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Abstract

Simulation and modelling of turbulent flows under influence of streamline cur-
vature and system rotation have been considered. Direct numerical simulations
have been performed for fully developed rotating turbulent channel flow using a
pseudo-spectral code. The rotation numbers considered are larger than unity.
For the range of rotation numbers studied, an increase in rotation number
has a damping effect on the turbulence. DNS-data obtained from previous
simulations are used to perform a priori tests of different pressure-strain and
dissipation rate models. Furthermore, the ideal behaviour of the coefficients of
different model formulations is investigated. The main part of the modelling is
focused on explicit algebraic Reynolds stress models (EARSMs). An EARSM
based on a pressure strain rate model including terms that are tensorially non-
linear in the mean velocity gradients is proposed. The new model is tested
for a number of flows including a high-lift aeronautics application. The lin-
ear extensions are demonstrated to have a significant effect on the predictions.
Representation techniques for EARSMs based on incomplete sets of basis ten-
sors are also considered. It is shown that a least-squares approach is favourable
compared to the Galerkin method. The corresponding optimality aspects are
considered and it is deduced that Galerkin based EARSMs are not optimal
in a more strict sense. EARSMs derived with the least-squares method are,
on the other hand, optimal in the sense that the error of the underlying im-
plicit relation is minimized. It is further demonstrated that the predictions of
the least-squares EARSMs are in significantly better agreement with the corre-
sponding complete EARSMs when tested for fully developed rotating turbulent
pipe flow.

Descriptors: Direct numerical simulations, least-squares method, turbulence
model, nonlinear modelling, system rotation, streamline curvature, high-lift
aerodynamics.
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CHAPTER 1

Introduction

Fluid flow has fascinated and puzzled man through all times and still does.
What probably began as a mere desire of being able to fly has gradually evolved
to the search of insight and understanding of the most fundamental mechanisms
of fluid flow. Today, we are indeed able to construct flying machines and man’s
knowledge in the field of fluid mechanics has greatly increased, but even though
the governing Navier-Stokes equations are known and numerous experiments
have been performed, the research in this area is more intense than ever.

From a physical point of view, all gases are composed of one or many
species of atoms or molecules. These molecules move along straight trajecto-
ries in space until they are sufficiently close to one another to interact. These
dynamics are governed by the Boltzmann equation which is an equation for
the particle probability density in phase space. In between two “collisions”,
a gas molecule travels a distance referred to as the mean-free path. If the
mean-free path is small enough compared to the characteristic length-scales of
the problem, the particle system can be treated as a continuum or a fluid. In
the continuum limit the first-order approximation of the Boltzmann equation
equals the Navier-Stokes equations, the governing equations of fluid flow. From
this perspective the Navier-Stokes equations provide a mathematical approxi-
mation of the physical reality, valid only in the continuum limit. It should be
pointed out that the corresponding dynamics governing liquids are far more
complicated than for gases. In the continuum limit, however, liquid flow is also
governed by the Navier-Stokes equations. For the remaining part of the present
work the assumption of a continuum is always applied.

Although the equations governing the flow are known, the complexity of
the flow makes it impossible to find analytical solutions for most cases of inter-
est. Experiments can of course be performed to study a particular flow case but
with the measurement techniques available today it may be difficult to extract
all information of interest. It is therefore necessary to use numerical methods
to solve the Navier-Stokes equations. Solutions that are exact (to the order of
the numerical method used) can be obtained in a direct numerical simulation
(DNS) in which the governing equations are solved directly and all details of the
flow are given. But due to the wide range of scales of the flow, the turbulence,
the computational effort rapidly becomes extreme. DNS is therefore applica-
ble only in a number of generic flows where the range of scales is relatively
restricted. From this perspective experiments are attractive since they can,
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2 1. INTRODUCTION

at least in principle, be performed for any flow case. However, in engineering
design processes in which DNS is not applicable due to computational expenses
and experiments provide a time consuming and costly tool since every design
of interest has to be physically manufactured, less demanding (and therefore
approximative) computationally based procedures are needed.

An approximative method useful for engineering types of problems is based
on averaging the Navier-Stokes equations. With this approach, a set of equa-
tions commonly referred to as the Reynolds averaged Navier-Stokes (RANS)
equations are solved. The numerical cost of a RANS-computation is far less
than for a DNS since only the mean flow has to be resolved. Hence, compu-
tations involving large objects subject to high free-stream velocities, such as
airplanes, can be performed. The drawback with this procedure is that the
equations governing the mean flow depend on a set of unknown quantities, the
Reynolds stresses, which correspond to the extra transport of momentum due
to the turbulence. A new equation for the Reynolds stresses can be derived
but it turns out that this equation depends on new unknown quantities and
the equations for these do in turn depend on other unknown quantities and so
forth. This problem is due to the nonlinearity of the Navier-Stokes equations
and is referred to as the closure problem (of turbulence). In order to close the
system of equations, modelling (approximations) has to be introduced at some
level. This is the nature behind the term “turbulence modelling”. Another ap-
proach that is gaining in interest is large eddy simulations (LES) in which the
large eddies of the flow are resolved. This is computationally more cumbersome
than the RANS-procedure but considerably more physics are included. In the
present study no LES computations have been performed.

A typical RANS-turbulence closure incorporates, in addition to the mean
velocity equations, a constitutive relation connecting the turbulent stresses
with the mean velocity gradients and a two-equation platform which normally
consists of one equation for the turbulence kinetic energy and one equation
for a quantity of different dimension, such as the dissipation rate. Alterna-
tively, a full transport equation of the turbulent stresses in combination with a
length-scale determining equation can be used. Regardless of which approach
is chosen, the turbulence model relies on a number of parameters that need to
be calibrated. This is usually done by considering a generic type of flow and
tuning the parameters in such a way that the predictions of the RANS-closure
correspond to the observations of an experiment or a DNS. From this point
of view a DNS is particularly useful since all flow quantities and correlations
are available. Furthermore, by using DNS-data the physical correctness of the
individual components of a turbulence model can be investigated in so called
a priori tests.

The field of applications for fluid mechanics is vast and includes everything
from meteorology and aeronautical vehicle design to biophysics phenomena
such as blood flow in the brain. Hence, generality is a very important aspect
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of turbulence modelling. In order to be able to give a RANS-closure any sig-
nificance as a predictive tool, the behaviour in a large number of flows must be
assessed. Generality is normally easier to achieve with models that incorporate
as much flow physics as possible. This on the other hand, means an increased
computational effort.

In the present work different aspects of turbulence modelling are discussed.
The emphasis is on the constitutive relation for which different modelling
and approximation techniques are investigated. The assessment is focused
on generic geometrically simple flow cases with one exception, an aeronautics
high-lift geometry that serves as an illustration of an important engineering ap-
plication. The study also incorporates a DNS of turbulent channel flow subject
to rapid system rotation.



CHAPTER 2
Basic equations

2.1. Navier-Stokes equations

All details of a fluid flow are given by the governing Navier-Stokes equations
which can be derived from Newton’s second law by condsidering a fluid element
and the stresses acting upon it. The total stress is composed of the two parts,
i) the pressure which exerts a force normal to the surface of the fluid element
and 1) the viscous forces from the surrounding elements. For a fluid such as
air or water, the viscous forces are directly proportional to the rate of defor-
mation, the strain rate, of the fluid with a proportionality coefficient equal to
the viscosity. Fluids which have this relation between stress and strain rate are
commonly denoted Newtonian fluids. Only Newtonian fluids are considered in
the present study. In what follows we shall also assume incompressibility mean-
ing that the density is constant. The incompressibilty assumption is justified
at low mach number flows, i.e. when the velocity is low compared to the speed
of sound and for small temperarture variations. Under these assumptions the
Navier-Stokes equations take the form

aui .

G =0 (2.1)
Ou; Ou; 1 op 0 -
ot W or; — pox - oz ; (2vsig) (22)

in Cartesian tensor notation in an inertial frame of reference. p is the density
and v the kinematic viscosity of the fluid. (2.1) is the continuity condition
(conservation of mass) for an incompressible fluid which dictates that the ve-
locity field is divergence free. (2.2) governs the momentum. s;; is the strain

rate tensor and is given by
1 aui 8’11,]‘
ii = = 2.3
3 2(axj+azi> (23)

u; and p are the instantaneous velocity components and pressure. Note that
the strain rate tensor is symmetric and traceless.

