (1996). More or less the same study can also be found
in the reference Roshanzamir et al. (2001). The effect, on a blade pulse, of
adding an inertial term to the permeability law for the drainage fabric was
investigated by Roshanzamir et al. (20000). It was concluded that the influence
on the pressure distribution was small, as compared to applying a purely viscous
drainage law that results in the same amount of expelled water.

Green (1999, 2000) presented a one-dimensional model where suction was
applied in between two thin blades. Roshanzamir et al. (2000a) presented a
viscous 2D simulation of the same problem. Downstream of the first (upstream)
blade, the pressure in the gap between the fabrics was found to rapidly decrease
to a level half way between the pressure on the suction side and the pressure
outside the opposing wire. This corresponded to the pressure in the gap being
3-5 kPa lower than the ambient pressure, which in the simulations resulted
in an increased bending of the outer wire over the blades, and consequently
pressure pulses of larger amplitude than if no suction was applied. It is, how-
ever, unlikely that such a pressure difference over the wire opposing the suction
device could occur in a real forming section.

Although no time-dependent analyses of blade forming have been carried
out, such studies have been undertaken for roll forming by Turnbull et al. (1997)
and Chen et al. (1998).

2.2. Interaction effects

Previous work has given us insight into the physics of different devices employed
in blade forming. However, the focus has been on single components, e.g. a
single blade. As is obvious from figure 1.1, a blade forming section does not
consist of a single component. Instead, several blades are applied in series,
and often to both of the wires and in combination with one-sided suction.
The question naturally arises as to what extent the different devices interact
with each other. Previously, no models have been developed that clarify how
the configuration of the devices influences the process. Hence, the design of
forming sections, trouble-shooting, or tuning of the controllable parameters
after changes in the process, necessarily involves extensive use of trial and error
techniques. Especially when developing new designs, it would be advantageous
if theoretical analysis could replace some experimental work, at least in the
early stages. Since it is prohibitively expensive to disrupt the production in a
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mill, one must today resort to using pilot paper machines for trials. Although
less expensive, this is by no means a cheap solution.

2.2.1. A module based model of a forming section

In Paper 1, a model is presented by which blade forming sections of quite ar-
bitrary configurations can be studied (for a more lengthy treatment, see also
Holmgqvist 2002), in particular with respect to the drainage pressure distribu-
tion. The ambition during its development was to obtain a numerical tool that
is flexible enough to permit major alterations of the geometry, and a rather
free choice of operation parameters. This was achieved by defining funda-
mental building blocks, ‘modules’; from which the desired forming section is
constructed. Each such module represents a segment of the machine, consist-
ing of either two free fabrics (and, naturally, the suspension mixture contained
between them), or one free fabric and a blade, as illustrated in figure 2.1. Suc-
tion boxes are accounted for by specifying a low pressure on the back side of
the wire to which the device is applied, thus increasing the effective drainage
pressure. The modules are solved independently and matched to each other
iteratively. By keeping the interface between the modules simple, considerable
flexibility is achieved.

To obtain a tractable description of the process, certain simplifications had
to be made. It is assumed that the fibre mats residing on the wires are separated
by a region of suspension of high mobility, referred to as the ‘free suspension’,
or sometimes the ‘bulk’ of the suspension. The free suspension is supposed to
behave like an inviscid fluid, which is justified according to the scaling analysis
in Paper 3. Confer also the study by Roshanzamir et al. (1998), in which
Newtonian viscous stresses are found to have a small effect on the blade pulses.
It is reasonable to assume that blade forming is a slender problem, in the sense
that the characteristic distances, over which the dependent variables change,
are much longer in the MD than in the ZD. An analysis akin to the shallow
water wave theory (cf. e.g. Acheson 1990) then reveals that the pressure and
velocity of the suspension are only dependent on the position along the MD.

Each combination of fabric and fibre mat (henceforth in this chapter re-
ferred to as simply the ‘fabric’, or ‘wire’) is treated like a single entity, perfectly
flexible and of negligible mass and thickness. It follows that when the term ‘sus-
pension’ is employed in the remainder of this chapter, we are always referring
to the free suspension. The classical Euler-Bernoulli beam theory is employed
to model the tensioned fabrics, the flow through which is assumed governed by
the purely viscous Darcy’s law. A drainage resistance that increases linearly
with the accumulated quantity of water expelled at upstream stations accounts
in a rudimentary way for the build up of fibre mats on the wires. Where ap-
plicable, i.e. unless it yields unphysical solutions, the fabrics are assumed to
follow the surfaces of the blades. The drainage flow is set to zero at wire-blade
contacts.
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The resulting governing equations are similar to those employed by e.g.
Green & Kerekes (1996) and Green & Roshanzamir (1997) to model a single
blade applied to a pair of fabrics. Since the sole independent variable is the
position along the MD, the computational effort to solve each module is small.
It is further reduced by partly integrating the system analytically prior to the
numerical treatment.

To solve a module, a certain amount of information must be available. For
example, in the case of a module consisting of two free wires, that informa-
tion includes the position in the ZD of the fabrics at the inlet and outlet of
the module, the drainage resistances at the upstream end, and the pressure
and velocity of the suspension at the downstream end. Normally, only part of
the necessary information is available for each module. This is the origin of
the need to match the modules iteratively to each other. The unknown pa-
rameters are guessed, and the solutions for the different modules are updated
repeatedly till they fit together in a physically correct manner. The quality
of the solution after each iteration is quantitatively measured by ‘matching
criteria’, or ‘matching functions’, which express the requirement that certain
dependent variables are continuous across module boundaries (i.e. the position
of the wires, the velocity of the suspension, the pressure, and the drainage
resistances), as well as other conditions which must be fulfilled. A blade that
is to be applied with a certain force results in a condition on the slopes of the
fabric at the blade edges (stemming from a force balance in the ZD for the
blade). If curved blades are employed, it is not certain, and not required, that
the blades remain in contact with the wire along its full width in the MD. This
is handled by introducing the position in the MD of the interfaces between the
modules as unknowns, which are then determined by requiring that the fabric
is tangential to the blade at the point of contact. The matching functions are
defined in such a way that perfect compliance corresponds to a zero returned
value. The problem of determining the unknown parameters and, in the pro-
cess, the solution of the governing equations in the forming section, hence turns
into the problem of finding a root.

2.2.2. Three blades and a suction box

The procedure outlined in paragraph 2.2.1 is applied in Paper 1 to study a
small blade forming section consisting of three blades and a suction box, as
illustrated in figure 2.1. The suction device is located between the blades
furthest upstream and downstream (it covers the region .2 < x < x41), facing
the middle blade. The velocity of the fabrics is U, and the density and effective
viscosity of the suspension are denoted p and p., respectively. Both wires are
tensioned to T', and the initial resistance to drainage is Ry. If desired, these
last two parameters can be set different for each fabric. Far upstream, the wire
separation is hg. The blades are of width D, and the spacing between them,
defined as the distance between the trailing edge of one blade and the leading
edge of the next blade downstream (which is applied to the opposite fabric), is
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dp. The (constant) concentrations in the free suspension, and in the mat, are
¢s and ¢y, respectively, and the permeability of the webs/wires is assumed to
be of constant value k. The middle blade is applied by a force @) per unit width
of the machine. Since the blades are not necessarily flat, we let the functions
fu(@), gm(z) and fq(x) (which refer to the upstream, middle and downstream
blade, respectively) trace out the surfaces of the blades in the ZD. z is the
position in the MD. Note that g,,(z) is only known up to a constant, which is
determined from the force by which the blade is applied. The position of the
fabric in contact with the fixed blades is denoted f(z), whereas the position of
the opposite fabric is g(x). The drainage pressure, and the suspension velocity
in the machine direction, are p(z) and u(x), respectively.

‘ suction box ‘
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FIGURE 2.1. Schematic view across a blade forming section
consisting of three blades. The dashed lines indicate module
boundaries. The two ‘upper’ blades are fixed, whereas the
‘middle’ blade is adjustable in the ZD and is applied with a
prescribed force (). The suspension flows from left to right
between the wires. The external pressures p.1(z) and pes(x)
can be set to arbitrary values, hence permitting devices for
one-sided suction to be simulated, e.g. the box in the figure.
fo, go and f; denote known fabric positions upstream and
downstream of the blade section. p; and u; are the pressure
and velocity at the outlet of the considered domain. wi, ws
represent drainage flow, and Ryg, Rog are the initial drainage
resistances of the wires. Note that the relation between the di-
mensions in the z- and z-directions is not properly illustrated.
Confer the text for additional explanations of the notation.

2.2.3. Applying a suction pressure

In figure 2.2, the effect on the pressure distribution of applying one-sided suc-
tion is demonstrated. We first consider the case without suction, i.e. p, = 0.
Due to the close spacing of the blades, the generated pulses have partly merged.
Also, to achieve a wrap of the fabrics over the trailing edge of the third blade,
and thus mimic the effects of a fourth (loadable) blade, the third blade is given
a different position in the ZD than the outlet of the considered domain (cf.
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the caption of fig. 2.1 and 2.2). When the suction is applied, the pulses at the
middle blade are reduced. This is natural. In chapter 1, it was concluded that
the pressure pulses are a result of the need for the flow to adapt to the reduced
gap size when a blade is applied. Due to the suction, the drainage through the
fabric opposite the middle blade is enhanced. The large pressure drop across
the wire/mat also pulls that fabric into the suction box, which increases the
cross section available to the flow. As a result of these two factors combined,
the constriction created by the blade is less severe than without suction, which
explains the reduced amplitude of the pulse.

0.03

0.02 |

-0.01

FIGURE 2.2. The effect on the pressure distribution of one-
sided suction of magnitude p, in the forming section in fig.
2.1. () po =0, (---) p/(pU?) = —0.016. Tho/(pU*D?) =
0.18, Bds/dm = 0.103 where 3 = ph?/(pUDk), Q/T = 0.036.
o/D = 1. fo/ho = fi/ho =1, g0 =0, p1 =0, u1/U =1,
Roho/(pUD) = 0.194. fo(x)/ho = 1, fa(x)/ho = 0.78 and
gm(x) = constant, i.e. flat blades. The triangles indicate the
positions of blade edges. The upstream and downstream end of
the considered domain is located at, respectively, /D = —14.1
and 7.14.

Note also that the amplitude of the first pulse in figure 2.2 is significantly
increased when suction is applied, an effect resulting from a larger wrap of the
fabrics over the upstream blade. To a much smaller degree, the same occurs
at the downstream blade. An important feature of the suction profile in figure
2.2 is that the region in which the pressure is lower than the atmospheric
pressure, i.e. where p(x) < 0, is located above the middle blade. This prevents
backflow through the wire opposite the suction box, of either previously drained
water or air. The model is not capable of correctly handling such ‘reversed
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drainage’ (although a solution is obtained), a deficit it shares with all previously
developed models for blade sections and suction boxes. Since situations of this
kind can easily be envisaged, it can probably be regarded as the most serious
weakness of the model. If the middle blade had not been applied during the
suction, a pressure p(z) < 0 (i.e. lower than in the surroundings) would have
been predicted by the simulations in a large part of the region between the
upper blades. The fabric not in contact with the suction box would, due to
the higher ambient pressure, be ‘pushed’ towards the suction box. In a real
situation, there is no mechanism to maintain such a reversed pressure difference
between the surroundings and the suspension, and it is likely that the pressure
in the gap is never significantly lower than outside of the fabrics. Neither water
nor air flowing through the forming fabric from the outside would, through drag
forces, be able to give the fabric a curvature comparable to that of the wire
in contact with the suction box. Note that the latter is curved as a result of
a pressure drop generated almost exclusively over the fibre mat. This pressure
drop can be large due to the relatively low permeability of the mat. On the
other hand, during ‘reversed drainage’, the fibre mat cannot transmit large
forces to the fabric, and the forming fabric itself is designed to present little
resistance to liquid flow. Surface tension menisci in the pores between the
strands in the wire are also unlikely to be strong enough to prevent backflow,
and thus sustain a pressure difference of the required magnitude. These issues
are further discussed by Holmqvist (2002), as well as some ideas regarding ways
to improve the model to better handle situations where there are tendencies to
backflow.

2.2.4. Spacing between the blades

A good example of non-trivial interaction between pressure pulses is given in
figure 2.3, which contains the pressure distributions obtained in four simulations
where the blades are positioned successively closer together. No suction is
applied. Here, we have fo/ho = fu(x)/ho = fa(x)/ho = f1/ho = 1. Hence,
the fabrics are not wrapped over the trailing edge of the third blade, which
explains the absence of a pressure pulse at that position. In figure 2.3.c and
2.3.d, the pulses due to the upstream blade and the leading edge of the middle
blade are merging more and more. What is most interesting, however, is how
the pulses at the trailing edge of the middle blade and the leading egde of the
third blade are reduced when §, decreases, almost to the point of disappearing
for the smallest d,. These results cannot be deduced from studies of a single
blade applied to a pair of fabrics.

2.2.5. Blade curvature and pressure gradients

Although non-flat blades are normally not deliberately employed, curvature
can arise from wear of the blade surface. Such blades have previously been
studied by Green & Roshanzamir (1997). The pressure distributions in figure
2.4 correspond to blades with different (constant) radii of curvature, p. The
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FI1GURE 2.3. The influence of the blade spacing on the pres-
sure pulses. No suction. (a): §,/D = 34. (b): 6,/D = 1.8.
(c): &/D = 1. (d): 6/D = 0.36. Thq/(pU?D?) = 0.114,
Bés/dm = 0.103 where 8 = ph3/(pUDk), Q/T = 0.043.
fo/ho = fi/ho =1, g0 =0, p1 =0, us /U =1, Roho/(pUD) =
0.194. fu(x)/ho = fa(z)/ho = 1. Note the different scales in
the different subfigures.

circular blades are symmetric with respect to the ‘top’ of the blades. In the ZD,
the two upper blades are positioned so that their tops (this word is employed
even though the curved blade surfaces are pointing downwards) are at the same
level as the positions fo and fi, cf. figure 2.1. Like before, the position of the
middle blade is determined as a part of the solution.

The curvatures of the blades are small, in the sense that the top of the
blades only protrudes a small distance Ab with respect to the base of the blades
(see fig. 2.5). Roughly, we have that Ab/hg = D?/(8hop). If e.g. ho, D and
o are taken to be 2 mm, 14 mm and 0.6 m, respectively (yielding o/D = 42.9
like in the case of the dotted curve in fig. 2.4), we find that the surface of
the blade merely protrudes a distance equivalent to 2 % of the far upstream
gap size. Nevertheless, there is still an influence on the pressure distributions,
as revealed in figure 2.4. The amplitudes of the pulses are modestly affected.
The most important influence of the blade curvature is presumably observed
on the pressure gradients in the MD. It is recalled from chapter 1 that these
are believed to play an important role to the break-up of fibre flocs, which is
essentially the reason why blades are employed in the drainage process. An
important part of Paper 3 in this thesis is the insights it provides regarding
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FIGURE 2.4. The influence of blade curvature on the pressure
pulses. No suction. Circular blades with radius of curvature
0. (—): Flat blades. (- - -): o/D = 714. (---): o/D =
42.9. Tho/(pU%D?) = 0.147, Bds/dm = 0.103 where 3 =
go =0, p1 =0, u1 /U =1, Roho/(pUD) = 0.114. Confer the
text for the details regarding the blade positions in the ZD.
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FIGURE 2.5. The path of the lower wire, g(x), as it wraps the
middle circular blade (of curvature /D = 42.9) in the simu-
lation corresponding to the dotted curve in figure 2.4. Note
that only partial contact between the blade and the wire is
obtained on the downstream side of the blade.

the role played by the pressure gradients in the MD in the generation of shear
stresses in the fibre webs residing on the fabrics. The pressure gradients for the
cases in figure 2.4 are plotted in figure 7 of Paper 1. The observed tendency is
that curved blades reduce the gradients associated with the downstream part
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of the pressure pulses, but sometimes enhance gradients during the build-up of
the drainage pressure (see below). Once the connection between the pressure
distribution in the blade forming section and the formation in the final sheet
is better understood, blade curvature could perhaps be a means to obtain the
most advantageous forming conditions.

The pressure gradients were not commented upon by Green & Roshanzamir
(1997). Another effect revealed by the simulations of curved blades, and which
has not been previously reported, is the fact that the fabrics are not necessarily
in contact with the entire surface of the blades. Figure 2.5 illustrates the
situation in the region around the middle blade for the case o = 42.9 in figure
2.4. Actually, none of the curved blades in the simulations in that figure are
in complete contact with the fabrics. Partial contact on the upstream side of
some blades explains the above mentioned effects on the gradients in the MD
upstream of the maximum pulse pressure. In such situations, where the fabric
makes contact with the blade downstream of the leading edge, high pressures
are built up over a short distance in order to deflect the fabric so that it makes
contact with the blade tangential to its surface. Evidence of partial wire-blade
contacts is seen in figure 2.4 where the slopes of the pressure curves change
discontinuously at positions other than at blade edges.

It should be mentioned that no effects related to the wedge-shaped space
between the fabric and the blade surface, that is present at partial contact,
have been taken into account. It is possible that water drained at upstream
stations, adhering to the external surface of the fabrics, can be forced back in
through the fabrics as a result of such gaps on the upstream side of the blades.
Both when p = 71.4 and 42.9, partial contacts are observed on the upstream
side of the blades applied to the upper fabric.



CHAPTER 3
Drainage of flocculated suspensions

Using the model presented in the previous chapter, it is possible to predict
the pressure distributions in a variety of forming sections operating under dif-
ferent conditions. Although of simple nature, the model has been found to
yield pressures that are in fair agreement with more advanced studies of sin-
gle blades, as well as experimental measurements (cf. Paper 1 and Holmqvist
2002). However, it is currently not possible to fully benefit from our knowledge
of the pressure distributions, since so little is known about the details of the
coupling between these and their effects on fibre flocs and the fibre mats. Since
the fibre mats will become the final paper sheet, establishing such relationships
is extremely important. In Paper 3, 4 and 5, a tentative is made to deal with
this issue. Paper 3 treats the behaviour of a fibre mat subjected to a blade
pressure pulse, whereas in Paper 4 and 5, a model is presented for the consol-
idation of a flocculated suspension subjected to both normal loads and shear
loads. This chapter of the thesis is devoted to a review of these three papers.
It is worth noting that not only would realistic descriptions of the fibre mats
allow us to learn more from existing predictions of the drainage pressure under
various operational conditions. By combining the new models with previously
developed models for the forming process, e.g. in the form of more accurate
boundary conditions, they could in their turn improve the calculations of the
pressure distributions and the drainage rates.

3.1. Previous modelling work

In studies trying to predict the pressure distributions during forming, the resis-
tance to drainage presented by the fabrics and the fibre webs they support, is
commonly either considered to be constant (e.g. Zhao & Kerekes 1995; Zahrai
& Bark 1995; Zahrai et al. 1997; Roshanzamir et al. 1998) or is assumed to in-
crease at a rate proportional to the (superficial) drainage velocity, which is also
referred to as the drainage flux (e.g. Green & Kerekes 1996; Roshanzamir et al.
2000a). The first of these two alternatives is clearly simplistic. The second one
rests on the assumptions that the drainage resistance is proportional to the
amount of fibres in the mat, and that the increase of the quantity of fibres is
determined solely by the drainage flux and the concentration in the free suspen-
sion above the mat. Although somewhat more elaborate, it has nevertheless
been put forward in an ad hoc manner, without considering the reactions of the

22
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fibre network constituting the web when it is subjected to the drainage flow,
and how this in turn influences the macroscopic dewatering resistance.

The fibre sheet can be envisaged as a permeable and deformable solid struc-
ture, saturated with a liquid. The reaction to applied loads of such porous
media is a problem relevant to many applications. Traditionally, the behaviour
of such systems has been considered in situations where the load is applied
uniaxially. The first treatments are found in the field of soil mechanics (cf. the
classical textbook by Terzaghi 1943). Later, Shirato et al. (1970) and Adorjan
(1975) developed theories for the settling (i.e. sedimentation) of flocculated sus-
pensions. Note that the term ‘flocculation’ in general is employed to indicate
the presence of an interconnected network of particles, that through mechanical
contacts can transmit forces over distances considerably longer than the size of
the particles. Conceptually, one then deals with (large) regions of networked
material, rather than individual flocs as is sometimes the case in papermaking.
However, the fibre webs residing on the fabrics fall within the definition of a
‘flocculated suspension’, in the sense intended by most researchers outside the
paper industry. In their work, Shirato et al. and Adorjan attributed a con-
centration dependent strength to the network. When the loads transmitted to
the flocculated structure exceeds that strength, collapse of the network occurs,
under the expulsion of water, until the solid structure through hardening is
again capable of carrying the applied load. The internal friction between the
phases is accounted for by Darcy’s law.

Both Shirato et al. and Adorjdn assume that the network stress always
equals the yield limit, which is not evident a priori. A less restrictive assump-
tion is made by Buscall & White (1987) in their treatment of sedimentation of
flocculated suspensions. In order to describe the collapse process, the network
is equipped with a concentration dependent dynamic compressibility. This
constitutive function governs the rate at which the flocculated structure is
compressed. However, under the assumption that the work performed on the
suspension during the collapse is (mainly) dissipated in the pore liquid, and
not through breaking and/or reformation of the inter-particle bonds, a scaling
analysis reveals that the stresses in the network never significantly exceed the
yield-limit (Buscall & White 1987; Landman et al. 1988). The supposition re-
garding the dissipation mechanism amounts to the statement that the collapse
rate of the network is determined by the need to displace the water from in
between the particles, rather than by the need to displace the particles relative
each other. Howells et al. (1990) also employ the same concept to model set-
tling in suspensions, whereas Landman et al. (1991), Landman & Russel (1993)
and Landman et al. (1995) use it in the context of pressure filtration.

Within the field of papermaking, models of the same nature have been
developed for the forming of the webs on the wires. An exhaustive review of
the early works is made by Meyer (1971). These treatments differ from those
of e.g. Shirato et al. and Adorjan, only in that other constitutive relations are
used in order to account for the particular characteristics of pulp suspensions.
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However, it was not until the fairly recent study by Martinez (1998), that
a solution which accounts for the effects of mat compressibility was actually
calculated in the context of the forming process in paper machines. In that
work, the analysis by Landman et al. (1991) is adapted to roll forming, and the
drainage rates are calculated from measured pressure distributions. Reasonable
agreement is found with experimental data, the predictions were reportedly in
error of about 10 %. Martinez’ modelling assumptions result in an ordinary
differential equation for the concentration across the fibre mat. Boxer et al.
(2000) suggest that only a drainage pressure distribution that is constant in
the MD is consistent with the model, and provide an analytical solution of the
equations based on this supposition.

In an analysis similar to that by Martinez (1998), Zahrai et al. (1998) derive
an expression for the evolution of the thickness of the fibre mats along the MD
in a roll former. Assuming a constant drainage pressure, it is shown that the
governing equations permit a similarity solution for the concentration in the
mats. Although the solution is not calculated, the analysis reveals that the mat
thickness is proportional to the square root of the distance travelled in the MD.
This information was then employed to account for the drainage resistance of
the mats in simulations of the drainage pressure during roll forming, using a
model previously developed by Zahrai et al. (1997) for studies of blade forming.
The unknown proportionality constant in the expression for the thickness of
the mats was determined by calibrating the drainage rates to the data by
Martinez (1998) (a similar value for this constant was also deduced from the
uniaxial filtration data by Mantar et al. 1995). The predicted evolution of
the drainage pressure along the MD was in good agreement with the pressure
pulses employed by Martinez in his calculation of the corresponding drainage
rates.

Recently, Lobosco (2004) has presented a model for the drainage of a fibre
mat filling the available space between two forming fabrics, and the resulting
description is analogous to the problem of uniaxial piston driven consolidation.
The suspension is subjected to a series of pressure pulses, and large gradients
in the fibre concentration are observed in the ZD close to the wires. The con-
stitutive relation employed by Lobosco, connecting the local stress in the fibre
network to the local volume concentration of fibres, is interesting, since it ac-
counts for the hysteresis effects during loading and unloading of the flocculated
structure that have been observed in experiments (cf. e.g. Vomhoff & Schmidt
1997).

Normally, the inter-particle forces are assumed to be independent of the
rate at which the flocculated suspension is deformed. An exception is the
work on consolidation by Gustavsson (2003), aimed at sludge dewatering. She
supposes that the inter-particle forces manifest themselves both as a rate-
independent ‘particle pressure’’, and viscous shear stresses. The latter are

1Like the liquid phase pressure, this stress is isotropic.
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modelled after a Newtonian pattern, by attributing an effective viscosity, de-
pendent on the concentration and the shear-rate, to the particle phase. Another
characteristic of Gustavsson’s model worth pointing out is that it is not limited
to uniaxial situations.

It should also be mentioned that the consolidation models for liquid-particle
suspensions in general (although not always explicitly stated) comprise Terza-
ghi’s effective stress principle (cf. e.g. Terzaghi 1943). It implies that, at equilib-
rium, an external load applied to the flocculated suspension is balanced by the
sum of the interstitial pore pressure and the superficial average particle stress.
Its validity requires point-like contacts between the particles, and between the
particles and surrounding surfaces. This requirement is not necessarily fulfilled
in the case of pulp suspensions (Kataja et al. 1995).

3.2. Constitutive relations

Naturally, the applicability of the developed models for flocculated suspensions
requires certain constitutive relations to be determined for the system under
consideration. As examples, one can note that the strength of the flocculated
network must be related to some measure(s) defining the internal structure,
and that the forces resulting from relative motion between the liquid and the
solid phase must be related to the magnitude of the relative velocity and the
structure of the network. In the studies reported in this thesis, as in previous
investigations into filtration of flocculated suspensions, the network structure
is only taken into account through the volume concentration of the solid phase,
which clearly does not contain any information about directional dependencies.
This independence is obviously inherited by all quantities defined as functions
of the concentration, and the corresponding models are isotropic.

3.2.1. Internal friction forces and permeability

The relative motion between the liquid and the solid constituents in the suspen-
sion gives rise to the resistance to flow through the flocculated structure that
is observed at the macroscopic level. The modelling of these forces is normally
phenomenological, and based on the average velocities of the phases. In many
cases it is sufficient to assume that the inter-phase forces are proportional to
the relative velocity between the constituents (referred to as Darcy’s law), if
the proportionality factor is in turn taken to depend on the network structure.
Normally, it is supposed that the factor is set by the ‘permeability’ of the floc-
culated network (which is often taken to be a function of the volume fraction of
solids) and the viscosity of the liquid. The resulting model is acceptable when
the inter-phase forces are of purely viscous (frictional) nature. Occasionally,
also the inertia of the flow through the porous structure must be taken into
account. A popular way to achieve this is to add a term proportional to the
square of the relative velocity to Darcy’s law, and the total inter-phase forces
are then hence considered to be the sum of the viscous and the inertial contri-
butions. This approximation is referred to as Forchheimer’s relation. In this
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thesis, only the viscous part of the inter-phase forces is accounted for. In the
experimental study by Wildfong et al. (2000a), it is concluded that for dewa-
tering velocities of the same magnitudes as those encountered in commercial
papermachines, inertial effects make a significant contribution to the resistance
to drainage presented by the forming fabrics. However, no inertial effects are
conclusively seen to influence the solid-liquid forces inside the fibre sheets, and
it is these fibre webs that have been the concern of the work on drainage re-
ported in the thesis. It is worth noticing, that when a fibre mat and a wire are
considered as an ensemble, the main contribution to the dewatering resistance
presented by the two components is made by the fibre sheet. Further, there is
also an effect of fibres blocking the pores in the surface of the wire, and due
to this the total drainage resistance is larger than the sum of the resistances
presented by the fibre web and the forming fabric considered separately.

Due to its inseparable relation to the viscous resistance, the permeability
of porous materials has received a lot of attention. Frequently, power law re-
lationships have been employed to correlate experimental measurements of the
permeability to the volume fraction of solids, e.g. k(¢)/pe ~ a¢®, where k(¢),
le, &, a and b are, respectively, the permeability, the dynamic viscosity of the
liquid, the volume fraction of solids, and two fitting constants. Theoretical
models have also been developed, and many of the classical ones are still in use
(cf. e.g. Scheidegger 1957; Dullien 1992). In order to derive theoretical expres-
sions for the permeability, one can imagine the flow in the material to occur
either in a system of closed conduits, or around solid particles forming a spatial
array. In the simplest approach of the former kind, the interconnectivity of the
conduits is neglected. As a consequence, the resulting ‘capillaric’ permeability
models are inherently one-dimensional. Nevertheless, they are in widespread
use in engineering applications, especially the Kozeny-Carman model (cf. Dul-
lien 1992, p. 254), which has been successfully applied to granular materials.

Characteristic of most granular media, such as e.g. sand, is that the in-
dividual particles in many cases are essentially incompressible, and that the
corresponding porous structures have void fractions (or, alternatively, volume
fractions of solids) in a quite narrow range. Fibrous porous beds, on the other
hand, can form at significantly lower volume fractions of solids, and are in
general highly compressible?. Caution should therefore be exercised when ap-
plying a traditional permeability model to a fibrous medium. A survey of
experimental and theoretical works regarding the permeability of fibrous ma-
terials is undertaken by Jackson & James (1986). Ingmanson et al. (1959)
present a modification of the Kozeny-Carman theory that is applicable to fi-
brous mats subjected to drainage, when the fibres are randomly oriented in
the plane normal to the liquid flow. It accounts for the large variations of the

21t can be argued that the permeability concept is only relevant at sufficiently elevated con-
centrations, and therefore, especially when flocculated colloidal suspensions are considered,
researchers sometimes instead prefer to talk about a concentration dependent ‘hindered set-
tling factor’ (see e.g. Landman et al. 1988), which accounts for the hydrodynamic drag. In
practice, though, there is no difference.
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volume fraction of particles across the thickness of the mat, which results from
the different loads felt by different parts of the fibre network. At low concen-
trations, a simplified version of the permeability expression can be employed,
that is essentially a power-law of the same appearance as discussed previously
in this section, namely k(¢) = 1/(3.5¢®S2), where Sy is the specific surface of
the fibres. For fibres of known shape, this parameter can be calculated directly,
whereas for wood fibres it must be determined experimentally (under wet con-
ditions due to the swelling of the fibres when they are immersed in water).
Ingmanson et al. (1959) give the value 3.08-10° m~! for an unbeaten bleached
sulphite wood pulp, from which fibre fragments and other ‘fines’ had been re-
moved. The small particles are however important to the specific surface and
the drainage resistance of industrial pulps, as has been observed in studies by
Mantar et al. (1995), Wildfong et al. (2000a), Wildfong et al. (2000b) and Par-
adis et al. (2003). Values for the specific surface encountered in the literature
typically lie in the range 10° — 106 m~1!.

Koponen et al. (1998) calculate the permeability of fibre mats whose struc-
ture closely resembles those of paper sheets, by means of numerical simulations.
These are performed from ‘first principles’, and there are no adjustable param-
eters. Among the findings, it is seen that the modified Kozeny-Carman theory
by Ingmanson et al. yields permeabilities that are in good agreement with
the numerically obtained values, especially for volume fractions of solid less
than 0.1. In the study by Aaltosalmi et al. (2004), permeabilities determined
by the same numerical technique are compared to experimental values, and it
is found that the calculations accurately predict permeabilities in the direction
perpendicular to the fibre sheets, whereas experimental uncertainties prevents
conclusions for the in-plane direction.

3.2.2. Network strength

A number of experimental studies have been devoted to the investigation of
different properties of flocculated colloidal suspensions. Of particular concern
to the work reported in this thesis, is that finite yield-stresses are observed
during both normal compression and shearing of the suspension. Such results
are reported by Buscall et al. (1986) for polystyrene latex dispersions, by Bus-
call et al. (1987) in situations where the particles consist of polystyrene latex,
attapulgite clay and bentonite, and by Channell & Zukoski (1997) for aggre-
gated alumina suspensions. Power-law expressions have been found to give
reasonable fits to the experimental measurements. In the case of the alumina
suspensions, the power-law exponent is found to be almost the same for the
yield-limit in shear and in uniaxial compression. Normally, the yield-stress is
significantly lower in shear than in compression. As pointed out by Buscall
& White (1987), this is natural, since in shear a much larger fraction of the
inter-particle bonds are in a state of tension than during compaction, where
the majority of the bonds are in a state of compression.
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In addition to the yield-stress of the flocculated structure, the above ref-
erenced studies also consider other properties of the suspension, such as e.g.
elastic shear and bulk moduli. Recent developments of the techniques to mea-
sure yield-stress and permeability for flocculated suspensions as a function of
concentration are presented by, among others, Landman et al. (1999), Usher
et al. (2001) and Yeow & Leong (2001).

Although providing insights into the behaviour of flocculated suspensions
in general, there are certainly qualitative differences between colloidal systems
and flocculated fibre suspensions. The length of the wood fibres used to pro-
duce paper is typically at least two orders of magnitude larger than the size
of the particles in the colloidal suspensions mentioned above, and the diame-
ter of the fibres is one order of magnitude larger. The same can be said about
many industrially relevant synthetic fibres when compared to colloidal particles.
Partly due to the geometrical differences, the nature of the inter-particle forces
is different. Kerekes et al. (1985) defines four different mechanisms that gener-
ate forces acting at the particle contact points in a fibre suspension; colloidal
effects, mechanical surface linking, elastic fibre bending, and surface tension.
Presumably, forces due to surface linking and elastic bending are the most im-
portant to the strength of a fibre network. They are normally not present in
colloidal suspensions, at least not to the same extent as when the flocculated
structure consists of fibres. During papermaking, the effects of surface linking
are often enhanced due to the shredding and permanent deformations of the
fibres that sometimes occur during the preparation of the pulp.

For flocculated fibre suspensions, power laws have almost exclusively been
used to correlate empirical data of the strength (yield-limit) in uniaxial com-
pression to the concentration of fibres. Typically, steady-state experiments are
performed and an expression of the form o,(¢) = m¢™ is adopted, where o,
denotes the uniaxial yield limit and m and n are fitting constants. Nordén
& Kauppinen (1994) provide the values m = 5.0 - 105 Pa and n=2.6, whereas
Ingmanson et al. (1959) give m = 2.0-10° Pa and n=2.7. Naturally, the values
depend on the considered pulp. During repeated loading and unloading of fibre
webs, the network strength exhibits hysteresis. However, as shown by Vomhoff
& Schmidt (1997), both the loading and the unloading behaviour is consistent
with power law behaviour.

