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Abstract

This thesis addresses the biomechanics of the human middle ear, that part of
the auditory system which converts sound pressure waves in air to fluid pressure
waves in the cochlea. The middle ear’s mechanism is analysed in four papers,
three main and one supporting; in the main papers the middle ear is treated as a
multi-particle, multi-rigid body ensemble possessing a variable number of degrees
of freedom depending upon the case being investigated.

It is confirmed, using the standard representation of a single fused incudo-malleal
block, that the middle ear’s motion is linear, but when this fused block restric-
tion is lifted nonlinearity is present which significantly affects the mechanism’s
behaviour. In view of the linearity of the chain under the fused block conditions,
the explanatory veracity of the conventionally accepted ‘fixed axis hypothesis’ of
ossicular motion is examined and found to be wanting as a realistic description of
the chain’s physical movement.

The nonlinear behaviour of the ossicular chain centres around the action of the
incudo-malleal joint. This joint is shown to have preferential planes of operation,
principally the pitch or longitudinal plane and in general to act as an efficient energy
dissipator at high driving pressures and low frequencies. Providing the pressure is
high enough, it is shown this energy dissipator effect eventually becomes indepen-
dent of frequency.

The supporting paper discusses the dynamics of the imposition and removal of

equation constraints justifying methods used to investigate the functioning of the
incudo-malleal joint.

Keywords: biomechanics, middle ear models , ossicular chain.



iv

Acknowledgments

I would like to express my thanks to Professor Martin Lesser for his help and
guidance in bringing this work to fruition. The role of thesis advisor is a diffi-
cult and complex one and I am grateful to him for his tolerance and forbearing in
providing the intellectual freedom to discover for oneself the virtues of focus and
simplicity.

I would also like to thank my other colleagues in the Department of Mechanics
for their thoughts and conversations on numerous occasions. The department is
marked not only by deep erudition in its chosen fields but by a broad span of philo-
sophical, scholarly and humane concerns that leaven the otherwise gritty business
of academic production.

Mostly of course I would like to thank Christine. Love is hours spent in help-
ing to photograph hopping mechanical frogs that refuse to hop and being lectured
to on the dynamical behaviour of the incudo-malleal joint with no demur, except
for an imperceptible glazing over of the eyes.



Contents

1. Introduction. ... ... 1
1.1 Scope and aims . . ...ttt e 1

1.2 Outline of thesis. ... ... e 2

1.3 Statement of authorship....... ... .. .. i 3

2. The Middle Ear...... ... i e 4
2.1 ADABOILY « oottt 4
2.1.1 The tympanic membrane. ..........c..couiiuiiniiiineinenennen. 6

2.1.2 The middle ear cavities...........oooiiiii i, 6

2.1.3 The cochlea. ... ... s 6

2.2 The ossicular chain ...t 7

2.3 The working of the middle ear and the fixed axis hypothesis......... 8

2.4 Sound MeASUTEIMENT . . ...\ttt ettt e 9
2.4.1 Hearing loss and prosthesis............ ...l 10

2.5 Current research INterests ..........ooeiii i 10

3. Model constructs and multibody dynamics........................ 12
3.1 Conceptual approaches ... .........vii i, 12
3.1.1 Electrical analogues and network theory........................ 12

3.1.2 The classical mechanics of constrained systems................. 14

3.1.3 Screw theory . ... 16

3.2 Derivation of equations of motion................ ... 17
3.2.1 Underlying approach ......... ... 18

3.2.2 Geometry and configuration............. ... 19

3.2.3 Equations of motion........ ... ..o i 24

3.2.4 Kineto-static forces and impulses........... ... 25



vi

4. Data and computation........... . ... .. 27
4.1 Derivation of parameters . ....... ...t 27
4.1.1 Geometry and inertial characteristics.................. ... . ... 27

4.1.2 Material parameters and calculation of applied forces........... 29

4.2 Programing considerations. ..........c...co.iuiiiiiiiiiiiiiiii., 30
421 SOPRIG. . oo 31

4.2.2 The solution of equations....... ... ... ..o 31

4.3 Numerical model equations............coiiiiiiiiiiiiiiiiin... 32
4.3.1 2D model ... 32

4.3.2 Model 1. ... 33

4.3.3 Model 2. ... 35

4.3.4 Model 3. ... 36

5. Conclusions and outlook ....... ... .. .. ... i 40
5.1 ConclUSIONS . . ..ottt e e 40
5.2 Future work. ... ..o 43
5.2.1 Experimental ... ..o 43

5.2.2 Theoretical. ... ..o 45

5.2.3 Prosthesis. ... ..o 46
References............................................... a7

Papers
1. Modelling of the ossicular chain
Ossicular vibrations and the fixed axis hypothesis

The role of nonlinear dynamics of the middle ear

L

The effects of unilateral and bilateral constraint changes in mechanical sys-
tems: A paper in support of the study of nonlinear mechanisms in the middle
ear



Chapter 1

Introduction

The principal aim of this thesis is to examine the mechanical behaviour of the
human middle ear whose function is to transform air borne sound waves gathered by
the external ear, into fluid borne pressure waves processed by the inner ear. It seeks
to accomplish this task within the conceptual and methodological framework of
applied mechanics as manifested by its sub-discipline, multi-rigid body mechanics.

1.1 Scope and aims

All mammals possess middle ear structures interposed between the inner ear (cochlea)
and the usually visible outer ear (pinna). Each ear, left and right, has its own mid-
dle ear structure and there is considerable structural and geometric similarity in
the form of middle ears across the whole of the mammalian species range. This
thesis aims to contribute to the understanding of the action of the middle ear by in-
vestigating and progressively developing, a number of mathematical models which
simulate its dynamical behaviour. To do this the middle ear is viewed as a linked
chain of connected bodies, moving in response to externally generated sound waves,
transmitting and modifying these waves in such a fashion as to be suitable for the
cochlea to process.

Since the science of human hearing involves consideration of a wide range of physi-
cal phenomena interacting with physiological, perceptual and psychological factors,
the sheer complexity of the subject requires the imposition of suitable simplify-
ing assumptions to aid understanding and facilitate progress. In the pursuit of
these needs two major simplifications are inherent in the considerations that fol-
low. Firstly, although hearing is normally a binaural activity, only the singular ear
will be considered here thus reducing any binaural interaction to zero. Secondly,
although it is recognised that the middle ear is a conveniently defined element oper-
ating within a larger system, only modest attention will be afforded to those other
elements immediately abutting it, the outer ear and the inner ear. The functioning
of these two structures will be accounted for by specifically defined variables which
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‘flow’ into, and out of, the middle ear across its conceptual boundaries.

Bearing these caveats in mind the scope of this enquiry embraces the construc-
tion of mathematical models of the middle ear, based upon real data, whose com-
plexity is progressively increased to allow physical insights to be formed by means
of analysis and comparison. This progression in complexity is a feature of what
might be seen as a secondary conceptual aim, which is to systematically exploit
the notion that a set of model equations may be viewed as a subset of a wider and
more general formulation. This technique has been used to some advantage in a
companion thesis devoted to the explication of the notion of simplicity as traced
by the dynamics of mechanical hopping toys, Wright(2002).

With the above factors in mind it is hoped this thesis will contribute to the general
understanding of the action of the middle ear, particularly in pursuit of the medical
imperatives of therapeutics and prosthetics.

1.2 Outline of thesis

The outcome of the aims outlined above is to be found in the four separate papers,
listed at the end of this section, which draw upon a number of technical issues
treated in the following chapters. These chapters seek to provide the necessary
background assumed by the papers which for reasons of brevity or repetition can-
not be included within the more circumscribed format of a scientific paper.

In pursuit of this underpinning role, chapter 2 provides an abbreviated review
of the anatomy of the middle ear sufficient for the purposes of defining specific
biological terms used throughout the thesis, as well as providing an indication of
current research in the area. Chapter 3 discusses the varieties of mathematical
modelling invoked during the course of the analysis and moves on to consider the
various idealisations involved in mathematically visualising and symbolically map-
ping the physical reality of the middle ear. Chapter 4 deals with the manipulations
needed to transform the available physical data into such a state that it can be
applied to the symbolic models. It also examines the programming and numeri-
cal needs required to solve the equations, derive secondary quantities and provide
graphical interpretation of the answers as well as listing the equations of motion in
their numerical form.

Although each paper has its own set of specific conclusions, chapter 5 takes a
broader view of the matter and produces a more general set of conclusions upon

which suggestions are based as to further topics for fruitful research.

The papers submitted are:



1.3. STATEMENT OF AUTHORSHIP 3

1. Modelling of the ossicular chain
2. Ossicular vibrations and the fixed axis hypothesis
3. The role of nonlinear dynamics of the middle ear

4. The effects of unilateral and bilateral constraint changes in mechanical sys-
tems: A paper in support of the study of nonlinear mechanisms in the middle
ear

Papers 1- 3 hve been submitted to the Journal of Biomechanics as, ‘The biome-
chanics of the middle ear, parts I, IT and III’, respectively.

1.3 Statement of authorship

All theoretical and computational results together with their interpretation and
the writing of this thesis, have been undertaken solely by Thomas Wright.



Chapter 2

The Middle Ear

This chapter outlines the basic anatomy and function of the middle ear within the
wider contexts of the science of hearing and its physiological setting. In view of the
complexity of issues encountered only those elements deemed strictly relevant to
the understanding of this thesis will be discussed, although references are provided
for items deemed of particular interest.

2.1 Anatomy

As might be inferred from its name the middle ear is the functional unit of the
auditory system which stands between the outer ear and the inner ear. In figure
2.1(a), the outer ear is that portion which includes the visible pinna and audi-
tory canal, whilst the inner ear is the cochlea and its associated structures. The
middle ear’s function is to convert the vibrations of the sound air pressure waves,
collected and channeled by the outer ear, into near-water like pressure waves in
the cochlea. Here the fluid’s motion is detected by hair cells which convert it into
electrical impulses for onward transmission via the auditory cortex to the brain for
processing. In this light the middle ear’s function is that of a transformer whose
outer boundary is defined by the eardrum or tympanic membrane, and whose inner
boundary by the oval and round windows schematised in figure 2.1(b). Interposed
between these two elements is the middle ear cavity which houses the transforming
mechanism, the ossicular chain, a linked chain composed of the smallest bones in
the human body, the malleus, incus and stapes.

