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Subgrid-scale modelling for large-eddy simulation including scalar

mixing in rotating turbulent shear flows

Linus Marstorp
KTH Mechanics, SE-100 44 Stockholm, Sweden

Abstract

The aim of the present study is to develop subgrid-scale models that are relevant
for complex flows and combustion. A stochastic model based on a stochastic
Smagorinsky constant with adjustable variance and time scale is proposed. The
stochastic model is shown to provide for backscatter of both kinetic energy and
scalar variance without causing numerical instabilities. A new subgrid-scale
scalar flux model is developed using the same kind of methodology that leads
to the explicit algebraic scalar flux model, EASFM, for RANS. The new model
predicts the anisotropy of the subgrid-scales in a more realistic way than the
eddy diffusion model. Both new models were tested in rotating homogeneous
shear flow with a passive scalar. Rogallo’s method of moving the frame with
the mean flow to enable periodic boundary conditions was used to simulate
homogeneous shear flow.

Descriptors: Turbulence, large-eddy simulation, subgrid-scale model.
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Preface

The thesis contains the following papers:

Paper 1. Linus Marstorp, Geert Brethouwer & Arne V. Johansson. Stochas-
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new model for the subgrid passive scalar flux. To be submitted
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code for large eddy simulation of rotating homogeneous shear flow with passive
scalars. Technical report

Division of work between authors
The project was initiated and defined by Arne Johansson and Geert Brethouwer.
The work was performed by Linus Marstorp under the supervision of Arne Jo-
hansson and Geert Brethouwer. The large eddy simulations were performed by
Marstorp. The papers were written by Linus Marstorp and reviewed by Arne
Johansson and Geert Brethouwer.

iv



Contents

Abstract iii

Preface iv

Chapter 1. Introduction 1

Chapter 2. Filtered equations 2

Chapter 3. Important features of τij and qj 3

Chapter 4. Subgrid scale models 5

4.1. The Smagorinsky model 5

4.2. Dynamic Smagorinsky model 5

4.3. Scale similarity model 6

4.4. Approximate deconvolution model 7

4.5. Stochastic models 7

4.6. Transport equation models 8

Chapter 5. Summary of Papers 9

5.1. Paper 1 9

5.2. Paper 2 10

5.3. Paper 3 11

Acknowledgements 14

Paper 1 15

Paper 2 33

Paper 3 49

v





CHAPTER 1

Introduction

The nature of turbulent flows is chaotic and three-dimensional with a wide
range of the scales of motion. Predictions of (Newtonian) turbulent flows re-
quire numerical solution of the Navier-Stokes equation. Unfortunately, direct
numerical simulations of the Navier-Stokes equations demand very high resolu-
tion. All scales, even the smallest scales of motion, have to be resolved in order
to capture the correct physics of the flow. A less computationally expensive
approach is to solve the Navier-Stokes equations in the mean sense. This is
usually referred to as a Reynolds averaged Navier-Stokes, RANS, approach.
The RANS approach provides for mean statistics, such as the mean velocity
profile and the mean turbulence kinetic energy, but all turbulent fluctuations
have to be modelled. The subject for this study is a third approach; Large
Eddy Simulation, LES, which captures the dynamics of the largest turbulence
length scales and only requires modelling of the smallest scales of motion.

The aim of the present study is develop models for LES with passive scalars.
A passive scalar is mixed by the flow, but it has no effect on the flow. It can
represent, for example, small temperature fluctuations or a pollutant carried
by the flow. Knowledge of passive scalar mixing is also a first step towards
the understanding of reactive flows, where the mixing of species plays an im-
portant role. At a later stage, the LES models will be implemented in codes
for numerical simulations of turbulent flows in complex geometries, such as the
wall-jet code developed by Ahlman et al. (2006)
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CHAPTER 2

Filtered equations

A Large Eddy Simulation is an under-resolved numerical simulation of the
Navier-Stokes equations in which only the large length and time scales are re-
solved, and in which the influence of the non-resolved scales has to be modelled.
To remove the scales smaller than a prescribed filter scale ∆, a filtering opera-
tion is applied to the Navier-Stokes equation. The filter can be represented by
a convolution

ũ(x, t) =

∫

R3

G(x − y)u(y, t)dy (2.1)

which commutes with the differential operator. The filtered Navier-Stokes
equations are

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+ ν∇2ũi −

∂τij

∂xj

∂ũi

∂xi
= 0

∂θ̃

∂t
+ ũj

∂θ̃

∂xj
=

ν

Pr
∇2θ̃ − ∂qj

∂xj

(2.2)

where ũi and θ̃ denote the filtered velocity and passive scalar respectively, and
p̃ is the pressure. Ωi is the system rotation vector, ν is the viscosity, and Pr
is the Prandtl number. The sub-grid scale, SGS, stress, τij = ũiuj − ũiũj , and

the SGS scalar flux, qi = ũiθ − ũiθ̃, have to be modelled in order to close the
system of equations.
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CHAPTER 3

Important features of τij and qj

In incompressible turbulent flows kinetic energy is produced by the mean veloc-
ity gradients (shear). The kinetic energy is then transferred from large energetic
eddies to smaller eddies through an energy cascade governed by nonlinear inter-
actions. The viscous forces become important at the smallest scales of motion.
They dampen the turbulent fluctuations and kinetic energy is dissipated. In
LES, the dissipative scales are not resolved and modelling is needed in order to
produce an energy cascade. One of the basic demands on an SGS model is that
it produces the correct amount of mean energy and scalar variance dissipation.
Thereby the mean turbulence kinetic energy and the scalar variance develop in
a proper manner. The energy cascade in LES is sketched in figure 3.1.

κ

E
(κ

)

Large energetic
scales

Subgrid
scales

Energy transfer

Figure 3.1. Sketch of the kinetic energy spectrum E(κ) in LES.

Although the energy transfer, or SGS dissipation, is positive on average, it
varies spatially and temporary with intermittently negative values. Negative
SGS dissipation is referred to as backscatter, and it is significant in turbulent
flows, see Piomelii et al. (1991) or Cerutti and Meneveau (1998). Piomelli et
al. found the probability of backscatter to be approximately 50% in turbulent
channel flow.
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A realistic description of the energy transfer between the resolved and SGS
also involves a proper description of the anisotropy of the mean energy trans-
fer. Experiments by Kang and Meneveau (2001) have shown that the mean
kinetic energy transfer becomes isotropic, i.e. equal in all directions, whereas
the mean scalar ’energy’ transfer stays anisotropic when the filter scale is de-
creased. A correct description of the anisotropy of the energy transfer requires
advanced SGS modelling.
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CHAPTER 4

Subgrid scale models

SGS models for LES are in general simpler than Reynolds stress models for
RANS with reference to the number of transport equations involved. Most
SGS models belong to the class of zero-equation models. However, the resolved
velocity and scalar fields in LES provide valuable information that can be used
to improve the model predictions.

4.1. The Smagorinsky model

The widely known Smagorinsky (1962) model is an eddy viscosity model which
reads

τij = −2νT Sij (4.3)

where Sij is the resolved rate of strain and where the eddy viscosity, νT , is
constructed from the filter length scale ∆ and a velocity scale ∆|Sij |, such that

νT = (Cs∆)2|Sij | (4.4)

where |Sij | = (2SijSij)
1/2 and Cs > 0 is a model constant. The model is

stable and computationally inexpensive. Moreover, a constant Smagorinsky
constant, Cs, is consistent with the Kolmogorov theory for the energy cascade
in isotropic turbulent flows Pope (2000). However, the Smagorinsky model
has several known deficiencies. One example is that with Cs > 0 the SGS-
dissipation is strictly positive, i.e. there is no backscatter. Another example
is that the model constant has to be damped in near wall regions. The latter
problem is also associated with eddy viscosity models for RANS.

The corresponding SGS model for the passive scalar is the eddy diffusion model

qi = − νT

PrT

∂θ̃

∂xi
(4.5)

Like the Smagorinsky model, the eddy diffusion model does not provide for
backscatter. Another deficiency is its inability to predict the anisotropy of the
scalar variance SGS dissipation, as pointed out by Kang and Meneveau (2001).

4.2. Dynamic Smagorinsky model

In the dynamic Smagorinsky model developed by Germano et al. (1991), infor-
mation about the resolved scales is used to estimate the Smagorinsky constant.
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According to the Germano identity the difference between the SGS stress eval-
uated at two different filter scales is

τ ∆̂
ij − τ̂∆

ij = ̂̃uiũj − ˆ̃ui
ˆ̃uj (4.6)

where the hat operator denotes an explicit test filter at larger filter width,
∆̂ > ∆. By replacing the real SGS stress by the modelled stress and by
assuming scale invariance of the Smagorinsky constant the following relation is
obtained

−2C2
s

(
∆̂2| ˆ̃S| ˆ̃Sij − ∆2 ̂|S̃|S̃ij

)
= ̂̃uiũj − ˆ̃ui

ˆ̃uj (4.7)

Germano originally proposed to compute the model constant as

C2
s =

〈LijS̃ij〉
〈MijS̃ij〉

Lij = ̂̃uiũj − ˆ̃ui
ˆ̃uj

Mij = −2(∆̂2| ˆ̃S| ˆ̃Sij − ∆2 ̂|S̃|S̃ij)

(4.8)

where the brackets 〈〉 denote averaging in homogeneous directions. Lilly (1992)
proposed the more widely used procedure, C2

s = 〈LijMij〉/〈MijMij〉, which is
a least-square solution to (4.7) minimising the error 〈Lij − C2

s Mij〉.

