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Abstract

The present study is an experimental and numerical investigation on ro-
tating flows. A special facility has been built in order to produce a turbulent
swirling jet generated by a fully developed rotating pipe flow and a Direct Nu-
merical Simulation (DNS) code has been used to support and to complemen
the experimental data. The work is so naturally divided into two main parts:
the turbulent rotating pipe flow and the swirling jet.

The turbulent pipe flow has been investigated at the outlet of the pipe
both by hot-wire anemometry and Laser Doppler Velocimetry (LDV). The
LDV has also been used to measure the axial velocity component inside the
pipe. The research presents the effects of the rotation and Reynolds number
(120006 Re 6 33500) on a turbulent flow and compares the experimental
results with theory and simulations. In particular a comparison with the recent
theoretical scalings by Oberlack (1999) is made.

The rotating pipe flow also represents the initial condition of the jet. The
rotation applied to the jet drastically changes the characteristics of the flow
field. The present experiment, investigated with the use of hot-wire, LDV
and stereoscopic Particle Image Velocimerty (PIV) and supported by DNS
calculation, has been performed mainly for weak swirl numbers (06 S 60.5).
All the velocity components and their moments are presented together with
spectra along the centreline and entrainment data.

Time resolved stereoscopic PIV measurement showed that the flow struc-
tures within the jet differed substantially between the swirling and no swirling
cases.

The research had led to the discovery of a new phenomenon, the formation
of a counter rotating core in the near field of a swirling jet. Its presence has
been confirmed by all the investigation techniques applied in the work.

Descriptors: Fluid mechanics, rotating pipe flow, swirling jet, turbulence,
hot-wire anemometry, LDV, Stereo PIV, DNS.
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CHAPTER 1

Introduction

1.1. Background and motivation

A jet is, by definition, a fluid stream forced under pressure out of an opening
or nozzle. Applications of such flow can be found in nature, for instance the
propulsion system of many marine animals like coelenterates, volcanos emis-
sions, as well as in many technical applications like fountains, fluid injection
engines, aircraft propulsion, cooling systems.

Swirling jets, where an azimuthal velocity is superimposed on the axial
flow, are of importance in many technical and industrial applications. For
instance, they are used in combustion systems both to enhance the forced
convective cooling, to increase turbulent mixing of fuel with air and to stabilize
the flame. Despite the importance of this type of flow and the large number of
studies carried out in the past, there is still a lack of experimental data over a
wide range of Reynolds number and swirl ratios, to both enhance the physical
understanding of this type of flow as well as to assist in evaluating turbulence
models and the development of Computational Fluid Dynamics (CFD) codes.
A large number of the previous experimental investigations has used short
stationary pipes with blades or vanes at the outlet to attain a swirling jet
profile which therefore contains traces of the swirl generator, hence perturbing
the axial symmetry of the flow. In order to increase flow homogeneity and
to decrease the influence of upstream disturbances, axi-symmetric contractions
are sometimes used before the jet exit. However, in this way, swirled jets with
top-hat exit profiles, characterized by thin mixing layers, are obtained. These
type of jets may differ significantly from several industrial applications where
fully developed pipe flow may better represent the real boundary conditions.

This thesis reports measurements and analysis both of the flow field in a
fully developed rotating pipe as well as the resulting flow field of the emanating
jet. This work is part of a larger project aimed at the studying of the effects of
the impingement of a turbulent swirling jet on a flat plate, positioned relatively
close to the pipe exit. For this reason the present experimental study is limited
to the analysis of the initial near-exit and intermediate (or transitional) region.

1.2. Layout of the thesis

The thesis is organised in two parts: the study of the rotating pipe flow and
the study of the swirling jet. Chapter 2 states the equations of the motion (i.e.
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2 1. INTRODUCTION

continuity and Navier-Stokes equations) in a cylindrical coordinate system and
also derives some integral relations for the two flow fields.

Chapters 3 and 4 present a part of the literature dedicated respectively to
the rotating pipe flow and to the axisymmetric jet with and without a swirl
component. The reviews include experiments, simulations, theoretical analysis
and models.

Chapter 5 is dedicated to the description of the experimental apparatus
built at the Fluid Physics Laboratory of KTH Mechanics and to the introduc-
tion of measurement techniques used to perform the experiments. Chapter 6,
in a parallel way, introduces the numerical tool used in the study to corroborate
and to help in the interpretation of the experimental data.

In Chapter 7 all the results for the pipe flow are presented. This also
represents the initial stage of the jet. Data from the experiments are compared
with the simulations results and theoretical studies. Chapter 8 is addressed to
the investigation of the jet flow at moderate swirl numbers in the near field
region. Data and analysis for all the three velocity components are presented
which have been obtained using different measurement techniques as well as
numerical simulation. Chapter 8 ends with the presentation of a new and
unexpected phenomenon: the presence of a counter rotating core in the near
field of the swirling jet. Chapter 9 includes the discussion and the conclusions
of the present work.



CHAPTER 2

Theoretical considerations

2.1. Equations of motion

We will here first give the Navier-Stokes equations in cylindrical coordinates,
and thereafter use Reynolds’ decomposition to obtain the equations for the
mean flow. When studying rotating flows it is possible to either use an inertial
frame (laboratory fixed) or a rotating frame. In the first choice the rotation
is felt through the boundary conditions, in the second the rotation is taken
into account by adding body forces due to centrifugal and Coriolis effects.
We write the equations in a general form in cylindrical coordinates such that
both approaches will be possible. We denote the radial, azimuthal and axial
directions with (r, θ, x) and the respective velocity components with (w, v, u),
respectively. In the following we assume that the rotation is along the axial
direction (in the laboratory frame the rotation vector can hence be written
Ω = Ωex). Furthermore we assume that the flow is incompressible, i.e. the
density ρ is constant as well as the temperature. As a consequence also the
kinematic viscosity (ν) is constant. With these assumptions the conservation
equation of mass (continuity equation) becomes

∂w

∂r
+
w

r
+

1
r

∂v

∂θ
+
∂u

∂x
= 0 (2.1)

whereas the conservation of momentum (Navier-Stokes equations) can be writ-
ten

∂w

∂t
+ w

∂w

∂r
+
v

r

∂w

∂θ
+ u

∂w

∂x
− v2

r
=

−1
ρ

∂p

∂r
+ ν

(
Dw − w

r2
− 2
r2
∂v

∂θ

)
− 2Ωv (2.2)

∂v

∂t
+ w

∂v

∂r
+
vw

r
+
v

r

∂v

∂θ
+ u

∂v

∂x
=

− 1
ρr

∂p

∂θ
+ ν

(
Dv − v

r2
+

2
r2
∂w

∂θ

)
+ 2Ωw (2.3)
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Figure 2.1. Coordinate system.

∂u

∂t
+ w

∂u

∂r
+
v

r

∂u

∂θ
+ u

∂u

∂x
=

−1
ρ

∂p

∂x
+ νDu (2.4)

where

D =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂x2

The Coriolis term (2Ω×u) is zero in an inertial (laboratory fixed) coordi-
nate system. We now proceed with the Reynolds’ decomposition typically used
for turbulent flows

w = W + w′

v = V + v′

u = U + u′

p = P + p′

where capital letters denote mean quantities and primed variables are fluctuat-
ing variables with zero mean. Putting the decomposition into eqs. (2.1)–(2.4)
and assuming that the mean flow is steady and axisymmetric, i.e.

∂

∂t
= 0,

∂

∂θ
= 0. (2.5)
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we obtain for the Reynolds averaged continuity equation

∂W

∂r
+
W

r
+
∂U

∂x
= 0 (2.6)

The Reynolds averaged Navier-Stokes equations in the inertial coordinate
system become (in the following we are skipping the prime on fluctuating com-
ponents and averaging is denoted by an overbar)1

W
∂W

∂r
+ U

∂W

∂x
+

∂

∂r
w2 +

∂uw

∂x
− 1
r

(
V 2 + v2 − w2

)
=

−1
ρ

∂P

∂r
+

1
r2

∂

∂r

[
νr3

∂

∂r

(
W

r

)]
(2.7)

U
∂V

∂x
+W

∂V

∂r
+
VW

r
+
∂uv

∂x
+

1
r2

∂

∂r

(
r2vw

)
=

1
r2

∂

∂r

[
νr3

∂

∂r

(
V

r

)]
(2.8)

U
∂U

∂x
+W

∂U

∂r
+

1
r

∂

∂r
(ruw) +

∂

∂x
u2 =

−1
ρ

∂P

∂x
+

1
r

∂

∂r

[
νr
∂U

∂r

]
(2.9)

Equations (2.7)–(2.9) can be further simplified depending on the flow sit-
uation studied. In a boundary layer approximation, i.e. derivatives in the x-
direction are small as compared to derivatives in the r-direction, and U >> W ,
several of the convective terms may be neglected. In the case of a x-independent
pipe flow there is no streamwise variation of mean quantities so x-derivatives
are identically zero. For high Reynolds number flows the viscous term may
also be neglected except if there is a boundary at a solid surface. We will in
the following specialize first to an axially rotating pipe flow and secondly to a
swirling jet, which makes it possible to derive some analytical results for these
cases.

1The equations for the Reynolds stresses in a rotating frame are reported in Appendix A.
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2.1.1. Specializing to rotating pipe flow

For the fully developed pipe flow there is no streamwise variation of the mean
quantities (except for the pressure although ∂P/∂x= constant) which imme-
diately gives from the continuity equation (2.6) that W = 0 for all r. The
boundary conditions on the pipe wall are in the laboratory fixed coordinate
system:

W (R) = 0, V (R) = Vw, U(R) = 0, (2.10)

where Vw = ΩR is the velocity of the pipe wall. Due to symmetry the following
conditions have to apply on the pipe axis

W (0) = 0, V (0) = 0,
∂U

∂r
(0) = 0 (2.11)

Equation (2.8) can now be rewritten as

ν

(
d2V

dr2
+

1
r

dV

dr
− V

r2

)
=

d

dr
(vw) + 2

vw

r
(2.12)

Equation (2.12) can be integrated twice, first from 0 to r, and thereafter
from r to R (using the boundary conditions) to give (Wallin & Johansson 2000)

V (r) = Vw
r

R
− r

ν

∫ R

r

vw
dr

r
(2.13)

The first term on the right hand side represents the solid body rotation
whereas the second term gives the contribution from the Reynolds stress term
vw. This implies that if vw 6= 0 the turbulence gives rise to a deviation from
the solid body rotation. Furthermore, eq. (2.9) can be substantially simplified
giving

0 = u2
τ

r

R
− uw + ν

dU

dr
(2.14)

where uτ is the friction velocity determined from the streamwise velocity gradi-
ent at the pipe wall τw=µdudy |y=0=ρu2

τ (or equivalently the pressure drop along

the pipe uτ =
√∣∣∣∂P∂x ∣∣∣/2).

So far we have discussed the equations of motion in their dimensional form.
However they can all be written in non-dimensional form by using only two
non-dimensional numbers, namely the Reynolds number

Re =
UbD

ν
(2.15)

and the swirl number

S =
Vw
Ub

(2.16)
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where Ub is the bulk velocity in the pipe, i.e. the mean velocity over the pipe
area. Eq. (2.13) then becomes

V (r)
Vw

=
r

R

(
1− Re

2S

∫ R

r

vw

U2
b

dr

r

)
(2.17)

2.1.2. Specializing to swirling jet flow

The turbulent axisymmetric jet flow is more complicated than the pipe flow
since it is developing in the streamwise direction. This also means that W 6= 0.
However it is possible to use a boundary layer type of analysis such that some
terms can be safely assumed to be small. In this way we can simplify eq. (2.7)
to become

1
ρ

∂P

∂r
= − ∂

∂r
w2 +

1
r

(
V 2 + v2 − w2

)
(2.18)

For the turbulent axisymmetric jet flow we preserve the condition of sym-
metry at the centreline (r=0) and add the boundary conditions at infinity
(r=∞):

U = 0, V = 0, W = 0,
∂

∂r
= 0 (2.19)

From the Reynolds averaged Navier-Stokes equations, multiplying the axial
component (eq. 2.9) and the radial component (eq. 2.18) respectively by r and
by r2, then integrating between r = 0 and r = ∞ and applying the boundary
conditions (2.19), we obtain (Chigier & Chervinsky 1967):

d

dx

∫ ∞

0

r[(P − P∞) + ρ(U2 + u2)]dr = 0 (2.20)

∫ ∞

0

r(P − P∞)dr = −1
2
ρ

∫ ∞

0

r(V 2 + v2 + w2)dr (2.21)

From the above equations, assuming that the squared fluctuating velocity
components are negligible with respect to the squared mean components, we
get the conservation of the flux of the axial momentum

d

dx

[
2πρ

∫ ∞

0

r

(
U2 − 1

2
V 2

)
dr

]
=

d

dx
Gx = 0 (2.22)

In the same way, starting from the azimuthal component (eq. 2.8) of the
Reynolds averaged Navier-Stokes equations, neglecting ∂uv/∂x and assuming
that the Reynolds number is large (ν → 0), multiplying by r2 and integrating,
we get an expression for the conservation of the angular momentum
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A
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Figure 2.2. a) Rankine vortex, b) Batchelor vortex.

d

dx

(
2πρ

∫ ∞

0

r2UV dr

)
=

d

dx
Gθ = 0 (2.23)

By using the above quantities it is possible to characterize the swirling flow
with an integral swirl number:

Sθx =
Gθ
GxR

. (2.24)

2.1.3. Vortex Models

The distribution of the azimuthal velocity in a real jet is mainly due to the
method used to generate the swirl. From a mathematical point of view, it is
possible to create models to properly approximate the behaviour of the flow
field.

A Rankine vortex represents a simply model for rotating flow (figure 2.1.3a).
It displays a solid body rotation core followed by a r−1 decay in the radial di-
rection. In application to a swirling jet, it is worth noting that the model does
not take into account the finite thickness of the shear layer region at r = R
where the curve has a singularity.
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V = Λr, 0 6 r 6 R (2.25)

V =
ΛR2

r
(2.26)

A more suitable model for developed swirling flows is the Batchelor vortex
(figure 2.1.3b). The azimuthal velocity field is described via a similarity solution
applied to wakes and jets in the far field. In a non-dimensional formulation the
velocity has a maximum (V = Λ) for r = 1.121.

V =
Λ

0.638
1− e−r

2

r
(2.27)



CHAPTER 3

Review of rotating pipe flow studies

The physics of rotating pipe flow is a challenge for experimental, theoretical,
modelling and simulation studies despite its conceptual simplicity. A few exper-
imental studies have been undertaken and there are also some direct numerical
simulation studies available. However a large number of studies using rotating
turbulent pipe flow as a test case for modelling can be found in the literature.

First, it should be clearly stated that the effect of rotation on pipe flow
is quite different depending on whether the flow is laminar or turbulent. In
the laminar case rotation has a destabilizing effect and the critical Reynolds
number is as low as 83 for linearized disturbances. Turbulent pipe flow on the
other hand, is stabilized by rotation and for instance the pressure drop along the
pipe decreases with increasing rotation rate. It should also be mentioned that
in the laminar case the fluid approaches solid body rotation at some distance
downstream the inlet, whereas for turbulent flow this is not the case. We will
first give a brief review regarding the present state of results for rotating laminar
pipe flow and then discuss the turbulent case, describing first the experimental
work as well as DNS work, and finally discuss some of the modelling attempts.

3.1. Stability of laminar rotating pipe flow

There have been several studies regarding the stability of rotating pipe flow.
For instance Howard & Gupta (1962) gave an inviscid stability criterion for
rotating pipe flow which is valid for axisymmetric disturbances. More thorough
studies were made by Pedley (1968, 1969) who investigated the linear stability
of rotating pipe flow both through an inviscid as well as a viscous analysis. He
showed that in the limit of high rotation rates the critical Reynolds number
became as low as 83 and remarked that this may be surprising since both a
fluid undergoing solid body rotation as well as the pipe flow itself are stable,
but gave no physical interpretation of the results.

Toplosky & Akylas (1988) expanded on the previous results into the non-
linear regime and showed that the instability was supercritical and that it
would take the form of helical waves. Recently, Barnes & Kerswell (2000)
confirmed these results and found that the helical waves may become unstable
to three dimensional travelling waves. These studies also concluded that the
disturbances could not be traced back to the non-rotating case, thereby they
are not the source for transition in non-rotating pipe flow.

10



3.2. TURBULENT ROTATING PIPE FLOW 11

Experimental work for this case has been limited to a few studies. There
are of course experimental problems to set up this flow since both the parabolic
Poisueille profile as well as the solid body rotation will take some downstream
distance from the inlet to become fully established. In the experiments by Nagib
et al. (1971) a fairly short pipe was used (L/D ≈ 23 so the parabolic profile
was not fully developed), however the rotation was obtained by letting the fluid
(water) pass through a porous material inside the rotating pipe, thereby effi-
ciently bringing the fluid into rotation. They observed, from flow visualization
and hot-film measurements, that the transitional Reynolds number decreased
from 2500 to 900 when S increased from 0 to 3. A more recent study by Imao
et al. (1992) shows details of the instabilities through both LDV-measurements
and flow visualizations. They also demonstrate that the instability takes the
form of spiral waves.

There are a few attempts to pinpoint the physical mechanism behind the
instability in terms of a Rayleigh criterion or centrifugal instability, but as
pointed out by Maslowe (1974) the theoretical analysis has so far not been able
to shed light on this mechanism. To this end we will only point out a similarity
of the basic flow field as seen in a non-rotating inertial frame with that giving
rise to cross flow instabilities on a rotating disc or a swept wing.