Equation (2.1) and (2.2) can be solved directly in a so called direct nu-
merical simulation (DNS). In order to have a physically accurate solution, the
smallest scales of the flow must to be resolved. By smallest scales are meant
the smallest intervals in space and time that are important for the flow. A
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2.1. NAVIER-STOKES EQUATIONS 5

measure of the range of scales is the Reynolds number which is defined as

UL
_l/

Re (2.4)

where U and L are characteristic velocity and length scales. Hence the com-
putational effort for increasing Reynolds numbers increases rapidly. Therefore,
DNS can only be used to study relatively simple geometries at restricted Rey-
nolds numbers. This limits DNS to be used as mainly a research tool for
fundamental aspects of turbulence and for evaluating and calibrating turbu-
lence models. It should be pointed out that different Reynolds numbers can be
defined for the same flow case depending on what scales are chosen as reference.

At higher Reynolds numbers, in e.g. engineering type of applications, sta-
tistical methods must be used. A widely used approach is based on averaging
the Navier-Stokes equations (2.2) by decomposing the velocity and pressure
fields into mean and fluctuating parts according to u; = U; +u; and p = P+p'.
P = p and U; = @; are the mean parts where a bar means averaging. u;
and p’ are the fluctuating parts for which u_; =0 and p’ = 0. In this way a
set of equations referred to as the Reynolds averaged Navier-Stokes (RANS)

equations are obtained. They read

ouU;
5 = 0 (2.5)
ou; ou; 10P 0 —
LyU = = == —(2wS,; — U, 2.
ot + UJ axj paxl + axj( I/S] ulu_]) ( 6)

where the mean strain rate tensor, defined in analogy with (2.3), has the com-

ponents
1/9U; 98U,
Sy =15 (axj + 6xi) (2.7)

in Cartesian tensor notation. While (2.6) is an equation for the mean velocity,

the dependency on the turbulence enters through w/v/, the Reynolds stress,

1750
which is the extra flux of momentum due to the turbulent fluctuations. Hence,

in order to be able to solve (2.6), uju}; must be evaluated. The natural way to
proceed is to investigate the transport equation for the Reynolds stresses which
can be derived from the Navier-Stokes equations and (in an inertial frame of

reference) reads

Du;ug
Dt

= Pij — &5+ Hij + Dij (28)

where D/Dt = 0/0t + U;0/0x;. The terms on the right-hand side represent
production, dissipation, pressure-strain and diffusion respectively. The exact
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expressions for these are given by

Py = —uhul, e ;u’m o (2.9)
cy = Wil .10
2.

i = ;p’SQj (2.11)

0 ou'u',
Dii = ——— | Jiign — L J 2.12
J al'm ( J v 8xm ( )

where a comma is used to denote differentiation and

1 _

Jijm = winjuy, + ;(u}p’éim + Up' 8im) (2.13)

The production tensor is the direct interaction between the mean flow and
the turbulence and can be interpreted as the energy transfer rate from the
mean flow to the fluctuations. In some rare cases this term can have the op-
posite effect and transfer energy from the turbulence to the mean flow. The
pressure-strain rate tensor is associated with intercomponent energy transfer
among the Reynolds stress components since it is traceless and hence have no
direct effect on the total turbulence kinetic energy, K = w;u;/2 (summation
convention assumed). The dissipation represents the viscous dissipation into
heat. The diffusion terms includes both diffusion due to viscous stresses and
fluctuations in velocity and pressure. Obviously only the production can be
expressed in terms of quantities that are solved for, the Reynolds stress and
the mean velocity gradients. The other terms depend on unknown correlations.
Furthermore, the transport equations for the these correlations are dependent
on new unknown correlations. This is the well known closure problem of turbu-
lence caused by the nonlinearity of the Navier-Stokes equation. The solution to
this dilemma is to introduce modelling at some level in order to close the sys-
tem of equations. The branch of turbulence modelling is hence concerned with
the closure problem and the necessary approximations. It should be pointed
out, however, that a turbulence model does not necessarily involve (2.8) as
discussed below. Since the first efforts were made by Boussinesq (1877) the list
of proposed turbulence closures have grown long, and it is still growing.

2.2. Turbulence closures

A great number of RANS turbulence models can be found in the litterature.
These can vary a great deal regarding underlying modelling assumptions as
well as complexity. In the present work, mainly two different types of models
are discussed, differential Reynolds stress models and explicit algebraic Rey-
nolds stress models. Brief descriptions of the essentials of these and related
approaches are given below.
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2.2.1. Differential Reynolds stress models

Turbulence models based on the transport equations for the Reynolds stresses
are usually called Reynolds stress transport (RST) models or differential Rey-
nolds stress models (DRSM). From a mathematical point of view, this family
of models seems as the natural choice for modelling the Reynolds stress in
RANS-closures since no ad-hoc assumptions other than those necessary for the
modelling of the terms in these equations have to be made. In this approach the
full transport equation of the Reynolds stresses (2.8) is solved in combination
with an equation for an auxiliary quantity. This means that seven equations
must be solved for the general three-dimensional case in addition to the mean
flow equations since the Reynolds stress tensor is symmetric. Alternatively, the
transport equation for the Reynolds stress anisotropy tensor,

u}?'j — %6”‘ (2.14)
which is symmetric and traceless, can be considered. K = w;u;/2 is the turbu-
lence kinetic energy and the corresponding transport equation can be obtained
by taking half the trace of (2.8)

DK

Dr =P—-e+D (2.15)
where the terms on the right-hand side terms denote half the trace of the corre-
sponding terms of (2.8). Note that the pressure-strain rate tensor is traceless,
II;; = 0. The transport equation for a,; can then be derived by combining (2.8)

and (2.15). This yields
Da

Jlget i
Dt

aij =

— <a1;j + 5611) (P — E) + Pij — i + 1 + 'Dg;) (2.16)
in an inertial frame. DS‘) = D;;/K —wu;D/K? is the diffusion of the Reynolds
stress anisotropy.

In order to be able to determine the turbulent stresses, (2.16) is comple-
mented with a two-equation platform that normally incorporates the transport
equation for the turbulence kinetic energy (2.15) and an auxiliary quantity of
different dimension. For the latter purpose, the perhaps most natural choice is
the dissipation rate of the turbulence kinetic energy, e = ¢;;/2. However, other
quantities, formed from K and e, can sometimes be preferred. The modelled
transport equation for an auxiliary quantity on the form Z = K™e&", can be
schematically written as

DZ

Dt
where Cz7 and Cz; are model parameters. In addition, cross diffusion terms
that occur naturally in the transformation Z = Z(K,¢) can be incorporated.

Z
= 2(CnP = Coe) + D) (2.17)

It should be noted that the alternative to using a turbulence closure con-
sisting of (2.16), (2.15) and (2.17), would be to use (2.8) in combination with
(2.17). These approaches are in principle equivalent but due to differences
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in the boundary conditions and the choice of numerical method, one set of
equations might be preferred over the other.

Since all terms of (2.8) (or (2.16)) are included, the different physical inter-
actions of the components with each other and the mean flow are considered.
Effects of streamline curvature and system rotation which can be strong in
many applications are included in a natural way in this type of model. Hence,
the predictions of a DRSM can be expected to be more accurate in a larger
number of flows than those of simpler turbulence models.

There have been numerous suggestion of how to model the different terms
of the transport equation for u;u; The dissipation rate tensor is quite often
modelled using an isotropic model as €;; = 2¢d;;/3 where ¢ is determined from
the length and velocity scale determining equations. A dissipation rate model
that is nonlinear in the Reynolds stress anisotropy tensor has been proposed
by Sjogren & Johansson (2000). Another interesting modelling approach has
recently been suggested by Perot & Natu (2004). They develop a dissipation
rate tensor model that is exact in the limit of very strong inhomogeneity. Since
the modelling of the dissipation and the slow pressure strain rate tensors is
done in the same fashion, the models are sometimes lumped together, see for
instance Gatski & Speziale (1993). An often used diffusion model has been
proposed by Daly & Harlow (1970). This is on the form

awj} (2.18)

0 K
D;; = o [<V5lk + Cs?”l“k) o,

where ¢, is a model parameter. The corresponding expression can also be used
to model the diffusion of the auxiliary quantity.