Averaging in homogeneous directions according to (4.7) is not possible in com-
plex geometries that lack such directions. In that case, time averaging is an
option, but it is not consistent with Galilean invariance unless it is implemented
in a Lagrangian frame of reference. Meneveau et al. (1996) developed such a
Lagrangian dynamic model with averaging along path lines. Without the av-
eraging the dynamic model provides for backscatter but the model constant
yields excessively large fluctuations and it can easily become unstable.

With the dynamic approach, the Smagorinsky constant is adjusted to the local
flow conditions. The model provides for a correct near wall scaling, and it can
be applied to flows containing both laminar and turbulent regions. Variations
of the dynamic approach have been applied to a wide range of SGS models. A
recent example is the three coefficient nonlinear dynamic model developed by
Wang and Bergstrom (2005).

4.3. Scale similarity model

In the scale similarity model developed by Bardina et al. (1983), the SGS stress
is assumed to be similar to the one constructed by the resolved velocity field
and an explicit test filter with equal or larger filter scale

τij = ̂̃uiũj − ˆ̃ui
ˆ̃uj (4.9)

6



In (4.9) the hat-operator denotes the test filter with, ∆̂ ≥ ∆. The correla-
tion coefficient with the real SGS stress is higher for the scale similarity model
than for the Smagorinsky model (Liu et al. (1994)), and the model provides for
physical backscatter of turbulent energy. However, the scale similarity model
does not provide for enough dissipation and is usually used in an ad hoc combi-
nation with a Smagorinsky term, which provides for additional dissipation and
stabilises the simulations. An example of such a mixed model is the dynamic
mixed model proposed by Zang et al. (1993)

It is a straightforward process to extend the scale similarity model for the
SGS passive scalar flux

qi =
̂̃
uiθ̃ − ˆ̃ui

ˆ̃
θ (4.10)

For instance, Calmet and Magnaudet (1997) applied the dynamic mixed model
proposed by Zang et al. (1993) to LES of mass transfer in a turbulent channel.

4.4. Approximate deconvolution model

The approximate deconvolution model, ADM, by Stolz and Adams (1999) be-
longs to the group of velocity estimation models. In the ADM, the full unfiltered
velocity is estimated by an approximate defiltering operation

ui ≈ u∗

i = QN ? ũi

QN =
N∑

ν=0

(I − G)
ν ≈ G−1

(4.11)

where the star operator denotes a convolution and QN is an N-order approxi-
mation of the inverse filter kernel G−1. The SGS stress is then computed from

the definition τij = ũ∗

iju
∗

ij − ũ∗
ij ũ∗

ij . With N = 0, the ADM corresponds to
the scale-similarity model.

Like the scale similarity model, the ADM does not dissipate an adequate
amount of energy. In order to model the energy transfer from resolved scales
to the SGS an additional relaxation term −χ(I − QN ? G) ? ũ is added to the
right hand side of equation (2.2). This is equivalent to an explicit filtering of
the resolved velocity field at each time step. The model coefficient, χ, can be
determined by a dynamic approach. LES of turbulent channel flow has shown
a significant improvement over results obtained with the dynamic Smagorinsky
model.

4.5. Stochastic models

The SGS models described so far depend on the resolved quantities in a de-
terministic way. However, the nature of the smallest turbulent scales appears
as partly random to the resolved scales. The real sub-grid scale stress tensor

7



contains stochastic noise that cannot be modelled by any deterministic sub-
grid-scale model.

Stochastic sub-grid modelling has been treated by several authors. Leith
(1990) supplemented the Smagorinsky model by random SGS stresses calcu-
lated as the rotation of a stochastic potential. Schumann (1995) also modelled
the stochastic behaviour of the SGS scales by adding random SGS stresses to
the Smagorinsky model. Alvelius and Johansson (1999) proposed a stochastic
model consisting of a modified Smagorinsky constant

C ′2
s = C2

s (1 + X) (4.12)

where X is a stochastic process with prescribed variance and timescale. Sto-
chastic modelling offers control of the magnitude and the time scale of the
backscatter that could otherwise lead to numerical instabilities. See Chapter
5.1 for further details.

4.6. Transport equation models

Reynolds stress models including transport equations are frequent in RANS.
They account for history effects and are able to accurately predict complex flows
of interest in engineering applications. The same approach can be adopted to
LES. In analogy with Reynolds decomposition, the full unfiltered velocity can
be decomposed as

ui = ũi + u
′

i (4.13)

where u
′

i is the fluctuating SGS velocity. If (4.13) is inserted into the definition
of the SGS stress we have

τij = Lij + Cij + Rij

Lij = ˜̃uiũj − ũiũj

Cij = ˜̃uiu
′

j + ˜̃uju
′

i

Rij = ũ
′

iu
′

j

(4.14)

where Lij is the Leonard stress, Cij is the cross stress, and Rij is the SGS
Reynolds stress. Transport equations can be derived for either the complete
SGS stress, or for some of the component parts. For example, Chaouat and
Schiestel (2005) developed a three-equation SGS model based on the transport
equations for the SGS Reynolds stress, the SGS kinetic energy, and the dissi-
pation rate of the SGS Reynolds stress. Their model accurately describes the
anisotropy of the turbulence field and it captures transition phenomena.

In Paper 2 we present a model based on a modelled transport equation for
the complete SGS flux, see Chapter 5.2
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CHAPTER 5

Summary of Papers

The performance of the new SGS models presented in Paper 1 and Paper 2
were tested in rotating homogeneous shear flow, which is an excellent case
for developing and testing subgrid scale models. The simple geometry of the
flow enables the use of the accurate spectral methods which makes it easy to
separate SGS model features from the numerical errors. At the same time,

x

x
x

U

Ω
1

3

2

x2

Figure 5.1. Mean velocity profile and coordinate system. The
frame rotates along the x2-axis.

the complication of a mean shear and and system rotation makes the flow
physically interesting. The geometry of rotating homogeneous shear flow is
illustrated in figure 5.1. U1 is the only non zero mean velocity component
and there is an imposed constant mean velocity gradient directed in the x3-
direction, Si = Sδi3. The frame rotates along the x2-axis at the angular velocity
Ω. A constant mean scalar gradient can imposed in any direction.

5.1. Paper 1

In Paper 1, the stochastic model by Alvelius and Johansson is extended to a
SGS scalar flux model. The stochastic model provides for backscatter of both
kinetic energy and scalar variance, as can be seen from figure 5.2, and it pre-
dicts more realistic fluctuations at the smallest resolved scales compared to the
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Figure 5.2. PDF of the subgrid energy dissipation, dashed
line, and scalar variance dissipation, solid line, according to
the stochastic Smagorinsky model.

Smagorinsky model. The time scale of the stochastic process is adjustable and
it is concluded that backscatter represented by locally negative eddy viscos-
ity does not cause numerical instability as long as it only occurs during short
periods of time.

5.2. Paper 2

In Paper 2 a new explicit SGS scalar flux model is developed using the same
kind of methodology that leads to the explicit algebraic scalar flux model,
EASFM, developed by Wikström et al. (2000) for RANS. The new model is
based on a modelled transport equation in which the unknown terms are mod-
elled in the same way as in the EASFM, but with filtered quantities instead of
Reynolds averaged quantities. In analogy with the EASFM, an equilibrium as-
sumption is imposed in order to obtain an explicit model. The resulting model
can be written as a mixed model including an eddy diffusion type of term, and
the model includes information about both the resolved rate of strain, Sij , and
rotation rate tensors.

The new explicit model is validated in rotating homogeneous shear flow with
an imposed constant passive scalar gradient. The new model responds to ro-
tation in a more realistic way than the eddy diffusion model. For example,
the direction of the mean SGS scalar flux predicted by the new model depends
strongly on the rotation number with a significant subgrid flux component in
the streamwise direction at the rotation numbers R = 0 and at R = −1/2,
whereas the eddy diffusion model predicts a direction which is almost aligned
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Figure 5.3. The direction in degrees of the mean SGS
scalar flux at three different rotation numbers. New model,
solid line; eddy diffusion model, dashed line.

with the transverse direction and does not depend to a significant degree on
the system rotation, see figure 5.3. The new explicit model also provides for
a better description of the magnitude and anisotropy of the mean scalar vari-
ance dissipation compared to the eddy diffusion model and the mixed similarity
model.

5.3. Paper 3

In Paper 3, we describe a code for large eddy simulations of homogeneous shear
flow with a constant mean passive scalar gradient. The use of periodic boundary
conditions requires a transformation to a frame that moves with the mean
flow. The code uses a pseudo-spectral technique. All spatial derivatives are
accurately calculated in Fourier space, while the nonlinear terms are calculated
in physical space. The aliasing errors that arise from the computation of the
nonlinear terms are removed using a combination of truncation and phase shifts.
The time advancement is performed in Fourier space using a third-order low
storage Runge-Kutta method.
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Stochastic SGS modelling in rotating

homogeneous shear flow with a passive scalar

By Linus Marstorp, Geert Brethouwer & Arne V. Johansson

A new stochastic Smagorinsky model for the subgrid stress and subgrid scalar
flux is proposed. The new model is applied in LES of rotating homogeneous
shear flow, which is an excellent case for developing and testing subgrid scale
models. The proposed model provides for backscatter of kinetic energy and
scalar variance, reduces the length scale of the subgrid dissipation, and re-
duces the time scale of the smallest resolved scales compared to the standard
Smagorinsky model. At the same time, the flatness factor of the subgrid dis-
sipation obtained from the stochastic model is of the same order of magnitude
as for the Smagorinsky model.