3.2. Turbulent rotating pipe flow

3.2.1. Experimental results

The first experimental study of axially rotating pipe flow is probably that
of White (1964) who showed that the pressure drop in the turbulent regime
decreased with increasing rotation. He also did some flow visualization both
illustrating the destabilization in the laminar case and the stabilization in the
turbulent one.

Murakami & Kikuyama (1980) did their experiments in a water flow facility
where the pipe diameter was 32 mm. They measured both the pressure drop
as well as mean velocity profiles. For the pressure drop measurements they
presented data for Reynolds numbers in the range 104 − 105 and for rotation
rates up to S = 3. The pressure tappings were placed in the stationary pipes
upstream and downstream of the rotating section and the length of the rotating
section could be varied by using interchangeable pipes of various lengths. The
mean velocity in the streamwise and azimuthal directions were measured with
a three-hole Pitot tube which was inserted through a stationary part of 5 mm
length which could be placed at different positions from the inlet of the rotating
pipe.

They found that when the pipe length is larger than 100 diameters, the
ratio between the pressure loss coefficient for a rotating pipe and a non-rotating
smooth pipe is governed only by the rate of rotation S. Beyond S = 1.2
the observed suppression of turbulence is saturated and the ratio of the loss
coefficients remains unaltered. In the Reynolds range considered during the
experiment (104 < Re < 2 · 105), the axial velocity profiles gradually change
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in the downstream direction to become less full, i.e. the centreline velocity
increases and the velocity gradient at the wall decreases. For x/D > 120 the
velocity profile results were found to be approximately independent of the axial
distance from the inlet. The change of the velocity profile is more accentuated
with increasing S and tends towards the parabolic shape of a laminar flow.
However the azimuthal velocity profiles at this position does not show solid
body rotation, instead it has a shape which is nearly parabolic, V/Vw = (r/R)2.

LDV-measurements were made by Kikuyama et al. (1983) who expanded
the measurements by Murakami & Kikuyama (1980) to other pipe diameters
(5 and 20 mm) and also presented velocity measurements taken by an LDV
system. These results confirm the previous results that the mean flow tends
to a parbolic profile when rotation is increased and that the azimuthal flow
also becomes parabolic. Unfortunately no data on the turbulence fluctuations
were presented. Similarily the experiments by Reich & Beer (1989) in the range
5000 < Re < 50000 and S up to 5, showed mean profiles of both the streamwise
and azimuthal directions obtained with a three-hole pressure probe which are
in accordance with the earlier results. Also in this case only mean velocity data
were obtained.

The LDV measurements by Imao et al. (1996) on the other hand sup-
plied the first measurements of turbulence fluctuations and presented mea-
sured distributions on five of the Reynolds stresses as well as the mean profiles
at Re = 20000. The measurements were made in water in a 30 mm diameter
pipe at 120D dowstream the inlet. They also presented pressure drop mea-
surements showing the decrease of the friction factor with increasing S. Their
measurements confirmed the previously observed change in the streamwise ve-
locity as well as the parabolic shape of the azimuthal velocity. If the normal
Reynolds stresses (uu, vv, ww) were normalised with the bulk velocity there
was only a slight decrease with increasing rotation. The change in uw was on
the other hand much more dramatic if normalized with the bulk velocity, but
would more or less collapse if normalized with the friction velocity. uv is for
the non-rotating case equal to zero due to symmetry, but was seen to become
negative with rotation. A plausible explanation for this behaviour is that the
normal velocity increases with r whereas the opposite is true for the streamwise
velocity. A fluctuation that gives a radial displacement of a fluid element which
keeps its momentum would hence give u > 0 and v < 0 (or vice versa) which
would mean that the fluctuations would become negatively correlated.

3.2.2. Numerical simulations

Although experimental studies of rotating pipe flow have been performed since
long, direct numerical simulations (DNS) and large eddy simulations (LES) of
turbulent pipe flow have been reported only during the last decade. The first
results from large eddy simulations seem those reported in the doctoral thesis
of Eggels (1994). He did a simulation at Re=59500 and S=0.71. He found
that the streamwise mean velocity increased in the centre of the pipe and a
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subsequent decrease at the wall, and hence a smaller friction coefficient. The
azimuthal velocity showed the expected near-parabolic shape and the turbulent
decreased, especially close to the pipe walls. The largest decrease was seen in
the streamwise component.

Orlandi & Fatica (1997) on the other hand performed a DNS at Re = 5000
for four values of S, namely 0, 0.5, 1.0 and 2.0. They presented data for both the
mean flow velocity and all six Reynolds stresses as well as some instantaneous
flow field data. Orlandi (1997) used this data base to further evaluate various
turbulent quantities. Later Orlandi & Ebstein (2000) made simulations at
approximately the same Reynolds number but extended the rotation rates up
to N = 10. In that case they especially focussed on presenting the turbulent
budgets for different S.

The data of Orlandi & Fatica (1997) and Orlandi & Ebstein (2000) show
that the friction factor decreases with about 15% when S is increased from 0
to 2. However for S = 5 the friction factor increase again and at S = 10 it is
actually higher than for the non-rotating case. The streamwise velocity profiles
show a similar behaviour as in the experiments described in section 3.2.1, the
centreline velocity increases with S and the profile becomes less full. When
scaling these profiles with the bulk velocity it has been noted that, keeping
the Reynolds number constant and varying S, all the profiles collapse almost
at the same value U/Ub = 1.14 at r/R ≈ 0.6 presenting a good agreement
with experimental data (the difference is referred to the effect of the entrance
conditions). The azimuthal profile also shows the expected parabolic behaviour,
except close to the wall, although there is a slight variation with S.

The results for the normal Reynolds stress components show that rotation
gives a reduction of the near wall maximum in the streamwise component and
a slight increase in the other two, especially in the central region of the pipe.

In a non-rotating pipe the only resulting shear stress is uw. The simulation
data show that when a rotation is introduced it is slightly reduced and there is
an increase in uv and vw instead. The distribution of vw can be shown (see eq.
2.17) to be directly coupled to the azimuthal mean flow distribution and scales
with S/Re and the calculated distributions show the expected shape. However
the uv distribution has a strange behaviour for S ≥ 1, with oscillations along
the pipe radius. Orlandi & Fatica (1997) explain this with the large scale
structures in the central region of the pipe for high S which means that the
averaging time has to be increased to obtain stable distributions.

A recent DNS study was performed by Satake & Kunugi (2002) at a similar
Reynolds number and values of S of 0.5, 1.0, 2.0 and 3.0. In that study a
uniform heat flux was introduced at the wall and temperature distributions
were also calculated. Their data show a monotonous decrease of the friction
factor with increasing S. In addition to mean flow distributions and Reynolds
stresses they present detailed turbulent budgets which are similar to those
of Orlandi & Ebstein (2000), as well as similar profiles for the temperature
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fluctuations. It can be noted that their uv-data also show oscillations in the
same way as the data of Orlandi & Fatica (1997) for high S.

Finally two recent LES studies have also been published (Yang 2000; Feiz
et al. 2003) which for suitable subgrid scale models to a large extent show good
agreement with the DNS results.

3.2.3. Theoretical and numerical modelling

In a rotating pipe flow the rotation affects both the mean flow as well as
the turbulent stresses. To some extent the stabilizing effect of the rotation
can be taken into account in the models by introducing a correction in terms
of a Richardson number. For instance Kikuyama et al. (1983) modelled the
turbulence using Prandtls mixing length theory where the mixing length was
modified, such that the stabilizing influence of rotation was taken into account
through a Richardson number which involves the azimuthal velocity. Such an
approach was first suggested by Bradshaw (1969), however in order to use this
Kikuyama et al. had to assume that the azimuthal velocity had the experimen-
tally observed parabolic shape. In their calculations they were able to obtain
the observed change in the streamwise velocity distribution as well as the fric-
tion factor although with this approach the azimuthal velocity distribution is
an input to the model and the modelling is therefore of somewhat limited value.
Also the work by Weigand & Beer (1994) follows similar lines.

On the other hand it has been shown that the standard K-ε model cannot
model even the streamwise mean flow correctly. For instance the results of
Hirai, Takagi & Matsumoto (1988) show that it does not predict the changes
in the streamwise velocity profile when S 6= 0 and the resulting azimuthal
velocity becomes linear, i.e. the model predicts a solid body rotation of the
flow. This is also true when the model is modified using a Richardson number
to take into account the stabilizing effect of rotation. This issue has been
thoroughly discussed by Speziale, Younis & Berger (2000).

Hirai et al. (1988) employed a Reynolds stress transport equation model
which was shown to be able to give the correct tendency of the experimentally
measured axial velocity profile as well as the tendency of the friction factor to
decrease with increasing swirl. The laminarisation phenomenon is explained
by the reduction of the turbulent momentum flux ρuw due to the swirl, mainly
caused by the negative production term uvV/r in the transport equation of uw.
Other attempts giving similar results using Reynolds stress transport models
to calculate rotating turbulent pipe flow have been made by Malin & Younis
(1997), Rinck & Beer (1998) and Kurbatskii & Poroseva (1999).

Both Speziale et al. (2000) and Wallin & Johansson (2000) developed al-
gebraic Reynolds stress models which were applied to rotating pipe flow. They
used different approaches to the modelling, for instance Speziale et al. worked
in the rotating system, taking the rotation into account through the Coriolis
force, whereas Wallin & Johansson used the inertial system (laboratory fixed).
In that case the rotation effects come in through the rotating pipe wall (i.e.
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through the boundary conditions). In both cases their models were able to
qualitatively show the main features of rotation, namely the change in the
streamwise velocity with S and the deviation from the solid body rotation of
the azimuthal velocity distribution.

Finally the theoretical modelling of turbulent flows by Oberlack (1999,
2001) should be mentioned. He has, through a Lie group appoach to the
Reynolds averaged Navier-Stokes equations, been able to derive new scaling
laws for various turbulent flows, among them rotating pipe flow. Of particular
interest for the present work is that Oberlack (1999) proposes certain scaling
laws that can be checked against experiments. For instance the theory gives
that the azimuthal mean velocity can be written as

V

Vw
= ζ

( r
R

)ψ
(3.1)

which with ζ = 1 and ψ = 2 corresponds to the parabolic velocity distribution.
Furthermore the theory suggests a scaling law for the axial mean velocity which
is

Uc − U

uτ
= χ (s)

( r
R

)ψ
(3.2)

where χ is a function of the velocity ratio between the rotational speed of the
pipe and the friction velocity s=Vw/uτ . Note that the value of the exponent ψ
in eqs. (3.1) and (3.2) is the same. A logarithmic law in the radial coordinate
is also suggested from the theory, such that

U

Vw
= λ log

( r
R

)
+ ω (3.3)

This scaling law was checked against the data of Orlandi & Fatica (1997).
Only data for one swirl number was shown (S=2), but a logarithmic region
was found for 0.5 ≤ r/R ≤ 0.8 with λ=–1.0. A final proposition from the
theory is that there is one point where the mean axial velocity is independent
of the Reynolds number. The data suggest that this fixed point is rfix = 0.75R
and that the velocity is U(rfix) = Ub. In the present study we will compare
our experimental data with the predictions of Oberlack (1999).



CHAPTER 4

Review of axisymmetric jet flow studies

Jet flows with different geometries and boundary conditions have been widely
investigated both experimentally and theoretically. The importance of this type
of shear flow is related to numerous industrial applications (e.g. combustion,
jet propulsion and cooling systems). This chapter contains an overview of work
on swirling jet flows. In order to assess the main features and effects due to
the presence of the rotational motion of the flow, a brief review concerning the
main characteristics of axisymmetric non-swirling jets is also included.

4.1. The axisymmetric jet

An axisymmetric jet (see figure 4.1) is produced when fluid is ejected from a
circular orifice into an external ambient fluid, which can be either at rest or
co-flowing. Here we assume that the jet fluid and the ambient fluid are the
same. At the nozzle exit, the high velocity jet generates a thin axisymmetric
circular shear layer. The shear layer is rapidly subjected to a Kelvin-Helmoltz
instability process (due to the presence of an inflectional point in the mean
streamwise velocity distribution) and vortical structures are formed. Moving
downstream the shear layer spreads in the radial direction both outwards and
towards the centreline. The shear layer reaches the jet axis at a distance of
approximately 4–5 diameters from the exit. The region inside the axisymmet-
ric shear layer, characterized by an unchanged axial velocity, is called the jet
”potential” core. The process described above is similar both for laminar and
turbulent jet flows.

Further downstream, in the intermediate region of the jet, the different
eddy structures interact in a non-linear behaviour engulfing fluid from the
external environment and eventually collapse leaving the jet fully turbulent.

In the fully turbulent region, i.e. after approximately 20 diameters down-
stream the jet exit, the mean velocity profiles exhibit a self-preservation be-
haviour where the mean axial centreline velocity decays with the inverse of the
distance. However, the turbulence intensity profiles require a much longer dis-
tance before reaching the self-preservation state, especially for the radial and
tangential fluctuations. This is due to the fact that the energy is directly trans-
ferred from the mean flow to the streamwise fluctuations whereas energy to the
other two components is transferred from the streamwise turbulence through
the pressure-strain terms. Only after about 50–70 diameters the axisymmetric
jet can be considered as truly self-preserving. For a review of turbulent jets
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Figure 4.1. Schematic of the development of an axisymmet-
ric jet.

the reader is referred to the monograph of Abramovich (1963) or to the more
recent review article by Thomas (1991). Also a number of papers by George
and co-workers (see for instance Jung, Gamard & George 2004) give interesting
information on the development and flow structures of turbulent jets.

4.1.1. The initial region

The near field of an axisymmetric jet is dominated by the inviscid inflectional in-
stability mechanism that amplifies upstream disturbances and generates large-
scale vortical structures in the shear layer. The shape and characteristics of
the structures depend on the type of the disturbances. In the initial region of
naturally evolving jets it appears that axisymmetric disturbances are mostly
amplified, giving rise to quasi-periodically spaced axisymmetric rings of con-
centrated vorticity.

Amplification factors and phase velocities depend on the main character-
istics of the shear layer, such as the mean velocity profile and the thickness of
the boundary layer at the jet exit. In particular, the frequency of the most
amplified disturbances scales with the shear layer thickness and with the local
velocity profile, but does not depend on the jet diameter (shear layer mode).
Indeed Michalke (1984) in his review, shows that the instability at the exit of
an axisymmetric jet can be treated as a planar shear layer instability if the
ratio between the radius and the shear layer thickness is larger than 50. In
such a case the instability mode behaves as if it is two-dimensional. Further
downstream, the shear layer thickness of course increases and when it becomes
of the same order as the jet radius, the curvature cannot be neglected anymore.

Moving downstream the structures start to merge and to interact creat-
ing even larger structures. This mechanism is the one by which the memory
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of the initial stability is gradually lost. At the end of the potential core the
appropriate length scale of the instability becomes the jet diameter. The pas-
sage frequency of the large-scale structures in this region is referred as the
preferred mode or jet column mode. This mode can be described by means
of a non-dimensional frequency, St = fD/U (Strouhal number), where f is
the frequency, D the jet diameter and U the jet exit velocity. In the different
experiments in the literature a quite broad range (0.25 < St < 0.85) of the
jet column mode has been found. This disagreement between different experi-
ments may be explained with the strong sensitivity of the jet instability to the
upstream noise coming from the experimental set-up. Indeed, with this type
of instability a wide range of frequencies is highly amplified.

Finally, it must be stated that the shear layer mode and the jet column
mode may not be perfectly decoupled. In fact, both hydrodynamics and acous-
tic feedback effects can be present (see e.g. Hussain 1986). The time signal and
eddy formation at the jet exit and in the intermediate region may be triggered
by the feedback from the structures which evolve downstream. This feedback
may also play an interesting role in sustaining self-excited excitation.

4.1.2. The developed region

In the intermediate region of the axisymmetric jet the large-scale coherent
structures interact with each other. Merging, tearing or secondary instability
phenomena are present. In this region, the structures are responsible for the
bulk of the engulfment of ambient fluid with the consequent increasing of the
entrainment activity (Komori & Ueda 1985; Liepmann & Gharib 1992). The
helical instability has a growing importance as the flow approaches the end
of the potential core and becomes dominant in the fully developed region.
Increasing the axial distance, the helical structures, with right handed and
left handed modes of equal probability, move radially outwards (Komori &
Ueda 1985) giving, together with local ejection of turbulent fluid and bulk
entrainment of ambient fluid, a great contribution to the jet spreading. At
large distances from the jet exit (more than 20 diameters) the jet shows self
similar profiles. Experimentally it has been found that the width increases
linearly with the streamwise coordinate and, since the product UCL(x)R(x) has
to be constant to conserve the axial momentum, the centreline velocity decays
as x−1. In this region the external periodic excitation useful to describe the
large-scale structure behaviour in the near exit region is of little use. Moreover,
flow visualization cannot help in studying this region since the marker is highly
dispersed due to the small-scale diffusivity. However, some researchers still try
to study the coherent structures even far away from the jet exit. In this case
only a sort of statistical coherent structure is depicted and characterized.
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4.2. The axisymmetric swirling jet

The near field of a non-swirling jet is mainly driven by instabilities or turbulent
mixing and the pressure plays a minor role. However, when a tangential veloc-
ity component is superimposed on the axial one in a circular jet, both radial
and axial pressure gradients are generated. These gradients may significantly
influence the flow changing the geometry, the evolution and the interactions
between the vortical structures.

For swirling jets different flow regimes may be identified depending on
the degree of swirl present in the jet. For low swirl numbers (i.e. when the
maximum tangential velocity is of the order of 50% or less of the axial centreline
velocity) the jet behaves in a similar way as for the non-swirling case, even
though some modification in the mean and fluctuating velocity distributions,
jet width or spreading are present. Some changes in the dynamics of the large
vortical structures are also present. However, when the swirl becomes strong
(i.e. when the tangential velocity becomes larger than the axial velocity), the
adverse axial pressure may be sufficiently large to establish a reversed flow on
the jet axis and a complete different scenario is present. This is usually called
the vortex breakdown regime. In between these two regimes an intermediate
regime is established. The behaviour of the jet in this case is the results of
complicated interactions between modes, which are typical of axisymmetric
jets and rotating flows.

