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Feedback control of spatially evolving flows

Espen Åkervik
Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden

Abstract

In this thesis we apply linear feedback control to spatially evolving flows in
order to minimize disturbance growth. The dynamics is assumed to be de-
scribed by the linearized Navier–Stokes equations. Actuators and sensor are
designed and a Kalman filtering technique is used to reconstruct the unknown
flow state from noisy measurements. This reconstructed flow state is used to
determine the control feedback which is applied to the Navier–Stokes equations
through properly designed actuators. Since the control and estimation gains
are obtained through an optimization process, and the Navier–Stokes equations
typically forms a very high-dimensional system when discretized there is an in-
terest in reducing the complexity of the equations. One possible approach is to
perform Fourier decomposition along (almost) homogeneous spatial directions
and another is by constructing a reduced order model by Galerkin projection
on a suitable set of vectors. The first strategy is used to control the evolution
of a range of instabilities in the classical family of Falkner–Skan–Cooke flows
whereas the second is applied to a more complex cavity type of geometry.

Descriptors: Stability, control, estimation, absolute/convective instabili-
ties, model reduction.
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Preface

This thesis deals with the application of linear feedback control to spatially
evolving flows. In part 1 some background of the concepts that are assumed
known when reading the papers in part 2 are presented. The papers in part II
are adjusted to comply with the present thesis format for consistency, but their
contents have not been altered compared to published or submitted versions,
except for minor corrections. The included papers are:

Paper 1. Chevalier, M., Hœpffner, J., Åkervik, E. and Henningson, D. S.
2007, Linear feedback control and estimation applied to instabilities in spatially
developing boundary layers, J. Fluid Mech. under review.
Paper 2. Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen,
O. and Schlatter, P. 2006, Steady solutions of the Navier-Stokes equations by
selective frequency damping, Phys. Fluids 18, 068102 (2006).
Paper 3. Åkervik, E., Hœpffner, Ehrenstein, U. and Henningson, D. S.,
2007, Optimal growth, model reduction and control in a separated boundary-
layer flow using global eigenmodes, J. Fluid Mech. accepted for publication.
Paper 4. Åkervik, E.,Ehrenstein, U., Gallaire, F. and Henningson, D. S.,
Two-dimensional optimal growth in the flat plate boundary-layer flow, 2007,
to be submitted.
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Part 1

Summary





CHAPTER 1

Introduction

It is hard not to be fascinated by flowing fluids. The water in the pond reacts to
your footsteps by turning some of your energy into beautiful waves, searching
for equilibrium. The cigarette smoke enters free air peacefully suddenly to
break down into chaotic patterns due to its inability to counteract inertia. The
teapot never pours a straight beam until you have learnt the exact angle of
tilting and how fast to tilt it. Fluids seemingly live their own lives, yet we are
forced (and pleased) to interact with them everyday.

Understanding how fluid flows develops from being ordered and predictable,
or so called laminar, to becoming swirling, chaotic and seemingly unpredictable,
in other words turbulent, has been the occupation of transition research for
over a century. The importance of obtaining knowledge on this process is
substantial both from an industrial and an environmental point of view. This
is because turbulence on one hand increases the drag along immersed bodies
making for instance aeroplanes and boats more fuel consuming. On the other
hand turbulence increases the mixing properties of the flow, making combustion
more efficient.

The transition process may be divided into three stages; receptivity where
disturbances enter the flow; disturbance growth where the linear mechanisms
are important; and finally breakdown where non-linear processes starts to re-
distribute energy to smaller and smaller scales. Hydrodynamic stability deals
with the second stage of this process. This is done through studying the re-
sponse of the flow to small amplitude disturbances about a laminar flow either
by experiments or by mathematical models. An accurate mathematical de-
scription of most encountered fluid flows are provided by the Navier–Stokes
equations. If the flow responds to the disturbance by returning to its laminar
state it is stable, otherwise it is unstable.

While the subject of hydrodynamic stability is to understand the distur-
bance growth mechanisms, i.e. providing a model of the flow, flow control aims
at using this knowledge to correctly interact with it. The objective of the in-
teraction might be to delay transition to turbulence along an aeroplane wing
or it might be to promote turbulence in combustion processes. Control of fluid
flows can be performed in essentially two ways; either passively or actively. The
optimized shape of an aeroplane wing, the rough surface of the golf ball or the
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4 1. INTRODUCTION

evolutionary design of the skin of fishes are all examples of passive control. By
controlling flows in this manner no energy is put into the system, there is only
a cooperation with the flow. In active control on the other hand, energy is put
into the system through actuators, hopefully gaining more energy than what is
spent. Active control can be split into two main categories, namely open-loop
and closed-loop control. The former assumes exact knowledge of the system so
that the interaction with it is prescribed a priory. However if disturbances that
are not accounted for in the model are present, the controller will in general
fail. The latter, which is commonly called feedback control, uses information
from the system in order to detect the real disturbances present, making it
more robust to deviations from the assumed model.

A succesful feedback control strategy is the Linear Quadratic Gaussian
(LQG) synthesis, which provides a way of coupling sensors to actuators with
optimality guaranties. In this setting a linear model of the system is assumed,
a quadratic objective is to be minimized and random disturbances, accounting
for modelling uncertainties and sensor noise, are Gaussian distributed.

Feedback controllers are run online, measuring the state and feeding back
control signals to the actuators. Further the optimal control feedback law is
achieved through the solution of optimization problems. Both tasks challenge
the available computer hardware, since the numerical approximation of the
Navier–Stokes equations yields a very high dimensional system. There is hence
the need to construct reduced models that can accurately describe the connec-
tion between the sensors and actuators. A systematic way of obtaining reduced
models is to perform a projection of the equations on a reduced basis.

In the following a short introduction focusing on stability for spatially
evolving flows and LQG control will be given.



CHAPTER 2

Stability of spatially evolving flows

The flow evolution of fluids are generally described by laws governing conserva-
tion of mass, momentum and energy. If the fluid is Newtonian and compressible
effects are negligible these conservation laws ends up in the non-linear incom-
pressible Navier–Stokes equations. These equations describe the evolution of
the velocities u = [u, v, w]T and pressure p. In a cartesian coordinate system
u, v and w are the streamwise, wall normal and spanwise velocity components,
respectively. For small disturbances u′ to a base flow U, a linearization is rel-
evant, so that the evolution of the disturbances are governed by the linearized
Navier–Stokes equations






∂u′

∂t
= − (U · ∇)u′ − (u′ · ∇)U −∇p +

1

Re
∆u′, u′(0) = u′

0,

∇ · u′ = 0.
(2.1)

A characteristic velocity scale V together with a typical length L and the kine-
matic viscosity ν defines the non-dimensional Reynolds number Re = UL/ν.
This quantity describes the relation between inertial and viscous forces, mak-
ing it the critical parameter for transition. Note that the above system can
be written in state-space form as q̇ = Aq, where q contains the velocities and
the pressure, and A is referred to as the dynamic matrix. This system has the
formal solution q(t) = exp(At)q0 for an initial condition q0. The strategy of de-
termining whether a flow is stable or unstable is to consider the response of the
numerically approximated (2.1) to an initial condition. The classical approach
to stability takes the so called normal-mode assumption, where the time depen-
dence is assumed to be exponential, q(x, y, z, t) = φ(x, y, z) exp(−iωt), leading
to a temporal eigenvalue problem for the complex frequency ω. If any eigen-
values have positive imaginary part the flow is unstable, otherwise it is stable.
The high dimensionality of the resulting problem, however poses a great com-
putational challenge since typically the size of the operators are of the order
of 4nxnynz. Increased computer capacities together with iterative Krylov-
subspace methods such as the Arnoldi method (see Nayar & Ortega 1993) has
made it possible to compute both two- and three-dimensional eigenmodes, both
of which are commonly called global eigenmodes. A substantial simplification
can be achieved if the base flow under consideration is parallel. In these situ-
ations a Fourier transformation along the homogeneous directions, that means
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6 2. STABILITY OF SPATIALLY EVOLVING FLOWS

q(x, y, z, t) = φ(y) exp(αx+βz− iωt), decouples the problem into a sequence of
one dimensional problems, known as the Orr–Sommerfeld–Squire (OSS) equa-
tions (Orr 1907; Sommerfeld 1908; Squire 1933), parametrized by the wave
numbers α, β and the local Reynolds number. This approach is referred to as
local. For slowly varying flows it is still possible to use the OSS equations as
long as there is a separation of the scales, i.e. the base flow changes slowly in
comparison to a typical instability wave length. In this case at each streamwise
station the base flow is extended to infinity and local stability characteristics are
studied. Successful theoretical findings within the normal-mode approach in-
cludes the discovery of the so called Tollmien–Schlichting (TS) waves (Tollmien
1929; Schlichting 1933) and the connection between temporal and spatial be-
haviour of the disturbances Gaster (1965). An improvement of the locally par-
allel assumption lead to the Parabolized Stability Equations (Bertolotti et al.
1992) that incorporated the variation of the flow into the eigenvalue problem.

The normal mode assumption provides the asymptotic behaviour of the
disturbances, but there are situations where short time behaviour plays an
important role. This is for instance the case when the boundary layer is sub-
ject to free-stream turbulence, leading to the formation of streaks through
the “lift-up” mechanism (Landahl 1980), which may gain large amplitudes and
eventually non-linearly break down. A mathematical framework able to predict
the experiments was presented in Butler & Farrell (1992); Reddy & Henning-
son (1993); Trefethen et al. (1993), showing that the OSS equations supported
transient growth, related to the non-normal nature of the underlying operators.
For properties of non-normal operators and procedures to compute transient
growth (also called optimal growth) we refer to Schmid & Henningson (2001).
This modern approach to stability has converged to the formulation of the
stability problem as an optimization problem, which may be solved either by
singular value decomposition of the evolution operator exp(At), or by time-
marching methods involving the adjoint system (Schmid 2007). As modern
hydrodynamical stability trust less in single eigenvalues, an eigenvalue decom-
position of the problem is still relevant, since it diagonalizes the system matrix
A, making the expression for the evolution operator especially simple.

Spatially evolving flows display the particular feature that the instability
characteristics may change throughout the domain. There can be regions where
the flow is stable, convectively unstable or absolutely unstable. In a convec-
tively unstable region the disturbances are swept downstream with the flow
while growing. In this case the disturbances disappear in absence of external
forcing so that the flow might be seen as a noise amplifier. The boundary layer
flows studied in Paper 1 and 4 are typical examples of convectively unstable
configurations. Whenever the base flow satisfies certain conditions, for example
if there is a sufficiently large reverse flow in a separation bubble, the flow may
become absolutely unstable, characterized by disturbances growing both up-
stream and downstream of the origin of generation, so that the flow itself will
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Figure 2.1. Sketches of spatially developing flows, with in-
flow at the left. a) Flat plate boundary layer flow; the flow is
slowly evolving with the boundary layer thickness δ increasing
downstream. b) The cavity flow; in the front and back of the
cavity there is boundary layer flow, whereas in the cavity there
is reversed flow.

sustain the instability growth. Examples of globally unstable configurations
are presented in Paper 2 and 3.

In the framework of local stability theory the procedure to judge if a spa-
tially evolving flow is convectively or absolutely unstable is quite intricate and
involves integration in the complex frequency- and wave-number space and the
use of the pinching criterion (Huerre & Monkewitz 1990). However by consider-
ing the full equation, i.e. by computing global eigenmodes, the two regimes are
easily distinguished; if any eigenvalues have positive imaginary part the flow is
absolutely unstable, otherwise the flow is either stable or convectively unsta-
ble. If the transient growth analysis yields energy growth for any times the flow
is convectively unstable, otherwise it is stable. The convectively unstable be-
haviour is in other words connected to the non-normality of the operator, more
specifically the streamwise non-normallity (Cossu & Chomaz 1997; Schmid &
Henningson 2002; Ehrenstein & Gallaire 2005).

2.1. An example on convective and absolute instability

As an example on how convectively unstable and absolutely unstable flows are
distinguished by the use of two-dimensional global eigenmodes we consider the
flat plate boundary layer flow with inflow Reynolds number Re = 1000 based
on the inflow displacement thickness (sketched in figure 2.1a)) and a cavity flow
with inflow Reynolds number Re = 350. In both cases the flow is from left to
right. From figure 2.1b) one can see that the cavity creates a region of reversed
flow. Computed global eigenvalues and the result of optimal growth analysis
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Figure 2.2. a) and c) Global eigenvalues. b) and d) Potential
for energy growth due to optimal initial condition. a) The
convectively unstable flat plate boundary layer flow has stable
eigenvalues, but the non-normality leads to transient energy
growth as shown in b), indicating convective instability. c)
Spectra of the absolutely unstable cavity flow, where there are
two unstable eigenvalues indicating absolute instability. d)
There is possibility for large growth initially followed by an
oscillating cycle.

for both cases are shown in figure 2.2. The global eigenvalues obtained for
the flat plate boundary displayed in figure 2.2a) are all stable, but the energy
evolution from transient growth analysis (see figure 2.2b)) shows that there
is possibility for growth. This means that the flow is convectively unstable,
i.e. disturbances are swept downstream while growing, eventually leaving the
computational domain. For a more detailed description on this flow case we
refer to Paper 4 in this thesis. On the other hand, in figure 2.2c) the global
eigenvalues for the cavity flow show that there are two unstable eigenvalues,
hence the flow is globally unstable. Following the modern approach to stability,
we still compute the optimal growth associated with the operator. Indeed, as
seen in figure 2.2d), the possibility for short time growth is large, and the
asymptotic behaviour of the system is associated with the competition of the
two unstable eigenmodes. A thorough description of this flow case and its
non-normal behaviour is given in Paper 3.



CHAPTER 3

Feedback Control of Flows

Flow control in its widest sense refers to any mechanism that modifies the
behaviour of the flow, but in the present context we only consider measurement
feedback control in the framework of the Linear-Quadratic-Gaussian (LQG)
synthesis.

3.1. Selected references

Regarding previous work on feedback control of flow systems extensive reviews
are given in Gad-el-Hak (1996); Bewley (2001); Kim (2003). In the recent re-
view by Kim & Bewley (2007) the authors summarize the ingredients of the
linear systems approach to controlling fluid mechanics problems. A selected
list of publications on linear feedback control applied to parallel laminar and
turbulent flows includes Joshi et al. (1997); Bewley & Liu (1998); Keun et al.
(2001); Högberg et al. (2003). Linear feedback control has also been applied
to spatially developing flows in Högberg & Henningson (2002); Cathalifaud &
Bewley (2004a,b). The justification of applying linear feedback control to in-
herently non-linear processes such as the evolution of fluid flows is threefold;
first of all the transition process consists of a linear stage, where small distur-
bances grow until non-linear breakdown occurs (Schmid & Henningson 2001),
secondly linear processes are important to sustain turbulence in wall-bounded
turbulent flows (Kim & Lim 2000), thirdly stochastic disturbance models can be
introduced in the linearized Navier–Stokes equations mimicking flow statistics
of full DNS (Jovanovic̀ & Bamieh 2001).

3.2. LQG control of the Navier–Stokes equations

Assume that the state equation is the non-linear Navier–Stokes equations

q̇ = NS(q) + B2u

y = Cq,
(3.2)

where q is the state, i.e. velocities and pressure, NS is the right hand side of
the non-linear Navier–Stokes operator and u are the inputs, or actuator signals,
which allow us to manipulate the state through the operator B2. Assume that
from the above system only outputs, or measurements, y extracted through
the operator C are available. In order to construct a controller for the above

9



10 3. FEEDBACK CONTROL OF FLOWS

system we will linearize it, so that the dynamics is similar to (2.1), but with
the possibility to alter its dynamics. Our concern is now to find an optimal
mapping from the output to the input so that kinetic energy of disturbances
are minimized. A direct formulation of that problem results in a sequence
of coupled non-linear equations, and there are no robustness guaranties to
the resulting controller (see e.g. Lewis & Syrmos 1995). On the other hand
by splitting the problem in two, where an optimal controller is built using
full knowledge of the state (Linear Quadratic Regulator), but replacing that
state with an estimated state reconstructed from the measurements based on
a Kalman filter results in a controller with certain desirable properties. For
instance if the full information controller and the Kalman filter are both stable,
then the resulting controller is also stable, as guaranteed by the separation
principle. This is at the heart of the LQG controller.

To this end let the first step be to reconstruct the state from the mea-
surements. A linearization of (3.2) and the introduction of random Gaussian
distributed disturbances to account for modelling uncertainties and measure-
ment noise yields the following system

{
q̇ = Aq + B1w + B2u, q(0) = q0

y = Cq + g,
(3.3)

where w, g and q0 are uncorrelated and known through their covariances. This
implies that the state also becomes stochastic and known through its covariance
P = E{q∗q}, the evolution of which being governed by a Lyapunov equation.
The process of estimating a linear system with noisy and limited amount of
information is an optimal filtering problem (Kailath et al. 1999). Now let the
state equation itself serve as a time-domain filter (this is the Kalman filter)

{
˙̂q = Aq̂ + B2u + L(y − ŷ), q(0) = 0

ŷ = Cq̂,
(3.4)

where q̂ is the estimated state. Note the absence of disturbances and the
presence of a forcing term L(y− ŷ) which disappears when the difference in the
measurements are zero. The error involved in the process is defined as q̃ = q− q̂
with corresponding covariance P̃ . The task is now to find the optimal forcing
gain L that minimizes the quadratic measure Je = trace(P̃ ) in the infinite
horizon subject to the Lyapunov equation for the estimation error covariance
P̃ . This optimization problem can be solved by a Lagrange multiplier technique
leading to an algebraic Riccati equation for P̃ from which the optimal gain L
can be extracted. The optimal gain L is now designed such as to drive the
estimated state q̂ towards the unknown state q based on the measurement
difference y − ŷ. A discussion on how to model the stochastic disturbances for
fluid flows can be found in Hœpffner et al. (2005); Chevalier et al. (2005).

