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Abstract

We investigate the dielectrophoretic separation of microparticles. Two differ-
ent models are formulated in two characteristic time scales. The first model
mainly accounts for the orientation behavior and rotational motion of non-
spheric microparticles. The concept of effective charge is suggested to calcu-
late the finite size non-spheric particles. It is combined with the fluid particle
dynamics method to calculate hydrodynamic as well as dielectrophoretic forces
and torques. The translational motion and the particle-particle interaction are
calculated also, but they take much longer time to be observed due to the
different time scales of the rotational and translational motions

By viewing the particle as spheres, the second model focus on the trans-
lational motion of spheres. The hydrodynamic force between particles and
particle-particle electrostatic interactions are also taken into account. We check
the relative magnitude ratio between these forces in order to determine the
importance of these forces. To predict and guide the design of experimental
dielectrophoretic separation, two numerical applications are carried out. The
first calculation suggests optimum patterns to improve the trapping efficiency
of E.coli. cells by applying superimposed AC electric fields. The second cal-
culation finds out the mobility and separation rate of particles which differs in
size and electric properties by a multi-step trapping-releasing strategy.

Descriptors:

Dielectrophoresis, orientation of rotation, fluid particle dynamics, microparti-
cle, molecular dynamics, hydrodynamics, particle-particle interaction, super-
imposed, mobility
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CHAPTER 1

Introduction

Presently there is a strong trend towards miniaturizing equipment for chemical
analysis and synthesis. This is made possible by development of technologies for
fabricating small-scale structures that will serve as the components of a labora-
tory, such as pumps, valves, reactors, separators, etc. This is the lab-on-a-chip
concept, where all of the components are built in a single device. Another trend
is the design and manufacture of miniaturized mechanical components, such as
miniaturized motors, valves, pumps, etc, often termed Electro Mechanical Sys-
tems (MEMS). The two have obvious connections in that pumps, valves etc and
efficient fabrication methods are needed to implement a lab-on-a-chip. Often
the manufacturing techniques have come from microelectronics, and have thus
utilized silicon wafers etc, but also glass or plastics are used by Karniadakis and
Beskok (2002). Also, as nano-technology progresses, there is a rapidly growing
need to manipulate small objects, such as carbon nano-tubes, nanoparticles
etc.

Microfluidics, which is essentially a field dedicated to miniaturized of plumb-
ing and fluidic manipulation, offers the possibility of solving these issues for
biology and chemistry. The fundamental fluid physics of fluid systems change
rapid when the length scale decrease. A best-known phenomenon is that mass
transport in microfluidic devices is dominated by the viscous dissipation and the
inertial effects are generally negligible. This diminishes the instabilities caused
by the nonlinearity of inertia. However, on the other hand, other physical
phenomena of physics and chemistry become prominent such as electrostatics,
thermodynamics, elasticity and so on, which rich microfluidics greatly.

Separation and deposition of cells and particles are of great interests in
analytical chemistry, and which is an early application of microfluidic devices.
The motivations are:

Reduced sample consumption

Size of cells or particle in the orders of magnitude are as chip (pm)
Single particle manipulation

Large electric field strengths with low voltages

In general, strategies used for the separation and deposition processes can be
classified as follow:
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Mechanical (filters, micropipettes, etc)

Magnetical

Electric Electro-osmosis, Electrophoresis, Dielectrophoresis

Flow cytometry (activated by fluorescence, magnetism, impedance, etc)

The different methods have their advantages and disadvantages therefore have
different applied regions. This thesis focus in dielectrophoretic approach due
to the specified application (cells and particles have close size and different
frequency dependent electric properties, and are difficult to be separated by
other methods).

For most applications involving micrometre and sub-micrometre particles,
forces that tend to dominate in microdevices are viscous forces and electrical
forces. Electrical forces can act both on particles and on the suspending fluid.
The major electrical forces acting on small particles suspended in a fluid are
electrophoresis and dielectrophoresis . Electrophoresis occurs due to the action
of the electric field on the fixed, net charge of the particle, while dielectrophore-
sis only occurs when there are induced charges, and only results in motion in
a nonuniform field (this can be a DC or an AC field) ( Figure 1.1) During the

............... . Net force

FIGURE 1.1. A schematic of a polarisable particle suspended
within a point-plane electrode system. When the particle po-
larises, the interaction between the dipolar charges with the
local electric field produces a force.

past four decades, dielectrophoresis has been studied in great detail. The term,
“dielectrophoresis”, is a combination of the word for force, “phoresis” from the
Greek, and the word “dielectric”. Pohl intended to use this term to describe
the force exerted on uncharged dielectric particles by their polarizability, and
his definitions are:
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e Particles experience a DEP force only when the electric field is nonuni-
form.

e The DEP force does not depend on the polarity of the electric field and
is observed with AC as well as DC excitation.

e Particles are attracted to regions of stronger electric field when their
permittivity e, exceeds that of suspension medium e€,,, i.e., when €, >
€m-

o Particles are repelled from regions of stronger electric field when €, < €,

e DEP is most readily observed for particles with diameters ranging from
approximately 1 to 1000 pm

An increasingly important application of DEP is in selective separation of
bioparticles in lab-on-a-chip systems, and the feasibility of this has already
been demonstrated for different cell types.