Similarly, measurements of the yield limit in shear is commonly fitted to a
function of the form 7, = r¢°, where 7, r and s are, respectively, the shear yield
stress, and two fitting parameters, the values of which depend on the suspension
under consideration. Experimental studies of 7, have been undertaken for pulp
suspensions by Gullichsen & Hérkonen (1981), Bennington et al. (1990), Swerin
et al. (1992) and Wikstrom & Rasmuson (1998). To give an idea of the network
strength, we mention that Bennington et al. found r and s for different pulps to
lie in the ranges 10° — 10% Pa and 2.72 — 3.56, respectively. A theoretical model
for the yield strength was also presented, based on the assumption that the
resistance to deformation of the network is a result of friction forces between
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elastically deformed fibres. According to the model, the yield strength should
be proportional to ¢3. This is consistent with the experimental data, but
the predicted dependence of the yield limit on the aspect ratio of the fibres,
and their elastic modulus, do not agree with the observations. From this,
Bennington et al. conclude that other mechanisms than fibre bending are also
relevant to the yield strength. Another model for the network strength, that
allows for a continuous fibre length distribution, is presented by Andersson et al.
(1999). Fibre suspensions containing substantial amounts of gas, in addition to
the liquid and the solid phase, have been considered by Bennington et al. (1995).
Again, power-laws of the type 7, = r¢® were seen to well describe the data.
Since the volume fraction of wet pulp fibres is difficult to measure, expressions
based on the mass fraction of fibres are suggested by both Bennington et al.
(1990) and Bennington et al. (1995). A review of older studies is made by
Kerekes et al. (1985).

3.3. Fibre mat behaviour during pressure pulses

Paper 3 considers the behaviour of the fibre mats in a twin-wire roll-blade
former, as they experience the pressure pulse generated by the first of the
blades. The forming section is illustrated in figure 3.1, and the resemblance
to figure 1.1 is evident. The fibre sheets residing on the fabrics are assumed
separated by a region of freely moving suspension. A scaling analysis reveals
that this separating layer of ‘free suspension’ (also referred to as the ‘bulk’
of the suspension) can be treated as an inviscid fluid. Since we are primarily
interested in the fibre mats, the role of the free suspension is merely to provide
boundary conditions on the pressure and the velocity in the MD, at the free
suspension side of the sheets. For this purpose, the solution by Zhao & Kerekes
(1995) for these quantities is adopted. All interaction between the fibre mats
and the bulk of the suspension is hence disregarded.

3.3.1. Compression transversal to the fabrics

Like in the treatment by Martinez (1998) of drainage during roll forming, a de-
scription of the compression behaviour in the direction transversal to the web
is obtained by adapting the analysis by Landman et al. (1991) to the situation
at hand. The influence of the shear-strength of the fibre network on the com-
paction process is neglected, and the inter-fibre forces are supposed to present
themselves merely as an isotropic stress, the ‘particle pressure’. In essence, a
uniaxial description of the drainage process is obtained, and with respect to
deformations perpendicular to the fabrics, the fibre sheets are modelled as a
plastic-rigid material exhibiting a concentration dependent yield stress. When
the yield limit is exceeded, the fibre network is compressed, resulting in an
increased number of fibre-fibre contacts, and a stronger network. This strain-
hardening proceeds till the network is again capable of balancing the load.

By taking care to avoid relaxation of the loads transmitted to the fibre
webs, we can assure that the fibre structure is always yielding, or on the verge
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FiGURE 3.1. The roll-blade twin-wire former treated in Pa-
per 3. Compare this figure to the ‘real’ forming section de-
picted in fig. 1.1.

of doing so, and consequently the yield limit function provides a direct re-
lation between the stresses in the network and the volume fraction of fibres.
This is crucial to the undertaken analysis. However, as a consequence, the
drainage pressure cannot be allowed to decrease. Highly compacted parts of
the mats would then be of such strength that locally the network behaves like
a stiff structure. By contemplating the forming section in 3.1, one realises that
normally the drainage pressure would decrease after the roll before it increases
again as the blade is approached. In order not to violate the modelling assump-
tions, it is therefore necessary to assume that the blade is located sufficiently
close to the roll that the drainage pressures generated by the two components
merge into a single pressure distribution, monotonically increasing in the MD.
No consideration is given to the possibility of interaction between the blade
and the roll. Instead, the roll is assumed to generate a pressure of constant
amplitude given a priori (a simplistic assumption, as shown by Holm 2005).
The blade pulse is calculated using the theory by Zhao & Kerekes (1995), but
only the part of the pulse where the magnitude of the pressure exceeds the roll
pressure is used. At upstream positions, the drainage pressure is set by the
roll. This also determines the location of the blade in the MD.

The resistance to drainage presented by the wires is neglected. As a re-
sult of the constant roll pressure, the variation of the concentration across the
thickness of the fibre mats formed by the roll is then self-similar (Zahrai et al.
1998). In Paper 3 it is found that the similarity solution is closely approxi-
mated by the solution to a related asymptotic drainage problem, which can
be solved analytically. Since the attention of the study is on the region of the
blade pulse, such asymptotic webs are assumed to reside on the wires at the
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position where the blade pulse first dominates over the roll pressure. Further,
since it is desirable that the region where the blade pulse dominates is of as
long reach as possible, the roll pressure was set to a fairly low value. At the
onset of the blade pulse, the fibre mats are hence probably less dense than they
would have been during normal operational conditions.

The evolution along the MD of the concentration across the mats were
calculated for different sets of parameters, and examples are given in figure 5
of Paper 3. On the free suspension side of the mats, the concentration equals
the gel value, at which an interconnected network first starts to form. Further
towards the wire, increasingly more load is transmitted to the particle network
through friction between the liquid and the fibres, and the maximum concen-
tration is hence found on the fabric side of the web. The variation between
the two extreme values is quite gradual, and there does not seem to be ten-
dencies to ‘clogging’, in which case a thin cake of high concentration and low
permeability forms at the fabric and acts as a lid, preventing efficient drainage.
However, the pressure in the bulk of the suspension is normally influenced by
the resistance to drainage presented by the fibre network, and if this coupling
is accounted for, the conclusion might be different.

3.3.2. Drainage resistance

Figure 3.2 presents the evolution along the MD of the drainage resistance and
the amount of fibres in the webs for two cases corresponding to pressure pulses
that differ significantly in terms of both reach and magnitude. In the caption
of the figure, references are made to the parts in Paper 3 where the details
concerning the simulations are presented.

In the right subfigure, it is seen that the fibre contents of the webs only
increase modestly during the pulses. This is readily explained by the compress-
ibility of the sheets. As a result of the drainage flow through the fibre networks,
the mats are compacted. By consequence, the suspension side surfaces of the
webs move towards the fabrics, leading to small velocity differences between
the mat surfaces and the drainage flow, and thus also to low fibre deposition
rates. Nevertheless, according to the left diagram in figure 3.2, the dewatering
resistance of the webs, defined as the ratio between the drainage pressure and
the drainage flux, increases to a much larger degree during the pressure pulses.
The explanation is the low permeability arising when parts of the networks be-
come highly compacted. Clearly, the increase of the dewatering resistance along
the MD is not adequately accounted for by assuming that it is proportional to
the quantity of fibres in the web. Neither is this amount directly controlled by
the drainage flow. The influence of structural changes in the fibre mats on the
resistance need to be taken into account. It should also be pointed out that the
model in Paper 3 neglects all effects stemming from fibre fragments and other
small particles plugging the pores in the fibre network. In the experimental
study of sheet forming by Wildfong et al. (2000b), the pore plugging by fine
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FIGURE 3.2. Left subfigure: The increase of the drainage re-
sistance, R(x), normalised with the initial value R(x). Right
subfigure: The increase of the quantity of fibres in the mat,
q(z), scaled with ¢(xg). xp is the position in the MD where
the blade pulse first dominates over the roll pressure, and the
simulations start. The position in the MD, z, is scaled with
the length of the pressure pulse, L,. = = 0 is the position
where the pulse attains maximum amplitude. A: simulation
A. O: simulation C. The pressure pulse is of longer reach and
higher amplitude in case C than in case A. Cf. tables 1 and 2
in Paper 3 for parameter values, and fig. 4 in the same paper
for the pressure pulses.

material in commercial pulps is observed to contribute more to the drainage
resistance than the reduced permeability caused by the compression.

3.3.3. Shear stresses

The fibre networks constituting the mats are exposed to shear stresses in the
plane of the sheet for two reasons. Firstly, the free suspension that is convected
towards the fabrics during the drainage needs to be accelerated to the local
velocities in the mat. Secondly, the pressure gradients in the MD act equally
on both the free suspension and the mat mixture, and shear stresses in the
webs prevent the mat suspension from being displaced relative the fabric to
the same extent as the bulk of the suspension.

Due to the neglect of the (rate-independent) shear-strength of the fibre
networks, the deformations in the plane of the webs resulting from the shear
loads are in Paper 3 governed by rate-dependent ‘viscous’ stresses in the fibre
sheets. Little is known about the viscous deformation behaviour of fibre mats
under the conditions encountered in twin-wire forming sections. In Paper 3, a
power law based on the empirical expression by Bennington & Kerekes (1996)
is used for the apparent viscosity of the suspension mixture as a function of
the fraction of fibres. Despite the fluid-like character of the mat mixture when
the shear strength of the network is disregarded, it was found that the larger
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FIGURE 3.3. The shear stress 75’ in the plane of the mat
next to the free suspension (y =H (x)), and next to the fabric
(y = 0), for the same cases as are presented in fig. 3.2. Top
subfigures: Case A. Bottom subfigures: Case C. p., U and
H(z) are, respectively, the viscosity of the liquid phase, the
wire speed and the thickness of the sheets at the onset of the
pressure pulse. The stress scale u.U/H (zg) equals 30 Pa. The
position x in the MD is scaled by the length of the pulse, L.
The solid lines are estimates based on the velocity profile in
the mat. The dashed lines are estimates based on the assump-
tion that the entire mat perfectly follows the wire during the
passage over the blade. Cf. Paper 3 for details.

parts of the fibre sheets (in the thickness direction) essentially follow the wires
during the passage over the blade, rather than take on the velocity of the bulk
of the suspension. As long as this general tendency remains true, predictions
of the shear stresses, particularly at the levels in the ZD close to the fabrics,
remain insensitive to the constitutive model for the stresses in the web.

Figure 3.3 provides estimates of the shear stresses in the plane of the sheets
for the same cases that are presented in figure 3.2. The solid lines are based on
the profiles in the ZD of the mixture velocity component parallel to the wires.
The dashed lines are based on the assumption that the entire mats perfectly
follow the wires during the passage over the blade. The reader is referred to
Paper 3 for the details regarding the simulations. Due to reasons also explained
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in that paper, the solid curves should be looked upon with caution far upstream
of the blade (i.e. at low values of z/L,). Where the dashed and the solid lines
approach each other, and downstream of that region, the estimates represented
by the solid curves should be reasonable. The pressure scale u.U/H(xg) is
30 Pa, where p., U and H(zo) are, respectively, the viscosity of the liquid
phase, the wire speed and the thickness of the sheets at the onset of the pressure
pulse. Consequently, the maximum shear stress at the free suspension side of
the mats is —0.59 Pa and —2.2 Pa in simulation A and C, respectively. At the
fabric side of the mats, the maximum values (neglecting the upstream part)
are several hundred times larger, —0.34 kPa and —0.54 kPa in simulation A
and C, respectively.

Of the two mechanisms causing these shear stresses, the one related to
the pressure gradients in the MD is by far the most important. Had it not
been present, the same shear stresses would have been predicted at the fabric
surfaces as those given by the dashed curves for the suspension side of the mats.
It is recalled that only the region upstream of the position corresponding to
the peak of the blade pulse is treated. The gradients in the region downstream
of that position are significantly larger than in the considered domain, and it
is thus possible that the mats are subjected to even larger stresses (of opposite
sign) in that region.

Even if the predictions of the shear stresses are insensitive to the choice
of constitutive model, the magnitude of the displacements is not. Due to the
impact of sheet deformations on the characteristics of the final product, and
given the large shear stresses caused by the pressure gradients in the blade
forming section, models need to be developed that accurately incorporates the
shear strength of the fibre network.

3.4. Sheared consolidation of flocculated suspensions

Paper 4 and Paper 5 in this thesis present a model for the drainage of flocculated
suspensions in which the previously neglected shear-strength of the particle
network is included. Although the thesis is concerned with papermaking, the
provisional nature of many aspects of the model makes it general, and the
basic ideas should be applicable to many liquid—solid systems exhibiting finite
resistance to shear deformations. Essentially, it is a generalisation of the yield-
stress models previously employed in uniaxial descriptions of consolidation.

3.4.1. Outline of a constitutive model

In traditional studies of consolidation, it is supposed that the load transmitted
to the suspension is oriented in a single direction during the whole process.
As a result, it suffices to express the stresses in the particle network with one
scalar measure, the particle ‘pressure’® pgy. In a more general situation, this
is not adequate. It is reasonable to expect that if a shear load and a normal

3In a real situation, the network stress counteracting the external load will be composed of
contributions from both the isotropic particle pressure, and deviatoric stresses. However, in
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load is simultaneously applied to a suspension (as is the case in e.g. fig. 3.5),
the course of events will be different than if merely a normal load is employed.
The shear stress should result in additional strains on the inter-particle bonds,
and decrease the capacity of the network to resist the normal load. In order to
account for such effects, we introduce a scalar measure gq of the shear stresses
(i.e. the ‘deviatoric’ stresses), the precise definition* of which is given in Paper 4.
Here, as an explanation and a motivation, we content ourselves by saying that
for a purely elastic material®, p; would determine the stored elastic energy
due to volumetric deformations, whereas gq would determine the elastic energy
stemming from isochoric shape changes. By means of a function F(pq4, g4, @), we
then introduce a criterion that determines when the network is loaded to such
an extent that it yields. If the stresses generated in the flocculated structure
are such that F(pg,qq,®) < 0, the network can resist the transmitted loads
without deforming. On the other hand, if F(pg,qq,¢) = 0, the network will
deform permanently (or ‘plastically’). The relation F(pg,qq,¢) = 0 defines
a ‘yield-surface’ in the (pg, gq)-plane that replaces the one-dimensional yield
criterion f(pg4,®) = 0 employed in the uniaxial studies. The dependence of the
yield criterion on the volume fraction of solids, ¢, assures that the strength
of the flocculated structure is set by the concentration of particles. It is also
important to realise that each material point in the network is equipped with
its one yield-surface. Since ¢ often depends on the spatial position, so does the
yield limit. In Paper 4 and 5, a yield-surface is employed that was originally
proposed by Roscoe & Burland (1968) in the field of soil mechanics. It is
illustrated in figure 3.4.

Under no circumstances is it possible that F(pg,qq,$) > 0. If the loads
are such that the flocculated structure is compressed, the local concentration of
fibres will increase, and also the number of inter-particle bonds. The magnitude
of the inter-particle forces may also change as a result of the compression.
Presumably they grow stronger due to e.g. higher normal forces at the contact
points between the particles. The net effect is that the network grows stronger.
In the constitutive model, this strain-hardening means that the size of the yield-
surface increases in such a way that F(pg, g4, ¢) = 0 is fulfilled throughout the
deformation process. In other words, the stress state, measured by (p4,qa),
remains on the yield-surface when the network is deformed. To facilitate the
analysis, it is in Paper 4 and 5 assumed that the criterion F(pg, qq,¢) = 0 is
always satisfied. Hence, it is not necessary to deal with stress states located
inside the yield-surface. However, the prize that must be paid is that the loads
transmitted to the flocculated structure needs to be of such magnitude that the
material is always yielding, or on the verge of doing so. For the model problem
considered in Paper 4 and 5, this is not a severe restriction.

uniaxial experiments, it is impossible to distinguish between the two contributions, and they
may therefore equally well be lumped together in the particle pressure.

4Essentially, qq is the von Mises efffective stress, well known from classical plasticity theory.
5The reader should note that our model does not comprise elastic behaviour.
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FIGURE 3.4. The yield-surface employed in Paper 4 and 5.
pq is the isotropic particle pressure, ¢q; the scalar measure of
the deviatoric inter-particle stresses. The surface is an ellipse,
centred at (p0(¢)/2, O), and with a major and minor axis of
length po(¢), and Mpo(¢), respectively. Note how the size of
the yield-surface depends on the volume fraction of the solid
phase, ¢. The shape factor M is constant. The axes can also
be associated with the volumetric deformation rate ¢, and the
shear rate é,. € = (€,,€,) denotes a general deformation rate.
Compression corresponds to &, > 0.

By way of the yield criterion F(pg, g4, ¢) = 0, we have defined which stress
states result in deformations of the flocculated structure. However, we must
also specify the direction of the deformations. The word ‘direction’ is here
employed in a wide sense, since what is actually required is that the relative
size of the different strain-rate components is determined®. In Paper 4 and 5,
an associated flow rule is adopted. We shall here refrain from discussing in
detail what this means. However, it is instructive to relate the consequences of
the assumption to the yield-surface in figure 3.4. According to the associated
flow rule, the py-direction in that figure also represents volumetric deformation
rates €, (compression corresponds to £, > 0). In the same way, the gq-axis
represents the shear rate measure” €q. A general deformation rate, represented
by the vector & = (¢p,€,), contains both types of deformations. When yielding
occurs, the adopted flow rule implies that the deformation rates are such that
the vector € is directed along the outward pointing normal to the yield-surface
at the position (p4, gq)-

Having said this, some general conclusions can be drawn by considering
figure 3.4. In the presence of a finite ‘shear load’ ¢4, the resistance of the solid
structure to an isotropic load py is smaller than when g4 = 0. In the latter
case, deformations occur when pg = pg(¢), and we hence identify the function

6The absolute magnitude of the strain-rates cannot be obtained without considering the
inter-play between different mechanisms as expressed by the momentum balances for the
liquid and the solid phase.

"The rate of strain at some point in a material is defined by the rate of strain tensor, which
have six independent components. The deformation rates €, and €4 are scalar measures of
the combined effects of the strain-rates, just like py and g4 are measures of the stress state.
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po(@) as the isotropic load yield limit. If pg < po(@)/2, and ¢4 is augmented
progressively till the network starts to deform, an expansion will take place (i.e.
€p < 0). According to the reasoning earlier in this section of the thesis, the
volume fraction of particles will then decrease and the solid structure becomes
weaker. This behaviour might be realistic for some systems, such as saturated
granular materials. Whether it is also a reasonable scenario in the case of
flocculated fibre suspensions is not considered here. In this thesis, we are only
concerned with non-expanding cases, i.e. pg > po(¢)/2. Shear deformations
without volumetric deformation can only take place when pg = po(¢)/2. This
condition is referred to as the ‘critical state’. It is clear from figure 3.4 that
the associated flow rule then does not provide any information regarding the
magnitude of the shear rates. When ¢, = 0, any value of &, results in a
deformation rate vector & = (é,, €,) normal to the yield-surface.

This situation of undetermined shear rates at the critical stress state is
explicable. Under ordinary conditions (corresponding to compression of the
network) the loads transmitted to the particle structure are balanced through
the strain-hardening mechanism. However, at the critical state, due to the
vanishing volumetric deformations, this mechanism is not active. If the model
is not to fail in such situations, some other type of stresses than the inter-
particle forces hitherto discussed must be present. According to e.g. the study
referenced in the next paragraph, it is reasonable to suppose that these stresses
are of viscous (rate-dependent) nature.

It is here appropriate to make a comment on the experimental study of
flocculated alumina suspensions by Channell & Zukoski (1997). They mea-
sured the shear load required to maintain a certain strain rate in a situation of
continuous shear. As discussed in Paper 4 and 5, in such situations all parts
of a flocculated network obeying the constitutive model outlined above will
eventually reach the critical state. If the assumed viscous stresses that then
control the shear deformations are small compared to the rate-independent
shear stress measure gg = Mpgy(¢)/2, an experimentalist might conclude that
the shear load which have to be applied to the suspension in order to obtain
the desired shear rate, is independent of that shear rate. This is indeed what
Channell & Zukoski observed for low shear rates (less than about 1 s™!) at
concentrations above the volume fraction at which an interconnected network
first starts to form. At higher shear rates, however, the required load increased
rapidly, clearly indicating the presence of rate-dependent stresses.

In Paper 4, rate-independent inter-particle stresses of the kind discussed
in this section are included in the momentum balance for the particle phase
in a two-fluid description of a flocculated suspension. All inertial effects are
neglected. To avoid indeterminate shear rates at critical stress states, the model
is in Paper 5 extended to incorporate also viscous stresses. These are attributed
to the solid phase, and are modelled after a Newtonian pattern.
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FiGure 3.5. The drainage problem considered in Paper 4
and 5. A flocculated suspension is trapped between two in-
finite flat plates, one which is impermeable to both phases
(the ‘piston’), and one which is permeable to the liquid phase
only (the ‘filter’). The piston is employed to apply a vertical
and horizontal time dependent load to the suspension (X, ()
and X (t), respectively), either directly or by specifying the
corresponding velocity components U, (t) and Uy (t). The gap
size is denoted H (t).

3.4.2. Sheared piston driven consolidation

The theory for the shear strength of flocculated mixtures is in Paper 4 and 5 ap-
plied to the sheared consolidation problem depicted in figure 3.5. A flocculated
suspension is trapped between two parallel flat plates of infinite extension. The
upper plate, referred to as the ‘piston’, is movable and impermeable to both
phases. The lower plate is fixed and functions as a filter that is impermeable
only to the particle phase, and perfectly permeable to the liquid phase. All
effects from particles blocking the pore openings on the filter surface are ne-
glected. The velocities of both phases are assumed to obey no slip conditions
at the plates. The vertical and horizontal load by which the piston is applied
to the suspension is denoted X, (¢t) and X (t), respectively. The correspond-
ing velocity components of the piston are U, (t) and Uy(t), respectively. The
deformations are restricted to the zy-plane of figure 3.5.

It is apparent that the model problem is a somewhat generalised version of
the much studied case of uniaxial pressure filtration. Due to this, the role played
by the deviatoric rate-independent stresses resulting from inter-particle forces
is elucidated, and comparisons with previous studies are straightforward. It is
found that the evolution of the concentration in the gap between the piston and
the filter qualitatively follows the same advection—diffusion type of behaviour
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FIGURE 3.6. The evolution of the gap H(t) as a function of
time. X,(t) and U,(t) are constant. Uy = X,/ (S5uc.H(0)).
M = 0.287. po(¢) = 09¢™, where n = 2.5 and o¢/%, = 500.
Dashed lines: Purely plastic calculations. <¢: U, = 0. A:
Uy /Uy = 324. o: U,/Uy = 162. O: U,/Uy = 324. Solid
line: Visco-plastic calculation, Uy /Uy = 3240, A = 5.6 - 1073,
where A = (,uc/ud)/(SOH(O))Q. The horizontal line H = H,
corresponds to the asymptotic gap size. Cf. Paper 5 for the
details.

that is observed in uniaxial studies. Nevertheless, there are quantitative differ-
ences between the sheared compression and its uniaxial counterpart. Applying
a shear-load in addition to the transversal load is predicted to increase the rate
of the compression. Due to the higher strains on the inter-particle bonds when
a shear load is applied, the capacity of the network to resist the transversal
load decreases. As a result, more of the external load is transmitted to the
pore liquid than in the corresponding uniaxial case. The higher pore pressure
makes the expulsion of liquid more efficient.

The evolution of the gap size H(t) between the plates as a function of time
is given for several different simulations in figure 3.6. In the ones referred to as
‘purely plastic’, only the rate-independent inter-particle stresses are included.
In the ‘visco-plastic’ case, also rate-dependent stresses are incorporated in the
description of the particle phase. These viscous stresses are of Newtonian type,
and a constant apparent dynamic viscosity ug has been attributed to the solid
phase. The vertical piston load %, (¢) and the horizontal piston velocity Up,(¢)
are held constant. The evolution of the horizontal load Xy (¢) is given in figure
3.7 for the different cases. The results in figures 3.6 and 3.7 are presented
in scaled forms. The velocity scale Uy is X,/ (S3ucH(0)), where p. and Sy
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FIGURE 3.7. Comparison of the shear loads ¥j,(¢) for the same
cases as in fig. 3.6. Cf. the caption of that figure for an expla-
nation of the different line-types. For the case corresponding
to Up = 0, we have Y, = 0. The horizontal line ¥, = Y, cor-
responds to the asymptotic load in the purely plastic simula-
tions.

are the dynamic viscosity of the liquid phase and the specific surface of the
particles, respectively. In Paper 4 it is found that this is a suitable scale for
the vertical velocity components after sufficiently long time. It is not really
adequate for the horizontal components, which explains the large values of the
horizontal velocities. The magnitude of the viscous stresses compared to the
rate-independent stresses is expressed by the parameter A, which is defined in
the caption of figure 3.6. As a reference, figure 3.6 also contains the evolution of
the gap size H(t) in a situation of uniaxial consolidation with the same vertical
load ¥,. For the details regarding the simulations, the reader is referred to
Paper 5.

In figure 3.6 it is seen how the rate of the consolidation process is increased
when the piston is given higher horizontal velocities Up. This trend is seen
both in the purely plastic and the visco-plastic simulations. Larger velocities
Uy, correspond to higher shear loads, as can be deduced from fig. 3.7. Eventu-
ally, the drainage of liquid ceases, and the volumetric deformations vanish, i.e.
ép, = 0. However, the shearing motion of the piston continues, and all parts of
the network are therefore at critical state. When the dewatering ceases, the
load %, is at all levels balanced solely by the rate-independent stresses in the
particle network®. This, together with the information that the solid phase is
at critical state, permits us to conclude that the concentration is homogeneous

8In the absence of vertical deformations, there are no viscous normal stresses, wherefore this
is true also for the visco-plastic model.
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FIGURE 3.8. Velocity profiles for the solid phase in the gap
between the plates at the instances tUy/H(0)/1072 = 0.075,
0.15, 0.3, 0.6, 1.2, 2.4, 4.8, 9.6, 19.2, 50. The co-ordinate y
is the vertical position. The piston and the filter are located
at y = H(t) and y = 0, respectively. Left subfigure: hori-
zontal velocity component u?(y,t). For the solid curves, time
increases with distance from the abscissa, whereas the oppo-
site is true for the dashed curves (which correspond to the last
three times). Right subfigure: vertical velocity component
u¥(y,t). Time increases from left to right. Both subfigures:
The vertical load ¥, is constant and the horizontal piston ve-
locity Uy /Uy = 324. The simulation corresponds to the case
O in fig. 3.6 and 3.7.

in the region between the plates. Further, since ¥, is the same in all simu-
lations, so is the asymptotic concentration and also the asymptotic gap size
H(t — o0) = Hy, as seen in figure 3.6. For the uniaxial case, the asymptotic
plate separation is larger (and the concentration of particles is lower) than for
the sheared cases, since the flocculated structure then does not have to balance
the shear load in addition to the transversal load X,,.

In the case of the purely plastic model, the applied horizontal shear load is
necessarily balanced by the rate-independent stresses alone. As the asymptotic
concentration is given by the vertical load X,,, which is the same in all situations,
the fact that the network is at critical state then leads us to conclude that the
asymptotic shear stress Yo, = 3, (t — 00) is the same regardless of the value
of Uy,. Consequently, the asymptotic piston load (3, ¥) does not determine
the shear rates in the gap between the plates. The conclusion must be that
the shear rate profile is dependent on the load-history when the purely plastic
model is employed. Incorporating even small viscous stresses eliminates this
artefact, and one then finds that the piston load ¥, uniquely defines the plate
velocity Uy, and vice versa (given a certain vertical load X,).
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Figure 3.8 contains the horizontal and vertical velocity profiles for the
solid phase in the purely plastic simulation for which U /Uy = 324. Note that
the time interval between two consecutive profiles increases as time proceeds.
Initially, there are no velocity gradients in the region next to the piston. The
upper part of the network thus translates like a stiff cake. Close to the filter,
however, the deformation rates are high. With time, the deformations spread to
the entire region between the plates. Progressively, the compression ceases and
the horizontal velocity approaches an asymptotic profile. In the purely plastic
simulations, due to the dependence of the asymptotic shear rate on the load
history, we can only speculate about the exact form of the limit profile. As soon
as viscous stresses are present, however, the situation is different. An apparent
viscosity dependent on the volume fraction of solids then always results in a
linear asymptotic velocity profile.

3.4.3. The model problem vs. a real forming section

The model illustrated in figure 3.5 is in several respects not representable of
the conditions encountered in the forming section of a papermachine. First of
all, as is concluded in Paper 3, gradients in the MD are certainly not negligible.
However, the modelling assumptions made in Papers 4 and 5 remove all such
effects. Secondly, the piston does not have any real counterpart in a twin-
wire forming section. In a uniaxial study, we could argue that the piston
represents a surface at which the relative velocity between the fibres and the
liquid vanish, and that such a surface (in an ideal situation) is found at the
symmetry plane between the two forming fabrics. Nevertheless, the ambition
is to study filtration in the presence of shear loads. The analogy between the
piston driven filtration and the twin-wire forming section then fails since the
symmetry plane implies vanishing shear stresses, which is clearly not the case
at the piston.

In an appendix to Paper 5, the constitutive theory developed for the
sheared consolidation is employed to derive an asymptotic solution for the
concentration in a mat of flocculated suspension, that is on one side bounded
by clear fluid and on the other by a permeable solid surface, subjected to a
combination of drainage flow and cross flow of pure liquid. This alternative
consolidation problem resembles the filtration process at the early stages of the
forming of a paper sheet.



CHAPTER 4
Concluding remarks

A tool has been developed for predicting the pressure distributions in multi-
component twin-wire blade forming sections. It has been employed to study
the effects on the pressure distribution from the interaction between the pulses
generated by different blades, and between blades and devices for one-sided
suction.

However, a lot of work remains before it is possible to quantitatively link
the pressure distributions to the effects on the final paper sheet. In the thesis,
some steps have been taken in that direction. It should be noted, that in
the presented models it is tacitly assumed that it is meaningful to describe the
fibre phase as a continuum. Due to the small thickness of the fibre sheets in the
forming section, the appropriateness of this approach should be contemplated
when considering the results. It is nevertheless motivated by the relative ease
by which continuum models can be developed.

The study of the behaviour of a fibre mat as it experiences a blade pres-
sure pulse illustrates how the knowledge of the pressure distributions could be
employed to analyse the effects on the fibre webs of the drainage process in the
forming section. In that particular study, there is no interaction between the
calculation of the drainage pressure and the reactions of the fibre mat, but it
could easily be envisaged.

It was found that the fibre mats are subjected to significant shear stresses
as a result of the pressure gradients in the machine direction. This observation
emphasizes the need to develop models for the drainage process that accurately
incorporate the shear strength of the fibre network. Unless such become avail-
able, the relative displacements during the forming process of fibres (or flocs)
in the plane of the sheet will not be possible to analyse theoretically. A ten-
tative model of that kind has been developed, by merging a plasticity theory
for the quasi-static yielding of soil with a two-fluid model for the flocculated
suspension. It will need further improvements before it can be considered to
describe a flocculated fibre network with any degree of accuracy. However, it
is hopefully possible to continue to draw upon the theories developed in the
field of solid mechanics in order to model effects arising from e.g. structural
anisotropy.

For the time being, the most serious obstacle to further development of
the model is that too little is known, even qualitatively, about the behaviour of
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fibre networks under conditions like the ones prevailing in the forming section
of papermachines. Naturally, this makes it difficult to decide in which way the
modelling work should proceed, not to mention the determination of values
for various parameters in the model. The latter problem will become even
more pronounced if the model grows in complexity. A possible extension of
the theoretical work, which could yield interesting results already within the
existing framework, is to account for the presence of fine material in the fibre
suspension. It would both be valuable to predict how the fine material is
distributed across the thickness of the sheet, and to consider its influence on
the drainage flow through the webs.
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The internal structure of the fibre network constituting a paper is to a dom-
inating extent determined in the forming zone of the paper machine. In this
article we present a method for modelling the pressure distributions in blade
forming sections, which is commonly considered to be a key quantity of the
process. The ambition is to obtain a tool by which the interaction between the
different components of blade sections can be studied. It is achieved by defining
modules out of which arbitrary sections can be constructed. The modules are
solved independently and matched to each other iteratively. Keeping the inter-
face between the modules simple provides great flexibility in the modelling. By
virtue of a slenderness assumption, the equations governing each module can be
reduced to one-dimensional form, hence limiting the computational work and
permitting systems of many components to be studied. Dimensionless numbers
defining the problem are identified, and the magnitude of the nonlinear effects
are estimated. Simulations are presented that illustrate the potential of the
method.

1. Introduction

In the forming section of paper machines, a dilute suspension of fibres and
water is ejected into the gap between two moving tensioned permeable fabrics
that bound and guide the suspension. In a blade former, drainage through the
fabrics, which are usually referred to as wires, is achieved by applying ceramic
blades to the fabrics across the width of the machine; see Figure 1. The local
deflection of the wires implies a constriction for the flow of suspension. The
result is a local increase in the suspension pressure, which attempts to increase
the distance between the wires and simultaneously yields drainage of the water
through the fabrics, hence allowing the suspension to pass the obstacle. Dur-
ing the dewatering, fibres are deposited on the wires in a sedimentation like
process. As drainage continues, the thickness of the fibre mats will increase
until eventually they occupy the entire region between the fabrics. Further
drainage is then best described as a thickening process. Apart from resulting
in necessary dewatering of the pulp, which is often enhanced by artificially
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reducing the atmospheric pressure outside one of the fabrics (i.e. applying one-
sided suction), it is generally accepted that the processes in this part of the
machine has a significant influence on the distribution of the fibres in the fibre
mats, and consequently on the quality of the final product. This motivates the
development of models of blade formers.

Previous works. The local nature of the pressure generated when a blade
is applied to a pair of fabrics was predicted by Norman (1979), and first ex-
perimentally verified by Sims (1985). More detailed pressure measurements
have been performed by Zahrai et al. (1997) and Zhao & Kerekes (1995). In
the latter study, Zhao & Kerekes also presented a one-dimensional linear ana-
lytical analysis of the pressure generated by a thin blade applied to a pair of
fabrics. It was followed by two-dimensional linear analytical analyses by Zahrai
& Bark (1995) for a thin blade, and by Nigam & Bark (1997) for a flat or a
cylindrically curved blade. Non-linear two-dimensional numerical simulations
were performed by Zahrai & Bark (1996) and Zahrai et al. (1997). Under the
assumption that the fibre suspension can be described as a Newtonian fluid,
Roshanzamir et al. (1998) and Roshanzamir et al. (1999) undertook the first
calculations where viscosity was incorporated in a rigorous way. Investigations
of the effects from reducing the ambient pressure outside one of the wires in
between two thin blades have been performed by Green (2000), Green (1999),
and by Roshanzamir et al. (2000a).

