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Abstract

Study of physical phenomena by means of mathematical models is common in vari-
ous branches of engineering and science. In biomechanics, modelling often involves
studying human motion by treating the body as a mechanical system made of inter-
connected rigid links. Robotics deals with similar cases as robots are often designed
to imitate human behaviour. Modelling human movements is a complicated task and,
therefore, requires several simplifications and assumptions. Available computational
resources often dictate the nature and the complexity of the models. In spite of all
these factors, several meaningful results are still obtained from the simulations.
One common problem form encountered in real life is the movement between known
initial and final states in a prespecified time. This presents a problem of dynamic
redundancy as several different trajectories are possible to achieve the target state.
Movements are mathematically described by differential equations. So modelling a
movement involves solving these differential equations, along with optimization to
find a cost effective trajectory and forces or moments required for this purpose.
In this study, an algorithm developed in Matlab is used to study dynamics of several
common human movements. The main underlying idea is based upon temporal finite
element discretization, together with optimization. The algorithm can deal with me-
chanical formulations of varying degrees of complexity and allows precise definitions
of initial and target states and constraints. Optimization is carried out using different
cost functions related to both kinematic and kinetic variables.
Simulations show that generally different optimization criteria give different results.
To arrive on a definite conclusion on which criterion is superior over others it is nec-
essary to include more detailed features in the models and incorporate more advanced
anatomical and physiological knowledge. Nevertheless, the algorithm and the sim-
plified models present a platform that can be built upon to study more complex and
reliable models.

Key Words: Forward dynamics, Biomechanics, Temporal discretization, Opti-
mization
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CHAPTER 1

Introduction

1.1. Background

Study of physical phenomena by means of mathematical models is common in various
branches of engineering and science. Biomechanics is one of such fields that has seen
an increase in mathematical modelling studies, especially with the recent advances
in computing resources. Biomechanics can be defined as the science that applies the
principle of mechanics to biological systems, (Goldsmith 1996). It is a growing and
important field and finds its applications in several areas.Modelling humanmovements
is an important part of biomechanics. Results frommodelling enhance the understand-
ing behind the movements and improve the knowledge about the defects related to
movements. Thus, biomechanical studies facilitate areas like diagnosis, surgery and
prostheses, (Fung 1993). Another area of application of biomechanics is the field of
sport mechanics. Studies on sporting activities can be expected to provide means of
enhancing performance of athletes and understanding injury mechanisms in athletic
activities.

Two approaches are commonly used for the study of human movements. The inverse
dynamics approach involves measuring body segment kinematics, external forces and
segment inertial characteristics and using them to compute joint moments and forces
(Hamill and Selbie 2004). Position, velocity and acceleration data needed are usually
obtained by optoelectronic methods which use special markers and sensors, (Lehman
et al. 1996). The forward dynamics approach takes the opposite route, where known
forces and torques are used to find the movement of the system. Mathematically, dy-
namic movements are described by differential equations, which are usually nonlinear
in nature. In forward dynamics these differential equations are integrated forward in
time (Nuzzo 2006). Inverse dynamics calculations are less expensive computationally
than forward dynamics calculations, but the main drawback of inverse analysis is that
it requires accurate measurements of external forces and body motions (Pandy 2001).
Moreover, availability of improved computational power has made forward dynamics
calculations reasonably efficient.

The human body is a complex structure and modelling its activities presents several
challenges. For simplicity, the body parts are commonly modelled as rigid segments
and the joints are treated as perfect hinges. Often it is necessary to restrict the move-
ments in a certain plane, thus making them two dimensional in nature. Muscles are
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2 1. INTRODUCTION

ultimate actuators of movements and when included in models their behaviour is sim-
plified. In spite of these simplifications several meaningful results can be obtained
from modelling studies.

One common form of movement is where target control is desired. In such movement,
along with the initial conditions, some or all of the final or target conditions are known.
For such movement several different trajectories may be possible, thus giving rise to
dynamic redundancy in trajectory selection. Optimization based on the parameters of
the movement is a common way to determine how a trajectory is selected. Problems
of this nature are frequently encountered in robotics in trajectory planning, which
involves finding a trajectory that connects the initial and final configurations while
satisfying other specified constraints at endpoints, such as velocity and acceleration
constraints (Spong et al. 2006).