The term that provides the greatest challenge for the turbulence modeller
is the pressure-strain rate tensor. This term is traceless and represents inter-
component energy redistribution. It is associated with non-local interactions
and is therefore complicated to accurately predict in single-point closures. The
modelling of the pressure-strain rate correlation is normally based on the formal
solution of the Poisson equation for the fluctuating pressure. The character of
the inhomogeneous terms naturally divides the solution into three parts: the
rapid and slow parts and the Stokes term. The rapid part depends explicitly
on the mean velocity gradient and therefore responds directly to changes in the
mean flow whereas the slow part depends only on the fluctuating velocities,
see Hallbdck et al. (1996). The modelled pressure-strain rate tensor can, in
analogy with this, be divided into three parts: slow and rapid pressure strain,
Hl(;) and Hz(;) respectively, and a pressure reflection part emanating from the
Stokes pressure which might become significant close to the wall.
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The most general quasi-linear model for the total pressure strain rate tensor
lumped together with the dissipation rate anisotropy tensor is given by
II 1 P
—-e = 3 <C? +Cl—> a+ Cy7S

S ! €
C3T

+=5-(aS + Sa— g{aS}I) _Gir

2
where e;; = ¢;;/¢ —24;;/3. In (2.19) a bold face notation has been used where,
for instance, S is the strain rate tensor with components S;;. € is the mean
rotation rate tensor and is given by the antisymmetric part of the mean velocity
gradient tensor. Whereas S preserves its form when transformed to a rotating
frame of reference, the transformation of €2 gives rise to an extra term including
the system rotaion rate vector, w(®). The obtained tensor is commonly denoted
the absolute rotation rate tensor and has components given by

1 /0U;, 0OU; (s)
0 = = — 1) — ey 2.20

* 2 (81‘J 8$J) Cigkk ( )
In a nonrotating frame of reference the contribution due to system rotation is,
of course, zero.

(a2 — Qa) (2.19)

The model (2.19) is quasilinear in the Reynolds stress anisotropy since
P/e = —7a;;S;; where T = K /e is the turbulence time-scale. Many proposed
pressure-strain rate models can be written on the form (2.19), see for instance
Launder et al. (1975) (LRR-model). Speziale et al. (1991) included a term qua-
dratic in their model, the SSG-model. This model also exists in a linearized
version, the L-SSG model which can be written on the same form as (2.19), see
Gatski & Speziale (1993). Johansson & Hallbéack (1994) derived the expression
for the most general model for the rapid pressure strain. The tensorial expres-
sion for their model was obtained by studying the symmetries of the formal
expression for the rapid pressure strain. This gave a model including terms
nonlinear in the Reynolds stress anisotropy tensor. The model by Johansson &
Hallbéck (1994) was incorporated in a DRSM by Sjogren & Johansson (2000).

Compared to other simpler turbulence models, the computational effort
for a DRSM is significantly larger and the numerical behaviour in terms of,
e.g., robustness can be troublesome. Despite this, turbulence closures based on
the transport equations of the Reynolds stresses are preferred in more complex
flows since effects of streamline curvature effects, diffusion and intercomponent
energy transfer are included in a natural way.

2.2.2. Ezplicit algebraic Reynolds stress models

An explicit algebraic Reynolds stress model (EARSM) is derived from the trans-
port equation of the Reynolds stress anisotropy (2.16) and consists of an ex-
plicit relation between the Reynolds stress anisotropy and the mean velocity
gradients. By basing the model formulation on the full transport equation of
aij, good predictions can be expected in a wide range of flows, but since an
EARSM is explicit, no extra transport equation for a;; needs to be solved. The
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computational effort is therefore significantly smaller than that of a DRSM.
This family of models came as a natural extension of the weak-equilibium as-
sumption proposed by Rodi (1976). In the weak-equilibrium limit the Reynolds
stress anisotropy varies slowly in time and space implying that the advection
and diffusion of the anisotropy become small and can be neglected. The trans-
port equation for the anisotropy hence reduces to an algebraic equation for
aij

2 P 1
(aij + §5ij> (; - 1) = E(Pij —eij + 1) (2.21)

This implicit relation in combination with a two-equation platform may in
principle be used for determining u;u; for any kind of pressure-strain and dis-
sipation rate models. A model of this kind is commonly referred to as an
algebraic Reynolds stress model (ARSM). An EARSM is obtained when the
solution of (2.21) is written on explicit form. This was first done by Pope (1975)
who found a tensorial solution to (2.21) in terms of the velocity gradients for
two dimensional mean flows. In the work of Pope (1975) the scalar nonlinearity
due to P/e = —7a;;S;; was avoided by treating P /e as an extra unknown. The
explicit relation is usually given as a representation in terms of a set of basis
tensors {Tl(jk)} as

E
aij = BT (2.22)
where the summation convention is applied. Basis tensors often used for
EARSM representation are

TW =8 TR =82 — 11741
3
TG) = Q2 — 1Ig1 TW =8O — QS
TG) = 820 — OS2 TO® =802 +02S — 2IVI (2.23)
T = 8202 + QS — 2VI T®) =8Qs? — 5208
T = QSQ? — Q2SN T19 = Q8202 — Q2S%Q

in which a bold-face notation has been used and normalization with the tur-
bulence time-scale 7 has been assumed, i.e. S;; — 7.5;; and €;; — 78;;. Five
independet invariants may be formed from the mean velocity gradients for the
most general three-dimensional mean flows. These are

IIs = {S?} IIo={Q?} IIs={S%}
IV ={SQ?} V ={s20?} (2.24)

For 2D mean flows, only IIg and IIg are independent while IIlg = 0, IV =0
and V = IIgllg/2. The EARSM-coefficients, (3;, can be derived in a number
of different ways. Depending on the choice of basis tensors, an EARSM can
be denoted complete or incomplete. A complete EARSM exactly solves the
ARSM-equation (2.21) and is based on a complete set of basis tensors implying
five or more basis tensors for the most general case since a;; has five inde-
pendent components. An incomplete EARSM is, correspondingly, based on an
incomplete set of basis tensors and hence only provides an approximation to the
solution to the (2.21). In common for all approaches is that P/e = —a;;S;; is
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treated as a free parameter. In this way the scalar nonlinearity in a,; is “over-
come” initially but has to be adressed at a later stage. Complete EARSMs, the
treatment of the dependency on P/e of the EARSM-coefficients as well as dif-
ferent derivation techniques for incomplete EARSMs will be further discussed
in the following chapter.

Although, the dependency on the mean rotation rate tensor makes an
EARSM sensitive to rotation and curvature effects, the underlying weak equi-
librium assumption implying that the advection is neglected, may lead to rather
poor predictions in flows where rotation and curvature effects are strong. By
assuming weak equilibrium in a general curvi-linear coordinate system an ad-
ditional term (curvature correction) on the form

~7(ain Q) — O ary) (2.25)

arises on the left-hand side of the ARSM-equation (2.21) where QE;) repre-
sents the the local rotation rate of the flow. This has been studied by, e.g.,
Sjogren (1997), Girimaji (1997), Wallin & Johansson (2002) and Gatski &
Wallin (2004). The contribution (2.25) can be directly incorporated in an
EARSM through the transformation Q;; — Q;; = Q;; — TQ’E;)/AO where A is
a model parameter, if the modelling of (2.21) includes terms in €;; of tensorial
order one or less.

In some generic flows subject to system rotation, the curvature correction
(2.25) is exact and accounts for the complete advection. For this case the
curvature correction is on the form

Q) = —ejpw”) (2.26)
where wl(f) are the components of the system rotation rate vector. This yields
a significant improvement in, for instance, rotating channel flow where mean
velocity predictions in good agreement with DNS can be achieved, see Wallin &
Johansson (2002). In other more complex flows where the exact expression for

w,(:) cannot be found, the inclusion of the curvature correction can still improve
the predictions significantly, see Hellsten et al. (2002).