For example, Pohl (1978) demonstrated the separation of viable and non-
viable yeast cells, and later he extended the experiments to separate other
biological cells including canine thrombocytes, red blood cells, bacteria etc.
Becker et al. (1995) performed separation of human breast cancerous cells
from normal blood cells by a microelectrode array due to the large difference
in dielectrophoretic properties of those cells, moreover, Gascoyne et al. (1997)
did experiments to separate a various cancerous cells from blood cells and
separated normal murine erythrocytes from erythroleukemia cells and measured
their dielectric properties by changing frequency of the applied electric field
[Gascoynea et al. 1997]. Markx et al. (1996) separated a mixtures of bacteria
Bacillus subtilis, Escherichia coli and Micrococcus luteus.

There are several common strategies for dielectrophoretic separation in lab-
on-chip systems. In flow separation, flow is used to carry two kind of different
particles in a microchannel. One kind of particles are trapped on the electrode
arrays located at the bottom of the channel, and the other would be brought out
of channel by the flow. It has been demonstrated to be effective for separation
of cancer cells [Becker et al. 1995]. The disadvantage of this strategy is,
the cells are attracted to electrodes and need to be collected after separation.
Therefore, strategies combined the separating and collecting processes are of
interests recently.

Dielectrophoretic-field flow fraction is another strategy. The flow is intro-
duced with different speed at different height from the bottom surface. Particles
are repelled from the electrodes under a dielectrophoretic negative forces. The
particles with different dielelctrophoretic properties would have different height
therefore travel with different speeds with the flow. For example, Markx et al.
(1997) employed this method in the separation of latex particles with different
sizes, and Yang et al. (1999) performed the separation of human breast cells
mixture with the blood cells. DEP-FFF takes use of velocity gradient in the
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flow profile to achieve a high selective separation. However, the particles prob-
ably enter the channel with a Gaussian-shaped distribution which may causes
overlap between the sub-populations of particles after separation.

Traveling wave dielectrophoresis is another recent and popular strategy in
which electric fields rather than flow is used to give the particles a mean longi-
tude velocity. That is, several applied electric fields are applied with continuous
phase shift so that to give particles dielectrophoretic forces in both vertical and
horizontal directions. In this case, the dielectrophoretic force expression is dif-
ferent from that given by Pohl (1951). The real part of Causius-Mossotti factor
gives the DEP forces in vertical direction, while the imaginary part gives the
DEP foces in horizontal direction (which is called the travelling force). This
strategy has been demonstrated to separate erythrocytes and leukocytes cells
[Morgan & Green 1997a).

The effect of Brownian motion was believed to be so large for submicron
particles such that deterministic movement of submicron particles could not be
achieved by using DEP. Pohl (1978) showed that excessively large electrical
field gradients would be required to move a particle of 500 nm meter because
the force on a particle due to Brownian motion increases as the particle’s vol-
ume is reduced. However, in recent years, microelectrode photolithography
technologies have been used to manufacture microelectrode arrays so it is able
to produce strong electric fields from. These have been successfully used for
the dielectrophoretic manipulation of a variety of nanoparticles [Green & Mor-
gan 1999], nanorods, nanofibers [Asokan et al. 2003], deoxyribonucleic acid
[Washizu et al. 1990], viruses [Morgan & Green 1997b], proteins [Washizu et
al. 1994] and DNA [Asbury & Engh 1998]. More recently, DEP was used to
separate metallic and semiconducting single-walled carbon nanotubes [Krupke
et al. 2003a; Krupke et al. 2003b; Krupke et al. 2004].

For nanoparticles, several other effects become significant besides dielec-
trophoresis. For example the usage of high electric field strengths produces fluid
flow and heating of the suspending electrolyte. The electric field can interact
with the fluid to produce frequency dependent forces such as electro-osmosis
and electrothermal force [Ramos et al. 1999; Hunter 1981]. The resulting flow
exerts a drag force on the particles and produces an observable motion. Re-
cently, a new type of force has been observed on microelectrodes due to the
electric double layer (EDL) of a particle in an AC electric field [Ramos et al.
1999; Morgan & Green 2001]. EDL is also believed to enhance the dielec-
trophoretic effects on submicron particles and a simple model which combine
EDL is suggested by Morgan & Green (2001). A thorough investigation about
the models of EDL was done by Lyklema (1995).

Since the manufacture of microsystems is rather costly and measuring is
also time-consuming, numerical modeling and simulation is very helpful for
predicting the particle behavior in Dielectrophoresis and optimizing the design
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of experiments. Most of the simulations done are based on the models of Jones
(1995), who has developed simple and general models useful for predicting
diverse examples of field-particle and particle-particle interactions based on
the effective moment model.

In recent years, the distributed Lagrange multiplier method (DLM) sug-
gested by Glowinski et al. (2001) was used to simulate the dielectrophoretic
motion of microparticles and nanoparticles [Kadaksham et al. 2004; Kadak-
sham et al. 2005]. Theoretical studies about the dielectrophoresis of charged
colloidal suspensions have been done by Huang et al.  (2002). Numerical
studies of using dielectrophoresis to separate and control carbon nanotubes
have also been done by Dimaki & Bgggild (2004). All these simulations and
numerical studies are based on the effective moment model.



CHAPTER 2
Theoretical preliminaries

2.1. Background of the model

Generally speaking, three main kind of analytical approaches have been used
to calculate the DEP force and rotation torque on a biocell, which is usually
modeled as a spherical homogeneous particle. The energy variation principle,
used by Pohl (1951), described a lossless particle in a lossless medium. How-
ever, if the particle and medium are lossy, energy conservation law does not
hold and this approach break down, as pointed out by Jones (1995).