This sound transmission pathway is not the only route available for sound to reach
the cochlea, if a vibrator is applied to the skull the cochlea can be stimulated
directly without the need for the intervening middle ear structures. Although of
importance from the point of view of medical diagnosis and prothesis possibilities,
this mode of sound transmission will not be discussed further.

4
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Figure 2.1: (a) Human auditory system, (b) Schematic diagram of auditory system,
Kinsler L.E., et. al. (2000)

Figure 2.2 shows in more detail the anatomical structure of the middle ear.and
its various components. The ossicular chain vibrates in the middle ear space
which is ventilated to the ambient external air pressure via the Eustachian tube to
the throat. This tube is normally kept closed but can be opened by means of mus-
cles near the throat allowing the ambient pressure on either side of the tympanic
membrane to be maintained. In this fashion only the small pressure variations
created by the impingement of sound waves upon the membrane are sensed and
transmitted. The function of the Eustacian tube is most easily seen when a person
experiences a relatively significant change in ambient pressure in a short time as in
a pressurising aircraft. Here the act of yawning or swallowing causes the muscles of
the Eustacian tube to open, equalise the pressure across the membrane and reduce
what can be significant pain.
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Figure 2.2: The middle ear viewed from stapes footplate. Mgller(1970)

2.1.1 The tympanic membrane

The typanic membrane or ear drum is a conically shaped construct with radial
fibres running from the centre to the periphery overlaid with a second set of ring
fibres. The distribution of material is not uniform with most of the strength being
concentrated at the centre whose point of maximum curvature is called the umbo.

2.1.2 The middle ear cavities

Although the middle ear cavity is referred to in the singular the void is much more
complicated than this and is usually described as being composed of three adjacent
volumes, the cavum tympani, the epitympanum and the pneumatic cells. From the
present, perspective these three groups will be treated as a single coherent space.

2.1.3 The cochlea

It is not the intention to deal with the mechanics or construction of the cochlea
beyond noting its function and drawing attention to the oval and round windows
schematised in figure 2.1(b). The oval window is covered by the footplate of the
stapes whose periphery is joined to the periphery of the oval window by the annular
ligament which acts as a flexible seal. The round window is simply a membrane
covered opening into the middle ear cavity whose function is to flex as the pressure
waves in the cochlea are generated at the oval window, thus acting as an energy
absorber.
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Figure 2.3: The ossicular chain viewed from the stapes footplate with tympanic
membrane removed. Yost(2000).

2.2 The ossicular chain

From figure 2.2 it will be seen how the ossicular chain is fastened and orientated
with respect to the tympanic membrane and oval window, whilst figure 2.3 shows
in greater detail the three bones and some of their more important parts. Figure
2.3 is orientated with the footplate of the stapes visible but the tympanic mem-
brane removed. The figure also shows the method of suspending the chain from
the cavity walls and draws attention to the fact that the space is also traversed by
the chorda tympanic nerve. Since the geometry of the chain will be examined in
considerable detail in the next chapter only the most basic of descriptions will be
offered here.

The malleus (hammer) has two principal parts, the manubrium and its rounded
globular head. Apart from its fixing to the tympanic membrane the malleus is
supported by the anterior malleal ligament, the superior malleal ligament and a
ball and socket joint, the incudo-malleal joint; the manubrium also has attached
to it the tensor tympani muscle. In terms of the functioning of the malleus, the
superior malleal ligament is judged to be slack and viewed as primarily a means of
supplying nutriments to the incudo-malleal joint The incudo-malleal joint is a true
diathrodial joint, in that it is a true ball and socket joint, encased in ligamentous
tissue and lubricated by synovial fluid.

The incus (anvil) is linked to the malleus by the incudo-malleal joint and is sup-
ported by the superior incudal ligament, the posterior incudal ligament and another
diathrodial joint, the incudo-stapedial joint, linked to the stapes. Like the superior
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malleal ligament, the superior incudal ligament is judged to have a non-suspensory
role, the suspension function being taken up by the posterior incudal ligament and
the two joints.

The third bone in the linkage, the stapes (stirrup) has its neck fixed to the incudo-
stapedial joint’s capsule and its footplate fitted into the oval window of the cochlea.
Attached to the head of the stapes is another muscle, the stapedius muscle whose
point of attachment can vary somewhat towards and including the lenticular pro-
cess.

Although the presence of the two muscles in the middle ear complex, has always
been acknowledged, their actions and raison d’etre are not as clear as might be
supposed. It is known that the action of the stapedius muscle is linked to the onset
of the acoustic reflex which acts to attenuate or reduce the amount of sound en-
ergy reaching the cochlea in the presence of high sound pressures. Such pressures
are normally generated by strong impulses, but whether the reflex is a protective
device or not is still a matter of unsettled debate. Similarly the function of the
tensor muscle is also obscure although it is generally accepted that it works inde-
pendently of the stapedius and is not active in the initiation of the acoustic reflex.
The common view is that it is a tensioning device working in some way to maintain
optimal transmission charcteristics for the chain.

2.3 The working of the middle ear and the fixed
axis hypothesis

From the above descriptions and diagrams the mode of operation of the middle ear
will be clear; the oscillation of the air molecules adjacent to the tympanic mem-
brane cause it to oscillate. This motion is transferred via the ossicular chain to the
stapes which acts as a piston oscillating in the cochlea. The middle ear’s function
is thus to transform pressure oscillations occurring in a very light density fluid, air,
into pressure oscillations in a fluid of near-water density. The generally accepted
and taught explanation of the action of the ossicular chain Yost(2000), is that the
incudo-malleal block rotates about the ligamental axis which is effectively fixed.
This explanation is labelled here as the ‘fixed axis hypothesis’.

In the language of acoustics/electrical engineering, discussed in chapter 3, the mid-
dle ear is viewed as an impedance matching device matching the inpedance of air, to
that of water. The device’s biological presence is an evolutionary adaption enabling
a primitive vibration sensing / hearing organ developed by sea bound life, to sense
sound in air. All mammals possess middle ears of the same general description
and layout as man’s although their individual arrangements and sizes vary with the
size of the animal, Nummela(1995). This similarity has meant that most live data
has been collected from experiments conducted upon animals, particularly cats, or
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from non-invasive human experiments as well as post-mortem human specimens.

2.4 Sound measurement

It is well known that for many physical effects impacting upon the human senses,
it is easier to perceive differences in signal intensity at lower absolute levels than at
higher ones. By means of integration this can be shown to result in a logarithmic
relationship defining a specific intensity level with respect to an agreed standard.
Although there are a number of definitions used in hearing acoustics the standard
employed here is the Sound Pressure Level (SPL) relationship given by:

SPL = 20log,y =

Po
In this expression SPL is measured in decibels dB , p is the pressure variable
and p, the international reference standard defined as p, = 20uPa. This ref-
erence standard is the experimentally determined minimum pressure required by

an average young adult to be able to detect a sinusoid in the 1000 to 4000H z range.

Figure 2.4 shows the frequency response of the human ear to sound intensity ex-
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Figure 2.4: Response of the human ear to sound intensity. GlaserR,(2001).

pressed in both absolute pressure units Pa and SPL whilst figure 2.5 illustrates
various types of common noise as expressed on the SPL scale. For the sake of
brevity, further discussion of units and the order of magnitude of the various quan-
tities involved as both variables and parameters, is deferred until chapter 4.
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2.4.1 Hearing loss and prosthesis

Most normal disorders of the middle ear are connected with infections, partic-
ularly in children, which affect the middle ear cavity and tympanic membrane;
usually they are temporary and treated with antibiotics. More radical treatment,
usually surgery, is required for problems concerned with the ossicular chain such as
otosclerosis, where a bony outgrowth of material around the oval window renders
the footplate of the stapes immobile. This is treated by removing the stapes, or
part of it and fitting a prosthesis in its place. Similarly the ossicles can be fused
together, ossicular fixation, either as a congenital or progressive condition, which
depending upon circumstances may require the ossicle to be removed and replaced
by a prosthesis. Similarly the joints in the chain can break, ossicular discontinuity,
which may or may not require a prosthesis.

From the above it will be seen that the use of prostheses in correcting mechanical
problems associated with the ossicular chain is a relatively well understood proce-
dure, however the design of such devices is still subject to improvement, Hersh &
Johnson(2001).
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2.5 Current research interests

It is reasonable to say that the vast majority of investigations relating to the middle
ear are experimentally driven; since measurements are extremely difficult to make
and technically demanding new results are constantly being reported as yet more
delicate data sensors are brought to bear. The theoretical grounding for much of
this work has been based upon the assumption of the middle ear’s motion being
planar.

Since the 1980’s there has been an increasing number of studies which have moved
to the opposite theoretical extreme having modelled a combination of the middle
and outer ear by means of finite element techniques. Of this work most has been
devoted to describing the complex behaviour of the tympanic membrane detached
from its onward transmission chain. Others have modelled the complete chain and
in the process have generated data on materials that previously was lacking, Koike
& Wada (2002). Having noted this other researchers have continued to use the
more traditional Zwislocki type electrical analogues discussed in the next chapter
as their basic means of investigation, generating transfer functions and improving
their techniques of coefficient estimation Pascal & Boureade(1998).

Nearly all the theoretical work ( with the exception of tympanic membrane stud-
ies), has been undertaken under the assumption of linearity and where nonlinearity
has been invoked it has been associated with nonlinear ’curve fitting’. As far as
is known, the technique adopted here of developing three dimensional multi-rigid
body models whose complexity and computing requirements stand between simple
two dimensional models and very large finite element constructions is one that has
received almost no attention from contemporary researchers. Only one relevant
paper has been located Hudde & Weistenhofer(1997); and that is mainly devoted
to an exposition of adapting network techniques to three dimensional ossicular mo-
tion, the authors noting the lack of suitable data to fit into the model.