Motivation. The work previously undertaken has focused on single devices,
e.g. a single blade, and do not provide any information about the interaction
between the different components. Hence, based on them little can be said
about how important parameters varies throughout real forming sections. Our
ambition is therefore to present a model that permits us to study the effects on
the pressure distribution of the interaction between the different blades and the
devices for applying one-sided suction. The model should be flexible enough to
allow major alterations of the geometry, and a rather free choice of operation
parameters. Such a model can also be employed for the design, trouble-shooting
and tuning of full scale blade sections.

Outline. In §2 we formulate a one-dimensional description of the process.
The system of ordinary differential equations is partly integrated in §3, and
a solution algorithm is presented. It is based on the concept of modules out
of which arbitrary forming sections can be constructed, and which are solved
independently and then matched. Simulations that illustrate the potential
of the model are presented in §4, together with a comparison with previously
published results for a single blade. Numerical issues such as grid independence
and convergence rate are commented upon. Conclusions are formulated in §5.

2. The Governing Equations

The geometry of our problem is such that the ratio between the dimensions in
the spanwise direction, y, and characteristic lengths in the streamwise direction,
x, is at least of the order 100. Thus we can readily assume that it suffices to
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perform the analysis in the xz-plane of Figure 1. A stationary formulation of
the problem will be presented.

z Blade () Wire
. — S == 1
R]()E f f:() E P : H H H :P1
! xX)| ' : : ! '
g, ! ’ | v /Aj 0 Pu(x) ] \ ! “1
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FIGURE 1. Schematic view across a blade forming section con-
sisting of three blades. The suspension flows from left to right
between the wires. The external atmospheric pressure can be
set to arbitrary values, hence permitting devices for one-sided
suction to be simulated. Note that the relation between the
dimensions in the z- and z-directions are not correct. Confer
the text for the notation.

It is assumed that the region between the wires exhibits a sandwich struc-
ture, where the fibre webs residing on the fabrics are separated by a region
of suspension of low concentration. This is likely to be a reasonable descrip-
tion in the upstream part of the domain. Further downstream the fibre mats
completely fill the distance between the fabrics, a situation which will not be
treated in the present study.

In what follows, the subscript i takes the values 1 and 2, which refers to
the upper and the lower fabric, respectively.

2.1. The flow through the fabrics and fibre mats

We shall consider each wire, and the fibre mat it supports, to be a single
continuous medium, and refer to the ensemble of the two components as either
the fabric or the wire, unless otherwise specified. Any influence of blockage
effects at the interface between the fabrics and the fibre webs will thus be
neglected.

Roshanzamir et al. (20000) found that inertial effects have little influence
on the drainage flow through the wires. Darcy’s law will therefore be used to
describe the drainage. We shall assume that the fabrics are thin and that they
have a constant (finite) permeability k¢ in the direction ¢, which is perpendic-
ular to the surface and directed away from the suspension. The permeability
in the plane of the wires is considered to be negligible. Assuming further that
the pressure varies linearly between the value p,,; at the suspension side of the
fibre web, and p.; on the outer side of the wire, and denoting the combined
thickness of the fibre mat and the wire [;, the (superficial) drainage velocity,
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w;, is given by the relation

1 .
Wi = ﬁ(Pwi—pei) i=1,2. (1)
i
Here, a drainage resistance R; = pl;/kc has been introduced, where p is the
dynamic viscosity of the liquid phase. As [; increases due to fibre deposition,
R; will increase as well. Let & be the direction locally tangential to the fabric
surface, positive in the direction of the suspension flow. Conservation of fibres
yields
dR; 1 p & pwi — Ppei

= S P& Puim P g g 2
& Ukea, R 07 @

where we have assumed that all of the fibres in the suspension are added to
the fibre web during drainage. U is the constant speed of the fabrics, and
ap and o, are the constant volume concentrations of fibres in the mats and
the suspension, respectively. Let D and d denote characteristic lengths of the
problem in the z- and z-directions, respectively. The distance between the
wires is typically an order of magnitude smaller than the length of the blades
and the spacing between the blades. A reasonable assumption is therefore that
the ratio A = d/D is small, which can be verified a posteriori. Provided that
A2 < 1, the derivative with respect to £ in (2) can be replaced with a derivative
with respect to x.

As soon as a volume of liquid has been drained from the region between
the wires it is considered to have left the system permanently, and will not
receive further attention.

2.2. The momentum of the wires and the fibre mats

Consider the upper wire in Figure 1. Its position in the z-direction is denoted
f. Making use of our previous assumption A\> < 1, and if the fabric behaves
according to the classical Euler-Bernoulli beam theory, a force balance yields
d2f d2f d*f

=puwi —Pe1 +T1—5 — B

2 a5
mt dz2 da? dat’ (3)

where the constant parameters 77, B and m are the axial wire tension per unit
width, the bending stiffness per unit width, and the mass per unit area in the
xy-plane, respectively. They are of the order 10 kN/m, 1072 Nm and 1 kg/m?,
respectively. Clearly, as U is of the order 10 m/s, mU? is negligible in compar-
ison with T7, and we can consider the fabric to be inertialess. In addition, as
was noted by Zahrai & Bark (1995), we see that the effects of bending stiffness
are only important if we consider length scales in the z-direction of the order
/B/Ty (approximately 1 mm) or smaller. As d is of the order 1 mm, and we
in §2.3 make simplifications based on the assumption that the relevant length
scale D is such that A < 1, we would not be able to correctly resolve the effects
of bending stiffness even if the corresponding term in (3) was included. It will
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hence be ignored and the following equation used for the upper fabric,

dzf
Pwl — Pel +T1@:O- (4>

It expresses a balance between the pressure drop across the fabric and the wire
tension, related through the wire curvature. An analogous equation holds for
the lower wire in Figure 1, whose position in the z-direction is denoted g. The
only difference with respect to (4) is that the pressure terms are of opposite
sign. Further, as D should be in the range 0.05-0.1 m, we expect from (4) that
the pressures generated by the blades are of the order 1 kPa.

2.3. The free suspension

Roshanzamir et al. (1998) came to the conclusion that even quite large values of
Newtonian viscosity (compared to water) had little influence on the calculated
drainage pressure generated by a blade. Consequently, it is here assumed that
the suspension between the fibre mats behaves like an inviscid fluid' governed
by Euler’s equations. Provided that A < 1 it is found, in analogy with the
shallow water wave theory (cf. e.g. Acheson 1990), that the gradients in the
z-direction of the pressure and the xz-component of the suspension velocity are
negligible. These quantities are denoted p and u, respectively. The momentum
equation is thus reduced to
du 1dp
udx+pdx_0’ (5)

where p is the bulk density of the suspension. We can now substitute p for py;
in (1)—(4) as we know that the former variable is independent of z.

Integrating the 2-D continuity equation in the z-direction across the gap
between the wires we obtain

(7~ 9)) =~ (s +wa). (6)

2.4. The presence of blades

The equations in §2.1-2.3 refer to parts of the domain where no blades are
applied to the fabrics. A fabric in contact with a blade is assumed to follow the
blade surface. Its position in such a region is hence known if the blade is fix,
or known up to some constant if the blade is applied with a prescribed force
(see §3). The equilibrium equation for the corresponding wire, i.e. (4) or its
analogous counterpart for the lower fabric, is then not enforced. Assuming that
no drainage takes place across the wire in contact with the blade, p.; equals p
along the blade, which is inserted in the remaining equations.

11t is well known that the fibre suspensions dealt with in paper manufacturing has a very
complicated rheology. However, as is observed by e.g. Zahrai & Bark (1996), good agreement
between experiments and models is found for the pressure assuming that the suspension is
an inviscid fluid.
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2.5. Dimensionless variables

The variables are now scaled in order to obtain dimensionless quantities to be
used henceforth. These will be denoted exactly as their dimensional counter-
parts. The pressures p and p.; are scaled by pU?, the suspension velocity u by
U, the drainage bulk velocities w; by AU, the drainage resistances R; by pU/\,
the wire positions f and g by d, and, finally, x by D. Throughout the rest of
this study no references will be made to the dimensional variables. (5) turns
into

du dp
ke Ees 7
Yar T dx ' 0
whereas (4) and its counterpart for the lower wire become respectively
d*f
p—pe1+51@:0’ (8)
d?g
p—pe2—52@:0- 9)

The ¢; are parameters related to the tensions T; in the fabrics, and can be
expressed in terms of the slenderness ratio A and dimensionless groups We;
related to each wire, analogous to Weber numbers,

T;d A _
The evolution of the drainage resistances (2) is now given by
dR; s d? .
o i where k= (%,/)ULD?C and i=1,2. (11)

& can be divided into two components, the ratio s /a,, and the remaining part,
denoted (3. The first of these controls the growth rate of the fibre mats when
fibres are deposited. § is a dimensionless intrinsic resistance to flow through the
fabric/fibre mat, as opposed to the R; that are integrated (total) resistances.
(1) and (6) have the same appearances in dimensionless form.

Necessary conditions to solve the system consisting of (1), (6) and (7)—(11)
are given in §3.

3. Solution Algorithm
3.1. A module based algorithm

Any blade section can be divided into regions containing either two free wires,
or a free wire and a blade, as indicated by the dashed lines in Figure 1. Consider
each such region to be an individual module that can be solved independently
of the other modules provided that the necessary conditions on the dependent
variables are available. As no other kind of modules than the ones indicated in
Figure 1 will be necessary, if a straightforward and robust algorithm for linking
the modules to each other were at hand, it would be easy to solve arbitrary
blade sections. In §3 we shall present one way of doing this. It should also
be noted that the division indicated by the dashed lines in Figure 1 is very
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natural, since different sets of equations are used when both of the wires are
free, and when a blade is in contact with one of the fabrics (see §2).

Let us consider an assembly of n modules M? that together constitute a
model of a certain blade section (see Figure 2). The superscript 4 shall be
used to refer to the i*" module. Out of the boundary conditions necessary

Cu c:i Cu
1 Wi-1 i n-1
[ C. . C C,.
¢ ¢ ¢ ¢
MI M M"
1 i n
k Ck k
Q! Q' Q"

<71 ©

| |
L
FIGURE 2. An assembly of modules M? i = 1...n. The
known and guessed parameters (¢}, and ¢!, respectively) result
in partial solutions 2’ that give a solution Q =, Q¢ for the
complete domain. ) is then used to calculate quantitative
values A; of how well the solutions from the different modules
complies with the matching criteria.

r

to solve the governing equations for the module M?, certain are known and
are grouped together in the vector ci. Others, denoted by c!,, are not known
a priori, and must be determined in the solution process. Apart from the
evolution of the dependent variables throughout the module, symbolically given
by Q, the module also delivers a vector of parameters c’, based on QF, that
are used as boundary conditions for the neighbouring module M?**+!. Denote
¢, the vector containing all unknown parameters, and whose components are
given by the composition of the different c,. Let us guess ¢, and thereafter
calculate the evolution €2 of the variables throughout the model. If the guessed
c, is not correct, the ¢ will not fit with each other in a physically correct
manner across the module boundaries. The real solution must fulfil matching
criteria Aj, 7 = 1...r, that ensures a correct fit between the modules (r equals
the number of components in ¢,, which is also the total number of unknown
boundary conditions in all modules).
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The solution procedure for the modules (see §3.2) defines a continuous

function Z such that ¢, Z, A, where A is the vector whose components are
the A;. Provided that the A; are defined such that compliance with criterion
j corresponds to A; = 0, obtaining the physically correct solution 2 means
finding the root to Z. In the present study this has been done by using ei-
ther the Gauss-Newton method (Dennis 1977) or the Levenberg-Marquardt
method (Levenberg 1944; Marquardt 1963; Moré 1978), combined with a safe-
guarded mixed quadratic and cubic polynomial interpolation and extrapolation
line-search method, to minimise Sa = |A|?2. Both of the methods perform
satisfactory. In each iteration, the Gauss-Newton method minimises a local
quadratic approximation of Sa, in which the contributions from the second
derivatives to the Hessian of Sa are neglected. The more robust Levenberg-
Marquardt method is a blend of the steepest descent method and the Gauss-
Newton method. The former is used far from the minimum, but as the ex-
tremum is approached, the Levenberg-Marquardt method turns into the latter
in a continuous fashion.

3.2. Solving the modules

Consider first the ** module, which is assumed to contain two free fabrics. It
is consequently described by the system consisting of (1) and (6)—(11). From
(7) we immediately get that

u?

2 Y

where from now on C; (I = 1,...) will denote constants of integration. Apart
from (8) and (9), the governing equations are valid at the module boundaries
(see §3.3). C} is hence the same constant throughout the whole model domain?.
Constants of integration which appear in equations derived from (8) or (9), and
which may hence take different values in different modules, are distinguished
by a module superscript, C;.

p=0C — (12)

Define a variable k = (e1 f +¢e29)/(e1 +€2). Apparently, if €1 = g9, k is the
position of the centreline between the two fabrics. Let & be a local co-ordinate
system with the origin at the inlet to the module. Subtracting (9) from (8)
and integrating yields

T z’
k= / / F(#")dz" di’' + Ci& + Ci  where (13)
0 0

FZ(@ _ pél(j) —pé2(i‘)
€1+ €2 '

Note that if p; = pi,, k changes linearly through the module. Let h = f — g
denote the distance between the wires. Combining (6) and (11), and then

2Equation (7) would not have been valid at a module boundary if, for some reason, a point
force were acting on the suspension at that position.
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integrating, it is found that

uh =

Ri+R
—% vy (14)

Adding (8) and (9) provides us with an equation for h. Eliminating p in this
equation with (12) we obtain a relation for h and w,

da? €162 €1 €2

. =0. (15)

The equation for h together with (1) and (11) can also be turned into an
equation for Ry,
ﬁ £1€2 dh _ &1

2 e +eadr HE1+€2
G'@) = [ (pa@) - pial@)) a”.
0

An analogous equation holds for Rs. Now, if (16) and its counterpart for Ry is
combined with (14), we obtain a second relation involving h and wu,

G'(%) + Ci where (16)

€1€2

K%(Cy — uh)? <n2(04 —uh)? + 8k ——h, +

€1+ &2

+4(HM01’(£) _ci - cg)) + 4(/@@‘(@) +Cl - cg)2 —0. (17)
€1+ €2

Note that (15) and (17) can easily be combined into a single equation for
h. We shall refrain from this as the highest derivative in the resulting equation
would then not appear linearly, as is the case in the system (15), (17).

The conditions specified to determine the module solution are indicated in
Table 1. The position of the outlet is denoted 7% ,. The entries in the table de-
note the values of the variables at the respective position. Other combinations

Position (Z)

0 [ #hu
f zZn ;ut
9 || Yin | Yout
R1 R’lm —
U — u;ut
Pl — | Pout

TABLE 1. Boundary conditions specified for a module contain-
ing two free wires. ¥ = 0 and ¥ = ¥!,, correspond to the inlet
and the outlet, respectively. (—) indicates that no condition
is specified at that position.



64 C. Holmgquist, A. Dahlkild & B. Norman

than the one presented in the table are possible. To reduce the size of ¢, when
modules are combined, it would be preferable to specify the conditions on the
four last variables in the table at the same Z-position, e.g. £ = 0. However,
if the module extends towards infinity in the upstream direction, regardless
of what is specified at & ,, p always tends asymptotically to the pressure of
the surrounding atmosphere (p, = 0) in the upstream direction. This is seen
both in numerical computations and in the analytical first order solution ob-
tained from a regular perturbation analysis in the parameter -, defined by
hi, = (1 —y)hi,,. Consequently, specifying the physically correct condition
p = 0 at the upstream end of an infinitely long module does not introduce any
information into the problem. Moving the condition to &, yields a well-posed
problem. Having done this, it turned out that the root to Z was found faster
if the conditions on R; (i = 1,2) were given at & = 0.

Modules where one of the fabrics is in contact with a blade are treated in
a similar fashion (the details can be found in the presentation by Holmqvist
(2002)), and the governing equations are reduced to two expressions linking h
and u, corresponding to (15) and (17). The blade is assumed fix during the
derivation. Loadable blades are discussed in §3.3. The boundary conditions
used are a straightforward choice of those given in Table 1.

The integration constants C;, C% and C% are determined analytically from
the boundary conditions. The remaining three must be determined in the nu-
merical solution process®. Central finite difference approximations of (15) and
(17) are introduced at the interior mesh points of a uniform grid. Skewed
discretisations of (17) are used at the the edge nodes. At the inlet node,
algebraic equations approximating (16), and its counterpart for Ro, are also
formulated. All approximations are second order accurate (including those
needed in §3.3-3.4), and are explicitly given by Holmqvist (2002). The alge-
braic equation system thus obtained is sparse, and since it is straightforward
to construct the Jacobian explicitly, we solve the system by the damped New-
ton’s method. The linear equation system appearing at each iteration is solved
through LU-factorisation with partial pivoting, by a method that takes into
account the sparse structure of the coefficient matrix. Prior to the factorisa-
tion, the columns of the system matrix are permuted through minimum degree
ordering, in order to yield sparser factors (Gilbert et al. 1992).

3.3. The matching criteria

The dependent variables f, g, p, u and the drainage resistances R;, are all
necessarily continuous across module boundaries. To see why this is so, we
could e.g. look at (12). If there is a discontinuity in p, there will be one in
u as well. f and g are continuous for obvious reasons, which is hence also
true for h. As we are dealing with an incompressible fluid, we realise that

3Note that it would be sufficient to determine C; and Cy4 in only one of the modules. As
the modules are intended to be solved independently of each other, it is however done in all
modules.
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the discontinuity in w would require a finite drainage over an infinitesimal
distance in the z-direction, in other words infinite drainage velocities w;, which
is physically unreasonable. Hence, u, p and R; (i = 1,2) must be continuous.

Consider the boundary between a module containing two free wires, and a
module containing a blade. We assume without loss of generality that the blade
is applied to the lower fabric, and that the interface between the modules is
located at zp. (8) is valid at this point, and integrating it across xj, demonstrates
that the derivative of the position of a free fabric is continuous across module
boundaries. (9) is however not valid at x. The edge of the blade acts as a point
force Qp on the fabric, a possibility that was not included in the derivation of
the equation. In the following form, though, it can be applied at x,

2

d
P—Dpez — szd—xi — Qud(xp) = 0. (18)

Above, §(x) is Dirac’s function. Integrating the equation across xp, we find
that there is a discontinuity in the slope of the wire,

dg, o\ dg, _ Qv
_ =2 19
e - lap) == (19)
where the superscripts ‘—’ and ‘4’ here and elsewhere denote the upstream

and downstream side, respectively. The discontinuity is a result of our neglect
of the bending stiffness of the fabrics.

Any of the requirements of continuity are candidates for the criteria A;.
However, some of them are immediately fulfilled by passing information from
one module to the next via the vectors ¢’ during the solution process. The
magnitude of the discontinuities are straightforward quantitative measures of
the degree of compliance of the criteria.

Introducing matching criteria also enables the modelling of more exotic
features such as loadable blades. We exemplify this by considering the middle
blade in Figure 1, which is applied to the fabric with a force @) per unit width
in the y-direction (scaled by T5). The position of the blade in the z-direction
is determined by formulating a A; enforcing the equilibrium equation

dg dg Q

dx(x;“)_ dx(@”jﬁz)_xzo- (20)

Ty and x,,o are the positions of the upstream and downstream edges of the
blade, respectively.

When non-flat blades are applied, the fabrics do not necessarily remain
in contact with the blade along the full length, which was one of the assump-
tions made in §2. Sometimes this results in erroneous solutions. In a correct
solution the fabrics are either wrapped over the edges, or leave/make contact
with the blades tangentially. This follows from the observation that a point
force on a wire must necessarily be directed towards the suspension. When an
unphysical blade-wire contact occurs, the point where the fabric first (or last)
is in contact with the blade is introduced as an unknown parameter in c¢,. It
is then determined by introducing a matching criterion requiring that, at that



66 C. Holmgquist, A. Dahlkild & B. Norman

point, the slope of the wire and the blade surface must be equal. From the
viewpoint of the model, the blade is cut off so that the contact with the fabric
naturally occurs over the full length. In reality, the neglected part of the blade
might have some influence on the process, e.g. by giving rise to an increase in
the effective drainage resistance in the vicinity of the contact point, due to the
limited space available between the fabric and the blade.

As, normally, only the position of one of the fabrics is given at the down-
stream end of the blade section, a condition have to be formulated to determine
the other (unknown) wire location. The condition p = p.; = pe2 = 0 at that
end translates into dh(z)/dz = 0.

3.4. Composite modules

Each new module enlarge c,, which in turn augments the demands on the
algorithm responsible for finding the roots of Z. This is a potential limitation
on the size of the blade sections that can be modelled. It is, however, possible to
construct larger modules than the fundamental ones discussed above, and thus
reduce the total number of modules that have to be used in a given situation.
We note that a module containing a blade always have neighbouring modules
containing two free fabrics. Without loss of flexibility we can define composite
modules consisting of two fundamental modules — an upstream one with two
free wires, M, and a downstream one containing a fabric and a blade, M.

The boundary conditions that have to be specified at the outlet of the
upstream module, and at the inlet of the downstream one, now become internal
unknowns in the composite module and equations have to be formulated for
them. The purpose of specifying pgﬂ is normally to provide information so that
C; can be determined in M. As this constant have the same value in both
of the modules, p-7! needs hence not be included among the ‘new’ unknowns.
Continuity of the dependent variables provides trivial equations linking the
values of the variables at the outlet of M’ and the inlet of M. Consequently
we can limit our discussion to the equations needed to replace the conditions
on the position and the drainage resistance of the free fabric at the inlet of
M. Note that the blade is assumed fix, and the position of the contacting wire
is hence given by a known function. Furthermore, the drainage resistance of
the wire in contact with the blade is constant. Hence the conditions related to
the free fabric are the only ones needed. The requirement for continuity of the
slope of the free wire, together with the relation between the fabric position
(i.e. f or g), h and k, can be turned into an equation for the unknown fabric
position at the inlet of Mg. An algebraic equation for the drainage resistance of
the free wire at the inlet of M} is obtained by discretising (16), or its analogous
counterpart, at the outlet of MZT! and then employing the continuity of the
R; (i =1,2). See Holmqvist (2002) for the details.

Of course, if deemed necessary, composite modules consisting of more than
two fundamental modules can be constructed in the same manner as described
above.
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4. Numerical Simulations

The approach presented in §2-3 will now be employed to study the blade section
in Figure 1. It contains three blades. A device for one-sided suction is assumed
located between the two upper blades. Our model of the section is composed
of three composite modules of the kind introduced in §3.4 followed by a module
containing two free fabrics. The location of the blades are defined by the co-
ordinates of their leading and trailing edges, denoted @1 2, Tm1,2 and x4; o
in Figure 1, together with the corresponding functions f,(z), gm(x) and fq(x)
for their contact surfaces. The middle blade is applied to the fabric by the
constant force @), and the function g,,(x) is hence only known up to a constant
that is determined as described in §3.3. The fabrics extend far in the upstream
and downstream directions. The information that is needed to determine the
integration constants is also indicated in Figure 1, and includes the positions of
the fabrics at the inlet, fy and gg, the initial drainage resistances of the fabrics,
R1y and Ry, the position of the upper wire at the outlet, fi, and the pressure
and the velocity at the outlet, p; and uy, respectively. Far downstream we
always have p = 0 and w = 1. Unless otherwise specified, pe;(z) = pes(x) = 0.
A comparison with results obtained by Zahrai et al. (1997) involving only a
single blade will also be made.

The lengthscales D and d will now be defined as the length of the blades
(they are assumed to all be of the same size) and the far upstream distance be-
tween the fabrics, respectively. The spacing between the blades will be denoted
dp, and is constant in the presented calculations. It is defined as the distance
between the trailing edge of one blade and the leading edge of the next blade
downstream (applied to the opposite fabric).

When applicable, the symbols V and A indicate the positions of the edges
of blades applied to the upper and lower fabric, respectively. A filled triangle
indicates that the corresponding edge is located at the interface between two
modules. The blades are also indicated by solid horizontal lines between the
edge symbols.

4.1. Verification

Numerical experiments were performed to verify a correct implementation of
the algorithm. It was seen that the convergence rate was quadratic, in accor-
dance with the discretisation, and that grid independence could be achieved
on relatively coarse grids. An example is seen in Figure 3, where it is evident
that grid independence has been achieved for a node spacing of Az = 0.025.
It happens earlier for h than for u, which is to be expected since h is an inte-
grated quantity (the integral of the w;), and as such rather insensitive. All the
curves fall on top of each other in Figure 5.3(a). The number of nodes used to
resolve a blade is a good indication of the coarseness of the grid, as the drainage
pressure generated by a blade when it deflects the fabrics extend a comparable
distance. The remaining results that will be presented were calculated with
Az < 0.01.
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(a) Gap size. (b) Velocity.
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(¢) Velocity, close-up.

FicUre 3. Confirmation of grid independence. In all the fig-
ures: (—) Az =02, (---) Az =0.1, (- --) Az = 0.05, (---)
Az = 0.025. We; = Weg = 057, A = 0.2, k = 0.144,
Q = 0041 fo = fi =1, g9 =0, p1 =0, ugy =1,
Rip = Ryg = 0.272. &, = 1. fu(x) = falx) = 1 and
gm(x) = constant, i.e. flat blades. Four modules with bound-
aries at x = —20, 1, 3, 5, 10.

Zahrai et al. (1997) performed a two-dimensional simulation of a single flat
blade applied to a pair of fabrics that approach and leave parallelly at prescribed
angles far upstream and downstream. The pressure distribution next to the
wire in contact with the blade is reproduced in Figure 4, together with the
corresponding results obtained by the presented method using two modules —
one composite module and a downstream module containing two free wires. As
it was found by Zahrai et al. (1997) that the pressure gradients in the z-direction
are very small (supporting the conclusion in §2.3) it is justifiable to compare
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the two results. Considering that our model is one-dimensional, the agreement

0.075

0.05

p 0.025

-0.025
-1

FIGURE 4. Application of a single flat blade located between
2z =0and x = 1. (---) present method using one composite
module and one module containing two free fabrics (bound-
aries at * = —4, 1, 2). (—) 2D simulation by Zahrai et al.
(1997). Wey = Wea = 4, A = 0.06, x = 0. Far upstream:
Ry = R, = 0.093, df /dz = dg/dx = 0.583. Far downstream:
p=0,u=1,df/de = dg/dz = —1.17. (+) indicate experi-
mental measurements by Zahrai et al. (1997).

is reasonably good. The one-dimensional method slightly overestimates the
pressure pulses, which is in agreement with the findings by Zahrai & Bark
(1995), who undertake a comparison between linear one-dimensional and two-
dimensional investigations of a single thin blade. The negative peaks in the
two-dimensional simulation are due to a strong acceleration of the suspension
around the sharp corners presented by the blade edges. It is not possible
to capture this with a one-dimensional model. The other regions of negative
pressure are due to damped stationary capillary waves forming on the fabrics
if the scaled drainage resistances exceed a value determined by the We; and A
(Zahrai & Bark 1995). These waves yield oscillations in the pressure.

4.2. Results

Figure 5 is an example of interaction between components, and illustrates the
effect of applying one-sided suction on the drainage pressure generated by the
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blades. In a paper machine, more than three blades are normally used. To
achieve a wrap of the fabrics over the trailing edge of the third blade, and hence
simulate the effects of a second loadable blade, we specified f;(x) = 0.78. The
external pressure functions are identically zero, except in between the upper
blades, where we have p.; = p,. The other parameters defining the simulation
are given in the caption of Figure 5. Note in the figure how the pressure pulses

0.03

0.02

p 0.01

-0.01 : :
-4

FIGURE 5. The effect on the pressure distribution of one-sided
suction. (—) py, =0, (- - -) py = —0.016. We; = Wey = 0.795,
A=0.143, k = 0.103, Q = 0.036. fo = fi=1,90=0, p1 =0,
uy = 1, R10 = R20 = 0.194. 55 =1. fu(x) = ]., fd({E) = 0.78
and gp,(z) = constant, i.e. flat blades. Four modules with
boundaries at x = —14.4, 1, 3, 5, 7.14.

are not independent, but merge with each other. The most interesting feature
is however that the pressure pulses generated by the blade facing the suction
box are significantly reduced as a consequence of the suction. When suction
is applied, the drainage through the upper fabric increases and it is pulled
towards the suction side. As a consequence, the flow does not experience such
a severe constriction from the opposed blade, and the pressures pulses become
of less amplitude.

At the upstream blade in figure 5, the contributions to the pressure from
the two blade edges have merged to a single pulse. It is amplified when suction
is applied, as a larger wrap over the trailing edge is then achieved. Due to the
vertical position of the downstream blade, the relative change of the wrap at
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that blade is much smaller, and the corresponding change in the pressure is
hardly visible.

The pressure ditributions in figure 6 correspond to blades with different
(constant) radii of curvature, g, scaled by D. The circular blades are symmetric
with respect to an axis normal to the blade surface at the midpoint of the blades,
which is hence an extremum of the function defining the blade surface. The
vertical position of these extrema is 1 for the two upper blades, which is also the
position of the corresponding flat blades. Although the curvature of the blades
are small (the surfaces of the blades protrude a distance 1/(8\g) + O(A~1p™3)
expressed as a fraction of d), there is clearly an influence on the pressure.
Note that, in the case of flat blades, there is no increase in p downstream
of the leading edge of the last blade. Zhao & Kerekes (1995) found that a
linear solution to the one-dimensional problem yields p = 0 downstream of a
deflection of the fabrics. This result carries over to the nonlinear case, which is
seen if that solution is sought as an infinite series of subsequent linearisations.
As there are no further deflections of the fabrics downstream of the leading
edge of the third flat blade, p = 0 in that region. The simulations reveal that
none of the curved blades are in contact with the fabrics along their full length.
The downstream half of the last blade is never in contact with the fabric, which
is natural since the outlet of the model domain is at the same vertical position
as the lowest point of the third blade. As for the middle blade, 46 % and 31 %
of the downstream half is in contact with the wire when p is 71.4 and 42.9,
respectively. The upstream halves of the first and the last blades are not in
complete contact with the fabrics either. Evidence of the partial contact is
seen in figure 6 where the slope of the pressure curves change discontinuously
at positions other than at blade edges.

The sigificance of blade curvature is probably most strongly related to the
effects on the pressure gradients, as these are believed to influence the distribu-
tion of fibres in the webs. The gradients are plotted in figure 7 for the different
radii of curvature in figure 6. It is seen that the negative peaks, which cor-
respond to strong accelerating forces and elongational flow, are much reduced
when curved blades are employed. At the same time, large positive peaks ap-
pear at the front of the first and the third blade, implying strong decelerating
forces. They are a result of incomplete contact between the upstream part of
the blade and the fabric. A pressure of large magnitude is built up along a
short distance, which deflects the wire so that it makes contact with the blade
surface tangentially.

In order to investigate the magnitude of nonlinear effects, a first order
solution was also obtained for the geometry in Figure 1 by performing a regular
perturbation analysis in the parameter (). Again a modular approach was used.
Although the modules could in principle be matched analytically, thus yielding
a fully analytical solution, the same iterative procedure as in the nonlinear case
was performed for practical reasons. In Figure 8 we compare the linear and the
nonlinear method by considering the magnitude of the pressure in front of the
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0.015

0.01

0.005f

FIGURE 6. Pressure distributions for blades of different cur-
vature. (—) Flat blades, (---) 0 = 714, (---) o = 42.9.
We, = Wey = 0.972, A = 0.143, k = 0.103, @ = 0.033.
fo=fi=190=0,p1 =0, us =1, Ryyp = Ryp = 0.114.
6p = 1.79. The details of the blade vertical positions are found
in §4.2. Four modules with boundaries at x = —14.3, 1, 3.79,
6.58, 20.88.

blade furthest upstream. The highest values of @ approach industrially relevant
blade forces, and we see that nonlinear effects are significant if qualitative
results are sought.

5. Conclusions

The division of the domain into fundamental ‘building blocks’, referred to as
modules, have proved to be an effective strategy in the development of models
for blade sections. By making the links between the modules as simple as
possible, alterations of the geometry are easily undertaken. It was also found
that features such as loadable blades and partial blade—fabric contact could be
easily implemented as a consequence of the very straightforward connection of
the modules.

By virtue of a slenderness assumption, the governing equations could be
reduced to a one-dimensional system dependent upon the distance along the
direction of flow. Three relevant dimensionless parameters were identified,
namely \/We; where X is a slenderness ratio and the We; (i = 1,2) are analo-
gous to Weber numbers for each fabric, and (cos/a,)3 where the ratio between
the volume concentrations determines the rate of the fibre mat growth due to
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(a) Flat blades. (b) Circular blades, o = 71.4.
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(c) Circular blades, o = 42.9.

FIGURE 7. The influence on the pressure gradients of blade
curvature. Four modules. The parameters and module bound-
aries are the same as in the caption of figure 6.

deposition and § is an intrinsic resistace to flow through the fabrics and the

webs.

A comparison with more elaborate (but less flexible) experimental and
numerical investigations of a single blade, indicate that the output is sufficiently
accurate to yield insight into the pressure distributions in multi-component
blade sections. It was also noted that the discrepancy between the output
from a linear version of the model and the nonlinear results is sufficiently large
to motivate a nonlinear treatment.
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FIGURE 8. Magnitude of nonlinear effects. pli" —and pax
denote the amplitudes of the pressure peak in front of the
first blade in a linear and a nonlinear calculation, respectively.
Wey = Wey = 125, A = 0.143, Kk = 0.343. fo = fL = 1,
go =0, p1 =0, us =1, Rig = Rgy = 0.114. §, = 1.79.
fu(@) = fa(z) = 1 and g, (x) = constant, i.e. flat blades.
Four modules with boundaries at x = —14.3, 1, 3.79, 6.58,
10.15.

The numerical simulations presented in the paper show the influence of
blade curvature on the pressure distributions. Notably, we saw that blades of
modest curvature do not necessarily stay in contact with the fabric along their
full length, and that this has implications on the pressure gradients. Further, it
was seen how applying one-sided suction reduces the magnitude of the pressure
pulses generated by the blade facing the suction device.

We conclude by observing that for the first time a method is now available
for studying the interaction between the components in blade forming sections.
In addition, the relative simplicity of the employed method give reason to
believe that it could become a valuable tool when dealing with full scale blade
sections.
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A model for the dewatering of pulp suspension in the twin-blade forming paper-
making process is formulated and analysed. The slenderness of the geometry
permits reduction to a one-dimensional problem, which can be rewritten in
the form of a highly non-linear second-order ODE. Analysis of its asymptotic
structure up- and downstream indicates a strategy for computing solutions
numerically. Subsequent results indicate that at industrially realistic suction
pressures, the pressure within the pulp suspension will be lower than the sur-
rounding ambient pressure, suggesting model breakdown as air is entrained.