4.2.1. Definition of the swirl number

In general, the Reynolds number for an axisymmetric jet is based on the diame-
ter of the nozzle and on the axial velocity at the centreline or the bulk velocity.
On the other hand the definition of the swirl number varies between different
studies. A common way is to express the swirl number as the ratio between
the fluxes of the tangential and axial momentum (Sθx, see eq. 2.24). However,
such a measure means that the velocity profiles of both the streamwise and
azimuthal velocities need to be measured accurately to allow the integration
across the jet orifice. This is in some cases not possible nor practical and other
measures have been suggested by various researchers.

Chigier & Chervinsky (1967) proposed that Sθx could be determined as the
ratio between the azimuthal velocity maximum and the axial velocity maximum
at the orifice, whereas Billant et al. (1998) used a swirl number based on the
ratio between the azimuthal velocity measured at half the radius of the nozzle
and the centreline axial velocity at about one diameter downstream the jet
outlet. It has also been shown (Farokhi et al. 1988) that for some cases the
measure Sθx is inappropriate to characterize the vortex breakdown since two
jets with different velocity profiles can still have the same swirl number but
different development of the flow field. In the present work, however, there
exist natural outer parameters that can be used to determine a swirl number,
namely as the ratio between the azimuthal velocity at the pipe wall (maximum
azimuthal velocity) and the mean bulk axial velocity (see eq. 2.16).
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Figure 4.2. Schematic of six different methods to genearte
a swirling jet. A) Rotating pipe, B) Rotating honeycomb, C)
Tangential slots, D) Tangential nozzles, E) Deflecting vanes,
F) Coil insert.

4.2.2. Swirl generation techniques

There are many reported experiments on swirling jets, however the methods to
generate the swirl differ, which also means that the outlet velocity distribution
will vary between different experiments. In the following we will describe some
of these methods which also are sketched in figure 4.2.

4.2.2.1. Rotating methods

In the present work we use a long, axially rotating pipe to estabish the swirling
flow, which is the same principle as that used by Rose (1962) and Pratte &
Keffer (1972). Rose (1962) used a pipe with an L/D =100 and assumed that
the flow was in solid body rotation at the outlet, whereas Pratte & Keffer
(1972) used a somewhat shorter pipe in their experiment. In that case they
used a flow divider at the inlet which brought an azimuthal component to the
flow. From the foregoing section we are now aware that only a laminar pipe
flow will have a solid body rotation, whereas a turbulent rotating pipe flow will
not, even if the pipe was infinitely long. However, if the pipe is sufficiently long,
this is probably the method for which the resulting flow is most independent
on the individual set-up.
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Komori & Ueda (1985) adopted a similar technique adding a convergent
nozzle to the rotating pipe. However in this case the azimuthal and axial
velocity components will be affected differently by the contraction. From an
inviscid analysis one obtains that the axial velocity will increase in proportion
to the contraction ratio (CR) whereas the azimuthal only as the square root
of CR. In reality also the detailed geometry of the contraction will play a role
and therefore different set-ups will give different outlet profiles.

Billant et al. (1998) and Loiseleux & Chomaz (2003) used a motor driven,
rotating honeycomb before a contraction nozzle. In their case the Reynolds
number is low and the honeycomb ensures a laminar flow with solid body
rotation. However when the flow goes through the contraction it is distorted
and the axial velocity becomes pointed at the centre and the flow does not
seem to be in solid body rotation.

4.2.2.2. Secondary flow injection

A different technique is to inject fluid tangetially in the pipe section. Chigier
& Chervinsky (1967) utilized tangential slots in a mixing chamber set before
the nozzle where a tangential flow was supplied to the main axial flow. The
regulation of the flow field was made by varying the relative quantities of axial
and tangential air.

A similar principle was used by Farokhi et al. (1988) who instead introduced
the flow inside the pipe through concentric manifold rings and elbow nozzles
upstream a bell-mouth section driving the air to the nozzle exit. Also here the
swirl rate can be set by controlling the proportion of axial to tangential air.

4.2.2.3. Passive methods

A passive method to introduce swirl is through a swirl generator with annular
vanes that deflect the flow before the nozzle exit (see e.g. Sislian & Cusworth
1986; Panda & McLaughlin 1994; Lilley 1999). In this case the ratio between
the axial and the swirl components depends mainly on the tilting angle of the
blades.

Another possibility is to use a coil insert mounted at the wall to impose
the swirl component (see for instance Rahai & Wong 2001). Also in this case
the flow depends on the geometrical parameters of the coil.

4.2.3. Swirling jet instability

The spatial and temporal instability of a swirling jet has been investigated
both experimentally and theoretically. Several analytical investigations have
been performed in order to find the linear stability of different combination of
axial velocity profiles and a rotational motion. In this type of flow the Kelvin–
Helmoltz and the centrifugal instabilities may be present simultaneously since,
in addition to the velocity gradient, the shear layer experiences a radial pressure
gradient due to the azimuthal component of velocity.
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Similarly to the Kelvin-Helmoltz (inviscid) instability criterion due the
shear layer, a criterion for the centrifugal instability can be introduced. The
following relation (Rayleigh 1916; Synge 1933) gives necessary and sufficient
condition for the onset of the axisymmetric mode:

d

dr
(rV )2 < 0 (4.1)

This means that the circulation must decrease with increasing radial dis-
tance. Other criteria taking into account an axial flow both for axisymmetric
and helical modes have also been proposed (see e.g. Leibovich & Stewartson
1983; Loiseleux & Chomaz 2003).

Lessen et al. (1974) studied the temporal instability of a Batchelor vortex
(see section 2.1.3) for different values of a swirl parameter related to the relative
intensity of the axial and azimuthal velocities. Viscosity was also added in a
following study (Lessen & Paillet 1974; Khorrami 1995; Mayer & Powell 1992).
However this model was not adequate to describe the instability of a swirling
jet since the axisymmetric mode was found to be always stable.

A more realistic flow model was studied by Martin & Meiburg (1994), for
which there is a jump both in the azimuthal and streamwsie velocity at the jet
periphery. They concluded that a centrifugally stable jet may be destabilzed
by Kelvin-Helmholtz waves which in their model originate from the jump in
the azimuthal velocity. In another study Loiseleux et al. (1998) investigated
the stability of a Rankine vortex (see section 2.1.3) with an added plug flow. In
contrast to the Batchelor vortex this type of flow is unstable to axisymmetric
disturbances. Moreover, the swirl breaks the symmetry between negative and
positive helical modes, which is a typical characteristic of a non-swirling jet. In
their work they also studied the absolute/convective nature of the instability.

Absolute instability in swirling flows has been analyzed by Lim & Redekopp
(1998) and Michalke (1999). They showed that the tendency towards absolute
instability is increased when the shear layer is centrifugally unstable.

An experimental study of the Kelvin-Helmoltz instability in a swirling jet
was performed by Panda & McLaughlin (1994). Their analysis is concentrated
to high swirl numbers (close to the breakdown) and they conclude that swirl
tends to reduce the amplification of the unstable modes.

Loiseleux & Chomaz (2003) made a well-detailed experimental analysis on
the instability of swirling jet and found three different flow regimes for swirl
numbers below that for which vortex breakdown occurs. They used the same
experimental set-up as that of Billant et al. (1998). For small swirl numbers the
rotation does not affect the jet column mode and that case behaves similarly to
the non-swirling case. As the swirl number increases the amplitude of this mode
decreases and instead a helical mode grows. Moreover, a different secondary
instability mechanism is set. Co-rotating streamwise vortices are formed in
the braids, which connects the rings. In the intermediate swirl range these
two instability mechanisms compete against each other. This scenario becomes
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more and more complicated when the swirl number is increased. Just before
the breakdown strong interactions between azimuthal waves and ring vortices
are observed.

Numerical studies concerning the analysis of non-linear axisymmetric and
three-dimensional vorticity dynamics in a swirling jet model have been per-
formed by Martin & Meiburg (1998). They used a vortex filament technique to
perform a numerical simulation of the non-linear evolution of the flow, whereas
Hu et al. (2001) used DNS to study a temporally evolving swirling jet near the
exit under axisymmetric and azimuthal disturbances.

4.2.4. Studies of turbulent jets at moderate swirl numbers

Most of the early analysis of swirling jets are based on experimental works,
mainly focused on measuring mean profiles or turbulent transport properties,
even though some theoretical works concerning laminar swirling jets are also
reported in the literature. In one of these first investigations, Rose (1962)
showed that even a weak swirl could radically change the character of the
radial motion in the jet.

An early work by Chigier & Chervinsky (1967) shows that approximately
at 10 diameters from the jet exit the influence of the rotation becomes small.
An attempt to theoretically describe the flow based on the integration of the
Reynolds equations is also shown. Good agreement is found giving the possi-
bility to formulate semi-empirical equations, which, when calibrated with the
experimental results, give the complete description of the mean velocity and
pressure fields. However, the role of the initial conditions is not clear, viz. exit
velocity profile, turbulence level, and status of the boundary layers before the
jet exit.

In this period most of the experimental works (like for instance Pratte &
Keffer 1972) were devoted to the study of specific configuration of swirled jets.
Nevertheless, some general conclusions could be assessed. For instance it was
shown that the entrainment and the spreading was increasing with respect to
the non-swirling jet.

Park & Shin (1993) showed experimentally that for swirl number less than
0.6 the entrainment is independent of the Reynolds number increasing non-
linearly with the downstream region. For S >0.6 the entrainment increases and
becomes higher with Re probably due to a precessing vortex core phenomenon.

In order to find similarity in both the mean and the fluctuating components,
Farokhi et al. (1988) showed that in the near field the mean velocity profiles
strictly depend on the initial conditions. The sizes of the vortex core and the
tangential velocity distribution seem to be the main controlling parameters. In
a later study, Farokhi et al. (1992) considered the excitability of a swirling jet
in the subsonic region. They found that periodic coherent vortices could be
generated by plane-wave acoustic excitation. In contrast to non-swirling jets
they found that vortex pairing is not an important mechanism for the spreading
of a swirling jet.
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In the presence of strong swirl, the decrease of the static pressure generated
by the centrifugal forces may induce a reverse flow and the rapid entrainment
in the region immediately after the jet exit (x/D <1). Strong differences
appear also in the fluctuating components. Komori & Ueda (1985) showed
that the turbulent kinetic energy attains a maximum in this region, due to the
rapid mixing. Conversely, in a weak swirling or non-swirling jet the turbulent
mixing is weak in the potential core region and the turbulent kinetic energy
attains its maximum further downstream. Beyond the recirculating region
the turbulence decays rapidly and becomes rather isotropic due to the strong
mixing. More extensive measurements of highly swirling flows are made by
Sislian & Cusworth (1986) and by Metha et al. (1991). They also show that
the maximum turbulence is produced in the shear layer at the edge immediately
after the exit.

More recently McIlwain & Pollard (2002) studied the interaction between
coherent structures in a mildly swirling jet. Time-dependent evolution and the
interaction of the structures are well documented.

4.2.5. The vortex breakdown

The vortex breakdown phenomenon has attracted considerable interest and
Billant et al. (1998) give an up to date review of the literature on vortex break-
down in swirling jets. The vortex breakdown appears as an abrupt deceleration
of the flow near the axis with the settling of a stagnation point generated by
the axial increase of the pressure that is able to bring the axial velocity to zero.
In experiments four different breakdown configurations have been observed:
bubble, cone, asymmetric bubble and asymmetric cone. Here we will not go
into any more detail since for the part of the the present work which deals with
swirling jets ther swirl rate are below that for which vortex breakdown occurs.



CHAPTER 5

Experimental facility and setup

For the present work a new experimental facility has been designed and taken
into operation at the Fluid Physics Laboratory of KTH Mechanics. The design
philosophy has been to obtain a swirling jet flow with well defined characteris-
tics which are independent of the specific geometry, i.e. the flow characteristics
should not depend on the specific geomtry of swirl generators etc. To achieve
this goal it was decided to use a long rotating pipe in order to obtain a fully
developed turbulent pipe flow both with and without swirl, such that it would
be independent of the inlet conditions. The Reynolds number of the study was
decided to be of the order of 20 · 103 with possible variations of ±50%. This
means that the Reynolds number is high enough not to be influenced by tran-
sitional, intermittent structures. At the onset of the study, the swirl number of
interest was decided to vary from zero (no rotation) up to 0.5 but it was later
extended up to a swirl number of 1.5 for the pipe flow studies.

The length (L) of the pipe in terms of pipe diameters (L/D) is one of
the crucial design parameters in order to obtain a fully developed flow. The
relation between the Reynolds number (Re) and the swirl number (S) can be
expressed as

S ·Re =
ωD2

2ν

Since we have decided to use air as the flow medium, and hence the value of ν is
fixed, the desirable Reynolds and swirl number ranges then set certain limits on
the pipe diameter and pipe angular velocity. Owing to lab space restrictions
and the possibility to obtain pipes in one piece of good quality (in terms of
roundness and surface quality) it was decided to use a pipe of six meter length
with a diameter of 60 mm. This gives an L/D-ratio of 100 which was deemed
sufficiently long to give a fully developed flow both with and without rotation.
A rotational speed of about 13 revolutions per second is needed in order to
obtain a swirl number of 0.5 at Re = 20 · 103.

25



26 5. EXPERIMENTAL FACILITY AND SETUP

K J I H F

A B C

E D

G

Figure 5.1. Schematic of the experimental setup. A) Fan, B)
Flow meter, C) Settling chamber, D) Stagnation chamber, E)
Coupling-box between rotating and stationary pipe, F) Hon-
eycomb fixed to the pipe, G) DC-motor, H) Ball bearings, I)
Rotating pipe with a length of 6 m and inner diameter of 60
mm, J) Aluminum plate, K) Pipe outlet.

5.1. Experimental apparatus

Figure 5.1 shows a schematic of the apparatus. The air comes from a centrifugal
fan with a throttle at the inlet to allow flow adjustment, passes a flow orifice
meter and is conveyed into a settling chamber to reduce fluctuations from the
upstream flow system. From the settling chamber three pipes run radially into
a cylindrical stagnation chamber distributing the air evenly. The flow passes an
annular honeycomb to reduce lateral velocity components and, to further reduce
remaining pressure fluctuations, one end of the cylindric settling chamber is
covered with an elastic membrane. Finally, the air leaves the chamber through
an axially aligned stationary pipe at the centre of the chamber. To achieve a
symmetric smooth inflow the pipe is provided with an inlet funnel. The length
of this pipe is 1 m and it is directly connected by a sealed coupling box to
which on the other side the 6 m long rotaing pipe is connected.

The rotating pipe is made of seamless steel, has a wall thickness of 5 mm
and an inner diameter of 60 mm. The inner surface is honed and the surface
roughness is less than 5 micron, according to manufacturer specifications. The
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pipe is mounted inside a rigid triangular shaped framework with five ball bear-
ings supports. The rotation is obtained via a belt driven by an electric DC
motor with a feedback circuit. This ensures a constant rotation rate up to
the maximum rotational speed of 1800 rpm. The drive is located close to the
upstream end of the pipe. The structure has been statically and dynamically
balanced and a test for vibrations has been performed for the rotation rates
used during the experiments.

In order to bring the incoming air into rotation, a twelve centimeter long
honeycomb is placed inside the rotating pipe immediately downstream of the
inlet. The honeycomb consists of 5 mm diameter drinking straws. Of course it
is also located inside the pipe in the cases when the rotation speed is zero.

For most of the studies the outlet of the pipe is at the centre of a stationary
rectangular (80 cm × 100 cm) flat aluminium plate of 5 mm thickness. For
the two component LDV measurement the flat plate has been replaced by a
smaller annular plate of 30 cm in diameter in order to have optical access close
to the pipe outlet. The pipe end is edged and mounted in such a way that it is
flush with the plate surface. The rotating surface at the pipe outlet is limited
to a ring of 0.5 mm in thickness.

The flow emerges horizontally into the ambient still air 1.1 m above the
floor and far away from any other physical boundaries in the laboratory.

The test pipe was originally designed for moderate rotation rates, however
when the experiments were underway it was also decided to go to higher swirl
rates. A complication is that for high rotation rates the outcoming jet under-
goes vortex breakdown and this also affects the flow near the exit of the pipe. In
order to be able to perform measurements of the pipe flow itself also at higher
rotation rates a glass section was added to the end of the steel pipe. For this
case the large end plate was removed and the glass pipe was mounted to the
steel pipe via an aluminum coupling. The glass section was 0.2 m long, with
an inner diameter of 60.3 mm and a wall thickness of 2.2 mm. The glass pipe
hence has a slightly larger diameter than the steel pipe which gives a step of
approximately 0.15 mm at the connection. These measurements were however
done only for a Reynolds number of 12000 which gives a step height of less
than two viscous length units.

As mentioned above an orifice flow meter is used to adjust and monitor
the pipe flow rate. The orifice is located after 1.0 m of a 1.65 m long, 40 mm
diameter pipe and the orifice has a diameter of 28 mm. The pressure difference
across the orifice is measured by a calibrated pressure transducer (MPX10DP).
The flow meter curve as shown in figure 5.2 directly shows the transducer
voltage as function of the bulk velocity in the pipe and shows the expected
near parabolic shape. The bulk velocity has been calculated via integration
of the mean velocity profile at the pipe exit using data obtained from single
hot-wire probe measurements in the non-swirling flow. The accuracy of such a
calculation is hampered by the weightining by the radius, which makes it quite
sensitive to measurement errors close to the pipe wall. However, this is of no
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Y = K0 + K1 x + K2 x2

K0 = -2.602 ± 0.0763
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K2 = 0.092202 ± 0.00397

Figure 5.2. Pressure transducer calibration curve: the mean
bulk velocity at the pipe exit is plotted versus the voltage from
the pressure transducer. The pressure transducer has a linear
response between pressure and voltage

major concern here since the main purpose of the flow meter is to monitor and
ensure constant flow rates from day to day and to adjust the fan throttle to
obtain a constant flow rate when varying the swirl rate.