When designing an optimal full information controller we take a deter-
ministic approach, where we assume that full state information is available and
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given by the equation q̇ = (A−B2K)q. The optimal control gain K is designed
such that u = Kq minimizes the quadratic measure of a weighted sum of the
control effort and the flow kinetic energy in the infinite horizon

Jc =

∫ ∞

0

qHQq + uHRu dt, Q,R > 0. (3.5)

Minimization of this expression can also be achieved through a Lagrange mul-
tiplier technique where the constraint is the state equation q̇ = (A − B2K)q
and the optimal gain is obtained through the solution of an algebraic Riccati
equation. As stated earlier the separation principle guarantees that the optimal
measurement feedback control is given by

u(t) = Kq̂(t), (3.6)

where q̂ is indeed the state estimate provided by the Kalman filter. Note that in
general the cost functions Jc and Je can be time varying functions and in this
case the gains K and L become time dependent and their solution is governed
by differential Riccati equations (see e.g. Kailath et al. 1999).

Applying the optimal controller to the Navier–Stokes equations amounts
to solving the system

q̇ = NS(q) + B2u, y = Cq,

˙̂q = (A + B2K + LC)q̂ − Ly, u = Kq̂.
(3.7)

The evolution of the flow state q is updated for example by means of DNS.
At every time step measurements y are extracted, driving the estimated state
q̂. The estimated state is updated online by any suitable time-integration
procedure, feeding back at every time step control signals u to the DNS. In
general the dimension of the state q̂ is as large as the original state, and has
to be solved by means of DNS, so that memory and time requirements are
doubled. This of course has implications when it comes to realizability of the
controller for example in experiments.

A reduced model can be built by projection of (3.3) on a suitable set of
vectors followed by truncation based on certain criteria. These criteria are
commonly given by the controllability and observability grammians. The ob-
servability grammian can loosely be said to describe to what extent a state can
be observed by the sensor C and likewise the controllability grammian states
to what extent a state can be reached by the actuator B2.

The global eigenmodes φl of the linearized Navier–Stokes equations form
such a suitable basis for projection. We will here briefly show to how per-
form the projection. Let the state be expanded in terms of the sum of the
eigenmodes q =

∑

l κlφl, where κl are the expansion coefficients of the sum.

Properly normalized adjoint eigenfunctions φ+
k satisfy the bi-orthogonality con-

dition 〈φl, φ
+
k 〉 = δlk. The inner product can be with respect to any relevant

norm, for example the energy norm or the L2 norm. Now expand the state
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in terms of the eigenmodes and perform the inner product with the adjoint
eigenfunctions

〈
∑

l

φlκ̇l, φ
+
k 〉 = 〈A

∑

l

φlκl, φ
+
k 〉 + 〈Bu, φ+

k 〉

⇒
∑

l

〈φl, φ
+
k 〉

︸ ︷︷ ︸

δlk

κ̇l =
∑

l

〈Aφl, φ
+
k 〉

︸ ︷︷ ︸

δlkλk

κl + 〈B,φ+
k 〉

︸ ︷︷ ︸

BM
k

u.
(3.8)

For the output the adjoint modes are not needed, instead only an expansion is
performed

y = C
∑

l

φlκl =
∑

l

Cφl
︸︷︷︸

CM
l

κl. (3.9)

Gathering all the components yields the following system

k̇ = AMk + BMu

y = CMk,
(3.10)

where k = [κ1, κ2, . . . , κm]T is the vector of expansion coefficients. A truncation
can now be done based on the magnitude of the projected input operator BM

2 ,
output operator CM and the damping rate λl,i. The projection of the term B1

in (3.3) follows the same procedure as for B2.

Another possible basis for projection is the Balanced Truncation modes
(Moore 1981) which are constructed so as to make the the observability and
controllability grammians equal and diagonal in the projected basis. A trun-
cation can in this case be done based on the magnitude of any of the two
projected grammians. The drawback of such an approach is that the balancing
vectors are obtained through the solution of two Lyapunov equations, a task
which becomes computationally heavy even for moderate dimensions of the dis-
cretized Navier–Stokes operators. Rowley (2005) discussed a computationally
tractable approach to obtaining the balancing vectors, based on time-marching
algorithms.

3.3. Examples

In paper 1 we compute control and estimation gains based on the locally parallel
assumption. Here we consider the control of the two-dimensional forced TS-
waves. This means that the online system which is updated is the full system
with dimensions ≈ 105, i.e. the OSS equations for every wave-number present
in the DNS. The thin line in figure 3.1 shows the streamwise energy evolution
of the TS wave in the convectively unstable flat plate boundary layer flow with
inflow Reynolds number Re = 1150 taken from DNS. A sketch of a similar
set up is given in figure 2.1a). The skin-friction and pressure is measured in
the region x ∈ [0, 100] and wall blowing and suction is applied continuously in
x ∈ [100, 250]. The thick line in figure 3.1 shows that the controller diminishes
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Figure 3.1. Streamwise energy evolution of TS waves for the
convectively unstable flat plate boundary layer flow, thin line
shows uncontrolled whereas thick shows controlled. Control is
applied continuously in a strip in x ∈ [100, 250]. Inserted are
snapshots of the wall normal velocity. The top frame shows a
fully developed TS wave and bottom shows that the controller
have diminished the disturbances so that the TS wave is left
to propagate out of the domain.

Figure 3.2. Time evolution of total energy in a cavity flow
subject to self-sustained oscillations. Thick line shows uncon-
trolled whereas thick line shows controlled. Inserted frames
show the x/t evolution of the pressure at y = 10 for the uncon-
trolled case (top) and controlled case (bottom). The controller
counteracts the regeneration of the disturbances after reflec-
tion.

the TS wave. The inserted frames show snapshots of the vertical velocity
component of the fully developed TS wave (top) and at a later time when
the controller has diminished the disturbances so that the TS wave is left to
propagate out of the computational box (bottom).

In paper 2 we use a reduced model obtained by projection on the two-
dimensional global eigenmodes of the linearized Navier–Stokes equations, and
in this case the online system to be updated consists only of the expansion
coefficients of the eigenmode expansion. We found that by using a reduced
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system consisting only of 4 expansion coefficients we were able to control the
system satisfactorily. For comparison the full DNS system has ≈ 106 degrees
of freedom. Figure 3.2 shows the time history of the energy taken from DNS
of the cavity flow, where the thin line shows the uncontrolled case and the
thick shows the controlled. A sketch of the geometry is given in figure 2.1b).
The inserted frames trace the pressure at y = 10 in time and in streamwise
direction. From the upper frame one can see that initially there is a wavepacket
propagating across the cavity followed by pressure reflection and regeneration
at the start of the cavity. The global instability mechanism consists of the
wavepacket gaining more energy while propagating across the cavity than what
is lost in the reflection and regeneration. The result is an oscillating cycle. A
sensor measures skin friction at the downstream cavity lip and a volume forcing
actuator (acting on the wall normal velocity) is placed at the upstream cavity
lip. The thick line shows that the exponential growth is turned into exponential
decay. The lower inserted frame shows that regeneration is counteracted and
the pressure oscillations decay.



CHAPTER 4

Conclusions and outlook

This thesis builds on the work started by Markus Högberg, and continued by
Mattias Chevalier and Jérôme Hœpffner. During their studies several problems
related to active flow control were solved. First the full information control
required a formulation of the fluid problem in a form that was compatible with
the state space representation common to control theory. Also applications
of the full information controller to spatially evolving flows were performed.
In addition appropriate stochastic models for external disturbances and sensor
noise were developed, resulting in a well performing estimator.

In Paper 1 the LQG controller was successfully applied to a range of spa-
tially evolving flows with optimal control and estimation gains computed based
on the OSS equations, i.e. under the locally parallel assumption. There are some
drawbacks within this approach. First the actuators and sensors are assumed
to be continuously distributed along the walls so that a spatial cut-off filter
has to be applied to both the measurement and actuation. Secondly the size of
the online controller becomes as large as the original problem (in the sense of
DNS discretization). Thirdly it can only be applied when the base flow under
consideration is slowly varying.

By using global eigenmodes as building blocks for a reduced model all of
these problems are circumvented. The computation of the global eigenmodes
is a computationally challenging task, but once the modes are computed for a
given flow configuration they serve as a projection basis for building a reduced
order model both in view of stability investigation and control. The cavity
geometry in Paper 3 can be seen as a model problem where self-sustained
oscillations occur and where it is not possible to use local analysis due to
the strongly non-parallel base flow. An issue related to the computation of
eigenmodes was how to obtain a steady state base flow in which to linearize
about. Since self-sustained oscillations are present, any numerical noise will
grow from background making it impossible to compute a steady state with
standard time marching methods. A solution to this problem is dealt with
in Paper 2, where a filtering technique is introduced. In Paper 3 the focus
is partly on building a controller, partly on showing that global eigenmodes
can describe the relevant dynamics of the flow. Due to the non-normality of
the underlying operator, the computed eigenmodes were sensitive to numerical
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errors and required high resolution. This sensitivity was however mostly seen
in loss of accuracy for the location of eigenvalues in the complex plane; the
mechanism of wavepacket propagation followed by pressure reflections obtained
through optimally summing the non-normal modes proved robust and in close
agreement with DNS, even at lower resolution. We also learned that many
more degrees of freedom were needed in fully describing the dynamics of the
flow than in controlling it.

The use of global eigenmodes for highly non-parallel flows has been estab-
lished, but there are issues concerning the high degree of non-normality inher-
ent in the operator. Therefore is is also interesting to establish their relevance
for slightly non-parallel configurations, where in fact streamwise non-normality
increases. In Paper 4 an almost parallel flat plate boundary layer flow is stud-
ied. It is here shown that the optimal sum of global eigenmodes can bring out
the important dynamics of the flow, however a large number of eigenmodes
are needed for converged results. The optimal initial condition in this config-
uration turned out to be a localized upstream tilted structure that through
the Orr mechanism gains energy before starting a Tollmien-Schlichting type of
wavepacket. The ability of the eigenmodes to describe the relevant dynamics
of the flow is confirmed by the close match between the eigenmode system and
the DNS in terms of time integration.

We thus see promising perspectives of using global eigenmodes as a pro-
jection basis for model reduction. The natural extension of the work presented
in this thesis is to construct a reduced order controller for a range of flows,
capable of controlling both two and three-dimensional disturbances. The first
in line is the slightly non-parallel flat plate boundary-layer flow which might
serve as a lower limit in geometrical complexity but which has a wide range
of frequencies and instability mechanisms. Open questions related to building
reduced models for control by global eigenmodes are; how many actuators do
we need? How well can we measure the flow using localized sensors? Can the
eigenmodes handle three dimensional disturbances related to the lift-up mech-
anism? Can one represent wall blowing and suction with the eigenmodes based
on homogeneous boundary conditions?

Balanced truncation modes, which are constructed based on a certain set
of actuators and sensor, may turn out to be robust when it comes to the latter
question. The drawback of balanced truncation is that their computation is
based on the solution of Lyapunov equations. The direct computation of these
equations are computationally heavy, but time-marching algorithms may turn
out to yield it a computationally attractive alternative. The design of reduced
models for control in fluid mechanics applications are at an early stage, but by
laying the bricks thoroughly a lot can be achieved in the years to come.



CHAPTER 5

Summary of Papers

Paper 1

Linear feedback control and estimation applied to instabilities in spatially de-
veloping boundary layers.
Mattias Chevalier, Jérôme Hœpffner, Espen Åkervik, Dan Hen-

ningson.

The method to build covariance of the stochastic sources of excitation is applied
to control and estimation in spatially developing boundary layer flow. Several
cases of fundamental interest are considered: unstable Tollmien–Schlichting
waves, unstable cross-flow vortices, transient growth and streaks. This paper
is the follow up of Högberg & Henningson (2002) that focused on the control
part.

The writing of the paper was done by MC, with feedback from JH, EÅ and
DH. The computation of the control and estimation gains were performed by
MC and EÅwith a computer program developed by JH and Marcus Högberg.
The direct numerical simulation was performed by MC and EÅ using a code
originally developed at the Department of Mechanics.

J. Fluid Mech., submitted.

Paper 2

Steady solutions of the Navier–Stokes equations by selective frequency damping.
Espen Åkervik, Luca Brandt, Dan Henningson, Jérôme Hœpffner,

Olaf Marxen, Philip Schlatter.

A highly accurate numerical description of the base flow is necessary for sta-
bility analysis. Previously, for cases without symmetries, the Newton method
was used to solve for steady solutions of the Navier–Stokes equations. We pro-
pose a method based on selective frequency damping, easy to implement in
existing direct numerical simulation codes to stabilize steady states solution,
and thus reach them by time marching. The method was used in paper 4 for
the computation of the globally unstable base flow in the separated boundary
layer flow.

The writing of the paper was done by LB and PS, with feedback from all
authors. The computations of the cavity flow was done by EÅ, and by OM
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for the recirculation bubble. The analysis of the stabilization and choice of the
design parameters was done by JH.

Phys. Fluids 18, 068102 (2006).

Paper 3

Optimal growth, model reduction and control in a separated boundary-layer flow
using global eigenmodes Espen Åkervik, Jérôme Hœpffner, Uwe Ehren-

stein, Dan Henningson.

This paper deals with optimal growth and control of a globally unstable cavity
flow. Optimal growth analysis yields an upstream located initial wavepacket.
This wavepacket propagates through the shear layer in the cavity and pressure
reflections regenerate the disturbances upstream. A reduced order model for
control based on as few as 4 eigenmodes is built, and the LQG controller is
run in parallel to the DNS at a low computational cost. The satisfactory per-
formance of the controller, combined with the low online computational effort
provides promising perspectives of using reduced order models based on global
eigenmodes for fluid flows.

The writing of the paper was done by in collaboration by JH, UE and EÅ,
with feedback from DH. The controller optimizations were done by JH and EÅ
with a code developed by JH. The eigenmode computations were performed
by EÅ with a code developed by UE. Implementations and computations of
the steady baseflow and the controller was done by EÅ with a direct numerical
simulation code developed by Matthieu Marquillie and UE.

J. Fluid Mech., accepted for publication.

Paper 4.
Two-dimensional optimal growth in the flat plate boundary-layer flow.
Espen Åkervik, Uwe Ehrenstein, François Gallaire and Dan S.

Henningson

This paper deals with the use of global eigenmodes to compute optimal growth
and optimal forcing in the flat plate boundary layer flow. A convergence in
the number of eigenmodes needed in describing the optimal initial condition is
obtained. The Orr mechanism is revisited and it is shown that this mechanism
is not separated from the Tollmien–Schlichting mechanism, in fact they cooper-
ate. The optimal forcing structures are similar to the optimal initial condition
but at the same time following the neutral curve.

The writing of the paper was done by EÅ in collaboration with UE and
FG with feedback from DH. The computation of the eigenmodes were done
by EÅ and UE. The computation of the optimal initial condition was done by
EÅ and the optimal forcing by EÅ and UE. Direct numerical simulations were
performed by UE using a code developed by Matthieu Marquillie and UE.
To be submitted.
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This paper presents the application of feedback control to spatially developing
boundary layers. It is the natural follow-up of Högberg & Henningson (2002),
where exact knowledge of the entire flow state was assumed for the control.
We apply recent developments of stochastic models for the external sources of
disturbances that allow the efficient use of several wall measurement for es-
timation of the flow evolution: the two components of the skin-friction and
the pressure fluctuation at the wall. Perturbations to base flow profiles of the
family of Falkner–Skan–Cooke boundary layers are estimated by use of wall
measurements. The estimated state is in turn fed back for control in order
to reduce the kinetic energy of the perturbations. The control actuation is
achieved by means of unsteady blowing and suction at the wall. Flow pertur-
bations are generated at the upstream region in the computational box and are
propagating in the boundary layer. Measurements are extracted downstream
over a thin strip, followed by a second thin strip where the actuation is per-
formed. It is shown that flow disturbances can be efficiently estimated and
controlled in spatially evolving boundary layers for a wide range of base flows
and disturbances.

1. Introduction

There is much to be gained in the application of control to fluid mechanical
systems, the most widely recognized and targeted aim being the reduction of
skin friction drag on airplane wings. Flow control is a growing field and much
research effort is spent in both fundamental understanding and direct applica-
tion of control methods. For a review see e.g. Bewley (2001) and Högberg &
Henningson (2002).

Linear control theory gives powerful model-based tools for application of
control to fluid systems provided the system at hand can be well described
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by a linear dynamic model. The theory of Linear–Quadratic–Gaussian control
(LQG) is one of the major achievements in the field of control theory. It gives
a methodology to compute the optimal, measurement based, control when the
dynamic model is linear, the objective is quadratic, and the external sources of
excitations are stochastic. This theory is applied to boundary layer control in
the present work.

Feedback control design can be conceptually and technically decomposed
into two subproblems. The first subproblem is to estimate the flow state from
noisy wall measurements. In our case, the state is the flow perturbation about
the known base flow profile. The estimator is a simulation of the dynamic
system that is run in parallel to the flow. Its state is forced by a feedback of
the measurements in order to converge to the real flow state. The estimated
state is in turn used for feedback control of the flow which constitutes the
second subproblem. The closed loop system with estimation and control is
commonly referred to as measurement feedback control or compensator.

This paper is the necessary follow-up of Högberg & Henningson (2002) in
which full information control was applied to spatially developing flows. The
use of stochastic models for external sources of excitation was introduced in
Hœpffner et al. (2005) and Chevalier et al. (2006), which allows computation
of well-behaved estimation feedback kernels for three wall measurements: the
two components of the skin-friction and the wall pressure. Each of these three
measurements provide the estimator with additional information on the in-
stantaneous flow state. This variety of measurements is instrumental when
complex flows are targeted. This improvement of the estimation thus makes
it possible to apply the full theory of feedback control to complex flow cases
such as the transitional scenarios presented in this paper. For this reason,
we have systematically reconsidered the flow cases of Högberg & Henningson
(2002), where exact knowledge of the entire flow state was assumed, and ap-
plied measurement-feedback control, where the estimated flow state is used for
control. We compared the performance between the full information control of
Högberg & Henningson (2002) and the present estimation based control, and
found satisfactory performance.