The rigorous derivations of the DEP force and torque performed by Sauer
(1983) are important from the standpoint of classical electrodynamics. Their
analysis was based on a Maxwell stress tensor formulation integrated over the
spherical surface of the particle in a lossy media under a slightly nonuniform
electric field. The expansion of nonuniform electric field complicated the analy-
sis greatly and caused severe mathematical difficulties. Therefore, the attention
was only confined to a simple case of a homogenous sphere immersed in a di-
electric liquid, and the applied electric field is just slightly nonuniform. It is
hard to apply to many important practical cases of dielectrophoretic motions.

The main objective of this chapter is to introduce the effective dipole mo-
ment (EDM) method of calculating electromechanical forces and torques ex-
erted by electric fields upon particles [Jones 1995] . The effective dipole mo-
ment method is valuable because it is easy to use and provides valid results in
many important cases where rigorous derivations based on the Maxwell stress
tensor seems difficult or impossible. Many topics such as the calculation of
dielectrophoretic force, torque, orientation, employ this method.

Although the derivation of the effective dipole moment method is not rigor-
ous, it is in complete agreement with the results obtained by Maxwell stress ten-
sor integration for a homogeneous sphere with ohmic loss. In order to estimate
the range of validity of force calculations based on the effective dipole moment
approximation, Liu & Bau (2004) analytically solved cylindric and spherical
particles in shells and in semi-infinite media by evaluating the Maxwell stress
tensor, and compared with the results by effective dipole-moment method.
They concluded that when L/r > 20 (where L = |Eg|/|VEy|), the dipole-
moment approximation is accurate within better than 3%. Wang et al. (1997)
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derived expressions for dielectrophoretic force and electrorotational torques for
a homogeneous sphere in a nonuniform electric field based on the Maxwell
stress tensor. They compared their results with those of the effective moment
method and concluded that the discrepancy was only caused by the order of
approximation.

2.2. Effective dipole moment
2.2.1. Force on an infinitesimal dipole

A dielectric material is a material that contains charges which polarize un-
der the influence of an applied electric field. There are three basic molecular
polarization mechanisms that can occur when a electric field is applied to a
dielectric: electronic (the electron cloud moves), atomic (the ions move) and
orientational (the permanent dipole moment changes direction) polarizations.
However, none is regarded to be important in AC electrokinetics. The long-
range interfacial polarization is viewed as playing an important role and is often
referred as Maxwell-Wagner relaxation mechanism.

Interfacial polarization occurs because of a migration of charged carriers
through the interfaces of dielectrics in such a way to produce different charge
accumulations at the interfaces. It was first demonstrated by Maxwell and
Wagner [Pohl 1978].

The starting point for formulating the force exerted on a dielectric particle
is to estimate the net force upon a small physical dipole [Jones 1995]. The
dipole consists of equal and opposite charges, —q and +q.

If a nonuniform electric field is applied to a dipole with distance vector d
between the charges, then the electric field at the two charges are not equal,
and the sum of electric forces of the particle is:

F =¢E(r +d) — ¢E(r), (2.1)

where r is the position vector of —q. The electric field at the position of ¢ can
be expressed by Taylor expansion:

E(r+d)=E(r)+d-VE(r) + ... (2.2)
Substituting 2.2 into 2.1, we obtain:
F=qd VE+.. (2.3)

If high order gradients of the electric field are ignored, and since the dipole
moment p = qd, the approximate expression of the force on the dipole is:

F=p-VE. (2.4)

2.2.2. Derivation of EDM with ohmic loss

A simple example is a homogeneous dielectric sphere of radius R, permittivity
€p, and conductivity op,, immersed in a dielectric medium of permittivity €,
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and conductivity o,,. This system features one interface and one relaxation
frequency.

The effective dipole moment p.ys of this particle, is defined as the moment
of an equivalent, free-charge, point dipole that, when immersed in the same
dielectric liquid and positioned at the same location as the center of the original
particle, produces the same dipolar electrostatic potential. According to Jones
(1995), the electrostatic potential ¢ due to a point dipole of moment in a
dielectric medium with permittivity €,, is of the form:

_ qdPi(cost) | qd*Ps(cost)

4me,r? 16me,,rt

6(r,9) (2.5)
where P;, P3 are Legendre polynomial terms. If only the first term of the r.h.s.
of (2.5) is considered, the approximation of electric field based on the effective
dipole moment could be written as:

Peffcost

o(r,0) = pr (2.6)
where 6 and r are respectively the polar angle and radial position in spherical
coordinates. The derivation of the effective dipole moment is kind of under
simplified condition. That is, the applied electric field outside the particle
is taken to be a uniform magnitude Fy with frequency w and parallel to z
axes (i.e. E(t) = Re[Egze’*!]). The electrostatic potential satisfies Laplace
equation everywhere, and the solutions for outside ¢1(r,8) and inside ¢5(r,6)
are:

o1(r,0) = —Ercos@+Aizse, r>R (2.7)
¢2(r,0) = —DBrcost, r<R. (2.8)

A and B are unknown coefficients to be determined by the boundary conditions.
The first term in the r.h.s of 2.7 is the imposed electric field, and the second
term is due to the dipole moment of the particle. There are two boundary
conditions at the surface r = R. First is that the electric potential should be
continuous, that is:

¢1(r =R,0) = ¢p2(r = R, 0). (2.9)
The other is the conservation law of current flux. That is,

Ooy
Ja1—Jpo+—="-=0, r=R
rl r2 675
where J1 = o, B and Jy2 = 0,y are the normal components of the ohmic
current outside and inside the sphere, o is the free electric surface charge,

which can be expressed as:

0 =€emEr —epEro (2.10)
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Solving those boundary conditions, A is obtained:
e —er
A=-L_" R3F,, (2.11)
€ + 2€;,
where €* =€ —j2, and j = v/—1. From 2.6 we know:
Peff = 471'6mA. (2.12)

We obtain a general expression for the complex effective moment p.¢s for a
dielectric sphere with loss in an electric field as the form:

Peff = 4mey Re[K|RPE. (2.13)

K, the Clausius-Mossotti factor, is given by:

) - e W)

T oes(w) + 2¢5, (W) (2:14)

K can also be expressed by using the Maxwell-Wagner surface polarization
relaxation time 7p/y:

Ky— Ky
Kw)=Ko+ —r. 2.15
@) Jwutmw +1 ( )
Here 7w = ;Z ig::L Therefore, the low- and high-frequency limits of K are:
€, — €
K, = ‘2™ 2.16
€p + 26p, ( )
oy, — 0
Ky, = 2™, 2.17
0 op + 20, ( )

Consider a homogenous dielectric ellipsoid in a parallel electric field, with
the external applied field Eq oriented arbitrarily with respect to the ellipsoid
and with the components F,, F, and E, along the semi-axes of the ellipsoid.
The effective dipole moments for an ellipsoid are different in three directions.
The x component is [Jones 1995]:

4mabe €, — €,
(Pef)e = emRe| —F——"——1FE,. (2.18)
3 &+ (€, — ) La
Here the depolarization factor L, is defined by
be [ d
L, =%¢ % (2.19)

2 Jo (s+a?)Ry’

where Ry = /(s + a2)(s + b2)(s + ¢2). The y, z components of effective dipole
moment have similar expressions.
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2.3. DEP force in a uniform AC field based on EDM
The general expression for electric field of an AC field, can be written as
E = Re[E(x)e™?], (2.20)

where the vector E is the corresponding complex phasor. Without losing gen-
erality, supposing the AC electric field has a constant phase across the system,
E is real. The dipole moment of the spherical particle becomes:

p = 4me FROEe™ (2.21)
The time-average force acting on the particle is:
< Fppp >=pess - VE = 21R%¢,,,fE - VE. (2.22)

Using a vector identity, V(A -B) = (A-V)B+(B-V)A+B x (Vx A)+ A x
(VxB),and V x E =0 (E is an irroational field), (2.22) becomes:

< Fpgp >=71R%,,BV(E-E) = 1R%,,3V|E|%. (2.23)

Consider a homogenous ellipsoid having isotropic dielectric permittivity e,
and semi-axes a, b, and c¢ to be aligned with the z, y and z axes.

Fpep = peys - VE = 4wabee,, Re[KGE; - VE,  i=uz,y,z, (2.24)
with the definition K; = Re[m] i =,y 2.

2.4. Torque and orientation in a uniform field based on EFM

The expression for the torque on a homogeneous sphere in term of the effective
moment is:
TC = Peff X E. (2.25)

The expression of the torque on a homogeneous ellipsoid in a uniform imposed
electric field Eg is a three component vector. The expression for the x compo-
nent of torque is:
e dmabe(e;, — €5,)* (L. — Ly)EyE,

T BemllH (L)L (B L]

where L, is defined as (2.19).

Ty and T7 have similar expressions. These expressions of torque reveal
that the particle would always tend to align with its longest axis parallel to Eg
[Jones 1995].

However, for lossy particles, it is no longer true that only the longest axis is
stable. All three directions become possible depending on the relative conduc-
tivity and permittivity. In the high and low limit of the frequency, the stable
direction is the longest axis, but in the intermediate frequency range, the other
two axes may become stable. This phenomenon has been observed in many
experiments on dielectrophoresis of biocells. One example turkey erythrocytes,

(2.26)
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which have an ellipsoidal shape with three distinct axes [Zimmermann et al.
1985].

2.5. Model of dielectrophoresis of E.Coli cell

Usually, biocells are modeled as concentrically layered dielectric ellipsoids.
Asami et al. (1980) presented a cell model of E.coli as an ellipsoid covered
with two confocal shells corresponding to the membrane and cell wall as shown
in Figure 2.1

FIGURE 2.1. Cross section of an electrical cell model repre-
sented by three confocal ellipsoids in the x-y

The nature of this model is to model a corresponding Clausius-Mossotti
factor such that the expression for the dielectrophoretic force can be employed.
The details of the derivation is ignored here, and the result is:

K L Gn=m (2.27)
= = : , M=x,Y,2 .
"7 B+ (A g
S C P AT R U P (LR SN
' €+ (62,n - 6w)An - )‘1(62,71 — €y

)An
. Em * +(E;;,n — ) An + )\Q(ET,IC —e)(1—Ap)
€

& — ¢ , 2.29
2n e+ (Ez,k —€,) A, — AQ(E;,k —€r)An ( )
where
(a0 — dw)(bo — duw)?
P ; 2.30
1 " (2.30)
7dw*dm bidwfde
N = (@ )(bo ) (2.31)

(a0 = duw)(bo — dw)?
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and
1 q
Ay = — : 2.32
E—1 " (@ - DPi(g+ (@~ 1)) e
1

4, = A=(1-4,), (2.33)
g = % (2.34)

0

Here d,, and d,,, are supposed to be the thickness of the cell wall and membrane
respectively, other parameters used are indicated in Figure 2.1. Substituting
(2.27) into (2.24), the dielectrophoretic force can be calculated.