1. Introduction

Accurate descriptions of turbulent flows including passive scalar mixing are
desirable in many engineering applications and geophysical situations. A pas-
sive scalar is mixed by the flow field, but it has no effect on the flow. It can
represent, for example, a pollutant carried by the flow or small temperature
fluctuations.

A Large Eddy Simulation, LES, is an under-resolved numeric simulation of
the Navier Stokes equation in which the influence of the unresolved, subgrid
scales on the large scales has to be modelled. Many approaches to develop
subgrid models in LES have been proposed, and many of them rely upon some
kind of scale similarity assumption and depend on the resolved scales in a deter-
ministic way. The widely known Smagorinsky model for the unclosed subgrid
stress is based on a mixing length hypothesis where a SGS velocity scale is con-
structed from the resolved rate of strain and the filter length scale (Meneveau
(2000)). It has several known drawbacks. Two examples are that it does not
provide for backscatter of turbulent kinetic energy and that it over-predicts the
correlation time of the resolved turbulence as pointed out by He (2002). The
dynamic model, due to Germano et al (1991), provides for backscatter but the
model constant yields too large fluctuations and it can easily become unstable.
Applying averaging in homogeneous directions to obtain the constant elimi-
nates the stability problem but the model looses generality and the ability to

17



18 Linus Marstorp, Geert Brethouwer & Arne V. Johansson

account for backscatter. In the similarity model developed by Bardina et al.
(1983) the full unfiltered velocity field is estimated by the resolved velocity and
the SGS stress is computed by a secondary explicit filtering at equal or larger
filter scale. The model does not provide for enough dissipation and is usually
used in an ad hoc combination with a Smagorinsky term. A recent SGS model
by Stolz and Adams (1999) is the approximate deconvolution model, ADM,
which can be regarded as a generalised similarity model. Deterministic models
based on scale similarity have proved to perform well in many situations. How-
ever, the nature of the smallest turbulent scales appears as partly random to
the resolved scales, and the real subgrid scale stress tensor extracted from DNS
contains stochastic noise that cannot be modelled by any deterministic subgrid-
scale model. De Stefano et al. (2005) applied a wavelet denoising technique to
isotropic turbulence to separate the incoherent part (close to white noise) from
the coherent part of the velocity field. They found a very large amount of
incoherent noise in the subgrid stress tensor. We believe that this stochastic
influence of the subgrid scales on the resolved scales has to be modelled in order
to get a correct description of the smallest resolved scales. In this paper we
will use a stochastic process to model the stochastic influence of the SGS scales.

The use of stochastic processes in subgrid modelling in LES has been treated
by Leith (1990), Schumann (1995), and Alvelius and Johansson (1999). Leith
supplemented the Smagorinsky model by random SGS stresses calculated as
the rotation of a stochastic potential. Schumann also based his model on the
Smagorinsky model and added the stochastic behaviour of the SGS scales by
random SGS stresses for the velocity field, and by random SGS scalar fluxes
for the passive scalar field. Both Leith and Schumann focused on how to ob-
tain a correct description of the stochastic backscatter. Alvelius and Johansson
(1999) showed that the Smagorinsky model predicts a too large length scale
of the subgrid dissipation and proposed a new stochastic model that solved
this problem. The purpose of this study is to follow the approach of Alvelius
and Johansson to develop a new stochastic model for the subgrid scales of the
velocity field and validate this new model. At the same time, we apply the idea
of stochastic modelling to the subgrid scales of a passive scalar field.
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2. Stochastic subgrid modelling

2.1. Filtered equations

The filtered incompressible Navier-Stokes and passive scalar equations in a
rotating frame read (εijk is the permutation tensor)

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+ ν∇2ũi − 2εijkΩj ũk − ∂τij

∂xj

∂ũi

∂xi
= 0

∂θ̃

∂t
+ ũj

∂θ̃

∂xj
=

ν

Pr
∇2θ̃ − ∂qj

∂xj

(1)

where ũi and θ̃ denote the filtered velocity and passive scalar respectively, and
where p̃ includes both the pressure and the centrifugal force. Ωi is the system
rotation vector and Pr is the Prandtl number. The subgrid scalar stress tensor

τij = ũiuj−ũiũj and the subgrid flux vector qj = θ̃uj−θ̃ũj have to be modelled
in order to close the equations.

2.2. A stochastic model

The idea behind the present stochastic subgrid model is to model the random
behaviour of the subgrid stress and flux by a stochastic process, which can
improve the description of the smallest resolved scales. The new stochastic
model is based on the Smagorinsky model for the unclosed subgrid-scale stress
tensor, τij , and subgrid-scale flux, qj , which read

τij = −2νT S̃ij

qj = − νT

PrT

∂θ̃

∂xj

(2)

where the turbulent Prandtl number, PrT , is a constant and νT = (Cs∆)2|S̃ij |
is the eddy viscosity. Cs is the Smagorinsky constant, ∆ is the filter width,
and S̃ij denotes the filtered, or resolved, rate of strain. Similar to Alvelius and
Johansson (1999), we model the eddy viscosity as a sum of the Smagorinsky
model and a stochastic term

νT = C2
s (1 + X(x, t))∆2|S̃ij | (3)

The part corresponding to the Smagorinsky model generates the right amount
of mean dissipation whereas the stochastic part creates realistic SGS fluctua-
tions. X(x, t) are independent processes obeying the Ornstein-Uhlebeck equa-
tion at each spatial point

dX(x, t) = aX(x, t)dt + b
√

2adW (x) (4)

where a and b are constants and dW (x) are spatially independent random num-

bers with the normal distribution N(0,
√

dt). The solution X(x, t) to (4) is a
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stationary process with zero mean, E[X(x0, t)] = 0, and constant variance,
V [X(x0, t)] = b2. The time scale of the process can be characterised by the de-
cay rate of the correlation E[X(x0, t)X(x0, t0 + t)]/VX = exp(−at). It follows
that the time scale of the process,τX = 1/a, decreases with increasing values
of a.

The time scale of the stochastic noise that we intend to model is that of the
subgrid scale velocity field, and since the SGS field is advected by the resolved
scales the time scale τX = 1/a should naturally be computed in a Lagrangian
frame of reference. This is, however, beyond the scope of this study. Instead,
the length scale, ∆, of the subgrid field is used to estimate an Eulerian time
scale of the subgrid scales. From dimensional arguments we have

τX = C
(
∆2/〈Π〉

)1/3
(5)

where C is a constant of order 1 and Π is the subgrid dissipation of resolved
kinetic energy

Π = −τijS̃ij (6)

Since τX = 1/a this defines a. Hence, stochastic noise which has a correlation
time about as long as the time scale of the subgrid velocity field and which is
uncorrelated in space, enters the subgrid stress through the eddy viscosity. The
eddy diffusivity for the subgrid scalar flux is modelled by (2) using a constant
PrT = 0.6 and thus contains also stochastic noise.

3. Simulations

The performance of the new model was tested in rotating homogeneous shear
flow, which is an excellent case for developing and testing subgrid scale models.
The simple geometry of the flow enables the use of the accurate spectral meth-
ods which makes it easy to separate SGS model features from the numerical
errors. At the same time the complication of a mean shear and and system
rotation makes the flow physically interesting.

The filtered incompressible Navier-Stokes equations with a constant uniform
shear, Ui = Sx3δi1, and the passive scalar equation with a mean scalar gra-
dient, Gi = δi3, were solved using a pseudo spectral code with a third order
Runge-Kutta method for time advancement. Rogallo’s method has been used
to simulate homogeneous shear flow, i.e. the grid moves along with the mean
flow to enable the use of periodic boundary conditions, and it is re-meshed pe-
riodically. Some information is lost during the re-meshing. However, the losses
are not significant for the evolution of the flow. LES with 1283, 643 and 323

grid-points were performed in a periodic box with the dimensions 4π×3π×2π
with three different subgrid models; the standard Smagorinsky model, the dy-
namic model as defined by Lilly (1992) (both with model constant averaging in
all homogeneous directions and with clipping of large negative values), and the



Stochastic SGS modelling in homogeneous shear flow 21

new stochastic model described above. The model parameter b was adjusted
to fit with the amount of modelled backscatter with observations from filtered
DNS data. Two different values C = 0.2 and C = 0.8 were examined.

Fully developed turbulence obtained from isotropic decay was used as initial
condition and the flow is rotating about the spanwise direction, Ωi = Ωδi2, at
the non-dimensional rotation numbers R = 2Ω/S = 0, −1/2, and −1. The
initial scalar field was without any fluctuations. The initial non-dimensional
shear rate was chosen as SK̃/ε̃ = 3.38, and the initial turbulence Reynolds

number was ReT = K̃2/(ε̃ν) = 1500.

The LES results were compared to DNS data of homogeneous turbulent shear
flow represented on 960 × 512 × 576 grid-points in a box with the dimensions
4π × 2π × 2π . The DNS data was filtered to the resolutions 323, 643 and
1283 using the same Gaussian filter as Cerutti and Meneveau (1998). In the
DNS the initial Reynolds number, ReT = 135, is lower than in the LES. More-
over, the mean scalar gradient is directed in streamwise direction instead of
the transverse direction. However, we believe that it is appropriate to compare
data on the amount of backscatter with the LES results. We will also use the
filtered data to compare the intermittency of the SGS energy dissipation to the
intermittency of the SGS scalar variance dissipation.