A fully developed pipe flow in the non-rotating regime for the present Rey-
nolds number range should be obtained for an L/D-ratio larger than typically
60. In the present study we investigated this in an indirect way by partially
obstructing the honeycomb inserted at the inlet end of the rotating pipe with
some plugs. No reminiscences of the plugs could be noticed in the flow which
indicates that the flow has reached a fully developed turbulent state.

5.2. Measurement techniques

The velocity in the pipe and the jet was measured with Laser Doppler Velocime-
try (LDV), hot-wire anemometry and stereoscopic Particle Image Velocimetry
(PIV). In a first stage the LDV system was a one component system, whereas
for the hot-wire anemometry both single and X-wires were used. The advan-
tage with the hot wire is both that two components (the streamwise and either
the azimuthal or the radial components, depending on the X-wire orientation)
could be measured simultaneously as well as that continuous time signals are
obtained. The main problems are the large velocity gradients near the pipe
wall and the large flow angles (and even backflow) in the outer part of the
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Figure 5.3. The LDV system in the inclined 12◦ configura-
tion to measured at the jet exit.

jet which can reach values where the hot-wire calibration is invalid. The LDV
measurements on the other hand can handle these situations, however the one-
component system could not generate simultaneous signals of the two velocity
components. A two-components LDV system has been used in a later set of
experiments in order to provide simultaneous measurements of two velocity
and their Reynolds stress. The measurements has been furthermore validated
with the use of a stereoscopic PIV system able to catch, at the same time, all
the three components of the velocity and to provide an instantaneous picture
of the flow field.

In the following the present applications of the measurements techniques
are described in details.

5.2.1. Laser Doppler Velocimetry

Laser Doppler Velocimetry (LDV) has been used to obtain mean and fluctuat-
ing velocity components in all three (streamwise, azimuthal and radial) direc-
tions. For the present experiment LDV has certain advantages as compared to
hot-wire anemometry. For instance in the rotating flow the flow angles with
respect to the streamwise direction can be fairly large which may make the use
of hot wires unaccurate or even impossible and in the outer parts of the jet
even backflow may occur. Rotating flows may also be sensitive to disturbances
and therefore a nonintrusive measurement technique is preferable.

The LDV system is a single component FlowLite system from DANTEC
comprising a single velocity component backscatter fibre optics probe with a
beam expander, a 310 mm lens and a signal analyzer of correlation type. The
source is a He-Ne laser of 10 mW emitting light with a wave length of 632.8 nm.
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The system is equipped with a Bragg cell providing a 40 MHz frequency shift
to be able to determine the flow direction. The LDV is calibrated by means
of a rotating wheel with a well known angular velocity. The fibre probe head
is mounted on a 2D traversing system driven by a DC-motor with encoder in
each direction. The optics can be rotated 90◦ along its optical axis to measure
the second velocity component. The measuring volume, an elipsoide, has the
dimensions: 0.81×0.09×0.09 mm3 with its main axis along the optical axis.
Most of the measurements were carried out with the optical axis perpendicular
to the pipe axis. Therefore, axial and azimuthal velocities could be measured
directly.

However, in the close vicinity of the pipe orifice, due to the presence of
the large aluminum plate, the inclination angle was changed 12◦ in order to
measure both velocity components at the outlet. The data at the pipe outlet do
not cover the whole pipe diameter because, due to the inclination of the LDV
system, scattered light saturated the photo detector when the laser beams
approach the inner wall surface of the steel pipe. Figure 5.3 shows the set-up
for LDV-measurements with the laser head on the traversing system. It also
shows the pipe exit in the large rectangular end plate.

The data rate, which depends on the number of particles crossing the
measurement volume, varied depending on the measurement position with the
highest rate in the central region. The sampling was stopped either at 12000
samples or after 240 s. To acquire statistically independent samples the sam-
pling rate was limited to 100 Hz (estimated as D/Ub).

The particles used for the LDV measurements are small droplets of con-
densed smoke of polyethylenglycol. They are injected into the air at the inlet
of the centrifugal fan. No stratification of the particles in the outlet jet was
observed, not even at the highest swirl rates.

In the second part of the experimental investigation a second LDV com-
ponent, with the same geometrical characteristics as the above mentioned, has
been added. The wave length used for the second laser beam was 514.5 nm.
Both the LDV heads has been mounted on a 3D traversing system driven by
DC-motor with encoder in each spatial direction. The geometrical axis of the
LDV probes have been arranged in order to form a 90 degrees angle between
them and to cross each other in the waste of the beams. The geometrical plane
identified by the axis of the probes is set parallel to the flat plate standing at
the outlet of the pipe. With such configuration it has been possible to measure
simultaneously the radial and the azimuthal velocity component by traversing
the jet along the radial direction. Data were only acquired when simultaneous
signals were coming from both probes showing that the same particle is giving
rise to both signals. Furthermore, in order to reduce the measurement volume
and to assure a better quality of the signal, the photodetectors of the LDV
probes have been switched so that the photodetector mounted on one probe
was collecting the scattered light emitted by the other probe. For this set of
measurement the sampling was stopped at 20000 samples or after 400 s. The
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Figure 5.4. Schematic of the calibration jet setup. A) Fan,
B) Settling chamber with seven valves, C) Settling chamber
with two valves, D) Large stagnation chamber, E) Small stag-
nation chamber, F) Honeycomb, G) Sponge, H) Contraction,
J) Holder for the X-wire to enable angular calibration.

acquisition of statistically independent samples was guaranteed by setting a
dead-time of 10000 µs.

5.2.2. Hot-Wire Anemometry

Hot-wire measurements were mainly made with X-wire probes. These mea-
surements complement the LDV measurements, in that it provide two velocity
components simultaneously and time signals for spectral analysis. The X-wire
probes are made in house. The wire diameter is 2.5 µm and it is 1.3 mm long
and the distance between the wires is 1.5 mm giving a measurement volume of
about 1.1 mm in side length. The probes are calibrated in the potential core of
a small laminar top hat velocity profile air jet (the same device was used by Al-
fredsson & Johansson (1982), but with water) in a separate facility (figure 5.4)
operating with air at the same temperature. Figure 5.5 shows a photograph
of the calibration set-up with the hot-wire probe mounted on the device with
which the angle of attack can be changed manually during the calibration.

The calibration procedure was similar to the one used by Österlund (1999)
for which calibration points are obtained for a given set of velocities (typically
15 velocities) and probe inclinations (typical in intervals of 10 degrees, with
larger angles at low velocities, up to ± 40 degrees). The calibration function
is based on a 5th order polynomial approximation by least-squares fit of mean
velocity and angle of attack of the probe (figure 5.6). For each point during the
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Figure 5.5. Calibration jet device: the hot-wire is positioned
in the potential core of the laminar jet. The angle of attack is
regulated manually and the velocity of the jet air by a system
of valves.

calibration the sampling rate has been fixed at 4000 Hz and the measurement
performed for 30 seconds. The spectral analysis measurements in the swirling
and non-swirling jet used a sampling rate of 10000 Hz and had a duration of
130 seconds. The velocity profile measurements used a sampling rate of 4000
Hz and a duration of 40 seconds close to the pipe exit (x/D62) and a duration
of 60 seconds further downstream.

The velocity data obtained by the hot-wire technique are similar to the
LDV data (and also to the Pitot probe and the single-wire data used as test in
the non swirling case). In the presence of a large velocity gradient across the
X-probe (I.e. the two wires experience different mean velocities) the X-wire
data need an ”a posteriori” correction procedure similar to the one developed
by Talamelli et al. (2000) and used to correct hot-wire measurements in the
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Figure 5.6. Example of calibration plot for the X-wire probe.
The voltages from the two hot-wires identify the angle of attack
of the probe and the velocity.

near wall region of a boundary layer. To measure simultaneously the axial
and the azimuthal velocity components the X-wire probe is positioned with
the two wires perpendicular to the traversed diameter. This configuration, due
to the distance between the planes of the hot-wires, is particular sensitive to
the strong velocity gradient of the investigated flow. The correction procedure
make it possible to find out the mean velocity component from the measured
ones (Um and Vm) in an iterative way according to equations 5.1 and 5.2. ∆
represents the distance between the centres of the two wire but in this term it
is possible to include all the geometrical uncertainties of the probe position.

Um = U +
∆
2
∂V

∂r
+

1
2

(
∆
2

)2
∂2U

∂r2
+ · · · (5.1)

Vm = V +
∆
2
∂U

∂r
+

1
2

(
∆
2

)2
∂2V

∂r2
+ · · · (5.2)

Starting from a measurement with single hot-wire in a non swirling flow is
possible to calculate ∂U/∂r and, in the same flow Vm is measured with the X-
wire. Then, since in such a flow there is no mean azimuthal velocity component
(V=0), neglecting in a first approximation the second order terms in 5.2, it is
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possible to estimate ∆ that shows an almost constant value along the diameter
of the pipe. Knowing ∆ the correction is applied and the axial U and the
azimuthal V velocity component are calculated including also the second order
terms as shown in the equations.

5.2.3. Stereoscopic Particle Image Velocimetry

A stereoscopic PIV system has been adopted to investigate the 3D flow field.
A commercial software from La Vision (Davis 7.0) has been used for the stereo-
scopic calibration, the pre-processing, the processing and the post-processing
of the images. The setup consists of two high speed digital cameras Photron
Fastcam APX RS, CMOS sensor, which can catch images up to 250 kHz with
an internal memory module of 8 GB each, and a dual-head, high-repetition-
rate, diode-pumped Nd:YLF laser Pegasus PIV by New Wave with a maximum
frequency of 10 kHz featuring 10 mJ of 527 nm light output per cavity at 1kHz.
During the experiments the images are captured at a frequency of 3 kHz with
a resolution of 1024×1024 pixels at 10 bit using Nikon Nikkor 105 mm lenses.
In this way the flow field is temporally and spatially resolved. A Scheimpflug
system between lens and camera is needed to put on focus a plane not perpen-
dicular to the lens axis.

The particles used for the PIV are the same used during the LDV mea-
surements with the difference that, this time, the droplets of polyethylenglycol
are generated by an atomisator and not by a smoke generator so that they are
big enough to avoid peak locking problems in the images. Peak locking occurs
when the measured particle displacement is biased to integer pixel values so
that the velocity is underestimated or overestimated. Typically the particles
on the display should be two pixels size and clearly distinguishable. Particular
care has been dedicated to the choice of the thickness of the laser sheet in
the area of interest and the delay time between the two images forming the
pair taken from each camera: the movement of the particle has to be detected
distinctly to prevent peak locking effects in the velocity components.

The 3D calibration procedure is done with the help of a calibration plate
with a known geometry that has to be aligned with the laser sheet. In addition
a self calibration procedure included in the software and based on dewarped
images of the jet is used to correct the disarrangement between the calibration
plate and the laser sheet itself. In the specific case 100 pair of dewarped PIV
images have been taken in consideration. The stereoscopic PIV has been used
in two configurations as shown in figure 5.7: one to visualise the flow in a cross
section of the jet at 6 diameters downstream from the pipe outlet and a second
one to inspect the axial section in a region approximately between 5 and 7
diameters downstream. In both the cases the cameras are positioned mirrored
respect to the laser sheet and in order to see a forward-forward scattered light.
The averaged data presented in this work are calculated over 3072 images
distributed equally in time to cover 122.88 seconds.
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Figure 5.7. The configurations of the stereoscopic PIV.

Figure 5.8. The stereoscopic PIV setup. Seen in the fore-
ground are the two cameras and, on the floor, the pulsed laser
is seen. The light spot in the centre of the dark plate is the
smoke filled jet enlightened by the laser sheet.
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Figure 5.9. Flow visualization: the laser sheet cuts the
swirling jet normally to the pipe axis at one diameter from
the exit, seen as the dark hole in the centre. The two light
beams are the LDV lasers that identify the centre of the jet
one diameter downstream.

5.2.4. Flow visualization

A few flow visualization photographs were taken of the jet development. The
smoke used for the visualization is the same as applied for LDV measurements
(polyethylenglycol). The flow was illuminated with a laser sheet from a 2 W
Argon-Ion laser source and the photographs were taken by a digital camera
(Minolta DiMage 7i).



CHAPTER 6

Numerical method and procedure

A direct numerical simulation code developed and described by Verzicco &
Orlandi (1996a) has been used both to supplement the rotating pipe flow data
and to obtain comparative results for the swirling jet. Orlandi & Fatica (1997)
has previously used the code to simulate rotating pipe flow at Re =5000 and
various swirl numbers.

The code is written to solve the Navier-Stokes equations in a cylindrical
coordinate system with the help of a staggered grid. The equations are dis-
cretized in order to apply a finite difference method and the time advancement
is based on a fractional step scheme. it is written in such a form that the mass
flow is conserved.

This chapter gives an overview of the numerical method used in the code.

6.1. Equations in cylindrical coordinate system

As already stated, the physics of the specific flow suggests the coordinate sys-
tem to be adopted. The investigated pipe flow imposes the use of a cylindrical
grid and, as a consequence, also the governing equations have to be expressed
in this formulation. The problem in solving the differential partial equations
ruling the velocity and pressure field in cylindrical coordinates is due to the
singularity at the axis r = 0. The philosophy of the method developed by Verz-
icco & Orlandi (1996a) is to maintain a formulation as close as possible to the
Cartesian coordinate system. The singularity is treated with the introduction
of a staggered grid for the velocity components and the variable qr = rw (where
w is the radial velocity component as already defined). Although not neces-
sary Orlandi & Fatica (1997) made a similar transformation of the azimuthal
component since it was found to give better accuracy.

The following new variables are hence used in the formulation of the equa-
tions

qθ = rv

qr = rw (6.1)
qx = u

37
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In a cylindrical coordinate system with a reference frame rotating with the
pipe wall, the governing equations using these variables become:

Continuity equation:

∂qr
∂r

+
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= 0 (6.2)

Navier-Stokes equations:
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(6.5)

The simulation is run at a constant mass flow, that means at a constant
bulk velocity Ub.

6.2. Numerical method

6.2.1. The grid

An important part in the numerical solution of the partial differential eqs. (6.2)
– (6.5) is the determination of a suitable grid. The geometry and physics of the
specific problem usually suggests a suitable shape of the grid itself: through
experimental or theoretical works it is known or estimated that certain regions
of the investigated field suffer high gradients of the variables. Such regions
usually have the biggest demands regarding the resolution. Therefore an uneven
grid is usually preferred in such directions.

For the pipe flow simulations the mean flow is homogeneous in the stream-
wise and azimuthal direction therefore the spacing of the grid points in these
directions are uniform. The homogeneity also suggest the use of periodic bound-
ary conditions in these two directions. The length of the computational domain
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should be large enough to allow the growth of the structures present in the in-
vestigated application, i.e. correlations in the streamwise direction should go
to zero within the domain itself. In the radial directions we know from the
physics of the problem that large gradients are expected near the pipe wall and
therefore a fine grid resolution near the wall is important.

A coordinate transformation permit to pass from a physical grid coordinate
xi to a computational grid coordinate ξi through the transfomation

xi = f(ξi). (6.6)

The first and second derivatives can hence be calculated as (no summation
over the indices)

∂q

∂xi
=

dξi
dxi

∂q

∂ξi
(6.7)

∂2q

∂x2
i

=
d

dξi

( dξi
dxi

∂q

∂ξi

) dξi
dxi

(6.8)

Particularly useful in the finite difference method is a coordinate trans-
formation based on tanh that allows to stretch or to cluster the grid in the
interested regions according to the physics of the flow. The computational grid
ξ has the range 0 6 ξ 6 1 while the physical grid x is related to the geometry of
the problem. In the case of the investigated pipe flow the 3D grid is distributed
in a cylindrical coordinate system. The physics of the flow field suggests to use
a uniform grid in the axial and in the azimuthal directions xi = ∆xiξi (where
∆x = Lpipe/Npoints in the axial direction and ∆x = 2π/Npoints in the az-
imuthal direction). In the radial direction instead the strong shear flow due
to the presence of the pipe wall imposes a refinement of the radial grid in this
region. The chosen coordinate transformation (6.9) allows to have a clustering
of the grid points close to the wall and a stretching at the centre of the pipe.

r =
tanh 2ξ
tanh 2

(6.9)

Figure 6.1 shows as the 50% of the computational grid points ξ are used to
cover the last 20% of the physical coordinate r close to the wall. In the figure
the physical coordinate has been normalised with the radius of the pipe so that
0 6 r 6 1.

6.2.2. Grid resolution

Table 6.1 shows the grid resolution and pipe length used in the pipe flow sim-
ulations.

The simulations were done at the Department of Mechanics and Aeronau-
tics at ”La Sapienza” in Rome (2004) and typical computational times to reach
a fully developed rotating pipe flow was 25 hours.
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Figure 6.1. Coordinate transformation: computational grid
versus physical grid. The centreline of the pipe is at r, ξ=0

Re S L/R Nx Nθ Nr
0

5000 0.1 2.55π 96 96 96
0.5

Table 6.1. Grid resolutions used for the pipe flow simulations.