One of the major limitations to the application of control to spatially dis-
tributed systems (system in space and time, usually described by partial dif-
ferential equations) is the realization of the sensing and actuation that would
handle relatively fast events as well as small scales of fluid motion. In addition,
control over physical surfaces typically requires dense arrays of sensors and ac-
tuators. Recent development in MEMS technology and related research may
lead to solutions of this problem. For application of MEMS technology to flow
control see e.g. Yoshino et al. (2003).

Several recent investigations have pursued the application of LQG-type
feedback control to wall-bounded flow systems. A recent overview of this
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progress is given in Kim (2003). Högberg et al. (2003a) demonstrated the
localization of the feedback kernels. This property allows a local application of
the control, i.e. only the local properties of the system (dynamics, disturbance
sources and measurement information) are necessary for control. The efficiency
of the control scheme we use here was illustrated in Högberg et al. (2003b),
where relaminarization of a fully developed turbulent flow was achieved. In
Hœpffner et al. (2005) and Chevalier et al. (2006), the focus was on the esti-
mation performance. By introducing a relevant model for the external source
of disturbance, it was possible to improve the estimation performance on both
transitional and turbulent flows.

The procedures of control design are based on the manipulations of a linear
dynamic model for the flow system, which is typically of large order. In the case
of spatially invariant systems, i.e. system for which the dynamics is independent
of some spatial coordinates, the problem can be decoupled in a parameterized
family of smaller systems. In our case, we assume spatial homogeneity over
the two horizontal directions. After Fourier transforming, this allows to design
and tune the controller and estimator for individual wavenumber pairs.

In a spatially developing flow like the boundary layer, this procedure can
still be used, even though the spatial invariance in the streamwise direction is
lost. Indeed, the localization of the control and estimation kernels ensures that
the feedback is local, so that the flow can be assumed to be locally parallel.
In Högberg & Henningson (2002), the actuation was successfully applied over
a strip parallel to the leading edge in Falkner–Skan–Cooke (FSC) boundary
layers, and the control feedback law was computed based upon the local Rey-
nolds number. In Högberg et al. (2003c), a measurement strip was added, and
the subsequent state estimate was used for control. The present paper aims at
the application of the recent development and improvement on the estimation
of the complex flow cases where the full information control was shown to be
successful in Högberg & Henningson (2002).

The structure of this paper is as follow. In §2, the flow system is described:
dynamics, input and output. In §3, we outline the main issues for the feed-
back control and estimation. The numerical method is described in §4. The
performance of the control in several flow cases is shown in §5, and concluding
remarks are given in §6.

2. System description

2.1. Flow dynamics

The Navier–Stokes equations are linearized about solutions of the FSC bound-
ary layer. Favourable and adverse pressure gradients can be accounted for as
well as the effect of a sweep. To obtain the family of FSC similarity solutions
we assume that the chordwise outer-streamline velocity obeys the power law
U∗
∞ = U∗

0 (x∗/x∗
0)

m and that the spanwise free-stream velocity W ∗
∞ is constant.
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In the expression above, U∗
0 is the free-stream velocity at a fixed position x∗

0,
the physical distance from the leading edge, and the asterisks (∗) denote di-
mensional quantities. Note that the Blasius profile is a special case of the FSC
boundary layer with zero cross-flow component and no pressure gradient. If we
choose the similarity variable ξ as

ξ(y∗) = y∗

√

m + 1

2

U∗
∞

2νx∗

one can derive the following self-similar boundary layer profiles,

f ′′′ + ff ′′ + βh(1 − f ′2) = 0,

g ′′ + fg ′ = 0,

where the Hartree parameter βh relates to the power law exponent m as βh =
2m/(m + 1). The accompanying boundary conditions are

f = f ′ = g = 0, for ξ = 0,

f ′ → 1, g → 1, as ξ → ∞.

The complete derivation can be found in e.g. Schlichting (1979) and Cooke
(1950). From the FSC similarity solutions f and g , we construct the nondi-
mensional velocity profiles

U(y) = f ′(ξ(y)), (1a)

W (y) =
W ∗

∞

U∗
∞

g(ξ(y)), (1b)

for a fixed x = (x∗ − x∗
0)/δ∗0 and where y = y∗/δ∗0 . The symbol δ∗0 denotes the

displacement thickness at position x∗ = x∗
0. The velocity profiles (1a) and (1b)

are then used as base flow when constructing the linear dynamic model for the
flow disturbance and the initial conditions for the direct numerical simulations
(DNS).

Once linearized, the system can be transformed to Fourier space by as-
suming local spatial invariance. This implies that the non-parallel effects are
small, i.e. the base flow is slowly developing in the streamwise direction. Af-
ter transformation to the velocity–vorticity (v – η) formulation, we obtain the
Orr–Sommerfeld/Squire equations (see e.g. Schmid & Henningson 2001)

(
v̇
η̇

)

=

(
LOS 0
LC LSQ

)(
v
η

)

, (2)

where

LOS = ∆−1[−i(kxU + kzW )∆ + ikxU ′′ + ikzW
′′ + ∆2/Re],

LSQ = −i(kxU + kzW ) + ∆/Re,

LC = i(kxW ′ − kzU
′),

(3)
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and where the Laplacian operator is denoted ∆ = D2 − k2 and D is the wall-
normal derivative and k2 = k2

x + k2
z . The boundary conditions are defined

as
v(0, t) = ϕ, Dv(0, t) = 0, η(0, t) = 0,

v(y, t) = 0, Dv(y, t) = 0, η(y, t) = 0, as y → ∞.
(4)

The control actuation affects the system through a non-homogeneous bound-
ary condition on the wall-normal velocity ϕ(t) (time varying wall blowing and
suction). The Reynolds number Re is based on the free-stream velocity and
displacement thickness.

In order to apply tools from control theory, see for example Lewis & Syrmos
(1995), it is convenient to write the linearized fluid system in the general state-
space form

q̇ = Aq + B2uc + B1f, q(0) = q0,

y = Cq + g,
(5)

where q is the state, A is the linear operator representing the dynamics of the
system. The external disturbances, denoted by f , force the state through the
input operator B1, and q0 is the initial condition. The operator B1 transforms
a forcing on (u, v, w) to a forcing on (v, η), since the flow state is expressed in
this formulation. The control signal uc affects the system through the input
operator B2. Operator C extracts the measurements from the state variable,
and g adds a stochastic measurement noise with given statistical properties.
The noisy measurement is then denoted by y.

The controlled Orr–Sommerfeld/Squire system can be cast into the for-
malism of (5) by means of a lifting procedure (see e.g. Högberg et al. 2003a)
where the control at the wall now enters the flow through a volume forcing term
instead of as an inhomogeneous boundary condition at the wall. This is done
by decomposing the flow state into a time varying homogeneous component
(subscript h) and a steady particular (subscript p) component

(
v(t)
η(t)

)

=

(
vh(t)
ηh(t)

)

+

(
vp

ηp

)

ϕ(t). (6)

The augmented state q, incorporating the actuation variable, thus reads

q =





vh(y, t)
ηh(y, t)
ϕ(t)



 , (7)

and augmented operator A and operator B (see §3) can be written

A =

(
LOSS LOSSqp

0 0

)

, B =

(
−qp

1

)

, (8)

with

LOSS =

(
LOS 0
LC LSQ

)

, (9)
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and where the particular solution qp is chosen to satisfy the numerically conve-
nient equation LOSS qp = 0 with a unity boundary condition on the wall-normal
velocity at the wall. With this formulation the control signal becomes uc = ϕ̇.

2.2. Stochastic disturbances

2.2a. Modeling of the external disturbances. The description of a dynamical
system can also include a description of its input (external sources of excita-
tions) and its output (measurements, possibly corrupted by noise). The perfor-
mance of the state estimation relies on the construction of a proper model for
the flow disturbances. Indeed, if the external sources of perturbations in the
flow are well identified, it becomes an easy task to estimate the flow evolution
using a dynamic model of the system.

The external sources of perturbations in typical aeronautical applications
can be wall roughness, acoustic waves, and free-stream turbulence. In the case
where the sensors are distributed over a strip in the boundary layer, upstream
instabilities can generate waves that are to be considered as disturbances to
the estimator.

We will assume the external disturbance forcing f = (f1, f2, f3) in (5) to
be a zero-mean stationary white Gaussian process with auto-correlation

E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t
′)] = δ(t − t′)

︸ ︷︷ ︸

Temporal

Qfjfk
(y, y′, rx, rz)

︸ ︷︷ ︸

Spatial

,

where δ(·) denotes the Dirac δ-function.

The remaining property to be described is the spatial extent of the two-
point, one-time, auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator, obtained
for any wavenumber pair {kx, kz} via the following integration over the homo-
geneous directions

Rfjfk
(y, y′, kx, kz) =

∫ ∫

Qfjfk
(y, y′, rx, rz)e

−i(kxrx+kzrz)drx drz.

Our model for the covariance of f assumes that the disturbance has a localized
structure in space (i.e., the two-point correlation of the disturbance decays
exponentially with distance) and that the correlations between forcing terms on
different velocity components are zero. We assume a model for the covariance
of the external forcing f of the form

Rfjfk
(y, y′, kx, kz) = d(kx, kz) δjkMy(y, y′), (10)

where

d(kx, kz) = exp

[

−
(

kx − k0
x

dx

)2

−
(

kz − k0
z

dz

)2
]

. (11)
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Figure 1. The covariance of f , for the FSC problem (cases
12–13 in table 1), is depicted in (a). The covariance is focused
to the interior of the boundary layer. From top to bottom and
right to left each square represent the covariance for f1, f2,
and f3. The wavenumber space amplitude function is shown
in (b). The peak is set at {0.25,−0.25}, about the mode that
is triggered in the FSC simulations.

The model parameters k0
x and k0

z can be used to locate the peak energy of the
disturbances in Fourier space, and dx and dz to tune the width of this peak.
These parameters are specific for each flow case, e.g. for a typical TS-wave the
peak energy will be at k0

x = 0.3 and k0
z = 0, or for a typical streamwise streak,

the choice will be k0
x = 0 and k0

z = 0.5.

The y-variation of Rfjfk
is given by the function

My(y, y′) = w ((y + y′)/2) exp

[

− (y − y′)2

2dy

]

, (12)

where the design parameter dy governs the width of the two-point correlation
of the disturbance in the wall-normal direction. The function w(ξ) describes
the variances at different distances from the wall. In the present paper, the
estimator will be applied to disturbances inside the boundary layer, we thus
use the wall-normal derivative of the base flow,

w(ξ) =
U ′(ξ)

U ′(0)
, (13)

so that the variance of the disturbance varies as the mean shear: greatest close
to the wall and vanishing in the free-stream. The model parameters for all flow
cases presented are given in table 2.

Other forms for d(kx, kz) are also possible, and may be experimented with
in future work. Note that we will denote R = Rff = diag(Rf1f1

, Rf2f2
, Rf3f3

)
in the sections that follow.



34 M. Chevalier, J. Hœpffner, E. Åkervik and D. S. Henningson

2.2b. Sensors and sensor noise. The measurements used in this study are the
streamwise and spanwise shear stresses and the wall pressure fluctuations.







τx = τxy|wall =
1

Re

∂u

∂y

∣
∣
∣
∣
wall

=
1

Re

i

k2
(kxD2v − kzDη)|wall ,

τz = τzy|wall =
1

Re

∂w

∂y

∣
∣
∣
∣
wall

=
1

Re

i

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
1

Re

1

k2
D3v|wall .

which yields the following measurement matrix C

C =
1

Re

1

k2





ikxD2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0



 .

Each of the three measurements is assumed to be corrupted by random
sensor noise processes, the amplitude of which is determined by the assumed
quality of the sensors. The covariance of the sensor noise vector g can thus be
described in Fourier space by a 3× 3 matrix G where the diagonal elements α2

ι

are the variances of the sensor noise assumed to be associated with each indi-
vidual sensor. The covariance for each sensor can be written on the following
form

Rgι(t),gκ(t′) = δικδ(t − t′)α2
ι , (14)

where δικ denotes the Kronecker delta. Thus, in the present work, we assume
that the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can be
better trusted. For a given covariance of the external disturbances, the tuning
of the assumed overall magnitude of the sensor noise in the Kalman filter design
thus provides a natural “knob” to regulate the magnitude of the feedback into
the estimator.

3. Compensation

The system is now described: its dynamics is governed by (2), it is excited
by external sources of disturbance as in (11) and the sensor information is
corrupted by noise as in (14). We can now apply the procedure of LQG control
and estimation governed by system 5.

3.1. Controller

To construct an optimization problem we need to define an objective function.
The performance measure for optimality is chosen as a weighted sum of the
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flow kinetic energy and the control effort. We thus aim at preventing small
disturbances from growing, and achieve this goal with the minimum possible
actuation energy. The objective functional thus reads

J =

∫ ∞

0

(q∗Qq + l2u∗
cuc) dt (15)

where l2 is included to penalize the time derivative of the control uc = ϕ̇, and

Q =

(
Q Qqp

q∗pQ (1 + r2)q∗pQqp

)

(16)

where the term r2 is an extra penalty on the control signal itself. The operator
Q represents the energy inner-product in the (v, η) space

(
v∗ η∗

)
Q

(
v
η

)

=
1

8k2

∫ ∞

0

(

k2|v|2 +

∣
∣
∣
∣

∂v

∂y

∣
∣
∣
∣

2

+ |η|2
)

dy, (17)

with k2 = k2
x + k2

z .

We now want to find the optimal K that feeds back the state to update
the control uc = Kq. It can be found as the solution of an algebraic Riccati
equation (ARE)

A∗X + XA − 1

l2
XB2B

∗
2X + Q = 0 (18)

where X is the unique non-negative self-adjoint solution. Note that the linear
feedback law does not depend on the disturbances present in the flow and is
thus computed once and for all for a given objective function and base flow.
The optimal control gain K is

K = − 1

l2
B∗

2X. (19)

A sufficient range of wavenumber pairs are computed and after Fourier trans-
formation in both horizontal directions, we obtain physical space control con-
volution kernels. Examples of such control kernels are depicted in figure 2.

3.2. Estimator

We build an estimator analogous to the dynamical system (5) as

˙̂q = Aq̂ + B2uc − L(y − ŷ), q̂(0) = q̂0,

ŷ = Cq̂,
(20)

where q̂ is the estimated state and ŷ represents the measurements in the esti-
mated flow.

Kalman filter theory, combined with the models outlined in §2.2a and §2.2b
for the statistics of the unknown external forcing f and the unknown sensor
noise g respectively, provides a convenient and mathematically-rigorous tool for
computing the feedback operator L in the estimator described above such that
q̂(t) converges to an accurate approximation of q(t) (see e.g. Lewis & Syrmos
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1995, p. 463–470). Note that the volume forcing ve = L(y − ŷ) used to ap-
ply corrections to the estimator trajectory is proportional to the measurement
difference in the flow and in the estimator ỹ = y − ŷ.

The problem reduces to solving an algebraic Riccati equation similar to
equation (18)

0 = AP + PA∗ − PC∗G−1CP + B1RB∗
1 , (21)

where P is the unique non-negative self-adjoint solution. The optimal gain L
that minimizes the expected energy of the state estimation error at steady state
is

L = −PC∗G−1. (22)

Estimation convolution kernels are exemplified in figure 3.

3.3. Extension to spatially developing flows

When solving the linear control problem and computing optimal control and es-
timation gains we have linearized about a base flow profile at a specific stream-
wise position, hence assuming a parallel base flow. However, due to the non-
parallel base flows in the DNS, errors will be introduced when the control signal
and estimation forcing are computed. Based on findings in Högberg & Hen-
ningson (2002), Högberg et al. (2003b), Högberg et al. (2003c), and Chevalier
et al. (2006) it was expected that the controller and the estimator had some ro-
bustness properties with respect to changes in the base flow profile. Due to the
fact that the convolution kernels themselves, for proper choices of parameters,
are localized indicates that only local information is needed which relaxes the
requirement of constant base flow profile. For almost all control and estimation
gains, the base flow profile in the centre of the control and measurement regions
have been used. For the longer control interval in the optimal perturbation flow
case, the same gains were used as for the shorter interval.

The control and estimation convolution kernels for the Falkner–Skan–Cooke
boundary layer flow, corresponding to cases 12–13 in table 1, are depicted in
figures 2 and 3. Both the control and estimation kernels were computed with
a physical box size of 100 × 10 × 125.7 with 192 × 65 × 125.7 Fourier, Cheby-
shev, Fourier modes. Furthermore, the kernels were based on the mean-flow
at x = 95 and x = 200 for the estimation and control respectively. For all
cases studied the general behaviour of the control kernels are the same in the
sense that they all reach upstream in order to get information about the per-
turbations present in the flow. Correspondingly the estimation kernels reach
downstream from the point of sensoring yielding information on how each mea-
surement should force the estimator. However, due to the differing base flows
and their inherent instabilities the kernels will differ in shape and extent. The
streamwise length of the sensing/actuation strip is limited above due to the
non-parallel base flow, and below by the physical extent of the convolution
kernels. The control and estimation region lengths used in this paper for the
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(a)

y
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z

(b)

y

x

z

Figure 2. Steady-state control convolution kernels relating
the flow state v̂ (a) and η̂ (b) to the control at {x = 0, y =
0, z = 0} on the wall. Positive (dark) and negative (light)
isosurfaces with isovalues of ±20% of the maximum amplitude
for each kernel are illustrated. The kernels correspond to cases
12–13 in table 1 and 3.

spatial flow cases were chosen in this range. Note that the performance of the
controller/estimator degrades with “out of limit” parameters but will generally
still produce reasonable results.