Unlike much current work, the present thesis seeks to investigate the validity of
some of the fundamentals of the middle ear’s operation that seem to be taken for
granted by most investigators. This includes such issues as the presence, or not, of
linearity and the validity of currently accepted expanations of the ossicular chain’s
behaviour.



Chapter 3

Model constructs and
multibody dynamics

In approaching the modelling of the middle ear there are a number of choices
available, each with their own disciplinary conventions, in which to graphically and
conceptually express the equations of motion. This chapter briefly outlines these
types and also considers the idealizations and techniques used in the derivation of
the equations of motion and the interpretation of their results.

3.1 Conceptual approaches

3.1.1 Electrical analogues and network theory

The history of investigations into the mechanics of the middle ear has since the
mid- 1950s been dominated by the use of electoacoustic analogues. This is due
principally to the close relationship existing between alternating current theory
and acoustic/wave systems via the use of linear, small wave approximations and
their pivotal role in transducer theory. The method is particularly well suited to
act as a theoretical foundation due to its, simplicity and ease of incorporating di-
rectly measured data of different types. These different data such as fluid and rigid
body motions are reduced to common units of electoacoustic measurement, such
as acoustic ohms () and acoustic Henrys (H), which can then be manipulated by
means of electrical network theory.

All middle ear electroacoustic analogues are based upon Zwislocki’s(1962) scheme
which is illustrated as a functional arrangement in figure 3.1. Here it will be seen
that the anatomical functions discussed in chapter 2 are visually represented by
a Kirchoffian linear network with its components disposed in parallel and series
combinations mirroring the underlying mathematical structure inherent in such re-
lationships

12
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Figure 3.1: Zwislocki’s electroacoustic model(1962)

The analogies that exist between mechanical and electrical quantities are well
known. Although two such analogies are found in common use, the force/voltage
and the force/current, the force/voltage analogy will be used here. That is, the
mechanical quantities of linear displacement g, velocity ¢, mass m, spring constant
k and viscous resistance c are analogous to charge, current, inductance, the inverse
of capacitance and resistance, respectively. These analogies and their equivalently
derived quantities such as force and power are treated in standard texts such as
Raven(1968), as is the technique of graphical translation between the two visuali-
sations.

The normal method of using these electoacoustic analogues is to invoke the Zwis-
locki representation as the underlying mathematical structure, conduct experiments
and then add or adjust components to fit the data, as for example in Lutman &
Martin (1979) and Pascal & Boureade (1998). In most cases the individual compo-
nents such as inductances are treated as constants, so that the network as a whole
is linear with nonlinear elements being incorporated as necessary.

Although any analogical relationship is simply the outcome of the form of funda-
mental equations governing the fundamental processes it is necessary in considering
such matters to decide at the outset upon the type of visual method to be used in
expressing these relationships. The form chosen for this thesis is not the electroa-
coustic visualization but the mechanical.

A major reason for this decision is that since the movement of the ossicular chain
will be the focus of attention and since that movement will be undertaken in three
dimensions, the linearity and/or nonlinearity will be heavily influenced by cross
coupling of terms in the equations which renders conventional network symbol-
ism difficult to construct and analyse. Variants such as bond graph formalism
require further special symbols and indeed when the method is invoked to visualize
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mechanical systems, the mechanical representation is invariably drawn first from
which the bond graph is then drawn from which the equations of motion are de-
rived, Karnopp et al (2000).

At the root of the use of electro/acoustic analogues is the concept of impedance it
already having been noted that the middle ear is usually regarded as an impedance
matching device matching the impedance characteristic of acoustic wave trans-
mission in air and water. Impedance is simply the alternating current version of
direct current resistance, which due to the sinusoidal nature of alternating cur-
rent introduces an extra phase angle into its working. Thus if Z is the impedance
measured in §2, I the alternating current in amps and V the alternating voltage
in volts, Z = % The equivalent mechanical analogue is therefore the mechanical
impedance given by Z,,ecn = % were F' = force and v = ¢ =velocity. There is no
particular reason for using impedance in predominantly mechanical systems since
its use is based upon electrical usage where current, the time rate of change of
charge is more accessible than the charge itself, whereas in mechanics displacement
q is the accessible variable and velocity ¢ the secondary quantity.

The principal reason however for invoking a mechanical as opposed to a network
representation lies in the sense of physical geometry and kinematics that is entailed
in developing and using the method. It is felt schematic mechanical diagrams aid
the process of understanding more readily than electrical circuits due to the in-
corporation of geometrically visual elements even if those elements are themselves
following stylised conventions.

For reasons which will be discussed in section 3.2 below, paper 1 takes a well
known and frequently quoted network model, Kringlebotn(1988), and uses it as an
initial basis for investigation. This network is then converted into a mechanical
representation where it is felt the schematic geometrical layout provides a more
intuitive feel as to the nature of the idealizations involved and indeed highlights
the basic physical reasoning underpinning the model.

3.1.2 The classical mechanics of constrained systems

There are an embarrassingly large number of theoretical methods available for de-
riving the equations of motion of systems composed of particles and bodies forming
a chain. Each method possesses particular nuances, specialized language and con-
ventions. The view taken here is that the fundamental laws governing the motion of
matter are those expressed by Newton which at their heart define for a particle (it-
self an idealisation), the equality of force to the rate of change of linear momentum.
This particle law and its extension to the further idealised singular multi-particle
rigid body which is both translating and rotating in a three dimensional Euclidean
space and due to Euler, forms the basic tool for equation formation. The resulting
Newton/Euler force- rate of change of momentum, balance equations require no
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extra hypotheses for their formulation.

The extension of the Newton/Euler laws to account for multiple bodies connected
to each other, driven by external forces and held together by forces transmitted
between them whose equality and opposition are the subject of Newton’s third
law, is the subject of multi-rigid body dynamics. The extension to the case where
some of these bodies are constrained to move in particular ways brings no partic-
ular conceptual difficulties into play but does lead to large practical difficulties in
the solution of the equations. Further since the Newton/Euler equations involve
all the forces generated, including those connecting the individual bodies to each
other and those maintaining the constraints, a lot of information and calculation
is required to produce results that are unnecessary if only the gross motions of the
bodies are required.

To overcome this constaint force problem the well known Lagrange/D’Alembert
hypothesis is invoked which postulates that the force of constraint reaction is nor-
mal to the direction of motion so that no work is done by the constraint. This
procedure is undertaken in symbolic form in paper 1 to produce D’Alembert’s
equations. It is important to note that the Lagrange/D’Alembert hypothesis is
just that and its application is not only a simplifying procedure but also an un-
proven assumption, particularly where biological systems are concerned.

Although the detailed issues attached to the generation of the various equations of
motion are dealt with below in section 3.2, the actual equations of motion gener-
ated are so large that they are difficult to discuss as particular entities within the
papers. To enable this to be done the equations are invoked in their symbolically
explict coupled form, thus:

S oV R _
Z[”lm]qlqm__ayi_ayi_ﬂ i=1--n (3.1)

n n
g mi;; +
j=1 I=1 m=1

Here the m;; are generalised masses, the [z,/m] Christofell’s symbols of the first

kind, V' and R the potential and Rayleigh functions respectively and F; the gener-
alised force corresponding to the generalised coordinate ¢; with ¢ running from 1
to n.

These equations, although normally associated with Synge’s (1926) derivation of
Lagrange’s equations hold regardless of the method used to arrive at them whether
it be D’Alembert, Lagrange, Hamilton etc, providing the coordinates, frames and
parameters are the same. Thus the equations put into their indicial form are per-
fectly general and have the merit of allowing direct entry into the geometry of the
motion via the language of differential geometry, configuration spaces, holonomic
constraints, Reimannian geometry, generalized coordinates, generalized forces and
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generalized momentum, whilst still retaining an essentially Euclidean vector based
orientation.

To avoid over complication, the use of ‘modern’ geometrical language as currently
employed in mathematical physics and now gradually entering engineering usage,
Block et al (2000), will not be used here. Thus as fruitful as the concepts of differ-
ential manifold, fibre bundles, Lie derivatives, Lie groups, differential forms and the
operations associated with them are, this work will remain within the explanatory
base of what might be considered engineering mechanics.

3.1.3 Screw theory

Paper 2 is an examination of the fixed axis hypothesis, briefly referred to in sec-
tion 2.3. To undertake this examination elements of screw theory are used and
although the theory has received application within the robotics community over
recent years, it is not a theory that may be considered to lie within in the main-
stream of dynamical activity. The history of the subject stretches back to Euler
and had a sufficiently well defined mathematical structure by the early 20th cen-
tury to be capable of dynamical application, Ball(1998), even if its use has tended
to remain restricted within the area of kinematics.

The presentation in paper 2 is meant to be as self contained as possible and in-

i
Far
7

(a) (b)

Figure 3.2: (a) Finite screw motion, Phillips(1990) (b) Instantaneous velocity screw

cludes reference to a set of basic explanatory texts dealing with screw theory. The
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fundamental idea is that illustrated in figure 3.2(a) where a rigid body moves in
three dimensional space from location 1 at time #; to location 2 at time t5. It
is shown in Bottema & Roth (1979) that to do so a unique line exists, the screw
axis, line FSA in figure 3.2(a), around which the body simultaneously translates a
distance d and rotates an angle ¢ during the period At = ¢ — ¢;. Figure 3.2(a)
illustrates the large finite displacement case, but as At — 0 it is easily seen that
in the instantaneous limit the direction of the axis of the line is defined by the
direction of the angular velocity vector. Figure 3.3(b) illustrates this limit where
the instantaneous movement is composed of a rotation around the axis and a linear
velocity in its direction. It is easily shown that the velocity along the axis is the
body’s minimal linear velocity component.