4. Results

4.1. Large scale statistics

Figure 1 shows the time development of the turbulent kinetic energy. The flow
is strongly destabilised at R = −0.5. At R = −1 K̃ still grows but at much
slower rate than at R = 0. These observations agree well with Brethouwer and
Matsuo (2005) and show that all models produce the right amount of mean

dissipation. The growth has a pronounced exponential part, K̃ = K̃0e
αSt at

R = 0 and R = −1/2. At R = 0 the exponential growth rate is in agreement
with the experiment by Tavoularis and Corrsin (1981). Cs = 0.10 is used in
the standard Smagorinsky and stochastic model, which is equal to the value
Cs ≈ 0.10 predicted by the dynamic model. This value is also close to the
value Cs = 0.11 suggested by Canuto and Cheng (1997) for homogeneous shear
flow, but much smaller than the value Cs = 0.19 used by Bardina et al. (1983).

The time development of K̃ (and the Reynolds stresses) are very similar for
the LES with the stochastic model and the dynamic model according to the
figure. The results for the Smagorinsky model and stochastic model were in
fact indistinguishable, as should be expected.
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Figure 1. (a): The time history of the turbulent kinetic en-
ergy. (b): The direction of turbulent scalar flux. Dynamic
model, dashed line; stochastic and Smagorinsky model, solid
line.

Next, we turn our attention to the scalar mixing. The direction of the tur-
bulent flux is defined as

αf = atan

(
〈θ̃′ũ′

3〉
〈θ̃′ũ′

1〉

)
(7)

where ũ′

i and θ̃′ denote the fluctuating velocity and scalar components, and

where 〈θ̃′ũ′

1〉 and 〈θ̃′ũ′

3〉 are the mean turbulent scalar fluxes in the x1 and x3

direction, respectively. In figure 1, the development of αf is seen to depend on
the rotation number. The angle αf in the LES with the standard, dynamic,
and stochastic Smagorinsky model approaches the same equilibrium values and
the results were found to yield good agreement with DNS results of Brethouwer
and Matsuo and Rogers et al. (1989). Also here, the results of the stochastic
model are very close to those of the Smagorinsky model. The ratio of the
mean turbulent diffusivity to the molecular diffusivity is about 50 showing that
the similarities between the predictions of the stochastic and the Smagorinsky
model are not owing to low Reynolds number.

4.2. Backscatter

Despite the small differences in large scale statistics in the LES with the stan-
dard Smagorinsky and stochastic model, there are significant differences at the
smaller scales. The subgrid dissipation of the stochastic model can be decom-
posed into two parts

Π = C2
s ∆2|S̃ij |3 + XC2

s ∆2|S̃ij |3 ≡ ΠS + ΠX (8)

where ΠS is a standard Smagorinsky contribution to Π and where ΠX is a
stochastic contribution which is linear in X. From the PDF of ΠX presented
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in figure 2 we see that it is symmetric about its mean value 〈ΠX〉 = 0 and
that it allows the stochastic model to provide for backscatter if the variance
of X is sufficiently large. Backscatter is local energy transfer from the SGS
into the resolved scales, see Piomelii et al. (1991) and and Cerutti and Mene-
veau (1998). In the present model backscatter is represented by intermittently
negative eddy viscosity. This is of course only a very simple model for the
real backscatter phenomenon, assuming that the SGS stress is aligned with the
resolved rate of strain. ΠS has no backscatter of turbulent kinetic energy and
has a positive mean value. The combination of the Smagorinsky model and the
stochastic term thus accounts for a combination of mean forward energy flux
and backscatter.

−20 −15 −10 −5 0 5 10 15 20
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−1

Π/<Π>

P
D

F

Figure 2. PDF of the subgrid dissipation according to
the stochastic model. ΠX , solid line; Πs, dash-dotted
line

If we assume that it is appropriate to model all backscatter by the stochastic
eddy viscosity, we can adjust the parameter b so that the real and modelled
amount of backscatter matches observations. Piomelii et al. (1991) found that
the probability of backscatter is about 50% in turbulent channel flow. The
present stochastic model is not able to predict such large probability unless
b → ∞. Instead, we follow the approach of Wang and Bergstrom (2005) and
separate the the mean SGS dissipation into averaged forward- 〈Π+〉 and back-
scatter 〈Π−〉 contributions

〈Π+〉 + 〈Π−〉 = 〈Π〉 (9)

In the filtered DNS data the ratio −〈Π−〉/〈Π+〉 is typically 0.4 and it in-
creases somewhat at smaller filter scales. A constant b in the stochastic model
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Figure 3. Amount of backscatter. Stochastic model, solid
lines; DNS data, dotted lines. Energy backscatter, square;
Scalar backscatter, triangle.

implies a constant ratio −〈Π−〉/〈Π+〉. We choose b = 2.3 which implies
−〈Π−〉/〈Π+〉 ≈ 0.4, which yielded a fair overall agreement with the DNS re-
sults as shown in figure 3. The rotation number does not have a significant
impact on the amount of backscatter in the LES. The model parameter a does
not affect the probability for backscatter and has only a very small impact on
the averaged backscatter due to the response of the flow field.

The stochastic model accounts also for backscatter of scalar variance in the
same manner as for the turbulent kinetic energy. This is shown in figure 4,
where the PDF of the total scalar variance dissipation,

Q = −2qi∂θ̃′/∂xi (10)

is plotted together with the PDF of the total SGS dissipation, for the LES with
a resolution of 1283. In agreement with the DNS data in figure 4, the peak
of scalar PDF is more narrow than for the velocity field indicating that the
scalar field is more intermittent than the velocity field. The amount of scalar
variance backscatter −〈Q−〉/〈Q+〉 in figure 3, agrees reasonably well with that
of the DNS data despite the fact that we calibrated the constant b to fit the
data on the velocity field. It seems appropriate to use the same process X and
parameter b as for the velocity field.

Negative eddy viscosity has to be treated with care. The stochastic model pre-
dicts locally negative total viscosity (νT + ν) and can be unstable under some
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Figure 4. PDF of the energy SGS dissipation and the scalar
variance SGS dissipation according to (a): the stochastic
Smagorinsky model (b): the filtered DNS data. Energy SGS
dissipation, dashed line; scalar variance SGS dissipation, solid
line.

circumstances. A large time scale, τX , and a large variance of the stochas-
tic process increases the probability for numerical instability. For the present
choice of parameters and initial conditions it was not necessary to clip negative
values of subgrid dissipation because of the short time scale of the backscatter.
Locally negative total viscosity is not dangerous as long as it only occurs during
short periods of time.

4.3. Intermittency of SGS dissipation

The flatness factor of the subgrid dissipation

F =
〈(Π − 〈Π〉)4〉
〈(Π − 〈Π〉)2〉2 (11)

is a measure of the intermittency. Large values indicate high intermittency.
Cerutti and Meneveau (1998) compared the flatness factor of the subgrid dissi-
pation predicted by various subgrid stress models using a velocity field obtained
from DNS. They found that the dynamic model without spatial averaging pre-
dicts a too intermittent SGS dissipation and that the Smagorinsky model pre-
dicts SGS dissipation that is about as intermittent as the real SGS dissipation.
The flatness factor of Π, at R = 0 according to the LES with the stochastic
model, the clipped dynamic model (C2

s > −0.01) and the standard Smagorin-
sky model are plotted in figure 5. The constant a in the stochastic model is
varied by changing C in (5). We can see that the flatness predicted by the
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Figure 5. The flatness of the subgrid dissipation. Clipped dy-
namic model, dashed line; stochastic model with C=0.8, dot-
ted line; stochastic model with C=0.2, solid line; standard
Smagorinsky model, dash-dotted line.
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Figure 6. F (Q)/F (Π). Stochastic model, solid line; standard
Smagorinsky model, dash-dotted line; filtered DNS, dotted line.

stochastic model with C = 0.2 is of the same order of magnitude as for the
standard Smagorinsky model, whereas the intermittency of Π according to the
clipped dynamic model and the stochastic model with C = 0.8 is much too
large. Hence, by choosing C = 0.2 the stochastic Smagorinsky model provides
for backscatter in the form of negative viscosity without being too intermittent.
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Both the dynamic model and the stochastic model allow locally negative total
viscosity. We believe that the reason why the result of the dynamic model is
more intermittent is the time scale of the backscatter rather than the negative
viscosity itself.

The PDF of Π and Q in section 4.2 indicated that Q is more intermittent
than Π. From figure 6 we see that this is the case. According to the filtered
DNS data the ratio of the flatness factor of Q to that of Π varies from 2.5 to 1.6
within the present range of filter scales. The ratio predicted by the Smagorin-
sky model is somewhat smaller and the result of the stochastic model is slightly
larger.

4.4. Correlation time

Time correlations are important in LES of sound generation, see He (2002).
He (2002) showed that in LES with the Smagorinsky model the time scales
are overpredicted at all turbulent length scales, especially close to the filter
scale. They suggested a stochastic force to solve the problem. The present
stochastic model adds such a stochastic SGS force to the velocity field. We
have chosen to study the time correlations in decaying isotropic turbulence.
The results of the correlation time scales are then affected by the decay of
the turbulence intensity, but it is appropriate for comparison of different SGS
models since the mean turbulent kinetic energy develop in the same way for
both the Smagorinsky and the stochastic model. We follow the steps of He et
al. and define the correlation coefficients as

c(k, t, τ) =
〈ui(k, t)ui(−k, t + τ)〉
〈ui(k, t)ui(−k, t)〉 (12)

where the average operator denotes averaging in a spherical shell in wave num-
ber space. In figure 7 the time correlation coefficients at k = 0.75kc of the
present stochastic model are seen to decay faster in time compared to the
Smagorinsky model. In the case C = 0.2 the correlation coefficient is seen to
decrease faster than at C = 0.8. This is correct since the time scale of X is
smaller at C = 0.2. The correlation time scale as a function of k is computed
as

τ∗(k) =

∫
∞

0

c(k, t1, τ)dτ (13)

and is shown in figure 8. The stochastic model predicts shorter correlation
times than the Smagorinsky model for all k, but in particular at large k the
reduction of τ∗ is large. This is where it is most needed according to He et al.