CHAPTER 3
Modeling and simulation

To simulate the dielectrophoretic phenomena, in this chapter, two models are
given. One is fluid dynamics particle method, and the other is a a molecular
dynamic approach. They have different applicability.

A very interesting phenomenon of non-spherical cells subjected to dielec-
trophoretic force is, the orientation of alignment. Then the rotational hydro-
dynamic force need to be solved properly. Fluid particle dynamics method is
a tidy way to deal with particles in flow, which is base of the first model. In
addition, we suggest the concept of effective charge to incorporate the hydro-
dynamics with dielectrophoresis into Navier-Stokes equations and solve them.

When the size of particles are much smaller than the length scale of the
electrodes, the rotational hydrodynamic force can be ignored and we do not
need to solve Navier-Stokes equation. Instead, we suppose that the drag force
is given by Stokes law and take the expression for Stokes law directly. This is
the case in the applications of separating and collecting particles using dielec-
trophoretic force. This model therefore is suitable to simulating those processes
and used to predict and optimize patterns of design.

3.1. Effective charge and FPD method
3.1.1. Derivation

Assuming the frequency of the AC field is within the range where effective
dipole moment along long axis dominates, the expression for the dipole moment
along this axis is:

P, = Qd = 2aQe,, (3.1)
where e, is the unit vector along the long axis. From (2.18), if we write
E, = E,e, then we have:

P, = 4rabce,, K, F e,. (3.2)

Here K, = Re[%] From (3.1) and (3.2), we derive the expression
for the effective charge:

Q = 2nbce, K E,. (3.3)
Here @ is supposed to be the induced charge in the two ends of the long axis
of prolate ellipsoid, with one positive and one negative.

13
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In a fluid particle dynamics model [Tanaka & Araki 2000], a suspension is
treated as a completely immiscible fluid mixture, in which very viscous fluid
particles with the viscosity 7. are suspended in a liquid component with the
viscosity ns. In the limit of "—z — 00, fluid particles can be regarded as solid
ones. Thus, the viscosity rati (%) is a measure of the accuracy.

s

The spatial distribution for the viscosity is given by n. = ns + An. The
viscosity field can be expressed as n(r) = ns + >_;(nc — 15)¢i(r). The force
acting on particle ¢, is determined as

B Fip;
F = Z Tdrg (3.4)

¢i(z) is a concentration function which is 1 inside the particle i, and zero
outside.

The governing equation we solved, is an equation instead of Navier- Stokes
equation with a form as:

Du

P Dt

F;¢;
f drqbi

— V47 p(vutvu) + Y
%

22 Pp(dwi X |r —ri[) ¢
dt ’
where p,, is the density of particle, p is the density of fluid, F is a total force of
all external forces, including the dielectrophoreitc translational force, and ‘2—?
is the rotational motion caused by dielectrophoretic torque. By this way, we
coupled the dielectrophoretic force with the hydrodynamic forces properly.

+ (3.5)

We know, the electrostatic force can be expressed as:
F = +QE. (3.6)
Here F has the same direction as the local electric field in positive charge point,

and has the reverse direction as local electric field in the negative charge point.

If we note F,, as the point force in the negative charge point and F, as
positive charge point respectively, we decompose F,,/,, into:

Fp/n = Fp/n,|| + Fp/n,J_- (37)
Here F) is the component which is parallel to the long axis, and F is the

component which is perpendicular to the long axis.

Assuming the angle between long axis and the electric field in the negative
charged point to be # and the angle between the long axis and the electric field
in positive charged point to be « (in a uniform electric field, a = ), we obtain
the magnitude of the forces as:

Fn.1 = F,sin0, F, = F,cos0, (3.8)
Fp 1 = Fysina, F, = F,cosa. (3.9)
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In 2D case, I" has only one component:

dw
r=1r—. 3.10
7 (3.10)
I is the rotational inertial. Hence, the angular acceleration caused by the
applied electric field can be written as:
dw r ae, X (FP’J_ +Fn’J_)

We also obtain the translational acceleration caused by the applied electric
field:

d

md;lu = F,cosf+F,cosq, (3.12)
d

md:” F, sinf+ F,sina. (3.13)

If (3.11), (3.12), and (3.13) are substituted into (3.5), then both the rota-
tional and translational motions of particles can be coupled with hydrodynamic
forces properly. We obtain,

Du

Zu F;¢;
"Dt

f dT¢Z

Ty
+ pr(f X v —ril) s, (3.14)

= —Vp+Vop(vut )+

it can be easily solved by FemLego [Amberg et al. 1999].