1. Introduction

Twin-wire blade forming is a papermaking process in which a fibre-water sus-
pension is forced into a gap between two moving permeable wires (fabrics)
under tension (see Fig. 1). The fabrics are passed through a series of blades
which deflect the fabrics locally, thereby inducing pressure pulses that result
in the dewatering of the suspension, as well as the build-up of a fibre mat on
the fabrics. Dewatering is favoured by a large pressure gradient across each
wire and fibre mat, directed into the region between the fabrics, and attempts
are often made to lower the ambient pressure on the outer side of a fabric by
applying a so-called suction shoe between the blades; typically, however, more
dewatering occurs at the suction side of the sheet, creating non-uniformities in
the cross-section of the finished product.

In recent years, several papers (e.g. Zahrai 1997; Roshanzamir et al. 1998;
Green 2000; Roshanzamir et al. 2000) have dealt theoretically with various
aspects of the twin-forming process. In this paper, we concentrate on the
mathematical aspects of those models, as well as the possibility that, under
certain operating conditions, the pressure outside one of the wires is higher
than that between the wires. Consequently, air exterior to the wire can be
sucked into the suspension, causing a void to form inside the fibre mat. For
this study, we consider the simplest geometrical configuration, namely the 3-
blade system shown in Fig. 1.
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Suction
| Low pressure | - shoe
Wﬂ_&
Fiber mat .
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Flow direction
\
Blade Wire (fabric)

FI1GURE 1. Schematic of blade-dewatering

2. Modelling assumptions and equations

The assumptions used in the present paper are similar to those in earlier studies
e.g. Zahrai (1997) and Green (2000). A steady state 2D model is considered,
with the fabrics being modelled as elastic membranes that are initially stretched
at constant tensions, Ty and T, and which both move with constant speed from
left to right. The thickness of each fabric is assumed to be negligible, and the
flow though the fabrics is described by Darcy’s law; in addition, the location of
each fabric is a priori unknown and must be found as part of the solution. Far
upstream of the blades, the fabric velocities are assumed to be equal to that
of the suspension, which itself is taken to be a Newtonian fluid with constant
viscosity. The problem is formulated in terms of point forces that act on the
fabric only at the blade edges, and the pressure at the suction shoe, which
occupies the interval between the first and third blade (see Figure 1).
Typically (see Table 1 further down), the gap between the fabrics is much
smaller than the length scale along along the fabric. Using this assumption,
the full 2D model equations, consisting of mass and momentum conservation
for the pulp, as well as force balances for each of the fabrics, can be simplified
to a system of ordinary differential equations for the dimensionless quantities
P,U,Rs, Ry, f and g (respectively, the pressure, the horizontal velocity, the
drainage resistances of the upper and lower mats (laws for which have been
obtained previously, Green 2000) and the positions of the upper and lower
wires) as a function of the coordinate in the horizontal direction, X. These are

P +UU =0, (1)

Wir-a) =5+ ) P+ T )

n-e(2)

(50)

0=P— P (X)+erf —Qois(X+1)—Qui6(X —1), (5)
0=P—¢c49" —Qod(X), (6)

Ry
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TABLE 1. Physical quantities used in the model

Uy fabric velocity 25ms ™!

p pulp density 103 kgm 3

L distance between blades 0.025 m

ho initial distance between wires 0.002 m
Q-1,Qq,Qr force per unit width at blades 300Nm !

R%m, Rg(i)m initial drainage resistance 3.4 x 10*Nsm >
Patm atmospheric pressure 10° Pa

Ps suction pressure 10* Pa

K (see below) 9 x 10%Pam™?s

where m(X) = H(X + 1) — H(X — 1), H(X) is the Heaviside function and
J is the Dirac delta function. Equations (1)-(6) are subject to the boundary
conditions

U(=00) =1, Ry (=00) = Rgo, Ry (—00) = Rjo, f (=00) =g (—00) = 1. (7)

Note that there are no explicit boundary conditions as X — oo, although
we would expect on physical grounds that all variables should be finite there.
Formally, these equations constitute the leading order inviscid core flow, which
is coupled to a free boundary problem for the location of the fabrics; the details
of the viscous boundary layer on each fabric can be worked out afterwards if
necessary, although this is beyond the scope here.

The dimensionless parameters in equations (1)-(7) above are: Ps, k,e5, €4,
Q-1,Q0,Q1, Ryo, Rgo. These are related to the physical quantities Uy, p, L, ho,
Q-1,Q4,QrL, R‘fciom, RIG™, Ty, Ty, ps, K (for their physical meaning and numer-
ical values, see Table 1) by

SJ"ZL}LOa5 = Lsho ,Q—lzﬁv Q():&, 1:&7
pUGL?" ™ pUFL? pUs pUs pUs
p _ Ps—Patm Kh3 B R%mho _ R%mho'
s pU2 UL "1™ Uo7 T T UL

Note here that K is a constant that depends on headbox consistency, fibre
furnish and the ability of the forming fabric to retain fines (see Green 2000).
Typical values for the dimensionless parameters are then

£r6g ~0.04; Q_1,Q0,Q1 ~ 0.02; P ~ —0.016;  ~ 0.06; Ryso, Ryo ~ 0.1.

3. Analysis

The above system of equations can be reduced to just a second-order system
of ODES for R, and the distance between the two fabrics, h := f —g. For the
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case when €y = g4 = €, we have

R,R!
294
K
1 2
1_ (Rjo+R,—Ry—2xPs[(X+D)H(X+1)-(X-DH(X-1)])2  R,—R,0
K h K — 1’ (8)

R2 — R%,
Eh/+% —Q_H(X+1)—QH(X +1)—QuH (X)

~P(X+1D)H(X+1)—(X-1)H(X-1)] =0, (9)

subject to h(—o0) =1, Ry (—00) = Rg. Once these are solved, the remaining
dependent variables can be obtained as

[N

Ry ={R}+ R}~ R\ +2cP (X +1)H(X+1)— (X -1)H (X -1)]}?,

vy B Rl
h K K

(1-07).

DN | =

One might be tempted at this point to proceed to a numerical solution of
the initial value problem for —co < X < oo given by (8) and (9). First, however,
it is prudent to examine the asymptotic behaviour of h in these equations as
X — +o00. As X — —o00, we have that h ~ 1 + iL, where

. 171 1 171 11% 2
B 12 +]i {+] 2Ux) o
P12 {Rgo Ryo \/4 Ry ' Rpo) ¢ (10)

2
If |:R{;0 + ﬁ] > g, both exponents are positive and the solution decays. If

0
2
[# + L} < & we have oscillating decay. As X — +oco, we have h ~
h

e’

. 17 1 1 17 1 1 1% on
h ~ - — | 4/ = =X 11
“P1 2 [Rgoo - Rfoo} \/4 {Rgoo - Rfoo} € b

with

Rgoo — Rgo  Ryoo — Ryo
K K ’
and Ryoo = \/Rjo +k(Q_1 + Q1+ Qo — 2P;). Thus, the real parts of both

exponents are positive, suggesting that the only consistent asymptotic structure
as X — oo can be h = h.

Rgoo:\/R5270+K(Q71+Q1+Q0+2PS>7}L00:1_
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FIGURE 2. (a) Distance between the wires, h; (b) Dimension-
less pressure, P

4. Numerics, results and discussion

A consequence of these findings, which we found with our own numerical ex-
perimentations, is that a conventional attempt to solve (8) and (9) as an initial
value problem starting at X = —oo will fail because of the two exponential
modes as X — +oo. The correct approach is to use the analysis above to solve
an initial value problem starting at X = 1 and to integrate backwards towards
X = —o0, since the presence of the two decaying modes as X — —oo will
ensure that the conditions h (—o0) =1, R, (—00) = Ry will automatically be
satisfied. As for appropriate ”initial” conditions at X = 1, it is clear from (8)
and (9) that we require R,(1) = R,(o0), Ry (1) = 0.

Two sets of results are shown in Figure 2; in both cases, the broken line
indicates results when no suction pressure is applied (P = 0), whilst the unbro-
ken line is for when a value typically used in industry is applied (Ps = —0.016).
Figure 2(a) gives the h profiles, and indicates how the depth of fluid decreases
as dewatering proceeds. Figure 2(b) shows the pressure distributions. In both
cases, the pressure pulses associated with dewatering are evident, but for the
case where P; = —0.016, it becomes apparent that the pressure between the
wires is actually less than the ambient atmospheric pressure, implying the
entrainment of air. This constitutes model breakdown for such high suction
pressures, and it is clear that a more sophisticated dewatering model will be
required to account for this regime.
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Fibre mat behaviour in twin-wire formers
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A model is presented for the behaviour of the fibre mats as they experience
the first pressure pulse in a blade forming section, after having been formed
over a roll. The compressibility of the webs is seen to significantly reduce the
velocity difference between the mat surfaces and the suspension flow towards
the fabrics, and thus also the rate of deposition of new fibres onto the mats.
Typically, the thickness of the mats is reduced during the blade pulse, despite
the deposition. Although the fibre content of the webs increases only modestly,
the drainage resistance is found to increase significantly during the passage over
the blade, due to the reduced permeability in the highly compacted regions of
the mats. The shear stress parallel to the fabrics varies several orders of magni-
tude across the thickness of the fibre networks. Assuming that the whole of the
mats essentially retain the speed of the fabrics, the shear stress during a pulse
representative of normal operational conditions reaches a magnitude of about
1 Pa at the free suspension sides of the fibre mats, and several hundred times
that value at the fabric surfaces. This emphasizes the need to develop models
that accurately incorporates network shear strength in order to quantitatively
predict the deformations in the plane of the sheets.

1. Introduction

In the forming section of a twin-wire paper machine, an increased pressure is
generated between the fabrics. This pressure induces a drainage of suspension
through the fabrics. Fibres are deposited on the wires, and webs are formed
that are initially separated by a region of suspension of low concentration and
relatively high mobility. As the drainage process continues, the fibre mats will
eventually occupy the entire region between the wires and the separating layer
will disappear, causing the nature of the dewatering process to change from
filtration to what might be referred to as thickening.

Several models have been developed to predict the pressure distribution
in the forming section. Roll forming have e.g. been studied by Zahrai et al.
(1998), and Dalpke et al. (2004). Zhao & Kerekes (1995) and Zahrai & Bark
(1995) perform linear analytical studies of the application of a thin blade to a
pair of fabrics. Nonlinear numerical studies are undertaken by, among others,
Zahrai et al. (1997) and Roshanzamir et al. (2000). The effects on the pressure
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distribution of the interaction between different components in the forming
section are investigated by Holmqvist (2002). Common to these works, with
exception for the study by Zahrai et al. (1998), is that little attention is paid to
the presence of the fibre webs on the fabrics. The combined drainage resistance
of the wire and the fibre mat is either assumed constant, or is assumed to
increase at a rate proportional to the drainage flux. The latter alternative
implies the supposition that the resistance to drainage is proportional to the
quantity of fibres in the web, and that this amount in turn is proportional
to the (superficial) drainage velocity. Nevertheless, good agreement is found
between the calculated pressures and experimental measurements (see e.g. Zhao
& Kerekes 1995; Zahrai et al. 1997). It should be noted, however, that these
comparisons only involve single components, such as a single blade, and that
the accumulated discrepancy could perhaps become large if a complete forming
section was modelled. In order to improve the models of the forming section,
it is desirable to include the effects of the fibre networks present between the
fabrics in a more rigorous way. The motivation for this is not only that it
will improve the predictions of the pressure and the drainage rates. As the
fibre webs in the forming section will eventually become the final paper sheet,
understanding how they are effected by the forming process is of paramount
importance.

Models have been developed for uniaxial pressure filtration of flocculated
suspensions, such as the works by Landman et al. (1991) and Landman &
Russel (1993). These account for the resistance to deformation exhibited by
the interconnected network of solid particles immersed in the suspending fluid,
and for the effects of reduced permeability of the network as it is compacted.
Martinez (1998) adapts the analysis by Landman et al. (1991) to predict the
drainage rate during roll forming. Zahrai et al. (1998) employ the same concepts
to derive an expression for the fibre mat thickness during roll forming, which is
then used in a calculation of the pressure distribution!. Reasonable agreement
is found with experimental results. In a recent study by Lobosco (2004), a
uniaxial model is presented for the dewatering of a fibre suspension network
filling the gap between two forming fabrics (a situation analogous to piston-
driven pressure filtration). The suspension is subjected to a time-varying load
representing pressure pulses, and large concentration gradients are observed in
the fibre web.

The ambition in the present article is to study the behaviour of one of the
fibre mats in a twin-wire former when it is subjected to a pressure pulse induced
by a blade. Like Martinez before us, we shall follow Landman et al. (1991) in the
derivation of an equation for the deformation of the fibre web in the direction
perpendicular to the fabric. No strain-rate dependent stresses are included in
this direction, and the fibre network is modelled as a plastic material. In the

INeither Martinez nor Zahrai et al. present the solution for the fibre-concentration in the
mat, although Martinez does calculate it.
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FIGURE 1. Schematic illustration of the modelled forming sec-
tion. Note that the proportions are not correct.

direction parallel to the wire, the modelling assumptions result in deformation-
rates controlled by the viscous properties of the suspension mixture. From the
numerical solution of the governing equations, we are able to draw conclusions
about the influence of structural changes in the network on the resistance to
drainage presented by the web. We are also able to estimate the magnitude of
the shear stresses experienced by the mat as a result of the pressure pulse and
the drainage flow.

2. Formulation

Consider a small twin-wire forming section, consisting of a roll followed by
a single thin blade, as is illustrated in figure 1. The treatment is based on
the assumption that the fibre sheets forming on the wires are separated by a
layer of freely moving suspension, see figure 2. Our fibre suspension has two
incompressible constituents, a particle (fibre) phase and a liquid (water) phase.
It is tacitly assumed that it is meaningful to model both phases as continua.
The extent of the fibre mats is defined by stating that in the bulk of the
suspension, the volume concentration of fibres, denoted ¢, is so low that forces
cannot be transmitted over longer distances by particle contacts, whereas in
the mat this is possible. Note that this does not exclude the presence of fibre
flocs in the free suspension. It merely says that the flocs are not to such a large
degree in contact with one another that it severely hinders their ability to move
relative each other. The limiting concentration is called the ‘gel point’; and is
denoted ¢4,. When ¢ > ¢4, a network of interconnected particles is present
that makes a finite resistance to deformation. At any position in the network,
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the stress state can be divided into an isotropic component, denoted py, and
a deviatoric part. Even though the deviatoric stresses are not necessarily of
insignificant magnitude, we shall choose to neglect them in the present paper,
and only retain the ‘particle pressure’ py. Since a single scalar quantity then
measures the load intensity, the constitutive model of the fibre network can be
made very simple. Let us define a yield function f, that represents the strength
of the material, and assume that it is only dependent on the local concentration
of fibres. The following power law is adopted,

f(@) =m(p — )", (1)
where m and n are empirical constants. Notice that the network makes no
resistance to deformation when ¢ = ¢,. Similar looking expressions have been
introduced by other authors, see e.g. Martinez (1998) and Zahrai et al. (1998).
Whenever pg < f(¢), the network locally behaves like a stiff body, whereas if
pa > f(&), the network collapses till the concentration has increased enough
to yield a structure strong enough to balance the applied load. Following
Buscall & White (1987), we assume the collapse to be sufficiently rapid for us
to set pg = f(¢) all through the collapse process. This is likely to be a good
description if the collapse is rate-determined by the expulsion of water from in
between the fibres, rather than the necessity to displace fibres in relation to
each other.

The suspension in between the mats is taken to be of homogeneous con-
centration ¢9 < ¢4. In the mats the concentration is a function of position

The problem is assumed two-dimensional and stationary in a spatially fixed
natural co-ordinate system (z,y), where x is the distance travelled along the
machine direction, and y is the direction normal to one of the fabrics. It is
supposed that the gap between the wires is sufficiently small compared to the
radius of curvature of the fabrics that the problem can be considered plane,
i.e. the (z,y)-system can be treated as an ordinary Cartesian system. If X is
the ratio between the characteristic length scales parallel and transversal to
the fabrics, this is equivalent to stating that A2 < 1. In what follows, we
shall only study the fibre mat residing on the fabric whose suspension side by
definition is located at y = 0. The free suspension side of the fibre mat is found
at y = H(z). This side will sometimes be referred to as the ‘upper’ side of the
web, since it corresponds to a larger y-value.

Let ug and u. denote the mass-averaged interstitial velocities of the two
phases?, where, here and henceforth, the subscripts d and ¢ will be used to
distinguish between the dispersed fibre phase, and the continuous liquid phase,
respectively. The densities of the constituents are denoted pg and p.. The
following quantities are also defined,

jd = duq, (2)

2As the constituents are incompressible, these velocities equal the corresponding volume
averaged quantities.
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Je=(01-9d)uc, (3)
J=Jatic (4)
U, = Ug — Ug (5)
(6)
(7)

(=)

Ps = ¢pd + (1 - ¢)p07
o pd(bud + (1 - ¢)pcuc
S ps )

where j,; and j, are the fibre and liquid volume flux densities (i.e. the superficial
velocities), j is the mixture (or suspension) volume flux density, w, is the
relative velocity between the phases, and ps and ug are the mixture density and
velocity, respectively. The suspension is governed by the following equations,
(see e.g. Ungarish 1993, p. 22),

7

V-ja=0, 9)

patty - Vit = —Vpe — Vpg +V -7y — V- (¢(1 — gL dww) . (10)

S

The equations (8) and (9) enforces volume continuity of the mixture and the
dispersed phase, respectively. Equation (10) is the momentum balance for the
suspension, where p. is the liquid pressure. Strain-rate dependent stresses are
accounted for by 7n. These will be modelled after a Newtonian pattern, and
we therefore equip the suspension with an effective kinematic viscosity function

vs(@) = v (1 + agbb) . (11)
Here, v, is the kinematic viscosity of the liquid phase, and a and b are empirical
constants. Power law expressions for the viscosity of fibre suspensions have
previously been introduced by, among others, Bennington & Kerekes (1996).
The last term on the right hand side of (10) is an inertial ‘diffusion stress’. To
close the system we adopt the following constitutive relation for u,.,

Uy = 7MVpd, (12)

(&
where k(¢) is a permeability function, and p. is the dynamic viscosity of the
liquid phase. Relation (12) can be derived from a two-fluid model of the sus-
pension, in which inertia of the relative motion is neglected and the coupling
between the two phases is modelled by Darcy’s law. We introduce it here as a
postulate, and note that the fibres and the liquid are assumed to follow each
other perfectly unless this is prevented by inter-particle forces.

The formulation of equations governing the pressure build-up in the free
suspension and the positions of the wires is not considered here. Our concern is
only the regions closest to the fabrics (see figure 2), i.e. the regions which may
be regarded as concentration and velocity boundary layers surrounding the
free suspension (note that the concentration boundary layers are simply the
mats). As boundary conditions at the wires, we adopt a no slip condition for
the suspension flow parallel to the fabrics, and a no penetration condition for
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FIGURE 2. Different regions: the wire, the fibre mat, the ve-
locity boundary layer (including the mat), and the free suspen-
sion. A schematic illustration of the horizontal velocity profile
in the suspension relative the fabric is given. When drawn as
in the figure, us is negative, which is the case when the liquid
pressure p. > 0. The fibre mat thickness is H(x), and the total
drainage flux is J(z) (positive in the direction of increasing
y-values).

the fibre velocity perpendicular to the wires. The retention is hence assumed
to be perfect. Further, the liquid pressure is taken to be zero at the position
of the wires. There is thus no pressure drop across the fabrics themselves,
and ‘blockage effects’ from fibres filling the pore openings on the fabric surface
are neglected. In the outer part of the boundary layers, the variables must
adapt to the conditions of the free suspension. At last, inlet conditions for the
boundary layers are found by considering a preformed fibre mat from an earlier
stage of the forming section. Here, we assume a fibre mat emanating from a
roll dewatering stage. The velocity of the suspension in the mat is supposed
to equal the velocity of the free suspension at the start of the blade pressure
pulse.

3. Analysis
3.1. Estimation of magnitudes

Given the value of pg in table 2, it is seen from (6) that the relative difference
(ps(d) — pe)/pe is less than 5% when ¢ < 0.25, which is approximately the
range of concentrations encountered in this study. We shall thus henceforth set
ps(@) = pe in all regions.

In figure 1, a pressure pulse is generated by wrapping the fabrics over the
blade by a small angle 6, thus creating a constriction to which the flow must
adapt. A close-up of the region around the blade is seen in figure 3. The
pressure build-up is an effect of the combined finite resistance to drainage of
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FIGURE 3. Schematic close-up of the deflection in the blade
region. d,: initial gap size, #: wrap angle, r: radius of cur-
vature of the fabric, L: measure of the reach of the pulse, U:
machine speed.

the wires and the adhering webs, denoted R. To achieve a (superficial) drainage
velocity wg, a pressure pg is needed, and

Do ~ R’UJO ) (13>

where from now on we suppose that p. = 0 corresponds to the surrounding
atmospheric pressure. Let L denote the length in the machine direction over
which the pulse acts, and the fabrics curve. Clearly, L ~ 6r, where r is the
radius of curvature of the fabrics. Further, the reduction of the gap size is at
the blade seen to be of magnitude Ah ~ L. If the liquid pass more or less
unhindered through the fabric, Lwy ~ AhU, providing

Inserting the relation for wy into the expression (13) yields,
Po ~ OUR. (15)

The pressure is also directly related to the curvature and the wire tension,
po ~T/r ~TO/L, and the reach of the pulse is hence

T
L~— 16
UR’ (16)
which yields the reduction of the gap size
0T
Ah ~ —. 17

The rate of change of momentum perpendicular to the upstream path of the
fabrics (neglecting drainage) is p.dsU?6, where d, denotes the distance be-
tween the fabrics upstream of the pulse. The pressure gradient deflecting the
suspension gives therefore rise to a pressure difference across the gap between
the fabrics that is roughly p.U?8d,/L, which is normally significantly less than
the pressure pg given by (15) (cf. tables 1 and 2 for typical parameter values).
The pressure can therefore be considered as roughly constant in the suspen-
sion between the fabrics/webs, and both wires have approximately the same
curvature.

The rate of change of horizontal momentum, as the suspension is slowed
down by the increasing pressure, provides the magnitude of the relative velocity
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in the z-direction between the suspension and the fabrics during the pressure

pulse,
Po OR R

~N — ~

pU  pe pU

Now, let vy denote the magnitude of the velocity in the direction perpen-
dicular to the fabrics. Note that this velocity does not necessarily equal the
drainage velocity. Continuity requires that ug/L ~ vg/ds. Together with (16)
and (18), this implies

wo - (18)

ug ~

2R%d,
pcT
From (15) it is clear that a small resistance R has a damping effect on the
pulse. Actually, Zhao & Kerekes (1995) show that A < 1 is required for the
damping to be sufficiently strong to avoid oscillating solutions®. Above, we
assumed the liquid to pass easily through the wires, and consequently A to be
small. However, the solution by Zhao & Kerekes indicates that (15), and by
consequence the rest of the analysis, holds for A < 1. Typically, A ~ 1 (cf.
tables 1 and 2). Further, the pulse can be regarded as a damped capillary
wave, and the effects of the blade are thus only seen upstream of the blade.
Downstream, p. = 0, and the fabrics run in parallel. It follows that (17)
provides an indication of the total reduction of the gap size due to the pulse.

vg ~ Awg ~ AOU  where A = (19)

We conclude by commenting that it is straightforward to show that 1/6 is
actually analogous to a Weber number, expressing the ratio between the flux of
momentum between the fabrics, and the pressure due to the wire-tension and
curvature, acting over a distance L.

3.2. Equations for the free suspension

In the free suspension occupying the region between the webs there are, by
definition, no inter-particle stresses, and hence u,, = 0. Decompose the mixture
velocity in this region according to
Us = (U + uoo)€g + vcey . (20)
In Appendix A it is demonstrated that, in the z-direction, the momentum
balance in the bulk of the suspension turns into
duse 1 dpeo
U = __ e 21
dz pe dx (21)
The bulk flow is hence inviscid, but adjacent to the mats, there are velocity
boundary layers of thickness L/v/ Re, the Reynolds number being defined as
LU
Re = —, (22)
Vo
where vy = v4(dg). From the point of view of the boundary layers, the pressure
pulse poo(x), and thereby u(z), may be regarded as prescribed functions,

3In the analysis, R is constant.
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whereas the magnitude of v, immediately outside of the velocity boundary
layer will follow as part of the analysis of the layers.

3.3. Equations for the boundary layers

Conservation of the suspension mixture as a whole is expressed by (8). In the
boundary layer, we shall suppose that it simplifies to (see appendix B.1)
ajY
oy 0, (23)
since the velocity component along the wire deviates only weakly from the
constant speed U of the fabrics. The validity of (23) is somewhat tenuous,
since it depends on the fibre mat being much thinner than the gap between the
wires (alternatively A < 1), but it will be accepted in the present study as it
greatly facilitates the treatment.
Based on the estimates in section 3.1, conservation of the dispersed phase,
equation (9), yields the governing equation for the compaction of the fibre mats
(see appendix B.2)

06,00 _ 0 k() apd> | -

_ y_ T — _ el
Vae T3y = 3y (W D e Oy

where according to (23), the mixture flux perpendicular to the fabrics is only
a function of the position in the machine direction, i.e.

3 =J(x). (25)

The terms on the left hand side of (24) represents, in turn, convection of fibres
in the z-direction, due to the motion of the fabrics, and convection towards the
wire as fibres are entrained by the mixture flux in that direction. On the right
hand side, there is a diffusive term, corresponding to the relative transport of
fibres due to gradients in the inter-particle pressure. We shall suppose that
this pressure always equals the yield pressure of the network,

pa=f(9), (26)

which according to the discussion in section 2 is reasonable only if there is no
position in the fibre network where the load is relaxed. The consequences of
relation (26) are further discussed in section 4.

Now define a ‘diffusivity function’,

k(¢)

c

D(¢) = ¢(1 = ¢)——=[f'(¢) (27)

so that (24) can be written

9 9 0 ¢
UG TG =5 (D(¢)ay> . (28)
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The permeability k(¢) is assumed given by the modified form of the Kozeny-
Carman equation that is introduced for low concentration fibre mats by Ing-

manson et al. (1959),
1
k(¢) = —=——+
(d)) 35S§¢15 ’

in which Sy is the specific surface of the fibres.

(29)

Introduce the mixture velocity components us and vy relative the fabrics
such that
us = (U + us)eg + vsey, . (30)
They are of sizes ug and wy, respectively, and, according to (14) and (18), thus
much smaller than U.
The momentum balance (10) is in appendix B.3 shown to reduce to the
following in the y-direction,

_ Opc | Opa
Oy Oy
Inertial and strain-rate dependent effects are hence negligible, and there is a
balance between liquid pressure and inter-particle forces. Equation (31) is a
manifestation of Terzaghi’s effective stress principle (Terzaghi 1943), which, in
order to be valid, requires the particle-particle and particle-surface contacts to
be point-like (Kataja et al. 1995).

Parallel to the fabrics, both inertia and strain-rate dependent forces take
part in the balance. In appendix B.3 it is seen that, in the velocity boundary
layer, the significant terms of (10) in that direction are

Oug Ous _i Ope 1 Opg 0 Oug
o + vy ( <(9) By) .

0

(31)

U

0y p.Ox pcOx Oy

(32)

3.4. Connecting the regions

The mixture flux density is related to the mass-averaged suspension velocity
through

. Pd — P

J =Uus — ¢(1 - (b)TCUT . (33)

S

Since in the free suspension u,. = 0, we there have v, = j¥. This is not strictly
true in the fibre mat, but we adopt this approximation which holds if the
relative density difference between the phases is neglected, and thus vy = J(z)
in the boundary layers. Integration of (31) yields

Pe + Pa = pc() - (34)
Further, introduce the measure Aug(z,y), expressing the velocity deficit (par-

allel to the fabrics) with respect to the bulk velocity in the suspension velocity
boundary layer,

[us - ez],, =U +us =U + use(x) + Aus, . (35)

Thus, if Aus = 0, the velocity component parallel to the fabrics equals the
velocity in the free suspension, whereas if Au, = —uso(x), the velocity equals
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that of the fabrics. Now, by using (34) in (32), and then inserting (35), we
obtain the equation

U@Aus () 0Aug 0 (l/s(gb) OAuS) , (36)

ox dy Oy dy
where (21) have been used to eliminate the pressure gradient.

At this point, two similar equations are available for the compaction normal
to the fabrics and the displacements parallel to the fabrics, i.e. (28) and (36).
We shall now determine expressions for the flux J(z) and the mat height H(z).
By using the definitions (2)—(5), and the postulate (12), the fibre phase velocity
perpendicular to the fabrics can be expressed as
K(9) Opa (37)
pre Oy
Since all fibres are retained by the wires, v = 0 at y = 0. Using (26) and (27),
the mixture flux is thus seen to be given by

- [20%]

va = J(x) = (1-¢)

(38)
¢ Oy

The volume of fibres per unit area in the cross machine direction of the forming
section is

o(z) = A bdy. (39)

By considering a control volume around a segment of the fibre mat it is easy to
derive an expression for the rate of change of ¢ due to transport of fibres from
the free suspension into the fibre mat,

d dH
Uﬁ = —¢o (J(:r) - de> . (40)
Note that the build-up of fibres in the mat is affected by the evolution of
the mat thickness along the machine direction. It is the difference between the
drainage flux and the rate of displacement of the top of the mat that determines
the amount of deposited fibres. A relation similar to (38), linking dH/dx to
the concentration gradient at y = H(z), can be obtained by differentiating
(39), evaluating the integral in the resulting expression with the help of (28),
and then combining the obtained expression with (40). We prefer, however, to
obtain the fibre mat thickness from the integral equation obtained by direct
integration of (40),

1 H(x) 1 T

H(x):H(:UO)—i—f/ ¢dy+f/ Jda', (41)
o H (o) U zo

which is solved simultaneously with the differential equations. The position

T = xg is the upstream end of the solution domain, where a finite fibre mat

is already present. It should be observed that the dependence upon z in the

differential equations (28) and (36) only enters as a result of the convection
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along the fabrics with speed U. The problem is thus parabolic, and ‘initial
conditions’ must be specified at x = xg.

3.5. Initial and boundary conditions

We shall now formulate the explicit boundary and initial conditions necessary
to solve the governing equations. Since p. = 0 at the fabrics, relation (34)
provides the following boundary condition

¢ =bu(@) =" (poo(w)) at y=0. (42)

At y = H(x), the liquid pressure is po(x). By considering the balance (34) we
conclude that the top of the network never carries any load. Hence,

b=¢, at y=H(x). (43)

This remains true regardless of the strength of the drainage flux J(x), as long
as there is a region of suspension of concentration ¢ lower than the gel concen-
tration outside of the mat. The only possible way to transmit load to the fibre
mat is through inter-phase drag. The transferred load is hence monotonously
increasing as the fabric is approached, starting from zero at the top of the mat.

For the velocity Aug, we have the conditions
Aug = —uso(z) at y=0, (44)

Aus — 0 as y—o0. (45)

In addition, at y = H(x), continuous shear stress and velocity must be ensured.
Hence, as the concentration is discontinuous across y = H(x), and consequently
also the effective dynamic viscosity vs(¢)/pe, there will be a discontinuity in
the velocity gradient at that position.

An initial concentration profile ¢(zo, y) is needed at the start of the pressure
pulse. For this purpose, let us assume that the drainage pressure is constant
in the roll section, and consider what kind of fibre mats are built up as the
fabrics pass that part of the machine. It is found by Zahrai et al. (1998), that
H(z) ~ v/ during constant pressure roll forming of a suspension of constant
concentration (through perfectly permeable fabrics). Further, the authors show
that the fibre concentration profiles are self-similar, ¢(y/H(x)), although the
similarity solution itself is not given. Even if it is a straightforward task to
obtain the similarity solution for the roll forming part numerically, we choose
a different approach enabling an analytical solution.

In a special situation, there exists an asymptotic solution to equation (28)
as * — oo. Suppose that we let a suspension of concentration ¢y < ¢4 be
filtered by a constant pressure ps.. Assume further that the mixture only con-
tains a certain amount of fibres per unit length of the wire, and that when
these have all been deposited, only clear liquid flows through the mat. Asymp-
totically, the web will cease to compact, and the state would appear steady
when travelling with the fabrics (i.e. there is no dependence on the position
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x). Since then vy = 0 in the mat, we obtain a separable differential equation
for ¢(y) by inserting (26) into (37). Integrating it in the y-direction reveals,

B ¢(y)M
v = | TP a0, (46)

where J is now constant. Evaluating (46) at y = H, and combining the result
with the same relation, we find an equation for the asymptotic concentration
profile as a function of y/H,

y bg quﬁ B /cb(y/H) M
HJ)y, ¢ y ¢
As D(¢) is known, we can for every choice of y/H calculate ¢(y/H). The
drainage pressure influences the shape of the profile through ¢,,. The constant
mat thickness H is determined by the amount of fibres contained in the web.
Alternatively, H can be chosen at will, and the necessary amount of fibres
needed to achieve that thickness can be calculated. Again using (37), this time
after having replaced the particle pressure by the liquid pressure via expression
(31), the asymptotic flux through the mat follows from an integration across

the mat, "
_ M
7=/ / (EPOR (48)

Note that, for a given drainage pressure, the concentration profiles for dif-
ferent H are of the same shape when plotted versus y/H. This is analogous
to the similarity solution for the constant pressure roll forming case discussed
above, where the profiles at different positions x are of the same shape when
plotted versus y/H(x). The total amount of fibres per unit length for the as-
ymptotic case of thickness H would then correspond to the amount of fibres
accumulated up to a certain position x in the roll forming case in a mat of the
same thickness. To investigate this analysis closer, (28) was solved for constant
drainage pressures pso, using a thin incipient fibre mat as initial condition. It
was clearly seen that the solutions became self-similar downstream. Further, it
was noted that the shape of the similarity solution was very close to the asymp-
totic profile. Therefore, due to the simplicity of the analytical solution (47),
asymptotic profiles of suitable thickness H(xzp) was used as initial condition

(j)(l’o, y) .
The initial condition for the velocity is simply Aug(xg,y) = 0.

dé. (47)

4. Results
4.1. About the simulations

As pointed out in section 2, we are not concerned with the details of the pressure
build-up in the free suspension. Instead, the analytical solution presented by
Zhao & Kerekes (1995) for the drainage pressure generated by a pair of fabrics
deflected over a blade will be used to obtain po(z) and ux(2z). The theory
assumes the blade to be thin, i.e. without extension in the machine direction,
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and a constant drainage resistance R. We have used the resistance of the
initial mat at « = g, which equals the integral in (48) evaluated for the initial
concentration distribution. Obviously, the resistance is expected to increase in
the machine direction, as the fabrics pass over the blade, and equations (15)
and (16) indicate that the effect will be a pressure pulse of larger magnitude,
but of shorter reach. This is in accordance with results in the literature (see
e.g. Green & Kerekes 1998). Since for our purposes we only need a qualitatively
correct solution for the free suspension, we disregard the influence of factors
not accounted for in the analytical solution.