4.5. Subgrid dissipation length scale

We study the length scale of the subgrid dissipation at the most destabilised
rotation number R = −1/2 where resolved length scales grow very fast. The
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Figure 7. The time correlation coefficient for k = 0.75kc.
Standard Smagorinsky model, dash-dotted line ; Stochastic
model C = 0.8, dashed line; C = 0.2, solid line.
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length scale of the subgrid dissipation is computed from the correlation

LΠ =

lx∫

0

〈Π′(x0),Π
′(x0 + x)〉

〈Π′2〉 dx (14)
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where lx is half of the box length in the the streamwise direction, and Π′ =
Π − 〈Π〉 is the fluctuating part of the subgrid dissipation. According to the
DNS of channel flow by Alvelius and Johansson (1999) the Smagorinsky model
overpredicts LΠ, and they found the length scale of the real SGS dissipation
to be smaller than the streamwise grid size everywhere in the channel. The
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Figure 9. The time development of the length scale of (a):
the subgrid dissipation (b): the scalar variance subgrid dis-
sipation. Stochastic model, solid line; standard Smagorinsky
model, dash-dotted line; dynamic model, dashed line.

LES-results presented in figure 9 show that the Smagorinsky model predicts a
length scale that becomes significantly larger than the filter-scale whereas the
stochastic model keeps LΠ at the size of the filter scale throughout the whole
simulation if b = 2.3 and C = 0.2. The clipped dynamic model (C2

s > −0.01)
also reduces LΠ and keeps it at the size of the filter scale, but the model is
potentially unstable. The reduction of streamwise integral lengthscale of the
scalar variance dissipation is similar as for the energy dissipation according to
figure 9.

5. Conclusions

LES of rotating homogeneous shear flow with a passive scalar was performed.
Three different subgrid models were used: the standard Smagorinsky model,
the dynamic Smagorinsky model and a newly developed stochastic model. The
choice of subgrid model had a small influence on the large scale velocity and
scalar statistics, but a large effect on the smaller scales. The proposed sto-
chastic Smagorinsky model was shown to reduce the time scale of the smallest
resolved scales, to reduce the length scale of the subgrid energy and scalar
variance dissipation and to provide for significant backscatter. This may be
a promising feature for the development of improved subgrid scale models for
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aeroacoustics and for reacting flows, where the properties of the subgrid scales
are very important. The LES with the dynamical model using spatial averag-
ing did not provide for backscatter. With clipping of large negative values of
the dynamic model constant instead of spatial averaging the dynamic model
accounts for backscatter, but due to long correlation time of the negative eddy
viscosity the intermittency of the dissipation was very high and numerical insta-
bilities occurred. The time scale of the backscatter predicted by the proposed
model is adjustable. For the suggested model parameters the intermittency of
the subgrid dissipation was of the same order of magnitude as for the stan-
dard Smagorinsky model and realistic. Locally negative eddy viscosity is not
dangerous as long as it only occurs during short periods of time.
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A new model for the subgrid passive scalar flux

By Linus Marstorp, Geert Brethouwer & Arne V. Johansson

A new subgrid scalar flux model based on a modelled transport equation for
the subgrid scalar flux is proposed and validated in rotating homogeneous shear
flow. The new subgrid scalar flux model is derived using the same kind of
methodology that leads to the EASFM of Wikström et al. (2000). It predicts
the magnitude and the anisotropy of the scalar variance SGS dissipation in
a more realistic way than the eddy diffusion model and the mixed similarity
model.

1. Introduction

Passive scalar mixing in turbulent flows can be observed in industrial applica-
tions and in our environment. A passive scalar is mixed by the flow, but it has
no effect on the flow. It can represent, for example, a pollutant carried by the
flow or small temperature fluctuations. Knowledge of passive scalar mixing is
also a first step towards the understanding of reactive flows where the mixing of
species plays an important role. Large Eddy Simulations (LES) is a promising
tool to predict mixing of scalars in turbulent flows. It has a good ability to
calculate turbulent scalar transport in rotating flows as shown by Marstorp et
al. (2005) whereas this is difficult for other scalar transport models.

In LES, the eddy diffusion model is a widely used model for the subgrid scalar
field. It is simple and computationally cheap, but it has several known draw-
backs. One example is its inability to predict the anisotropy of the subgrid
passive scalar field, as pointed out by Kang and Meneveau (2001). They
showed that the anisotropy of the mean scalar variance SGS dissipation pre-
dicted by the eddy diffusion model is approximately the same as that for the
mean squared scalar gradient. This is not appropriate since the anisotropy
of the mean squared gradient is not in general the same as that of the mean
SGS dissipation. The mixed scale similarity model due to Bardina et al. (1983)
was originally a SGS model for the velocity field, but it has been extended to
a SGS scalar flux model by several authors. For example, Calmet and Mag-
naudet (1997) applied the dynamic mixed model proposed by Zang et al. (1993)
to LES of mass transfer in a turbulent channel. The scale similarity part of
the mixed model accounts locally both for backward and forward flux of scalar
variance but the eddy diffusivity part provides for most of the mean scalar

35
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variance dissipation.

Recently Wikström et al. (2000) proposed an explicit algebraic scalar flux
model, EASFM, based on a modelled transport equation for the Reynolds aver-
aged scalar flux. It predicts the scalar flux more accurately in shear flows than
the eddy diffusivity model, and it is computationally cheap. The objective of
this study is to develop a new model for the subgrid scalar flux, by applying the
same kind of methodology that leads to the EASFM for the Reynolds averaged
scalar flux, and to test the new explicit SGS model in rotating homogeneous
shear flow. The new explicit SGS model includes information about both the
resolved rate of strain, Sij , and rotation rate tensors and is expected to improve
performance in rotating flows. At the same time the explicit form makes the
new model about as computationally cheap as the eddy diffusion model.

2. Filtered equations

The filtered incompressible Navier-Stokes and passive scalar equations in a
rotating frame reads (εijk is the alternating tensor)

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+ ν∇2ũi − 2εijkΩj ũk − ∂τij

∂xj

∂ũi

∂xi
= 0

∂θ̃

∂t
+ ũj

∂θ̃

∂xj
=

ν

Pr
∇2θ̃ − ∂qj

∂xj

(1)

where ũi and θ̃ denotes the filtered velocity and passive scalar respectively, and
where p̃ includes both the pressure and the centrifugal force. Ωi is the system
rotation vector, ν is the viscosity, and Pr is the Prandtl number. The SGS

stress, τij = ũiuj − uiuj , and the SGS scalar flux, qi = ũiθ − ũiθ̃, have to be
modelled in order to close the system of equations.

3. Proposed model

The new subgrid scalar flux model can be derived in the same manner as
the EASFM of Wikström et al. (2000), but with filtered quantities instead of
Reynolds averaged quantities. In a inertial frame of reference the subgrid flux
obeys the transport equation

Dqi

Dt
= PSGS

iθ + DSGS
iθ + ΠSGS

iθ − εSGS
iθ (2)

where

PSGS
iθ = −qj

∂ũi

∂xj
− τij

∂θ̃

∂xj
(3)
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is the production of subgrid scalar flux from the resolved scales, and

ΠSGS
iθ =

1

ρ

( ˜
p

∂θ

∂xi
− p̃

∂θ̃

∂xi

)

εSGS
iθ =

(
ν +

ν

Pr

) (
∂̃θ

∂xj

∂ui

∂xj
− ∂θ̃

∂xj

∂ũi

∂xj

) (4)

are the subgrid pressure scalar-gradient correlation and subgrid scalar flux dis-
sipation respectively. Di includes both turbulent and molecular diffusion.

In analogy with the EASFM, we normalise the SGS scalar flux with the subgrid
kinetic energy KSGS and subgrid scalar intensity KSGS

θ

ξi = qi/
√

KSGSKSGS
θ

KSGS = (ũiui − ũiũi) /2

KSGS
θ =

(
θ̃θ − θ̃θ̃

)
/2

(5)

The transport equation for the normalised SGS scalar flux, ξi, yields

Dξi

Dt
− Dξ

i =
1

2
ξi

(
PSGS

θ − εSGS
θ

KSGS
θ

+
PSGS

K − εSGS
K

KSGS
θ

)
+

PSGS
iθ − εSGS

iθ + ΠSGS
iθ√

(KSGSKSGS
θ )

(6)
where PSGS

K and εSGS
K are the production and dissipation of the SGS kinetic

energy, respectively, and where PSGS
θ and εSGS

θ denote the production and

dissipation of the SGS scalar intensity. Dξ
i is the diffusion of the normalised

SGS flux, ξi. If we assume that the weak equilibrium assumption is valid, i.e.

if the left hand side of 6 is negligible (Dξi/Dt − Dξ
i = 0), we can model the

unknown terms ΠSGS
iθ −εSGS

iθ in the same way as in the Reynolds averaged case

but in terms of qi, τij and filtered gradients instead of 〈u′

iθ
′〉, 〈u′

iu
′

j〉 and mean
gradients

ΠSGS
iθ − εSGS

iθ = −
(

c1θ + c5θ
KSGS

εSGS
K KSGS

θ

qk
∂θ̃

∂xk

)
qi

εSGS
K

KSGS

+ c2θqj
∂ũi

∂xj
+ c3θqj

∂ũj

∂xi
+ c4θτij

∂θ̃

∂xj

With c5θ = 1/2 (see Wikström et al. (2000)) we obtain a linear system of
equations

Aijqj = −τSGSc1τij
∂θ̃

∂xj

Aij = Gδij + cSSij + cΩΩij

(7)
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where τSGS = KSGS/εSGS
K is the time scale of the subgrid velocity field, c1 =

(1 − c4θ) is a model constant, and

G =
1

2

(
2c1θ − 1 − 1

r
+

PSGS
K

εSGS
K

)
(8)

The normalised filtered rates of strain and rotation tensors are defined as Sij =
τSGS (ũi,j + ũj,i) /2 and Ωij = τSGS (ũi,j − ũj,i) /2. As a first approximation
for this type of model we use a constant time scale ratio, r, and an ensemble
averaged time scale, τSGS

r =
KSGS/εSGS

K

KSGS
θ /εSGS

θ

≈ 0.7

τSGS ≈ 〈KSGS〉
〈εSGS

K 〉

(9)

Thereby, we do not need to solve the transport equation of the subgrid scalar
intensity, KSGS

θ , and the time scale based on 〈KSGS〉 can be estimated from
dimensional arguments, see section 4. In homogeneous flows the ensemble av-
erage denoted by 〈〉 is the same as a volume avarage but inhomogeneous flows
require local ensemble averaging.