The charge definition is derived from the effective dipole moment expres-
sion. Based on it, the values of the local electric field at the ends of long axis
are included in the calculation. The size and shape of particles are taken into
account by this way. In a uniform electric field, the expressions are equivalent
to those based on effective dipole moment. That is, dielectrophoretic force is
zero, and the expressions for torque are the same. Figure 3.1 shows the orien-
tational alignment of two elliptic particles in a nonuniform electric field. Figure
3.1(a), 3.1(c), 3.1(e) show the isolines of electric potential, and the changes of
the orientation angles of particles in different time moments. As the result of
rotation, the angle between long axes and the electric field are parallel (that
is, perpendicular to the electric potential), which is what we expected. Figure
3.1(b), 3.1(d), 3.1(f) show the velocity fields at different time moments. From
Figure refcha3.l.b, we see the velocity inside the upper particle are much
smaller than that in the lower particle. This is because the angles between
the long axes and the electric field which determines the rotational effects are
different. ((3.8), (3.9) have revealed the relationship between the magnitude
of rotational forces and the orientation angle) Figure 6.6(d) shows that after
some time, the lower particle has rotated a lot, and the upper particle gets
large rotational motion. Figure 3.1(f) shows that while the two particles arrive
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FIGURE 3.1. Velocity fields in a nonuniform electric field
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the equilibrium positions, the velocities of the particle and the flow are almost
Zero.

3.2. Molecular dynamics method

In this model, instead of using multi-phase models, we use a molecular dynamics
(MD) method [Elimelech et al. 1995]. It provides a way of solving the equations
of the motion of each particle by replacing them by a set of finite difference
equations which are solved on a step-by-step basis.

We view the particles as spheres and consider particles with size much
smaller than the length scale of the electrodes. Under such conditions, we do
not consider the rotational motion of particles. On the micro level, we consider
the flow to be Stokes flow. There will be no need to solve the Navier-Stokes
equations. The reason is that according to the specified micro-scale condition,
the analytical expression for the hydrodynamic forces between suspended parti-
cles in Stokes flows has been well established. Those functions could be directly
adopted to account for the hydrodynamic interaction between particles. Be-
sides, since we assume the particles to be spherical and without deformation,
it is reasonable to just add repelling forces which become significant when two
particles come close. The net DEP forces acting on the particles by the field
and the interactive electrostatic forces from other particles can also be added
on the centers of mass of the particle. Therefore, we are able to include all the
forces into a set of coupled equation of motion (ordinary differential equations)
for many-body systems. We do not need to solve the Navier-Stokes equation if
we are not interested in the fluid itself.

3.2.1. Analysis of inertial effect

For simplification, we suppose a sphere in a fluid flow with speed v is subjected
to an external force F. According to Newton Second Law:

d
md—ltl =F — 6rpa(u—v) (3.15)

The second term of (3.15) is the Stokes drag force that the sphere is subjected
to from the fluid [Morgan & Green 2001], u is the speed of particle, m is the
mass of the sphere, and p is the viscosity of fluid. The solution for the speed
of the particle, u, can be easily obtained:

u= (ll(] + v+ )6_(677#)75 (3.16)

6mur

It is reasonable to take the characteristic time as 7 = 6;’7m = 2522. If the
density of cells, p, is taken as the same as water, and the fluid viscosity is taken
as water, then 7 = 1076 s. Since the limit of time for observation is about 1/30
s, which is much longer than 7, therefore, the particle that is observed moves at

the terminal speed. For nanoparticles, the characteristic time 7 is even smaller.
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This means that, in microsystems, the inertial effect is negligible, which is a
basic assumption for our molecular dynamic approach.

3.2.2. Hydrodynamic interaction

One of the aims in this paper was to take the hydrodynamic force into account.
The governing equations of the motion of an incompressible fluid, the Navier-
Stokes equations, could be non-dimensionalized as Kundu & Cohen (2002):

ou
Re(5-+U-VU) = ~Vp+ VU +f (3.17)
V-U = 0 (3.18)
where Re is the Reynolds number defined as Re = %, which determines

the relative importance of the fluid inertia and viscous forces. However, in
micro flows when R << 1 and under steady state, the nonlinear terms can
be neglected, and by further assuming that external forces are absent, the
governing equations can be written as:

ViU = Vp, (3.19)
vV-Uu = 0 (3.20)

which are known as the Stokes or creeping flow equations. The motion of a
given particle induces a flow field in the solvent, which will be felt by every
other particle. As a result, these particles experience a force which can be
said to result from the hydrodynamic interaction with the original particle. By
solving the Stokes equation for a two-particle case, the first expression for the
mobility tensor, as given by Oseen [Elimelech et al. 1995], is:

1 r;;r;;
Mij = + (1 - 5ij)87(1 + =52, (3.21)

ij
6mpa T T

where 1 is the unit tensor, r;; = r;—r; , 75; = |[r; —r;|, and d;; is the Kronecker
delta. Therefore, we get the velocity expression as:

N
Ui = — Z Hij - Fj (322)
J=1

Corrections resulting from n-body interactions (n > 3) need not to be taken
into account. That is, for example, particle A can affect particle C directly and
affect C indirectly by affect particle B and B can therefore effect particle A.
The indirect influences are expressed by correction functions of the order (%)2
or higher [Elimelech et al. 1995]. The hydrodynamic force acting on particle 4
can be expressed as:

N
Fdrag,i = - Z Cij ' Uj (323)
j=1
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where tensor 7;; is defined as:

3a il
1 9t 3.24

Cij = 5ij(67wa) + (1 — (Sij)G’ﬂ'/Ml

To maintain stability and to avoid the time step restrictions of explicit
methods, the velocity Ui in (3.22) is discretized by using an implicit scheme.
Therefore, a nonlinear system of equations must be solved.