Figure 3.2(b) illustrates for a general case how for a known linear and angular
velocity acting at point A4, an non-unique reference point through which the ro-
tational axis passes is given by the point G1. This point is defined by the radius
vector Ra,q, equation 3 in paper 2, where in figure 3.2(b) v corresponds to usn;of
the equation.

Given that the motion of the body in time is known through the solution of the
equations of motion, the linear velocity and angular velocities can be derived for
all points in the body and the non-unique position through which the screw axis
passes can be derived as a function of the movement of the body. The surface
traced out by this axis is known as the axode.

Although the example given above is concerned with the screw defined with re-
spect to body movement an analysis for linear force and torque reveals a similar
screw arrangement for these two quantities. In common with other writers and in
the interests of clarity, the screw which is the combination of the linear velocity and
angular velocity vectors will be called a velocity screw and the screw associated
with the force and torque will be called a force screw; this is a departure from
Ball’s designation of ‘twist’ and ‘wrench’ respectively.

3.2 Derivation of equations of motion

Although papers 1-3 seek to trace out a progressive approach in addressing the
dynamics of the ossicular chain by invoking three separate models working from
the simple to the complex, the approach taken below in describing the formation of
these three equations follows the reverse route. Since the methodological concept
adopted in this work is to view the simple as a subset of the complex, the generation
of the equations of motion for the full three dimensional set will be considered to
cover all the other equations with particular issues relating to any particular set
being discussed as required.
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3.2.1 Underlying approach

Paper 1 shows how the two dimensional model of Kringlebotn (1988), a variant of
the Kwislocki formulation, is converted into three dimensions by retaining those
elements relating to the tympanic membrane and the cochlea, but ‘subtracting’ the
two dimensional represention of the ossicular chain and inserting in its place the
three dimensional form. This three dimensional representation is shown in figure
3.3, which is a redrawn and combined figure derived from the original basic data
set Weistenhofer & Hudde (1999), discussed in more detail below.

It will be seen that figure 3.3 shows the incus and malleus as a single fused block

Figure 3.3: Basic ossicular chain configuration, scale 1 unit vector = Imm. Adapted
from Weistenhdsfer & Hudde(1999)

with its centre of mass at the putative incudo-malleal joint. Since the behaviour of
the chain with both incus and malleus moving relative to each other with the joint
in operation is a major interest of this work, this ‘fused’ data has to be converted
into separated dynamical data. This operation is discussed below in chapter 4, so
that for the present it may be assumed that the centre of masses of both the incus
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and malleus are known in addition to the data symbolized by figure 3.3.

3.2.2 Geometry and configuration

Figure 3.4 shows the schematic rigid, massless, idealised frame work imposed upon
the basic geometrical data of figure 3.3 with the malleus, incus and stapes denoted
by calligraphic A, B and C and points upon them by the roman A; etc. In this
scheme it will be seen that the centre of masses of the mallues, incus and stapes
are denoted by A1, By and C;. The incudo-malleal joint is denoted by the point Ao
which since it is a joint coincides with the incus’s point By. Point A, is that point,
defined by Kringlebotn, as the ‘effective attack point’ on the manubrium, which
possesses the same velocity as the eardrum as a whole and which approximates very
closely to the motion of the umbo. Point A3 is the point at which the anterior liga-
ment is attached to the malleus whilst Bj is the point of attachment of the posterior
ligament to the incus and B, the point of attachment of the incudo-stapedial joint
to the incus. Unlike the incudo-malleal joint the incudo-stapedial joint is deemed
to possess relative motion in both rotational and translation modes so the point
of attachment of the joint to the stapes C5 does not in general coincide with By.
Point C5 on the stapes coincides with the geometrical centre of the stapes footplate.

Figure 3.5 shows the overall schematic dynamical model from which the equa-
tions of motion are generated, the elements within it being an amalgamation of
figures 3.4 and one dimensional elements taken over from the Kringlebotn model.
The model is shown in its equilibrium position (the state implicit in figure 3.4)
with a Newtonian right angled reference frame and directional triad, ni,ns and
ng, anchored to the fixed point 0, which for purposes of visual clarity and coordi-
nate definition is illustrated in the ‘opened up’position, that is 27 - - - 24 should be
zero.

In line with the Kringlebotn model, the motion of points A4 and Cj3 are unidi-
rectional as defined by ny, their respective lines of action being separated in three
dimensional space as shown. Thus the eardrum, ear cavities, eardrum suspen-
sion, and cochlea are modelled as particles mi,ma, ms and mp which move in
one dimensional motion, whilst the ossicular chain’s components moving in three
dimensions, are interposed between them.

For the purpose of generating the equations of motion it is necessary to define
the dynamical and geometrical properties of the ossicular bodies which in turn
require the definition of frames of reference which are themselves defined with re-
spect to the basic Newtonian set AN'. Thus in accordance with figure 3.6 reference
frame A and its associated triad aj,as and a3 are fixed at the centre of mass of
the malleus A; with the unit vector as pointing in the direction from the anterior
ligament to the incudo-malleal joint. Similarly frame B is fixed at point By with bo
pointing from the incudo-malleal joint to the posterior ligament, such that in the
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Figure 3.4: Schematic diagram of model 3 geometry
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Figure 3.5: Schematic diagram, model 3
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equilibrium configuration shown, as and by are instantaneously the same direction.
The stapes frame C, unlike the other frames, is not anchored at it centre of mass
but at point C5 with ¢; pointing along the stapedial direction from point Cs to
Cs, with the centre of mass C; being fixed as shown.

To relate the positions of points, measured on the three bodies, to the same points

measured in inertial space A it necessary to define the angular orientations of
frames A, B and C. Figure 3.6 shows diagrammatically these relationships by uti-
lizing angular coordinates and intermediate frames. Thus as illustrated in figure
3.6 (a), frame A, defining the angular orientation of the malleus is related to N
by means of the transformations, N — A" — A2 — A3 — A. Here frame A' is
defined by the angle 425 measured in the n; A ny plane such that n; is rotated
to al, about ng; frame A2 is similarly defined by the angle —3 which is measured
in the a} A a} plane (n; A ns) in the negative sense about a3( ai,n3) where 3 is
the angle of inclination, a constant of the equilibrium configuration defining the
ligamental axis. Frame A?® is defined by rotating a2 to a3 by angle 24 as measured
in the a2 Aa? plane about a3, and finally frame A is related to A% by rotating a3 to
ay by +2z7 about aj (a;). Using these angles the complete transformation matrix
relating A to A and the inverse A to A/ can be derived by standard techniques.
The transformation A! — A% using 3 has been included to underline the impor-
tance of 8 as an individual parameter of the geometry although the combined effect
of applying z5 and S is of course the angle z5 — 5 which could have been made a
coordinate in its own right if so wished.

Unlike frame A frame B is defined in figure 3.6 (b) not with respect to N but
with respect to frame A defined in figure 3.6(a). The same routine as with frame .4
is followed in order to define frame B using the angular coordinates +zg to define
B! with respect to A , +29 to define B2 with respect to B' and +z19 to B with
respect of B2, allowing the transformation matrix relating A to B and vice versa

to be generated. Frame B is then related to frame A by the chained relations
N— A — A2 - A - A— B' — B2~ B.

The relationship of frame C to A, figure 3.6( c) is defined slightly differently
to the other frames. Here C is related directly to A by the transformations
N — ¢! — ¢! — C with the angle +Q; defining the relationship N'— C' and
+Q2 the relationship C'— C?, however C?— C is defined by the coordinate +z;;
which has the dimensions of length ( as opposed to the previous angles), such that
the transformation C2— C is a parallel transport in the direction ¢f (c1) direction.

Thus a radius vector defining the position of, say, the stapes footplate with respect
to NV, roc,, will as it stands involve the coordinates 21, 24, 25, 26, 27, 28, 29, 210, @1, @2, 211,
the individual z’s being considered in the sense of Lagrangian generalized coordi-
nates possessing appropriate angular or linear dimensions. For ease of discussion
and in the absence of satisfactory anatomical terms, the aero-marine conventions
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Figure 3.6: Definition of coordinate frames for model 3
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relating to the naming of coordinates will be used here, thus z5, zg and z7 will be
denoted as the ‘yaw’, ‘pitch’ and ‘roll’ angles respectively of A with respect to N
and zg, 29, 210 as the yaw, pitch and roll angles of B with respect to A. Similarly
Q1 and Q- are the yaw and pitch angles of C with respect to N.

Since points A4 on the malleus and C5 on the stapes are confined to move in
the n; direction but on parallel displaced lines, the linked movements of A, B and
C must conform to these constraints. Given the geometry of figures 3.4 and 3.5 it
will be seen that the projected positions of A4 and C5 on to the fixed plane ns Ang
are the point 0 and the point defined by the radius vector hono and hsns respec-
tively. From the geometry of the situation and taking the component forms of
roc,, (Yoo, )y = he and (roc, ), = hs so providing two constraint equations which
can be used to eliminate @)1 and Qs respectively. The outcome of reducing the
number of coordinates in this way means that the state of the whole system is
defined by the coordinate set [z; ...z11] however it is not necessary to undertake
such a reduction since the system’s state can equally well be defined by the set
[21 ... 210, @1, Q2, #11], plus the two equations of constraint linking @, and Q2 to
ho and hs if wished.

3.2.3 Equations of motion

The equations of motion of the entire system illustrated in figure 3.5 are derived
as discussed in section 3.1.2 by application of the basic Newton/Euler laws of par-
ticle/ rigid body motion. Assuming @ and Q- are eliminated via the equations of
constraint, paper 1 outlines symbolically the Newton/Euler procedure, incorporat-
ing the application of the Lagrange/D’Alembert principle of idealized constraint
forces. Using the principle the equations of motion are rid of the constraint forces
to produce the final reactionless D’Alembert equations of motion. The only differ-
ence between the derivation of model 1 in paper 1 and model 3 as discussed here
is that the latter equations are extended to take account of the separation of the
fused incudo-malleus block into separate malleus and incus thereby introducing the
three extra coordinates associated with this increase in complexity. The physical
generation of these equations of motion was undertaken using the software package
Sophia as indicated in paper 1 and discussed in the next chapter.