2.2.2.1. Eddy-viscosity based models

A family of models that is somewhat related to EARSMs, due to being explicit,
is that of those based on the eddy-viscosity assumption. The eddy-viscosity
type of closure arises naturally when assuming that the turbulent stresses can
be modelled in terms of an extra viscous stress. This approach is based on
the original Bousinessq hypothesis, Boussinesq (1877), which relates the shear
component of the Reynolds stress in nearly parallel flows to the cross-stream
mean velocity gradient. The generalization of this concept relates the Reynolds
stress tensor directly to the mean strain rate tensor and yields a constitutive
relation on the form

— 2
u;u; = _2VTSij + gK(Sij (227)
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The modelling problem is hence reduced to determining the eddy viscosity, v,
which is of dimension [velocity]-[length]. The computationally cheapest method
to do this is to choose a velocity scale based on the mean flow and a length
scale related to the geometric properties of the problem. This is commonly
referred to as an algebraic model and an example of this is the model proposed
by Baldwin & Lomax (1978). However, the most common approach is to apply
a two-equation platform mentioned earlier, implying that (2.15) and (2.17) are
used in combination with (2.27). A natural choice for the velocity scale is hence
the square root of the turbulence kinetic energy, VK, while the length-scale
can be determined from the auxiliary quantity in combination with K. A two-
equation model that has been used in numerous studies is the K — w model
proposed by Wilcox (1988).

Once the velocity and length scales have been established the eddy viscosity
can be determined through the relation

K2
vrp = CN? (228)

where C), is a parameter.

One of the major drawbacks with models based on the standard eddy-
viscosity assumption is their insensitivity to rotation. This means that the
governing equations for the turbulence quantities take the same form in a ro-
tating system of reference as in an inertial frame. Standard eddy-viscosity
models therefore make poor predictions in many flows affected by streamline
curvature and rotation. Even generic flows such as rotating channel and ro-
tating pipe provide insurmountable challenges for this kind of closures. There
have, however, been succesful efforts of introducing sensitvity to rotation in
eddy-viscosity models. Pettersson-Reif et al. (1999) introduced a dependency
of v on the system rotation rate and the second invariant of the mean rotation
rate tensor, IIg. In doing so Pettersson-Reif et al. (1999) showed that good
agreement between RANS-computations and DNS can be obtained in 2D mean
flows such as rotating channel.

2.3. Generic test cases

In the present study, a number of generic flows are used to evaluate and analyse
the performance of different modelling approaches. Common for all these flows
is that the effects of system rotation and streamline curvature are strong. The
most fundamental of these cases is rotating homogeneous shear flow. Homo-
geneous shear flow is a 2D mean flow in which the only nonzero mean strain
tensor component(s) is St (and Sa1). This component is set to some prescribed
value. From this point of view this case is rather special since the turbulence
has no effect on the mean flow. The rotation is normally applied in the third
direction orthogonal to the plane in which the shear is confined. Since this
flow is homogeneous in space there is no spatial dependence on the averaged
quantities. Therefore, in most investigations concerning (rotating) shear flow
there is a focus on how different quantities evolve in time. The response of the
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turbulence is strongly dependent on the magnitude and sign of the rotation,
see for instance Bardina et al. (1983).

Another 2D mean flow considered is fully developed turbulent rotating
channel flow. The geometry of the case is very simple with two parallel infinite
walls. The flow between the walls is driven by a constant pressure gradient
in the streamwise direction which together with the spanwise direction are
treated as periodic directions for the fully developed case when direct numerical
simulations are performed. The mean quantities are dependent on the wall-
normal direction only why a RANS-closure is easily implemented in a numerical
solver for 1D problems. In the present study, as in many previous studies, the
rotation is applied in the spanwise direction. This divides the channel into one
suction side and one pressure side. The applied system rotation rate has many
interesting effects on the flow. For instance, the slope of the mean velocity
profile in the center of the channel is approximately twice the system rotation
rate. There is also a difference between the wall-shear velocities, defined as u, =

l/d—U|wa”, for the suction and pressure side of the channel. This difference
dy

intially increases for low rotation numbers and then decreases with increasing
rotation number, see Alvelius (1999). Furthermore, for high rotation numbers
the turbulence is strongly surpressed on the suction side of the channel. For
further discussions regarding channel flow see chapter 4 and paper 5.

The only generic test case, in the present study, that constitutes a 3D
mean flow is fully developed rotating pipe flow. This flow is obtained by let-
ting a pressure gradient push fluid through an infinitely long cylindrical pipe
which rotates around its axis of symmetry. This mean flow is three dimensio-
nal since the mean flow invariant V' # IIgllg/2. The two most characteristic
features of this flow are the parabolic-like mean azimuthal velocity profile and
the increasing bulk flow for increasing rotation rate of the pipe for a constant
pressure gradient. While the increased bulk flow can be captured with many
RANS turbulence models, the deviation of the mean azimuthal velocity from
solid body rotation is governed by an intricate balance, see Wallin & Johans-
son (2000), and provides a discriminating test case for any turbulence model.
Previous studies have demonstrated that many RANS-closures tend to predict
the wrong sign of the correlation between the azimuthal and axial velocity fluc-
tuations, see for instance Pettersson et al. (1998) and Jakirli¢ et al. (2002) but
also Grundestam et al. (2005). Rotating pipe flow is dependent on one spatial
coordinate only and is therefore, as channel flow, suitable for implementation
in a 1D solver. Different aspects of rotating pipe flow is further discussed in
papers 1-3.



CHAPTER 3

Formulation of EARSMs

A large part of the present study concerns explicit algebraic Reynolds stress
models. Besides deriving and testing a new EARSM, different EARSM repre-
sentation techniques based on incomplete sets of basis tensors are investigated.
In this chapter, these and other aspects of the EARSM type of turbulence
model are presented.

3.1. Complete EARSMs

A complete EARSM is an explicit tensorially exact solution to the ARSM-
equation (2.21). In all previous EARSM studies tensorially linear modelling has
been used. The reason for this is easily understood - the system of equations
governing the EARSM-coefficients, (3;, will contain nonlinearities if modelling
nonlinear in a;; is used. This implies that it will be impossible to find the
corresponding solution on closed form for most cases. With respective to this,
the modelling concerning EARSMs has in the present study been restricted to
the quasi-linear form (2.19) presented in the preceding chapter. In what follows
the strain and rotation rate tensors are assumed to be nondimensionalized with
the turbulence time-scale, 7.

Inserting (2.19) together with the expression for the production

gz_gs—(aS+Sa)+aQ—ﬂa (3.1)

in the ARSM-equation (2.21) yields the modelled ARSM-equation which can
be written

Na=-4;S+ (a2 — Qa) — Ay(aS + Sa — ;{aS}I) (3.2)

where N = A3 + A4P/e. The parameters are related through the transforma-
tions

c 3Cy—4 Cs—2
Ap=F -1 A= 34, A2:23:40

29 —Cl-2
Az = 2Ao1 Ag= 2}10 (3:3)

By assuming that IV is a free parameter, an exact solution for the Reynolds
stress anisotropy can be obtained by inserting a complete expansion (2.22) in
(3.2) and solving for the S-coefficients. This has been done for 2D mean flows
by Pope (1975) and general 3D mean flows and different underlying model

14



3.2. INCOMPLETE EARSMS 15

assumptions by, e.g., Taulbee (1992), Gatski & Speziale (1993) and Wallin
& Johansson (2000). For three-dimensional mean flows the Reynolds stress
anisotropy tensor has five independent components due to being symmetric
and traceless. Therefore five independent basis tensors must be used, one for
each degree of freedom. In some cases it may be convenient to express the
EARSM in terms of more than five basis tensors, see for instance Gatski &
Speziale (1993). However, any extra basis tensor chosen in addition to these
five independet basis tensors can be expressed in terms of these five tensors if
the coefficients are allowed to be rationals of polynomials of the mean velocity
invariants (2.24), see Taulbee et al. (1994). This can in some cases cause
singularity problems, see Grundestam et al. (2005¢) for a discussion regarding
this in rotating pipe flow.