When the constitutive relation (26) was introduced, it was observed that its
validity requires the loads in the network not to relax at any position. From the
condition that the liquid pressure is zero at the wire surface, and equation (34),
follows that a relaxation will occur at the fabric if poo(2) is not monotonically
increasing in the machine direction. If po(z) decreases, a stiff region appears
next to the wire, in which the inter-particle stresses cannot be found directly
from the concentration. In order not to violate the load restriction, we shall
neglect the initial part of the blade pulses obtained from the theory by Zhao &
Kerekes, and assume that the pulse immediately starts at the pressure which
was used to generate the initial fibre mat, i.e. pso (29) = Proy- The roll pressure
will deliberately be chosen small, in order to make a large part of the following
pulse active. We must also neglect the part of the pulse downstream of its
maximum value.

Table 1 contains sets of parameter values (named A-F) used to calculate
the presented results, as well as the symbols that distinguish between the dif-
ferent cases in the result plots. In addition, the parameters in table 2 are
unchanged between the simulations. The values of m and n are the same as
those chosen by Zahrai et al. (1998). Also according to these authors, typical
values of Sy lie in the range 10° — 10 m~!. We have decided upon certain
values and from them calculated | = 1/Sy. The initial drainage resistances
R(x) are also found in table 1. For reference, Zhao & Kerekes (1995) estimate
that a TMP fibre mat of basis weight 10 g/m? correspond to a drainage resis-
tance of about 20 kNs/m?3%. The parameters a and b are chosen so that fair
consistency is obtained with the approximate relation for the dynamic viscosity
of pulp suspensions given by Bennington & Kerekes (1996). The experiments
conducted to determine the viscosity were performed under conditions quite
different from those encountered in a blade forming section. We also note
that the concentrations ¢ and ¢, in table 2 are slightly outside the validity
range 0.02 < ¢ < 0.25 provided by Bennington & Kerekes for the viscosity
expression. Their findings nevertheless yield an indication of the magnitude of
the effective viscosity. The density of wet fibres varies considerably, since the
water retention capacity of the fibres is highly dependent on how they have

4Presumably, the resistance of the fabric is included in this value, whereas in table 1 it is
not.
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A B C D E F
U [m/s] 18 18 18 18 18 10
T [kN/m)] 10 10 10 10 10 6
dsg [mm] 2 2 2 2 2 5
H(zp) [mm] 0.6 0.6 0.6 0.6 0.6 1.2
0 [rad] 0.015 0.02 0.025 0.017 0.02 0.044
So/10°  [m™1] 7.7 7.7 7.7 11 4.4 7.7
l [pm)] 1.3 1.3 1.3 0.95 2.2 1.3
R(xo) [kNs/m?] 42 42 42 79 14 85
Symbol A o O <o < +
TABLE 1. Parameter sets used in the simulations. In addition,
table 2 contains input parameters that are the same in all
simulations.
m 500 kPa a 2.8 10° e 1072 Pas
n 2.5 b 3.1 Ve 1079 m?/s
dg | 0.01 pe | 103 kg/m? proit | 4.3 kPa
¢o | 0.005 pa | 1.2-10% kg/m?

TABLE 2. Parameter values that are not changed between the
different simulations.

been treated. The actual value is bound by p. and the density of dry cellulose
(1.5- 103 kg/m?), and we therefore arbitrarily set pg = 1.2 - 10% kg/m3.

Appendix C contains an outline of the numerical solution procedure.

4.2. The concentration boundary layer

The pressure pulses corresponding to the simulations A-F are collected in fig-
ure 4. Both the magnitude and the reach of the pulses varies considerably,
depending on the employed set of parameters. Note e.g. the influence of the
specific surface: Simulation D and E are performed with similar parameter
values (the wrap angles differ slightly), except that for case D (symbol ¢) Sy is
1.1-10% m™!, whereas for case E it is 4.4 - 10> m~! (symbol <). These choices
are both within the range of magnitudes of the values cited in the literature for
the specific surface, the former yielding lower permeabilities, the latter higher.
In figure 4, the corresponding pressure distributions are of very different am-
plitude, and the upstream reach of the pulse in simulation D is twice that of
simulation E.

During the compaction, the distribution of fibres in the mat changes. Fig-
ure 5 contains concentration profiles at different positions along the machine
direction for the simulations C and F in table 1 (left and right subfigure,
resp.). The co-ordinate x have been normalised with the length L, of the
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P [kPa]
2

-0.02 -0.015 -0.01 -0.005 0
X [m]

FIGURE 4. The pressure distributions corresponding to the
parameter sets in table 1: A (A), B (o), C (O), D (¢), E (<)
and F (+). Maximum pressure is reached at x = 0. The hori-
zontal line indicates the magnitude of the roll pressure, p,o; =
4.3 kPa. The solution by Zhao & Kerekes (1995): poo(x) =
OR(x0)U [exp(2(x — xp)ca/L) — exp(2(z — ap)e1/L)] V1 — A,
where ¢;2 = (1 £+v1—A)/A and = is the position of the
blade.

simulated part of the pulse, so that /L, = —1 corresponds to the position
where poo(20) = prou, and x/L, = 0 to the position where po(z) attains its
maximum value. The initial asymptotic profiles are given as dashed lines. As
seen in figure 4, the pressure pulses for case C and F are of the same amplitude
and comparable reach. The initial fibre mat is twice as thick in simulation F
as compared to C. In both situations, the mat is more compacted closer to the
wire (at y = 0). This is a consequence of the load transferred to the network
increasing in the direction towards the fabric (cf. section 3.5). At the upper
surface of the web, the network is unloaded and ¢ = ¢,. On the other hand,
the concentration at the fabric surface ¢,, is directly given by the drainage
pressure through (42). It is noteworthy that the span of concentrations in
the mats increases significantly in both simulations as a result of the pressure
pulse. Although qualitatively very similar, there are small quantitative differ-
ences between the cases C and F. It is seen that thickness of the fibre mat
is more reduced by the pulse (in relative terms) in simulation C than in F.
Further, the concentration profiles in simulation F present a somewhat more
marked change of slope at about y/H (zg) = 0.3 — 0.4. In certain dewatering
applications, ‘clogging’ can reduce the efficiency. A high degree of compaction
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0 0.05 0.1 0.15 0.2 0.25

FIGURE 5. Concentration profiles at z/L,= -1, -0.75, -0.5,
-0.25 and 0, for simulations C (left subfigure) and F (right sub-
figure), corresponding to comparable pressure pulses. H(zg)
for case F is twice the value of case C. Cf. table 1 for parameter
values. Stations closer to the blade correspond to larger values
of ¢ at y = 0. The dashed lines are the initial asymptotic solu-
tions. The vertical dotted lines indicate the gel concentration

bg-

of the particle network then occurs at the outlet, and a thin cake of high con-
centration and low permeability forms that acts as a lid, preventing efficient
drainage of the uncompressed ‘inner’ regions of the suspension, where the net-
work is almost unloaded. The ¢-profiles in figure 5 are representative of all
the considered cases. Thus, ‘clogging’ does not appear to be an issue with the
present model, notwithstanding the possibility of this occurring if the increase
in R(x) is accounted for in the pressure pulse.

The drainage flux J(z) (i.e. the superficial drainage velocity), as well as
the rate of displacement of the to top of the fibre mat UdH /dx, are presented
for the simulations A and C in the left half of figure 6. The values have been
scaled with the speed of the fabrics. The cases A and C differ with respect to
the wrap angle 6, which is 0.015 rad in the former calculation, and 0.025 rad
in the latter. In figure 4 it is seen that the pressure pulse thus acts over a
longer distance, and is of larger amplitude, in case C as compared to A. The
consequence is a drainage flux, and a rate of change of the mat thickness, that
is of higher magnitude in C than in A. At the upstream end, dH/dz is positive
for both cases. Hence, the fibre mat gets thicker in the machine direction due to
fibre deposition. Almost immediately, however, the drainage flux grows strong
enough to outweigh the effect of the deposition. The drag between the liquid
and the fibre network causes sufficient compression of the web for the thickness
to decrease, and for dH /dx to become negative. According to (40), the rate of
fibre deposition onto the web is proportional to the distance between the solid
and the dashed curves in figure 6, and is thus roughly equal in A and C, and
almost constant throughout the pulses.
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FIGURE 6. The drainage mixture flux J(z) (dashed curves),
and the displacement rate of the top of the fibre mat UdH /dx
(solid curves), normalised with the wire speed U. The position
x is scaled with the length of the pressure pulse, L,. Left
subfigure: Case A (A) and C (O). Right subfigure: Case D
(¢) and E (). Cf. table 1 for parameter values.

The increase of the amount of fibres in the mat, relative to the quantity at
the start of the pulse, is plotted for A and C in figure 8. One should note that
the quantity of fibres in the mat increases only about 1% and 0.7% during the
pulse, for case A and C, respectively. These values should be compared to the
evolution of H (x), which is presented in figure 7. Case A yields a final web that
is about 92% of the initial height. The corresponding ratio is 79% for case C.
The major effect of the drainage is hence to compress the mat, rather than to
increase the web thickness by adding fibres. From the left graph in figure 6, it
can be be concluded that the maximum value of the deposition rate would have
been about 2 and 3 times higher in simulations A and C, respectively, had the
mat had a constant thickness during the pulse. It is possible that the observed
behaviour would not be so pronounced at subsequent blades, downstream of the
first one, since the fibre network is there more compacted, and thus stronger,
already at the onset of the pulse. Forming the initial mat using a higher roll
pressure might also reduce the observed behaviour, for the same reason.

The right half of figure 6 contains plots of J(z) and UdH /dx for the sim-
ulations D and E. These are conducted with similar wrap angles, but with
values for the specific surface of the fibres that differs significantly. Case D
corresponds to a mat of low permeability. The peak pressure is of the same
magnitude as in simulation C (see figure 4), whereas, due to the high resis-
tance, the drainage flux is only of the same magnitude as observed for case A
in the left half of figure 6. From the plot of J(z) and UdH/dz, it can also
be concluded that the rate of fibre deposition is low. Since, in addition, the
reach of the pressure pulse is fairly short, the quantity of fibres in the mat
only increases about 0.35% during the pass over the blade. Figure 7 contains
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FIGURE 7. The evolution of the fibre mat thickness H (z), nor-
malised with the initial thickness H(xg), in the simulations A
(A), C (O), D (¢) and E (). The position z is scaled with
the length of the pressure pulse, L,. Cf. table 1 for parameter
values.

the corresponding evolution of H(x). On the other hand, simulation E is per-
formed with a value for the specific surface such that the resistance to drainage
is low (considering mat thickness and concentration distribution). Although
the pressure is now of small magnitude, figure 6 reveals that the drainage flux
is slightly larger than for case C. Due to the small interface drag, and the
high deposition rate, the mat thickness changes fairly slowly in the machine
direction, growing during the first half of the pulse, and decreasing during the
second half. H(x) for this case is plotted in figure 7. Neverthelss, due to the
very short pulse length, the relative increase of the amount of fibres in the mat
is a modest 1% for calculation E.

In addition to the evolution of the amount of fibres in the web, figure 8
shows the increase of the drainage resistance R(z), relative to the value R(x)
of the initial fibre mat, for the simulations A and C. It is interesting to see
that although the amount of fibres in the mats changes by less than a percent,
the total change of the drainage resistance is approximately 13% and 29% for
case A and C, respectively. This increase is thus not due to the fibres added to
the mat, but to the reduced permeability of the compacted web, especially in
the highly compacted regions close to the fabric (cf. fig. 5). We note that, in
an experimental study of the filtration resistance of a fibre sheet formed under
constant drainage pressure, Wildfong et al. (2000) find that the resistance R(z),
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FI1GURE 8. Left subfigure: The increase of the drainage resis-
tance, R(x), normalised with the initial value R(zg). Right
subfigure: The increase of the quantity of fibres in the mat,
q(z), scaled with ¢(zg). A: simulation A. O: simulation C.
The position z is scaled with the length of the pressure pulse,
L,. Cf. table 1 for parameter values.

scaled with the height H(x) of the fibre mat®, does increase as result of mat
compression, but that this effect is small compared to increased resistance
caused by fines particles plugging the pores of the web. This is not accounted
for in the present model.

4.3. The velocity boundary layer

Figure 9 contains the velocity profiles Aus(y) at different positions x/L, for
simulation C. The velocity is scaled with the speed of the fabrics, and the
position y with the initial mat thickness H(zp). The symbols % indicate the
thickness of the mat at the position for which the profile is drawn. It is clear
that the velocity boundary layer almost coincides with the fibre mat region.
Only a small fraction is found outside of the web. Further, we note that
the discontinuity in the velocity gradient mentioned in section 3.5 cannot be
observed in the figure. This is a result of the viscosity jump at y = H(x) being
small. At the position nearest to the blade (i.e. z/L, = 0), about a quarter
of the web next to the wire moves with a velocity close to the speed of the
fabrics. This is not as pronounced at the earlier stations. The difference is
due to the larger effective viscosity of the mixture in the more compacted mats
closer to the blade. As the adopted viscosity function (11) is highly non-linear,
the concentration increase has a strong effect on the viscosity.

Let us define §(z) to be the distance between the top of the fibre mat, and
the position where Au,/U < 107°, the limit value being chosen arbitrarily.
Hence, §(z) measures the extent to which the velocity boundary layer protrudes
into the region between the two fibre mats. The evolution of d(x) during the

5Tn their uniaxial filtration experiments, the resistance R/H is dependent on time, rather
than the distance x.
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FicURE 9. The velocity boundary layer at the positions
x/L,=-1,-0.75,-0.5, -0.25 and 0, for simulation C. The veloc-
ity is scaled with the fabric speed U, and the position y with
the initial mat thickness. Note that us = us (z) + Aug, where
us 1s the suspension velocity relative the fabric, and wue ()
is the velocity in the free suspension. Thus Augs = 0 yields
Us = Uoo(T). At y =0, Aug = —uo, yielding us = 0. Stations
closer to the blade correspond to larger velocities at y = 0.
Note also that, by assumption Aus(y) = 0 at z/L, = —1.
Thus the corresponding profile coincides with the vertical axis.
* indicates the position y = H(x). Cf. table 1 for parameter
values.

pressure pulse is presented for simulations A, B and C in figure 10, scaled
with the initial mat thickness. During the early stages of the pulse, §(z) = 0.
This is a natural consequence of the simulations, since a certain distance is
needed before the velocity boundary layer, that starts from zero thickness,
has grown enough to reach detectably outside of the fibre mat (this is further
discussed below). The drainage flux towards the wires limits the growth of
d(z), whose maximum value is in the range 3-5% of the initial mat thickness
for the three cases. In simulation E, the velocity layer never extends outside of
the mat region. Consequently, the velocity layers do not fill the gap between
the fibre mats, which would have prevented the existence of an inviscid region
of free suspension surrounded by boundary layers. Since this situation has been
assumed, the present analysis would then not have been valid.



108 C. Holmquist € A. Dahlkild

0.05

0.04f

0.031

o [H(xy)

0.02-

0.01

FIGURE 10. The protrusion of the velocity boundary layer
into the region between the fibre mats for simulations A (A),
B (o) and C (O). ¢ is the distance between the top of the fibre
mat and the point where Au,/U < 1075, It is scaled with the
initial mat thickness. The position «x is scaled with the length
of the pressure pulse, L,. Cf. table 1 for parameter values.

From the velocity gradients and the effective viscosity, the Newtonian shear
stress component parallel to the fabric, 737, can be obtained as
oy Ous 0Aug
™ = pev(9) oy pev/ () 9y
By integrating equation (36) in the direction perpendicular to the fabric, from
a position y within the velocity boundary layer, to a position far up in the free
suspension, we find the following relation for the shear stress at level y,

. * 0Au,
) = ped @) Bunly) — U [ 25, (50)
Yy

(49)

where, for clarity, only the dependence on the position perpendicular to the
fabrics have been written out for 7Y (x,y) and Aug(x,y). The first term on the
right hand side of (50) results from the need to accelerate the free suspension
that is convected towards the fabric to the local suspension velocity. The
second term represents the shear stress needed to adjust to changes in the
machine direction of the relative velocity between the free suspension and the
boundary layer mixture, at all levels further away from the fabric. It is recalled
that, according to (34), the sum of the liquid and particle pressure is constant
throughout the boundary layer, and equal to p, (). Consequently, the gradient
dpeo(x)/dx acts equally on both the free suspension, and the mixture in the
boundary layer, and cannot influence the relative velocity Aus. This is the
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FIGURE 11. The viscous shear stress 7/ in the mat at y = 0
and y = H(z). Top subfigures: Case A. Bottom subfigures:
Case C. The stress is scaled with u.U/H (z), and the position
x by the length of the pressure pulse, L,. Solid lines: 73/
calculated using (49). Dashed lines: The estimate 7, obtained
by inserting the rectangular profile (51) into (50). Cf. table 1

for parameter values.

reason the free suspension pressure gradient is absent in the balance equation
(36). It is the shear stresses that enables the mat to, essentially, retain a velocity
close to that of the wire, rather than to be slowed down by the pressure pulse
to the same extent as the free suspension. Note that, since J(z) is negative,
and 0Aug/Ox is positive, both terms on the right hand side of (50) add to the
shear stress. The shear stress distribution during the blade pulse is plotted for
the cases A and C in figure 11, for the positions y = 0 and y = H (z).

In a real forming section, the free suspension velocity wus.(x) decreases
gradually as the pressure is built up, and when the position x = xq is reached
(i.e. where the calculations start) there is already a region in the mat where
the velocity Aus # 0, and the shear stress 75 is finite. Since the velocity
profile at the upstream end of the treated domain is not known to us, we
have simply assumed the initial condition Augs(y) = 0. Although not correct,
the simulations therefore predict vanishingly small shear stresses in the upper

regions of the mat during the first part of the pressure pulse, and infinite values
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at the wire surface. After some distance, the initial erroneous velocity profile is
forgot by the solution. This happens sooner in the regions closer to the fabric,
since the boundary velocity is correct. However, it would not be wise to trust
the initial predictions of 73/ obtained from (49). Instead, an estimate 7,(z,y)
of the magnitude of the shear stress in the regions far upstream of the blade
can be obtained by inserting the approximate velocity profile

Busfay) = { = v = 1 61)

into equation (50). The estimate is plotted as dashed curves in figure 11.

From figure 11 we conclude that, at the end of the pressure pulse, where it is
most likely safe to employ (49), the surface shear stress is —0.59 Pa and —2.2 Pa
in simulation A and C, respectively. The shear stresses next to the fabric are
of significantly larger magnitude than the surface values. Downstream, of the
faulty initial region, these high stresses are a consequence of the integral in (50),
which, when y = 0, represents the forces needed to achieve an acceleration of the
mixture in the entire velocity boundary layer, as observed in the interpretation
of the terms in (50). In calculation A, 7y/(y = 0) demonstrates a plateau
corresponding to —0.34 kPa, before the stress magnitude decreases. On the
other hand, calculation C yields a local minimum in the stress magnitude,
followed by a maximum corresponding to —0.54 kPa, before the stress level
again decreases prior to the peak of the pulse. At the later stages of the blade
pulses, when 73Y(y = 0) ceases to decrease after the initial large values, the
effects of the faulty initial conditions have probably abated, and the observed
stress levels can be trusted. The values are impressive, even after noting that
they occur in the densest, and consequently also the strongest, part of the mat.

It is evident from the velocity profiles in figure 9 that 7, is not a very accu-
rate approximation of 75 at the top of the mat, since Auy is there significantly
smaller than —us (). At y = 0, however, the first term in (50) obtains its cor-
rect value when (51) is inserted, and as the shape of the true velocity profiles
close to /L, = —1 probably resemble the one at z/L, = 0 in figure 9, we are
entitled to expect better agreement with the actual value. This is supported
by the plots in figure 11, where fair agreement is observed between 75 and 7,
for y = 0 at the intermediate stages of the pulse. The gradient du.,/dx tends
to zero as /L, — 0, and 7,(y = 0) thus approach the value of 7,(y = H(z)).
However, due to the inability (caused by inertia) of the boundary layer mixture
to perfectly adapt to the fabric velocity, the integral term in (50) remains of
considerable size also as the peak pressure is approached, and the corresponding
trend in 73/ (y = 0) lag behind. Nevertheless, the results presented in figure
11 highlight the importance to the shear stress of the integral term in (50).
Although the region downstream of the peak is not treated in the presented
study, it is worth commenting that both experimental and theoretical work (cf.
e.g. Zhao & Kerekes 1995; Zahrai et al. 1997) have revealed that the magnitude
of the gradient dp, /dz, and thus dus,/dz, and presumably also 0Au,/dx, are
significantly larger in that region than upstream of the pressure maximum.



Fibre mat behaviour 111

Hence, it is possible that even higher stresses (though of opposite sign) occur
during the part of the pulse not treated here. The decay of dAu,/dz towards
x/L, = 0 also explains why the largest stresses at y = 0 occur upstream of the
peak of the pressure pulse.

Finally, it should be pointed out that equation (50) would be valid regard-
less of how we chose to model the strain-rate dependent stress 7y in (10).
Hence, provided the compaction prependicular to the wire is not affected, the
magnitude of the stress at the fabric surface is not to a large degree dependent
on how we model the displacements in the machine direction, as long as the
mat mixture has a fairly strong tendency to follow the wire.

5. Concluding remarks

In the presented work we look at deformations and stresses in a fibre mat,
outside of which there is a region of free suspension, when it experiences a
blade pulse. A scaling analysis of the governing equations reveals that it is
reasonable to consider the region between the forming fabrics as composed of
an inviscid core, surrounded by velocity and concentration boundary layers.
This situation has in previous studies of forming been assumed a priori (cf.
e.g. Zahrai et al. 1997; Martinez 1998).

For the considered sets of parameters and boundary conditions, it is found
that the distribution of fibres in the mat does not show a marked tendency to
‘clog’ the drainage as a result of the pressure pulse. Rather, the concentration
exhibits a gradual increase from the gel value at the free suspension side, to a
high value corresponding to a network sufficiently strong to carry the drainage
load at the fabric surface.

It is observed that the compression of the web, caused by the drainage
flow through it, significantly reduces the rate of deposition of fibres at the mat
surface. Although the increase of the amount of fibres in the web, as a result
of the pulse, is overall rather modest, there is nevertheless a significant change
in the resistance to drainage of the free suspension presented by the web. This
is a consequence of the reduced permeability in the highly compacted regions
of the mat. To the extent that the effects of the dewatering on the resistance is
accounted for when modelling the pressure distributions in the forming section,
it is commonly assumed proportional to the accumulated amount of expelled
liquid® (cf. e.g. Green & Kerekes 1998; Holmqvist 2002). The hypothesis is
based on the assumption that the origin of the resistance is the amount of
fibres in the mat, and that the rate of change of this quantity in the machine
direction is directly proportional to the superficial dewatering velocity, neither
of which is thus correct if the mat is not stiff enough to resist compression due
to the loads induced by the drainage flow.

In respect to deformations perpendicular to the wires (i.e. compaction),
the fibre network is modelled as a plastic-rigid material exhibiting a concen-
tration dependent yield-stress. In order to relate the particle pressure to the

6 An exception is the study by Zahrai et al. (1998).
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concentration, the yield criterion is supposed always fulfilled, which prevents
us from relaxing the loads in the fibre network. As a consequence, only the part
upstream of the pressure pulse maximum is considered, starting from the value
at which the pulse first exceeds the roll pressure used to generate the initial
mat. Thus, not to exclude a substantial part of the pulse, the roll pressure is
chosen small. When it arrives at the blade, the web is consequently likely to be
less dense than it would be in a real paper-machine, where the loads induced by
the roll are higher. Further, although perhaps of less importance, the drainage
pressure during roll forming is not constant along the machine direction (cf.
Holm 2005), a supposition made to obtain the concentration profile of the ini-
tial mat. These factors should be kept in mind when considering the presented
results.

The drainage flux is seen to limit the protrusion of the velocity boundary
layer into the region between the mats. Indeed, the adjustment of the suspen-
sion to the velocity difference between the free suspension and the wire occurs
almost entirely in the web region. The shear stresses parallel to the fabrics
needed to accelerate the drainage flux to the local velocity of the mat mixture
is observed to be rather small compared to the shear stresses required to ensure
that a large part of the web mixture follows the fabric, instead of takes on the
velocity of the free suspension. The total shear stress at the surface of the
wire can apparently be of high magnitude. Although not accounted for in the
present study, it is likely that the shear loads reduce the bearing capacity of
the fibre network, and thus affect the compaction of the web.

In the absence of rate-independent deviatoric stresses, we find that the
deformations parallel to the fabric surface are controlled by the rate-dependent
(viscous) properties of the fibre mat. Although the presented stress levels at
the wires are not greatly influenced by the choice of constitutive model, as
long as the suspension mixture has a tendency to follow the fabric in a fairly
large part of the mat, the calculated deformations of the web are so. To the
papermaker, due to their influence on the characteristics of the final paper
sheet, these are among the most important quantities to predict. It would
therefore be of significant interest to develop a model that accounts also for the
rate-independent deviatoric stresses, that were here neglected at the outset to
simplify the treatment.

It is important to realise that many of the results in the current study
stand and fall with the hypothesis that it is meaningful to describe the fibre
phase as a continuum. The small physical dimension of the fibre mat in the
direction perpendicular to the fabric makes this a real issue, indeed. However,
due to the relative ease by which continuum mechanical models can be devel-
oped, compared to their micro-mechanical counterparts, the concept should be
explored also for the fibre sheets in the forming section, provided the inherent
limitations are contemplated.
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Appendix A. Simplifications in the free suspension

In the free suspension the momentum equation (10) becomes

pes - Vug = —Vp.+V - -7TxN. (52)
Introduce the following scaled variables,
A Ls N Yy N Us A Vs A Pc
= —_— = — s — — s — — c = — . 53
TI Y= " ug ! Vo P Do (53)

Inserting the scaled quantities into the x-component of (52), and using the

estimates in section 3.1 to rewrite the constant factors in a more informative

form, reveals,

8d5+<u0)  Od, (uo) O, op. 1 9%, 1 [L\? 0%,
OV a5 (20 — =) ==,

ot U/ 7oz U 01>

Yy T 9% " Re 93 ' Re \d, (54)
where rate-dependent stresses are of Newtonian type, the kinematic viscosity
being vy = vs(¢o). The Reynolds number Re is defined as LU/vy. As in the
free suspension the concentration ¢q is low, it is clear that the viscosity will
not differ several orders of magnitude from that of the suspending fluid, which
is also confirmed by (11). The typical parameter values in tables 1 and 2 reveal
that Re > 1, and consequently the viscous terms can be dropped. Further,
(18) reveals that ug/U is of size 10~2. Hence the relevant balance in equation
(54) is found to be

di, _dpe

dz  di’
by which (21) follows. As the order of the original equation is reduced, there
must be a boundary layer in the free suspension next to the fibre mat, in which
the last term on the left hand side of (54), and the last of the viscous terms,
also need to be included in the balance.

(55)

Appendix B. Simplifications in the boundary layers

As a measure of the dimensions of the boundary layers perpendicular to the
wires, we use the characteristic fibre mat thickness d,,. The velocity and con-
centration boundary layers are hence assumed to be of comparable size, which
is confirmed by our study. However, this is not crucial to the validity of the
simplifications undertaken in this section.

Since the constant factors appearing in front of each term in the scaled
equations in this appendix have been rewritten in informative forms, using the
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estimates derived in section 3.1, they will sometimes contain quantities which
are neither found in the definitions of the scaled variables, nor in the original
dimensional equation.

B.1. The conservation of suspension mixture

First consider the mixture conservation equation (8). For that purpose we
introduce the flux density components j* and j¥ relative the fabric according
to

I=U+j%)es+ 3%y, (56)
and also the scaled quantities
~ z ~ Y Tz ]m Ty ]y
=7 o U= s = 1= (57)
They should all be of order one. By inserting these into (8) we find,
dw\ 05°  95Y
A— =0. 58
( d, ) o7 * 05 (58)

Using the parameter values in table 1, only for case E is A d,,/ds sufficiently
small for the first term on the left hand side of (58) to be safely neglected (the
low dewatering resistance makes A small). Nevertheless, due to the significant
simplification it entails, we shall suppose the boundary layers to be thin in
comparison to the free suspension region, thus obtaining equation (23). It
should be pointed out that the validity of the solution for p.(x) by Zhao &
Kerekes (1995), also depends on the requirement that Ad,,/ds is small. If
this is not the case, the inviscid momentum balance employed by them in the
direction parallel to the fabrics is not appropriate.

B.2. The concentration boundary layer

From the equations (2)—(5) follows that j,; = ¢7 + ¢(1 — ¢)u,. Inserting this
into (9), and using the relations (8) and (12), we find an equation for the
concentration,

iVe=v. (¢><1 ) ’“ff’) Vpd) . (59)

In addition to the variables already defined in (57), introduce the following
quantities,

__ Pd k(¢)
=22 | K(¢)= 2, 60
pa=t L K@) = (60)
where [ is the length scale of the pores in the network. When (57) and (60) are

inserted into equation (59), the result is

dw \ 09 | (U0 dm \ 00 | ~,00 _
(Ah) a;ﬁ(zfm) 55 ") 85 =

2 ()2 (o0 o 28) + 2 (o002,
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Above, a Péclet number has been introduced,
Ncwod

12290
As defined in (62), it expresses the ratio between convection of fibres towards
the fabrics due to entrainment, and transport away from the wires due to
gradients in the inter-particle pressure. Since the fibres are retained, Pe should
be of order unity, at least close to the fabric. Therefore we must have

Pe = (62)

I*po
Pedm '
Consistency then requires that the drainage resistance R introduced in section
3.1 is of magnitude p.d,,/I1?. The ratio ug/U has already been found to be of
size 1072. According to the estimates (16) and (17), d,,/L and d,,,/Ah are of
sizes 1072 and 1, respectively. Equation (61) therefore reduces to,

dm \ 09 -, 09 1 0 0pq
(55) 52+ 75 = poms (o1 -om@F) . o)

which in dimensional form turns into equation (24).

wo ~ (63)

B.3. The velocity boundary layer

Denote the z- and y-components of the relative velocity by u, and v,., respec-
tively. Define the variables

Ug Vg U Ve

Us = — , Vg=— , Up=— , Up=—, (65)
Uo Wo uo Wo
P ™
~ _ Ve ~ij _ 'N
Pe=— » TN = ij (66)
Po To

where the Téj are measures of the different deformation-rate dependent stresses.
We also note that the scale ug is most likely much too large for w,. Inserting
(65), (66) and the applicable quantities in (57) and (60), into the component
perpendicular to the wires of equation (10) yields

pU? 8175 (e pU? 8175 81)5 B
T/d, ) 0  \U T/dy, -
)

_9p. apd +( )ar;fvy (d Tgy

oy 0y po ) OF L py) 0% (67)

) @ pa donds 0 pa-
~ <9L> 2 (¢(1 _ d))[)curvr) - ( a > 5 (¢(1 ) pcvrur> .

From section 3.1 we know that the curvature of the fabrics during the pressure
pulse is of magnitude Ah/L?. Thus T/d,, represents a pressure that is a factor
L?/(dmAR) ~ 10* larger than the pulse pressure, making the first term on the
left hand side of (67) of size 1072, and consequently negligible. Further, A ~ 1,
and the remaining acceleration terms on the left hand side of (67) can thus
also be omitted. Considering that d,,/L is of magnitude 1072, in order for
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the viscous shear stress term in (67) to be significant, 75" has to be 100 times
larger than py. This is not reasonable, and the term can be neglected. The
viscous normal stress is important to the balance of the equation if 7Y is of
comparable size to pg. Since the strain-rate dependent stresses are supposed to
exhibit a Newtonian behaviour, 75 can be approximated by pewo/d,,, where
e is a measure of the effective dynamic viscosity of the boundary layer mixture.
Thus, 7Y ~ po would require that /g, is of the order Rdy,/p. ~ 10*. In
regions where the fibre mat is highly compacted, such as close to the fabric, the
effective viscosity might indeed become large. Using (11) and the parameter
values in table 2, we find that ¢ = 0.2 yields pi. /. ~ 10%. We shall nevertheless
judge the viscous normal stress insignificant. Removing negligible terms, (67)
turns into
78250 B aﬁd
oy oy’
which is equivalent to equation (34).

(68)

We now turn to the momentum balance parallel to the wires. When the
scaled quantities from (57), (60), (65) and (66) are inserted into the corre-
sponding component of equation (10), one finds

aﬂg+(@)6a8+ M "%_
o " \u/) oz "\4, )" a5 ~

005 (1) 057 (LT O ()

or 0T Po 0T dm Po 83}
L 0 Pd ~ -~ Ah 0 Pd ~ -
- (Aeds) % <¢(1 - ¢)pcurur> - <dm> 5737 (¢(1 - ¢)pcurvr> .

L/d; is large, but 6 is of such a size that the factor in front of the first term
on the last row of (69) is fairly small. As seen in section B.2, Ah/d,, is of
magnitude 1. Nevertheless, on the basis that the true scale of w, is probably
much smaller than the one introduced in (65), the terms involving the relative
velocity will be assumed not to have any influence on the balance. By making
the approximation 7% ~ peuo/L, we find that the ratio 7§*/7¥Y is of size
(dim/AR)(ug/U) ~ 1072, Thus, as the viscous normal stress term was removed
from (67), consistency requires that the normal stress in (69) is considered
insignificant as well. This is reasonable, as it is not likely that 7§® ~ po. After
omitting negligible terms in (69), and reorganising/rewriting the factors, the
equation becomes

dm\ Ots . Oty dm \ Ope¢ dm \ Opa Ve/wo\ 0T
<Ah) oz "oy T (Ah) 07 <Ah> 07 +( 4 ) a5 (0

where 75Y has been approximated by pcug/dm, and an effective kinematic
viscosity has been defined for the boundary layer mixture as v, = p./p.. Con-
sider now the viscous shear stress (last) term in (70). The ratio (ve/wp)/dm
expresses the relative strength of the drainage (cf. the theory of asymptotic
suction boundary layers). If the drainage is strong/weak, the viscous stress
will be important in a region outside of the fabrics much smaller/larger than
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dp,. As the concentration in the web varies between ¢, and ¢,,, the viscosity
ratio v5(¢) /v, will in the mat take on values ranging from roughly 1 at the top
of the web, to perhaps 102 close to the fabric, based on (11). Using (11), the
relations in section 3.1, and the values in tables 1 and 2, to estimate the size of
the viscous shear stress term, it is found that it ranges from between 1072 at
the top of the mat, to 10 at the fabric (based on the assumption ¢,, = 0.2). We
shall include the viscous term in the balance of (70), and let the simulations
reveal its importance in different regions. In dimensional form, (70) becomes

(32).