The derivation of the external forces, the spring and viscous dissipation forces
(gravity being of no consequence in this case), proceeded by means of the construc-
tion of potential and Rayleigh functions for the system as a whole. The differenti-
ation of these functions with respect to a given coordinate or coordinate velocity
as appropriate, yielding the given generalized potential and damping forces for the
respective generalized coordinate.

Since the total number of equations of motion generated is equal to the degrees of
freedom of the system as defined by the eleven coordinates [z; ...z11], the equa-
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Model 3 | Model 2 | Model 1 | 2D Model
21 Y1 £ w1
22 Y2 Z2 w2
z3 Ys Zs3 w3
24 Ya Ty Wy
25 Ys x5 0

26 Y T 0

z7 Y7 0 0

28 0 0 0

29 0 0 0

210 0 0 0

Z11 Ys T Ws

p B B=0 B =0

Table 3.1: Equivalent coordinates of models

tions of motion for the system are composed of eleven coupled second order differ-
ential equations. Arranging these equations in the indicial form of equation 1 with
indices running from 1 to 11 and the terms sorted by indicial order these equa-
tions contain not only the equations of motion for the system described, model
3, but also those of model 2, model 1 and the basic 2D model. Thus by mak-
ing zg = 29 = z19 = 0 the equations for model 2 (paper 2) result, by making
27 = 25 = 29 = z10 = 0 and parameter 5 = 0 model 1 ( paper 1) results and
by putting z5 = zg = 27 = 23 = z9 = 210 = 0 and parameter 8§ = 0 the 2D
model of paper 1 is produced. In this procedure it is important to note that in
model 1 the introduction of the 8 = 0 condition requires the moment of inertia
tensor to be transformed to take account of the fact that the ligamental axis in
the equilibrium condition is in the ns direction with the roll axis in the n; direction.

To avoid confusion in working with and comparing models it has been found neces-
sary to denote each model’s coordinates by a different letter. In order to maintain
the indicial ordering within each model for the sake of equation generation and
general understanding the various model coordinates are related to each other as
in table 3.1.The only slight difference in coordinate matching in this scheme is that
ws as defined in the 2D model is an inertial coordinate whereas in the three di-
mensional models z11 /ys/x7 are relative coordinates

3.2.4 Kineto-static forces and impulses

An important issue which will arise in considering the dynamics of model 3 is the
establishment of the internal or kineto-static forces within the fused incudo-malleal
block which hold the block together as it moves in space. This and the related issues
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of the conditions associated with the opening and closing of the incudo-malleal joint
are in turn related to the physical and mathematical problems inherent in transiting
from model 2 to model 3 and vice versa- the relaxing and imposition of constraints
respectively.

Since the literature relating to such issues within a multibody environment is both
sparse and largely inapplicable to present concerns, paper 4 is presented which pro-
vides the background for some of the methods invoked in paper 3. In keeping with
the notion of exploiting subsets of equations within a larger set, paper 4 demon-
strates how the kineto-static forces are themselves contained as sub-sets within the
wider equations of motion and how these are related to impulse equations governing
transitions between models.



Chapter 4

Data and computation

The previous chapter has dealt with a number of issues that relate to the theoretical
and symbolic nature of the equations of motion, equations (3.1). This chapter
surveys the methods used to analyse the available parametric data and implement
the numerical routines.

4.1 Derivation of parameters

In general it may be said the numerical parameters fall into two distinct groups;
those which appear on the left hand side of the equations and are concerned with
the kinematical description of the system, and those that appear on the right hand
side concerned with the material aspects of the applied forces. Both the left and
right sides of the equations depend upon the basic geometry of the bodies.

4.1.1 Geometry and inertial characteristics

Figure 3.3 is the redrawing of a more detailed set of scale drawings of a fused
incudo-malleal block and it accompanying stapes, made by Weistenhofer & Hudde
(1999). The original data Weistenhofer & Hudde data was derived by digitising
eight angled profiles of the two bones and processing them by means of AUTOCAD
to produce drawings, calculate the centres of masses, principal moments of inertia
and the directions of principal axes.

This basic data was processed in three ways, the first being to generate basic
geometrical information sufficient to allow decisions to be taken as to acceptable
levels of model idealization. The second to provide the lengths and angles defined
by the idealisations and the third to transform the principal moments of inertia of
both bodies into the frames of reference used in models 1 and 2. The issue of the
separation of the malleus and incus and the generation of their parameters as they
affect model 3 is discussed below.

27
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To accomplish these aims the basic drawings were digitised and scaled up to various
scales to suit the circumstances. The three separate views of the incudo-malleal
block where brought together and projected onto each other to ensure spatial and
angular compatibility between the bodies and their individual reference frame pro-
jections, the process requiring only minor angular adjustments to be accomplish.
The same technique was applied to the stapes and once completed both bodies were
mated (as in figure 3.3) and their compatibility checked. These operations were
undertaken using COREL 10 and the various measurement, scaling and orientation
tools available in that program.

Once completed the three dimensional coordinates of the main points A, Ay etc
were measured and plotted independently to gauge the level of idealization re-
quired. The principal decision taken was to retain the angular orientation, 3, of
the ligamental axis in the n; A ny plane but to reduce the angular orientation in
the ny A ng plane to zero to limit the amount of cross coupling. Using these basic
decisions the remaining lengths defined by the framework in figure 3.3 were mea-
sured and then adjusted to ensure compatibility with the idealizations. Given the
known angular orientation of the two bodies and their body fixed axes as described
in chapter 3, the moments and products of inertia were calculated for the appro-
priate directions using the principal axis data converted to the body frames by the
application of appropriate tensor transformations. The results of these length and
inertial calculations are to be found in table 1, paper 2.

To convert the measurements of model 2 to those of model 1, whose essential
geometric difference lies in the simplification introduced by making f = 0, the
ligamental axis’s horizontal projection on to ny was used. The result of this was to
shorten the overall length of the chain and to re-orientate the body frame so that
it lies parallel to A in the equilibrium position. This in turn required recalculation
of the moments and products of inertia whose results are given in table 5 paper 1.

Since the detailed length/geometrical data contained in Weistenhofer & Hudde(1999),
treat the incus and malleous as a single rigid block it was necessary to disaggregate
this data into its two constituent parts. To accomplish this recourse was made to
Beer et al (1999) where mass and principal momental data for separate malleous
and incus are available but with no specifically related length data provided. In
comparing the two data sets the sum of the masses of malleus and incus as given
by Beer et al (1999) is 52.6mg whilst that contained in Weistenhofer et al (1999)
and used in models 1 and 2 is 52.8mg. Although these measurement only refer
to a single parameter it was felt that they were sufficiently close as to warrant
incorporating the incus data contained in Beer into the far more detailed data of
Weistenhofer.

Although no other geometric data or scale other than mass and principal mo-
mental data is available in Beer, the drawing accompanying the data has attached
to the incus at the incudo-stapedial joint, a right angled triad whose orientation
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appears to be the same as the inertial Newtonian set A" used in models 1 & 2,
which given the principal axis orientation and symmetry of the stapes footplate
may be considered as a naturally occuring orientated frame. Further, since the
centre of mass of the combined incudo-malleal block lies on the anterior-posterior
ligamental axis it was assumed that the incus’s centre of mass would also lie on
this line and as the Beer data gave the mass of the incus as mp = 27.6mg and
Weistenhofer’s total mass was m 4 +mp = 52.8, the mass of the malleus was taken
to be my = 25.2. Thus by using the above assumptions and transforming Beer’s
principal momental data into frame B , the moment of interia characteristics of the
malleus were derived by means of the deconstruction of the Weistenhofer data.

4.1.2 Material parameters and calculation of applied forces

Paper 1 discusses in reasonable detail the method of transforming the various pa-
rameters forming the Kringlebotn model from electroacoustic units to mg/mm/ms.
After considerable testing these latter units were found to provide the most effective
numerical measure in terms of understanding and relative size and were adopted
as standard for all the mechanical models.

The transformations relating the conversion of acoustic/electrical units such as
acoustic €, into the mg/mm/ms set require the use of a set of conversion factors
which in turn depend upon the electrical ‘transformer’ constants of the circuit de-
noted by Kringlebotn as ‘k1, ko, k3’; as shown in paper 1 these constants represent
the basic geometry of the ear. The linear and rotational spring and damping con-
stants for the posterior and anterior ligaments were derived by taking the Young
and Poisson moduli listed in Koike & Wada(2002) and Ferris & Prendergast(2000),
and by using the ligamental geometric data provided by Wever & Lawrence(1954),
converting these values to the spring constant k’s and damping factor ¢’s listed.

Once the material parameters were derived they were used to construct the poten-
tial and Rayleigh functions for the total system from which the generalised forces
were calculated by means of the appropriate differentiation. Since the potential
and Rayleigh functions require the geometry of the system for their specification
in addition to the constants, the resulting generalised forces derived from these
functions are different for each of the three models.

The derivation of the nonlinear incudo-malleal joint characteristics discussed in
paper 3 and the parameters upon which they are constructed uses data contained
in Cancura(1980). The Cancura data set contains a series of horizontal linear de-
flection measurements of two points, one on the incus and the other on the malleus
to which the same value of force is applied acting in the same horizontal direction.
Other data regarding experimental set-up is missing beyond the information that
each test specimen consisted of an intact middle ear system apart from the eardrum
which was decoupled from the malleous. From the diagrammatic information pro-
vided it is assumed the point of application of the force applied to the incus is the
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lenticular process with the force applied to the malleus lying in the same horizontal
plane. In terms of model 3 this is taken to mean that F;,., the force on the incus
is given by F,. = |F|nijand its point of application is given by rop4, similarly the
malleous force is given by F,,.;; = |F|ny and its point of application by rops6. The
data lists four values of increases of rops and rp46 against four values of |F'|. For
the present purposes only the first two data points are used, that is the minimum
force the joint can bear just prior to rupture, followed by the first measured deflec-
tion of the joint.