If Aij is invertible we obtain an explicit algebraic expression for the subgrid
scalar flux

qi = −τSGSc1A
−1
ij τjk

∂θ̃

∂xk
(10)

where (boldface denotes matrix notation)

A−1 =
(G2 − 1

2Q1)I − G(cSS + cΩΩ) + (cSS + cΩΩ)2

G3 − 1
2GQ1 + 1

2Q2

(11)

Here, Q1 = c2
Str(S2) + c2

Ωtr(Ω2), Q2 = (2/3)c3
Str(S3) + 2cSc2

Ωtr(SΩ2) where
cS = (1 − c2θ − c3θ) and cΩ = (1 − c2θ + c3θ) are constant model parameters.

It is beyond the scope of this study to prove that the weak equillibrium as-
sumption is valid for ξi and that it is appropriate to model the unknown terms,
ΠSGS

iθ − εSGS
iθ , in the same manner as in the EASFM, but with filtered quan-

tities instead of Reynolds averaged quantities. Nevertheless, we claim that we
end up with a reasonable final expression (10) for the SGS scalar flux. The
modelled SGS flux is in general not aligned with the resolved scalar gradient.
In fact it can be rewritten as a mixed model including an eddy diffusion term

qi = −τsgsc1

((
A−1

ij τjk − δik

A−1
lj τjl

3

)
∂θ̃

∂xk
+

A−1
kj τjk

3

∂θ̃

∂xi

)
(12)

Moreover, there is a strong influence of the SGS stresses and the amplification
tensor A−1

ij involves information about both the resolved rate of strain and the
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resolved rotation rate tensor.

In a rotating frame of reference embedded with the flow the Coriolis term will
modify the advection as well as the production of the SGS scalar flux according
to

Dξi

Dt
=

∂ξi

∂t
+ ũj

∂ξi

∂xj
+ εikjΩkξj

Piθ = −qj
∂ũi

∂xj
− τij

∂θ̃

∂xj
− εikjΩkqj

(13)

Hence, the weak equillibrium assumption corresponds to ∂ξi/∂t+ ũj∂ξi/∂xj −
Dξ

i + εikjΩkξj = 0 in a rotating frame. The modified production term can be
accounted for by modifying Ωij into the frame invariant

Ω∗

ij = Ωij + τSGSεikjΩk (14)

This is the only modification needed to extend the model to rotating flows. In
RANS of fully developed rotating turbulent flows it is a better approximation to
keep the Coriolis contribution resulting from the transformation to the rotating
frame as an approximation of the advection, see Gatski and Wallin (2004). The
motivation for this is that the flow is statistically homogeneous in the rotating
frame only. However, there is no obvious reason to believe that the same applies
for LES where SGS field is advected by the instantanous filtered velocity field,
and where the filtered statistics cannot be considered to be homogeneous in
any frame of reference. The frame invariant formulation in (13) and (14) is
thus the most appropriate choice.

4. Simulations

The performance of the new model was tested in rotating homogeneous shear
flow, with the model parameters chosen as cs = 0.50, cr = 0.6, c1 = 2.2, and
c1θ = 3.6. These parameters were found to give the best description of the the
magnitude and anisotropy of the scalar variance SGS dissipation. No backscat-
ter was allowed. Model predictions causing negative SGS disspation were put
to zero. The linear system of equations (7) can become close to singular at
some grid points. In the present LES it was nescessary to neglect about 1% of
the model predictions that had the largest condition number.

The filtered incompressible Navier-Stokes equations with a constant uniform
shear, Ui = Sx3δi1, and the passive scalar equation with a scalar gradient,
Sθ

i = δi3, were solved using a pseudo spectral code with a third order Runge-
Kutta method for time advancement. LES with 643 and 963 grid-points were
performed in a periodic box with the dimensions 4π × 3π × 2π starting from a
random isotropic velocity field with a prescribed shape of the energy spectrum.
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The initial scalar field in the simulations was without fluctuations. Three dif-
ferent models for the SGS flux were used: The new explicit model, the eddy
diffusion model with a constant Prandtl number, PrT = 0.38, number and the
mixed similarity model

qi = − νT

Pr

∂θ̃

∂xi
+ csim

(
̂̃
uiθ̃ − ˆ̃ui

ˆ̃
θ

)
(15)

with PrT = 0.65. These model parameters were found to give the best descrip-
tion of the the magnitude of the scalar variance SGS dissipation at R = −1.
The scale similarity constant was set to csim = 1.0 as in the dynamic mixed
model by Zang et al. (1993). The hat operator denotes a Gaussian filter with

∆̂ = 2∆. The Smagorinsky model was used as the subgrid model for the ve-
locity field. As it relies on the equilibrium assumption 〈PSGS

K 〉 ≈ 〈εK〉 we used
PSGS

K /εSGS
K = 1, in the SGS scalar flux model. The length scale, ∆, of the

subgrid field is known, and it was used to estimate τSGS . From dimensional
arguments we have

τSGS = C
(
∆2/〈Π〉

)1/3
(16)

where C is a constant of order 1 and Π = −τijS̃ij is the SGS energy dissipa-

tion. The initial non-dimensional shear rate was chosen as SK̃/ε̃ = 1.2, and

the initial turbulence Reynolds number was ReT = K̃2/(ε̃ν) = 33000.

The LES results on the equillibrium values of the direction of the scalar flux
(section 5.1) and the relative intensity of the scalar fluctuations (section 5.3)
were compared with the non-filtered DNS data by Brethouwer and Matsuo
(2005). In the DNS the initial Reynolds number, ReT = 135, is lower than
in the LES. However, we believe that the equillibrium values considered are
independent of the Reynolds number.

5. Results

5.1. Direction of the resolved and SGS scalar flux

The direction of the turbulent scalar flux is defined as

αf = atan

(
〈θ̃′ũ′

3〉
〈θ̃′ũ′

1〉

)
(17)

where ũ′

i and θ̃′ denote the fluctuating velocity and scalar components, and

where 〈θ̃′ũ′

1〉 and 〈θ̃′ũ′

3〉 are the mean turbulent scalar fluxes in the x1 and x3

direction, respectively. The scalar flux is a first order statistic in the scalar
and we can only expect small differences in between the models. In figure 1
the development of αf is seen to depend strongly on the rotation number. The
angle αf in the LES with the eddy diffusivity model, the mixed model and
the new explicit model approaches the same equilibrium values and the results
yield good agreement with DNS results of Brethouwer and Matsuo and Rogers
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et al. (1989). The ratio of the mean turbulent diffusivity to the molecular
diffusivity is about 500 showing that the similarities between the predictions
of the SGS models are not the result of a low Reynolds number.
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Figure 1. The direction of the mean turbulent scalar flux. New
model, solid line; eddy diffusion model, dashed line; mixed model,
dotted line; DNS data, symbols.

The very small differences between the model predictions can be understood
by considering the transport equation for the scalar flux in homogeneous flows

D

Dt
〈θ̃′

ũ
′

i〉 = Piθ + Πiθ − εiθ − εq
iθ − ετ

iθ

Piθ = −〈u′

iu
′

j〉
∂Θ

∂xj
− 〈θ′

u
′

j〉
∂Ui

∂xj

εq
iθ = −〈qj

∂u
′

i

∂xj
〉

ετ
iθ = −〈τij

∂θ
′

∂xj
〉

(18)

where Piθ is the production, Πiθ is the pressure scalar gradient correlation, and
εiθ is the molecular dissipation. The terms εq

iθ and ετ
iθ are the SGS dissipation

of the scalar flux. The only way that the scalar SGS model explicitly enters
the equation is through the SGS dissipation term, εq

iθ. By defining the ratio

Hβ =
εq
βθ

Pβθ
(19)
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Figure 2. The ratio Hi at R = 0 according to the eddy diffusion
model. H1 dashed line; H3, solid line

we can quantify the influence of the SGS flux model on the mean scalar flux.
From figure 2 we can see that H is very small for large shear times. This
explains why the choice of SGS model has only a very small influence on the
equilibrium values of αθ. The mean scalar flux simply grows much larger than
the SGS scalar flux.