Since N has been treated as a free parameter, the scalar nonlinearity due to
P /e must be dealt with after the EARSM-coefficients have been derived. The
most simple way to adress this problem is to let N attain a prescribed value.
This approach was used by Gatski & Speziale (1993) where the correspond-
ing assymptotic equilibrium value was used. Unfortunately, this method gives
models that make poor predictions in flows with high shear rates. Wallin (2000)
demonstrated that the corresponding EARSM gives the wrong assymptotic be-
haviour for large shear rates. This was also noted by Speziale & Xu (1996).
A correct behaviour of N implies consistency between P /e evaluated from the
anisotropy and strain rate tensors, and the explicit dependency of the EARSM
coefficients on P /e through N. This can be achieved by solving the governing
equation for N which is given by N = A5 — A4{aS} where the EARSM gives
the expression for a. With the modelling used in (3.2), N is governed by a sixth
order polynomial equation for three dimensional mean flows while the corre-
sponding equation for two dimensional mean flows is of third order. Hence, the
consistency condition can only be exactly fulfilled for two dimensional mean
flows if N is to be evaluated from an explicit expression. EARSMs which fullfil
this condition are usually referred to as self-consistent and have been derived
independently by Girimaji (1996) and Johansson & Wallin (1996) for two di-
mensional mean flows. Wallin & Johansson (2000) proposed an approximation
for 3D mean flows in terms of a correction to the 2D expression for N that
have been shown to improve the predictions in rotating pipe flow significantly,
see Wallin & Johansson (2000) and Grundestam et al. (2005).

3.2. Incomplete EARSMs

While a complete set of basis tensors yields the exact solution (in terms N) to
the ARSM-equation, an incomplete set of basis tensors can be used to derive
an approximate solution. The use of incomplete sets of basis tensors can be
questioned since the corresponding EARSM will not provide a tensorially exact
solution to the ARSM-equation. However, if a robust implementation of com-
plete EARSM for 2D mean flows in a general CFD-code is assumed to exist, it
is indeed motivated to investigate what an incomplete EARSM, based on the
same set of basis tensors as the 2D formulation, derived for general 3D mean
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flows can offer. In this way, a whole new model does not need to be reimple-
mented with all numerical problems this may cause. Instead, use of old routines
can be made and the modifications to the code can be restricted to changing the
evaluation of the EARSM coefficients. The use of incomplete EARSMs hence
provides a systematic way of improving flow predictions of already existing
codes without doing extensive reimplementations. From this perspective, ap-
proximate approaches are indeed very interesting since one can literally choose
which basis tensors to include and which to leave out. This must, however,
be done with care since the different basis tensors listed in (2.23) have differ-
ent properties and hence the actual choice can have a significant effect on the
performance of the EARSM.

The second aspect to consider is the derivation method. A method used
by several authors for this purpose is based on the Galerkin method. This ap-
proach was first used to derive EARSMs by Jongen & Gatski (1998), but since
then, several authors have applied this approximation procedure, see Rum-
sey et al. (2000), Rung (2000) and Manceau (2003). An alternative approach
based on the least-squares method was recently proposed by Grundestam et al.
(2005¢). Below, these two methods will be compared and discussed.

The Galerkin method which is often used in finite element methods, can
also be applied to the ARSM-equation to derive an EARSM. The system of
equations governing the EARSM-coefficients is obtained by inserting the expan-
sion of a;; (2.22) in (3.2). Each and everyone of the basis tensors used in (2.22)
is then multiplied from the left and the trace is formed. If the ij-th component
of the ARSM equation is denoted ARSM;;(a,S, 2, N), the Galerkin method
gives, after applying the representation of a = 5, T®), the system of equation
governing the J;-coeflicients as

T ARSM;; (T, S, Q. N) =0 k=1,...M (3.4)

where M is the number of basis tensors. In addition to (3.4) an equation for N
has to be solved. The Galerkin method yields an exact solution if a complete
set of basis tensors is used. If As is zero or nonzero, two or three, respectively,
basis tensors are needed solve (3.2) exactly for 2D mean flows, see Jongen &
Gatski (1998) and Wallin & Johansson (2000). Commonly used basis tensors
are T, T() and T®. In the study by Jongen & Gatski (1998), it was shown
that a general (3D) EARSM based on these tensors is exact not only for 2D
mean flows, but also for 3D mean flows in which one of the eigenvectors of S
is aligned with one eigenvector of €.

In a recent study by Grundestam et al. (2005¢), an alternative procedure
for deriving EARSMs based on incomplete sets of basis tensors was proposed.
The method is based on minimizing the error in the ARSM-equation due to
using incomplete sets of basis tensors. Under the assumption that NV is an inde-
pendent parameter, a complete EARSM exactly satisfies the ARSM-equation.
When an incomplete representation is used, the ARSM-equation cannot be ex-
actly fulfilled and an error, E;;, is induced. This error tensor has components
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given by

E;j = ARSM,;(3TWY,S,Q,N) (3.5)
The minimization is done by considering the scalar square error, E;;FE;; with
respect to the EARSM-coefficients. The governing system of equations is
obtained by differentiating the square error with respect to the different ;-
coefficients and setting each and everyone of the corresponding equations equal
to zero. Hence, the system of equations is given by

9Bk

where k =1,..., M and M is the number of basis tensors.

=0 (3.6)

Both the above methods provide ways of deriving incomplete EARSMs
that should be expected to improve predictions compared to the correspond-
ing 2D mean flow formulations when used in general 3D mean flows. The
formal optimality characteristics are, however, somewhat intricate and are dis-
cussed below. It can be pointed out that the least-squares based procedure
tends to give somewhat more algebraically complex EARSM-coeflicients than
the Galerkin method. This should, however, be of less importance since code
generating and symbolic manipulation software such as MAPLE is available.

As an illustration of the differences in predictions between EARSMs based
on the same set of basis tensors but derived with the two different techniques,
fully developed turbulent rotating pipe flow can be studied. Rotating pipe
flow constitutes, by definition, a three-dimensional mean flow that provides a
discriminating test case for turbulence models. The mean flow predictions of
four different EARSMs based on the same incomplete set of basis tensors are
shown in figure 3.1 for rotation numbers Z = U,, /U, = 0.5 and 1 where U,
is the azimuthal velocity of the wall and U is the mean bulk velocity. The
Reynolds number based on U, and the pipe diameter, D, is Re = UpD/v =
20000. The basis tensors used are T, T and T®),

Two sets of model parameters in combination with the two different deriva-
tion procedures are considered. The EARSMs denoted G and LS are derived
with the Galerkin and least-squares methods, respectively, and correspond to
the same model parameter set as the curvature corrected WJ-EARSM proposed
by Wallin & Johansson (2002) which implies A5 = 0. The two other EARSMS,
GA2 and LSA2, are also derived with the Galerkin and least-squares methods
but have model-parameter sets corresponding to the L-SSG as given by Gatski
& Speziale (1993). The predictions of the corresponding complete EARSMs,
WIJ-EARSM and L-SSG including the curvature correction with model pa-
rameters as given by Wallin & Johansson (2002), are also plotted in figure
3.1 together with the experimental data by Imao et al. (1996). The curva-
ture correction proposed by Wallin & Johansson (2002) has been used in all
computations.

From figure 3.1 it is clear that there is a significant difference in the pre-
diction of the Galerkin and least-squares based EARSMs. What is even more
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FiGuRrE 3.1. Normalized mean axial and azimuthal velocities,
U, /Uy (upper) and Uy /U, (lower), for Z = U,, /U, = 0.5 (left)
and 1.0 (right). LS (=), G (—=—), WJ-EARSM (o), LSA2 (—),
GA2 (--+), L-SSG (x) and experiments (o) Imao et al. (1996).

important is that the least-squares EARSMs are in much better agreement
with the complete EARSMs. The LS-EARSM is virtually indistinguishable
from the WJ-EARSM in this perspective. The Galerkin EARSMs are more
off and show little sensitivity to the increased rotation. It should, however, be
pointed out that for a different set of model parameters and choice of basis
tensors, the differences might not be as striking as in figure 3.1. In fact, in
the study by Grundestam et al. (2005¢) good agreement with the complete
EARSM of the mean axial velocity profile was achieved with an EARSM based
on T, TP and T® for the model parameters corresponding to the GA2
and LSA2 EARSMs.