3.2.3. Electrostatic interaction

For an isolated spherical particle subjected to an electric field E, the polariza-
tion is given by

p = 4men Ba’E (3.25)
0 is the real part of Causius-Mossotti factor, a is the radius of particle, To

obtain the interaction forces between particle i and j, we have the expressions
for the dipole moment of these particles as:

pi = 47e,,3a’E;, p; = 47e,,B3a°E;, (3.26)

where E; and E; are electric field intensity at the positions of centers of particle
iand j. Witten in vector form , the expression of electrostatic interactions F p ;;
is:

1 3

Fp.ij Wﬁ(rij(pi -pj) + (rij - Pi)P;
m

5
+(rij - Pj)Pi — ﬁrij(pi -1i5)(P;j " Tij)) (3.27)

After non-dimensionalization, it can be expressed as:

dx; dx,
1 = PFG,;- L + PFD; + P,FDIP;

+Fw,; +Fp; (3.28)

with the following definitions:

e Characteristic variables:

L: Length Vo: Potential T: Time
e Dimensionless parameters:

3r _ 26r26mV02T P 26m62r5V02T

P="" pP=
Py P 3L 8 uL7

= 30(7)° Py
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e Dimensionless functions

FD;, = V|E*]?

1 A oA

iJ
1

(Ry)s PPy
* 0\ Lk * *\ Lk 5 * * * * *
(R} -pi)p; + (R, -pj)pi  — (R*V)QRij(pi ‘R};)(p; - Ri;)) (3.29)

i

where F'G is the dimensionless hydrodynamic force, FD is the dimensionless
DEP force, FDIP is the dimensionless electrostatic force, and F,, ; is the repul-
sive forces between particles. From the definition of P;,P, and Ps, and (3.28),
the scaling relationship between DEP forces and hydrodynamic force can be
determined.

Figure 3.3 shows experimental results of E. coli bacteria under dielec-
trophoresis. The electrodes are seen as the v-shaped structures at top and
bottom. The bacteria accumulate near the electrode tips, as expected, since
these are the points with the largest field gradients. Furthermore they organize
into long chains, extending along the electric field lines. This is due to the fact
that, under the present conditions, with an AC frequency giving positive DEP,
the particles polarize in such a way that they will be negatively charged at
the end near the positive electrode, and vice versa. This will create attractive
interparticle forces between these induced dipoles. Finally the particles form
the long chains along the field lines. Figure 3.2 shows the simulation results.
They are in good agreement with the experimental results.

07
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FiGURE 3.2. Particle distribution under pDEP conditions
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FicUre 3.3. Alignement of E. coli bacteria under pDEP conditions

3.3. Applications

In the following, we have used our simulations based on molecular dynamics ap-
proach to investigate different possible separation techniques. Particle-particle
interactions are neglected in the model since we have shown that when the
gradient of electric field is high, the interactive forces are negligible compared
to dielectrophoretic forces.

3.3.1. Superposition dielectrophoretic forces

We apply our model in the calculation for enhancing the trapping efficiency
of E.coli cells. In this problem, the Clausius-Mossotti factor is a frequency-
dependent complex number with the real part value between -0.5 and 1. We
showed that if proper superimposed electric fields (with different frequency)
are used in the calculation, the trapping efficiency can be enhanced greatly.

Below is the simple mathematical proof of the validity of superposition of
dielectrophoretic forces:

For one single frequency the DEP force is quadratic in the electric field, as
(2.23). Since E = V¢ (¢ is the potential of electric field which can be written
as q~5 = ¢sinwt with ¢ only depends on space), after nondimensionlization, we
get the relationship between F g4, and potential ¢ as:

Fi.p, = V(Vosin(wt))?. (3.30)
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The time average force is then:
1 T
<F> = TV(V(;S)z/ sin?(wt) (3.31)
0
1
= 5V(v¢>)2. (3.32)

Suppose two harmonic potentials with different frequencies are introduced
at the same time to a system, we have the superimposed electric potential as:

brotar = 1 sin(wit) 4 ¢o sin(wat) (3.33)
therefore,

(Vorota)? = (Vrsin(wit) + Vo (wat))? (3.34)
= V¢isin®(wit) + Vs sin®(wat) + 2V (¢ sin(wit)V ey sin(wot)

The time-average force is:

1 T
<F >iota = —/ Fyepdt
total T o dep

1 o [T 1 o [T

= =V(V¢1) sin“(w1t)dt + =V (Vo) sin®(wqt)dt
T , T o

1 T
+2LV(VVe) / sin(wnt) sin(wot)dt (3.35)
0

When T tends to infinity, it is easy to verify that the last term of 3.35 tends
to zero, and 3.35 becomes:

1 1
< F >i00a= 5V(wl)2 + 5V(v¢2)2 =<F > +<F>, (3.36)

Therefore, it is correct to superimpose the DEP forces corresponding to super-
imposed AC fields of different frequencies.

As an example, Figure 3.4 shows the traces of E.coli cells under DEP forces
in a rectangular channel. Three different electrode configurations were consid-
ered. A Poiseuille flow enters the channel from the left. Particles are released
from different positions through the channel cross section. In configuration A,
only the electrodes at the bottom of the channel are used. The frequency of
the AC field is chosen to give a positive DEP, i.e. particles are attracted to
regions of high field gradients. In configuration B, both the electrodes at the
bottom and the top were turned on at a voltage frequency where the parti-
cles only obtain a positive dielectrophoretic motion. In configuration C, both
the electrodes are turned on, but different frequencies are utilized. The bottom
electrodes have a frequency inducing positive DEP, and the top electrodes have
a frequency inducing negative motion. The trapping rate of configuration B is
100%, which proves configuration B is the best one in this condition.
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(b) with pDEP both at the bottom and at the top.