Appendix C. Solution method

Consider equation (28). As before, d,, denotes the length scale perpendicular
to the fabrics in the concentration boundary layer. Let Dy be a a representative
value of D(¢). In order for there to be a balance between convection of mixture
towards the fabrics, and relative transport of fibres in the opposite direction,
we must have J ~ wg ~ Dg/d,,. A suitable choice for Dy can thus be obtained
from (63) as Dy ~ wody, ~ [>po/pe. The parameter values in tables 1 and
2 provide the estimate Dy ~ 107° m?/s, i.e. the diffusivity is about 10v,.
However, note that relation (63), and consequently the approximation of Dy,
is not necessarily very accurate far up into the fibre mat. The scaled quantities

oy - J F_ D ~__ &
V= YT Dgan 0 PTD, 0 YT Ua Dy (71)
turn (28) into
99 | 7290 _ 0 (509
oz (@) 5 = 5 (D ay> , (72)

where all terms are equally important to the balance of the equation. If the
same scaling is employed for the velocity deficit equation (36), the result is

0Au, - O0Aus 0 (_ OAu,
where the scaled viscosity is
o vs(9)
vs(¢) = Dy (74)

If vs(¢) is not typically of magnitude Dy, the scaling (71) is not physically
correct for the velocity equation, and if so is revealed by the thickness of the
velocity boundary layer not being of the same size as the concentration bound-
ary layer. If the true magnitude of v4(¢) is v, the ratio v./Dy expresses the
relative thickness of the velocity and concentration boundary layers. If v./Dy
is small, the drainage effects are dominating, and the suspension velocity par-
allel to the fabrics, in the fibre mat, essentially equals the velocity in the free
suspension. In the opposite situation, convection along the fabrics is domi-
nating over the drainage flux, and the fibre mat will be thin in comparison to
the region affected by the velocity difference between the wires and the free
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suspension. The actual situation is complicated, as v4(¢) varies considerably
across the thickness of the mat (see B.3).

We now specify that d,, = H(z), and define H = H(z)/H(x¢). The gov-
erning equations (72) and (73) are solved simultaneously, by marching down-
stream from Z = Zy. The consolidation equation should be solved in the region
y € [0, H(Z)], which is not constant in the marching direction. Equation (73)
is solved on the domain § € [0, 7], Too being a large value representing a
position far up in the inviscid free suspension region, where it is assumed that
Yoo > H(Z). The viscosity s(¢) is discontinuous in this latter domain due to
the concentration leap across j = H(Z). Therefore, the solution domain is split
into two parts, [0, H(z)] and [H (%), §s], and equation (73) is solved in each
part separately, using the conditions of continuous velocity and shear stress at
y = H(Z) to match the solutions. If we introduce a co-ordinate Ay such that
y = H(%)+ Ay, the domain above the fibre mat corresponds to Ay € [0, Afso].
It is convenient to let §,, be a function of Z, so that Ag,, is constant. Now
perform the following co-ordinate transformations,

Y= o (75)
_ Ag
AY = - (76)

The mat region is then Y € [0, 1], and the region above the mat is AY € [0, 1].
The transformation (75) turns the consolidation equation (72) into

9 1 (- _dH\ 96 1 9 (¢
o e U0 V% ) oy = ey (Par) @

An equation of analogous appearance for Aug in the mat is obtained when
the same transformation is applied to (73). On the other hand, in the domain
above the mat (76) is applied to the velocity equation, yielding

OAu, N 1 (_(a:) 3 dﬁ) OAug,  s(¢o) 9% Aug (78)

0T Ajso dz ) OAY — H(z)? 0AY? '

These equations were solved together with transformed versions of the re-
lations (38) and (41), for J(Z) and H(z), and the transformed boundary con-
ditions. Note that the rate of displacement of the top of the fibre mat appears
explicitly in the transformed equations. The discretisation in the g-direction
was performed using the Galerkin formulation of the finite element method
with linear interpolation functions, whereas the Z-derivatives were discretised
with the implicit-Euler method. The resulting discretisation is hence of second
order accuracy in the g direction and first order accuracy in the marching di-
rection. Across the thickness of the boundary layers, 500 elements of uniform
size were employed, and the step size was typically AZ = 1073, The value 0.3
was chosen for Ag,.
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The implementation of the outlined algorithm was carried out by formu-
lating the problem in variational form, and then using the package ‘femLego’
for automated code generation (see Amberg et al. 1999).
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Consolidation of sheared, strongly flocculated
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The concept of a particle concentration dependent yield stress, previously em-
ployed in studies of uniaxial consolidation of a flocculated solid phase dispersed
in a liquid, is extended to comprise flocculated phase shear strength. The
inter-particle stresses are modelled by assuming that the stress state is always
located on a yield-surface in stress-space, whose form is adopted from the Cam-
clay plasticity theory for the quasi-static consolidation of soil. The theory is
applied to the problem of combined compression and shearing of a strongly
flocculated suspension contained between two plates, one being fixed and act-
ing as a perfectly permeable filter, the other movable and acting as a piston by
which the load is applied. Qualitatively, the evolution of the volume fraction
of solids exhibits the same behaviour as during uniaxial consolidation without
shear. Applying shear is however predicted to increase the rate of the drainage
process, due to a reduced load bearing capacity of the flocculated phase, and
the correspondingly higher pore pressures. A consideration of the large time
asymptotic behaviour of the system when a constant compressive load is com-
bined with a constant shearing velocity of the piston, reveals that even a small
shearing velocity will increase the total drainage of the consolidation process.

1. Introduction

The separation of the liquid and solids contents of a suspension has widespread
practical importance, and the task can be undertaken by e.g. subjecting the
suspension to a gravity field (sedimentation) or by pressure filtration. In many
situations, not only the rate of the the process is important, but also the
morphology of the separated particle phase. Among the many examples of
application areas, one finds fields as diverse as ceramics production, mineral
processing, sludge treatment and paper manufacturing.

Historically, gravitational thickening has received more attention than pres-
sure filtration. Kynch (1952) presents a kinematic theory of batch sedimenta-
tion based on the continuity equation of the solid phase. His main assumption
is that the local flux of particles is a function of the local volume concentration
of solids ¢ only. Long-range hydrodynamic forces are hence not accounted for
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by the Kynch theory, and neither is the possibility that stresses are transmit-
ted through the particle phase. The latter interactions have traditionally been
accounted for by introducing a ‘particle pressure’, dependent upon ¢, in the
mathematical description of the separation process. In this way, a dependence
of the flux on the gradient of ¢ is obtained. In a flocculated suspension, which
is the kind that is of primary concern to this study, the origin of the particle
pressure is the mechanical contact between the particles. Other possibilities
exist, however. As an example, in the case of a stable colloidal suspension the
particle pressure corresponds to the osmotic pressure. The first study of set-
tling of a flocculated suspension incorporating particle stresses seems to have
been the one by Michaels & Bolger (1962). The authors performed an analysis
in which a constant uniaxial yield stress was employed. Early works that in-
clude concentration dependent particle stresses are the ones by Shirato et al.
(1970) and Adorjén (1975).

The Kynch analysis predicts the formation of discontinuities in ¢ during
the settling process. According to Auzerais et al. (1988), the nature of these
discontinuities have been much debated. By retaining both inertial effects and
inter-particle stresses in the momentum balance of the batch settling problem,
in addition to viscous drag and gravity, they are able to show by scaling argu-
ments when approximate discontinuities in ¢ can be expected. In the case these
are caused by stresses transmitted by the particles, the controlling parameter
is a Péclet number, Pe, expressing the magnitude of gravity to inter-particle
forces. Sharp gradients, separating regions where Kynch’s theory is valid, only
occur for large Pe. The analysis by Auzerais et al. also resolves the ambigu-
ities previously involved in finding solutions by Kynch’s method. Employing
the technique of matched asymptotic expansions to the transient settling of a
colloidal suspension, Davis & Russel (1988) obtain a solution valid in all regions
of the suspension for large values of the relevant Pe.

In their studies of sedimentation of flocculated suspensions, Buscall &
White (1987), Landman et al. (1988) and Howells et al. (1990) argue that for
sufficiently high solids concentrations, the flocs form an interconnected network
that can withstand external forces. To describe this they introduce a concen-
tration dependent yield stress, which is defined as the value of the network
stress above which the load cannot be balanced by elastic stresses in the solid
phase. The network will then consolidate irreversibly. Unlike e.g. Adorjan,
they do not assume a priori that the particle pressure equals the yield stress.
However, it is found that if the rate of consolidation of the solid phase is lim-
ited by the drainage of fluid between the particles, rather than the breaking
and reformation of particle-particle bonds, this is likely to be a very good ap-
proximation. The same concept is used by Landman et al. (1991), Landman
& Russel (1993) and Landman et al. (1995) to model particle stresses during
pressure filtration. Buscall et al. (1986), Buscall et al. (1987) and Channell
& Zukoski (1997) present experimental observations of yield-stress and elastic
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properties of some strongly flocculated colloidal suspensions. Notably, the sus-
pensions are observed to possess finite yield-limits in both shear and uniaxial
compression.

All the hitherto cited theoretical studies of pressure filtration deal with
uniaxial filtration, in which only normal loads are applied to the network of
flocculated particles. However, in certain applications, the network is subjected
also to shear loads. It is a reasonable assumption that these additional load
components influence the ability of the solid structure to resist the normal load,
since they increase the strain on the inter-particle bonds. Practical experience
confirms that combining normal and shear loads does indeed have a favourable
effect on separation rates (cf. e.g. Gustavsson 2003). Further, the displacements
of the suspension constituents are not necessarily restricted to a single direction.
It is evident that, to cover additional filtration applications, a more general
model is needed for the stresses and strain-rates in the flocculated network,
than is provided by the above previous works.

Gustavsson (2003) presents a model for consolidation, in which it is as-
sumed that the inter-particle forces manifest themselves as both an isotropic
strain-rate independent stress, and deviatoric viscous stresses. The model is
used in a two-dimensional context to consider settling by gravity of a suspen-
sion contained in a closed vessel, while shear is applied to the sediment on the
deposition surface. Deviatoric rate-independent stresses are however not taken
into account.

For granular flows, Savage (1983) puts forward the proposition that, in the
intermediate regime where both short-time collisions and continuous contacts
occur between particles, the total stresses might be represented as the linear
sum of a rate-independent frictional part and a viscous part obtained from the
theory for the fully dynamic rapid flow regime. More detailed treatments based
on this concept are performed by Johnson & Jackson (1987) and Johnson et al.
(1990). The models for the frictional stress tensor are taken from the discipline
of soil mechanics, where plasticity models have been developed for the yielding
of porous media under general load conditions (cf. the standard textbooks,
e.g. Wood 1990). Similarly, in the present study we add the divergence of a
strain-rate independent stress tensor to the momentum balance of the particle
phase in a two-fluid model of the suspension. For these inter-particle stresses,
a plastic constitutive theory is adopted from the field of soil mechanics. In this
way, it is possible to generalise the yield-stress concept previously employed
for uniaxial consolidation, to also include the shear strength of the flocculated
particle structure. By applying the model to plane sheared consolidation, its
relation to the previously developed models is made apparent.

2. Formulation

Assume that we trap a flocculating suspension between two parallel, rigid, flat
plates of infinite extension, lying in a horizontal xz-plane. One of the plates is
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impermeable to both phases, whereas the other is impermeable only to the par-
ticle phase, and perfectly permeable to the liquid phase. They will be referred
to as the ‘piston’ and the ‘filter’, respectively. The initial volume fraction of
solids, ¢, is assumed homogeneous and higher than the gel point ¢ = ¢, at
which the solid phase first starts to form an interconnected network. Conse-
quently, the entire space between the plates is filled with a flocculated network
having an inner strength and capable of bearing certain loads. While the filter
is fixed at y = 0, the piston is movable and its position y = H(t) is a func-
tion of time. Its movements, which in the present study will be limited to the
ay-plane, is either controlled by specifying the vertical (i.e. in the y-direction)
and horizontal (in the z-direction) loads by which it is applied to the suspen-
sion, ¥, (¢t) and Xy (t), respectively, or by specifying its corresponding velocity
components U, (t) and Uj(t), respectively. A combination of the two modes of
control can also be envisaged, one could e.g. specify 3,(t) and Up(t).

As the resistance to liquid flow through the filter is zero, the liquid pressure
pe must there equal the ambient pressure, which is arbitrarily set to zero,

pe(y =0)=0. (1)

Both components of the particle phase velocity, denoted wg4, is zero at the filter,
as is the horizontal component of the liquid phase velocity, wu.,

uq(y=0)=0, (2)

(uc x ey) (y=0)=0. 3)
We will use the subscripts ¢ and d to distinguish between the liquid (continuous)
and particle (dispersed) phase, respectively. Whenever a subscript is needed
denoting either phase, o is used. e; and ey, are unit vectors pointing in the
x- and y-directions, respectively. At the other end of the domain, both phases
move with the velocity of the piston,

ua (y = H(t)) = uc(y = H(t)) = Un(t)es + Un(t)ey - (4)

2.1. Balance equations

We assume that the liquid and the solid constituents are incompressible, and
that the phases can be regarded as isotropic continua. To describe the system
we shall employ the conservation equations, relating volume averaged intersti-
tial quantities, proposed by Anderson & Jackson (1967). Conservation of mass
of the two phases is expressed as,

¢
2V (fua) =0, 5)
o1 —
K049 (1) = 0. ©
The momentum balance for the dispersed phase reads,
Du
pid—t = —¢Vp. + ¢V -on. —m+V -oni— V-0, (7)



Consolidation of sheared suspensions 127

and for the continuous phase,

Du,
pc(1_¢) Du;

Above, the p, are the densities of the constituents. The tensors oy, represents
strain-rate dependent stresses due to deformation of the phases, m accounts
for the exchange of momentum between the phases, and o, refers to rate-
independent inter-particle stresses in the solid phase. The latter can be split
into an isotropic part represented by pg, which conceptually can be thought of
as a ‘particle pressure’, and a deviatoric remainder 74, according to

=—(1-¢)Vpe+(1— )V on.+m. (8)

—0q=—pal + 714, 9)

where I is the identity tensor. Hence, the sign convention is such that compres-
sive particle stresses are positive. It ought to be mentioned that the deviatoric
tensor T4 was not included in the original equations suggested by Anderson &
Jackson. The material time derivatives are defined as

Du, Ou,

Dt Ot

The drag term m should depend on the relative velocity between the phases,
i.e. ug — u.. We adopt (the purely viscous) Darcy’s law,

pe (1 — )
m="——>""(uqg— U . (11)
k(9)
Here, . is the dynamic viscosity of the continuos phase, and k(¢) is the per-
meability of the flocculated network. Several models exist for k(¢). E.g., for
the flow through a network of spherical particles with radius a, the Brinkman
model (see e.g. Scheidegger 1957, p. 113) states that,

_ 2d% (2 —3¢)
99 3¢p+4+3(8¢—3¢2)2

For the purpose of the present study, we use an expression of more simple form
introduced by Ingmanson et al. (1959),

+ U - Vg . (10)

k() (12)

1

(13)
This is an adaptation of the Kozeny-Carman equation suited to low concentra-
tion pulp mats, in which Sy is the specific surface of the particles. The models
(12) and (13) can both be written as k(¢) = [?K(¢), where [ is the length
scale of the pore sizes in the flocculated network, and K (¢) is a dimensionless
function. Notably, in (13) we have | = 1/Sy and K (¢) = 1/(3.5¢*).

Anderson & Jackson (1967) suggest that the the rate dependent tensors
o no are modelled after a Newtonian pattern, using concentration dependent
shear and bulk viscosities that account for both true mechanical stresses and
Reynolds stresses.
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2.2. Rate independent solid stresses

We shall now proceed to develop constitutive relations for the rate indepen-
dent stresses pg and 74. To do so, we suppose that the dispersed phase behaves
like a plastic-rigid material. Subject to sufficiently small loads, the solid phase
resists all deformations. When the local stresses are of sufficient magnitude,
represented by some limit in stress-space, the particle phase will deform irre-
versibly. The ensemble of such stress states is defined by the following yield
criterion,

F(o4,¢)=0, (14)
which is the equation of a yield-surface in stress-space. F' is referred to as the
yield function. The ¢-dependence in (14) reveals that we assume the resistance
to deformation to be dependent on the local fraction of particles. Whenever
F(o4,¢) < 0, the stress-state lies ‘inside’’ the yield-surface, and, given our
assumption about rigidity, locally the dispersed phase behaves like a stiff body.
In a general situation the stress state in the particle phase would then not be
determinate with the present model. One way to address this problem is to
prescribe an elastic behaviour before irreversible deformations occur. We shall
however simply postulate that, at any instant, the stresses in the solid phase
are such that the criterion (14) is fulfilled. As a consequence, the model will
not be able to properly describe unloading, in the sense that the stress-state
moves to the inside of the yield-surface. Below it will become evident that this
limitation is not quite as restrictive as it might first seem.

Here we adopt the yield-surface introduced by Roscoe & Burland (1968),
as part of the modified Cam clay theory in the field of soil mechanics. For the
present study, we have essentially used a simple version of that model presented
by Wood (1990), pp. 112-137. Thus, the yield surface is taken to be

F (pa; 44 po(®)) = g7 — M?pa (po(¢) — pa) =0, (15)

which corresponds to an ellipse in the stress plane (pg,qq), centred around
(pd,qa) = (%po(d)),O), with axis lengths po(¢) and Mpy(¢) along the abscissa
and the ordinate, respectively?. In terms of cartesian components, the invari-
ants pg and gg of the stress tensor o4 are given by

Pa = %ask and qq = m = \/(Uij - %&jdjk) (Uflj - %5”05’“) - (16)

The deviatoric stress measure ¢4 equals, up to a constant factor, the von Mises
effective stress in classical plasticity theory. To appreciate the choice of p; and
qq as the two important scalar measures of the stress state, one can observe
that in a purely elastic deformed material, p; determines the stored elastic

L Although it will not be the case in the present study, the yield-surface is not necessarily
closed, wherefore the notion of the stress-state being ‘inside’ the yield surface is perhaps best
thought of as a way of saying that F(og4,¢) < 0.

2In principal stress space (01117 03, crg), the yield surface is an ellipsoid of length v/3po(¢) and
thickness v/3Mpo(¢), with one end at the origin and extending in the direction of isotropic
states, %(1, 1,1).
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energy due to volumetric deformations, whereas gy determines the elastic en-
ergy stemming from (isochoric) shape changes. The function pg(¢) denotes the
yield-limit when the solid phase is subject to solely isotropic loads pg. It is
here taken to be of a power-law form,

po(9) = 00", (17)

where oo and n are constants. This is in accordance with the work by Buscall
et al. (1987), who find that the ¢-dependence of the yield-limit in uniaxial
compression is consistent with power-law behaviour. Implicitly, (17) implies
that ¢, = 0. As po(¢) is a monotonically increasing function of ¢, it accounts
for the hardening that occurs when the particle phase is compressed. The
shape-factor M is some positive constant, its value depending on the nature of
the dispersed phase.

We further adopt an associated flow rule (see e.g. Wood 1990, pp. 103—104).
The flow potential then coincides with the yield surface, and when deformations
occur, the components of the strain-rate tensor of the dispersed phase, eq4, are
obtained as

ou o OF
—el = dp—d)=X—10n X2>0. 1
“d <a:m * a:m) AN (18)

Equation (18) implies that the deformation-rate vector (in strain-rate space)
is pointing in the direction of the outward normal to the yield surface. The
negative sign in front of e} ensures that compression corresponds to negative
values of V - ug4, and the proportlonahty factor X sets the magnitudes of the
components. If the six independent deformation rates e are known, the equa-
tions (15) and (18) provide us with seven equations for the six independent

stresses o,/ and X3.

Let us introduce the volumetric and deviatoric strain rate invariants of the
dispersed phase, corresponding to (16) for the stresses,

ep=chf and e, = \/(er - %5“'6’3’“) (eilj - %5”65’“) : (19)

Using the definitions (16) and (19) together with the equations (15) and (18),
we can derive that

__OF (@)

ep = —X o 29X M (pd 5 ) (20)
OF
— X —9x 21
0qq 1 1)

3Note that we could not have determined the strain-rates from a known stress state, as
(15) only relates the (then) known stress components. In traditional plasticity theory, where
the stresses are provided by elastic constitutive relations, the proportionality factor X is
determined by requiring that the stress state remains on the yield-surface during its evolution
due to strain-hardening (the ‘consistency condition’). The strain-rates can then be obtained.
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Now, (15) and (20)—(21) are three equations to obtain pg, ¢4 and X from the
deformation rate measures e, and e,. Combining the last two expressions yields
the following useful relations for X,

X == p >0. (22)

2qd 2M2 (pd_poTw) -

As a consequence of the inequality, compression (e, < 0) takes place for pg >
%po (¢), and expansion for py < %po(qﬁ). Deformation without volume change
can occur only if pg = %po(qﬁ), which is referred to as the critical state. Of
course, the deviatoric deformation rate is then not determined by (22). From
the yield surface (15) and the flow rule (18), it is possible to obtain an arbitrary
deformation-rate component as

ef =2X (=302 (pa— 1po(6)) 67 + 7). (23)

2.3. Scaling

In is instructive to scale the equations presented in the previous sections. A
suitable macroscopic length scale is the initial distance between the plates, Hy.
Let Uy be a velocity measure. By scaling the co-ordinate vector x, the velocities
Uy, and time as

x t u
:ﬁovt*:%vu;:ﬁa (24)
and inserting the new variables into the continuity equations (5) and (6), we
see that they retain the same form (except for the superscripts * denoting non-
dimensional quantities). In order to scale the momentum equations (7) and
(8), we introduce the quantities

w*

. ’p, « _ Hoona . ’m « _ Od
be = pnUoHy TNa = o "= peUo Ta = o1
Note that this choice of scales reflects that the liquid pressure should be of the
order of the interface drag accumulated over a distance Hy. The deformation-
rate dependent stresses are estimated by assuming a Newtonian behaviour,
where the liquid phase viscosity has been used as a measure of the effective
shear and bulk viscosities of both phases. The solid stresses o4 are scaled with
o1, denoting some suitable measure to be discussed shortly*. Insertion into (7)
results in

(25)

e * Dug - 1Y’ -
ed(Ho> ¢D7t——¢ pc+<HO) ¢V - o N
2
—m(w—uc)-&-(lfh)) V-UNd—%V'Ud, (26)

4Note that chosing oy, i.e. the coefficient in the power-law (17), would not be appropriate.
It corresponds to the yield-stress at ¢ = 1, which is far outside the validity range of that
relation.
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where the superscripts * have been dropped for clarity. We shall continue to
do so. In the same way, (8) yields

1\? Du,
Rec (H-O> (1 - ¢) Dt =

—(1—¢)Vpe + <I1ZI0>2 (1=¢)V-on:+

(1-9¢)
K(9)

The equations (26) and (27) contain the Reynolds numbers

(ug — ue) . (27)

_ PaloHo

Re, (28)
fhe
and a Péclet number
teHoUg
Pe=—— 29
e= 5o (29)

expressing the ratio between convection of the solid phase, and transport due
to network stress gradients. The present study deals with strongly flocculated
suspensions, and we expect the term containing the rate-independent stresses
n (26) to be O(1). Hence, we set Pe = 1. When the piston is controlled
by specifying its velocity, we take Uy as the initial vertical velocity, U,(0%),
immediately after the consolidation process starts. The definition of Pe then
provide the stress measure o1,

_ eHoUg

2 (30)

o1
On the other hand, if the process is controlled by the applied loads, we let o1
be the initial vertical load, i.e. 3,(07). The velocity scale is then
120'1

Uy = . 31
0 teHo ( )

Consider now the relations for the rate independent stresses in §2.2. If we
write the isotropic yield limit as po(¢) = 01 Py(¢), where Py(¢) = (09/01)9™,
and introduce the dimensionless quantities

ijx HQBZZJ * H()O'lX
d UO ’ X UO ’ (32)
the results (14)—(23) retain the same appearances in dimensionless form, except
that po(¢) must be replaced by Py(¢) at all occurrences.

The piston velocity components Uy, (t) and U, (t) are scaled with Uy, and the
applied loads X5 (t) and X, (¢) with o1. The forms of the boundary conditions
(1)-(4) do not change from the scaling. From now on, we shall only refer to
scaled quantities, unless otherwise explicitly specified.
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3. Analysis

It is now time to adapt the equations presented in §2 to the considered filtration
problem. Rather than dealing with two separate phases, we prefer to formulate
the problem in terms of a mixture (the suspension) and a dispersed phase,
moving relative to the mixture. Let us introduce the flux densities j; = ¢uq
and j. = (1 — ¢)u.. Summing (5) and (6) yields an equation for the total
suspension flux density 7,

We also define a disperse phase flux density relative to the mixture as
Jr=3a— 03 =01 —9¢)(uqg—uc) . (34)
By rewriting (5), it is possible to express continuity of the solid phase like
0 . .
& Y44V 4, =0, (3)

To simplify the treatment, we now assume that (I/Hy)? and Re, (1/Hp)?
are small, and neglect the terms containing these factors in (26) and (27).
It is easy to estimate a posteriori the magnitude of the inertial terms. As
for the rate dependent stresses, we do not know their exact form, but shall
nevertheless tacitly suppose that the deformation rates are sufficiently small to
make them negligible. This is consistent with the hypothesis made by Buscall
& White (1987) that the deformation of the solid phase is rate-determined by
the resistance to displace the two phases with respect to each other, rather than
by the resistance to relative movements between particles. It has since been
employed in several studies, see e.g. Howells et al. (1990) and Landman et al.
(1991). Summing what remains of (26) and (27), we obtain the momentum
balance for the mixture,

Oz—vpc—de'f‘v'Tda (36)

where (9) has been used to split the particle stresses into an isotropic and a
deviatoric part. Using (36) to eliminate the liquid pressure in (26), the relative
flux density can be expressed as®

Jr=¢(1 = ¢)K(¢) (=Vpa+V - 74) . (37)

3.1. One-dimensional compression

Assume a situation of plain strain in the xy-plane. Due to the infinite di-
mensions of the bounding surfaces, we suppose that there are no horizontal
gradients. Thus eZ” = eZ* = e%* = e%* = 0. It follows from (22) and (23) that

= = A = I (- 3R6) . =T =0 (39

51n equation (37), j,. is explicitly given by o4. However, if a bulk viscosity had been retained
from o N4, a term containing V - (4,./¢) would have appeared on the right hand side.
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Above, we have made use of the fact that T{;“k = 0. For the non-zero strain
rates we obtain

v=2X7Y | e =—-2XM*(ps— 3Po(9)) - (39)
The assumption made in §2.2 that the stress state always fulﬁlb the yield cri-
terion (15) provides us with a relation between ¢ = pg — 7Y and 7;¥. Using

the results (38), the yield surface can be written as
2
(o —3R9)” "

(2R /1+22)  (3R6)%)

This is an ellipse in the plane (¢4?,7;), centred at (3 Py(¢),0), and with a ma-

jor and minor axis of length Py(¢)y/1+ 2M? and Py(¢)2L 75 respectively (see

figure 1)°. The top of the yield-ellipse always remains on the dashed straight
line in the figure, when it expands or contracts due to changes in the concentra-
tion. As the flow rule (18) tells us that the deformation-rate of the solid phase
is perpendicular to the yield-surface, we can also relate the horizontal and ver-
tical directions in figure 1 with compression in the y-direction and shearing in
the z-direction, respectively. Consequently, 0¥ = Py(¢)/2 separates the pos-
sible stress states into two halves, such that when %" is larger (smaller) than
Py(¢)/2, yielding of the particle phase will result in compression (expansion).
This particular value of o'} will be denoted o.(¢), and the corresponding value
of 77V is denoted 7.(¢). At the stress state (¢4, 7;") = (0c(¢), 7c(¢)), shearing
of the solid phase obviously occurs without volumetric deformations, and this
hence corresponds to the critical state mentioned in §2.2. The dashed line in
figure 1 is accordingly referred to as the ‘critical state line’. To determine the
shear rate at the critical state would require us to incorporate the neglected
rate dependent stresses in the model. As our interest lies in consolidation of
the flocculated suspension, we instead suppose that the stress-states at all po-
sitions, and at all times, are such that ¢ > 0.(¢), i.e. on the right half of the
yield-surface in figure 1. The relation (40) can then be rewritten as

Y= flo73"), (41)

where f is a single-valued function for 7| < 7.(¢). When the stress 7"
increases, the particle network is able to resist less vertical stress 0% before
yielding. If the network is not subject to any horizontal shear stresses, the
yield-limit is given by the intersection of the ellipse and the horizontal axis.
Attempts have been made to determine this limit for some suspensions (see
e.g. Buscall et al. 1987).

=1. (40)

6No deformations take place in the principal stress direction z. Thus, due to the associated
flow rule, the yield-ellipse (40) is a line on the surface of the yield-ellipsoid in principal stress
space, such that the normal to the surface along the line has no component in the z-direction.
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FIGURE 1. The yield-surface in the o4Y-7;Y-plane. The
dashed line indicates the position of the critical stress state
at different concentrations.

Eliminating X from the expressions in (39), and introducing ¢%¥, we can
relate the deformation rates for a given stress state,

. 1+ 2M? o
f:_(Aﬁ Hyy@PwW#' (42)

The equations (40) and (42) provide the necessary constitutive coupling be-
tween stresses and non-zero deformation rates in the flocculated phase.

Now, the vertical flux density of the suspension at the piston must equal
U,(t), which, when used in (33), yields

7Y =Us(t). (43)

The total flux density is thus (naturally) a spatial constant. As the horizontal

gradients are zero, the z-component of (36) tells us that 7" is constant across

the gap between the plates,
=3,(t). (44)
This is a consequence of there being nothing else than the particle stress to

balance the shear stress applied by the piston. In the vertical direction, the
situation is different, and equation (36) can be integrated to reveal that

pe+ 0y’ =Eu(t). (45)
Equation (37) gives the components of the relative flux density,
jr =0, (46)
' 9oYY
=01~ 9K () FE (47)

Both phases hence move with the same horizontal velocity. Using the results
(41), (43), (44) and (47) in (35), we find an equation for the concentration,

0¢p op 0 0¢p
0% - 5 (Do), (49

where the ‘diffusivity function’ is
0
D(6, (1)) = (1 — K () 2

¢(<z5 » () (49)
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The advection-diffusion equation (48)” has the same appearance as its counter-
parts in studies of uniaxial pressure filtration (see e.g. Landman et al. 1991).
The difference is that generalising the yield-stress concept to include the shear-
strength of the flocculated network has introduced an explicit time-dependence
in the diffusivity function. As ¥ (¢) can be controlled externally, we have some
influence over the diffusivity.

The boundary conditions needed to solve (48) are different depending on
whether we control the piston by the applied load, or by prescribing its dis-
placement velocity. Assume first the former alternative. The condition (1)
and equation (45) then implies that ¢%Y(0,t) is known. So is 7;¥ from (44),
and thus (41) implicitly provides the volume fraction of particles at the filter.
For our particular choice of Py(¢) in §2.3, with given vertical and horizontal
network loads relation (41) can be inverted, giving

$(0,t) = f, 1 (Zu(t), Za(t)) (50)

the subscript ¢ indicating the variable with respect to which the inversion is
performed. According to (4), the relative flux is zero at the piston, which
through (47) translates into

do?
oy 8y
Using the condition (2) and the result (43) in equation (34), we get the vertical
relative flux at the filter in terms of U,(t) and ¢(0,¢). The vertical piston
velocity is obtained by combining this result with (47),
3"5y] [Wh()) 5¢]
9 1,0 ¢ dy

The vertical velocity component is apparently influenced by the applied hori-
zontal shear stress.

(H(t),t) = o= (H(t),t) = 0. (51)

Uy(t) = | (1 = ) K(¢)

(52)

To obtain the horizontal velocity of the piston, we first need the deforma-
tion rates of the network. Using (41) and (44) to eliminate the network stresses
in (42) yields,

ey’ =g(0,2n(t)) ey’ (53)
The deformation rates are related to the flux densities as
105* 0 (j
Y= Z Y = ~). 54
Ty 0 T gy <¢> 59

The relative flux density in the relation for e can be rewritten as an expression
containing D(¢, Xy (t)) and the gradient of ¢ using (41), (47) and (49). Then,

"Note that for all ¢ < g, O yy = 0, resulting in D = 0. (48) is then of hyperbolic type.
However, this is of no concern to us, since we have assumed the suspension to be completely
flocculated.
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insertion of the deformation rates into (53), followed by an integration, yields
the horizontal mixture flux density

Fuo =2 [ "9(6.20) o (ng) W, ()

where the condition j%(0,¢) = 0 has been introduced. As j* = 0, it follows
that u% = u!} = j*, and the desired velocity component is Uy (t) = j*(H (t),t).

When the piston velocity is set, (51) is still used as a boundary condi-
tion. By reshaping (52), a condition for the concentration gradient at y = 0
is obtained, that replaces (50). The shear stress appearing in the equations
is obtained by solving (55), evaluated at y = H(t), for 3p(¢) as a function of
Uy (t).

Finally, if we decide to specify 3, (t) and U (t), we use equations (50)—(52),
but determine X, (t) from Uy(t) in the manner just described.

3.2. Solution method

The equations (48)—(55) have been solved numerically. To facilitate the nu-
merical treatment, a change of co-ordinates, y = H(t)y, was undertaken in
order to have a domain with fixed boundaries, § € [0,1]. The spatial discreti-
sation was then performed using the Galerkin formulation of the finite element
method with linear interpolation functions. For the time-derivative, the im-
plicit Crank-Nicolson formulation was employed. The complete discretisation
is thus of second order accuracy in both space and time. The implementation
of the algorithm was carried out by formulating the problem in variational
form, and then using the package femLego for automated code generation (see
Amberg et al. 1999).