3.2.1. Optimality

Whenever an approximation is derived or used, the accuracy and optimality of
the approximation are natural and important aspects to investigate. This is
also the case for EARSMs based on incomplete sets of basis tensors. Hands-on
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computations of a particular flow case can demonstrate how close the predic-
tions of an incomplete EARSM are to those of the exact EARSM and hence
provide some indication of the accuracy of the approximation. However, even
though a particular incomplete EARSM gives good predictions in some flow(s),
it is always reassuring to have understanding of the optimality aspects of the
representation method.

The Galerkin method yields approximations that are optimal in a strict
sense if the system matrix is symmetric and positive definite. In the context of
EARSM representations, these issues can be studied by rewriting the ARSM-
equations as

Aijpgtpg = Tij (3.7)
where
Aijpg = —Nbipdjq + 0ipSlyj — 0;qSip
—A2(0ipSgj + Sipdaj — §5iy‘5pq) (3.8)
ri; = —A1S; (3.9)

apq is the Reynolds stress anisotropy. The necessary optimality conditions
are symmetry (A;jpq = Apgi;) and positive definiteness (X;;A;jpqXpq > 0 for
any tensor with components X;;). If these conditions are fulfilled the repre-
sentation, apeP , is optimal in the sense that the error ee;; = a;; — a;;" is
orthognal to a;;” with respect to the inner product induced by A;;,, given by
(X,¥)a = ijAijpqYpq- Furthermore, the norm of the error, (ee, ee) 4 is minimal.
Unfortunately, the terms of (3.8) that contain Q and §;;S,, are not symmetric
and the eigenvalues of A;;,, are not strictly positive. Therefore (3.8) is not
symmetric nor positive definite. EARSMs derived with the Galerkin method
in combination with the present choice of underlying modelling, are thus not
optimal in this strict sense. See Grundestam et al. (2005¢) for a detailed dis-
cussion of this. It is of course possible that Galerkin based EARSMs fulfill
some other form of optimality criteria. Such optimality has not been shown in

litterature though.

ij

Important to note is that when the Galerkin method is used to represent
a single tensor, the representation will be optimal in a least-squares sense.
This is not in contradiction to the reasoning above since the system matrix
for this case is given by the indentity matrix. It is crucial to keep these two
fundamentally different cases distinguished in order to not falsely conclude that
an optimal representation is achieved when the Galerkin method is applied to
the ARSM-equation, as was done by Jongen & Gatski (1998).

EARSMs derived with the least-squares method are optimal in the sense
that the error induced in the ARSM-equation is minimized in a square sense.
From this perspective, the least-squares based EARSMs are on sound theoret-
ical foundations since their optimality properties are known and of relevance.

Important to note is that even though the error in the ARSM-equation
is minimized in a square sense when the least-squares method is applied, it
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FIGURE 3.2. Square error for, @), for GA2 (——), LSA2 (---)
and MINA2 (—).

is not certain that the approximation of the anisotropy itself is more accurate
with this method than with the Galerkin approach. It is therefore interesting to
evaluate the square errors of the anisotropies computed with the corresponding
EARSMs, respectively. For an incomplete representation ABC, the square
error is given by

Q(ABC) = \/(ai]‘ — ABCij)(aij — ABCZJ) (310)

where a;; denotes the corresponding complete EARSM. Evaluation of (3.10)
has been performed for rotating pipe flow at Z = 1 and Re = 20000 using
mean flow data from computations with the corresponding complete EARSM.
In figure 3.2 the errors of GA2 and LSA2 are shown. In figure 3.2 a third
type of EARSM, MINA2, is used as reference. This EARSM is based on the
same set of basis tensors as GA2 and LSA2 and is optimal in the sense that
Q(MINAZ2) is minimal, see Grundestam et al. (2005¢) for details. As can be
seen in figure 3.2, the error of LSA2 is significantly smaller than that of GA2.
Furthermore, the difference between LSA2 and MINA2 is relatively small. It
should be pointed out that the behaviour of the errors may be different in other
types of flows and for other sets of basis tensors and model parameters.

3.2.2. Singularities

The most significant deficit of using incomplete sets of basis tensor is singu-
lar behaviour. As discussed by for instance Grundestam et al. (2005¢), many
incomplete EARSM representations are, in their full 3D mean flow form, sin-
gular for general or specific types of 2D mean flows such as strain and rotation
free mean flows. This can be the case even though singular free 2D mean flow
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formulations can be obtained from the 3D formulations by inserting the mean
invariant properties for 2D mean flows, Illg = 0, IV = 0 and V = IIgllq /2, and
cancelling common factors in the denominator and numerator, see Grundestam

et al. (2005¢).

The application of a non-singular free EARSM can cause severe problems
in general computational fluid dynamics (CFD) codes not only in cases where
the fully developed flow fulfills some singularity criteria, but also when the flow
is developing under the iterative process. Technically speaking, this singular
behaviour can be ascribed to vanishing denominators of the EARSM coefficients
under certain conditions. In most cases studied, one of the factors of the
denominator is responsible for this and normally the same factor appears in
the numerator in the limit of 2D mean flows. Mathematically this is hence
a problem of zero-over-zero type. Therefore, if the reduction from general
3D mean flows to the problematic type of 2D mean flow(s) could be done
algebraically in a CFD solver this type of singular behaviour could be dealt
with. Implementing such an algorithm in a general CFD code might, however,
not be worth the computational effort, especially if a singular free complete
EARSM is available.

Singular behaviour could possibly occur even for complete EARSMs. The
denominator of the EARSM proposed by Gatski & Speziale (1993) is rather
complex and its behaviour in terms of singularity is not known. From this point
of view the WJ-EARSM works very well. The 3D mean flow form has been
proven to be non-singular for all types of flows including all 2D mean flows, see
Wallin & Johansson (2002).

3.3. Nonlinear modelling for EARSMs

Nonlinear modelling has previously been used in DRSMs in order to improve
different aspects of a model. Speziale et al. (1991) incorporated a tensori-
ally quadratic term in their pressure-strain rate model. Johansson & Hallbéack
(1994) developed the most general expression for a rapid pressure strain rate
model which of course included terms nonlinear in the Reynolds stress anisotropy
tensor. This model was later used by Sjogren & Johansson (2000) in a DRSM
which also incorporated nonlinear modelling of the slow pressure-strain and
dissipation rate tensors. The DRSM by Sjogren & Johansson (2000) was con-
structed to satisfy realizability, see Lumley (1978), and was shown to give good
predictions close to the wall without the use of wall-damping functions. In the
study by Sjogren & Johansson (2000) terms tensorially nonlinear in the mean
velocity gradients were also studied. These are on the form

1 2
N? = ———— (aQ? + Q% — ~{aQ?*}I (3.11)
NS ( 3

N* \/}T <a82 +S%a+ %{aSQ}I) (3.12)
S
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assuming that S and © are of dimension 1/time. Sjégren & Johansson (2000)
demonstrated that (3.11) improved the predictions in a number of rotating
flows. However, by including this additional term it is necessary to recalibrate
the whole model. Since this is rather inconvenient, (3.12) can be included as
well in order to give a zero net contribution of the terms in parallel flows if
the same model parameter is used. Hence, there is no need for recalibration
assuming that the original calibration was done for this type of flow.

While nonlinear modelling in terms of a is easily incorporated in DRSMs, it
seems virtually impossible to include such modelling in an EARSM due to the
nonlinear nature of the system of equations governing the EARSM coefficients.
From the EARSM perspective, the terms (3.11) and (3.12) are interesting since
they are linear in a and can therefore, at least in principle, be included directly.
Such an investigation was performed by Grundestam et al. (2005) who proposed
an EARSM incorporating a term nonlinear in the mean velocity gradients in
the pressure-strain rate model. This model can be seen as a development of the
EARSM proposed by Wallin & Johansson (2000) with a nonlinear extension of
the rapid pressure-strain rate model.