In considering the application of model 3 to this data set, model 3’s coordinates
have to be reduced by the removal of z1, zo and z3 to mirror the removal of the tym-
panic membrane so that model’s coordinate set matching the data set is defined by
the column vector {z} = [24,215,216,217,Zg,Zg)ZlO,ZlL]T with the further condition
that prior to rupture zs = z9 = 219 = 0 so that this prior-to-rupture condition
state is given by the state set [1,1,1,1,1,0,0,0,1] as described in paper 3. On this
basis the static nature of the data reduces all inertial and velocity terms in the
equation of motion to zero leaving only stiffness and applied forces such that after
manipulation {z°} = (K°)”'{F°}. In this expression K° is the 6 x 6 matrix of
stiffness coefficients related to 24, 25, 26,27, 25 and z11, whilst {F°} is the column
vector of applied forces generated by the application of F¢, and F?, ,, undergoing
virtual displacements drgpy and drgag respectively. The static deflection of the
system {z°} under these loads can then be used to calculate the reaction torque
M, associated with this rupture condition, that is M., = M,.

To calculate the spring constant of the joint under the opening of the coordinate
29 the state of the model is increased to [1,1,1,1,1,0,1,0,1] such that the active
components are Now 24, 25, 26,27, 28, 29, 211 and the second static position is defined

by {#'} such that {z'} = (Kl)_1 {F'}. Here however K is the 7 x 7 stiffness
matrix related to the system’s seven coordinates but with the known stiffness co-
efficient kg9 augumented by x such that kég = kg9 + k, where k is the unknown
linear coefficient of the joint. {F'} is derived in a similar fashion to {F°} using
the given applied forces and their virtual displacements and in addition, for the Fy
component, the known rupture force —sign(z9)M, is added. Since from the data
2} is known, an interative procedure can be implemented treating r as the variable
whose final value is determined when the zg = z{.

4.2 Programing considerations

In general programing considerations can be broken down into three distinct types,
the first is concerned with the generation of the equations of motion using Sophia
together with the symbolic algebraic package Maple. The second is the solution
of these equations using Matlab and the third is the generation of the graphical
interpretations of derived quanties using Matlab. In what follows the latter will
not be discussed further given their ‘secondary’ nature except to note that in pure
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progaming terms the amount of programing in certain cases proved to be consid-
erable. All calculations were carried out on an IBM 2656E 2G Think Pad machine
with Intel Pentium( R) III, 1000 processing.

4.2.1 Sophia

Little need be said concerning the actual generation of the equations of motion us-
ing Sophia, the techniques being discussed in detail in Lesser(1995). The principal
issue in using such a tool resides in checking the results due to the ease of creating
computer-aided mistakes which are easily lost sight of in the mass of code. These
mistakes can occur from failures in the actual symbolic manipulation, but more
usually in the initial construction of basic data structures, such as frame of refer-
ence transformations and position vectors involving a number of different frames.
Once these quantities have been established and confirmed, operations relating to
them, such as their differentiation and amalgamation into derived quantities is a
relatively straightforward matter, albeit one that requires considerable care and
checking.

The equations of motion themselves were generated by Sophia using the scheme
laid out in paper 1 to produce reactionless equations. Although the overall equa-
tions of motion were derived for model 3 with the other models being subsequently
generated by equating the relevant coordinates to zero, it was felt necessary to
guard against the type of coding errors discussed above. This was accomplished
by independently constructing equations of motion (including frames and position
vectors) for all the models concerned using their appropriate coordinate designa-
tions and comparing the result with that produced by the overall model. Similar
checks were carried out for the potential and Rayleigh functions for each model.

Since the equations of motion were generated under the assumption that their
degree of linearity /nonlinearity was a matter of investigation, all quantities were
maintained in their full form for as long as possible with expansions of trigono-
metrical functions being performed to the third degree as late as possible in the
process. As a final check, once the linearity of the equations had been confirmed
all equations were rederived, using Sophia, by means of constructing system kinetic
energies and applying the Lagrangian formulation.

4.2.2 The solution of equations

Since many of the solutions required were of steady state linear form with fre-
quencies, amplitudes and phases being dependent upon the forcing frequency, it
is a relatively straightforward matter to develop solution methods for these cases.
The appropriate stiffness and viscous matrices were used to generate the neces-
sary amplitude and phase quantities for given range of forcing frequency and input
pressure, using Matlab with Maple as an independent check. To investigate the
transient properties of the linear systems the differential equations were solved di-
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rectly using the Matlab ODE 45 equation solver, Laplace transformations being
found inadequate to deal with the degree of the equations involved. All Matlab
calculations were carried out to absolute and relative errors of 1079, this being
found to be most suitable.

In dealing with the nonlinear models, model 3 in paper 3 and the triple pendulum
example of paper 4, extensive use was made of the binary, system state set, de-
scribed in detail in paper 4 and mentioned above. This allowed the basic equation
set to be utilised to enable movement between different configurations, calculating
not only the appropriate coordinates and velocities but also the constraint forces
involved. The method used to detect the presence of transitions conditions was
the Matlab event function linked to a decision making procedure utilising the state
set, the arrangement proved very effective, particularly in view of the complexity
of the rupture conditions.

4.3 Numerical model equations

This section brings together the numerical versions of the various equations of
motion examined by this thesis. In what follows the equations are expressed in the
general form:

M; = F;

where M; is the inertial term composed of the product of the generalised masses
and their respective accelerations and F; is the corresponding generalised force for
coordinate i. For the sake of brevity and in conformity with the conclusions, the
numerical values of the Christofell terms are not presented.

4.3.1 2D model

To render the terms below compatible with the theoretical discussion in the rest of
the thesis the relationships listed in table 3.1 are employed. Thus the coordinates
are related to each other by means of the expressions, ¢l = wy, ¢2 = wa, ¢3 = w3,
q4 = wy and ql1 = wy, the velocities by ul = wy - - - ull = w5 and the accelerations
by ult = Wy - - - ullt = ws.

Generalised inertias
Mgl = 2.700ult

Mq2 = 0.3600u2t



4.3. NUMERICAL MODEL EQUATIONS 33

Mq3 = 23.76u3t

Mag4 = 142.30udt + 23.80ullt

Mqll = 23.80udt + 28.00ullt

Generalised forces

Fql = —(276.9¢3 — 900.0q2 — 947.4¢4 + 2124.3q1 + 86.400ul — 43.20u3 — 43.20u4)

Fq2 = —(900.0q1 + 992.31¢2 + 21.60u2)

Fg3 := —(1476.9¢3 — 276.9q1 — 43.20ul + 50.400u3)

Fq4 = —(—=1560.0¢11 — 947.4q1 + 21474¢4 — 43.20ul — 2808.0ul1 + 2210.4ud)

Fqll = —(—1560.0¢4 + 3114.4¢11 — 2808.0u4 + 3851.2u11)

4.3.2 Model 1

The coordinates in this model are related to each other by the expressions, ¢l = z1,
q2 = x93, q3 = w3, ¢4 = x4, ¢5 = x5, ¢6 = xg and qll = w7, the velocities by
ul = &1 ---ull = &7 and the accelerations by ult = &1 - - - ullt = &7.

Generalised inertias

Mql = 2.700ult

Mq2 := .3600u2t

Mg3 = 23.76u3t

Mag4 := 75.70udt + 22.90ullt — 72.83ubt + 270.5ubt
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Mg5 := —72.83udt 4 548.0ubt — 41.68ullt — 182.3u6t
Mgb6 := 270.5udt — 182.3ubt 4 16.49ullt + 1743.u6t

Mqll := 22.90udt — 41.68ubt + 16.49u6t + 22.90ullt

Generalised forces

Fql = —(—276.9¢3 — 900.0¢2 + 2124.q1 — 947.4¢4 + 86.40ul — 43.20u3 — 43.20u4)

Fq2 = —(992.3¢2 — 900.0q1 + 86.40ul — 43.20u3 — 43.20u4)

Fq3 = —(1477.¢3 — 276.9¢1 — 43.20ul + 50.40u3)

Fgd = —(—947.4q1 + 1836.q4 — 1618.q5 + 640.1¢6 + 889.05¢11

—43.20ul + 214.7u4 — 299.0u5 + 118.3ub + 164.3u11)

Fg5 = —(—1618.g4 + 8998.g5 — 1165.¢6 — 1618.q11
—299.0ud + 544.4u5 — 215.2u6 — 299.0ull)

—(640.1¢4 — 1165.¢5 + 464.8¢6 + 640.1¢11
+118.3ud — 215.2u5 + 85.17u6 + 118.3ull)

Fqll = —(889.05¢4 — 1618.5 + 640.1¢6 + 2549.q11

+164.3ud — 299.0ub + 118.3u6 + 3151.u11)
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4.3.3 Model 2

The coordinates in this model are related to each other by the expressions, q1 = y1,
q2 = y2, q3 = y3, g4 = y4, ¢5 = y5, ¢6 = ys, q7 = yrand gl1 = yg, the velocities by
ul =g ---ull = yg and the accelerations by ult = gy - - - ullt = gg.