4. Numerical issues

4.1. Direct numerical simulations

All direct numerical simulations have been performed with the code reported
in Lundbladh et al. (1992) and Lundbladh et al. (1999), which solves the in-
compressible Navier–Stokes equations

∂u

∂t
= NS(u)+λ(x)(u − uλ) + F,

∇ · u = 0,
(23)

by a pseudo-spectral approach. The velocity vector u is defined as u = (u, v, w).
In the subsequent we will divide the velocity field into a base flow U = (U, V,W )
and a disturbance part u′ = (u′, v′, w′) so that u = U + u′. In order to
allow spatially developing flows, a fringe region technique as described in e.g.
Nordström et al. (1999) has been applied. This forcing is implemented in the
term λ(x)(u − uλ), where λ(x) is a non-negative function which is nonzero
only in the fringe region located in the downstream end of the computational
box. The outflow and inflow conditions are determined by the desired velocity
distribution uλ. The other additional forcing term F = (F1, F2, F3) is used
e.g. to enforce a parallel base flow in temporal simulations, or to introduce
perturbations in the spatial simulations.
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Figure 3. Steady-state estimation convolution kernels relat-
ing the measurements τx, τz, and p at the point {x = 0, y =
0, z = 0} on the wall to the estimator forcing on the interior
of the domain for the evolution equation for the estimate of
(left) v̂ and (right) η̂. Positive (dark) and negative (light) iso-
surfaces with isovalues of ±10% of the maximum amplitude
for all kernels illustrated. The kernels correspond to case 13
in tables 1 and 3.
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At the lower wall a no-slip boundary condition is applied where it is also
possible to apply zero mass-flux blowing and suction. An asymptotic free-
stream boundary condition is used to limit the computational box in the wall-
normal direction, at a constant height from the lower wall (see e.g. Malik et al.
1985).

The computational domain is discretized in space by Fourier series in both
horizontal directions and with Chebyshev polynomials in the wall-normal di-
rection. The time integration uses a four-step low-storage third-order Runge–
Kutta method for the advective and forcing terms whereas the viscous terms
are treated by a Crank-Nicolson method. The incompressibility condition is
enforced implicitly by expressing the flow state in the wall-normal velocity and
wall-normal vorticity state space.

4.2. Temporal simulations

When needed, we add a volume forcing vector F = (F1, F2, F3) to enforce a
parallel base flow, defined as

F1 = −∂U(y, t)

∂t
− 1

Re

∂2U(y, t)

∂y2
,

F2 = 0,

F3 = − 1

Re

∂2W (y, t)

∂y2
.

(24)

The velocity profiles U(y, t) and W (y, t) are given for a spatial position xr. To
further allow for a moving frame we make the following variable transformation
xr = x0 + ct where c is the reference frame speed and let U(xr, y) = U(x0 +
ct, y) = U(t, y).

4.3. Spatial simulations

4.3a. Fringe region. By adding the fringe forcing mentioned in §4.1 we can
enforce flow periodicity and thus apply spectral methods allowing us to solve
spatially developing flows. The fringe function is defined as

λ(x) = λmax

[

S

(
x − xstart

∆rise

)

− S

(
x − xend

∆fall

)]

(25)

where the ramping function S is defined as

S(x) =







0, x ≤ 0,

1/
[

1 + exp
(

1
x−1 + 1

x

)]

, 0 < x < 1,

1, x ≥ 0.

(26)

The parameters xstart and xend define the start and end location of the fringe
domain, whereas the parameters ∆rise and ∆fall define the rise and fall distance
of the fringe function.
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Case Flow Perturbation Estimation Control
xm ∈ r2 l xc ∈

0 A Eigenmode
1 A Eigenmode 0 102 [0, 25.14]
2 A Eigenmode [0, 25.14] 0 102 [0, 25.14]
3 B TS-wave
4 B TS-wave 0 102 [100, 250]
5 B TS-wave [0, 100] 0 102 [100, 250]
6 C Optimal
7 C Optimal 0 102 [300, 450]
8 C Optimal [0, 300] 0 102 [300, 450]
9 C Optimal 0 102 [300, 750]
10 C Optimal [0, 300] 0 102 [300, 750]
11 D Random
12 D Random 0 102 [175, 325]
13 D Random [40, 150] 0 102 [175, 325]
14 E Stationary
15 E Stationary 0 102 [150, 300]
16 E Stationary [40, 150] 0 102 [150, 300]

Flow Resolution Box

A Temporal FSC 4 × 129 × 4 25.14 × 20 × 25.14
B Spatial Blasius 576 × 65 × 4 1128 × 20 × 12.83
C Spatial Blasius 576 × 65 × 4 1128 × 20 × 12.83
D Spatial FSC 192 × 49 × 48 500 × 8 × 251.4
E Spatial FSC 768 × 65 × 24 500 × 8 × 25.14

Flow Fringe
xstart xmix ∆mix ∆rise ∆fall

B Spatial Blasius 928 928 50 30 15
C Spatial Blasius 1028 1028 40 100 20
D Spatial FSC 350 400 40 100 20
E Spatial FSC 350 400 40 100 20

Table 1. The tables contain detailed information about the
simulations performed in this study. Both the control and
estimation kernels are computed based on a velocity profile
from the centre of each domain except for cases 9–10 where the
same control kernels were used as for cases 7–8. The rise and
fall distance of the control region and the measurement regions
are always ∆x = 5. The domain xm denotes the measurement
region used in the estimator and the domain xc denotes the
region where blowing and suction is applied in the control part
of the simulations. The estimator model parameters for the
different cases are given in table 3.
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Parameter Cases
3–5 6–10

xf −201.06 −158.16
ω 0.06875 0
kz 0 0.4897
as 10−5

ts 0
tr 20

Parameter Cases
11–13 14–16

x0 20.95 20.95
at 0.001
as 0.0036

xscale 10 10
yscale 1 1
zscale −25.14
zcenter 0 0
lskew 1

nmodes 21
tdt 1

Table 2. Volume forcing parameters for the spatial simula-
tions. Note that negative coordinates indicate positions up-
stream of the inflow boundary.

In order to enforce the inflow boundary condition at the downstream end of
the domain we construct the following blending function which gives a smooth
interpolation between two velocity profiles. Let the velocity components be
defined as

uλ = U(x, y) + [U(x − lx, y) − U(x, y)]S

(
x − xmix

∆mix

)

+ u′
f (x − lx, y, z, t),

wλ = W (x, y) + [W (x − lx, y) − W (x, y)]S

(
x − xmix

∆mix

)

+ w′
f (x − lx, y, z, t),

(27)
where lx is the box length in the streamwise direction. The parameters xmix

and ∆mix are both blending parameters. The former is the start of the blending
region and the latter is the rise distance of the blending. Additional forcing to
add streaks or different wave forms can be added through the velocity compo-
nents (u′

f , v′
f , w′

f ) directly in the fringe.

4.3b. Perturbations. To introduce perturbations into the spatially evolving flow
an external volume force can be applied locally in the computational domain.
This forcing can either be applied in the fringe region, as for the optimal dis-
turbance and the TS-wave case, or in the physical flow domain.

In order to introduce unsteady perturbations in the physical computational
domain, we use a random forcing, acting only on the wall-normal component
of the momentum equations

F rand
2 = at exp[−((x − xcenter)/xscale)

2 − (y/yscale)
2]f(z, t), (28)
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where
f(z, t) = [(1 − b(t))hk(z) + b(t)hk+1(z)] (29)

and
k = floor(t/tdt),

b(t) = 3p2 − 2p3,

p = t/tdt − k,

(30)

where floor denote rounding to the next smaller integer, and hk(z) is a Fourier
series of unit amplitude functions with random phase generated at every time
interval k. Within each time interval tdt, the function b(t) ramps the forcing
smoothly in time. The maximum amplitude is determined by at and the forcing
is exponentially decaying in both the streamwise and wall-normal directions
centred at xcenter. The number of modes with non-zero amplitude is determined
by the parameter nmodes. This forcing has been used to generate the travelling
cross-flow vortices described as cases 11–13 in table 1 with the corresponding
parameters given in table 2.

Generating disturbances in the fringe region is done through prescribing the
components (u′

f , v′
f , w′

f ) in equation (27). Since we are looking at the evolution
of linear disturbances, these components can be taken as the eigenfunctions of
the parabolized stability equations, known as the PSE (Bertolotti et al. 1992;
Herbert 1997). Input to the eigenvalue problem is a given real frequency ω, an
appropriate Reynolds number Re and a real spanwise wavenumber kf

z . A set of
equations valid for both algebraically and exponentially growing disturbances
was derived in Levin (2003), capturing the different scales associated with the
two growth scenarios. Having obtained the complex eigenvalues kf

x(x) and the
eigenfunctions q̂ = (û(x, y), v̂(x, y), ŵ(x, y)) from the solution of the PSE, one
can readily formulate the forcing applied in the fringe as the real part of

q′f = as q̂(x, y) exp

(

iRe

∫ x

xf

kf
x(ξ)dξ + ikf

z z − iωt

)

S

(
t − ts

tr

)

(31)

where xf is typically the start of the fringe region and as is the amplitude of
the disturbance. The ramping function S is given by equation (26) and ts and
tr are used as time ramping parameters.

4.3c. Zero mass-flux actuation. The numerical model in the DNS does not
allow for net inflow or outflow, we thus have to enforce a zero-mass flux through
the actuation strip by the transformation

ϕ̂(x, z) = (ϕ(x, z) + c)H(x), (32)

where

c = −

∫

z

∫

x

ϕ(x, z)H(x) dxdz

zl

∫

x

H(x) dx

(33)
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and

H(x) = S

(
x − (xc − lcx)

∆x

)

− S

(
x − (xc − lcx)

∆x

)

. (34)

The parameter S(x) is defined as in equation (26) and xc denotes the centre of
the control interval. Parameters lcx and lcz are respectively the length and width
of the control domain and ∆x is the rise and fall distance of the actuation.

4.4. Compensator algorithm

The compensator algorithm is depicted in figure 4. The “real” flow could be an
experimental setup where only wall information is extracted. In our studies the
“real” flow is represented by a DNS. The estimator is another DNS, which is
used to recover the state from sensor information. The compensation algorithm
can be sketched in the following steps

1. Take wall measurements in both real and estimated flows
2. Compute the estimator volume forcing based on precomputed estima-

tion gains and the difference of the wall measurements from the real and
estimated flows

3. Apply the volume forcing to the estimator flow to make it converge to
the real flow

4. Compute the control signal as a feedback of the reconstructed state in
the estimator

5. Apply the control signal in both the real and estimated flows

5. Flow cases

In order to evaluate the compensator performance in transitional flows we test
a range of different flow cases. To ease the comparison with the full information
controller results reported in Högberg & Henningson (2002) we study partly
the same flow cases and the same control parameter l2 = 100 has been used.
However, some control regions have been moved further downstream to fit also a
measurement region into the computational domain. Note that in principle we
could have overlapping control and measurement regions. The computational
parameters for each flow type are listed in table 1, 2 and 3.

5.1. Single eigenmode

To validate the numerical implementation of the control and the estimator forc-
ing we studied a temporal FSC boundary layer flow where the Reynolds number
at the beginning of the simulation box was Re = 337.9 with a free-stream cross-
flow velocity component W∞ = 1.44232U∞(x = 0) and a favourable pressure
gradient m = 0.34207 as defined in §2.1. The same flow setup is also studied
in a spatial setting in §5.4. In the case of temporal flow the measurement and
control regions overlap since they both extend over the complete wall.



44 M. Chevalier, J. Hœpffner, E. Åkervik and D. S. Henningson

Actual flow

Estimated flow
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Figure 4. Compensator configuration. The upper box repre-
sents the “real” flow where the light grey rectangle along the
wall is the measurement region (x ∈ [xm

1 , xm
2 ]) and the corre-

sponding dark grey rectangle is the control area (x ∈ [xc
1, x

c
2]).

In the beginning of the box a perturbation is indicated as a
function of the wall-normal direction. This perturbation will
evolve as we integrate the system in time. The estimated flow
system is depicted in the lower box. Here the volume force
that is based on the wall measurements and the estimation
gains is shown as a grey cloud in the computational domain.

The initial disturbance is the unstable eigenfunction associated with the
eigenvalue c = −0.15246 + i0.0382 that appears at kx = 0.25 and kz = −0.25.
The exponential energy growth of the uncontrolled eigenmode is depicted in
figure 5 as a thick solid line. In the same figure the full information controller
is plotted as a thick dashed line and the disturbance energy decays rapidly in
time and levels out. All thin lines are related to the compensator simulation.
The thin solid line represents the disturbance energy in the estimator and it
increases initially to quickly align with the energy growth of the actual state.
This can also be viewed through the estimation error plotted as a thin dash-
dotted line which decays exponentially in time. The compensator control is
shown as the thin dashed line. Initially when the estimated state is poor the
controller is not very efficient. However as the estimated state improves the
compensator control is also improving.
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Parameter Cases
3 5 8 & 10 13 16

k0
x 0.25 0.28 0 0.25 0.25

k0
z −0.25 0.0 0.49 −0.25 −0.25

dx 0.10 0.25 0.15 0.20 0.20
dy 0.10 0.10 0.10 0.10 0.10
dz 0.10 0.25 0.15 0.20 0.20

ατx
29.56 4.0 0.20 0.20 0.20

ατz
2.21 0.30 0.20 0.20 0.20

αp 14783 2000 300 30000 30000

Table 3. Estimator model parameters. The parameters k0
x,

k0
z , dx, dy, and dz all relate to the covariance model of the

external disturbances and the parameters ατx
, ατz

, and αp

relate to the modeling of the sensor noise.
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Figure 5. Time evolution of the perturbation energy of the
uncontrolled unstable eigenmode at kx = 0.25, kz = −0.25 in a
FSC boundary layer and the corresponding controlled system.
Solid: uncontrolled energy growth (case 0). Dashed: full in-
formation control applied (case 1). Solid-thin: energy growth
in the estimator when no control is applied. Dash-dotted-thin:
the estimation error when no control is applied. Dashed-thin:
compensator control is applied (case 2). The simulations cor-
respond to cases 0–2 in table 1.
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5.2. TS-wave

The TS-wave perturbation is applied in a spatially developing Blasius bound-
ary layer with an inflow Reynolds number of Re = 1150. This base flow can
be obtained as a similarity solution described in §2.1 with m = 0. The per-
turbations are introduced by means of forcing in the fringe region as described
in §4.3b. Since the TS-wave is a pure two-dimensional instability, the span-
wise wavenumber in (31) is kf

z = 0. These waves are forced at the dimen-
sionless oscillating frequency F = 59, relating to the physical frequency ω as
F = 1062πων/U2

∞. This value is chosen according to Levin (2003) where it
was found to be the most unstable. The unstable area for this wave extends
from Branch I at x = −124 (Re ≈ 949) to branch II at x = 621 (Re ≈ 1854).
The measurement region is x ∈ [0, 100] and the control region is x ∈ [100, 250]
so that they are both located in the exponential growth region. The simulation
parameters correspond to cases 3–5 in table 1 and the parameters defining the
fringe forcing are given in table 2.

Figure 6 shows the uncontrolled energy growth and decay as the solid thick
line. Full information control, displayed as the thick dash-dotted line, performs
perfectly, lowering the amplitude of the energy by approximately five decades.
The estimator builds up energy levels throughout the whole estimation region,
reaching almost the amplitude of the original flow. This is visualized as the
thin solid line.

Note that the difference between the compensator control and full informa-
tion control in Figure 6 is exaggerated due to the logarithmic scale. In fact this
difference is of the same order of magnitude as the energy difference between
the real and estimated flow. Indeed by extending the estimation region (and
moving the control region further downstream) one can get a closer agreement
between the compensator and the full information controller. Note however
that there is an interest in controlling the TS-wave evolution as far upstream
as possible. Choosing the moderate estimation region length of 100, the com-
pensator still manages to lower the energy levels by almost three decades.

Figure 7(a) shows a snapshot of an x–y plane of the wall-normal uncon-
trolled velocity field. The forcing has been turned on long enough to let the
waves propagate throughout the whole computational box. In figure 7(b) the
compensator control has been active for 926 time units, corresponding to ap-
proximately fifteen periods of the forcing. At this instance of time there are
still large amplitude disturbances present far downstream, but as can be seen
from figure 7(c), 30 periods later the contour-levels of the disturbances are
small throughout the whole domain. It is evident that the unsteady blowing
and suction has effectively diminished the disturbances, leaving the remaining
TS-wave to be advected out of the domain by the base flow.

Instantaneous control signals for the full information control and the com-
pensator control are shown in figure 8. The control signals mimic waves with
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Figure 6. Spatial evolution of the perturbation energy of a
TS-wave in a spatially growing boundary layer. Solid: un-
controlled energy growth. Solid-thin: estimated flow energy.
Dashed: full information control applied. Dash-dotted: com-
pensator control applied.

decaying amplitude in the streamwise direction. The large amplitude at the
beginning of the control interval is due to the fact that the controller manages
to do the job within only a few wavelengths of the TS-wave, hence leaving large
amplitude control further downstream unnecessary.

5.3. Optimal perturbation

The compensator performance is also studied for transiently growing perturba-
tions, also known as optimal perturbations after Butler & Farrell (1992). The
spatial optimal perturbations in a Blasius boundary layer have been computed
by Andersson et al. (1999) and Luchini (2000). The optimal perturbation is
introduced at x = −158.16 and then marched forward to x = 0 with the tech-
nique developed in Andersson et al. (1999). The perturbation is introduced in
the fringe region to give the proper inflow condition, as described in section
§4.3 and with the choice of parameters displayed in table 2. The perturbation
is optimized to peak at x = 237.24.

The base flow is essentially the same as the one described in §5.2, with the
same box-size but with a smaller fringe region and a lower Reynolds number.
Here the local Reynolds number at the inflow is Re = 468.34 (Andersson et al.
(2000)). The simulation parameters are given in table 1 as cases 6–10.