(¢) with pDEP at the bottom and nDEP at the top.
FIGURE 3.4. Particle trajectories in a high conductivity solution.

3.3.2. Multi-step dielectrophoresis

The idea of multi-step dielectrophoresis is, by repeating the trapping-release
process, particles with small difference in size and dielectrophoretic properties
can be separated. Figure 3.5 is a schematic of this strategy. To quantify the
degree of fractionation separated, a concept as the dielectrophoretic resolution
(Rpep) is defined as:
3d
Rpep wat 0p (3.37)
where d is the distance between the two centers of each particle population,
and w is the band width of the particle population. It is easy to understand,
when Rpgp > 1.5, the two particle populations will be completely separated,
because it is equivalent to:
Wq + Wp

d> == (3.38)
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F1GURE 3.5. A schematic of a polarisable particle suspended
within a point-plane electrode system. When the particle po-
larises, the interaction between the dipolar charges with the
local electric field produces a force.
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FIGURE 3.6. Calculated resolution as a function of number of
steps for a relative difference in size of 5%, 2% and 1%.

For example, Figure 3.6 shows that a complete separation can be achieved in
two steps if the difference in size is 5%. If the size difference is 0.5%, 20 steps
are required (Figure 3.7). If the size difference is 0.2%, 200 steps are need
(Figure 3.8).
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CHAPTER 4

Summary of papers

Paper 1

In this paper, the author suggested the concept as effective charge and based
on which derived the expression for dielectrophoretic force and torque. Fluid
particle dynamics method is modified to simulate the motion of non-spheric
particles in fluid. By coupling the dielectrophoresis expressions with the fluid
particle dynamics method, the author simulated the motion of two ellipsoidal
particles in a uniform and nonuniform electric field respectively. This method
was originated while somewhat different from the widely used ways which are
based on the effective dipole moment. An investigation between the time scales
of different dielectrophoretic motions are also carried out.

Paper 2

A molecular dynamics approach is suggested in this paper based on the point-
approximation effective dipole moment. A set of equations of motion of micro-
size particles based on the Newton second law are solved step by step with in-
ertial effects neglected. Translational hydrodynamic force corrections of Stokes
flow are coupled with dielectrophoretic force together with the particle-particle
electrostatic interaction and the particle-particle interface repulsion.

Paper 3

A simpler version of the molecular dynamic approach in paper 2 is used to
calculate the dielectrophoresis force which E.coli cells are subjected to in 3D.
Superimposed AC electric fields of different frequencies are used to give nDEP
and pDEP forces simultaneously. The interactions between particles are ig-
nored because when the gradient of electric field is high and when the length
scale of electrodes is much larger than the size of particles, the interactions
are trivial. The results shows that applying the superimposed electric fields
properly enhances the trapping efficiency greatly.

26
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Paper 4

The model used in this paper is the same as that in paper 3. A multi-step
trapping-releasing mechanism is utilized to separate the particles with differ-
ences in size and dielectrophoretic properties. Results shows that the mech-
anism can separate particles with much smaller difference in size and dielec-
trophoretic properties than traditional ways.



CHAPTER 5

Conclusions and outlook

This thesis contains two methods to model and simulate the dielectrophoretic
phenomena of microparticles, as well as two applications in the design of the
microchannel for cell separating.

In the first model, the fluid particle dynamics method coupled with di-
electrophoretic forces and torque is used. The rotational motions of ellipsoidal
particles in a uniform and nonuniform electric field are observed as well as
the motion of the fluid around. The particle-particle interactions are also cal-
culated. However, it is rather expensive to apply in the calculation of DEP
applications. The reason is, the time scale of rotational motion is much smaller
than that of translational motion.

The second model is based on the widely used point-approximation effec-
tive dipole moment method. A molecular dynamic approach is suggested to
simulate the particle motions. The rotational motions of particles are neglected
since the size of particles is much smaller than the length scale of the electrodes.
The particle-particle interaction forces (including hydrodynamic and electro-
static forces) are incorporated as well as the DEP forces. An investigation
between DEP forces and interactios is carried out based as well.

The molecular dynamic method with the interactions neglected is used to
calculate dielectrophoretic motions of particles in a microchannel with carrier
flow. The first application shows that superimposed external electric fields can
enhanced the trapping rate of E. Coli cells greatly. The second application
reveals that by using this multi-step trapping-releasing mechanism, particles
with much smaller difference in size and dielectrophoretic properties can be
separated than traditional ways.

In the future work, for the fluid particle model, concentration field functions
can be carried out to simulate different shape objects. A big challenge is to
simulate objects with flexible interface. A non-conservative phase field method
probably may be a good model for the concentration field. For the molecular
model, Brownian motion and Van Der Waals forces can be incorporated to
simulate nanoparticles. Since the surfaces of most of nanoparticles in solution
are charged, the electric double layer also plays an important role. Coupling
the electric double layer effect into the dielectrophretic model is necessary and
also a challenge. Severe difficulty in experimental aspect may be that the

28
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physical and chemical parameters needed in mathematical models are difficult
to measure. Maxwell stress tensor method can also be a choice to improve
the accuracy of calculation for dielectrophoretic force and torque, especially
for particles whose size is comparable to the size of electrodes.
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