6.2.3. Treatment of the pipe axis (r=0)

In order to solve the problem of the singularity at the axis (r = 0) a staggered
grid has been introduced. The three velocity components and the pressure are
defined and evaluated at different positions of the computational cell. Only the
radial component qr is defined at the axis where it is known (qr|r=0 = 0) while
the azimuthal, the axial velocity and the pressure are defined respectively at
the side face, at the lower face and at the centre of each cell. For a detailed
description the reader is referred to Verzicco & Orlandi (1996a).

6.2.4. Time-stepping

The initial profile for the simulation is a parabolic profile, laminar flow, with a
superimposed noise. The solution of the system of equations is performed with
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the fractional step method meaning that the advancement in time is divided
into two sub-steps with the introduction of an intermediate velocity field û.
Starting from the time t = n where all is known the solution at the time
t = n+ 1 is derived passing through the intermediate step at the time t = k.

In our case a third-order low-storage Runge-Kutta/Crank-Nicolson scheme
is used. With this scheme the stability limit given by the CFL-condition is
CFL= u∆t

∆x 6
√

3. Here u is the bulk velocity and ∆x the streamwise coordinate
spacing. All the presented simulations have been run at a constant CFL equal
to 1.7.

For the pipe flow simulation the pressure drop is monitored and when it
becomes constant in time the flow is considered fully developed.

6.3. The jet simulation

The same code used to study the rotating pipe flow has been modified to
investigate the temporal evolution of a swirling jet. The initial conditions
are obtained from a fully developed pipe flow simulation with the desired swirl
number. The jet development is simulated by enlarging (in the radial direction)
the computational domain, extending it out to r = 4. The initial conditions
are set by the pipe velocity field in the region 0 6 r 6 1 and by imposing
zero to all the velocity components in the rest of the computational region.
Furthermore the free-slip condition has been chosen at r = 4. It is worthy to
note that the code preserves the two periodic directions, the azimuthal and the
axial one, and, due to this fact, is not able to predict a non-zero mean radial
component of velocity. Moreover the code requires that the mass be conserved
so the jet does not present any sort of entrainment. The jet is therefore able to
expand only due to diffusion. However, for a free jet the mass flow increases in
order to conserve the streamwise as well as the angular momentum (which are
the quantities that are conserved: see eqs. (2.22) and (2.23) In the simulation
instead, the axial momentum and the angular momentum are not conserved
but they decrease as the jet moves downstream. The results must be then read
with this limitations in mind. The simulation is able to give qualitative results
but not qualitative ones.

It should be mentioned that for the jet simulations the mean flow is chang-
ing with time so only spatial averaging for each time step can be done, i.e.
averages can be made in the azimuthal direction along constant radii and in
the streamwise direction. This means that averages are less accurate for this
case than for the pipe flow where averages both in space and time could be
taken. A possible solution for the jet flow would be to do several simulations
with different initial fields and thereafter making ensemble averages. However
only one simulation for each case where performed here.

The grid for the jet has been clustered in the neighborhood of the pipe
radius r ≈ 1 since in this part the flow present high velocity gradients in
the axial and azimuthal direction while it has been stretched elsewhere. The



42 6. NUMERICAL METHOD AND PROCEDURE

1.00

0.75

0.50

0.25

0.00

ξ

4.03.53.02.52.01.51.00.50.0
r

Figure 6.2. Coordinate transformation: physical grid versus
computational grid.

coordinate transformation used for this purpose is described by the following
expression:

x(ξ) = x1(ξ)x2(ξ) (6.10)

where

x1(ξ) =
Rmed
Rext

tanh 3ξ
tanh 3ξR

(6.11)

(6.12)

x2(ξ) =
1

x1(1)
+
(

1− 1
x1(1)

)
tanh 9.5(ξ − 1)
tanh 9.5(ξR − 1)

. (6.13)

Rext is set equal to 4 and represents the radius of the computational domain,
Rmed indicates the region where to apply the clustering of the grid, in this case
1, while ξR represents the fraction of the computational points to be used in
the inner region. In the simulation ξR = 2

3 has been used that means 2
3 of the

computational points are used in the region 0 6 r 6 1 and 1
3 in the region

1 < r 6 4 as it is shown in figure 6.2.
Table 6.2 gives the resolution for the various jet flow simulations.

Re S L/R Nx Nθ Nr
0

10000 0.2 2.55π 128 128 192
0.5

Table 6.2. Grid resolutions used for the jet flow simulations.



CHAPTER 7

Results for rotating pipe flow

In this chapter the results obtained for the axially rotating pipe flow are pre-
sented. The measurements in the rotating pipe complement and extend previ-
ous measurements of rotating pipe flow and the data are compared with other
measurements and simulations. They are also used in the context of some re-
cent scaling ideas. An important part of this investigation is to provide accurate
exit conditions for the jet flow.

The experiments were carried out at three Reynolds number, Re= 12000,
24000, 33500 for the swirl numbers, S= 0, 0.2, 0.5, 1.0, 1.5 (the two highest
S values were only measured for Re=12000). Measurements were taken both
with hot-wire anemometry and LDV. For the two highest swirl numbers the
measurements were made inside the glass extension of the pipe, whereas for
all other measurements both the hot-wire and the LDV measurement volume
were located at the pipe exit. However in the following mainly the LDV-data
will be shown, although most measurements were also taken with the X-wire.
In general one may say that the agreement between the two metods is good,
however the hot-wire measurements was slightly affected by temperature drift
and therefore not as accurate in absolute terms as the LDV data.

In the figures a radial traverse of the measurement position corresponds to
a horizontal traverse in the laboratory frame of reference. Although the radius
r by definition is always positive we consider negative the values of r on the
left-hand side of the jet (looking from upstream).

In addition to the experimental results also DNS data are provided for
Reynolds numbers Re= 5000 and 10000 at swirl numbers S=0, 0.1 and 0.5.
Due to time limitations during the simulations only the case for Re=5000 has
been carefully investigated.

7.1. The flow field

7.1.1. Mean flow data

We start by showing the mean streamwise velocity profiles for all three Reynolds
numbers at S=0 and 0.5 in figure 7.1. All data have been normalized with the
bulk velocity (Ub), which is taken from the flow meter measurements. No
data could be obtained close to the wall at the right hand side (r/R >0.9)
of the set up since reflections of the laser light in the pipe wall disturbed the
measurements. As can be seen there is not a very large difference between

43
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Figure 7.1. Streamwise mean velocity measured at the pipe
outlet for three Reynolds numbers (Re =12000, 24000, 35000)
and two swirl numbers S=0, 0.5.

the three Reynolds numbers, the non-rotating cases fall on top of each other
and also the ones for S=0.5 are close, however they show a slight systematic
variation. The most obvious result in the figure is however that the rotation
cases show a more peaked velocity profile, i.e. the centreline velocity is higher,
showing the tendency previously observed that the profile tends towards a
parabolic shape. One would expect a slightly larger effect of the swirl for
low Reynolds numbers, which is the trend observed here. The increase of the
velocity at the centreline with rotation gives a corresponding decrease of the
velocity close to the wall. This causes a decrease of the wall friction hence
decreasing the overall pressure losses of the set-up. During the experiments
the upstream valves were adjusted to keep the flow rate and hence Reynolds
number constant when the swirl was increased.

Figure 7.2 demonstrates the good agreement between DNS and LDV data.
Here only the negative side of the radius has been plotted due to the symmetry
of the profile. The axial velocity is normalised with the bulk velocity. The
Reynolds number used in the experiment is slightly higher compared to the
simulation and, according to the experimental observations, a higher Re results,
at a fixed swirl number, in a lower normalised velocity at the centreline and
higher close to the pipe wall as shown in the picture. In figure 7.3 the same
data set is normalised with the axial velocity at the centreline velocity showing
the higher Reynolds number used in the experiments.
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The same scenario displayed before in figure 7.2 for the LDV data is now
shown in figure 7.4 for the simulations. The Reynolds number has been fixed at
Re=5000 while the swirl number has been changed from S=0, no rotation, to
S=0.1 and S=0.5. As previously established by the experiments, the increment
of the swirl number produces more peaked axial velocity profiles. The effect of
the low swirl number S=0.1 is very small on the axial velocity compared to the
non rotating case but the change is consistent with that at higher S. In the
same picture the LDV data for Re=12800 and S=0.5 are added for comparison
with the corresponding swirl number in the DNS.

When running the simulation a first check is done on the pressure drop ∂P
∂x

to make sure that it has reached a constant value before starting to use the data.
In order to prove that the simulations have reached a statistically convergent
solution not only for the mean values but also for the higher moments a check
on the Reynolds stresses has been done.

Figure 7.5 displays the verification applied to the axial-radial Reynolds
stress at S=0 and S=0.5 extracted directly from the u and w obtained from the
DNS as well as calculated with eq. (2.14). The very good agreement implies the
convergence of the DNS calculation even for the Reynolds stress and obviously
also for the friction velocity uτ . The case for S=0.1 is not presented in the
plot for sake of readability reasons but of course the data collapse between the
drawn ones. Furthermore, from the physical point of view, it has to be noted
that the rotation causes a decrement of the axial-radial Reynolds stress in most
of the pipe which is coupled to the increased velocity gradient (more peaked
profile).
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The mean azimuthal velocity is shown in figure 7.6 across a full diameter of
the pipe at S=0.5. As can be seen all three Reynolds numbers show a similar
distribution and seem to follow the parabolic curve very close. The same trend
is pictured by the DNS calculation in figure 7.7. Surprisingly the azimuthal ve-
locity, in contrast to the axial velocity, exhibits the same profile independently
of the swirl number and the Reynolds number adopted. Moreover the DNS is
able to catch the behaviour of the azimuthal component close to the pipe wall
where the experimental measurement techniques lack data. At a first sight, it
may be surprising that the mean flow field of a rotating pipe flow deviates from
solid body rotation, but as previously described, the difference as compared to
the non-rotating case is that the Reynolds stress vw 6= 0, which, as shown by
eq. (2.12), make the azimuthal profile deviate from the linear one. We can use
eq. (2.12) to determine the distribution of vw if the mean profile of V is known.
In particular, by assuming a parabolic velocity distribution

V (r)
V (R)

=
( r
R

)2

it is possible to integrate eq. (2.12) analytically to obtain

vw

U2
b

=
2S
Re

r

R
(7.1)

Equation (7.1) shows that the distribution of vw varies linearly with r if V
is parabolic. However, this expression is of course not valid near the wall,
since at the wall itself (r = R) both v and w have to be zero, and hence
vw =0. The DNS calculation shows that, close to the pipe wall, the azimuthal
velocity departs from the parabolic profile to approach the solid body rotation.
That a parabolic profile in V would lead to a linear distribution of vw was
first pointed out by Facciolo et al. (2003). Figure 7.8 shows, together with
the linear relationship, the scaled azimuthal-radial Reynolds stress from the
computation and from the experiments. As can be seen the overall agreement
is good although the scatter in the experimental data is fairly high. This will
be further discussed in chapter 9. Also the data of Speziale et al. (2000) shows
a near linear relation between vw and r. The behaviour of the Reynolds stress
explains the reason why, for a turbulent rotating pipe flow, the mean azimuthal
velocity always lags behind the solid body rotation as pointed in eq. (2.17).

Again, to certify the quality of the DNS calculation, an indirect check
on the Reynolds stress has been performed. The mean azimuthal velocity
component has been calculate through eq. (2.17) with the use of the azimuthal-
radial Reynolds stress obtained from the DNS. The resultant velocity has been
plotted in figure 7.9 that shows a very good agreement between the direct and
the calculated data confirming the statistics convergence of the simulation.

In the other part of this study swirling jets are investigated and for that
case it is interesting to define a swirl number based on the velocity profiles
according to eq. (2.24). From the measured velocity profiles at the pipe outlet
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it has been possible to make accurate calculations of this value which are shown
in Table 7.1. The table indicates only small change in the values of the swirl
number for all the Reynolds number investigated, which indeed is a measure
on the similarity of the profiles. It can also be seen that the integrated swirl
number has a numerical value of about one third compared to the swirl number
S.

S Vw/Ub Gθ/(GxR)
Re=12000 0.2 0.064

0.5 0.151
Re=24000 0.2 0.064

0.5 0.152
Re=33500 0.2 0.064

0.5 0.156

Table 7.1. The swirl number calculated at the pipe exit.
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Figure 7.9. Mean azimuthal velocity from DNS and LDV
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7.1.2. Turbulence distributions

In this section we present some measurements of turbulence data taken mainly
with the LDV equipment. First we present a comparison between urms-profiles
(u′/Ub) in the non-rotating and rotating cases (S=0 and 0.5). The data show
clearly that the rotating cases have lower values as compared to the non-
rotating ones at the same Reynolds number, although the difference is not
large. The difference is most evident at the centreline. With the present scal-
ing the data are presented in ”absolute” terms and if the data instead had been
normalized with the centreline velocity the differences had become larger.

In figure 7.11 the vrms–profiles (v′/Ub) are plotted. Unfortunately there
are no available data for S=0, however the two swirl numbers seem to overlap
nicely in the central part of the pipe whereas closer to the wall the level is lower
for the high swirl number. The present trends both for urms and vrms are in
accordance with the measurements by Imao et al. (1996) who also observed
a decrease with increasing rotation, however in the numerical simulations by
Orlandi (1997) and Satake & Kunugi (2002) the trend is the opposite (as also
shown by the DNS simulation in figure 7.12).

We also show a plot with the data of all three velocity components in order
to demonstrate their relative magnitudes in the pipe in figure 7.13. For the
present swirl rates this figure is qualitatively similar to what one would expect
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Figure 7.12. Streamwise turbulence intensity for S=0, 0.1,
0.5 from DNS.

for the non-rotating case. The streamwise turbulence intensity is the largest
one, then there is the azimuthal while the radial is the smallest one. At the
centreline the azimuthal and the radial turbulence intensity should have the
same value which is also obtained in the measurements. It is not possible to
do a direct comparison with the DNS (figure 7.14) because of the difference in
the Reynolds number. The DNS turbulence intensity shows higher values and,
since the simulation has been performed at a lower Reynolds number, the peak
of the turbulence intensity for each velocity component is shifted slightly from
the pipe wall as compared to the higher Re in the experiments. However, the
trend of the three curves is similar to the experiments.
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Beside the bulk velocity, the local mean velocity (either the streamwise or
the azimuthal) could be used to normalise the fluctuating parts of the velocity
components. Such a scaling is summarised in the following figures. The axial
fluctuating component, when normalised with the local axial velocity, tends to
a common value, around, 0.37, at the pipe wall for all the three swirl number
shown in figure 7.15. It is worth noting that the same value has been found by
Kim et al. (1987) and by Moser et al. (1999) in their simulation of a turbulent
channel flow at a similar Re and as also experimentally by Alfredsson et al.
(1988). Furthermore also Eggels (1994) found the same result in the numerical
simulation of a turbulent pipe flow. The three curves for different swirl number
in the figure are actually very close to each other along all the pipe radius.

For our low S, i.e. 0 and 0.1, the azimuthal turbulence intensity is smaller
than shown by the data from Kim et al. (1987) and Eggels (1994), however
the simulation for S=0.5 show good agreement. The data from the radial
component instead are in good agreement between all the simulations.

A completely different behaviour is shown by the azimuthal component in
figure 7.16. The two swirl number considered (the case for S=0 does not allow
the present normalisation) give two distinct curves that tend to two different
values at the pipe wall as at the centreline. Anyhow, introducing the swirl
number S in the normalisation it is possible to make the curve collapse for a
large part of the radius. The difference between them still persists close to the
pipe wall (figure 7.17).
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Finally we show typical spectra of the streamwise velocity measured at the
jet exit (figure 7.18) on the centreline. The spectra are plotted as the frequency
times the spectral density (f · P ) and thereby the region of maximum energy
content is directly shown. They are also normalized by the bulk velocity so a
comparison between them directly gives for which frequencies the turbulence
has been affected. The frequency axis is normalized to show the Strouhal
number (St = fD/Ub). As can be seen the energy density decreases with
increasing rotation which is consistent with the data in figure 7.10. For the
present data there is about a 10 % decrease in the values of urms/Ub when the
swirl numbers increase from S =0 to 0.2 and a further decrease of 10 % when
S =0.5.
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7.2. Scaling of the mean flow field

In the following we will describe the streamwise mean velocity field in some
different scalings. Typically a turbulent velocity profile is described in terms
of the viscous sublayer, a buffer region, a logarithmic region and then finally a
wake region. The logarithmic region is usually written as

U

uτ
=

1
κ

log
yuτ
ν

+B (7.2)

where uτ is the friction velocity and y = R − r. The present measurements
do not allow us to determine the friction velocity by extrapolating the mean
velocity profiles to the wall and we will instead use the centreline velocity (Uc)
as the velocity scale. In figure 7.19 the streamwise mean velocity data have
been plotted in a semilogarithmic diagram. As can be seen in the figure the
non-rotating case shows a typical logarithmic region up to y/R ≈0.3. The full
drawn line corresponds to

U

Uc
=

1
K

log
y

R
+ C (7.3)

with K=8.2 and C=0.97. The relation between the Karman constant κ and
the constant K in eq. 7.3 is

K =
Uc
uτ
κ (7.4)

and the additive constant

C =
uτ
Uc

(
1
κ

log
Ruτ
ν

+B

)
(7.5)

If one wants to convert the data for the S=0 case to standard values one
has to find the ratio of Uc/uτ from friction factor data. At Re=12000 a good
approximation of this ratio is 20.5 which would give us corresponding values
of κ= 0.40 and B=4.0. Also the mean velocity distributions for low swirl
numbers (S=0.2 and 0.5) seem to exhibit a logarithmic region albeit with a
different slope as compared to the non-rotating case. It is also clear that the
extent of the logarithmic region becomes smaller when S increases. For the high
rotation rates (S=1.0 and 1.5) only two points on each set of measurements lie
on a line with that slope so it is not possible to draw any conclusions.