One of the goals in the study by Grundestam et al. (2005) was to keep
the EARSM coefficients as compact as possible and to use the same set of
basis tensors as the parental model. Due to the excessive amounts of algebra
generated with direct inclusion of (3.11) and (3.12), the nonlinear extension
was on a slightly modified form compared to (3.11) and (3.12). The inclusion
of the curvature correction, implies an ARSM-equation with a dependence on
two different rotation rate tensors, the “standard” rotation rate tensor, €2,
and the curvature corrected rotation rate tensor, 2*. Whereas this can be
dealt with algebraically by, for instance, using the representations presented by
Grundestam et al. (2005), the corresponding EARSM would be very lengthy.
Therefore, a more tractable procedure was sought for and N was reformulated
in terms of Q2* as

v —=1I 2
Nippros = 1. L <a9*2 +Q*2a + §{aﬂ*2}1) (3.13)
7

In the 2D mean flow limit (3.13) attains the same form as the original term
(3.11) and is hence exact. For rotating pipe flow, it was shown by Grundestam
et al. (2005) that (3.13) is relatively good approximation of (3.11) with a scalar
error measure of the order 0.2. (3.12) was considered necessary to include in
order to not have to recalibrate the whole model. Unfortunately, N* could not
be conveniently expressed in terms of the cosen tensor basis and was therefore
approximated with its 2D mean flow expression given by

N5, =+/IIsa (3.14)

The accuracy of (3.14) as an approximation of (3.12) is good in flows where
the 3D mean flow effects are small. For rotating pipe flow, the error of (3.14)
increases with increasing rotation rate of the pipe since the 3D mean flow effects
become increasingly important, see Grundestam et al. (2005).
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Applied to a number of generic test cases, the new EARSM makes interest-
ing predictions. For the 2D mean flows rotating homogeneous shear flow and
rotating channel flow, the nonlinear extensions give a good net contribution
resulting in significantly improved overall model predictions. For rotating pipe
flow the predictions were not all through improved. The nonlinear terms were,
however, shown to have a significant effect on the predictions, see Grundestam
et al. (2005). In the study by Grundestam et al. (2005) rotating pipe flow was
studied and comparisons were made between the DRSM corresponding the new
EARSM. The proposed EARSM has also been tested in a high-lift aeronatau-
tics application, see Grundestam et al. (2005a), and was shown to give small
but significant improvements of the predictions compared to the WJ-EARSM.



CHAPTER 4
DNS of rotating channel flow

A direct numerical simulations (DNS) is a useful method for studying a partic-
ular flow in detail. In a DNS, the governing Navier-Stokes equations (2.2) are
solved down to the smallest scales in space and time. This implies a tremen-
dous computational effort in flows where there is a wide range of scales, i.e., at
high Reynolds numbers. Therefore, DNS are restricted to more generic type of
flows, such as channel flow, at limited Reynolds numbers. There are numerous
DNS studies of channel flow, with and without system rotation, see for instance
Kim et al. (1987), Moser et al. (1999), Kristoffersen & Andersson (1993), Lam-
ballais et al. (1996) and Alvelius (1999). Orlandi & Fatica (1997) performed a
simulations of turbulent rotating pipe flow.

In the present study, direct numerical simulations (DNS) of fully developed
turbulent rotating channel flow at high rotation numbers have been performed.
The computations were made using a pseudo-spectral code with fourier series
expansions in the periodic streamwise and spanwise directions and Chebychev
polynomials in the wall-normal direction. Simulations were performed for Rey-
nolds number Re, = u,h/v = 180 where wu, is the wall-shear velocity and h is
the channel half-width. The computational domain was of size 47 x 26 x 27d
with a corresponding resolution of 192 x 129 x 160 in the streamwise, wall-
normal and spanwise directions respectively. The system rotation was applied
in the spanwise direction as in most previous studies including system rotation.
The rotation numbers studied are Ro = 2hQ2/U, = 0.97, 1.07, 1.15, 1.21 and
1.27 where Uy, is the mean bulk velocity and € is the spanwise system rotation
rate.

The intention with this study is to investigate the flow physics at high
rotation rates. Of special interest is the strong “Coriolis-force-stratification”
of the flow in the wall normal direction and the behaviour of the wall-shear
velocities on the stable and unstable side of the channel. The wall shear velocity
is defined as u, = \/vdU/dy|waui and the wall-shear velocities of the stable and
unstable side are denoted u? and u¥, respectively, and are related to the total
wall-shear velocity through u, = /(u$? + u%2)/2. The aim is also to obtain
a database with flow statistics that can be used for evaluation and testing of
turbulence models.

24
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FiGURE 4.1. Contours of normalized wall-normal velocity,
vt =1.0 (=) and v'* = —1.0 (——) in yz-plane for Ro = 1.27.

Rotating channel flow is governed by the Navier-Stokes equations formu-

lated in a rotating frame of reference

Ou; Ou; 10p* 0?u;

o gy, = ;af:i T 0w, T 2kt (4.1)
where u; is the ith component of the instantenous velocity. Note that p* in (4.1)
denotes the reduced pressure given by p* = p — £(€pim UTmerpg2pz,q) in which
the second part corresponds to the centrifugal force and p is the instantaneous
pressure. The last term of (4.1) represents the Coriolis forces acting upon a
fluid element. The centrifugal and Coriolis forces arise when the governing
equations are tranformed to a relative rotating coordinate system. A rotation
axis in the spanwise direction implies 2, = QJ3 where € is the system rotation
rate.

The applied system rotation has a stratifying effect on the turbulence and
divides the channel into one stable and one unstable side. Since the Coriolis
force is proportional to the magnitude of the velocity, the force acting on par-
ticles close to the center of the channel is larger than the force on the particles
closer to the wall. From (4.1) we see that the Coriolis force is pointing towards
the side y/0 < 0. Hence on this side, the high speed fluid particles in the
center of the channel tend to change places with those closer to the wall. This
leads to an increased mixing and therefore also higher turbulence levels on this
side of the channel which is denoted the unstable side. On the stable side on
the other hand, where the Coriolis force has the opposite effect, a decrease in
the turbulence level is the result. This is illustrated in figure 4.1, in which
contours of the wall-normal velocity are plotted for Ro = 1.27. Appearantly,
the wall-normal velocity fluctuations are restricted to the unstable side. For a
different set of rotation number and contour iso-value, the corresponding plot
would of course look different from figure 4.1, not least since v’ on the stable
side decreases with increasing rotation rate. For all rotation numbers in the
present study, there is, however, a clear restriction of v’ to the unstable side of
the channel.
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FiGURE 4.2. Normalized Reynolds shear stress, W', The
arrow indicates increasing Ro for present the computations
(=). (--+), (=) and (—-) indicate Ro = 0, 0.43 and 0.77,
respectively, from the simulations by Alvelius (1999).

Rotating channel flow is with its pure dependence on the system rotation
suitable for studying the effect of rotation on turbulence. Rather interesting is
the difference in behaviour of the statistical quantities. While the response of
some quantities is monotonous with increased system rotation, e.g. the slope
of the mean velocity profile in the center of the channel, other correlations
show a nonmonotonous behaviour implying an increase or decrease until a
certain threshold value of the rotation rate is reached after which the trend
is shifted. An example of the latter is the normalized Reynolds shear stress,
W+, shown in figure 4.2. The largest deviation from the nonrotating wo -
level is obtained for Ro = 0.43 among the different rotation numbers in the
simulations by Alvelius (1999). For increasing rotation numbers above that
value, the Reynolds shear stress is succesively shifted closer to the turbulent
shear stress level of the nonrotating case on the unstable side of the channel.
For the highest rotation number studied, Ro = 1.27, the W+—proﬁles are
rather close to each other in this region. In a large part of the stable side of the
channel, u/v’ is very close to zero. This is a result of the very low wall-normal
velocity fluctuations in this region discussed above and illustrated in figure 4.1.

The effect of the increased system rotation rate on the mean velocity be-
haviour is interesting not only because of the monotonous change of the slope
of the mean velocity profile in the center of the channel, but also due to the
nonmonotonous behaviour of the wall-shear velocities on the different sides of
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FIGURE 4.3. Wall-shear velocity ratio of the unstable, u*/u.,
and stable side, u?/u,, side. DNS data for Ro < 0.77 by
Alvelius (1999).

the channel. In the center of the channel the slope of the mean velocity pro-
file is close to 202 as noted earlier by, for instance, Kristoffersen & Andersson
(1993) and Alvelius (1999). In the present study, this behaviour is confirmed
but a small but significant deviation from this, with a trend towards a slightly
smaller slope of the mean velocity, is observed, see paper 5. This also seems
to be the case in the study by Alvelius (1999), at least for the higher rotation
numbers. To present date, no strict proof has been given that dU/dy should
equal 29 in the center of the channel. Oberlack (2001) has, by using symmetry
methods, derived a scaling law dictating a direct proportionality dependence
of dU/dy on  in the center of the channel. This is a interesting result itself,
but the actual proportionality coefficient is left as an undetermined parameter
with this method.