A shooting method based on (55) was used to obtain 3, (t) when Uy(t)
was specified. At each time-step, the equations (48)—(52) were solved using a
guessed value for X, (), which was updated till the correct value of Uy, (t) was
found.

To produce the presented computational results, the domain g € [0, 1] was
resolved with 400 elements of uniform size. The non-dimensional time step dt
was 3.1-107".

4. Results

The initial concentration and distance between the plates were set to ¢g = 0.05
and Hy = 0.01 m. For the parameters in (17) determining the isotropic yield
limit, and the specific surface, we chose the values used by Zahrai et al. (1998),
i.e. 09 =500 kPa, n = 2.5 and Sy = 7! = 18- 10° m™*, respectively. Buscall
et al. (1986) conclude that the yield stress in shear for a strongly flocculated
polystyrene latex suspension appears to be one to two orders of magnitude
smaller than the corresponding uniaxial limit, and Buscall & White (1987)
argue that this is reasonable, since in shear a substantially larger fraction of
the network bonds are in a state of tension. Consequently, M was set to the
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1
t/107% = 0.015, 0.03, 0.06, 0.12, 0.24, 0.48, 0.96, 1.92, 3.84
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FIGURE 2. Evolution of the volume fraction of solids following
an impulsively applied load at t = 0 of ¥, = 1 and X} =
0.028. The profiles correspond to the solution times given
in the figure, time increasing from left to right. The dotted
line gives the concentration at the position of the piston. Note
that the time between two plots doubles with each new profile.
0'0/0'1 = 500.

value 0.287, giving a critical shear stress 7.(¢) that is a fraction 0.1 of the
yield limit in uniaxial compression. The viscosity of the continuous phase was
e = 1073 Pas.

4.1. Comparison with uniazial compression

Figure 2 contains volume fraction profiles from a simulation where the loads
¥, (t) and X, (t) were abruptly increased at t = 0 to 1 and 0.028, respectively,
and then held constant. The ratio o¢/o7 in the scaled isotropic yield function
Py(¢) was 500. At the initial concentration, the flocculated network is weak.
Since at all times we must have X,(¢t) < 7.(¢) (cf. §3.1), the value for Xy
had to be chosen small. Qualitatively the evolution of ¢ in figure 2 shows the
same behaviour as is reported in the literature on uniaxial compression (see e.g.
Landman et al. 1991). At the filter, the network must balance the load applied
by the piston, and ¢ thus immediately reaches its final value. In the rest of
the domain, the liquid pressure supports part of the applied load. However,
progressively the load is shifted from the liquid to the network, which is then
compressed. As can be seen, at the onset the compression rate is very high.
There are, however, differences with respect to the uniaxial case. We note
that initially the concentration close to the piston remains at approximately
¢o = 0.05. This would be the case regardless of whether a horizontal load is
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applied or not. Hence, in that region the yield-surface is of its original size for
some time after t = 0. If ¥,(t) = 0, the stress state will lie on the abscissa
in figure 1. Specifically, 0% is given by the intersection with the ellipse. If
¥, (t) is larger than that value, the remainder of the load is, according to (45),
supported by the liquid pressure. In a situation with the same X, (t), but a
non-zero Y (t), the network must also completely balance the latter load. As
the stress state remains on the same yield-surface as when no horizontal load is
used, figure 1 tells us that the stress 0% is then smaller, and a larger fraction
of the vertical load is supported by the liquid. In other words, 3, (t) > 0 yields
higher pore pressures, and, as we shall see shortly, faster drainage. When
¥, (t) and ¥,,(¢) are held constant, the drainage will eventually stop when the
stresses in the network equal the piston load. The particle concentration is then
homogeneous, and can be deduced by determining how large the yield-surface
has to be in order for the stress state to lie upon it. It follows that, for a given
stress 0%, a larger 7Y necessitates a yield-surface corresponding to a higher
concentration. The final degree of consolidation thus increases with the applied
shear load.

Figure 3 contains a comparison between uniaxial and sheared filtration,
where 3, (t) and the horizontal piston velocity Uy, (t) were impulsively increased
at t = 0 and then held constant. The ratio o¢/o; was again 500. The applied
shear stresses necessary to achieve the chosen values of U}, are plotted in figure
4. Also in the figures 3 and 4, the initial rate of change is very high.

It is here appropriate to make a short comment on the scaling. From the
work on uniaxial pressure filtration by Landman et al. (1991) we know that
some of the scales introduced in §2.3 are only relevant after sufficiently long
times. Landman et al. find that, when no shearing is done and at small times,
the true length and velocity scales of the problem are a fraction v/t and 1/v/%,
respectively, of those presently used. The result should carry over to sheared
consolidation, provided the employed loads X (t), and consequently 7Y, are
small in comparison with the vertical stresses 0%Y. As this is the case at the
initial stages of the process®, it immediately explains the initial high rates in
figures 2 and 3. Consider now a situation where the horizontal piston velocity
is set to a constant value Up. The integral in equation (55) evaluated at the
piston is then constant. The diffusivity, defined by (49), is not affected by the
differing initial scales, and we therefore conclude, based on our knowledge of the
behaviour of the length scale, that the function g(¢,3n(t)) should scale with
Vt at small times. From (42) and (53), it follows that 7, and consequently
Yn(t), must do so as well, which explains the rapid increase of the loads in
figure 4. This is confirmed by the logarithmic plots of the small time behaviour
of Xp,(¢) in figure 5.

8Note that the assumption of the stress state always being located on the yield surface, and
of ¥1,(0) = 0, implicitly means that, before the consolidation starts, a vertical load is already
applied to the piston that is balanced by a finite vertical stress in the network, its magnitude
equal to the uniaxial yield limit when ¢ = ¢o.
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F1GURE 3. The distance between the plates when X, and Uy
are impulsively increased at ¢ = 0 and then kept at con-
stant values. 3, = 1. The horizontal velocities corresponding
to the curves are stated in the figure. The solid horizontal
line indicates the asymptotic distance H,, = 0.455. The as-
ymptotic limit for the non-sheared compression is 0.604. The
corresponding asymptotic concentrations are ¢o, = 0.11 and
¢ = 0.083, respectively. og/01 = 500.

We note that, combining a constant vertical load with a constant horizontal
piston velocity will eventually result in a situation of pure shear deformation
when the compression of the network stops and 3, is balanced by the particle
stresses. It is a consequence of the associated flow rule that the critical state
(0c(¢), Te(p)) has then been reached at all points between the plates. When
the compression ceases, the liquid pressure is identically zero, and we have
from (45) that lim; o 0¥ = 0¢(¢ss) = Xy. It follows that the asymptotic
limit concentration, denoted ¢, can be determined, and that it is necessarily
homogeneous. Knowing this, we conclude that the network shear stress 7",
and from (44) the applied load X (t), will asymptotically approach the value
Yhoo = Te(do), regardless of the specified velocity Uy,. Conservation of mass
also yields the limit distance between the plates, H,,. From figure 3 it is clear
that the applied shear loads increased the dewatering rates. Such an effect
could in a real suspension be attributed to restructuring of the network, and
increased loading of the inter-particle bonds.

4.2. The flow field

In figure 6 and 7, the horizontal velocity component, and the non-zero defor-
mation rates e? and ej;”, are presented for the simulation corresponding to the
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FIGURE 4. The applied horizontal piston load when ¥, and
U;, are impulsively increased at ¢ = 0 and then kept at con-
stant values. The same values for ¥, and U, were used as in
figure 3, and curves of the same line type in the two figures
correspond to each other. The solid horizontal line indicates
the asymptotic load 3o, = 0.203. 0¢/01 = 500.

dotted curves in figures 3 and 4, i.e. the vertical load and the horizontal piston
velocity were instantaneously increased and then held constant. U, = 324 and
oo/o1 = 500. In the studied situation of one-dimensional compression, we have
that —¢el}’ = D¢/Dt. The profiles in the left part of figure 7 hence provide
the relative compression rate of the network when following a material point.

Initially, there are no velocity gradients in the region next to the piston.
The upper part of the network thus translates like a stiff cake. Close to the
filter, the shear-rate and the volumetric deformation-rate attain large values.
As time proceeds, an increasing part of the network between the plates be-
come subject to deformations. Since the volume fraction of solids increases
close to the filter, the network grows stronger in that region, and the positions
of the largest deformation rate magnitudes move towards the piston. Eventu-
ally, the critical state will be reached at all points (see §4.1). The volumetric
deformation-rate is then zero, and both phases undergo pure shear deforma-
tion. Note that the dashed velocity profile corresponding to t = 0.05 in figure
6 is not linear, although it represents a time when the system is close to the
asymptotic critical state, as can be seen in figures 3 and 4. This can also be
concluded from the corresponding non-constant shear-rate profile in figure 7,
and is a deficiency in the model originating from our neglect of deformation-
rate dependent stresses. Suppose for a moment that they had been included.
The horizontal load ¥j(t) would then be balanced by the sum of 7;¥ and a
shear-rate dependent stress. At the critical state, 7;¥ = 7.(¢oo) which is still a
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FIGURE 5. The small time behaviour of the horizontal piston
load X (t) in the simulations presented in figure 4, where %,
and Ujp were impulsively increased at ¢ = 0 and then kept
at constant values. The corresponding solid lines are plots of
Yn(t) = 5.22U,+/t. Values for Uy, are stated in the figure.
oo/o1 = 500. Note that dt = 3.1 - 1077, and that the smallest
time scales can never be resolved.

constant throughout the network since the concentration at the critical state,
®oo, 18 homogeneous and determined from the applied vertical load (as de-
scribed in §4.1). The conclusion must be that since the limit value of the total
horizontal stress, ¥, is a constant, the added shear-rate dependent stress is
also asymptotically constant. Thus, the limit velocity profile must be linear,
i.e. with a constant shear rate. However, with the present model, there is no
reason to expect the system to approach that state. It is clear from figure
4 that the same shear load Y. can yield different velocities U, and hence
different velocity profiles lim; o u%(y,t). The limit profile is determined by
the history of the process.

With our without the deformation-rate dependent stresses, the limit con-
centration ¢, will be the same if ¥, is the same, and thus also the asymptotic
stress limy o 7;Y (cf. the argument in §4.1). However, the limit value for
3, (t) will be higher, the difference being constituted by the rate dependent
stresses. If these are retained in the mixture equation (36), and are assumed
of Newtonian character, the x-component of that relation will yield

LN RO vy (56)
Hy He (’)y ¢ ’
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FIGURE 6. The horizontal velocity profiles for the solid phase
at different instances (stated in the figure) following the in-
stantaneous application of a constant load ¥, = 1 and a fix
horizontal velocity U, = 324. The profiles correspond to the
dotted curves in figures 3 and 4. For the solid curves, time in-
creases with distance from the abscissa, whereas the opposite
is true for the dashed curves. oo/ = 500.

where the contributions from the two phases to the rate dependent term have
been lumped together, and i denote an effective mixture viscosity. The hor-
izontal velocity component of both phases are supposed equal to the mixture
flux density j%°. Considering the values for [ and Hy used in the present study,
and the shear-rates in figure 7, it is clear that the rate dependent stresses are
small in comparison with 7, if ji/p. < 10°, where 1000 and 0.2 have been
used as typical values of the shear-rate and ij, respectively. Nevertheless,
the viscous stresses, albeit small, would have a quite noticeable effect on the
asymptotic velocity profile in figure 6, rendering it linear.

The horizontal deformation of the network that occurs during sheared con-
solidation is of interest to some applications where it is desirable to smear out
inhomogeneities in the particle concentration, e.g. paper manufacturing. Figure
8 therefore shows the deformation of an initially straight vertical material line
in the flocculated network. At t = 0, the vertical load is increased to %, = 1,
and the horizontal velocity of the piston is set to U = 32.4, which is the same
case as corresponds to the dash-dotted lines in figures 3 and 4. o¢/o; = 500.
Some particle trajectories are also plotted.

9This is only approximately true in the case of a non-zero liquid phase shear viscosity, but
the approximation is at least as good as neglecting the rate dependent term in (56)
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FIGURE 7. The particle phase relative compression-rate (left
fig.) and shear-rate (right fig.), following the instantaneous
application of a constant load ¥, = 1 and a fix horizontal
velocity U, = 324, at the instances t/1073 = 0.3, 0.6, 1.2,
2.4, 4.8, 9.6, 19.2, 50. The curves correspond to the later
time velocity profiles in figure 6. Solid lines: Profiles with the
extremum at lower y correspond to earlier times. Dashed lines:
Larger maximum values correspond to earlier times. og/01 =
500. At t = 50 the volumetric deformation rate is so small
that the profile is not visible.

5. Concluding remarks

Previously, the concept of a particle concentration dependent yield-stress has
been used to model uniaxial consolidation of flocculated suspensions (see e.g.
Buscall & White 1987, Landman et al. 1991). The present work generalises the
yield-stress concept to comprise flocculated phase shear strength. The effects
of applying shear during the drainage process are then investigated. It is found
that the evolution of the volume fraction of solids quantitatively exhibits the
same behaviour as during uniaxial consolidation. Applying a shear load does,
however, in the presented model, increase the rate of the dewatering, due to
the generation of higher pore pressures. The additional velocity component
present during shearing is also interesting to applications, as it provides a way
of influencing the morphology of the compressed solid phase, e.g. by smearing
out inhomogeneities. When shear-related issues are of interest, the importance
of deformation-rate dependent stresses should be considered. It was concluded
that even very small rate dependent stresses will have an effect on the long-time
asymptotic velocity profile when the piston moves with a constant horizontal
velocity, and a constant vertical load is applied.

We have combined a plasticity model for the quasi-static yielding of soil,
and incorporated it into a two-phase model for the flocculated suspension.
Although here applied to one-dimensional compression, the approach should be
possible to extend to more complex situations involving a dispersed solid phase
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FIGURE 8. The deformation of a material line in the floccu-
lated network. At t = 0, the vertical load and the horizontal
velocity of the piston are suddenly increased to ¥, = 1 and
Un = 32.4, respectively, and then held constant. This figure
hence corresponds to the dash-dotted lines in figures 3 and 4.
The material line is initially vertical, and is illustrated by the
solid curves at the instances stated in the figure. The dash-
dotted lines are particle trajectories. og/o1 = 500.

possessing an inner strength. Some complications would appear, however. We
have relied heavily upon the assumption that the stress state is always located
somewhere on the yield-surface in order to relate stresses and strains. In one-
dimensional problems where no relaxation of the applied load occurs, this is
not a restriction. However, although possible to make, the assumption that the
yield-criterion is always fulfilled would not be adequate in a general situation.
If we drop it, in a multi-dimensional problem the stress state would not be
determinate with the presented model. A constitutive model is then needed
for the flocculated phase behaviour at stress states located inside the yield-
surface in stress-space. The natural choice is to prescribe an elastic behaviour
in that region.

The modelling choices made, in particular our choice of yield surface and
the associated flow rule, were motivated by simplicity. Naturally, they have
to be adapted to the suspension under consideration. Unfortunatley, we are
not aware of any experimental work that provides enough data to trace out
the yield surface of a flocculated suspension in e.g. o}’-7;"—space, let alone to
determine the flow rule.
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It is our hope that it will be possible to continue to draw upon the knowl-
edge and models gathered in the field of solid mechanics to deal with other issues
relevant to strongly flocculated suspensions, e.g. the effects of anisotropy.
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Influence of viscous stresses on the sheared
consolidation of flocculated suspensions

By Claes Holmqvist and Anders Dahlkild
Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

To be submitted

The authors have previously developed a (purely) plastic model for the problem
of combined compression and shearing of a flocculated suspension contained be-
tween two plates, one being fixed and acting as a perfectly permeable filter,
the other movable and acting as a piston by which the load is applied. In
the presence of compressive deformations, force balance is achieved by strain
hardening of the flocculated network. However, the model experiences failure
in situations of isochoric deformations, a deficiency stemming from the lack
of a mechanism that can balance the applied external loads, which causes the
deformation rates to become indeterminate. We here resolve this deficiency
by attributing ‘viscous’ stresses to the dispersed phase in addition to the plas-
tic stresses. These are modelled after a Newtonian pattern, with a constant
effective viscosity. Viscous stresses also eliminates the history dependence of
the asymptotic shear rate profile when a constant compressive load is com-
bined with a constant shearing velocity of the piston. The trend of improved
drainage rates when higher shear loads are applied by the piston, is observed
to persist also when larger loads are employed than could be simulated with
the purely plastic model. Finally, the visco-plastic model is employed to obtain
an asymptotic solution of the concentration in a mat of flocculated suspension,
that is on one side bounded by clear fluid and on the other by a permeable solid
surface, subjected to a combined drainage flow and cross flow of clear liquid.

1. Introduction

In a wide range of applications found in e.g. the minerals, chemical, wastewa-
ter and paper manufacturing industries, it is necessary to separate flocculated
solid material dispersed in a liquid phase. Available techniques include gravity
settling, vacuum filtration, centrifugation and pressure filtration. The present
study is concerned with the last of these, which can be described as expres-
sion of liquid by drained compression. Conceptually, this can be realized in a
cylindrical vessel containing the suspension, at one end fitted with a membrane
permeable to the liquid phase only, and at the other end equipped with a piston
used to force the liquid through the filter. If desired, a shear load can also be
applied to the suspension by rotating the piston with respect to the vessel.

149
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In their studies of sedimentation of flocculated suspensions, Buscall &
White (1987), Landman et al. (1988) and Howells et al. (1990) argue that
for sufficiently high solids concentrations, the flocs form an interconnected net-
work that can withstand external forces. To describe this they introduce a
concentration dependent yield stress, which is defined as the value of the net-
work stress above which the load cannot be balanced by elastic stresses in
the solid phase. The network will then consolidate irreversibly. Unlike other
early works on separation incorporating a yield limit (e.g. Shirato et al. 1970;
Adorjdn 1975), they do not assume a priori that the stresses in the flocculated
phase equals the yield value. However, it is found that if the rate of consolida-
tion of the solid phase is limited by the drainage of fluid between the particles,
rather than the breaking and reformation of particle-particle bonds, this is
likely to be a very good approximation. The same concept is used by Landman
et al. (1991), Landman & Russel (1993) and Landman et al. (1995) to model
particle stresses during pressure filtration. Buscall et al. (1986), Buscall et al.
(1987) and Channell & Zukoski (1997) present experimental observations of
yield-stress and elastic properties of some strongly flocculated colloidal suspen-
sions. Notably, the suspensions are observed to possess finite yield-limits in
both shear and uniaxial compression.

All the hitherto cited theoretical studies of pressure filtration deal with
uniaxial filtration, in which only normal loads are applied to the network of
flocculated particles. However, in certain applications, the network is subjected
also to shear loads. It is a reasonable assumption that these additional load
components influence the ability of the solid structure to resist the normal load,
since they increase the strain on the inter-particle bonds. Practical experience
confirms that combining normal and shear loads does indeed have a favourable
effect on separation rates (cf. e.g. Gustavsson 2003). Further, the displacements
of the suspension constituents are not necessarily restricted to a single direction.
It is evident that, to cover additional filtration applications, a more general
model is needed for the stresses and strain-rates in the flocculated network,
than is provided by the above previous works.

For granular flows, Savage (1983) puts forward the proposition that, in the
intermediate regime where both short-time collisions and continuous contacts
occur between particles, the total stresses might be represented as the linear
sum of a rate-independent frictional part and a viscous part obtained from
the theory for the fully dynamic rapid flow regime. More detailed treatments
based on this concept are performed by Johnson & Jackson (1987) and John-
son et al. (1990). The models for the frictional stress tensor are taken from the
discipline of soil mechanics, where plasticity models have been developed for
the yielding of porous media under general load conditions (cf. the standard
textbooks, e.g. Wood 1990). In a similar fashion, with the ambition to gener-
alise the previously referenced filtration models to comprise flocculated phase
shear strength, Holmqvist (2005) (henceforth referred to as H&D) patches the
divergence of a rate-independent stress, representing the inter-particle forces,
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to the momentum balance of the particle phase in a two-fluid model of the
flocculated suspension. The modified Cam-clay constitutive model by Roscoe
& Burland (1968) is used to model the particle-stress tensor, and by consid-
ering the problem of plane sheared consolidation, the differences with respect
to the conventional models are elucidated. Among other things, an increased
drainage efficiency is predicted when a shear load is applied during the filtra-
tion, as observed in applications.

Soil plasticity theory, combined with elasticity, is also employed by Zhao
et al. (2003) for an analysis of wall effects in a Compression—Permeability Cell!,
and by Owen et al. (1998) to study the rolling of prepared sugar cane. However,
these works do not address the effects of applying shear loads, nor the role
played by the deviatoric stresses in the model.

Deformation rate dependent stresses were not included in the momentum
balance for the particle phase put forward by H&D. As a result of the choice
of constitutive theory, external loads transmitted to the solid phase can only
be balanced by strain hardening due to volumetric compression. At certain
(‘critcal’) stress states, resulting in isochoric deformations, this mechanism is
not at work and the deformation rates become undefined. This can be avoided
by including viscous deviatoric stresses. Gustavsson (2003) presents a visco-
plastic model for consolidation in which it is assumed that the inter-particle
forces manifest themselves as both an isotropic strain-rate independent stress,
and deviatoric viscous stresses. Deviatoric plastic stresses are however not in-
cluded. In the present study, we shall incorporate the previously neglected
viscous stresses into the model by H&D (thus obtaining a description in which
viscous and plastic deviatoric stresses co-exist) to prevent model failure at crit-
ical stress states. This is of essence, since in a situation of continuous shearing
the system will eventually attain such stress states. Further, H&D observes
that in certain cases the long time asymptotic strain-rates are dependent on
the history of the load process. This artefact is removed when strain-rate de-
pendent deviatoric stresses are accounted for.

2. Formulation

Consider a flocculated suspension trapped between two parallel, rigid, flat
plates of infinite extension, lying in a horizontal xz-plane (cf. figure 1). The
suspension consists of two incompressible components — a liquid (continuous)
phase, and a solid particle (dispersed) phase, the local volume fraction of which
is denoted ¢. Both phases are treated as isotropic continua. One of the plates,
located at y = 0, is impermeable to the particle phase, but perfectly perme-
able to the liquid phase. This plate will be referred to as the ‘filter’, and its
position is fix. The other plate, located at y = H(¢), is impermeable to both
phases, and its position is a function of time. We shall refer to this boundary
as the ‘piston’, and its movements, which we limit to the xy-plane, are either
controlled by directly specifying its vertical and horizontal velocity, denoted

IThese devices are used for uniaxial consolidation experiments.
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FIGURE 1. Schematic illustration of the considered situation:
A flocculated suspension trapped between two parallel flat
plates, of infinite extension in the horizontal zz-plane. The
upper plate (the piston) is impermeable to both phases. The
lower plate (the filter) is impermeable only to the solid phase,
and perfectly permeable to the liquid phase. The consol-
idation process is controlled by specifying either the load
(Eh(t),Ev(t)) by which the piston is applied to the suspen-
sion, or its velocity (Up(t),U,(t)). A combination of the two
modes of control is also possible.

U,(t) and Uy(t), respectively, or by specifying the vertical and horizontal load
components, denoted X, (t) and X (t), respectively, by which it is applied to
the suspension.

Due to the perfect permeability of the filter, the liquid pressure, p., must
at the filter surface equal the surrounding atmospheric pressure, which we
arbitrarily set to zero, i.e.

pe(y =0)=0. (1)

At the filter, the particle phase is supposed to obey the no slip and no pene-
tration conditions, providing

for the dispersed phase velocity uy. The subscripts ¢ and d are henceforth used
to distinguish between the continuous and the dispersed phase, respectively.
Also the liquid velocity component tangential to the plate surface is zero at the
filter, and thus

(ue x ey)(y =0) =0, (3)
where ey, and later e;, are the unit vectors in the vertical and horizontal

directions, respectively. On the piston side, both phases move with the velocity
of the plate,

wq(y = H(t)) = uc(y = H(t)) = Up(t)e, + Uy(t)e, . (4)
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Note that ug and u. represent the mass averaged interstitial velocities of the
phases.

The initial volume fraction of solids, ¢g, is assumed homogeneous and
higher than the gel point ¢ = ¢, at which the solid phase first starts to form
an interconnected network. Consequently, the entire space between the plates
is filled with a flocculated network having an inner strength and capable of
bearing certain loads.

The following quantities are also defined,

Ja=oua, (5)
Je=(1-0)uc, (6)
J=JatJc (7)

Jr=7Ja— 03 =1 =) (ua — u), (8)

where j,; and j. are the particle and liquid volume flux densities (i.e. the
superficial velocities), j is the mixture (or suspension) volume flux density,
and j, is the disperse phase flux density relative to the mixture.

2.1. Balance equations

The requirement of global volume continuity, and continuity of the dispersed
phase, read, respectively,

0¢ .
E+V~]d—0. (10)

Neglecting all effects of inertia, the momentum balance for the suspension mix-
ture can be expressed as (see e.g. Ungarish 1993, p. 22),

0=-Vp.+V-tng—V-04. (11)

Above, o4 is the stress tensor originating from deformation-rate independent
inter-particle forces, and 74 represents rate dependent shear stresses within
the particle phase. For simplicity, no such forces have been attributed to the
liquid phase. This is justifiable in systems where the viscous liquid stresses are
small compared to the components of 7x4. The stress tensor o4 can be split
into an isotropic ‘particle pressure’, denoted pgy, and a deviatoric remainder 74,
according to

—04=—pal +7a, (12)
where I denotes the identity tensor. Traditionally, 74 is not included in studies
of consolidation. Note that according to (12) compressive stress components
are positive. We neglect the possibility of a particle phase bulk viscosity, and
assume that the deformation-rate dependent tensor 74 is deviatoric and of
Newtonian character,

t
TNd = 2,Ll,d (ed - WI) . (13)



154 C. Holmquist € A. Dahlkild

Here, a constant dispersed phase effective viscosity, 114, has been introduced. If
desired, it could later be attributed with a concentration dependence. Fre-
quently, power laws are employed for this purpose (see e.g. Bennington &
Kerekes 1996). The rate of strain tensor eq is

eq =1 (Vug+ Vul) . (14)

To close the system of equations, we adopt the following constitutive rela-
tion for the relative flux density,
k(9)

Jr = _(b(]' _¢) Lo

A similar relation, without the stress tensor T4, has previously been employed
by H&D. In (15), u. is the dynamic viscosity of the liquid phase, and k(¢) is
the permeability of the particle network, for which we adopt the relation

1
k(p) = —s—=.
(9) = 3552515
It was suggested by Ingmanson et al. (1959) for low concentration pulp mats,
and the parameter Sy is the specific surface of the fibres. The postulate (15)
reveals that we suppose the velocity difference between the phases to result
from inter-particle forces only.

(V-oq—V-Tng) . (15)

(16)

2.2. Rate independent particle stresses

A model for the rate-independent inter-particle forces is now presented. A
somewhat more lengthy treatment is performed by H&D. We assume that in
order to deform the solid phase, the following yield criterion must be fulfilled,
which stems from the modified Cam-clay theory introduced by Roscoe & Bur-
land (1968) in the field of soil mechanics.

F (pa; 44 po(8)) = g7 — M*pa (po(¢) — pa) =0, (17)

where ¢4 is (up to a constant factor) the von Mises effective stress used in
classical plasticity theory. It is defined as

R O R L D L

The particle pressure expressed in component form is

pa = ok, (19)
Equation (17) describes an elliptic ‘yield-surface’ in p4-gq4-space, centred around
(pd,qa) = (po(¢)/2,0), and with a major and minor axis of length py(¢) and
Mpo(o), respectively. At positions where the stress state o4 is such that the
resulting py(o4) and gq(oq) lie ‘inside’ the yield surface (i.e. F'(pq, g4) < 0), it is
assumed that the material behaves like a stiff body. In a general situation, the
stress state is not determinate in regions where the network is stiff. We shall
avoid dealing with the interior of the yield-surface by specifying that criterion
(17) is always satisfied. Naturally, this restricts the cases possible to consider,




Influence of viscous stresses on sheared consolidation 155

but it is an adequate assumption for the present study, where we at all times
take care not to relax the load experienced by any part of the network. The
function pg(¢) expresses the yield limit when purely isotropic loads are applied,
and we adopt the power law

po(d) =m (¢ — ¢g)" . (20)

The dependence of the yield-surface on ¢, through po(¢), ensures that volumet-
ric compaction of the network induces hardening of the flocculated structure.

Further, we adopt an associated flow rule, according to which the flow

potential coincides with the yield surface. The deformations of the solid phase
are perpendicular to the flow potential, and hence

. 1 (ou, 0 oF
e 2 T ) _x YT xS (. 21
=3 (a:m N a;m) PR 2y

The deformation rate eff, viewed as a vector in strain-rate space, is pointing
in the direction of the outward normal to the yield-surface, and its magnitude
is set by the proportionality factor X. Clearly, compression, i.e. V - uqg < 0,
causes the yield-surface to expand.

We also define the scalar deformation rate measures,

ep=chF and e, = \/(er - %61'-76’;’“) (egj - %(We’;k) . (22)

corresponding to isotropic (volumetric) deformations and deviatoric (shape
changing) deformations, respectively. They are related to pg and gq as

_ _xoF _ 2 (¢)
ep = 7X87pd = 72XM (pd - 2 ) (23)
OF
=X—=2Xqq. 24
€q 044 dd ( )
Combining (23) and (24), we find that
= G _ % >0. (25)

T 24 2M? (pa — 3p0()) ~

It is seen that compression (e, < 0) occur when pg > p(¢)/2, and expansion
(ep > 0) when pg < p(¢)/2. Deformations without volume change can only
occur at the so called ‘critical state’, in which pg = po(¢)/2. Note that the
deviatoric deformation-rate can then not be determined from (25).

3. Analysis
3.1. Scaling

It is often more instructive to discuss dimensionless quantities, and we shall
therefore scale the variables. As a representative length, we chose the initial
distance between the filter and the piston, denoted Hy. We further let Uy be
the velocity scale, and [ a typical size of the pores in the particle network. We
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shall use I = 1/Sp. The magnitude of the rate-independent solid stresses is
denoted o7. The following scaled variables are defined,

T - U()t

T HO ) HO y Uy UO ) @ UO y €4 UO ’ ( )
Hyo1 X *p. HoTna Ou
Xt=——"—  pi=—r— |, Thyq=—7— , OFL=—, 27
Uy Pe eUoHo N Uy * o 27
po(9
K(9)=PKo) . Po(o) =212, (29)

where the superscripts * indicate dimensionless quantities. In (26), u,, denotes
any of the velocities uq, u. or (Uy(t), Uy (t)). In the same way, j,, represents all
the flux densities introduced in section 2, and o, is either o4 or (Eh(t), Yo (t))
Note that the liquid pressure is scaled with an estimate of the inter-phase drag
(assumed given by Darcy’s law) accumulated over the distance Hy.

Inserting the scaled variables into (11) and (15), these become, respectively,

O:—Vpc+AV~TNd—%V~0'd. (29)
o= 0= K@) (5.V 00— AT 7y ) (30)

where the superscripts * have been dropped for ease of notation. We shall
continue to do so. Two dimensionless groups have appeared, a Péclet number

2
peHoUg pa (1
Pe=—— d A=—1{—| . 1

‘ 2o, " fe <H0> B

Pe expresses the ratio between transport of particles towards the filter by
convection, and relative transport away from the filter due to gradients in the
inter-particle stresses. Considering that all particles are retained by the filter,
these two mechanisms must be equally important in the region next to the
filter. We shall therefore set Pe = 1 and use this to determine the unknown
scales Uy and oq1. When the vertical piston load is specified, we take as o some
suitable measure of that load, after which (31) provides the estimate

o 120'1
peHo ’

Conversely, when the vertical velocity of the piston is given, it will provide Uy,
and

Us (32)

~ pcHoUg

==
The group A measures the significance of the viscous stresses. Since I/Hj is
small, these are only important to the momentum balance of the mixture if
ta/pe > 1. As shall become clear below, even small rate-dependent stresses
can nevertheless have an influence on the behaviour of the flow field. Further,
if there are regions where the solid phase network reaches critical state (cf.

g1 (33)



Influence of viscous stresses on sheared consolidation 157

section 3.2), the deformation-rates will be of such magnitude that the viscous

stresses are of importance?.

The scaled version of (13) is obtained by simply omitting the viscosity from
the relation.

Apart from (11), (13) and (15), the relations in section 2 retain their ap-
pearances when scaled variables are introduced. The exception is that po(¢)
should be replaced by Py(¢) at all occurrences in section 2.2. From now on, we
shall only refer to scaled quantities, unless otherwise explicitly specified.

3.2. The sheared compression

Assume a situation of plane strain, such that the only non-zero velocity com-
ponents are those in the zy-plane. Further, as the piston and the filter are
of infinite extension, we suppose that there are no gradients in the horizontal
direction. Hence, from (9), the mixture flux towards the filter, j¥, is given by
the vertical velocity of the piston,

7 =Uy(t). (34)

The horizontal and vertical components of the force balance (29) can be
integrated to reveal, respectively,

¥+ ATy =B (1), (35)
pe+ oy’ — AT = Eu(1), (36)

indicating how the applied load is distributed between different types of stresses.
From (30), (35) and (36), we obtain the relative flux density components?,

Jr =0, (37)

, 0
gt =—0(1-9¢)K (@5)8? (0" — ATyy) - (38)
Consequently, both phases have the same velocity in the horizontal direction.

A transport equation for the dispersed phase is obtained by inserting j,
from (8) into (10), and employing the global conservation of volume (9). If (34)
is then used in this equation, we find

06 06 oY
o PO W, 5, =

Under the assumptions made in this paragraph, the yield-surface (17) is in
the o¥-77Y-plane, according to the analysis by H&D, given by the relation

(74"~ 3Po(0))"

(tro/1+2022) (3R(0)2%)

It is illustrated in figure 2. As a result of the associated flow rule, the defor-

0. (39)

=1. (40)

2More correctly, the solid phase deformation-rates are then determined by the the viscous
stresses.
3The flux j¥ would not have vanished if viscous stresses in the liquid phase were included.
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FIGURE 2. The yield-surface in the o4Y-7;Y-plane. The
dashed line indicates the position of the critical stress state
at different concentrations.
mation rate vector (—e¥?, e}”) is directed along the outward pointing normal
to the ellipse in figure 2. Thus, the dashed ‘critical state line’, whose intersec-
tion with the yield-surface is denoted (o.(¢), 7c(¢)), separates the stress states
resulting in volumetric expansion (0¥ < o.) from those yielding compression
(0% > 0.). When (04?,7;Y) = (0¢,7c), a pure shearing motion takes place.
By limiting ourselves to situations in which 7;¥ > 0, we can rewrite (40) as a
relation for 7Y,
= f(9, Uzy) : (41)
H&D also shows that the associated flow rule leads to the following coupling
between the two non-zero deformation-rates,

M?*(o%¥ — LPy(9))el? + (14 2M?) 13l = 0. (42)
It is worth noting that at the critical state, where 0%’ = 1 Py(¢), equation (42)

turns into %’ = 0.