Generalised inertias

Mql = 2.700ult
Mq2 = 0.360u2t

Mg3 = 23.760u3t

Mg4 = 75.702udt — 72.834ubt + 250.516u6t — 101.926u7t + 22.902ullt

Mg = —72.834udt + 619.296ubt — 447.823ubt — 616.844u7t — 41.682ullt

Mqb6 = 250.516udt — 447.823ubt 4 1685.710u6t — 207.134u7t + 15.274ullt

Mq7 = —101.926u4t — 616.844ubt — 207.134u6t + 1571.086u7t — 6.214ullt

Mqll = 22.902u4dt — 41.682ubt + 15.274ubt — 6.214u7t + 22.902ullt

Generalised forces

Fql = —(-276.923¢3 —900.000¢2 + 2124.291¢q1 — 947.368¢4
+86.400ul — 43.200u3 — 43.200u4)

Fq2 = —(992.308¢2 — 900.000¢1 + 21.600u2
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Fg3 = —(1476.923¢3 — 276.923¢1 — 43.200ul + 50.400u3)

Fqg4 = —(—947.368¢1 + 1962.782¢4 — 762.961¢5 + 586.887¢6
—1966.973¢7 + 880.007¢11 — 43.200u1 + 108.457u6
—44.195u7 + 213.031u4d — 295.946ub + 162.625u11)

F¢5 = —(-762.962¢4 + 8109.209¢5 — 1068.134¢6
—10269.102¢7 — 1601.613¢11 — 197.392u6
+79.894u7 — 295.946u4 + 538.885ub — 295.979111)

Fg6 = —(586.887¢4 — 1068.134¢5 + 398.879¢6
—159.250¢7 4 586.887¢11 4 72.331u6
—29.429u7 + 108.457ud — 197.392ub + 108.457ull)

Fqi = —(-1966.973¢4 — 10269.102¢5 — 159.250¢6
+22121.601¢7 — 238.787q11 — 29.429u6
+12.834u7 — 44.195u4 + 79.894ub — 44.127ull)

Fqll = —(880.007¢4 — 1601.613¢5 + 586.887¢6
—238.787¢7 4 2522.687¢11 + 108.457ub
—44.127u7 + 3119.449u11 4 162.625u4 — 295.979u5)

4.3.4 Model 3

The coordinates in this model are related to each other by the expressions, ¢l = z1,
q2 = 29, q3 = 23, ¢4 = 24, 5 = 25, 6 = 26, q7 = 27, q8 = 28, 9 = 29, q10 = 210
and gll = z1;, the velocities by ul = 21 ---ull = Z;; and the accelerations by
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Generalised inertias
Mql = 2.700ult
Mq2 = 0.360u2t

Mg3 = 23.760u3t

Mg4 = 75.702udt — 72.834ubt + 250.516u6t — 101.9261u7¢
—47.214u8t — 86.763u9t 4 35.301u10¢ + 22.902ullt

Mg = —72.834udt 4 619.296udt — 447.823ubt — 616.844uTt
+130.035u8t + 158.941u9t — 51.620u10t — 41.682ullt

Mqb6 = 250.516udt — 447.823u5t 4 1685.710u6t — 207.134u7t
—121.912u8¢ + 17.489u9t — 34.336u10¢ + 15.274ullt

Mq7 = —101.926u4t — 616.844ubt — 207.134u6t + 1571.086u7t
+7.330u8t + 16.444u9t 4 106.130u10¢ — 6.214u11t

Mqg8 = —47.214udt + 130.035ubt — 121.912u6t + 7.330u7¢
+79.383u8t 4 103.410u9t — 41.458u10t — 28.169u1lt

Mq9 = —86.763u4t + 158.941ubt 4 17.489ubt + 16.444uTt
+103.410u8t 4 406.895u9t — 133.824u10t — 86.763ullt

Mql0 = 35.3007udt — 51.620udt — 34.336ubt + 106.130uTt
—41.458u8t — 133.824u9t + 152.816u10¢ + 35.301ullt

Mqgll = 22.902udt — 41.682ubt + 15.274ubt — 6.214u7t
—28.169u8t — 86.763u9t + 35.301u10t + 22.902u11t

37
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Generalised forces

Fql = —(—276.923¢3 — 900.0002 + 2124.291q1 — 947.368¢4
+86.400ul — 43.200u3 — 43.200u4)

Fq2 = —(992.308¢2 — 900.000¢1 + 21.600u2

Fg3 = —(1476.923¢3 — 276.923¢1 — 43.200ul + 50.400u3)

Fqgi4 = —(—947.368¢1 + 1962.782¢q4 — 762.961¢5 + 586.887¢6
—1966.973¢7 — 1082.409¢8 — 3333.843¢9 + 1356.445¢10
+880.007¢11 — 43.200ul 4 108.457u6 — 44.195u7 — 200.030u8
—616.096u9 + 250.667u10 + 213.031ud — 295.946ub + 162.625u11)

Fg5 = —(-762.962¢4 + 8109.209¢5 — 1068.134¢6
—10269.102¢7 + 1969.984¢8 + 6067.594¢9 — 2468.730¢10
—1601.613¢11 — 197.392u6 + 79.894u7 + 364.055u8
+1121.297u9 — 456.216u10 — 295.946u4 + 538.885u5 — 295.979u11)

Fg6 = —(586.887¢4 — 1068.134¢5 + 398.879¢6
—159.250¢7 — 721.871¢8 — 2219.639¢9 + 904.629¢10
+586.887¢11 + 72.331u6 — 29.429u7 — 133.402u8
—410.882u9 + 167.173u10 + 108.457ud — 197.392u5 + 108.457ull)

Fq7 = —(—1966.973¢4 — 10269.102¢5 — 159.250¢6
+22121.60197 + 293.708¢8 + 904.629¢9 — 368.067¢10
—238.787¢11 — 29.429u6 + 12.834u7 + 54.277u8 4- 167.173u9
—68.017u10 — 44.195u4 4 79.894ub — 44.127u11)
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Fq¢8 = —(—1082.409¢4 + 1969.984¢5 — 721.871¢6
+293.708¢7 + 1331.363¢8 + sign(g8) (0.72) + 1495.00¢8 + 4100.627¢9
—1668.427¢10 — 1082.409¢11 — 133.402u6 + 54.277u7
+246.037u8 4 757.799u9 — 308.322u10 — 200.030u4
+364.055ub — 200.030u11)

Fq9 = —(—3333.843¢4 + 6067.594¢5 — 2219.639¢6
+904.629¢7 4 4100.627¢8 + 12633.759¢9 + sign(q9) (0.72) 4+ 1495.00¢9
—5138.793¢10 — 3333.843¢11 — 410.882u6 + 167.173u7
+757.800u8 + 2334.039u9 — 949.637u10 — 616.096u4
+1121.297u5 — 616.096u:11)

Fql0 = —(1356.445¢4 — 2468.730¢5 + 904.629¢6
—368.067¢7 — 1668.427¢8 — 5138.793¢9
+2090.828¢10 + sign(q10) (0.72) + 1495.00¢10 + 1356.445¢11 + 167.173u6
—68.017u7 — 308.322u8 — 949.637u9 + 386.374u10
+250.667ud — 456.216u5 + 250.667ull)

Fqll = —(880.007¢4 — 1601.613¢5 + 586.887¢6
—238.787q7 — 1082.409¢8 — 3333.843¢9
+1356.445¢10 + 2522.687¢11 4 108.457u6
—44.127u7 — 200.030u8 — 616.096u9 + 250.667u10
+3119.449u11 + 162.625u4 — 295.979u5)



Chapter 5

Conclusions and outlook

Although each paper presents a list of conclusions relevant to it’s particular theme,
this chapter brings them together to form a summarized and generalised version
for which claims of originality are made. Based upon these overall conclusions a
number of suggestions are made for further work in areas where it is thought viable
results can obtained for a relatively modest investment of resources.

5.1 Conclusions

Linearity vs nonlinearity of ossicular motion- papers 1 and 2

It has been demonstrated that under the accepted view of the incudo-malleal block
as being a singular fused entity, the three dimensional motion of the ossicular chain
is linear in nature. This conclusion is tested and holds for an increase in complexity
brought about by increasing the degree asymmetry of the block’s geometry.

The reason for this linearity, is that the geometrical configuration of the block
is such as to ensure the numerical values of displacements, velocities and accelera-
tions are of the same small order of numerical magnitude. When these quantities
appear in multiplicative combination, as in variable mass terms, their effects be-
come negligible. This means that only constant generalized mass terms remain in
the accelerative portion of the equations of motion and since the applied poten-
tial and damping forces are dependent upon the provision of linear data, linear
equations result.

Resonance characteristics- papers 1 and 2

Using models 1 and 2, it is shown that the incudo-malleal block has three resonant
frequencies. The lowest is resonance in yaw which is of such low value, 11 Hz, that
it may be considered outside the frequency range covered by this investigation.
The second is a resonance in roll at a frequency of approximately 300Hz. The

40
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strongest resonance, virtually unaffected by the increase in complexity of model 2
over model 1, is the resonance in pitch found at 600Hz. As far as is known these
resonances have not been described before and underline the low frequency nature
of the chain’s characteristics.

Analysis of the chain’s resonant frequencies for changes in the scale of the lin-
eal dimensions of the incudo-malleal block yield proportionate changes, confirming
in general the robust nature of the device.

Axodal characteristics- paper 2

As opposed to the standard fixed axis hypothesis describing ossicular motion it
is demonstrated that the motion traced out by the velocity screws (the axodes),
of both the incudo-malleal block and the stapes are not fixed in space, even ap-
proximately. The dimensions of both reference curves, (ellipses), traced out by
the intersection of the two axodes and their reference planes are of the same order
as the dimensions of the malleus and stapes respectively. The form of the axode
in both cases is shown to be a moébius one-sided surface whose characteristics are
due to the change in direction of the respective velocity screws traversing their
respective axodes twice during an input cycle.

Impulse axis of rotation- paper 2

The possibility that a fixed axis model might be an acceptable description for a
static or near static equilibrium pose is investigated for the case where an impulse
is applied to the incudo-malleal block. It is found that although not coinciding with
the ligamental axis such an impulse screw is located approximately in a horizontal
plane drawn through the axis and might be sufficient to account for the claim of
fixity.

On the basis of this conclusion it is judged the fixed axis hypothesis does not
provide a satisfactory model for describing the motion of the ossicular chain dur-
ing steady state forced motion but might be approximately valid for near static
conditions.