Figure 9 shows the energy of the uncontrolled flow, full information control
and compensator control once steady state has been reached. Here the energy
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Figure 7. A snapshot of the wall-normal perturbation veloc-
ity for controlled and uncontrolled TS-waves. (a) The TS-wave
at t = 3926 with no control. (b) Compensator control applied
during 15 TS-wave periods which corresponds to 926 time
units. (c) Compensator control applied during 45 TS-wave
periods. The unsteady wall blowing and suction effectively
eliminates disturbances, with the result that the original TS-
wave disturbances are advected out of the domain. The black
to white scales lie within the interval v ∈ [−9.87 · 10−5, 8.18 ·
10−5]
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Figure 8. Control signal when the control has been turned
on for 926 time units. Solid: Full information control. Dash-
dotted: Compensator control.
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Figure 9. Spatial energy evolution of the optimal pertur-
bation. Solid: no control. Dashed: full information control
applied in region x ∈ [300, 450]. Dash-dotted: compensator
control with measurement region xm ∈ [0, 300] and the con-
trol region xc ∈ [300, 450]. Thin-solid: estimated flow en-
ergy. Thin-dashed: full information control applied in region
x ∈ [300, 725]. Thin dash-dotted: compensator control with
the measurement region xm ∈ [0, 300] and the control region
xc ∈ [300, 725]. The flow cases correspond to cases 6–10 in
table 1.

is defined as

E =

∫ 2π/k0

z

0

∫ ∞

0

(u2 + v2 + w2) dy dz, (35)

where the spanwise wave number is k0
z = 0.4897. Two different lengths of

the control regions have been implemented. Both types of controllers for both
control intervals work well at reducing the perturbation energy. In the case
with a narrow control strip the perturbation energy starts to grow again since
a stronger component of the growing disturbance remains. Note that the esti-
mated flow energy does not reach the exact perturbation energy level, but in
contrast to the TS-wave perturbation this does not seem to strongly affect the
compensator performance.

The control signal for the full information and compensator control cases,
applied in the interval x ∈ [300, 750], are depicted in figure 10. The actuation
presents a peak at the beginning of the control region and then a fast decay
which levels out progressively. A similar feature is reported in Cathalifaud &
Luchini (2000) where control is applied over the whole domain.
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Figure 10. The control signal for the optimal disturbance
case after the initial transient. Solid: full information control.
Dashed: compensator control in domain. The simulations cor-
respond to case 9 and 10 in table 1.

5.4. Travelling cross-flow vortices

The FSC boundary layer flow studied in this paper is subject to several other
studies, for example Högberg & Henningson (1998) and Högberg & Henningson
(2002). Originally it was an attempt to reproduce experimental results where
travelling cross-flow modes have been observed (see e.g. Müller & Bippes 1988).
A random perturbation in space and time that generates cross-flow vortices
downstream is applied, as described in §4.3b. The specific numerical details
can be found under cases 11–13 in tables 1 and 2.

In case 11 we compute the time evolution of the forcing as it develops down-
stream and forms the cross-flow vortices. When the simulations have reached
a statistically steady state the disturbance energy is sampled and averaged in
time and the spanwise direction as shown in figure 13. The energy growth of
the perturbation is shown as a black solid line. In case 12 we apply full infor-
mation control. Exponential decay then replaces the uncontrolled exponential
growth, as shown by the dashed line in figure 11. However almost adjacent
to the downstream end of the control region the disturbances start to grow
exponentially. Indeed, this wave is unstable over the whole box, and resumes
growth behind the control strip. In the same figure the perturbation energy
for the compensator is plotted as a dash-dotted line.
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Figure 11. Time averaged perturbation energy for cross-flow
vortices in a Falkner–Skan–Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. Thin-solid: estimator energy. The sim-
ulations correspond to cases 11–13 in table 1.
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Figure 12. Time evolution of the disturbance energy inte-
grated throughout the computational box. During the first
2000 time units the flow is uncontrolled. At time t = 2000 the
compensator is turned on. Solid: energy in the flow. Thin-
solid: energy in the estimator.

In figure 12 the evolution in time of the perturbation energy, integrated
throughout the computational box in space, is shown. The energy in the esti-
mator is shown as a thin-solid line which is zero at time t = 0 but as time evolves
reaches the same level as the perturbation energy in the real flow. From figure
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12 it is also evident that the estimator is able to adapt to the time variations
of the perturbation energy.

The control gains are computed for the base flow at position x = 250
which is the centre of the control domain x ∈ [175, 325]. The estimator gains
are centred at x = 95 and the measurements are taken in x ∈ [40, 150]. In figure
13(a) the uncontrolled flow for the wall-normal perturbation velocity is plotted
at y = 1.0. The corresponding plot for the compensated flow is depicted in
figure 13(b).

5.5. Stationary cross-flow vortices

Stationary perturbations introduced at the beginning of the computational
domain, with large enough amplitudes, will generate stationary nonlinearly
saturated cross-flow vortices that develop downstream.

The control is acting in the interval x ∈ [150, 300] and the control kernels
are computed based on the mean flow at x = 225 with l = 102. The measure-
ment region is in the interval x ∈ [40, 150] and the the estimation kernels are
computed based on the base flow centred in that interval. The complete set of
parameters for these simulations is given as cases 14–16 in table 1.

The full information control has been applied to both a flow with fully
developed cross-flow vortices throughout the computational domain as well as
a flow where the control is turned on at the same time as the perturbation is
first introduced in the upstream region. Both approaches give the same result
after the initial transients, due to the control. However the transition phase in
the former case requires smaller time steps due to stronger transients. There
could also be a problem in the former case if too strong wall-normal velocities
are generated due to technical limitations in the spectral code that are being
used.

For estimation-based control, two approaches regarding the initial state of
the estimator have been attempted. First the control is applied after a well
converged estimated state is obtained. This leads to full actuation strength
immediately. To avoid a strong initial actuation, we turn on estimator and
control at the same time. The results shown here have been produced with the
latter method.

The simulation is run until a stationary state has been reached and the cor-
responding energy is shown in figure 14. The solid line shows the perturbation
energy and the thin line shows the corresponding estimator state energy. The
dashed and dash-dotted lines show the full information and compensated con-
trol cases respectively. In both cases, oscillations in the upstream part of the
control region indicate that there are nonlinear interactions taking place. As
reported in Högberg & Henningson (2002), the full information control turns
exponential growth into exponential decay, and downstream of the control re-
gion, new cross-flow vortices appear due to the inflectional instability. The
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Figure 13. Snapshots of the wall-normal velocity component
at y = 1.0. The flow state is depicted in part (a). In (b) the
effect of the compensator control is shown. In the controlled
flow the actuation was applied in 2000 time units. The black
to white scales lie within the interval v ∈ [−0.00045, 0.00055].

compensator control never reaches exponential decay but rather maintains a
more or less constant perturbation energy throughout the control interval.

6. Conclusions

Based on findings on how to improve the performance state estimation perfor-
mance, reported in Hœpffner et al. (2005), combined with the state-feedback
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Figure 14. Perturbation energy growth for cross-flow vor-
tices in a Falkner–Skan–Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. Thin-solid: estimator energy. The sim-
ulations correspond to cases 14–16 in table 1.

control used in, for example, Bewley & Liu (1998) and Högberg & Henningson
(2002), viscous instabilities, non-modal transient energy growth and inflectional
instabilities in spatially developing boundary layer flows are controlled based
on wall measurement.

The key to the improved performance of the estimator is the design of a
physically relevant stochastic model for the external sources of disturbances.
For this purpose we choose a correlation length which is weighted to be stronger
in the interior of the boundary layer than outside. We also choose an amplitude
distribution in wavenumber space such that it represents the most dominant
wavenumbers in the specific flow being studied. This procedure leads to well
resolved estimation gains for the three measurements: streamwise and spanwise
skin frictions and wall pressure. Both the sensor noise and the external distur-
bances are assumed to be white noise processes. As the estimator is switched
on, there is an initial transient that propagates with the group velocity of the
dominating disturbances through the computational domain. Upstream of this
transient the estimate is converged. This feature makes the compensator con-
trol efficient since little extra time is needed to have a good state estimate
where it is needed for control, i.e. above the actuation region.
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Högberg, M., Bewley, T. R. & Henningson, D. S. 2003b Relaminarization of
Reτ=100 turbulence using gain scheduling and linear state-feedback control.
Phys. Fluids 15, 3572–3575.
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Steady solutions of the Navier-Stokes equations

by selective frequency damping
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Hœpffner, Olaf Marxen & Philipp Schlatter

Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden.

A new method, enabling the computation of steady solutions of the Navier-
Stokes equations in globally unstable configurations, is presented. We show
that it is possible to reach a steady state by damping the unstable (temporal)
frequencies. This is achieved by adding a dissipative relaxation term propor-
tional to the high-frequency content of the velocity fluctuations. Results are
presented for cavity-driven boundary-layer separation and a separation bubble
induced by an external pressure gradient.

1. Introduction

The knowledge of a steady base-flow solution of the governing Navier-Stokes
equations is fundamental to instability studies and flow control. In the former
case it allows for both linear modal and non-modal analyses and weakly non-
linear approaches, whereas in the latter case the stabilization of such a base
flow can be adopted as a design target. Recent developments, for example as
reviewed in Theofilis (2003), have allowed the research community to examine
the stability of flows in increasingly complex configurations and to compute
two- and three-dimensional eigenmodes, the so-called global modes (Chomaz
2005). Unfortunately, when the flow under consideration is globally unsta-
ble, it is virtually impossible to numerically compute a steady-state solution of
the Navier-Stokes equations by time-marching methods, in particular for high-
order schemes with inherently low numerical dissipation. In some limited cases
solutions can be obtained by, e.g., artificially setting the velocity component in
certain directions to zero or enforcing symmetries in the system, the most stud-
ied example for the latter case being the two-dimensional flow around a circular
cylinder. For other cases, the only remaining possibility is the class of New-
ton iteration methods, which require heavy computational resources for large
systems. In this article, we propose a simple numerical approach to compute
steady solutions of the Navier-Stokes equations in unstable configurations. We
show that it is possible to reach a steady state by damping the most dangerous
frequencies and thus quenching the corresponding instability. The method is
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adapted from large-eddy simulation (LES) techniques, in particular considering
the work of Pruett et al. (2003, 2006).

2. Problem formulation

Consider the nonlinear system q̇ = f(q), with appropriate initial and boundary
conditions for the vector quantity q under the operator f(q). (A dot is used
here to denote the derivative with respect to time). For a flow problem, the
above system is the Navier-Stokes equations. A steady state qs is then given
by q̇s = f(qs) = 0. If f is unstable, any q 6= qs will quickly depart from
qs. In order to stabilize the above system we propose to apply regularization
techniques common in control theory, in this case in the form of proportional
(P) feedback control. This amounts to adding to the right-hand side a linear
term forcing towards a target solution w,

−χ(q − w) , (1)

where χ is the control coefficient. The theoretical target solution for the control
is of course the steady-state solution qs, which is however not available a priori.
Therefore, the actual target solution is a modification of q with reduced temporal
fluctuations, i.e. a temporally low-pass filtered solution w = T ∗q, defined as the
convolution of q with the temporal filter kernel T . For the method to converge
asymptotically in time to an exact solution of the steady equation, the filter
cut-off frequency should be lower than that of the flow instabilities. Therefore,
in the following, the unstable frequency will be referred to as high frequency.
With these definitions, the modified system is written as

q̇ = f(q) − χ(I − T ) ∗ q , (2)

where I is the identity operator. As q is approaching qs, the filtered solution
w = T ∗ q will in turn approach q, therefore reducing the control influence.
If q is the actual steady solution, the time-filtered value w will be identical
to q = qs, yielding a vanishing forcing. Hence the steady solution qs of the
controlled system (2) is also a steady solution of the original problem. Note
that there is no generation of new artificial steady states.

A related technique is also used in large-eddy simulation (LES) for the
temporal approximate deconvolution model (TADM) (see Pruett et al. 2006).
Working with spatial filters, a similar relaxation term has been successfully ap-
plied in the spectrally-vanishing viscosity (SVV) concept introduced by Tadmor
(1989) and in the (spatially filtered) approximate deconvolution model (ADM)
of Stolz et al. (2001) and the ADM-RT model of Schlatter et al. (2004). Follow-
ing these modeling ideas, a different interpretation of the method can be given
as follows. To attenuate unstable high-frequency temporal oscillations and thus
reach a steady state we include in the momentum equations an additional linear
regularization term, expression (1). This term is effectively damping the high-
frequency content of q. Two parameters have to be chosen in the stabilization
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procedure, the filter shape T and the control gain χ. Time-domain filters are
discussed first.

3. Time-domain filter

For a continuous function q(t), a causal low-pass time filter is defined

q(t) =

∫ t

−∞

T (τ − t;∆) q(τ)dτ , (3)

where q is the temporally filtered quantity, T is the parameterized filter kernel
and ∆ its associated filter width (Pruett et al. 2003). To be admissible, the
kernel T must be positive and properly normalized. Additionally, in the limit
of vanishing filter width the filter (3) must approach the Dirac delta function.
Probably the simplest example of such a filter is the exponential kernel,

T (τ − t;∆) =
1

∆
exp(

τ − t

∆
) , (4)

with the corresponding transfer function in Fourier/Laplace space

H(ω;∆) =

∫ 0

−∞

T (τ ;∆)exp(iωτ)dτ =
1

1 + iω∆
, (5)

where ω is the circular frequency and i =
√
−1. The cutoff frequency of the

filter is defined as ℜ(H(ωc;∆)) = 1/2 and is given by ωc = 1/∆. The trans-
fer function of the filter is represented in figure 1 for a fixed filter width ∆.
Note that the transfer function has a considerable imaginary part, which leads
to a phase lag in the filtered signal relative to the original signal. For real
applications, the integral formulation of the filter (3) is impractical, since it
requires the storage of the complete time history of the signal q. Therefore, the
equivalent differential form is adopted,

q̇ =
q − q

∆
, (6)

which can be readily advanced in time using any integration scheme.

The order of the filter is defined as the index of the first non-vanishing
derivative of ℜ(H(ω)) with respect to ω at ω = 0, i.e. the filter (5) is of second
order. Based on the exponential filter, also higher-order low-pass filters can be
constructed by repeated application of the primary low-pass filter H (Pruett
et al. 2006). The use of higher-order filters allows a better control over the
separation between damped and undamped frequencies. For specific cases,
i.e. if the separation between instability mode and relevant flow phenomena is
small, such a filter can be beneficial, e.g. in terms of convergence rate. Figure
1 displays the transfer function of 10th-order filter (degree N = 4, i.e. four
applications of the exponential filter) with adapted filter width. This is one
particular case of the general formulation where the shape of the filter transfer
function can be tailored for specific demands (Kailath 1980).
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spectral (ideal) cutoff filter.

4. Stabilization of unstable steady solution

Analysis of the dynamics of the augmented system is presented in order to
elucidate the stabilization procedure and quantify the effect of the control pa-
rameters. Considering system (2) with the exponential temporal filter (6), i.e.
w = q, the new system becomes

q̇ = f(q) − χ(q − q)

q̇ = (q − q)/∆

}

. (7)

The effect of the regularization can be illustrated by considering the eigenvalues
of system (7) linearized about the steady state. Introducing the Jacobian A of
f at the steady state qs, the linearized system is

(
q̇
q̇

)

=

(
A − χI χI
I/∆ −I/∆

)(
q
q

)

. (8)

Assume µ = µr + iµi is a complex eigenvalue of A (i.e. −iµφ = Aφ) with
corresponding eigenvector φ. Observation of the structure of system (8) sug-
gests that the eigenvectors of the new system will be [φ, αφ]T where α is a
complex number to be determined, and the corresponding eigenvalue will be
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λ = λ(µ, α, χ). Introducing this ansatz in (8), α and λ are obtained as

α± =
−F ±

√

F 2 + 4∆χ

2∆χ
, with F := ∆(−iµ − χ) + 1,

λ± = µ − iχ(1 − α±). (9)

The two solutions α+ and α− give two eigenvalues λ+ and λ− for the modified
system, originating from the same eigenvalue µ of the original system. The
eigenvalue λ+ can be seen as the damped original eigenmode, whereas λ− is
roughly associated to the filtering and corresponds to the 1/∆ term in (8). The
mapping µ → λ± in the complex plane is illustrated in figure 2 for parameters
χ = 0.02 and ∆ = 15. Two lines are represented (indicating possible eigenval-
ues µ of the original system), with imaginary parts 0.01 and −0.03, respectively.
(These regions approximately correspond to the eigenvalues we are interested
to damp in the cavity flow presented below). Each line is mapped into two
curves, the dashed one corresponding to λ+, and dash-dotted line to λ−. The
arrows indicate how two points of the original solid lines are mapped into the
new eigenvalues. It can be seen that points with large real part (corresponding
to large circular frequency) are simply damped, i.e. shifted downwards, by a
constant value χ, with virtually no shift along the real axis. Points of small
real part are moved towards the origin exhibiting both a decrease in frequency
and change in growth rate (imaginary part). The width of the hump forming
at low frequencies is related to the filter cutoff frequency, i.e. 1/∆. It should
be noted that a stable eigenvalue µ with low frequency will never be mapped
into the unstable region.

In summary, the filter cutoff ωc is related to the frequency of the relevant
instabilities and should be smaller than those frequencies at which perturbation
growth is expected. The gain χ is related to the growth rates of the instabilities
and should be large enough to move the instability modes to the lower half
plane. However, choosing a large χ will render the system evolution slow,
since the low-frequency eigenvalues associated with the filter, λ−, move towards
the origin of the complex plane. The system will eventually converge to a
steady state, but very slowly owing to the low damping rates. In order to have
λ+ as the least damped eigenvalue, χ needs to satisfy µi < χ < µi + 1/∆.
Similarly, when choosing ∆ large, the additional eigenvalues, whose imaginary
parts cluster around ωc = 1/∆, will make the subsystem for q very slow. A
balance has to be found for each system at hand to obtain quick convergence
of all the time scales of the system. Testing several parameter pairs on the
linear system (8) can be helpful. In cases where the Jacobian A cannot be
approximated, like for the separation bubble presented below, the frequency of
the instability can be estimated by considering the resulting unstable flow. As
a guideline, the regularization parameter χ is chosen to be twice the growth
rate of the dominant disturbance. The cutoff frequency, ωc = 1/∆ is chosen in
such a way that the unstable disturbances are well within the damped region,
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Figure 2. Mapping of two lines (µi = 0.01 and µi = −0.03,
) in the complex plane due to the modified (linear) sys-

tem (8). Two points originate from each complex eigenvalue µ,
one point corresponding to λ+ ( ) and one corresponding
to λ− ( ). χ = 0.02, ωc = 1/∆ = 1/15.

e.g. ωc ≈ 1/2ωdist. If the growth rate is unknown, one can estimate χ to be
slightly smaller than µi + 1/∆ ≈ 1/∆ assuming small µi.