From the constitutive relation (13), it is seen that the non-zero viscous
stress components are

Ty = 2e5” (43)
4
= el (a1

Thus, (43) can be used in (35) in order to determine ej;Y. The normal deformation-
rate component is connected to j¥ through

o (¥
e = — (’ ) , 45
which follows from the definitions (5), (8) and (14), together with the result

(34).

The equations (35), (38), (39) and (41)—(45) constitute a closed system.
However, before an attempt is made to obtain the solution, it is further reduced
by first combining (38), (39) and (44), thus obtaining an equation for the
concentration,

0 0 0 0 4A
2 v - L (sa-ax@ 2 (- Ber)) =0,
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Again using (38) and (44), this time in (45), yields an equation for the normal
deformation-rate,

@+ 2 (0-ax@ 2 (o - ) -0, (n

In addition, the equations (35), (41), (42) and (43) can be used to derive the
following algebraic equation, connecting the dependent variables in (46) and

(47),

p(t) — ¥
M2~ s (o) O @0)
Using the last equation, we can eliminate e’ in (46) and (47). However, by

doing this, we restrict our treatment to situations in which 7;¥ = f(¢,0%") =
The boundary conditions needed to solve (46) and (47) are different de-
pending on whether we control the piston by the applied load, or by prescribing
its displacement velocity. Assume first the former alternative. From (1), (36)

and (45), we learn that the following condition must be fulfilled at the filter,

4N\
[Uij — Sezy} . =%,(t), (49)
y=

into which e¥ from (48) should be inserted. At the other end of the domain,
the vertical velocity of both phases are equal to the velocity of the piston, and
thus

+ (14 2M?) f(¢,05")el =0.  (48)

U¥)y—my = 0. (50)
When the piston is load-controlled, its velocity components need to be
solved for, notably U, (t) which appears explicitly in equation (46). Using the
condition (2) and the result (34) in equation (8), we get a relation that can be
solved for the vertical piston velocity, yielding
_4A v

Uu(t) = M: - [a-ox@s (o - B )]: (51)

The horizontal component of the solid phase velocity, uj, can be obtained by
first calculating the velocity gradient du?/dy from (14), (35), (41) and (43),
and then integrating in the direction away from the filter, revealing

where the condition u%(0,t) = 0 has been used. As j7 = 0, (52) also provides
the horizontal liquid phase velocity, as well as the corresponding mixture flux
density component j*. Further, the piston velocity in the z-direction is Uy (t) =
uf (H(t),t).

When the piston velocity is directly controlled, (50) is still used as a bound-
ary condition. However, the relation (51) replaces (49) as the condition applied
at the filter. The shear stress appearing in the equations is obtained by solving
(52), evaluated at y = H(t), for ¥5(t) as a function of Up(t). The necessary
vertical load ¥,(t) is determined a posteriori from (49).




160 C. Holmquist € A. Dahlkild

Frequently, we have also chosen to specify the combination X, (¢) and Uy(t),
in which case (49)—(51) are used as in the load-controlled case, but the necessary
shear stress X5 (t) is determined as in displacement-controlled simulations.

In order to prevent a break-down of the model when some point of the floc-
culated phase reaches critical state, it is in our particular plane-strain problem
only necessary to include the stress component 7y%. The governing equations
for this situation can be obtained from those presented above, by simply in-
serting 75%, = 0. Practically, this amounts to removing the group 4e%”/3 at all
occurrences.

3.3. Solution method

The equations (46)—(48) have been solved numerically. To facilitate the numer-
ical treatment, a change of co-ordinates, y = H(t)g, was undertaken in order to
have a domain with fixed boundaries, § € [0,1]. The spatial discretisation was
then performed using the Galerkin formulation of the finite element method
with linear interpolation functions. For the time-derivative, the implicit Euler
formulation was employed. The complete discretisation is thus of second order
accuracy in space, and first order in time. The implementation of the algorithm
was carried out by formulating the problem in variational form, and then using
the package femLego for automated code generation (see Amberg et al. 1999).

A shooting method based on (52) was used to obtain 3 (t) when Uj(t)
was specified. At each time-step, the equations (46)—(48) were solved using a
guessed value for ¥y, (¢), which was updated using the bisection method till the
correct value of Uy (t) was found. However, this was found to be rather time-
consuming. The simplified model, in which the only non-zero viscous stress
is 75, required less computational effort, and it was used instead when the
‘mixed’ type of piston control was employed.

To produce the presented computational results, the domain g € [0, 1] was
resolved with 400 elements of uniform size. The non-dimensional time step dt
was 3.1-1077.

4. Results

The initial concentration and gap size were set to ¢g = 0.05 and Hy = 0.01 m.
Since, by assumption, ¢y exceeds the gel concentration, we simplified the treat-
ment by setting ¢, = 0 in equation (20). The parameters oy and n were given
the values 500 kPa and 2.5, respectively, and for the specific surface we chose
Sp =1/l = 18 -10° m~!. These are the same values as those used by Zahrai
et al. (1998). Buscall et al. (1986) conclude that the yield stress in shear for
a strongly flocculated polystyrene latex suspension appears to be one to two
orders of magnitude smaller than the corresponding uniaxial limit. Thus, by
setting M = 0.287, we obtain critical shear stresses 7.(¢) that are a fraction 0.1
of the yield limit in uniaxial compression. For the viscosity of the continuous
phase, we used p, = 1072 Pas.
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At the onset of the consolidation process, the load applied by the piston
was in equilibrium with the stresses in the solid phase in such a way that
Yp(t = 0)/S,(t = 0) = 0.01. A certain initial stress 7;¥ was needed for
the algorithm to behave properly, presumably due to the very steep slope of
f(¢,04Y) (for a given ¢) when o” is close to the uniaxial yield limit, and
the way in which (48) was used to eliminate e’ in section 3.2. In all the
presented simulations, the vertical load %, (t) was then ramped linearly to
its final value o7 = 1 kPa, and, according to (32), the velocity scale is thus
Up = 3.09-107° m/s, and the time-scale is Hy/Uy = 324 s. Also in simulations
where U, was ‘given a constant value’, there was an initial part during which
the horizontal velocity of the piston was increased linearly with time till the
final value was reached. The scaled ramp time for both the vertical load and
the horizontal velocity was in all cases 3.1 - 107%.

H&D comments that, according to the work by Landman et al. (1991), the
scales employed in this study are only correct after sufficiently long times. It
is also worth pointing out that the velocity scale refers to the vertical velocity
components, which after a certain time are small. This explains the large values
of the horizontal velocity components in the presented results.

Although, according to the scaling analysis in section 3, the solid stresses
7Y and ¢%¥ are of much larger magnitude than the corresponding viscous
components 7yY, and 73%, the latter prevent break-down of the model when
Yr(t) is of such magnitude that parts of the flocculated network reach critical
state. Without them, the shear-rate e} would then not be determinate. An
example of their effect is given in figure 3, containing results from a computation
in which the horizontal component of the piston load at all times is set to a
value that exceeds the critical solid stress 7. (qu(t)) by a constant amount
AT = 1073, where ¢,,(t) is the lowest concentration of solid phase encountered
between the plates. Consequently, ¢,,(t) is the volume fraction at the position
where the network is the weakest. The viscosity ratio p4/ . is here 102, yielding
A =5.6-1073. The left and the right part of figure 3 contains velocity and
shear-rate profiles, respectively, at different solution times.

The evolution of the concentration during the same compaction process is
provided in figure 4. The progressive increase of the concentration at the filter
is an effect of the monotonically increasing shear load ¥, (t) reducing the ability
of the network to carry the vertical load. The small time increments between
the initial profiles hides this course of events at the onset. Initially, it is only
in the region next to the filter that the solid phase network is compressed, and
the volume fraction next to the piston remains at the original value. Until
the uncompressed upper region has disappeared, ¢,,(t) thus equal ¢p, and the
network next to the piston is at critical state. In the upper suspension region,
as a result of the balance (35), the viscous stress A7y, then equal the constant
AT, yielding a homogeneous shear rate and a linear velocity profile.

Immediately next to the filter, the network very soon attains a high degree
of compaction. It is thus of high strength, and the deformation-rates small.
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FIGURE 3. Velocity profiles (left subfigure) and shear-rate pro-
files (right subfigure) when %, = 1 and 4 (t) = 7c(¢m(t)) +
1073, where ¢,,(t) is the volume fraction of solids at the po-
sition where the network is weakest. Profiles are plotted for
t/1073 = 0.31, 0.62, 0.93, 2.7, 11, 22, 44, 88. Time increases
from right to left for the solid profiles (earlier times). Then
time increases from left to right for the dashed profiles (later
times). Both 4%, 74% # 0. A = 5.6 -1073. Note that in
the right subfigure, the position y is scaled with H(t), whereas
in the left subfigure it is not. Cf. fig. 4 for the corresponding

profiles ¢(y, t).
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FIGURE 4. Evolution of the volume fraction of solids in the
same case, and at the same instances, as in fig. 3. Time in-
creases from the leftmost to rightmost profile. The dotted line
gives the concentration at the position of the piston.
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Slightly further away from the bottom plate, at the earliest times, the shear-rate
(and also the volumetric deformation-rate) is large. The solid stress component
7, is here smaller than 7. (¢, (t)), and the viscous stress ATy consequently
larger than A7, which explains the peak exhibited by the earliest shear-rate
profile in the right part of figure 3.

Eventually, also the network next to the piston must undergo compression.
It follows that the particle phase then cannot remain at critical state, since
this corresponds to vanishing volumetric deformations. Referring to the yield-
surface in figure 2, the stress state moves along the yield locus in the direction
of increasing oY, resulting in a deformation rate vector (—e’,e}’) with a
finite component e”. Thus, 7;¥ becomes smaller. By consequence, since the
weakest part of the flocculated structure is always located next to the piston,
77Y < 7(¢m(t)). Hence, although we apply a shear load X, (t) that is higher
than the critical shear stress at the weakest point, there is now no position
at which the network is at critical state. The viscous stress A7y’ must also
exceed A7 in order for the horizontal balance (35) to be fulfilled next to the
piston, and this explains why the shear rates at the upper plate, after a certain
time, exceed the asymptotic value in figure 3. Note that the time increment
between the different profiles in figure 3 is not uniform, and that this situation
actually prevails during almost the entire consolidation process. As t — oo,
the critical state is attained by all parts of the flocculated network, and A7y,
is then everywhere equal to A7, from which the asymptotic shear-rate is easily
obtained.

Figure 5 contains a comparison between the horizontal solid phase velocity
uj in a visco-plastic simulation, and a purely plastic simulation performed by
H&D, when the horizontal velocity of the piston is held at a constant value. The
ratio between the viscosities of the two phases is now higher than in the previ-
ously discussed simulation, pg/p. = 103, yielding A = 5.6-10~2. For computa-
tional efficiency, the stress component 737 is not included in the visco-plastic
calculation. Clearly, there are qualitative differences between the velocity pro-
files in figures 5 and 3. The initial compression of the flocculated network is
also in the cases in figure 5 limited to the region closest to the filter. However,
the applied shear load is now such that the critical state is never attained at
any position. The flocculated solid phase next to the piston therefore translates
like a stiff cake. As the consolidation proceeds, the size of the cake region is
progressively reduced till the entire flocculated network contained between the
plates undergoes deformations. In the left part of figure 5, it is seen that this
happens sooner in the visco-plastic case, than in the purely plastic computa-
tion. In both cases, the evolution of the concentration qualitatively follows the
pattern in figure 4.

Eventually, the drainage of liquid ceases, the continuous phase pressure
vanishes, and ¢4” is everywhere equal to the piston load ¥,(t), cf. equation
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FIGURE 5. Comparison between visco-plastic (solid lines) and
purely plastic (dashed lines, from H&D) velocity profiles when
¥, and Uy are kept at constant values (1 and 324, respec-
tively). Only 75%, # 0. Left subfigure: ¢/1073 = 0.5, 0.9, 1.8,
3.5, 7. Time increases with distance from bottom right corner.
Right subfigure: ¢/1073 = 14, 57, 100. Time increases with
distance from top left corner. Only the visco-plastic profile is
plotted for the largest time. A = 5.6 - 1072.

(36). The concentration in the gap is then homogeneous, ¢(y,t) = ¢, and
further (horizontal) movements must take place without volumetric deforma-
tions. Consequently, all parts of the network asymptotically tend to the critical
state in the limit ¢ — oo, and X, (¢t — 00) = 0.(deo), a relation which can be
used to calculate ¢o,. In the purely plastic case, from (35) with A = 0, the
horizontal load ¥y, (t — o) is seen to equal 7, (y,t — 00) = Tc(¢oo ), regardless
of the value of the specified piston velocity Up(t). Clearly, the limit velocity
profiles lim;_ o u%(y,t) are not uniquely defined by the values of the asymp-
totic loads. As noted by H&D, it is not even necessary that the purely plastic
limit profiles are linear. This remark is supported by the last of the purely
plastic profiles in the right part of figure 5. It corresponds to an instant when
the concentration and the piston loads are very close to their asymptotic values
(cf. fig. 6).

The situation is different in the presence of a non-zero viscous stress 7'1”\%.
The solid stress 7" (y,t — o) still equals 7.(¢oo), but, according to (35), the
piston load X, (¢ — 00) necessary to achieve the specified piston velocity will
now depend on the (spatially constant) viscous stress A7yY,. Asymptotically, a
constant dispersed phase effective viscosity will hence yield a spatially constant
shear-rate e}, and a linear velocity profile. Note that this would also be the
case if the effective viscosity depends on the concentration, since the asymp-
totic viscosity would then be constant across the gap between the plates, i.e.

4 An alternative problem formulation, yielding a non-homogeneous asymptotic profile, is dis-
cussed in Appendix A.
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FIGURE 6. The evolution of the applied horizontal stress
Yn(t), and the gap between the plates H(¢), when ¥, and
Uy, are kept at constant values (1 and 324, respectively). Solid
lines: Visco-plastic case (only 75 # 0). Dashed lines: Purely
plastic case (from H&D). A = 5.6 - 10~2. Cf. also fig. 5 which

contains results from the same computations.

lim; o0 g (gb(y,t)) = 14(¢so). The visco-plastic profile at the largest time in
figure 5 is indeed completely linear. It should be kept in mind, however, that
the visco-plastic profile corresponding to the last of the purely plastic profiles,
is not perfectly linear. Hence, the visco-plastic simulation has at that point
not yet reached the asymptotic state. It is likely that the same is true of the
purely plastic calculation, for which (due to numerical problems) it was not
possible to obtain results at later times than the last profile in figure 5. There-
fore, we do not know the shape of lim;_, o uj(y,t) in the purely plastic case. It
is however worth observing that the difference between the last purely plastic
and the corresponding visco-plastic profiles is significantly larger than at ear-
lier instants in the left subfigure. This could indicate that the purely plastic
solution is close to its asymptotic shape, since it evolves at a markedly lower
pace than the visco-plastic counterpart.

The evolution of the horizontal piston load ¥ (t) and the gap size H(t)
are given in figure 6 for the visco-plastic and purely plastic cases discussed in
connection with figure 5. It is seen that although the dispersed phase viscosity
is high (pq/pe = 103), the viscous stress only slightly affects the load required
to maintain the chosen (constant) horizontal velocity. This is in agreement with
the predictions made during the scaling analysis in section 3. The evolution of
the gap size H(t) in the visco-plastic and the purely plastic cases is practically
identical. A larger (albeit still small) difference would have been observed if 737,
had been included in the visco-plastic simulation. From figure 6 we conclude
that, at larger times, ¥ (¢) and H(t) have almost reached their asymptotic
values.

The purely plastic calculations by H&D indicate that applying a shear load
to the suspension during the consolidation process yields higher pore pressures
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FIGURE 7. A comparison between different cases of the evo-
lution of the gap H(t). In all simulations ¥, (t) = 1. Dashed
lines: Purely plastic calculations by H&D in which U}, is held
constant. ¢: U, = 0. A: U, = 32.4. o: U, = 162. O:
Up, = 324. Solid line: Visco-plastic calculation (only 74" # 0),
U, = 3240, A = 5.6 - 1073. Dotted line: Visco-plastic simu-
lation (1x%, 78% # 0) in which £ () = 7e(dm(t)) +3- 1073,
A = 5.6-1073. Cf. fig. 6 for the definition of ¢,,(t). The
horizontal line H = H,, corresponds to the asymptotic gap
size.

and faster drainage, an effect which in a real suspension could be attributed
to restructuring of the solid phase network and increased loading of the inter-
particle bonds. In figure 7, the evolution of the gap size H(t) is presented for a
visco-plastic case (pq/pe = 10%, 78, = 0) in which the horizontal velocity of the
piston is held at a high value, U}, = 3240, as well as for a visco-plastic simulation
(pa/pe = 102, 737, 7% # 0) in which the horizontal load X, (t) is kept at a
value that exceeds 7. (¢, (t)) by an amount A7 = 3-1073 (a case similar to that
reported in fig. 3 and 4). For reference, the purely plastic constant horizontal
velocity results by H&D are also presented. The corresponding piston shear
loads X (t) are given in figure 8.

The maximum plate velocity in the purely plastic calculations is U, = 324.
At higher horizontal plate velocities, the solution algorithm used by H&D has
been found to run into difficulties before the system reaches the asymptotic
state. However, including a viscous shear stress component 7%, permits nu-
merical experiments to be conducted with higher velocities Uy. According to
figure 6, the evolution of H(t), as compared to the purely plastic case, is only
very slightly influenced by the viscous stress (note that pg/p. for the visco-
plastic case in fig. 6 is a factor 10 larger than for the visco-plastic cases in fig.
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FIGURE 8. A comparison between the same cases as in fig. 7
of the shear load X (t) applied by the piston. Cf. the caption
of that figure for an explanation of the different line-types.
For the case corresponding to U = 0, we have ¥, = 0. The
horizontal line ¥;, = ¥, corresponds to the asymptotic load
in the purely plastic simulations.

7 and fig. 8). From the solid line in figure 7 it can be concluded that increasing
the piston velocity component Uy, (t) beyond the values employed by H&D in
his purely plastic calculations increases the compaction rate even further, at
the expense of a higher required load X ().

The plate separation distance H(t) qualitatively exhibits the same be-
haviour when the horizontal piston load is kept slightly above the critical shear
stress at the weakest part of the network, as when Uy, is constant. However,
in the former case U (t) varies between a minimum and a maximum value of
about 1160 and 4419, respectively, the latter value being the asymptotic plate
velocity. In order to achieve a high drainage, the solid shear stress 7;¥ should
be as close to the critical value 7.(¢) as possible, in order to reduce the capac-
ity of the flocculated particle phase to resist the compressive normal stress (cf.
the yield-surface in fig. 2). According to the vertical force balance (36), when
o’ is reduced (and since the viscous normal stress is relatively small), a larger
fraction of the applied load ¥, (t) must then be balanced by the liquid (pore)
pressure. Both types of piston control effectively achieves this situation.

In section 2, the inertial terms were neglected in the balance equations.
Given the large values of the horizontal velocity components encountered in
the results, the question arises whether this is justifiable. In the vertical direc-
tion, it is common practice to neglect inertia (see e.g. Landman et al. 1995),
and an analysis akin to the one we shall perform for the horizontal direction
would normally reveal this to be motivated during the predominant part of the
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consolidation process of a flocculated suspension. The exception is at the onset
of the loading, when a finite force that is suddenly applied to the piston can
yield very high drainage velocities if the resistance of the filter is low (indeed,
a perfectly permeable filter yields an infinite velocity at ¢ = 07). The scaling
analysis by H&D tells us that the inertial terms in the horizontal direction can
be estimated by considering the quantity

paUoHo\ ( 1 \* (0us =, 0us
() ) (G5 e, <53>

where pq is the density of the solid constituent. We here choose to focus on
the particle phase, but this is of no importance if the solid and the liquid are
of comparable densities and are displaced at similar rates. Inserting the values
provided at the beginning of this section, and taking py = 102, it is found
that the first two factors in (53) are O(107!) and O(107?), respectively. We
estimate the first term in the third factor using the velocity profiles in figure
3. The velocity change between the first two profiles at some vertical position
is typically O(10%). As the time interval between the profiles is O(107%), the
term in question is of magnitude O(107). From e.g. the solid curve in figure
7, it is concluded that the average vertical piston velocity between, say, ¢t = 0
and ¢ = 0.03, is O(10). This value can be taken as a measure of uf. If
the variation in u? across the distance between the plates is O(10%), and the
distance itself is estimated to O(1), the second term in the third factor in (53)
is O(10*). Thus, the acceleration terms are of size O(107%), and can safely be
neglected. However, one should be aware of that the same comment as was
made regarding the inertial effects in the vertical direction at the onset of the
loading, also applies to the last term in the third factor of (53).

5. Concluding remarks

In the present study, the purely plastic model by H&D for sheared consolidation
of a flocculated suspension trapped between two infinite flat plates, is extended
to include strain-rate dependent stresses. A set of dimensionless parameters
that govern the model can be identified. The relative magnitude of deviatoric
to isotropic stresses is measured by the slenderness factor of the yield surface,
M. The size of the yield-surface as compared to the applied load is expressed by
o0/o1, and the strain-hardening is controlled by the exponent in the isotropic
yield-limit function, n. The relative size of the viscous stresses to the rate-
independent stresses is determined by the group A, defined as the product of
the ratio between the viscosity of the liquid phase to the effective viscosity of
the particle phase, and the ratio between the microscopic length scale of the
porous structure to the macroscopic scale of the problem. Further, the initial
concentration ¢¢ and the gel concentration ¢, can be considered as independent
dimensionless numbers. Although the scaling analysis reveals that the viscous
stresses are most likely of comparably small magnitude in many applications,
there are nevertheless several reasons to explore their effects.
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A characteristic of the inviscid critical state plasticity theory is that, when
the solid structure attains critical state, deviatoric deformations occur at an
undefined rate. In the original field of application of the theory, soil mechanics,
relatively little attention has been paid to the evolution of the system once
the critical state is attained, as this usually represent failure of the structure
under consideration. As shown by H&D, the Cam-clay critical state theory
can be used to generalise the yield-stress concept previously employed to study
uniaxial compression (see e.g. Buscall & White 1987, Landman et al. 1991),
thus permitting deviatoric rate-independent solid stresses to be accounted for
in addition to the isotropic ‘particle pressure’. During sheared consolidation, it
is however difficult to disregard from the behaviour of the suspension when the
particle network reach critical state. By including viscous stresses, in addition
to the plastic stresses, the deformation-rates become well-defined also at the
critical state. In the present study, viscous stresses of Newtonian character
are attributed to the particle phase, and it is seen that this effectively removes
the problems experienced by the purely plastic model when some part of the
flocculated network attains critical state.

In a more complex situation than the one treated here, the need to prevent
a break-down of the model due to the undefined behaviour at critical state is
even larger, sincs it is then difficult to conclude a priori if the system at some
point will reach critical state or not.

An artefact of the purely plastic model by H&D is that, when the piston
moves with a constant horizontal velocity under a constant vertical load, the
asymptotic value of the horizontal piston load is not dependent on the specified
velocity. It leads us to conclude that the asymptotic velocity field is dependent
on the load history. By including viscous stresses in the model, this feature is
eliminated, which is confirmed by the simulations in section 4.

The observed trend of improved drainage rates when higher shear loads
are applied by the piston is observed to persist also for larger loads than those
reportedly employed by H&D in the exploration of the purely plastic model.

In Appendix A, the theory developed in this article is employed to derive
an asymptotic solution for the concentration in a mat of flocculated suspension,
that is on one side bounded by clear fluid and on the other by a permeable
solid surface, subjected to a combination of drainage flow and cross flow of pure
liquid. This alternative consolidation problem resembles the filtration process
in the forming section of a paper-machine, for which H&D presents a model in
which the rate-independent deviatoric stresses are neglected. The consolidation
process is then essentially uniaxial. An approximate account of the effects of
the deviatoric loads on the bearing capacity of the network can in that case
be achieved by reducing the uniaxial yield limit of the solid (fibre) phase by
some suitable factor, using the results of the present study as guidance. The
loads reported by H&D for the paper manufacturing application, indicate that
the shear stresses are possibly of quite large magnitude compared to the local
values of the critical shear stress. Hence, it is not unreasonable to make the
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assumption that the fibre network is everywhere close to being at critical state,
suggesting that this factor be set to roughly 0.5.

Finally, the reader’s attention is directed to the assumption that the yield
criterion is always fulfilled. As long as the load transmitted to the network
is not relaxed at any material point, it is valid. In spatially one-dimensional
problems, it is fairly straight-forward to ensure that the requirement is fulfilled
by choosing appropriate external loads and initial conditions. However, in a
general situation, a constitutive description is needed of the behaviour of the
suspension at stress states that do not result in yielding of the material.
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Appendix A. A non-trivial asymptotic concentration profile

When the piston is applied to the suspension with a constant load (35, %,), the
concentration ¢(y, t) always approach a constant value ¢, as t — oo (provided,
of course, that the piston load everywhere equals or exceeds the yield stresses in
the initial flocculated network). The same is true if U}, and ¥, are maintained
at constant values. A non-homogeneous limit concentration is however obtained
in an alternative filtration problem of practical interest.

Suppose that we replace the piston in the present study by a an infinite
body of liquid, containing a finite amount of particles, so that at the start of
our experiment there is a layer of homogeneous suspension above the filter.
The (dimensional) thickness of this layer is denoted Hy, and is employed as the
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length scale in the problem. The initial concentration ¢q is assumed lower than
the gel value ¢4. A constant (dimensional) drainage flow J,,,, perpendicular to
the filter, is achieved by maintaining a constant pressure p, in the particle free
liquid. We shall here use this pressure as the stress scale, i.e. 01 = poo. Also,
a (dimensional) flow Uy parallel to the plate (in the z-direction) is generated
in the bulk of the clear liquid far above the mat. As before, we assume that
the solid phase undergoes plane strains, and that there are no gradients in the
horizontal plane. Since the amount of solid phase is limited, all particles will
eventually be deposited on the filter. Asymptotically, a situation is reached
in which there is a mat of flocculated particles residing on the filter, through
which there is a flow of clear liquid. The thickness of the mat® is denoted H.

Like before, the viscous stresses in the liquid are neglected, and hence the
relative flux j* vanish in the mat. Now, let U, be the (dimensional) horizontal
velocity component of the two phases at the surface of the flocculated network.
The drainage flow induces a shear stress —peJp (Uso —Up,) on the mat mixture,
which when scaled is denoted ¥j,. The parameter p. is the density of the
continuous phase. ¥ is balanced by the particle stresses 7;¥ and 74, as
expressed by the balance equation (35). In the asymptotic limit, the vertical
particle flux vanish, i.e. j§ = 0, and consequently there is no normal viscous
stress 7x7; in the flocculated network.

Vertical load is transferred from the liquid to the dispersed phase through
inter-phase drag. Consequently, the vertical stress o'’ will increase progres-
sively, from 0% =0 at y = H, to 0} =1 at the filter, where p, = 0. Suppose
that the stress state (1,3) is located on the compression side of the critical
state line in ¢%¥-77Y-space. It can then be concluded from the yield-surface
(see figures 2 and 9) that the upper part of the mat will be in a state of pure
shear flow, whereas no deformations will occur in the region closest to the filter.
The particle network is hence compacted to such a degree in the region next to
the filter that it can support the loads it is subjected to without continuously
deforming. The boundary between the two domains is located at y = y;. In
the region y > 1, all parts of the network are at critical state, and

oy (y) = oc(d(y)) - (54)

On the other hand, if (1,%) is located on the expansion side of the critical
state line, the entire mat will be in a state of shear flow, i.e. y; = 0. We proceed
under the assumption that y; is finite, knowing that if this is not the case, only
minor adjustments of the analysis need to be made, as commented upon below.

Since the network is uncompressed at y = H, the network has zero strength
at that position, and

oy =H) = ¢g. (55)

51t would be more physically relevant to use the asymptotic thickness of the mat as the
length scale, but to control this parameter is more difficult than to control Hy (or, rather, to
control the total quantity of particles ¢oHp).
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It follows from equation (35) that the shear load ¥, must then be completely
balanced by the viscous stress 7x. Further into the mat, the particle network
will be increasingly more compressed, and the yield surfaces of finite size. An
increasing fraction of X, will therefore be balanced by the solid stress compo-
nent 7Y, and less by the viscous stress 75;. At y = y1, the system is at critical
state, but all load is carried by the rate-independent stress. The concentration
at this point is denoted ¢, and it can be determined from the relation

(77" = 7e(d1) = En]

Hy=y1 °

(56)

In the region y < yi, the vertical load is of sufficient magnitude for the stress
state (¢¥,7;Y) to be located on the compression side of the critical state line in
figures 2 and 9, and 73, = 0 due to the absence of a finite shear-rate. Limiting
the treatment to positive values of 7;¥, the yield surface (40) can be turned

into a relation for o3,

a3’ (y) = 9(0(y), 74" (v)) - (57)

Equation (57) can, at least when Py(¢) is given by (20), be inverted with respect
to ¢. By inserting the normal solid stress at the surface of the filter, as well as
Y =¥, the concentration at the filter is found to be

Td
6y = 0) = du = g3 1(1, ). (58)
From (9), the total volume flux perpendicular to the filter is seen to be
j¥ = J. Using (8) and (38), we derive
do?
dy
vy

The stress ¢/ is uniquely determined by ¢(y), albeit through different relations
in the upper and lower parts of the mat. Consider first the region 0 < y < y;.
Inserting (57) into (59), a separable differential equation is obtained, which
when integrated from y = 0 to a position y < y; turns into

dg(¢'; 2n)
d¢’

J=(1-0¢)K(¢) (59)

o(y)
yJ = / (1- ¢)K ()

w

d¢/ 0<y<uy. (60)
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The load Xy, is regarded as a parameter. Provided J is known, equation (60)
permits us to determine ¢(y) at any position in the stagnant part of the mat.
Specifically, if (60) is evaluated at y = y1, where ¢ = ¢ is calculated using (56),
we obtain an equation for the location of the boundary between the shear-flow
and the stagnant domains.

The upper part of the mat is treated in an analogous fashion. The normal
solid stress is now given by (54), and we find by integrating the separable
differential equation from y = y; that

do.(¢")
d¢’
Equation (61) yields the concentration in the shear-flow region, again provided

J is known. Evaluating the equation at y = H, where ¢ = ¢4, an equation is
obtained for the thickness of the mat.

The drainage flux density J is determined from the requirement that the
total quantity of solid phase is conserved, i.e.

T [P (AT
%—/0 ¢dy—/¢w¢(dy> a¢ | (62)

The inverse of the concentration gradient can be obtained in the upper and
lower part of the mat by inserting, respectively, (54) and (57) into (59). Em-
ploying the results in (62), the drainage flux is obtained,

»(y)
(y—y1)J — / (1- ¢)K (&) 4  m<y<H. (61)

_ 1 o1 / ’ / dg((b/;zh) ’
J_gbo( . ¢(1_¢)K(¢)T¢’d¢+
¢g /
#1— )K () 2 d<z>’> . (63)
1

We conclude by considering what changes need to be made to the analysis
when ¥, > M/ V2. The shear-flow region then extends over the entire mat,
ie. y1 = 0. In the particular case ¥, = M/v/2, the loads on the particle
network are just of the right strength to bring the stress state (¢%,7;Y) at
the filter surface to the critical state line. Although the flocculated structure
is then at critical state at y = 0, the rate-independent network stresses there
completely balance the transmitted load, and the viscous stress 75 is zero.
Therefore, equation (58) can still be used to obtain ¢, = ¢1. At larger values
of ¥, the concentration ¢,, = ¢ must instead be obtained from the condition
0c(¢w) = 1. Apart from this, the analysis proceeds as described above for the
shear-flow region.

The solution presented here, for the concentration in a compressible mat
with a free surface, subjected to a combined drainage and cross flow, constitutes
a generalisation of the asymptotic solution derived by H&D for the correspond-
ing problem in which the deviatoric solid stress tensor 74 is neglected. In that
model, the inter-particle forces are assumed to manifest themselves only as an
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isotropic particle pressure, and deviatoric loads must necessarily be balanced
by the viscous stresses alone. To illustrate the outlined procedure, concentra-
tion profiles corresponding to four different shear loads are plotted in figure
10, including the load %, = M/+/2 at which a stagnant region adjacent to the
filter only just fails to appear. The kinks on the curves mark the boundary
between the stagnant lower part of the mat, and the shear-flow region on top.

When the concentration profile ¢(y) has been determined, it is straight-
forward to calculate the viscous stress 7y, = Xp — 7. (d)(y)) in the region
y1 <y < H. The velocity profile u%(y) is then readily obtained, the result
depending on the chosen constitutive model for the rate-dependent stresses. It
is worth pointing out that the solution for the concentration is the same for
all loads X5, > M/v/2. The viscous stress 75", will however change, and, by
consequence, the velocity profile. We have in the analysis assumed that X,
is given a priori. The (dimensional) horizontal bulk velocity Us, required to
generate the shear load can be calculated a posteriori once we have J,, = Uy J
and Uy, = Upul(y = H).

Paradis et al. (2003) measure the evolution of the drainage resistance of
a fibre sheet, as it is formed under constant drainage pressure and a hydro-
dynamically applied shear load. The drainage resistance coefficient is defined
as the drainage pressure divided by the product of the drainage flux and the
current mat thickness. In the scaled variables employed in the present study,
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FIGURE 11. Drainage resistance coefficient (left subfigure)
and drainage flux (right subfigure) as functions of the shear
load for the cases in fig. 10. Cf. the caption of that figure for
parameter values.

this corresponds to 1/(H|J|). Paradis et al. find that increasing the shear load
results in an increased drainage resistance coefficient for a given surface density
(i.e. ‘basis weight’) of the formed sheet. It somewhat dubious to compare the
asymptotic analysis in this appendix with measurements during the transient
stage of a drainage process, but nevertheless, in figure 11 we have plotted the
resistance coefficient as a function of the shear load for the same cases as in
figure 10, together with the magnitude of the drainage flux. The same trend
regarding the influence of the shear on the resistance coefficient is seen as was
observed by Paradis et al..