Force and velocity screws- paper 2

Using the dual of the velocity screw, the force screw, the power relationships be-
tween these two entities for both the incudo-malleal block and the stapes are anal-
ysed and then visualized to illustrate the screw relationships involved.

Nonlinear behaviour and the incudo-malleal joint- paper 3

In considering the proposition that the incudo-malleal block is not a fused single
body but two separate bodies (the malleus and the incus), capable of movement
relative to each other via the incudo-malleal joint, it is demonstrated that on the
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evidence available the motion generated is of nonlinear form. This form becomes
apparent at high, but physiologically acceptable, driving pressures above SPL 104.

Mode of incudo-malleal joint operation- paper 3

Consideration of the operation of the incudo- malleal joint shows it to have pre-
ferred planes of action, the principal plane being the pitching plane. Although it is
necessary for the driving pressure to be above SPL 104 for the joint to be activated
this is not a sufficient condition to guarantee a functioning joint since it is also
shown there is a frequency dependency up to SPL 122, beyond which the joint will
operate regardless of input frequency.

It is demonstrated that the basic mechanism activating the joint’s functioning are
the internal kineto-static (rupture) forces generated by the motion.

Frequency dependency of joint operation- paper 3

It is shown that the joint is more likely to be activated at low rather than high
frequencies due to the high displacements and associated high accelerations experi-
enced under such conditions. Such conditions are always to be found in transitional
as well as steady state operating conditions, the former being experienced by the
imposition of impulse loading.

Effect of joint operation- paper 3

It is demonstrated that the joint, when it is operating, acts as an efficient energy
dissipator in its preferred plane of pitch operation. The implication of this is
that since the second preferred plane of operation is the roll plane, the joint has
the ability to have a graded dissipator response to disturbances with subsequent
alterations in the trajectory of the chain’s constituents.

The imposition and removal of constraints- paper 4

The dynamical requirements for the operation of the incudo-malleal joint depend
upon the ability to be able to decide when and when-not-to impose the joint’s geo-
metrical constraints in the equations of motion. This dynamical issue is considered
separately in paper 4 although its results and methods are applied in paper 3.

As part of the overall notion of equation embedding it is shown how constraint
forces are held within the higher degree of freedom system equations and how an
ordered set of binary numbers can be used to act as configuration specifiers. Such a
system allows the highest degree of freedom equations to be manipulated to reach
all possible smaller degree of freedom configurations.

Using Lagrangian concepts of generalized impulse it is also shown how the tran-
sition between constraints and the decision at to their imposition or not can be
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decided. The results are generalised to include the imposition of constraints using
redundant coordinates.

5.2 Future work

In considering the possibility of future work in the light of the above conclusions a
series of suggestions are listed below under the headings of ‘Experimental’, ‘The-
oretical’ and ‘Prosthesis’. Inevitably most of the items in any one category also
have ramifications for the others so in this sense the suggestions should be viewed
as being inclusive in scope.

In compiling these suggestions, a number of exploratory investigations have been
undertaken to gain a measure as to what might be possible and to test the validity
of some underlying ideas. These calculations have centred in the main upon the
roles of the tensor and stapedial muscles in both their singular and joint function-
ing, modelled as massless directed forces, adjoined to model 3.

In particular the effects of the two muscles upon the static pose of the chain and
the probable dynamics of the incudo-malleal joint working under such conditions
were briefly examined. The principal reason for undertaking these informal calcu-
lations was to gauge the practicality of constructing a model of the acoustic reflex,
a phenomenon that as far as is known only planar acoustic models have been used
to address to date. Since the informal calculations ranged in rigour and application
from back-of- the-envelope estimates to a limited number of specific simulations,
they are not put forward as firm conclusions or evidence but it is felt their fact
suggests very strongly that the methods and ideas developed in this thesis have
considerable potential for further development.

5.2.1 Experimental
Construct an ‘atlas’ of the ossicular chain and the middle ear cavity

The type of data available as to the actual geometry and configuration of the mid-
dle ear is very patchy and some of it is very old. Although data is known from a
variety of sources, most of it is unsystematic and only in the rarest of cases is it
given with respect to some defined reference triad. To meet this basic geometrical
need it is suggested an atlas of the middle ear be constructed.

This atlas or mapping should include in addition to the ossicular chain and its
components, all the associated suspensory ligaments and muscles together with
their dimensions and anchoring points. The production of such an atlas, which
given modern imaging technology should be a relatively straightforward procedure,
would provide a set of coherent consecutive data sufficient to formulate something
like a standard middle ear for reference and modelling.
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Material Characteristics

There is a need for the proper evaluation and publication of the linear and nonlinear
characteristics (including damping), of the material found in the middle ear par-
ticularly that relating to the suspensory and annular ligaments in both their axial
and torsional modes. The ideal situation would be to use the material from which
the atlas is derived so that it would be possible to relate the geometry directly to
the material.

Muscle charcteristics

Informal calculations suggest that the size of forces reported to be generated by the
tensor and stapedius muscles, Lutman(1975), are far too high for what the ossicular
chain could withstand unless nonlinear effects are present. Given the importance
of the stapedius muscle (and perhaps the tensor muscle as well) in the action of
the acoustic reflex an evaluation of both muscles (preferably those mapped using
the information in the atlas), would make a major contribution to unraveling this
important physiological issue.

Incudo-malleal joint characteristics

Although the pioneering work of Hiittenbrink (1988) concerning the physiology
and mechanics of the incudo-malleal joint under static pressure is recognised, a
geometrical mapping of the joint’s external and internal geometry together with
an evaluation of the material characteristics of its encapsulment would greatly add
to its understanding. Of particular interest is the determination of the joint’s
opening and directional properties. Such characteristics should also include three
dimensional measurement of its torque/displacement characteristics.

The incudo-stapedial joint

Although the incudo-stapedial joint has not featured in this work it is felt the
situation regarding its material and measured charcteristics is similar to that of
the incudo-malleal joint. Basic measurements as to the physiology and kinematical
scope of the incudo-stapedial joint appear to be lacking and deserve attention.
Hiittenbrink (1988) suggests that this joint’s function is to move in a plane normal
to the prevailing piston motion of the stapes footplate, thereby acting as a force
dissipator, this may well suggest some sort of nonlinear behaviour.

Static force/displacement experiments

Mechanical /kinematic knowledge as to the overall workings of the middle ear, given
the geometrical atlas referred to above, could relatively easily be enhanced by
applying a series of known static forces to the chain and measuring the overall
deflections and relative movement of the individual members. This is particularly
the case for the application of force in the direction of the stapes and tensor muscles,
both independently and concurrently.
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5.2.2 Theoretical
The acoustic reflex

Much modelling activity of the middle ear has been aimed at understanding the
ear’s acoustic reflex, the involuntary response of the ear to loud noises. As far as is
known all this activity has been undertaken using acoustic models where the action
of the reflex is modelled in the steady state only by increasing the numerical stiffness
(inverse capacitance) of the incudo-stapedial joint. None of the known models in-
vestigate the process as a physical phenomenon working in three dimensional space
and the treatment of the control and transient nature of such events is very limited.

With relatively modest effort the models contained in this thesis can be easily
adapted to incorporate such a mechanism and by the incorporation of a feedback
loop/loops the essentials of the control problem can begin to be addressed.

The role of the tensor and stapedius muscles

Related to the acoustic reflex but separate from it are the roles of the tensor and
stapedius muscles. Although the stapedius muscle is generally credited with the
reflex function the role of the tensor muscle is much less well defined. Excluding the
effect of the reflex action the informal calculations suggest that both muscles have
a considerable effect upon the static pose of the chain. Indeed, given the ‘lever’
arms involved, and excluding the appearance of nonlinear material characteristics,
it appears possible that large deflection angles of pose can be generated by means
of small muscle forces applied both individually and in concert. It seems possible
that the small angle assumptions of geometrical linearity can be relatively easily
violated by means of the application of these muscles.

The informal calculations also suggest that the stapedius muscle, but not the ten-
sor, has the ability to open the incudo-malleal joint, in addition to the kineto-static
forces discussed here. This raises the prospect that the acoustic reflex could also
involve such an effect as well. As far as is known no such interaction has been
proposed before.

Modelling of the incudo-malleal and incudo-stapedial joints as kinemat-
ical entities

It will be clear from this thesis that apart from basic physiological descriptions of
the middle ear’s two joints, no work has been located which discusses the kine-
matical aspects of their functioning. Given the amount of kinematical research
devoted to understanding the movement of the more accessible and visible joints of
the human body, it is felt this is particularly fruitful and untouched area suitable
for kinematical investigation. It is also an area suitable for investigation via the
calculus of screws, particularly in the area of visualization.
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Chaotic motions

It is well known that chaotic motion, in the sense that small changes in the ini-
tial conditions of a set of equations can lead to large differences in final system
configurations, is frequently present in systems possessing discontinuities such as
impacts. Such chaotic motion is also well attested to in systems involving jerk
motion, Sprott(1997).

If it is accepted that the imposition and removal of constraints, as discussed in
papers 3 and 4 and applied to the motion of the incudo-malleal joint, fall within
these jerk and impulse categories, tentative calculations suggest that sensitivity to
parameter change is possible which might in turn indicate the presence of chaotic
motion under the right conditions. Consequently it is felt an examination of the
functioning of the middle ear joint, perhaps using some measure of simplification,
could well reveal chaotic motion. It would then be possible to examine its physical
reality and allow its consequences to be assessed.

5.2.3 Prosthesis

The subject of prosthesis construction has not been touched upon apart from the
introductory remarks. However in considering such an issue it is felt the type of
mathematical models discussed here could be used with advantage to investigate
the possibility of developing a prosthesis design technique. It is envisaged that
it might be possible to engineer the material characteristics of a given device to
take account of the three dimensional nature of the movement involved, including
the joint, and thereby improve performance, something that is not done at present.
This suggestion should be a relatively straightforward matter to investigate perhaps
by utilizing an optimising technique such as a genetic algorithm.
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