Another interesting feature is the difference in wall-shear velocities between
the stable and unstable side of the channel. As the rotation rate is increased
from zero, the difference between u? and u¥ is increased until a certain rotation
number is reached after which the difference decreases. This was noted in the
study by Alvelius (1999) in which the threshold rotation number was Ro = 0.43.
Comparisons made with the only higher rotation number, Ro = 0.77, indicated
a decreasing difference between u? and u¥. Alvelius (1999) further predicted
that this was a trend that would hold also for higher rotation numbers. The
present study does indeed confirm this and a plot showing v /u, and u*/u, is
given in figure 4.3. It should be noted that the difference for Ro = 1.27 in the
present computations is actually smaller than for the case of lowest nonzero
rotation number in the study of Alvelius (1999).
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FIGURE 4.4. Ideal behaviour of the coefficients of the linear
rapid pressure strain rate model for channel flow at Re,. = 360

for a) Ro = 0.0 and b) Ro = 0.20. C (—), C3 (——) and C4
(=)-

4.1. Least-squares optimizations of model parameters

The flow data obtained in a DNS can be used to evaluate the performance of
turbulence models. This can be done not only by direct comparisons between
the model predictions and the flow given by the DNS, but also by performing
a priori tests of the different parts of a model. A priori tests of a number
of different pressure-strain and dissipation rate models for rotating turbulent
channel flow, based on the simulations by Alvelius (1999), are presented in
paper 6. In the same paper, the ideal behaviour of the model coefficients for
the rapid and slow pressure-strain and dissipation rate tensors are investigated.
This is obtained by assuming a model representation on a particular tensorial
form and then deriving the model coefficients that minimize the error in a
least-square sense between that particular representation and the correspond-
ing exact quantity. As an illustration of this, consider a model for the rapid
pressure-strain rate tensor given by,

" = C,8 + %(aﬂ — Qa) — %(as +Sa — ;{aS}I) (4.2)

where the model parameters follow the notation of the more general expres-
sion (2.19). The minimization procedure used is the same as discussed in
the preceding chapter. For this case the error to be minimized is given by
E = II() — I where I1(" is the exact rapid pressure strain rate tensor. The
system of equations for the model coefficients C; is given by 0F;; E;;/0C);, =0
where k = 2,3,4. Hence, analytical expressions for C} are obtained. These
are, however, dependent on the exact tensor, II"). Therefore, (4.2) cannot be
used in a RANS-turbulence closure.
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The final step involves inserting flow data from a particular DNS case into
the respective expression and evaluate the results. The outcome of this exercise
is shown in figure 4.4 a and b. The plots are based on the DNS-data obtained in
the simulations by Alvelius (1999) of fully developed rotating turbulent channel
flow for Re, = 360 with Ro = 0.0 and 0.20, respectively. For the particular case
of channel flow, the representation (4.2) exactly matches the rapid pressure-
strain rate tensor as given by the DNS. This is due to the fact that the tensor
terms corresponding to Cy, C3 and Cjy, respectively, together form a complete
basis since the rapid pressure-strain rate tensor has only three independent
components for this particular case.

The behaviour of the C-coefficients reflects the well known fact that a
linear model needs some sort of damping in the near-wall region in order to give
accurate predictions. The radical behaviour in the center of the channel is due
to the small mean velocity gradients there. This area is of less importance for
the evaluations. For zero rotation, the Cy and C5 parameters are approximately
constant in a region away from the wall. When rotation is applied Ce and Cj
is more or less unaffected in this region. C5 gets a small positive bump close
to the wall on the unstable side though. For zero rotation, Cy approximately
follows a constant negative slope away from the wall. For the rotating case, the
slope of C4 on the unstable side is increased and is approximately zero. For
higher rotation numbers, C; remains roughly the same on the unstable side of
the channel while C3 and C} tend to shift to higher levels and different slopes in
this region, see paper 6. To be able to capture this behaviour over a wide range
of rotation numbers provides a significant modelling challenge. Commonly used
Van Driest type of damping approaches can be applied to the near-wall region.
But in order to capture the shift of the original parameter that is seen for
increasing rotation rates, more sophisticated modelling is needed.



CHAPTER 5

Conclusions and outlook

The present study involves different aspects of Reynolds averaged Navier-Stokes
turbulence modelling and direct numerical simulations of rotating channel flow.
The modelling efforts are not directly focused on the development of a new sup-
posedly optimal turbulence model. Instead, a number of issues, mainly related
to EARSMs, are discussed. The flow cases used for testing and evaluation
are, except for a high-lift aeronautics application, restricted to the generic flow
cases of rotating turbulent channel and pipe flows.

The perhaps most directly applicable modelling result of this thesis is the
EARSM based on a nonlinear pressure-strain rate model presented in paper 2.
While this EARSM can be argued to be somewhat experimental, mostly due to
the the somewhat ad-hoc formulation of the nonlinear extensions, it should still
be considered as a realistic alternative in general CFD-codes. This is demon-
strated in paper 4. in which the flow around a high-lift aeronautics application
is computed. Comparisons show that the nonlinear contributions of the pro-
posed EARSM give a positive effect on the predictions for many of the flow
features compared to the parental WJ-EARSM. The perhaps most important
aspect though, is the demonstration of functionality of the new EARSM in a
general purpose flow solver for unstructured 3D grids. One of the drawbacks
with the proposed EARSM is its possibility of being singular. This is the most
serious deficit and could reduce the attraction of the model.

An important but less applied investigation, was undertaken in paper 1 in
which incomplete EARSM representations were discussed. It was proven that
incomplete EARSMs derived with the Galerkin method are not optimal in the
least-squares sense argued by Jongen & Gatski (1998) and an alternative ap-
proach based on the minimization of the error in the ARSM-equation due to the
use of incomplete sets of basis tensors, in a least-squares sense was proposed.
Hands-on computations showed that the least-squares EARSMs performed rad-
ically better than the EARSMs derived with the Galerkin method. In all, from
the more formal optimality perspectives as well as direct comparisons with the
corresponding complete EARSM, this indicates that the least-square approach
is better suited than the Galerkin method for deriving incomplete EARSMs.
The most problematic feature of incomplete representations is singular be-
haviour. This normally occurs when a full 3D mean flow formulation is used
for a general or a specfic type of 2D mean flow. For some cases this type of
singularity can be dealt with in a systematic way. This is, however, a problem
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that has to be adequately adressed when an incomplete EARSM is used in a
general 3D CFD solver.

The direct numerical simulation of fully developed rotating turbulent chan-
nel flow is perhaps more interesting both with respect to flow physics and mod-
elling. The rotation numbers are rather high and the set of data obtained is a
complement to the previous study by Alvelius (1999). The present numerical
investigation also serves as a platform for future DNS investigations of the same
flow case for other (higher) Reynolds and rotation numbers. Another related
flow which might be of future interest is rotating Couette flow.

A future study would likely involve fundamental modelling aspects of the
transport equations of the Reynolds stresses and the dissipation rate. From
the modelling development point of view, the least-squares method provide
an interesting approach. As was demonstrated in paper 6, it is possible to
determine the ideal behaviour of some model parameters under certain cir-
cumstances. With respect to this, DNS data are very valuable for evaluating
different parts of a turbulence model.

Whereas the velocity-scale in most turbulence closures is given by the equa-
tion for the turbulence kinetic energy, there is a wide spectrum of proposed
quantities and corresponding equations for the length-scale. This is a research
area where a priori testing can be applied, not only for the Reynolds stress
transport equation but also for the dissipation rate equation. Detailed under-
standing of the different terms of dissipation rate equation would indeed assist
the evaluation and development of any length-scale determining quantity and
its transport equation.
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