Next we turn our attention to the SGS scalar flux. The mean SGS flux does
not affect the scalar field in homogeneous flow, but it is a well defined property
which is of some importance in inhomogeneous flows. An appropriate SGS
model should be able to predict properties of 〈qi〉. Similar to the direction of
the resolved scalar flux, we define the direction of the subgrid scalar flux as

αθ = atan

( 〈q3〉
〈q1〉

)
(20)

From figure 3 we can see that the eddy diffusivity model predicts a subgrid flux
which is almost aligned with the transverse mean scalar gradient, whereas the
direction of 〈q̂i〉 according to the new model depends strongly on the rotation
number with a significant subgrid flux component in the streamwise direction
at R = 0 and at R = −1/2. It resembles the way the direction of the mean
scalar flux depends on the rotation number. The results of the scale similarity
part of the mixed model in figure 3 respond to rotation in a similar way as
those of the new explicit model with approximate agreement of the equillib-
rium values at R = 0 and R = −1/2. However, the ad hoc combination of a
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Figure 3. The direction in degrees of the mean SGS scalar
flux at R = 0, −1/2 and R = −1. New model, solid line; eddy
diffusion model, dashed line; mixed model, dashed-dotted line;
scale similarity part of the mixed model, thin dashed-dotted
line.

scale similarity part and an eddy diffusion part changes the direction of 〈q̂i〉
with about 15 − 20 degrees towards the transverse mean scalar gradient.

Hence, the predictions of the new explicit model and the mixed model respond
to rotation in a similar way as the large scale turbulence flux. This is relistic
since it is well known that the anisotropy of a passive scalar field persists down
to very small scales.

5.2. Anisotropy of the scalar variance SGS dissipation

In contrast to the anisotropy of the energy SGS dissipation the anisotropy of
the scalar variance SGS dissipation is known to persist down to very small
filter scales, see Kang and Meneveau (2001). Similar to Kang and Meneveau
we define the isotropy measure

Iθ =
〈q1

∂θ̃′

∂x1

〉
〈q3

∂θ̃′

∂x3

〉
(21)

which is equal to one in case of isotropy.

The time dependence of Iθ according to the new explicit model, the eddy dif-
fusivity model, and the mixed similarity model is presented in figure 4 for the
non rotating case R = 0. In agreement with the results of Kang and Meneveau
(2001) the anisotropy predicted by the eddy diffusivity model is aligned with
that of the mean squared scalar gradient. The result is rather anisotropic with

a large 〈q3
∂θ̃′

∂x3

〉-component. Iθ predicted by the mixed similarity model is also
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Figure 4. The anisotropy of the SGS dissipation at (a): R = 0
and at (b): R = −1. New model, solid line; eddy diffusion model,
dashed line; mixed model, dash-dotted line; scale similarity part,
thin dash-dotted line with; squared scalar gradient, dotted line.

approximately aligned with the mean squared gradient. This is due to the eddy
dffusion part which dominates the SGS dissipation. On the contrary the new
explicit model and the scale similarity part of the mixed model yeild Iθ > 1,

i.e. there is a sigificant 〈q1
∂θ̃′

∂x1

〉-component of the SGS-dissipation. With the
suggested set of model parameters the new explicit model predicts Iθ ≈ 1.3.
The scale similarity part of the mixed model is more anisotropic with Iθ ≈ 2.0.
At the rotation number R = −1 (figure 4) all models predict Iθ ≈ 0.2. Appar-
ently, anisotropy of the SGS dissipation resulting from the new explicit model
has the ability to respond to system rotation in a much more pronounced way
than eddy diffusion model and the mixed model.

The anisotropy of the SGS dissipation according to the new model is strongly
affected by the model parameter cΩ. Figure 5 shows Iθ as a function of cΩ/cS at
R = 0, St = 10 and with cS = 0.5. At small or negative cΩ/cS the anisotropy
of the new model resembles that of the eddy diffusion model with a large

〈q3
∂θ̃′

∂x3

〉-component. As cΩ/cS increases Iθ becomes more similar to that of the
scale similarity part of the mixed model. Iθ is also more sensitive to cΩ when
cΩ ≈ cS . We do not recommend the use of cS > 0.52. In that case the explicit
model expression can easily become singular, see Wikström et al. (2000).

5.3. Intensity measure

One of the basic demands on an SGS model is that it produces the right amount
of mean dissipation. We compare the amount of mean dissipation produced by
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Figure 5. The anisotropy of the SGS dissipation as a function of
cΩ/cS at St = 10 and R = 0 according to the new explicit model.

the SGS models under the influence of rotation by studying the length scale

ratio formed by the scalar length scale K̃
1/2
θ /Sθ and the velocity length scale

K̃1/2/S

B =
K̃

1/2
θ /Sθ

K̃1/2/S
(22)

where K̃θ is half the scalar variance, K̃ is the turbulence kinetic energy, and
Sθ is the magnitude of mean the scalar gradient. B represents the relative
intensity of the scalar fluctuations compared to the velocity fluctuations. Ac-
cording to Rogers et al. (1989) the equillibrium values of B depend on the
Prandtl number and the orientation of the mean scalar gradient but is relativly
insensitive to other parameters such as the Reynolds number.

It can be seen from figure 6 that B approaches different equilibrium values
depending on the rotation number. The resolution is 643. We calibrated all
models to fit with the unfiltered DNS data by Brethouwer and Matsuo (2005) at
the rotation number R = −1 where all three models predicts qualitatively the
same anisotropy of the SGS dissipation. The resulting model parameters were
presented in section 4. K̃θ and K̃ are large scale statistics and we assume that
the effect of a filter is small on the ratio B. (In fact the effect of a filter cancels
if the fraction of resolved scalar intensity to the full scalar intensity is equal to
the fraction of resolved turbulent intensity to the full turbulent intensity.) All
model parameters were kept constant and independent of the rotation number.
From the results in figure 6 we see that the eddy diffusivity model and the

mixed model become too dissipative at R = 0 whereas the new explicit model
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Figure 6. Intensity ratio measure B at R = 0 and R = −1. Eddy
diffusion model, dashed line; new model, solid line; mixed model,
dotted line; DNS, symbols.

2 4 6 8 10 12 14
0.7

0.8

0.9

1

1.1

St

B

2 4 6 8 10 12 14
0.7

0.8

0.9

1

1.1

St

B

Figure 7. Filter scale dependence of the intensity measure B
at R = 0 according to the eddy diffusion model (upper figure) and
the new model (lower figure). ∆/η = 1400, solid line; ∆/η = 990,
dashed line; DNS, symbols.

compares well with the DNS data at both rotation numbers. Hence the new
model provides for a better description of the mean dissipation than both the
eddy diffusion model and the mixed model for the suggested model parameters.
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The model parameter cS has a stronger impact on the amount of SGS dissipa-
tion than cΩ. Increasing cS increases the SGS dissipation whereas increasing
cΩ slightly decreases the dissipation. To find out whether it is appropriate or
not to use constant model parameters (that do not depend on the filter scale)
we compare the ratio B calculated at two different filter scales. Figure 7 shows
that the differences in the prediction of B owing to the filter scale are not larger
for new explicit model than for the eddy diffusion model, at R = 0. This indi-
cates that constant model parameters are about as appropriate as a turbulent
Prandtl number that does not depend on the filter scale.

6. Conclusions

A new explicit SGS scalar flux model based on a modelled transport equation
for the subgrid scalar flux is proposed and its performance tested in homoge-
neous shear flow subject to rotation. The new model is based on the same kind
of methodology that leads to the EASFM for the Reynolds avaraged flux.

The direction of the mean SGS scalar flux predicted by the new explicit model
is similar to that of the mixed similarity model. Both models respond to rota-
tion in a more realistic way than the eddy diffusion model. Moreover the new
explicit model provides for a better description of the anisotropy of the SGS
dissipation than both the eddy diffusion model and the mixed similarity model
that predicts an anisotropy similar to that of the squared scalar gradient. The
contribution to Iθ by the scale similarity part improves the results of the mixed
model. Despite that, the mixed model fails to predict Iθ due to the very strong
dissipative nature of the eddy diffusion part. The new model also provides for
a better description of the mean SGS dissipation than both the eddy diffusion
model and the mixed model at the two rotation numbers considered.
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A code for large-eddy simulation of rotating

homogeneous shear flow with passive scalars

By Linus Marstorp, Geert Brethouwer & Arne V. Johansson

1. Introduction

Although homogeneous shear flow is an idealised flow without any spatial gra-
dients of the turbulent correlations, it approximates different regions of inho-
mogeneous and wall bounded shear flows depending on the ratio between the
inverse shear rate and the turbulence macro scale. For example, some of the
turbulence structures in homogeneous shear flow at high shear rates are similar
to those found in the near wall region of boundary layers and turbulent channel
flow, see Rogers and Moin (1987). The present code for numerical simulation of
homogeneous shear flow is based on the Rogallo (1981) method, which has been
utilised in several studies. Bardina et al. (1983) evaluated their scale similarity
model in large eddy simulations of homogeneous shear flow using the Rogallo
method. A more recent example is the DNS by Brethouwer and Matsuo (2005)
who studied the effect of rotation on passive scalar mixing.

A passive scalar is mixed by flow field without affecting the flow in any way.
In experiments the passive scalar is often represented by small temperature
fluctuations, see for example the experiments by Tavoularis and Corrsin (1981)
or Kang and Meneveau (2001). Rogers et al. (1989) were among the first to
include a passive scalar into numerical simulation of homogeneous shear flow.
A homogeneous scalar field requires a constant mean scalar gradient. Rogers et
al. imposed a mean scalar gradient in different directions and derived a scalar
flux model based on the results of their DNS.

The present report describes the large-eddy simulation code used in the present
work.