Table 7.2 also include data points taken from the simulation of Satake &
Kunugi (2002) (S&K in the table). The data are derived from their figure 3
with a logarithmic line fitted by eye. However these data seem to consistently
show a lower value of K. This may be a Reynolds number effect since their Re
was only 5300.

The DNS simulation allows an accurate determination of the slope of the
curve in the logarithmic region. To present a comparison with the LDV data the



7.2. SCALING OF THE MEAN FLOW FIELD 59

same scaling has been used in figure 7.20 for Re=5000, S=0.5. The Reynolds
number seems to rule on the values of K that, in this last case is equal to
4.5 corresponding to κ=0.205. An increasing Reynolds number produces and
higher value for K as shown in table 7.2 where Re is increasing from the DNS
to the LDV.

From the DNS calculation it is also possible to evaluate accurately the
friction velocity uτ and so to provide the scaling in plus units u+ = U/uτ and
y+ = yuτ/ν. Following Österlund et al. (2000), to provide a correct value for
the constants κ and B in equation 7.2 it is useful to consider the function Ξ
plotted in figure 7.21

Ξ =
(
y+ dU

dy+

)−1

(7.6)

and, just replacing it in the logarithmic law, the value of B can be obtained
from

Ψ = u+ − 1
κ

log y+ (7.7)

as shown in figure 7.22. Both the function Ξ and Ψ have to be constant in
the logarithmic region which is, in the presented case, around y+ ≈ 40. From
the chosen value of κ and B we draw the line in figure 7.23. Following the
same procedure the plot in figure 7.24 has been produced. As can be noted,
the three curves at different swirl numbers do not differ in the inner region
where u+=y+ but they diverge just after as pointed out from the slope in the
logarithmic region. The swirl number affects the value of uτ (different values
of u+ at the centreline of the pipe) and, consequently the value of κ so that,
for an increasing S, uτ and κ decrease.

DNS S&K LDV
S κ κ uc/uτ K K

0 0.345 0.40 19.5 7.8 8.2
0.5 0.205 0.22 22.3 4.9 7.2
1.0 No Data 0.22 24.0 5.2 (7.2)
1.5 No Data No Data (7.2)
2.0 No Data 0.18 26.7 4.9 No Data

Table 7.2. Determination of the slope of the logarithmic re-
gion for the data in figure 7.19 as well as for the data of Satake
& Kunugi (2002) and DNS simulation.
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Figure 7.19. Streamwise mean velocity data at Re = 12000
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7.2.1. Scalings by Oberlack (1999)

In the analysis by Oberlack (1999) on stationary and rotating turbulent pipe
flows, several scaling laws were suggested. In the following we will show some
comparisons of our data at the lowest Re=12000 with the suggested scalings.
The data used are first plotted in standard form in figure 7.25.
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Figure 7.25. Mean streamwise velocity data for Re=12000
at five values of S.

One of the scaling laws suggested by Oberlack (1999) is that the mean
streamwise velocity profile should have a logarithmic behaviour in the outer
part of the flow. In his paper he plotted the data of Orlandi & Fatica (1997)
and found such a behaviour in the region 0.5 < r/R < 0.8 for Re=4900,
S=2. In figure 7.26 the present data are plotted in the same way, however a
logarithmic region is not as evident as in the data of Orlandi & Fatica (1997). In
this figure we have three different values of S and we have fitted lines both with
the slope suggested by Oberlack (1999), λ=–1, which gives different regions of
fit for the different S. We have also fitted a line in the same region as suggested
by Oberlack (0.5 < r/R < 0.8) but then the lines will have different slopes, for
S=0.5, 1.0 and 1.5 the values are λ= – 2.6, – 1.5 and – 1.1, respectively.

Again the DNS data help us in clarifying the experiments. Figure 7.27
display the same scenario presented by the LDV data for S=0.5 which infers
that the rotation of the pipe has a relevant role in the suggested scaling and
the logarithmic behaviour in the outer part of the flow appears only for higher
swirl number.
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Figure 7.26. Mean streamwise velocity U normalised with
the wall velocity (Vw) as function of r/R for three different
swirl numbers atRe=12000. Full drawn lines: slope –1; dashed
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Figure 7.27. Mean streamwise velocity U normalised with
the wall velocity (Vw) as function of r/R for DNS data at
Re=5000, S=0.5. The slope of the dashed line is –2.7.
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Figure 7.28 shows the mean velocity data plotted as the velocity defect
(Uc − U) normalised with the wall velocity (Vw) as function of r/R. In the
figure we have also plotted lines with a slope assuming a quadratic relation-
ship between the velocity defect and the radius. According to the theory of
Oberlack, the exponent should be the same as for the azimuthal velocity (see
eqs. 3.1 and 3.2) and since we have observed a parabolic velocity distribution
for the azimuthal velocity (see figure 7.6) this exponent should then be equal
to 2. As can be seen the measurement data show the expected linear (in the
log-log-plot) behaviour over a large part of the pipe. As can also be seen the
data are displaced downwards with increasing S. This is to be expected since
at the wall itself U=0 and there the value would hence be Uc/Vw which can
be written Uc/(UbS), i.e. it is inversely proportional to S. There is of course
also a slight variation (increase) of Uc/Ub with S which will tend in the other
direction.1 The slope of the lines corresponds to a quadratic behaviour and as
can be seen the data seem to follow this slope closely except near the centreline.
All in all figure 7.28 seems to be in accordance with the scaling suggested by
Oberlack (1999). And also the DNS data in figure 7.29 are in good agreement
with the quadratic behaviour except near the centre of the pipe.

1The ratio Uc/Ub for the three swirl numbers in figure 7.28 are 1.47, 1.48 and 1.55 for S=0.5,

1.0 and 1.5, respectively.
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Figure 7.28. The velocity defect (Uc − U) normalised with
the wall velocity (Vw) as function of r/R for three different
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CHAPTER 8

Results for swirling jet flow

This chapter deals with measurements in the near-exit region of the jet, up to
10D downstream of the jet exit plane. Section 8.1 deals with the mean flow
development, whereas section 8.2 shows the behaviour of all three fluctuating
velocity components. Section 8.3 discusses the instantaneous flow angles and
the limitations of hot-wire versus LDV-measurements in the jet. Finally sec-
tion 8.4 investigates the central region of the swirling jet where an interesting
phenomenon has been observed, namely that the central part becomes counter
rotating at some distance downstream the outlet. This result is verified thr-
ough both LDV and stereo PIV measurements and is also indicated by the
simulations.

8.1. Mean flow development

The evolution of the mean axial velocity profile at three downstream positions
with and without swirl is shown in figure 8.1. Here we have chosen to present
the data for Re=24000 at S=0 and S=0.5, but similar measurements were also
made for the other values of the flow parameters (Re and S). The graphs clearly
show how the intial profile at the pipe outlet is more peaked for the swirling flow
case. At short distances downstream of the pipe outlet, x/D ≤ 2, the axial
velocity in the central region of the jet is fairly unaffected, whereas further
downstream at x/D = 6, i.e. downstream of the potential core region, the
velocity in the central region becomes significantly smaller for the rotating case.
It is interesting to note that the figure shows that the different profiles have
a common crossing point at about | r/R |= 1 and U/Ub=0.6, a characteristic
that is also found in the other measurements at Reynolds number Re=12000
and Re=33500 and at S=0.2.

Figure 8.2 shows the averaged (in azimuthal direction) axial velocity pro-
files obtained from the DNS calculations in the suddenly expanded pipe for
Re=10000 at S=0.5. The temporal evolution of the jet is transfered into the
spatial evolution using x=tUb. Although in the simulation the radial expan-
sion is ruled only by the diffusivity since the mean radial component is equal to
zero, the flow field behaves like a jet without any entrainment (the code enforces
mass flow conservation). Still it is possible to observe a common crossing point
close to r/R ≈1 until x/D ≈5 even though the velocity is lower as compared
to the experiments.

67
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Figure 8.1. Mean axial velocity: Re=24000, S=0, 0.5.
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Figure 8.3. Mean azimuthal velocity. Re=24000, S=0.5.
The arrow shows the direction of increasing x/D.

Figure 8.3 shows the downstream evolution of the normalised mean az-
imuthal velocity (V/Vw) profiles. As presented in chapter 7, the velocity profile
at the pipe outlet closely follows a profile proportional to (r/R)2 (the lines in
the plot are polynomial fits for visual aid). The figure indicates that further
downstream the radius of the potential core decreases but the ”parabolic” na-
ture of the azimuthal velocity seems to persist in the central region at least
until three diameters downstream the pipe outlet. From the figure it is possi-
ble to deduce how fast the azimuthal velocity decays in the jet: the maximum
velocity decreases to almost 50% of the pipe wall velocity in only one diameter.
This is due to the entrainment of the fluid surrounding the flow issued by the
pipe. At x/D=8 the maximum azimuthal velocity is reduced to about 10% of
Vw and moved to r/R ≈2.

The radial component of the mean velocity field was only measured for
one swirl number i.e. S=0.5. The mean radial component normalised with
the bulk velocity is shown in figure 8.4. As can be noticed, the measurement
denoted as being at x/D=0, the closest to the pipe outlet position reachable
with the LDV system, i.e. just a few tenths of a millimeter from the end of the
pipe wall, already shows a non-zero mean component. At x/D=1 the core of
the jet presents the same behaviour as seen at the pipe outlet but suddenly, at
r/R &0.5 the radial velocity increases, reaching a maximum at about r/R=1.
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Following the downstream development it seems that the curvature of the
profiles changes sign in the central part of the jet: comparing the region for
|r/R| 6 0.5 of the profiles at x/D=2 and 3 or at a larger downstream distance
the change of the curvature becomes clear.

Furthermore it is worth to note that the radial component represents only
a few percent compared with the bulk velocity of the jet but is comparable
with the azimuthal velocity especially for x/D & 5. In general the data look a
bit scattered but the velocity profiles do not change drastically moving down-
stream: the slope, the radial position of the maximum and the value itself are
fairly similar for 36 x/D 66. It is seen to have a maximum around |r/R|=1
at all x-positions. The behaviour of the radial component can be understood
from the time-averaged continuity equation, which for the axisymmetric case
becomes (see also eq. 6.2)

∂W

∂r
+
W

r
+
∂U

∂x
= 0

Since the streamwise mean velocity U increases with x in the outer part (for
r > R) of the jet, ∂U

∂x is positive there and hence negative for r < R. W

is directed outwards and is therefore positive. This means that ∂W
∂r needs to

change sign, from positive to negative, when r increases, which is also observed
in figure 8.4.

8.1.1. Flow entrainment

An interesting quantity of the jet is the entrainment of outer fluid into the
jet. The entrainment may be obtained by integrating the streamwise velocity
across the rθ-plane which then will give the total axial flow rate. We will
denote this quantity by Q and normalise it with Q0, which is the axial flow
rate coming from the pipe. This ratio is denoted the entrainment coefficient.
However, the calculation may be affected by a significant uncertainty. Indeed,
the flow in the outer part of the jet is measured with difficulty due to the low
velocities and may give large error contributions due to the weighting with
the radius. To reduce this problem a least square fitting procedure (using a
Gaussian function to estimate the tails of the profiles) was used in order to
extrapolate the mean velocity profiles in the external part of the jet. The flow
rate values are reported in Table 8.1. The accuracy of the above measurement
was assessed by checking that the overall amount of flow momentum remains
constant moving downstream for S=0. These values are also given in the table
and as can be seen they show a reasonable constancy between the two positions,
giving confidence in the calculation of the entrainment coefficient.

Table 8.1 shows that an increase of the flow rate is observed by moving
downstream for all the configurations analysed. This is due to the engulfment
of ambient fluid by the vortical structures and by turbulent mixing. The swirl
increases significantly both the entrainment and the jet spreading. This is also
confirmed by the flow visualisations shown in figure 8.5. This enhancement of
the entrainment due to the pipe rotation seems to be reduced by increasing
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Q/Q0 Gx (N)
Re x/D S=0 S=0.2 S=0.5 S=0

12000 2 1.53 1.62 2.00 0.0373
6 2.49 2.81 3.15 0.0404

24000 2 1.43 1.52 1.58 0.143
6 2.36 2.47 2.92 0.145

33500 2 1.37 1.40 1.52 0.272
6 2.20 2.33 2.72 0.260

Table 8.1. The entrainment coefficient (Q/Q0) for three dif-
ferent swirl numbers. As a comparison the constancy of the
axial momentum flux (Gx) for the S=0 case was also checked
using the same data.

the Reynolds number. The reason for this Reynolds number dependence is not
clear. By looking at the flow visualisations it may be suggested that it is an
effect related to the more regular eddy structures formed in the mixing layer
at low Re, which may enhance the entrainment of fluid from the environment.

The flow visualisation of the cross section at the pipe outlet point out
the differences between the stationary and the swirling jet. As can be seen
in figures 8.6 and 8.7 the non-rotating case presents small wavy disturbances
at the border of the jet while the swirling jet exhibits bigger radial structures
which run azimuthally. These instabilities, present already at the early stages
of the jet, are may be one reason for the larger entrainment observed for the
swirling jet.
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Figure 8.5. Smoke flow visualization. a) Re=12000, S=0, b)
Re=12000, S=0.5, c) Re=24000, S=0, d) Re=24000, S=0.5

a)

b)

c)

d)
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Figure 8.6. Smoke flow visualization at the pipe outlet:
Re=24000, S=0.

Figure 8.7. Smoke flow visualization at the pipe outlet:
Re=24000, S=0.5. Rotation direction is clockwise.
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8.1.2. The axial decay

The mean axial velocity along the centreline, U/Ub, its dependence on swirl rate
and Reynolds number are shown in figures 8.8 and 8.9. The figures indicate
that the axial development of the jet from the pipe outlet to x/D=10 could
be separated into two regions, i.e. the mixing region and the transition region
(see Beér & Chigier 1972). The first region extends from the pipe exit to 3–4
pipe diameters downstream, where the potential core ceases, while the second
region covers the incipient part of the developing jet flow.

Close to the outlet the velocity decay along the axis is small, approximately
linear and the axial velocity becomes higher with increasing swirl rate as has
been observed at the pipe outlet (cf. figure 7.1). The small decrease of the axial
velocity going downstream is explained by the flattening of the velocity profile
in the central part of the core whereas the increase in centreline velocity is due
to the development of a less blunt velocity profile at the outlet with increasing
rotation (see figure 8.1).

In the region downstream of the potential core the velocity decrease is
substantially larger than without rotation and increases with swirl rate whereas
the variation in slope with Reynolds number is small. Another effect of the
swirl seen in the figures is the influence on the form of the velocity decay curve.
Without any swirl the decay is almost linear but for increasing swirl the straight
line becomes gradually more curved.

Included in figure 8.9 are also data from the experiment by Rose (1962).
That experiment is similar to the present in that the jet emerged from a station-
ary and rotating pipe with L/D = 100 at about the same Reynolds number.
The data from the non-rotating cases fall on top of each others while in the
rotating case the trend is the same but the fall off is still higher which may be
partly explained by the somewhat higher swirl number (S=0.63).



76 8. RESULTS FOR SWIRLING JET FLOW
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

U/
U b

109876543210
x/D

 S=0
 S=0.2
 S=0.5
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From the DNS calculation it is possible to get the instantaneous axial
velocity decay of the jet. In figure 8.10 the comparison between experiments
and simulation is taken into consideration. The Reynolds numbers examined
are quite close. Again there is the need to remember that in the DNS no
entrainment is allowed and the jet expansion is given only by the diffusivity.
Surprisingly, the case of the non-swirling jet shows a good agreement between
LDV data (full circle) and the DNS (dashed line) at least until 8 diameters
downstream. After this station the two curves start to diverge and this is
probably because the jet total momentum is decreasing.

The presence of a swirling component instead changes quite drastically the
behaviour of the jet in the simulation. Since the rotation greatly influences the
entrainment as already discussed, the DNS is not able anymore to follow the
correct trend of the jet. Clearly, although starting from very similar values at
the pipe exit, the axial decay in the simulation is much slower compared to
the real jet that means also the simulated profile does not expand as fast as in
the real swirling jet so that the potential core, almost non-existent in the LDV
data, is much longer. After 3 diameters this tendency change, and the axial
decay in the calculation is much higher. The curves cross each other and, for
x/D &5 the simulation shows lower axial velocities than the LDV swirling jet
as can be noted also from the profiles presented in figure 8.2.
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8.2. Turbulence development

This section deals with the development of the turbulence distributions across
the jet. Axial profiles have been measured at the pipe outlet (x/D=0) and at
two downstream positions (x/D=2 and 6) while azimuthal and radial profiles
are investigated each diameter from the pipe outlet until x/D=9. We chose to
show data for Re=24000, S=0 and 0.5 although profiles have been taken also
for other flow parameters.

8.2.1. Streamwise velocity fluctuations

In figure 8.11 the streamwise turbulence intensity (u′/Ub), is compared for a jet
with and without swirl at Re=24000 and three different downstream positions,
x/D=0, 2 and 6. Only small differences close to the centreline are observed at
the pipe outlet. Further downstream the turbulence intensity u′/Ub increases
and at x/D=2 both profiles have a maximum around r/R=0.8. At x/D=6 the
main difference between the swirling and non-swirling jet is found around the
centreline where the turbulence level is almost doubled as the swirl number S
is increased from 0 to 0.5.

The higher moments of the axial velocity at Re=24000 are shown in the
figure 8.12 both with and without swirl. Also here we have plotted the data for
the S=0 and S=0.5 cases in the same diagram. Data points were taken across
the full width of the jet, but since higher moments need more data these points
have more scatter. Since the jet is axisymmetric we decided to take the average
of the points measured at equal r-positions at both sides of the centreline and
in that way the scatter was decreased. In the figures the data for each x/D are
shifted in the vertical direction but the thicker horizonal lines in each figure
shows the zero-level for the skewness and the Gaussian level of three for the
flatness.