5. Results

The selective frequency damping (SFD) method is applied to compute the
steady state of the two-dimensional flow over a long cavity, and of the separation
bubble induced by an external pressure distribution. Implementation of the
present method into an existing code amounts to increasing the memory to store
the filtered variable q, adding the forcing term in the original time-marching
scheme and advance the linear equation (6).

The streamfunction pertaining to the steady state of the cavity-driven sep-
arated flow is displayed in figure 3, where the streamwise and wall-normal
coordinates are made non-dimensional with the inflow boundary-layer displace-
ment thickness δ∗. The inflow profile is the Blasius profile at Reynolds number
Reδ∗ = 350. This value has been chosen by gradually increasing it until a
global unstable flow is obtained. The streamwise extent of the computational
domain is Lx = 409, with the cavity being confined to an area of x ∈ [30, 150],
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whereas the wall-normal height is Ly = 80. The numerical code uses fourth-
order central finite differences and Chebyshev collocation in the streamwise
and wall-normal direction, respectively. The time integration is carried out
by a semi-implicit second-order backward Euler/Adams-Bashforth scheme as
described in Marquillie & Ehrenstein (2003). Time history of the streamwise
velocity measured just above the cavity is shown in figure 4 for two different
simulations. In the first simulation, the SFD is active from the beginning of
the computation where a zero initial condition is used, whereas in the second
simulation SFD is switched on at time t = 3000. Both simulations eventually
converge to the exact same steady state, in one case smoothly and in the other
by damping the existing oscillations, the saturated unstable global mode.
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−4

−2

0

2

Figure 3. Contour lines of the steady-state streamfunction
for the cavity case. Zero streamfunction is indicated by the
thick line, solid lines indicate positive values with spacing 0.2,
dotted lines negative values (spacing 0.025). The recirculation
zone inside the cavity and the upward flow motion at the point
of reattachment of the shear layer are clearly visible.

In the case of the separation bubble, a flow field subject to a pressure gradi-
ent prescribed via the streamwise velocity at the upper boundary is computed.
The equations are solved in vorticity-velocity formulation, with the relaxation
term −χ

(
ϑz − ϑz

)
being added to the right-hand side of the transport equation
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Figure 4. Time history of streamwise velocity measured just
above the cavity at x = 153.4, y = 0.8485. ( ): Simulation
started with zero initial condition. ( ): SFD turned on at
t = 3000. Both cases are converging to identical steady states.

for the spanwise vorticity ϑz. The code uses fourth/sixth-order finite differences
on a Cartesian grid for the streamwise and wall-normal discretization together
with an explicit fourth-order Runge-Kutta time integration (Kloker 1998). For
the present case, a Blasius profile is prescribed at the inflow (Reδ∗=1000) while
at the upper boundary, the streamwise velocity is quickly decreasing to about
10% of the free-stream velocity and then increasing again. The box size is
Lx ×Ly = 562× 64, and χ=0.4, ∆=0.75. Two different resolutions (801× 193
and 1601×385) were used, with the time step adapted accordingly. The result-
ing steady state is shown in figure 5. To check convergence towards an exact
solution of the steady equations, the absolute difference between the filtered
and the unfiltered vorticity ϑz −ϑz was sampled over time and its maximum in
the domain is plotted in figure 6. Without the SFD, no steady state could be
reached. The damped oscillatory behavior visible in figure 6 is not related to
the frequency of the vortex shedding. It is conjectured that this is an indication
of a stable oscillatory movement of the bubble itself, i.e. so-called flapping of
the separation bubble. Note that the quantity ϑz−ϑz displayed in figure 6 is in
fact proportional to both the amplitude of the relaxation term and the time de-
rivative of the evolution equation of the filtered solution, ϑz. The simultaneous
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vanishing (to order 10−6, which is sufficiently accurate for most applications) of
∂ϑz/∂t and the relaxation term as t becomes large implies that ϑz and ϑz each
essentially attain time independence; that is, a steady state has been achieved.
Additionally, both grid resolutions showed the exact same convergence behav-
ior which further stresses the point that an actual physical solution has been
found. We also checked that no drifting of the steady solution is present by
considering the evolution of ϑz(t + T ) − ϑz(t) over time t with T being large
compared to the dominant shedding frequency. A similar behavior as in figure
6 was found and the diagram is therefore not shown here. In the case of the
laminar separation bubble, the flow parameters are not incremented to follow
a bifurcation but the pressure distribution is chosen arbitrarily to have an un-
stable flow. We thus show that the method allows attainment of a steady state
without any initial guess. Of course, the initial condition becomes relevant in
cases where multiple steady states coexist.
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Figure 5. Contour lines of the streamfunction for the separa-
tion bubble. Zero streamfunction is indicated by the thick line,
solid lines indicate positive values with spacing 0.1, dashed
lines negative values (spacing 0.005).
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Figure 6. Convergence towards steady state for the
separation-bubble case, showing the maximum difference
between the filtered and unfiltered vorticity field, D =
maxx,y |ϑz − ϑz|. lower resolution, � higher resolution.

6. Conclusions

A simple numerical approach to compute steady solutions of the Navier-Stokes
equations is presented. The most attractive advantages of such a strategy can
be summarized as follows. It is easy to implement into an existing numerical
code; it does not require a good initial guess of the solution; steady states can
be computed without specific knowledge of the critical bifurcation parameters.
To our experience, the SFD method appears to be very robust, and therefore
this procedure provides a viable alternative to the classic Newton method.
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Stiftelse. O.M. acknowledges the Deutsche Forschungsgemeinschaft DFG un-
der grant Ma 3916/1–1. Ulrich Rist and Markus Kloker (IAG, University
of Stuttgart) and Uwe Ehrenstein (University of Nice-Sophia Antipolis) are
thanked for providing the DNS codes.



References

Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality
and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.

Kailath, T. 1980 Linear systems. Prentice Hall.

Kloker, M. J. 1998 A robust high-resolution split-type compact fd scheme for spatial
direct numerical simulation of boundary-layer transition. Appl. Sci. Res. 58,
353–377.

Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a
separating boundary-layer flow. J. Fluid Mech. 490, 169–188.

Pruett, C. D., Gatski, T. B., Grosch, C. E. & Thacker, W. 2003 The tem-
porally filtered Navier–Stokes equations: Properties of the residual stress. Phys.

Fluids 15 (8), 2127–2140.

Pruett, C. D., Thomas, B. C., Grosch, C. E. & Gatski, T. B. 2006 A temporal
approximate deconvolution model for LES. In Phys. Fluids, 18 (028104),1–4.

Schlatter, P., Stolz, S. & Kleiser, L. 2004 LES of transitional flows using the
approximate deconvolution model. Int. J. Heat Fluid Flow 25 (3), 549–558.

Stolz, S., Adams, N. A. & Kleiser, L. 2001 An approximate deconvolution model
for large-eddy simulation with application to incompressible wall-bounded flows.
Phys. Fluids 13 (4), 997–1015.

Tadmor, E. 1989 Convergence of spectral methods for nonlinear conservation laws.
SIAM J. Numer. Anal. 26 (1), 30–44.

Theofilis, V. 2003 Advances in global linear instability analysis of non-parallel and
three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249–315.

69
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Two-dimensional global eigenmodes are used as a projection basis both for
analysing the dynamics and building a reduced model for control in a prototype
separated boundary-layer flow. In the present configuration, a high aspect ratio
smooth cavity-like geometry confines the separation bubble. Optimal growth
analysis using the reduced basis shows that the sum of the highly non-normal
global eigenmodes are able to describe a localized disturbance. Subject to this
worst-case initial condition, a large transient growth associated with the devel-
opment of a wavepacket along the shear layer followed by a global cycle related
to the two unstable global eigenmodes is found. The flow simulation procedure
is coupled to a measurement feedback controller, which senses the wall shear
stress at the downstream lip of the cavity and actuates at the upstream lip.
A reduced model for the control optimization is obtained by a projection on
the least stable global eigenmodes, and the resulting linear-quadratic-gaussian
controller is applied to the Navier–Stokes time integration. It is shown that
the controller is able to damp out the global oscillations.

1. Introduction

Open flows, such as boundary layers, wakes and mixing layers are subject to
convective instabilities, where the flow acts as an amplifier of disturbances as
they are transported downstream. For some of the flow cases and in particu-
lar parameter ranges, self-sustained oscillations may occur. This self-sustaining
mechanism can be captured by the unstable global eigenmodes of the linearized
Navier–Stokes operator. However, a combination of damped global modes is
also capable of representing convective instabilities in non-parallel flows (Cossu
& Chomaz 1997; Schmid & Henningson 2002; Ehrenstein & Gallaire 2005). Nu-
merical investigations performed by Marquillie & Ehrenstein (2003) addressed
separated boundary-layer flow produced by two-dimensional bump geometries.
They showed that elongated separation bubbles are likely to undergo bursting

73
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leading to unsteadiness. By confining the recirculation bubble between two
successive bumps on the plate, Marquillie & Ehrenstein (2003) interpreted the
flow oscillations in terms of the existence of a global saturated mode oscillat-
ing at a well-defined period. Building on their findings we introduce a smooth
high aspect-ratio (length to depth ratio L/D ≈ 25) cavity-like geometry, which
induces a geometrically confined separation bubble in the boundary-layer flow
as seen in figure 1. Note that this flow case differs from the sharp-edged small
aspect-ratio (typically L/D = 2) high Reynolds number compressible cavity
flow arising in aerospace applications (see e.g. Rowley & Williams 2006). We
view this flow case as a prototype separated flow, where both streamwise non-
normality and global instability play a central role. In this non-parallel config-
uration global eigenmodes of the linearized Navier–Stokes operator becomes a
natural tool for stability analysis. In this paper we first show that a sum of the
non-normal global modes well describes the development of a wavepacket and
the onset of a global oscillating cycle associated with the two unstable eigen-
modes. Given this ability to reproduce the flow dynamics, the eigenmodes are
used as a basis for a Petrov/Galerkin projection in view of model reduction for
control..

During the last decade modern control theory has increasingly been ap-
plied to fluid flow problems, given the available computer capacities and sen-
sor/actuator developments. Linear optimal control theory has been intro-
duced to flow systems governed by linear instability mechanisms (Bewley &
Liu 1998), as for instance spatially developing boundary layers (Högberg &
Henningson 2002) and it may also be relevant for nonlinear flows, such as tur-
bulent boundary-layers (Kim 2003). Optimal control of fluid flow based on full
state-space representation of the flow field necessitates manipulation of very
high-dimensional dynamical systems. In weakly non-parallel flow configura-
tions the problem may become tractable by determining control and estimation
kernels for individual wavenumbers in the approximately homogeneous space
directions (Högberg & Henningson 2002). In practical flow situations full state
information is not available, hence the flow state must be estimated based on
sensor measurements. The estimation process can be seen as an optimal fil-
tering problem using a Kalman filter, based on the linearized Navier–Stokes
equations. Appropriate stochastic models for the relevant statistics of sensor
noise and external disturbances are essential in order to extract the relevant
information from the system (Hœpffner et al. 2005). In the present work we
use the linear quadratic gaussian (LQG) control synthesis, where the two sub-
problems of full information control and estimation are solved separately in an
optimal manner. Combining the two leads to an optimal measurement feed-
back control, where the estimated flow is used for control feedback (see e.g.
Lewis & Syrmos 1995).

The design of the controller is intimately related to model reduction and
the usual procedure is that of projecting the equations onto a subspace. One
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Figure 1. Streamlines of steady state base flow solution used
for stability analysis at Re = 350. The thick line represents
the zero level contour. Note the large aspect ratio of L/D ≈ 25
and the smooth lips.

possible approach is to use the proper orthogonal decomposition modes of the
excited flow, thereby capturing the high-energy content of the flow. Balanced
truncation provides a more attractive basis by selecting vectors that are equally
controllable and observable. When the system becomes large (e.g. 1000 states
or more) the standard approach of directly solving Lyapunov equations needed
for balanced truncation becomes intractable. Rowley (2005) discussed a com-
putationally tractable approach to obtaining the balancing vectors, based on
time-marching algorithms. In globally unstable flow configurations, the global
eigenmodes of the linearized Navier–Stokes system form a natural projection
basis due to their immediate physical interpretation. For instance one can judge
the best placement of the sensors and actuators for observability and control-
lability, intimately connected to the localization of the least stable direct and
adjoint modes respectively (Chomaz 2005).

2. Flow configuration and numerical methods

The Navier–Stokes equations are solved in the domain 0 ≤ x ≤ 400, η(x) ≤ y <
80, large enough to recover freestream uniform flow. All variables are made non-
dimensional with the displacement thickness δ∗ and the free-stream velocity
U∞ at the inflow x = 0, where a blasius profile is prescribed. The Reynolds
number is defined as Re = U∞δ∗/ν, where ν is the kinematic viscosity. The
function η(x) is the graph of the wall. The smooth cavity is symmetric with
respect to its centre at xc = 89, and its upstream part is given by η(x) =
−2.25 (tanh(a(x − b)) + 1) , 0 ≤ x ≤ xc with a = 0.2 and b = 39 matching
smoothly the flat plate upstream and downstream.

The streamlines in a subset of the computational domain for the steady
state at Re = 350 are depicted in figure 1. Note that the main effect of
the smooth cavity is the generation of a recirculation zone and a shear layer.
The Direct Numerical Simulation (DNS) procedure has previously been used
in Marquillie & Ehrenstein (2003). Accounting for wall curvature a mapping
transforms the physical coordinates into the computational ones, which are
discretized using fourth-order finite differences in streamwise direction (with
2048 grid points) and Chebyshev-collocation in the vertical direction (with 97
collocation points).
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2.1. Steady state

We found that above Re = 325 the flow became subject to self-sustained oscil-
lations. For a general geometry of this type it is the Reynolds number combined
with the length to depth ratio L/D and the non-dimensional depth D/δ∗ that
constitutes the relevant non-dimensional quantities, however when fixing the
length and depth of the smooth cavity the Reynolds number is the only relevant
bifurcation parameter. In a globally unstable regime any noise present in the
high order numerical discretization will grow exponentially, making it impossi-
ble to numerically compute a steady-state solution by standard time-marching
methods. Therefore the technique proposed in Åkervik et al. (2006) is used to
recover the steady state at the current Reynolds number of Re = 350. The
Navier–Stokes equations are forced by adding a term proportional to the dif-
ference between the flow state and a filtered solution. If q̇ = NS(q) represents
the nonlinear Navier–Stokes system, the modified system reads

q̇ = NS(q) − χ(q − q̄), ˙̄q = (q − q̄)/∆, (1)

where the rightmost equation represents the differential form of a causal low-
pass temporal filter. The steady state of (1) is also a steady state of the
Navier–Stokes system. A filter width of ∆ = 15 has been chosen such that the
frequencies of the instability are targeted and a damping coefficient χ = 0.02
was found to be appropriate (see Åkervik et al. 2006).

2.2. Eigenmodes

The global eigenmodes are computed linearizing the Navier–Stokes system
about the steady state U(x, y) = (U(x, y), V (x, y)). The disturbance flow
field u(x, y, t) = û(x, y) e−iωt and pressure p(x, y, t) = p̂(x, y) e−iωt satisfy the
partial differential system

−iωû = −(U · ∇)û − (û · ∇)U −∇p̂ +
1

Re
∇2û, (2)

0 = ∇ · û. (3)

After discretization this is written

−iωlBql = Aql with adjoint iωlB
Hq+

l = AHq+
l (4)

for the eigenfunction ql with corresponding adjoint eigenfunction q+
l , B is the

projection of the total disturbance field on the velocity components; AH is
the adjoint discretized operator (conjugate transpose) and the bi-orthogonality
condition 〈qk,Bq+

l 〉 = δkl with respect to the finite-dimensional inner product
applies. The operators of the eigenvalue problem have been discretized on a
domain of extent 0 ≤ x ≤ 300, η(x) ≤ y ≤ 75, sufficiently large to produce
converged eigenmodes. Homogeneous Dirichlet boundary conditions are used
at all boundaries except at the outflow, where Neumann condition is imposed.
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Figure 2. Eigenvalues of the direct problem (4). There are
two unstable modes. The modes labelled m1 −m6 is depicted
in figure 3.

The domain is mapped into [−1, 1] × [−1, 1] and a Chebyshev-Chebyshev col-
location discretization is used. The basic steady flow is then interpolated on
the new grid. A similar procedure has been used in Ehrenstein & Gallaire
(2005) for the computation of global modes in the flat plate boundary layer.
A collocation grid with 350 × 65 collocation points yielded converged stabil-
ity results. The resulting eigenvalue problem is far too large to be solved by
standard QZ algorithms. However Krylov subspace projections with dimen-
sion m = 800 together with the Arnoldi algorithm (see Nayar & Ortega 1993)
proved suitable to recover the part of the spectrum relevant for our analysis.
For the steady state shown in figure 1 the spectrum is depicted in figure 2.

For the present parameters there are 2 unstable eigenvalues labelled m2 and
m3 (only half of the spectrum with ωr > 0 is shown). Figure 3a)-f) show the
vertical velocity components of the direct eigenfunctions associated with the
eigenvalues labelled m1−m6 in figure 2, respectively. As can be seen, there are
many similar eigenfunctions, a typical feature of non-normal operators, and in
the following section we will describe the implications of this when it comes to
optimal growth. The vertical velocity component of the adjoint eigenfunction
corresponding to the least stable eigenvalue m3 is depicted in figure 3g). We
observe a clear separation in space between the direct (see figure 3c)) and ad-
joint eigenfunctions, indicating a strong streamwise non-normality (see Chomaz
2005).