2. Governing equations

We wish to solve the Navier-Stokes equations for the fluctuating velocity field,
ui, with an imposed mean velocity profile Ui = Sx3δi1, and the equation for a
passive scalar fluctuation, θ with a constant mean scalar gradient ∂Θ/∂xi = Gi
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in a rotating frame. The governing equations read

∂ui

∂t
+ Sx3

∂ui

∂x1
+

∂uiuj

∂xj
+ u3Sδi1 = −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xjxj
− 2εijkΩjuk

∂ui

∂xi
= 0

∂θ

∂t
+ Sx3

∂θ

∂x1
+

∂θuj

∂xj
+ ujGj =

ν

Pr

∂2θ

∂xjxj

(1)

where p includes both the pressure and the centrifugal force. Ωi is the system
rotation vector, ν is the viscosity, Pr is the Prandtl number, and εijk is the
alternating tensor.

It is convenient to have periodic boundary conditions in all directions for the
fluctuating quantities. In the x1-direction they are

ui(x1 + L1, x2, x3) = ui(x1, x2, x3)

θ(x1 + L1, x2, x3) = θ(x1, x2, x3)
(2)

where L1 is the streamwise box size. Periodic boundary conditions satisfy
the restriction of homogeneity and are easy to implement. However, it is not
possible to apply periodic boundary conditions to (1) due to the non constant
factor Sx3. The governing equations have to be transformed to a frame that
moves with the mean flow in order to enable the periodic boundary conditions.

2.1. Coordinate transformation

The coordinate transformation to a moving frame can be written as a matrix-
vector multiplication

x
′

i = Bijxj (3)

where Bij = δij − Stδi1δj3. The governing equations have to be rewritten in
terms of the new coordinates. All spatial derivatives have to be transformed

∂x
′

i = Bij∂xj (4)
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Figure 1. The moving frame.

By applying (4) and the time transformation t
′

= t to (1) we obtain the gov-
erning equations in the moving frame

∂ui

∂t′
+ (δkj − St

′

δk1δj3)
∂uiuj

∂x
′

k

= − ∂p

∂x
′

j

(
δij − St

′

δi3δj1

)
− Su3δi1+

+ ν
∂2ui

∂x
′

jx
′

k

(
δjk − 2St

′

δj1δk3 + (St
′

)
2
δj1δk1

)
− 2εijkΩjuk

∂ui

∂x
′

j

(
δij − St

′

δi3δj1

)
= 0

∂θ

∂t′
+ (δkj − St

′

δk1δj3)
∂ujθ

∂x′

k
= −uiGi +

ν

Pr

∂2θ

∂x
′

j∂x
′

k

(
δjk − 2St

′

δj1δk3 + (St
′

)
2
δj1δk1

)

(5)

Note that if the velocity vector is transformed according u
′

i = Bijuj , the non-
linear term that depends on St disappears. Bardina et al. (1983) implemented
the equations in that way. The moving frame is sketched in figure 1.

The domain has to be re-meshed before it becomes too distorted to contain
the largest turbulence structures. The time interval for re-meshing depends on
box size ratio L1/L3 and is performed at the nondimesional shear times

St =
L1

L3

(
1

2
,
3

2
,
5

2
. . .

)
(6)

In physical space the re-mesh corresponds to the shift

x
′

i(new) = x
′

i(old) −
L1

L3
x

′

3δi1

u
(new)
i

(
x

′

i(new)

)
= u

(old)
i

(
x

′

i(new) +
L1

L3
x

′

3δi1

) (7)
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2.2. Filtered equations

A Large Eddy Simulation is an under-resolved numerical simulation of the
Navier-Stokes equations in which the influence of the non-resolved scales has
to be modelled. To remove the small scales a filtering operation is applied to
the governing equations using a convolution filter

ũ(x, t) =

∫

R3

G(x − y)u(y, t)dy (8)

which commutes with the differential operator. The filtered equations are

∂ũi

∂t′
+ (δkj − St

′

δk1δj3)
∂ũiũj

∂x
′

k

= − ∂p

∂x
′

j

(
δij − St

′

δi3δj1

)
− Sũ3δi1+

+ ν
∂2ũi

∂x
′

jx
′

k

(
δjk − 2St

′

δj1δk3 + (St
′

)
2
δj1δk1

)
− 2εijkΩj ũk − (δkj − St

′

δk1δj3)
∂τij

∂x
′

k

∂ũi

∂x
′

j

(
δij − St

′

δi3δj1

)
= 0

∂θ̃

∂t′
+ (δkj − St

′

δk1δj3)
∂ũj θ̃

∂x′

k
= −ũiGi +

ν

Pr

∂2θ̃

∂x
′

j∂x
′

k

(
δjk − 2St

′

δj1δk3 + (St
′

)
2
δj1δk1

)

− (δkj − St
′

δk1δj3)
∂qj

∂x
′

k
(9)

where the SGS stress, τij = ũiuj−ũiũj , and the SGS scalar flux, qi = ũiθ−ũiθ̃,
have to be modelled in order to close the system of equations.

3. Numerical method

To solve the governing equations, a pseudo-spectral method is applied, which
means that the nonlinear terms are computed in physical space whereas the
spatial derivatives are computed in Fourier space. Hence, the solution has to be
transformed back and forth between the two spaces using a 3D discrete Fourier
transform

f̂(k) =
1

N1N2N3

N3−1∑

n3=0

N2−1∑

n2=0

N1−1∑

n1=0

f(x)e−ix3(n3)k3e−ix2(n2)k2e−ix1(n1)k1

xα(nα) =
2πnα

Nα
, −Nα/2 ≥ kα ≤ Nα/2 − 1

(10)

The discrete Fourier transform is computed using the Fast Fourier Transform,
FFT, algorithm. One of the main advantages of the spectral method is that
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the transform of the spatial derivatives can be accurately computed in Fourier
space as

∂̂ui

∂xj
(k1, k2, k3) = ikj ûi(k1, k2, k3) (11)

3.1. Dealiasing

Aliasing errors appears when the nonlinear terms are computed in physical
space. In the one-dimensional case the product of two variables with length N
in Fourier space contains wave numbers in a twice as large range 2N . Some of
the high wavenumber nodes produces spurious aliased waves when the product
is transformed back to Fourier space using a transform of length N .

The aliasing error can be removed by either truncation or by phase shift. If the
one-dimensional discrete Fourier transform of length N is truncated to length
2N/3 the alias error will disappear from the product. This is usually referred
to as the 2/3 rule, see for example Rogallo (1981). Truncation according to the
2/3 rule is computationally expensive, because much of the high wave number
information is lost. In the phase shift method each Fourier mode is multiplied
with a phase shift factor. It damps the aliasing error without affecting the
alias-free part of the solution, see Rogallo (1981). In the present code a combi-
nation of truncation and phase shifts is applied. All Fourier modes larger than
|k|2/|k|2max = 8/9 are truncated to zero and the nonlinear terms are phase
shifted at each time step.

3.2. Time advancement

In Fourier space the governing equations for the velocity components and the
passive scalar can be put in the form

∂f̂

∂t
= F (t, f̂ ,k) (12)

The time advancement is then performed in Fourier space using the a third
order low-storage Runge Kutta method proposed by Williamson (1980)

f0 = f̂ (n)

Gj = ajGj−1 + ∆tF (tn, fj−1,k) j = 1 . . . 3

fj = fj−1 + bjGj

f̂ (n+1) = f3

(13)

where a1 = 0, a2 = (3
√

6 − 13)/10, a3 = −2(3 +
√

6)/9, b1 = (6 −
√

6),

b2 = (6 +
√

6), and b3 = 1/2. Only two levels of storage are needed. The time

step is determined by prescribing the CFL-number, CFL =
√

3.
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3.3. Initial conditions

The initial condition for the velocity field is random and isotropic with a pre-
scribed shape of the energy spectrum. It is calculated in Fourier space in three
steps: First, all modes are given random amplitude and random phase from
a uniform distribution. Thereby the initial field (u∗, v∗, w∗) is isotropic. The
velocity field is then made divergence free by the transformation

û = û∗ − k1
(k1û

∗ + k2v̂
∗ + k3ŵ

∗)

|k|2

v̂ = v̂∗ − k2
(k1û

∗ + k2v̂
∗ + k3ŵ

∗)

|k|2

ŵ = ŵ∗ − k3
(k1û

∗ + k2v̂
∗ + k3ŵ

∗)

|k|2

(14)

Finally, the Fourier modes with a certain |k| are scaled so that the velocity
field satisfies a prescribed energy spectrum E(|k|). Marstorp et al. (2005) used
a high Reynolds number shape with the Kolmogorov inertial range slope −5/3
of the smallest resolved scales in their Large Eddy Simulations

E(|k|) =

{
= k

−11/3
p |k|2 |k| ≤ kp

|k|−5/3 |k| > kp
(15)

where kp is the location of the peak, see figure 2. An additional scaling constant
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Figure 2. The initial energy spectrum of the LES of
Marstorp et al. (2005)

is needed in order to specify the initial kinetic energy. The initial scalar field
is without any fluctuations.
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4. Summary

We have described a code for numerical simulation of homogeneous shear flow
with a constant mean passive scalar gradient. The use of periodic boundary
conditions requires a transformation to a frame that moves with the mean
flow. The code uses a pseudo-spectral technique. All spatial derivatives are
accurately calculated in Fourier space whereas the nonlinear terms are calcu-
lated in physical space. The aliasing errors that rises from the computation of
the nonlinear terms are removed using a combination of truncation and phase
shifts. The time advancement is performed in Fourier space using an explicit
third order Runge Kutta method. The initial condition for the velocity field is
random and isotropic with a prescribed shape of the energy spectrum and the
initial scalar field is without any fluctuations.
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