At the pipe outlet both skewness and flatness are only marginally influenced
by the swirl rate which is clearly shown in the figures and in line with the u′

results. The skewness rises from -0.5 at the centre to around 0 close to the
wall while the flatness decreases from 3.5 to 2.8 for the corresponding points.
These data could be compared with results obtained by Eggels et al. (1994) in
non swirling pipe flow at Re ≈7000. Data are not provided over the whole pipe
radius, but at r/R=0.5 skewness and flatness are -0.5 and 3.2 respectively and
at r/R=0.9 they are 0 and 2.2 respectively which is close to the present results.
The strong influence of rotation is found around the centreline, | r/R |≤ 0.5,
at x/D=6 and in the mixing layer at position x/D=2. In the central region
downstream of the potential core (x/D=6) both skewness and flatness changes
dramatically with the rotation rate whereas the influence is small at other radial
positions. At the centreline, increasing the swirl number, the skewness increases
and the flatness decreases from –1.2 to –0.3 and from 4.8 to 2.5 respectively.
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8.2.2. Azimuthal and radial velocity fluctuations

The development of turbulence level of the azimuthal and radial velocity com-
ponents for Re=24000 and S=0.5 are shown on the top of figure 8.13 and in
figure 8.14. The azimuthal component is represented with the circle and the
radial component with the square. As expected the azimuthal and the radial
turbulence intensities coincide at the centreline of the jet: only small differ-
ences can be noted moving further downstream. The biggest gap between the
two turbulence intensities is at the pipe outlet, see figure 8.13. Then the ex-
perimental data lay almost on the same curve in the central and in the outer
part of the jet while they differ in the region of the peak where the azimuthal
turbulence intensity reaches higher values. The maximum is at about r/R=1
for x/D=1, then it moves gradually towards the centreline as the shear layer
penetrates into the jet until, for x/D &7 both the profiles become pratically flat
in the core of the jet. Note also that their values decrease. As anticipated from
the pipe fluctuations, even in the jet the azimuthal and the radial turbulence
intensities are lower than the axial one.

The skewness and flatness reveal some more details of the jet structure
(see figures 8.13, 8.15 and 8.16). For both components the skewness is anti-
symmetric around the centre which is what one would expect for an axisym-
metric flow. At x/D=1 the skewness for v and w shows a local maximum
(minimum) at |r/R| ≈ 0.8. This is most probably an effect of the instability
affecting the potential core. It is interesting to note that this position does
not correspond to the maximum in the rms, in fact the maximum in rms is
approximately where the skewness is zero. Moving downstream the skewness
for the azimuthal component becomes monotonic before (x/D=5) than in the
radial component which, on the other hand, results to be stronger in all the
investigated flow field. Only in the central part of the jet they become com-
parable for x/D &6 where the skewness for the azimuthal component becomes
very small in all the radial position except at the outermost points. This seems
to indicate an almost Gaussian distribution of the fluctuations which is also
substantiated by the flatness which is close to 3. However the skewness for
the radial component increases (decreases) almost linearly with r indicating
regions of large fluctutations directed towards the external part of the jet.
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Figure 8.13. Turbulence intensity, skewness and flatness of
azimuthal ◦ and radial 2 velocity atRe=24000, S=0.5 x/D=0.
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Figure 8.15. Skewness of azimuthal ◦ and radial 2 veloc-
ity at Re=24000, S=0.5, disposition of the figures as for the
turbulence intensity.
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8.2.3. Axial development of turbulence

The variation of the turbulence level on the centreline as function of the down-
stream distance is shown in figures 8.17 and 8.18. Data were obtained for the
three Reynolds numbers (12000, 24000 and 33500) and three values of the swirl
number (0, 0.2 and 0.5). The data presented in the two figures were obtained
with LDV and hot-wire anemometry, respectively. There are of course also
data for the streamwise fluctuations available from the hot-wire measurements
and they are in good agreement with the LDV-data (at worst a 10% difference).
We therefore restrict ourselves to present only the LDV-data in figure 8.17.

The variation of the turbulence level of the axial component (u′/Ub) along
the x-axis, is shown in figure 8.17a–c. The turbulence level close to the outlet
is only weakly affected by Reynolds number and swirl rate. There is also
an initial region where there is only a weak increase in the turbulence level
(up to x/D=2–3). We have earlier denoted this the ”potential” core region.
Downstream this region the turbulence level increases significantly, reaches a
maximum around x/D=6 and then decreases. The curves seem to cross around
x/D = 10. It is clearly seen that the onset of the increase in turbulence level
moves upstream as the swirl is increased due to the enhanced mixing (with the
associated decrease in core length) and that the maximum of the turbulence
moves likewise. However the axial position of the peak is almost constant for
each swirl rate irrespectively of the Reynolds number. All in all one may say
that for the present Reynolds number range there is a very small variation in
the beaviour of the turbulence at the centreline. Finally we have included data
from Rose (1962) in figure 8.17a. For the non-rotating case these data overlap
with the present data, for the rotating case the data of Rose (1962) show an
even larger effect of the rotation than in our case. To some extent this may be
due to the fact that their swirl number was 0.6 as compared to the highest in
the present study which was 0.5.

Figure 8.18 shows the axial development at the centreline of the turbulence
level for the orthogonal component v′/Ub.1 These data show a similar picture as
for the urms-data, there is only a small influence of the Reynolds number, but
a significant influence of the swirl. It can also be noted that the initial increase
of vrms seem to start somewhat closer to the exit than for the streamwise
fluctautions. This may be due to the fact that even in the potential core large
scale structures in the outer region may give a ”buffeting” to the core which
gives rise to fluctuations in a plane normal to the streamwise direction.

1We chose to call this component ”orthogonal” at the centreline since the azimuthal compo-

nent is not well defined there.
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8.2.4. Spectral information

The flow field in the near-exit region of the jet is quite complex and in order to
understand the development of the flow structures time resolved measurements
as well as two-point measurements are needed to get the temporal and spatial
evolution of the flow field. This is beyond the scope of the present work but
in order to give some information concerning the vortical structures we will
present a few results obtained from spectral analysis. For this analysis we use
hot-wire anemometry data which was collected by an X-probe. The data were
taken at the centreline at x/D=2 and 6 for Re=33500. Both the streamwise
(u) and the orthognal (v) components were analysed. The spectra are shown
in figures 8.19 and 8.20.

Figure 8.19a shows that at x/D=2 a distinct peak in the u-components is
detected for all three swirl numbers. If the frequency is normalised by the bulk
velocity and pipe diameter, a Strouhal number of about 0.5 is obtained, which
remains constant for all swirl numbers studied here. This peak is also present
at the other Reynolds number studied. The St-value of 0.5 is within the range
of values reported in previous studies (see section 4.1.1). It is interesting to
compare with the spectra measured at the pipe outlet which show no evidence
of a similar peak (see figure 7.18).

Since the spectra here are plotted in such a way that the area under the
spectra is directly proportional to the energy content of the signal it is clear
that the rms for the three signals are fairly similar although the S=0 case is
the one with the largest rms (cf. figure 8.17c). However in figure 8.19b we see
a dramatic change in the spectra. First of all there is now large differences in
energy content between the three different swirl numbers, and in contrast to
the situation at x/D=2 the S=0.5 case shows the largest energy. The distinct
peak that previously was easily seen has also disappeared and the spectra now
has a broad band character. The maximum varies between St=0.35 for S=0.5
to St=0.55 for S=0. The broadening of the spectra is due to the interaction
and breakdown of the structures and the spectra obtain a shape which is typical
for turbulent jets.

Also the spectra (figure 8.20) of the orthogonal component show a similar
behaviour, however at x/D=2 the largest peak is seen for S=0.5. In this case
the Strouhal number of the peak seem to change somewhat with S. At x/D=6
the spectra broadens much in the same way as was observed for the spectra for
the streamwise component.
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8.3. Instantaneous flow angle measurements

Free shear flows may show large instantaneous flow angles, i.e. the angle be-
tween the velocity vector and the streamwise direction, and in some cases even
back flow. This is the case in for instance the outer region of jet flows. In the
following we present some results to illustrate this and also give a comparison
between the LDV and hot-wire techniques used in the present study.

To display the behaviour of the flow angle we plot the instantaneous mea-
sured points directly on the calibration region (see figure 8.21). As can be seen
the calibration curve is limited to ±40◦. The data in the figure are taken at
r/R=0.335 for two swirl numbers (S=0 and 0.5) and it is possible to follow the
evolution of the cloud of points for different downstream positions (x/D=0, 2,
6). In all the figures the same amount (1600 measured points) of experimental
data is plotted. For x/D=0 and x/D=2, the swirl shifts the points towards
a higher axial velocity and at the same time the azimuthal component gives
a shift of the cloud from the zero-angle line. At x/D=6 an opposite effect on
the axial component is observed, i.e. the axial velocity has decreased. Clearly,
moving downstream, the cloud spreads and its covered area in the calibration
curve is enlarged. With swirl the growth of this area becomes larger. In the
case of x/D=6 it is possible to register some data points which lie outside the
region limited by the calibration.

Figures 8.22 and 8.23 show the mean angle at the pipe outlet (x/D=0)
measured with the X-probe and the LDV, respectively. The data are all for
S=0.5, but for the three different Reynolds numbers. As can be seen there is
only a small difference between the different Re as expected. It should be noted
that the hot-wire measurements were corrected according to the procedure
described in section 5.2.2.

In figure 8.24 the data from the two different techniques at Re=24000 are
directly compared and it is seen that the agreement is nearly perfect. In this
figure we also plotted the uncorrected hot-wire data. As expected the largest
corrections occur in the outer part of the jet, however they are still fiarly small.

Figure 8.25 shows the mean and 99% interval of the instantaneous angle
measured with the hot-wire. In the figures three groups of lines, marking
different downstream positions, are plotted. The central curve of each group
corresponds to the mean value of the flow angle as already shown in figures 8.22
and 8.23. The upper and lower curves display the region for which 99% of the
data are located (i.e. at each side of these lines 0.5% of the data are found).

When moving downstream, the mean flow angle between the axial and
azimuthal velocity components decreases. At the same time the angle interval
is amplified especially in the outer radial positions. Moreover, from the figure
itself it is possible to note that the probability density function is skewed since
the upper and the lower curves are not equally distanced from the mean curve.
Even if the mean values are relatively small, the lines of 99% interval can exceed
the range of the calibration curve (±40◦) due to the large fluctuations present
in the flow.
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Figure 8.21. Hot-wire calibration region with instantaneous
measurement data. The calibration is done wat 13 different
velocities ranging from 0.3 m/s to 9 m/s and at different angles
in 5◦ steps.

Finally it can be noted that at x/D=6 it seems that the mean flow angle
in the central region changes sign. This observation leads to a more careful
investigation of the jet in this region.
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8.4. The counter rotating core of the swirling jet

Considering again the LDV data for the azimuthal velocity component shown
in figure 8.3 we focus our attention on the central region of the jet. Figure 8.26
shows a close-up of the data already presented in figure 8.3 in the region under
consideration. The black line is a polynomial fit of the data points at the pipe
outlet which is very close to the parabola (r/R)2. As can be noted the LDV
data in this region lay on the curve until x/D=3 showing that the ”parabolic”
velocity profile is preserved in the central region. Further downstream, the
azimuthal velocity starts to decrease. but at x/D=5 the velocity profile is
still monotonic. However at x/D=6 the profiles reveals a change in the sign
meaning that in average the jet, in the central region, rotates in a direction
which is opposite to that imposed by the rotating pipe. Even in this case the
lines for 66 x/D 68 are polynomial fit of the LDV data for visual aid.

The azimuthal velocity of the counter rotating core is fairly small, less than
1% of V/Vw, and it covers a region slightly smaller than the pipe diameter as
indicated also by the hot wire data in figure 8.25. The counter rotating region
starts between 5 and 6 diameters downstream the pipe outlet then it increases
in magnitude and reaching a maximum between 6 and 8 diameters.

A parallel experiment not presented here shows that for higher Reynolds
number and same swirl the start of the counter rotating core moves upstream.

Also the instantaneous DNS simulation in figure 8.27 displays the counter
rotating core of the azimuthal velocity starting from a downstream position
greater than x/D=5. In this case the counter rotation represents a much
bigger quantity compared with the pipe wall velocity. The simulation is also
able to catch the preservation of the ”parabolic” profile in the central region
of the jet close to the pipe outlet. Note also that the maximum of the velocity
profile first moves towards the centre of the pipe and then, slowly, it moves
outside. The same behaviour happens in the real jet (compare figure 8.3) but
the process in the simulation is much slower since the expansion of the flow is
ruled only by the diffusivity.

The DNS results illustrate that the reason for the formation of a counter
rotating flow could be seen in the jet initial flow field that is the pipe flow since
the equations for the pipe flow used to simulate the jet are already enough to
explain the presence of a counter rotating core. We have already pointed out
that the azimuthal-radial Reynolds stress acts in the direction opposite to the
pipe rotation preventing, in the case of turbulent flow, to reach the solid body
rotation (see eq. 2.17).
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The evolution of the normalised azimuthal-radial Reynolds stress in the jet
flow is plotted in figure 8.28. As already stated, the Reynolds stress is almost
proportional to the radius in the pipe flow. The values in the figure are so
normalised as shown in the pipe flow. As soon as the flow leaves the pipe the
shear layer develops and the cross Reynolds stress increases. At x/D=1, while
in the central region of the jet the values of the Reynolds stress are very small
and close to what seen in the pipe flow, two high peaks cover the outermost
parts. Then, moving downstream those peaks become broader and less intense,
penetrating inside the jet. For x/D 64 the peaks seems to be located at the
same radial position, around r/R=1, then their position start to move going
outwards in the radial direction. Note also that at x/D=4 the Reynolds stress
reaches its highest value in the internal part of the jet. For larger x/D it starts
to decay.

Figure 8.29 shows at the top the development of the azimuthal-radial Rey-
nolds stress in the streamwise direction for fixed radial positions in the central
part of the jet. The curves shows the mean values in the correspondent |r/R|
positions. The maximum is reached between 3 and 4 diameters downstream
the pipe outlet for all the considered radial positions. In the bottom of the
figure the mean azimuthal velocity are plotted for the same radial positions as
in the top. The counter rotating core is barely seen at x/D=6 and 7.
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8.4.1. Stereoscoipic PIV measurements

A stereoscopic PIV sytem has been used to further investigate the flow field in
order to inspect the counter rotating core. For this reason, knowing the results
from HW anemometry and LDV, it has been chosen to investigate the region
around x/D=6 for Re=24000 at S=0.5. A first setup configuration has been
utilised to cut the jet with the laser sheet perpendicular to its axis. The aver-
aged velocity field of the cross section seen by the cameras has been presented
in figure 8.30: the colour scale (not reported) is related to the absolute velocity
of the vector, the sum of the three components. The picture represents the
jet flow running from the pipe towards the reader: at the centreline of the jet
the vectors have mainly an axial velocity component and so they are directed
normal to the plane of the cross section. Moving radially the azimuthal and
the radial components grow and add to the axial velocity making the vector
more visible on the plane. Basically, from this point of view, it is possible to
read only the components in the cross plane. The outermost part of the figure
easily shows the clockwise rotation of the jet imposed by the pipe. On the
other hand, focusing the attention in the central region of the jet is clear that
the vectors are in the opposite direction. Following a horizontal line from the
centre of the jet and moving radially to the left it is possible to note that the
vectors, initially too small and close to zero to be seen, start to point to the
upper right corner of the figure that means they have a positive azimuthal and
radial velocity component. Then it starts to tilt until the vector is practically
horizontal that means it has only a radial component while the azimuthal one
is zero. The tilting of the vector then continues and the azimuthal component
changes sign to follow the rotation of the pipe. The behaviour just described
certify the counter rotating core of the swirling jet. A similar scenario is present
in almost all the radial directions.

Starting from the three dimensional vector field we now consider only the
axial component. The contour plot is presented in figure 8.31. The velocity
reported is in meter per second whilst the dimension of the flow field is in
millimetre. As can be seen the cameras cover roughly the space of two diameters
of the pipe in the horizontal direction, something less in the vertical one. The
contour lines are fairly circular showing the symmetry of the flow especially
in the central part of the jet. In evaluating the stereo PIV images it has
to be taken into account that, although the average is taken over all the 3072
collected images, due to the highly turbulent nature of the flow, it is not possible
to calculate a vector in each position seen by the cameras in all the images.
The behaviour of the jet does not allow the smoke particles to fill all the image
field since air without seeding particles is captured from the surroundings (only
the air passing through the pipe is seeded with smoke) and the jet itself moves
so that, basically, only in the centre of the image is always possible to calculate
the vectors. This is one of the reasons why the statistics is more accurate in
the centre than in the outermost parts of the flow field.
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Figure 8.30. Close-up of the mean velocity vector field in the
central region of the jet at x/D=6, stereo PIV.