3. Optimal growth

For sufficiently low-amplitude flow perturbations q(t), an eigenmode expansion

q(t) =

N∑

l=1

κl(t)ql, (5)

can be used to describe the flow dynamics. The flow evolution is initiated by
superimposing the optimal initial condition q0 to the steady state, leading to
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Figure 3. a)-f) Vertical velocity components of direct eigen-
functions corresponding to the eigenvalues labelled m1 − m6

in figure 2, respectively. g) Adjoint eigenfunction correspond-
ing to m3, the most unstable eigenvalue. Black indicates large
negative values and white indicates large positive values, with
the grey tones adjusting accordingly. The domain is truncated
at y = 14.

the maximum energy growth ||q(t)||E at a given time t:

G(t) = max
q0 6=0

||q(t)||E
||q0||E

.

The procedure to compute the optimal initial condition is outlined in Schmid &
Henningson (2001) and the subsequent energy envelope for the present flow case
is depicted in figure 4a). Using one mode we observe the exponential growth of
the most unstable mode. All of the direct eigenfunctions shown in figure 3 are
similar; they are oscillatory and exponentially growing along the shear layer.
By optimally summing the non-normal eigenmodes, cancelling results in an
upstream located initial wavepacket, leading to a fast transient energy growth
up to t = 200, followed by a global cycle with a period of approximately 300
time units. This cycle is associated with the least stable eigenvalues in figure
2. Since the real parts of these modes are a distance of δ ≈ 0.02 apart, and the
corresponding eigenfunctions have a very similar structure, they have the ability
to cancel each other, giving rise to a “beating” with a period of 2π/δ. Schmid
& Henningson (2002) observed the same phenomena studying a model equation
for a falling liquid curtain. Figure 4b) shows the actual energy evolution when
integrating the eigenmode system (thick line) and DNS system (thin line) in
time using the optimal initial condition based on 100 modes, confirming the
ability of the eigenmode system to describe the relevant flow dynamics. Note
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Figure 4. a) Envelope of maximum energy growth from
initial conditions. The different lines correspond to in-
creasing number of eigenmodes included in the optimization,
1, 2, 4, 24, . . . , 124, 144 from bottom to top. b) One realization
using initial condition based on 100 modes, thick line shows
eigenmode system integrated in time and thin line shows DNS
evolution.
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Figure 5. Snapshots of y-integrated streamwise velocity at
times 0, 25, . . . , 150, showing propagation of wavepacket in the
eigenmode system. The thick line shows the initial distur-
bance. The vertical lines indicates the approximate start and
end of the recirculation region.

that in the DNS system the initial condition is superimposed to the steady
state.

The initial evolution of the wavepacket in the eigenmode system is shown in
figure 5. We observe the spatial exponential growth in disturbance amplitude
as the wavepacket propagates along the shear layer. The spatio-temporal dia-
gram of the dynamics in the DNS system is depicted in figure 6, where one sees
the convection and growth of the wavepacket along the shear layer, and regen-
eration at the upstream cavity lip. A global pressure change, visible in the form
of vertical rays, occurs when the wavepacket reaches the downstream cavity lip;
the subsequent propagation of the regenerated wavepacket is emphasized by the
oblique line. This instability mechanism may be seen as a destabilization of
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Figure 6. x/t diagram for a) the vertical flow velocity at
y = 2 and b) the pressure at y = 10, tracing the quantities in
the streamwise direction and in time at their respective vertical
position. Black indicates large negative values whereas white
indicates large positive values. The flow initial condition is
the optimal initial condition. The horizontal lines show the
location of the cavity lips. The oblique lines trace the path of
the wavepacket back to its origin and the triggering position
at the upstream lip of the cavity at the first reflection.

the global mode by the pressure field, where the pressure yields an immediate
feedback mechanism and the strong streamwise non-normality causes a large
growth of the disturbances along the shear layer.

4. Control

To control the cavity flow, we introduce one sensor and one actuator as sketched
in figure 7. The actuator is located at the upstream limit of the cavity, where
the least stable adjoint eigenfunctions have their maximum, so as to trigger
the most efficient response. The least stable adjoint eigenfunction is shown in
figure 3b). The sensor is placed in the vicinity of the downstream cavity lip
where the eigenfunctions have large amplitude. The sensor measures the wall
shear stress

∫
C(x)(∂u/∂y)dx, where C(x) is a Gaussian function with a width

of ≈ 20. This operation may formally be written as r = CDNSq for the flow
state q. The actuator is a volume forcing of Gaussian shape on the vertical
velocity component located close to the wall at the upstream cavity lip, with a
width of ≈ 20 and a height of ≈ 2.
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Figure 7. Sketch of the control setting, with a volume forc-
ing actuator, and a wall skin friction sensor.

A dynamic model for the cavity flow is built using the eigenmode expansion
(5). Based on this model a LQG control procedure gives rise to the system







k̇ = Ak + B1w + B2φ, r = Ck + g,

k̇e = Ake + B2φ − L(r − re), re = Cke,

φ = Kke.

(6)

The vector k(t) = [κ1(t), . . . , κN (t)]T of the expansion coefficients of the flow
obeys the model dynamics, where A is the diagonal matrix of the eigenvalues.
The external disturbances are modelled as white noise stochastic input w(t)
with variance W , and B1 is the projection on the eigenmodes of the Gaussian-
shaped spatial forcing function centered at x = 50. The projected actuator is
denoted B2, and φ(t) is the actuation signal. These projections are achieved
by performing the inner product with the adjoint modes. The measurement is
denoted r, and C is the measurement matrix. The measurement is corrupted
by a stochastic sensor noise g(t) with variance G2. An estimator is built,
with estimated state ke, obeying the model dynamics, and with an estimation
feedback forcing L(r − re). The estimation gain L will be designed such that
the estimated state ke converges to the flow state k, i.e. minimizes the mean
kinetic energy of the estimation error k − ke. The control actuation φ is a
feedback of the estimated flow state, with control feedback gain K that will be
designed such as to minimize a weighted sum of the flow mean kinetic energy
and the actuation effort.

A central issue is the controllability and observability of the flow for the
chosen actuator and sensor pair. Since, as observed in §3 the eigenmodes
capture the relevant dynamics, the magnitude of the projections B2 and C

of the actuator and sensor indicate the controllability and observability for
each eigenmode. In this manner one can choose the shape and location of the
actuator and sensor based on the magnitude of these coefficients on the relevant
modes as a measure of the quality of the representation of the actuator and
sensor in the reduced system. We have checked that the response from an
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Figure 8. Impulse response G(τ) from measurement signal
to control signal. The controller uses information from about
350 time units in the past.

impulsive input from the actuator in the DNS and in the eigenmode system
give the same measurement signal in the two systems.

The optimal feedback gains K and L that minimize the flow and estimation
error mean kinetic energy are found by the solution of two algebraic Riccati
equations (see Skelton 1988)

0 = AHXc + XcA − XcB2ℓ
−2BH

2 Xc + Q,

0 = AXe + XeA
H − XeC

HG−2CXe + B1WBH
1 ,

for the matrix unknowns Xc and Xe, and the feedback gains can be obtained as
K = −ℓ−2B2Xc and L = −XeC

HG−2. In our computations, we have assumed
an external disturbance w with unit variance (W = 1). The control penalization
and sensor noise variance were chosen ℓ = 5 · 105 and G = 7 · 105 in order to
enforce low amplitude feedback gains. The matrix Q is defined such that kHQk

measures the kinetic energy of the disturbances.

Once the two Riccati equations are solved and the feedback gains are ob-
tained, we can couple the flow and the controller in the following manner

q̇ = NS(q) + BDNS
2 φ, r = CDNSq (7)

k̇e = (A + B2K + LC )ke − Lr, φ = Kke (8)

where BDNS
2 and CDNS are the actuator and sensor expressed in the DNS.

The measurement r is driving the estimated state ke, which in turn is updated
online by a Crank-Nicholson time-integration procedure, feeding back at every
time step the control signal φ to the DNS.

To emphasize the linear relation between the measurement signal and the
control signal through the controller system, we can write

φ(t) =

∫ ∞

0

Ke(A+B2K+LC)τL
︸ ︷︷ ︸

G(τ)

r(t − τ)dτ, r(t) = 0, t < 0, (9)

where G(τ) is the impulse response from r to φ, and illustrates how the ac-
tuation φ(t) depends on past measurements r(t − τ). The impulse response
is shown in figure 8. Note that this formulation could provide an alternative
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Figure 9. a) Energy of the uncontrolled flow (thin solid line),
controlled flow using model with 4 modes (thick solid) and
25 modes (dashed). Inserted frame shows the sensorsignal in
the uncontrolled case as thin solid line and controlled using
4 modes as thick solid line. b) x/t diagram for the pressure
when the control is applied. This is to be compared to figure
6b).

hardware implementation of the controller. In order to assess the performance
of the computed control and estimation gains the controller is applied to the
same configuration that led to the evolution shown in figure 6. Reduced models
consisting of the 25 and the 4 least stable eigenmodes are considered. Figure
9a) shows that when control is applied, the exponential energy growth is turned
into exponential decay after the first peak. There is an almost equivalent perfor-
mance for both controller dimensions. The sensor signals for the controlled and
uncontrolled case are shown in the inserted frame in figure 9a). The sensor sig-
nal from the controlled case decays after the first reflections of the wavepacket
at t ≈ 125. It is not possible to control the initial energy growth, before the
wavepacket has reached the sensor located at the downstream cavity lip. The
x/t diagram for the controlled flow in figure 9b) is to be compared with figure
6b). When the control is applied one still observes the vertical rays of the
global pressure changes but the wavepacket regeneration is reduced, leading to
a decrease in the levels of fluctuations at each cycle, i.e. flow stabilization.
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5. Conclusions

The cavity flow considered here may be seen as a prototype of non-parallel flow
with self-sustained global instability behaviour. Due to the non-normallity of
the underlying operator, computed eigenmodes are sensitive to numerical errors
and require high resolution even when using spectral collocation. This sensi-
tivity is however mostly seen in loss of accuracy for the location of eigenval-
ues in the complex plane; the mechanism of wavepacket propagation followed
by pressure reflections obtained through optimally summing the non-normal
modes proved robust and in close agreement with DNS, even at lower resolu-
tion. Despite the fact that about 100 modes are required for converged results
of optimal growth, much fewer modes are needed for a stabilizing controller.
There is only a negligible loss of control performance when using as few as 4
modes in the reduced model. The small controller is run in parallel to the DNS
at a low computational cost, and provides the feedback control signal based on
the measurement signal taken from the full DNS. The satisfactory performance
of the controller, combined with the low online computational effort provides
promising perspectives of using reduced order models for fluid flows, built by
projection on global eigenmodes in the LQG framework.
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The stability of a two-dimensional flat plate boundary-layer flow is studied
by means of global eigenmodes. The superposition of these modes, depend-
ing on both the streamwise and wall-normal coordinate, describes both the
Tollmien-Schlichting (TS) wave evolution and the so called Orr mechanism.
The transient growth analysis hows that when optimizing for small times the
optimal is a disturbance growing due to the Orr-mechanism which is located
downstream, near the end of the computational box, and the growth scales
linearly with the outflow Reynolds number. When optimizing for larger times
the optimal initial disturbance is located upstream in the form of Orr type of
structures giving rise first to a tilting with the shear and then the onset of a
TS-wave like wavepacket. Optimal forcing analysis is performed as well, giving
again rise to a optimal forcing function with Orr-type structure leaning against
the shear. The expansion of the flow dynamics in two-dimensional temporal
stability modes is hence shown to provide an alternative way, with respect to
the conventional locally parallel flow assumption, of studying the instability of
the flat-plate boundary-layer.

Boundary layers, jets and mixing layers are commonly referred to as open
flows, where disturbances are amplified while being advected downstream. In
these so called convectively unstable configurations, the disturbances relax in
the absence of external disturbances. For certain parameter ranges, for exam-
ple if the backflow in separated boundary layers becomes large, the flow might
become absolutely unstable. Instead of constantly requiring external input to
maintain the flow disturbances, pockets of absolutely unstable regions support
self-sustained oscillations. Following a phase of linear growth of the global
mode, there is a saturation into a non linear limit cycle with the absolutely
unstable flow domain acting as a wavemaker shedding vorticity into the con-
vectively unstable region. When the flow under consideration is slightly non-
parallel it is possible to determine criteria for transition from globally stable,
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to convectively unstable and finally to absolutely unstable based on classical
local analysis (Huerre & Monkewitz 1990). In local analysis the streamwise and
spanwise directions of the flow are taken to be homogeneous, yielding eigen-
value problems depending only on the wall normal direction. When the length
scales of the disturbances becomes comparable to those of the base flow, which
is the case for highly non-parallel flows, it is clear that one has to resort to a
global formulation of the stability problem, treating also the streamwise direc-
tion as inhomogeneous. The resulting matrix eigenvalue problem is typically
very large, but owing to increased computer capabilities and efficient large scale
eigenvalue solving strategies based on Krylov methods it is nowadays tractable
to compute eigenmodes for many flow cases.

As the relevance of global analysis is well established for highly non-parallel
flows (Åkervik et al. 2007), there are still some important issues to be dealt with
when it comes to applying this methodology to slightly non-parallel situations.
Considering the model problem of the Ginzburg-Landau with spatially varying
coefficients, Cossu & Chomaz (1997) demonstrated that the non-normality of
the streamwise eigenmodes leads to transient growth. This non-normality is
considered to be associated with the streamwise separation of the direct and
adjoint global modes due to the basic advection (Chomaz 2005). Schmid &
Henningson (2002) advocated the robustness of optimally summing the stream-
wise eigenmodes when studying a model problem for a falling liquid curtain,
as the sum of modes in contrast to single modes yielded results, in agreement
with experiments. The use of global modes as a tool for studying the stability
characteristics of the slightly non-parallel boundary-layer flow was addressed in
Ehrenstein & Gallaire (2005). They found that a superposition of the damped
global eigenmodes associated with Tollmien-Schlichting (TS) type of structures
gave rise to a localized wavepacket at the inflow boundary. The wavepacket
would grow while being advected downstream, in close agreement with direct
numerical simulation results.

It is now well established that when incoming disturbances exceed a certain
amplitude threshold the flat-plate boundary layer is likely to undergo transition
due to three-dimensional instabilities through the lift-up effect (Ellingsen &
Palm 1975; Landahl 1980). This transient growth scenario, where streamwise
vortices forms into streamwise streaks by the action of the mean flow was
studied for a variety of shear flows in the locally parallel assumption in several
works (Butler & Farrell 1992; Reddy & Henningson 1993; Trefethen et al. 1993).
The extension to the non-parallel flat plate boundary layer was performed at the
same time by Luchini (2000) and Andersson et al. (1999) using the parabolized
stability equations.

While emphasizing the strength of three-dimensional disturbances in gen-
eral shear flows Butler & Farrell (1992) found a two-dimensional instability
mechanism not related to the TS-waves. This instability could extract energy
from the mean shear by transporting momentum down the mean momentum
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gradient through the action of the perturbation Reynolds stress. This means
that structures that are tilted against the shear, would first rise to an upright
position while borrowing energy from the mean flow, after which the energy is
returned to the mean flow and the disturbances decay. They referred to this as
the Reynolds stress mechanism, commonly also known as the Orr mechanism.

In this paper we readdress two-dimensional stability mechanisms in the
flat-plate boundary-layer flow, by considering the cooperation or competition
of the wall-normal non-normal effects responsible for the Orr mechanism and
the streamwise non-normal effects triggering the TS-waves, bearing in mind
that the latter are the building blocks for the onset of the so-called classical
transition in a low-level noise environment (Herbert 1988). The analysis is
based on the computation of temporal two-dimensional modes and is hence
free from any assumption concerning spatial length-scales. The non-normality
of these eigenmodes of the linearized Navier-Stokes operator is shown to lead
to large energy gain due to combination of the Orr and TS mechanisms.

The paper is organized as follows. Section 2 is devoted to the description of
the numerical tools and convergence results of the global eigenvalue spectrum
are provides in Section 3. The optimal initial condition leading to the maximum
energy gain is computed and discussed in Section 4. The signalling problem,
that is the the determination of the optimal harmonic forcing distribution of the
Navier-Stokes system, is addressed in Section 5. In particular, the disturbance
flow evolution obtained through projection on the set of global eigenmodes is
compared to the forced Navier-Stokes dynamics. Some conclusions are provided
in Section 6.

1. Numerical tools

The Navier–Stokes equations are solved in the domain 0 ≤ x ≤ 1000, 0 ≤ y <
80, large enough in the wall-normal y-direction to recover freestream uniform
flow.