From the concentric contour lines it is possible to obtain the fluid dynamic
centre of the axial velocity component that results to be very close to the
geometrical centre of the jet. When the centre is obtained an axial velocity
profile can be calculated for each radial direction. In figure 8.32 the mean profile
calculate over all the radial direction is shown. Beside the lack of vectors as
already stated, since the images is not circular, the outermost radial positions
(r/R &1.7) do not contain the same number of samples thus the statistics
is not so accurate as in the inner radial positions. In the same picture also
the LDV data are presented. The agreement between the two experiments is
almost perfect along the radius, there is just a small gap close to the centreline
where the stereo PIV data have slightly higher values that, anyway, represent
a disarrangement of just a few percent. The reason of this gap can be found in
the possible not perfect arrangement of the LDV system and the PIV system
that results to be particularly sensitive in the region with high velocity or even
in a small difference in the Reynolds numbers used during the two experiments.
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The same analysis can be applied to the azimuthal velocity component.
Taking into consideration the fluid dynamic centre of the axial velocity, the
vector field of figure 8.30 has been transformed from a cartesian to a cylindrical
coordinate system even if the dynamic fluid centre for the azimuthal velocity
component may not be coincident with that of the streamwise velocity. In
figure 8.33 the resulting contour plot is displayed. As convention, in the picture
the direction of the pipe rotation has been chosen as positive. In this case the
contour lines do not show a perfect symmetric path but it is still possible to
distinguish a region with negative azimuthal velocity in the centre of the image
(see the velocity scale). Again, considering all the radial directions departing
from the stated centre, we get a mean profile displayed in figure 8.34.

In the same picture there are also the LDV data to compare with. The
two profiles collapse at least for r/R 61.5 where the PIV data have, also in
this case, slightly higher values. Note the region of the counter rotating core
in 06 r/R .0.4. The LDV shows a maximum that is somewhat higher than
the maximum of the PIV and also positioned at a larger radial position. Due
to the presence of not seeded air entrapped by the jet, the LDV system is not
able to measure with a good statistics in this outermost region. The quantity
of seeding particles for the LDV is much less compared with the amount used
in the PIV system in order to avoid to have too many particles at the same
time in the measuring volume and to have problems with overloading of the
photo detector. This means that in the outermost radial region only the smoke
particles that show high velocity can be detected while the entrained flow, not
seeded and with lower velocity does not generate any signal in the LDV system
and so is not taken in account. This could explain the divergence of the two
measurements and the scattered data for the LDV. The same is true also for the
axial velocity component of course but the problem does not seem to appear
there: actually the axial velocity is much higher compared with the azimuthal
component and the scattering of the data is so not appreciable. What said
about the statistics for the axial component with the PIV is still valid also here
for the azimuthal velocity.
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Figure 8.31. Mean axial velocity at x/D=6, stereo PIV. The
dimension are in mm and the scale of velocity is in m/s.
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Figure 8.33. Mean azimuthal velocity at x/D=6, stereo PIV.
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The stereoscopic PIV technique has also been used to investigate the counter
rotating region in a different set up. The laser sheet has been positioned to
cut the jet along its axis as shown already in figure 5.7 with the cameras
in the forward-forward configuration. The centres of the images in the two
cameras are set at x/D ≈6. The field covered by both the images is about
5.16 x/D 66.85 and -1.456 r/R 61.45: this is sufficient to catch the forma-
tion of the counter rotating core.

Also this experiment is done at at a Reynolds number of about 24000 and
at S ≈0.5. The same number of images, 3072, covering 123 seconds has been
used for the statistics as in the previously presented analysis. The position
x/D=6 corresponds to about –11 mm on the horizontal axis in figure 8.35 and
8.36 while the axis of symmetry is at 10.5 mm on the vertical axis. Also for
this experiment is valid what already discussed about the different accuracy of
the statistics for different radial positions.

The contour lines for the axial velocity are plotted in figure 8.35. The
picture is obtained by taking the mean of the part of plane above and the side
of plane below the axis of symmetry and then mirroring the result. The scale
shows negative velocities since the flow run from the right side to the left one
while the axis in the cartesian coordinate of the cameras points in the opposite
direction. It is clearly detected the decay of the axial velocity, faster at the
centreline, slower at larger |r/R|: the contour lines seem to be almost parallel
at |r/R| ≈1 indicating a constant axial velocity. This was already pointed out
discussing figure 8.1 where a common crossing point appears at about |r/R| ≈1.

Figure 8.36 shows the azimuthal velocity component. Also here the velocity
profiles have been averaged and then mirrored. A positive velocity means the
flow is directed outside the plane of the image, towards the reader, a negative
velocity states the vectors are pointed in the opposite direction, inside the
page. At the centreline the azimuthal velocity is, obviously, close to zero.
Moving from the right side to the left it is possible to note as the azimuthal
velocity decays, the contour lines spread and the zero level becomes larger and
larger. At x/D ≈5.5 (i.e. ≈ 20 mm in the horizontal scale) a first anomaly
is encountered: a region with negative velocity is present in the plane above
the axis of symmetry where the velocities are supposed to be positive. The
opposite of course happens in the lower part of the plane. This is the first sign
of the formation of the counter rotating core. Then the change of sign in the
azimuthal velocity propagates in the axial direction, becoming more intense
and covering a larger radial region. Note that at the centreline the velocity
is everywhere zero. What seen in the LDV experiment is confirmed by the
pictures from the PIV: the counter rotating core is formed between x/D=5
and x/D=6 and then it increases in intensity. The maximum of the amplitude
of the counter rotating core seems to be reached at x/D ≈6.6.
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stereo PIV. The dimension are in mm and the scale of velocity
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8.4.2. Structures in the counter rotating core region obtained with PIV

By analysing the time and space resolved data from the stereoscopic PIV it is
possible to capture the evolution of the flow and its structures.

The visualisation at the cross section x/D=6 allows the analysis of the
structure in the azimuthal-radial plane of the flow. The pictures in figure 8.37
compare the swirling jet S=0.5, on the right side, with the non swirling jet
S=0, on the left side. The colour of the vectors denote the absolute velocity.
The images are shown at a frequency f=75Hz to follow the motion of the flow,
how it evolves in time, which structures appear and how they are organised.
Although these are only a few snapshots long sequences are available and the
discussion below is based on viewing the flow for much longer times.

The first impression is that the swirling jet is subject to more violent and
larger scale phenomena that involve all the visualised flow field. From the
comparison between the mean axial velocity at x/D=6 for the swirling and the
non-swirling jet as shown in figure 8.1 it is clear that, close to the axis, the
distribution of velocity is much higher in the second case. The instantaneous
pictures help to understand the reason of this behaviour: although the range of
the absolute velocity is practically identical in both the cases, the distribution is
evidently different. The non-swirling jet has always a concentric distribution of
velocities, with the highest values in its central region and decreasing velocities
moving radially towards the external part of it. On the contrary the swirling
jet presents a more complex distribution in the flow field. It is not anymore
possible to see a concentric distribution of the velocity since the centre of the
jet itself is not stable as in the previous case: it moves shifted and stretched
by strong and fast radial motions that looks like eruptions of flow towards the
periphery of the jet. This explains also the higher averaged velocity at greater
radial positions, the larger spreading of the jet and also its higher turbulence
intensity compared with the non-swirling case.

The sequence of images from the side point of view in figure 8.38 shows
the development of the azimuthal, on the left, and the absolute velocity, on
the right, along the axial section of the swirling jet in the region of the counter
rotating core. The colour for the azimuthal component means opposite direc-
tions of the flow, positive towards the reader, negative inside the page. Here
the images are shown at a frequency f=150Hz.

The flow is organised in consecutive, packed structures having opposite
azimuthal direction and that tend to assume an arched shape. This shape is
explained as an effect of the shear flow: the jet is faster in the centre and slower
in the upper and lower region as it is possible to follow in the images on the
right side. So, the central part of these structures moves faster compared to the
tails producing the visualised stretched form. Furthermore, from the absolute
velocity it is possible to recognise a wavy motion of the jet that confirm the
variation of the position of the centre as already noted in the cross-section
visualisation.
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Figure 8.37. Instantaneous flow visualisation at the cross
section x/D=6 at S=0 (left) and S=0.5 (right), stereo PIV.
The dimension of the pipe diameter is shown by the arrow.
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Figure 8.38. Instantaneous flow visualisation at the axis of
the jet 5< x/D <7 of the azimuthal (left) and the total ve-
locity (right) at S=0.5, stereo PIV. The dimension of the pipe
diameter is shown by the arrow.
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CHAPTER 9

Summary, discussion and conclusions

The experimental work has been aimed towards the investigation of rotating
flows, both turbulent rotating pipe flow as well as swirling jet flow. A new
experimental set-up has been designed which has been shown to give a fully
developed turbulent pipe flow. Particular attention has been paid during the
design and the construction of the set-up in order to have a high quality flow
with a low level of disturbances coming from the upstream conditions or vi-
brations of the pipe. For the jet experiments this is highly valuable since the
exit conditions can be viewed as independent of the geometry which would not
be the case using swirl generators or adding secondary injection flows. The jet
was studied in the near exit region, up to 10 diameters from the exit plane.

The flow field has been investigated using hot-wire anemometry, LDV and
stereo PIV and also through a time evolving direct numerical simulation. In
cases where comparisons have been possible there is a good correspondence
between all the methods. It is worthwhile to point out that the present mea-
surements using the stereoscopic PIV has shown the potential of the PIV system
to measure all three velocity components simultaneously, a very useful feature
in complex three dimensional flows.

The parameter space for the experiments is defined by the Reynolds number
and the swirl number. For swirl numbers up to 0.5, the Reynolds number has
been varied between 12000 and 33500, whereas the pipe flow has been studied
for swirl numbers up to 1.5 at a Re=12000. In the DNS the Reynolds number
has been fixed at 5000, for the pipe, and 10000 for the jet, though also the
laminar flow has been evaluated and not included in this work.

In the following some of the findings of the present work are highlighted
and two issues connected to the influence of the cross stream Reynolds stress
are discussed in more detail.

Turbulent pipe flow - summary
• The change of the axial profile towards a parabolic shape was verified

when rotation is applied.

• Accurate measurements of the azimuthal profile in a turbulent flow
shows a close to parabolic shape independent of Re for S >0. The
profile becomes linear with the radius in the region close to the pipe
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wall as confirmed by the DNS simulation.

• An expression for the vw Reynolds stress term has been derived under
the assumption that the azimuthal velocity is parabolic. It is shown to
vary linearly with r. Experiments and simulation confirm the trend for
a large portion of the radius of the pipe.

• The mean flow data were compared with recent theoretical scaling re-
sults of Oberlack (1999). The experimental results seem to follow the
theoretical results closely, while the DNS strongly support them.

Turbulent pipe flow - discussion

It is well known that system rotation can strongly affect a shear flow, i.e. in
the rotating system the fluid can be viewed to be affected by a Coriolis force.
In the case of an axially rotating pipe (or jet) flow the Coriolis force will always
be in cross stream plane since

fcor = −2Ω× u

Tritton & Davies (1985) used a displaced particle argument to describe the
effect of rotation on the stability of a shear flow (i.e. a shear flow undergo-
ing spanwise rotation). With this reasoning they were able to show both the
destabilizing and stabilizing effects of such a system rotation.

One of the intriguing observations for the rotating pipe flow is the fact
that the azimuthal velocity lags behind a velocity distribution corresponding
to solid body rotation. For the pipe flow it can be shown that this implies that
vw is larger than 0 (see eq. 7.1) which is contrary to what one would expect
through a simple displaced particle argument. However in the rotating system
it is natural to see whether the the Coriolis force may play a role.

If we assume that the fluid is rotating as a solid body a fluid element at
certain radius r would have the angular velocity Ωr. If this fluid particle was
decelerated (i.e. would have a negative velocity with respect to fluid particles
in solid body rotation) the fluid particle would be affected by a Coriolis force
towards the centre of rotation and thereby start to move towards the centre.
On the other hand if the fluid particle would be accelerated with respect to the
solid body rotation the Coriolis force would be directed outwards and the fluid
particle would start to move outwards. Both these scenarios would give rise to
a that the velocity disturbances v and w either both are positive or negative
and hence the correlation vw would be positive. On the other hand, if assume
that a fluid element is displaced in the radial direction (i.e. w > 0) the Coriolis
force would be directed in such a way that its angular velocity would decrease.
The fluid particle would hence obtain an angular velocity smaller than that at
the position to which it was displaced, thus v < 0. For such a movement vw
would be smaller than zero. Hence this analysis cannot in itself explain the
observed behaviour of vw.
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An interesting observation is that the azimuthal velocity distribution seems
to be parabolic for all S and Re in the present study but also for other studies
with S and Re outside the present range. We have shown that a parabolic
azimuthal velocity profile corresponds to a linear distribution of vw according
to the expression

vw

U2
b

=
2S
Re

r

R

If we instead write the expression in the form of the correlation (avw) between
v and w defined as

avw =
vw

vrmswrms
we obtain

vw

U2
b

= avw
vrmswrms

U2
b

=
2S
Re

r

R

We have shown that vrms/Ub and wrms/Ub also are fairly independent of Re
and S and of the order of 0.05 throughout the pipe (see figures 7.11 and 7.12).
This means that when Re increases avw must decrease. On the other hand,
with increasing S we find that avw will increase. For S = 0.5 and Re = 10000,
which are representative values in the present study, we obtain a correlation
coefficient that roughly varies in the interval 0 to 0.04 in the pipe, i.e. a
very small correlation (compare for instance with auw which is of the order
of −0.4 across the most part of the pipe). It is interesting that, despite its
smallness, it is this correlation between v and w that makes the azimuthal
velocity distribution deviate from the one of solid body rotation.

In an earlier work the positive value of vw was explained with a displaced
particle argument taking the Coriolis force into account (Facciolo & Alfredsson
(2004)). Unfortunately that analysis was not correct and in view of what is
said above it is clear that an inviscid analysis is inadequate to explain the
behaviour of vw. In the equation for the Reynolds stress itself (see Appendix
A) it is not clear how the production terms will affect vw, however it is seen that
the rotation influences vw through the term S(vv − ww), showing a delicate
balance between the cross stream Reynolds stresses. Wallin & Johansson (2000)
modelled the vw and also showed that this term needed careful modelling in
order to provide correct results for the azimuthal mean velocity.

Swirling jet flow - summary
• All three velocity components have been measured in the near field of

a swirling jet with different techniques. These data constitute a well
defined data base for a complex flow field, ideal for comparisons with
numerical modeling attempts.

• Flow entrainment measurements show that the entrainment increases
with rotation as compared with the non-rotation case, since rotation
makes the potential core break down faster. The entrainment decreases
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for increasing Reynolds number due to the smaller size of the structures
in the shear layer for higher Reynolds.

• An interesting result is that the azimuthal velocity changes sign in the
core of the jet at x/D >5 for the investigated Reynolds number range.
This is observed with hot-wire, LDV, stereo PIV measurements and
DNS simulation.

• The time resolved PIV measurements shows interesting differences be-
tween the the non-swirling and swirling jets with regard to large scale
structures inside the jet. Future work needs to be done in order to
characterize these structures.

Swirling jet flow - discussion

There are many interesting features of the swirling jet, for instance the in-
creased entrainment as compared to the non-rotating case and the vortex
breakdown phenomenon. However here we will restrict the discussion to the
observation that the jet actually becomes counter rotating at some distance
downstream the outlet of the rotating pipe.

It was shown in chapter 2 that in the pipe flow geometry the Navier-Stokes
equation in the azimuthal direction (eq. 2.8) became significantly simplified
since several of the convective terms are identically zero and the equation
reduces to a balance between the viscous term and the term containing the
Reynolds stress vw. In the jet on the other hand the viscous term becomes
negligible and the Reynolds stress term instead is balanced by the convective
terms. We also know that vw is much larger in the jet than in the pipe (see
figure 8.28). We may hence write

U
∂V

∂x
+W

∂V

∂r
+
VW

r
+
∂uv

∂x
+

1
r2

∂

∂r

(
r2vw

)
= 0 (9.1)

By now multiplying with r2 and integrating from 0 to r we obtain
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∫ r
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r2
(
U
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which also after using the continuity equation can be written

r2vw = − ∂

∂x

∫ r

0

r2(UV + uv)dr −
∫ r

0

r2
(
∂

∂r
VW +

2VW
r

)
dr (9.3)

Hence the azimuthal velocity V is determined by several factors, the cross
stream Reynolds stress vw, the change in the downstream variation of U (the
change in uv can probably be neglected) and the variation of W in the radial
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direction. By assuming that V and W both vary linearly with r near r = 0
the second integral in eq. (9.3) can easily be calculated and becomes equal to
r2VW , hence if the balance was only between the left hand side and this term
we would obtain

vw = −VW
It is seen that a positive vw would give VW negative, i.e. V has to be

negative as in the counter rotating core. Using the measured data at x/D=6
(from figures 8.4, 8.26 and 8.28, assuming V,W ∼ r and vw ∼ r2) to determine
these quantities near r = 0 we find that the two terms are of the same order,
although the LHS is about twice as large. However the first term on the may
make up for the difference although it has not been possible to estiamte it
accurately. The expression above is clearly inadequate close to the jet exit
where V is positive, however in that case the first term on the RHS will be
positive and may balance vw.

In order to verify the analysis above accurate data are necessary and it
would be very useful to have a direct numerical simulation of a spatially de-
veloping swirling jet. It should be noted however that the behaviour discussed
here is not only restricted to a swirling jet emanating from a pipe flow but may
also be valid for swirling jets in general.

Concluding remarks

It is clear that the axially rotating pipe flow and the swirling jet both are
interesting and complex flow situations. At present we do not have full under-
standing of these flows and it would probably be worthwhile to study the flow
structures in more detail, especially for the jet flow. With the time resolved
stereoscopic PIV-system such measurements are possible and would certainly
increase our understanding of the complex flow processes leading to increased
entrainment and the counter rotating core. It would also be interesting to
investigate whether the counter rotating core has an influence on vortex break-
down.
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APPENDIX A

For completeness the equations for the normal Reynolds stresses eqs. A.1, A.2
and A.3 as well as the cross Reynolds stresses, eqs. A.4, A.5 and A.6 are given
here in a rotating cylindrical coordinate system. In these equations overbar
means an ensemble average.
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