The Reynolds number is based on the displacement thickness at inflow x =
0 where a Blasius profile is prescribed. The Direct Numerical Simulation (DNS)
procedure has previously been used in Ehrenstein & Gallaire (2005). The
flow variables are discretized using fourth-order finite differences in streamwise
direction (with 5120 grid points) and Chebyshev-collocation in the vertical
direction (with 97 collocation points). The disturbance flow field with velocity
components u(x, y, t) and pressure field p(x, y, t) satisfy the partial differential
equation

∂u

∂t
= −(U · ∇)u − (u · ∇)U −∇p +

1

Re
∇2u, (1)

0 = ∇ · u. (2)
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which after discretization in the space variables can be written

d

dt
Bq = Aq, (3)

where q = [u, p]T and B is the projection of the total disturbance field q on
its velocity components, i.e. Bq = [u, 0]. Note that in (3) for a divergence-
free velocity field BAq = Aq. Taking the exponential Ansatz for the time
dependence q(x, y, t) = q̃(x, y)e−iωt yields the generalized eigenvalue problem

−iωlBq̃l = Aq̃l (4)

with a divergence free velocity field ũl associated to each eigenmode q̃l. The
box extension in the wall normal direction is 0 ≤ y ≤ 40. This height was found
sufficient to also resolve the eigenvectors associated with the low frequency part
of the spectra. In the streamwise direction different lengths have been consid-
ered but the main parts of the results are presented for 0 ≤ x ≤ 800. Indeed
the flat-plate boundary layer flow is convectively unstable and the box length
will put a bound on the timescale at which the spatially growing disturbance
wavepacket leaves the domain. Accordingly, the eigenmodes and the instability
mechanisms due to their interactions will also be function of the box length. At
the lower wall and at freestream homogeneous Dirichlet conditions are imposed
and at inflow and outflow the non-homogeneous Robin conditions proposed in
Ehrenstein & Gallaire (2005) has been used. These boundary conditions es-
sentially amounts to matching the streamwise derivative of the global mode
with spatial local analysis so that ∂u/∂x = iαu. The local dispersion relation
connecting the wave number α to the frequency ω is nonlinear, but performing
a Gaster-type of transformation

α ≈ α0,r +
∂αr

∂ωr
(ω0)(ω − ω0) · · · (5)

yields a good linear approximation, as long as the imaginary parts of the com-
plex frequency and wavenumber are small. Here the real frequency ω0 is chosen
such that α0 = α0,r at the inflow boundary, that is at a frequency of neutral
instability for the Blasius profile at inflow. These boundary conditions proved
to be suitable to recover a converged set of eigenmodes in one large-scale stabil-
ity computation, as shown in the next Section. Note that using homogeneous
Dirichlet conditions at inflow and Neumann conditions at outflow we obtained
a similar spectra but recovered fewer eigenmodes for the same computational
parameters. The domain is mapped into [−1, 1] × [−1, 1] and a Chebyshev-
Chebyshev collocation discretization is used for the stability system. Indeed,
Chebyshev-collocation provides the most efficient discretization in terms of
grid size, which puts a reasonable bound on the dimension of the resulting
generalized matrix eigenvalue problem. Consequently, the basic steady flow
computed by means of DNS is interpolated on the new grid (cf Ehrenstein &
Gallaire (2005) for details). We have chosen to consider the steady state for
the Navier-Stokes system, rather than the self-similar solution of the flat-plate
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boundary-layer equation. Indeed, one goal of the present analysis is to com-
pare the Navier-Stokes dynamics with the time evolution of the eigenmodes
system. It will be shown in Section 3 that a collocation grid with 250 × 45
collocation points yields converged stability results. The resulting eigenvalue
problem is still far too large to be solved by standard QZ algorithms. Large-
scale Krylov subspace projections with dimension m = 2000 together with
the Arnoldi algorithm (Nayar & Ortega 1993) proved suitable to provide a
complete, with respect to the disturbance dynamics, set of eigenvalues and
corresponding eigenmodes.

1.1. Mode superposition

When determining the possibility of growth in a flow system the notions of
optimal initial condition and optimal forcing are essential. These features are
both closely related to the non-normality of the underlying operators (Schmid
& Henningson 2001). We will here give a brief summary on how these optimals
are computed. The dynamical system (3) obtained after discretization defines
an initial value problem by adding the initial condition

u(0) = u0 (6)

for a divergence-free velocity field u0. We are looking for initial disturbances
that maximize the energy at time t

G(t) = max
u0 6=0

||u(t)||2E
||u0||2E

and a convenient form of this expression can be obtained by expanding the

solution in terms of the generalized eigenmodes u(t) =
∑N

l=1 κl(t)ũl. Recall
that the eigenmodes being solution of the generalized eigenvalue problem (4),
the associated velocity fields are divergence free. Hence the flow dynamics is
described by

dκ

dt
= Λκ, κ(0) = κ0, (7)

where κ is the vector of expansion coefficients and Λ is a diagonal matrix whose
elements are given by Λl = −iωl. The maximum growth expressed in this basis
reads

G(t) = max
κ0 6=0

||κ(t)||2E
||κ0||2E

= || exp (Λt)||2E = ||F exp (Λt)F−1||22. (8)

where F is the Cholesky factor of the Hermitian energy of the Hermitian energy
measure matrix M with entries Mij =

∫
ũH

i ũjdxdy expressed in the basis of
eigenmodes.

The largest growth at time t is given by the largest singular value of
F exp (Λt)F−1 and the optimal initial condition κ0 is the corresponding right
singular vector. Alternative ways of computing the optimal initial condition is
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by calculus of variations (Butler & Farrell 1992) or by time-marching/space-
marching algorithms involving the adjoint operator (Luchini 2000; Andersson
et al. 1999).

Let us now formulate the optimal forcing frequency and the corresponding
forcing function. Consider the harmonically forced system

∂

∂t
Bq = Aq + {qf exp−iΩt} Ω real. (9)

The asymptotic long time response for the stable system reads

q(t) = −(A + iΩB)−1qf exp−iΩt. (10)

Expressing the state in the basis of eigenmodes yields

κ(t) = −(Λ + iΩI)−1κf exp−iΩt. (11)

The maximum response to the harmonic forcing at a frequency Ω expressed in
this basis is

R(Ω) = max
κf

||(Λ + iΩI)−1κf ||E
||κf ||E

= ||(Λ + iΩI)−1||E = ||F (Λ + iΩI)−1F−1||2.
(12)

The norm of the the resolvent is readily obtained as the largest singular value
of F (Λ−iΩI)−1F−1 and the optimal forcing is the corresponding right singular
vector, the left singular vector being the corresponding steady state harmonic
response. Two different contributors to large resolvent norms may be identi-
fied: resonances are triggered whenever the forcing frequency is chosen close
to an eigenvalue of the system. On the other hand, optimal forcings may ex-
ploit the large condition number of F , related to the non-orthogonality of the
eigenvectors.

2. The spectra and convergence of optimals

Figure 1 shows the spectra obtained for the inflow Reynolds number, Reδ∗ =
1000, based on the local displacement thickness. The box size of Lx = 800,
Ly = 40 required Nx = 250 and Ny = 45 in order to yield converged results.
The largest Krylov subspace size considered is m = 2000. We found that
increasing the number of points in the streamwise direction only moved the
most damped eigenvalues, associated with areas of a resolvent norm of the
order of 10−6 (Trefethen & Embree 2005), however the more robust features
such as optimal growth remained unchanged. As can be observed from the
figure, there are many eigenmodes coming out of the eigenvalue calculation.
Some of them, such as the eigenvalue labelled m1, are related to TS type
of instabilities. In addition there are slightly damped modes that have their
maximum in the freestream, where of one is labelled m2. Finally there is a
family of highly damped eigenvalues with corresponding eigenfunctions that
have a tilted structure, appearing as reflection type of modes, shown in the
lower frame of figure 2 and labelled m3 in figure 1. By selecting only the TS
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Figure 1. Spectra at Reδ∗ = 1000. Included is also contours
in the complex plane indicating size of Krylov subspace ac-
cording to |ω − σ0| < R. (. . .) shows R = 0.08, ( ) shows
R = 0.1 and ( . ) shows R = 0.12. Eigenvectors correspond-
ing to labels m1, m2 and m3 are depicted in figure 2.

type of modes, Ehrenstein & Gallaire (2005) could obtain a growth in energy
of one order of magnitude for Reδ∗ = 780 and a box length of 500 for the
propagating wavepacket. In this paper we will show that by adding the other
types of modes, one obtains a much larger growth which is associated with the
combination of the so called Orr mechanism (Butler & Farrell 1992) and the
spatio-temporal growth of wavepacket made of TS waves. First the question
of convergence in terms of the optimal initial disturbance growth is addressed,
by increasing the set of eigenmodes as the projection basis. Figure 1 depicts
the spectrum obtained with a very large Krylov subspace of dimension 2000,
together with the Arnoldi method using the shift and invert strategy. For
a given dimension of a Krylov subspace converged eigenvalues are contained
within a circle of radius R around the shift value which has been taken as
ωs = 0.08. Increasing the Krylov subspace dimension is equivalent to drawing
a larger circle in the complex space, where eigenvalues are obtained. The
resulting eigenvalues hence satisfy

|ω − ωs| ≤ R (13)

where the radius R depends on how large the Krylov subspace is. Figure 1
shows the radius resulting from three different Krylov subspace sizes on top of
the spectra. The optimal growth envelope, as computed according to equation
(8), obtained using different truncations is shown in figure 3. It is seen that
a radius of R = 0.08 is not sufficient to obtain converged results, whereas for
R > 0.1, one may neglect the modification of the optimal growth envelope
induced by a further increase of modes included in the optimization procedure.
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Figure 2. Eigenvectors corresponding to the eigenvalues la-
belled m1 to m3 in figure 1. a) (m1) Least stable mode. b)
(m2) Freestream reflection mode c) (m3) Boundary layer re-
flection mode. The last two are typical modes that due to
cancelling with other non-orthogonal modes contribute to the
so called Orr mechanism.

Cossu & Chomaz (1997), working on the model problem of Ginzburg-Landau
mimicking convective growth, conjectured that the more parallel the base flow
becomes, the more non-normal the operator becomes and that consequently
more modes are needed in order to locate optimal perturbations upstream when
the flow is more parallel. We have checked this hypothesis for the present case,
and we found that for the more non-parallel case of inflow Reynolds number
Reδ∗ = 500 and an equivalent box-length a smaller number of eigenmodes are
needed in obtaining converged energy growth (corresponding to a radius of
R = 0.08).

3. Optimal initial condition

In the previous section we mentioned that it was possible to get a larger growth
than that obtained when considering only the propagation of the TS type of
wavepacket, and that this was due to the Orr mechanism. Figure 4 shows
the envelope and actual energy developments in a log scaling, to emphasize
the quick growth due to the Orr mechanism. The thick solid line shows the
envelope, whereas the the thin solid shows the actual energy evolution due to
the optimal initial condition with the combined Orr and TS mechanism. From
the thin dash-dotted line one can see that the optimal growth due to the pure
Orr mechanism is a fast growing fast decaying disturbance.
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Figure 3. Envelope of optimal growth for different Krylov
subspace sizes. (. . .) corresponds to R = 0.08, ( ) to R = 0.1
and ( . ) to R = 0.12. The solid line shows the envelope
including all modes obtained (R = 0.16). The small figure
shows a zoom at the maximum, indicating that the optimal
growth is converged at R = 0.12.

Note that the growth-factor as well as the corresponding optimal time
(t = 100 and E = 42.8) are approximately twice as high as those provided by
the local analysis of Butler and Farrell for a parallel Blasius boundary layer at
Re = 1000 (t = 45 and E = 28). However, according to the time evolution
of the streamwise velocity during the growth interval displayed in figure 5, it
becomes clear, that comparison with the local theory should not be attempted
using the inlet Reynolds number Re = 1000 but with a local Reynolds number
representative of the location of the initial condition (using for instance the
midpoint of the support of the initial perturbation, located at x = 610, this
yields Reδ∗ = 1700). We have therefore performed local optimal growth cal-
culations (whenever a local maximum could be defined, since a locally parallel
Blasius boundary layer is unstable for a certain wavenumber range), based on
a parallel Blasius boundary layers of thickness 1.7 and Re = 1700, yielding
an optimal time t = 120, optimal growth 34.8, in better agreement with the
global optimals. The corresponding optimal wavelength then equals 25 and is
depicted by an double arrow in figure 5, comparing favorably with the under-
lying wavelength making the wavepacket. Our local computations have further
shown a tendency for the Orr mechanism of increasing optimal growth, in-
creasing optimal time and increasing optimal wavenumber, when the boundary
layer thickness and thereby the Reynolds number both increase. This ten-
dency is clearly illustrated by figure 6 which shows for various box lengths,
Lx = 800, 600, 400 for the different frames from top to the bottom, that the
optimal initial condition for this pure Orr mechanism is always located as far
downstream as possible within the box. In contrast to the downstream located
structures that yields the maximum growth for short-time optimization, long
time optimization yields structures located far upstream. The energy gain due
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Figure 4. Envelope of growth due to worst case initial con-
ditions. Solid thick line shows the envelope using a Krylov
subspace corresponding to R = 0.12, leading to the combined
Orr mechanism and the TS wave growth. The thin solid shows
the actual energy evolution when using only the initial condi-
tion leading to the maximum growth of all times. The thin
dash-dotted shows the energy evolution due to the pure Orr
mechanism. The dashed thin line shows the envelope obtained
when using only the TS type of modes in the optimization,
magnified by a factor of 20, i.e. there is a gain of ≈ 20 in com-
bining the Orr and TS mechanism.

to the upstream Orr mechanism is only half of that of the downstream located
one (compare thin-solid and dash-dotted lines in figure 4), however as can be
seen from figure 7 the flow gains energy from rising to an upright position,
after which they have the form of a TS type of wavepacket that propagates
throughout the domain. The dotted line in figure 4 shows that one through
the Orr mechanism has gained a factor of ≈ 20 in energy compared to initial-
izing with a clean TS type of wavepacket. This demonstrates that while the
long-time behavior of the disturbance is governed by the traveling wavepacket,
its starting amplitude is optimized through the Orr mechanism.

4. Optimal forcing

Since boundary layers are convectively unstable, acting thereby as noise am-
plifiers, a proeminent role is played by the response to forcing, rather than by
the detailed time-evolution of the initial condition, and the optimal forcing is
therefore a relevant measure of the maximum possible growth that may be ob-
tained in the box. While the evolution due to the optimal initial condition can
be seen as a wave packet propagating, eventually leaving the computational
box (or measurement section), the response from the flow to forcing will be
persistent structures that at each streamwise station have a fixed amplitude,
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Figure 5. Initial condition and response for streamwise ve-
locity with the Orr mechanism. The maximum is located at
T = 100 for which ET

E0

= 41.6. The double arrow in the upper
frame shows the wave length of 25 as predicted by local theory.
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Figure 6. Initial conditions corresponding to the pure Orr
mechanism for different domain lengths. a) Lx = 800, b) Lx =
600 and c) Lx = 400. The vertical lines indicates the end of
the computational domain.

oscillating around the mean flow. In this section we are investigating the struc-
ture of the optimal forcing and the response at different frequencies. Figure
8 shows the resolvent norm as defined in (12), where a large value indicates
a large response to the given frequency real Ω. Note that the magnitude of
the resolvent norm is both influenced by the distance in the complex plane to
the eigenvalues and the condition number of the energy measure. For normal
operators the condition number is 1, hence the distance from an eigenvalue and
the resolvent coincides. However, we are here dealing with non-normal opera-
tors/matrices, where the condition number is considerably larger than 1. The
peak of the response is at the frequency Ω = 0.055 and the streamwise com-
ponent of the corresponding forcing structure is shown in figure 9. Analogous
to the optimal initial condition case, here the optimization procedure produces
Orr type of structures. The optimal forcing structure is more elongated in the
streamwise direction than the optimal initial condition. The corresponding fre-
quency coincides with the frequency of the least damped eigenmode, however
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Figure 7. Initial condition and response for streamwise ve-
locity with the combined Orr and TS mechanism. Note that
the amplitude is growing from frame to frame.

strongly amplified (a factor of ≈ 40) by non-normal effects. The neutral point
for this frequency (branch I) predicted by local theory is located at x = 0. We
would expect the optimal forcing to be located in the vicinity of this neutral
point, and indeed the forcing is located close to branch I. For lower frequencies
we observe that the optimal forcing structures move further downstream and
consists of longer wave lengths.

4.1. Direct Numerical Simulation results

A verification of the ability of the eigenmode system to capture the relevant
dynamics of the flow is performed by applying the optimal forcing in DNS.
For this purpose the real part of the optimal forcing device qf exp(−iΩt) has
been interpolated on the DNS grid and added as a forcing function to the
Navier-Stokes system. The time evolution in the eigenmode system is given
explicitly by equation (12). Figure 10 shows the pointwise energy integrated
in the wall-normal direction, comparing the evolution in the DNS (solid lines)
and the eigenmode system (dash-dotted lines). Snapshots are taken at times
80, 720, 1360 and 2000 with the amplitude growing as time increases. The
response from the optimal forcing is the Orr mechanism followed by a TS
wave. At time 2000 the disturbances has filled the box and the energy reaches
a threshold where TS waves occupy most of the domain. The simple evaluation
of 919 expansion coefficients yields an evolution in close agreement with the
DNS, which for comparison has 1.5 106 degrees of freedom. At time 2000, even
though the two systems are in phase an amplitude difference appears, most
likely due to nonlinear effects as well as to some possible weak reflections in
the eigenmode system.
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Figure 10. Evolution of pointwise energy integrated in wall-
normal direction at times 80, 720, 1360 and 2000. Solid lines
shows DNS whereas dash-dotted shows eigenmode system.
The amplitude is growing with increasing times. Note that
at time 2000 the disturbances has filled the box and the en-
ergy reaches a threshold where TS waves occupy most of the
domain.

5. Conclusions

For highly non-parallel flows the validity of the local approach is questionable
rendering the global eigenmodes the natural tool for stability analysis. If the
flow under consideration is only slightly non-parallel local analysis may still
provide correct results, but it is still interesting to establish the stability char-
acteristics of the flow in terms of the global eigenmodes of the operator. The
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global eigenmodes provides the “full” description of the dynamics within the
computational box. The Arnoldi method using the shift and invert strategy
computes the eigenmodes within a Krylov subspace size dependent radius in
the complex plane. The computed eigenmodes serve as a reduced basis in view
of stability investigations, for which the basic procedure is to study resolvent
features such as optimal initial conditions and optimal forcing. For the slightly
non-parallel flow case studied here, many eigenmodes are needed in order to
obtain converged results in terms of these measures. Both the optimal growth
and optimal forcing analysis shows that a combined effect of the Orr and TS-
wave mechanism yields a large potential for downstream amplification in this
convectively unstable regime. It is the description of the upstream located
tilted Orr structures that requires a large number of modes; the description of
the TS waves only requires about 20 eigenmodes. Optimal forcing structures
are applied both in the eigenmode system and in the DNS, and the subsequent
time-evolution in the two systems match very well. This confirms the robust-
ness of optimally summing eigenmodes in order to bring out the important
dynamics of the flow.
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