There is a vast range of literature dealing with human motion. Movements such as
reaching, jumping and walking have been subjected to detailed analyses. Studies
modelling dynamics of motion have usually incorporated three parts: 1) treatment
of body parts as multi-link rigid segments, 2) treatment of muscles and tendons as
actuators and 3) muscle activation dynamics to model delay in activation or relaxation
of muscles, (Pandy et al. 1990; Pandy 2001; Stelzer and von Stryk 2003; Menegaldo
et al. 2003). Walking/gait has been the subject of analysis of several different stud-
ies, (Onyshko and Winter 1980; Pandy and Berme 1988; Johansson and Magnusson
1991; Anderson and Pandy 2001; Kaplan and Heegaard 2001; Ren et al. 2007). Sim-
ilarly, Pandy et al. (1990); Selbie and Caldwell (1996); Spägele et al. (1999) have
investigated several features of high jump. Lots of studies have been carried out on
trajectory planning in robotics with different settings and objectives, (Hargraves and
Paris 1987; Enright and Conway 1991; Betts and Huffman 1992;Macfarlane and Croft
2003).

1.2. Aims and scope

In this study, forward dynamic models of several common human movements will be
analyzed, using a method based on the temporal finite element discretization along
with standard optimization tools, (Eriksson 2005, 2007). Activities are modelled as
targeted movements and the actuating moments or forces needed to achieve the de-
sired target state are identified as the ‘controls’. This study aims to investigate how a
trajectory is selected by testing different optimization criteria based on the parameters
of the movement. Optimization criteria tested are both kinematic and kinetic in na-
ture. Kinematic criteria deal with parameters like displacement, velocity, acceleration
and jerk (which measures smoothness of a movement) while kinetic ones deal with
the controls.

Results of different optimization criteria are compared. Where possible, results from
the simulations are compared to the results from other studies or natural movements.
In addition to dynamic redundancy, biomechanical models also deal with static re-
dundancy in the form of force distribution among muscles, (Dul et al. 1984; Stelzer
and von Stryk 2003; Heintz and Gutierrez-Farewik 2007). Though most models in
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this study are actuated by joint torques, attempts have been made to use muscles as
actuators in some models. Muscle activation dynamics behind the force production in
muscles is ignored, thereby assuming that the forces are regulated infinitely quickly.
To summarize, the main objective of this study can be stated as testing the efficiency of
the proposed numerical method and its suitability in studying of dynamics of biome-
chanical systems.

1.3. Outline of thesis

Chapter 2 discusses the numerical theory behind the work and a brief introduction
to optimization methods. Chapter 3 deals with the biomechanical examples studied
and the results obtained. Chapter 4 presents results from the simulations and these
are subsequently discussed in Chapter 5. Conclusions from studies and the scope for
future work are dealt with in Chapter 6.
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CHAPTER 2

Numerical Methods

An algorithm is developed in Matlab (The MathWorks, Inc., Natick, MA, USA) to
analyze forward dynamic models of human movements. It deals with two main areas
of analysis: the treatment of structural dynamics by means of temporal discretization
and optimization. Brief descriptions of the two areas and how their combination is
used are presented in this chapter.

2.1. Temporal finite element

This section describes the temporal discretization method, which forms the basis for
solving the models presented in the study. The method has similarities with work done
by Kaplan and Heegaard (2001, 2002). It essentially involves converting differential
equations into algebraic ones by dividing the total duration of a movement into a
number of intervals. The values of state variables (displacements and velocities) and
controls (for example, joint moments or muscle forces) at the discretized points are
the unknowns which are solved for to determine the behaviour of the system.
For movements with prespecified target, several different possibilities exist for achiev-
ing that state from the initial one. Therefore, some measure of the control forces or
of state variables is used as the cost function which is minimized to obtain the op-
timal trajectory. Several aspects of optimization are discussed in the next section.
Alternates like shooting methods exist for solving boundary value differential equa-
tions but are deemed computationally expensive and unreliable for complex and large
problems (Eriksson 2007).
The main formulation underlying the algorithm has been stated in Eriksson (2005,
2007). A general description of the formulation is presented here.

2.1.1. Description of movement

For a system with Nd degrees of freedom, the configuration at time t is described by
a set of Nd displacement coordinates qi(t), collected in:

q(t) =











q1(t)
q2(t)
...

qNd
(t)











(2.1)

for a time interval 0 ≤ t ≤ T .
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Figure 2.1: Example of interpolation of displacement coordinates from their values
and time differentials at chosen time stations. At each time station, both value and its
time differential are known, leading to a locally cubic curve.

In order to capture a dynamic movement, the velocities in the used coordinate direc-
tions are included, and the configuration is thereby described by a vector of double
size:

Q(t) =















q1(t)
q̇1(t)
q2(t)
...

q̇Nd
(t)















(2.2)

with the superposed dots representing the time differential.

The studied time interval is divided intoNt + 1 equally spaced time stations:

tj = j ·
T

Nt
(2.3)

for (0 ≤ j ≤ Nt). At each discrete time station, the configuration is thus specified by
the degrees of freedom:

Qj = Q(tj) ≡
(

q1(t
j), q̇1(t

j), q2(t
j), . . . , q̇Nd

(tj)
)T (2.4)

The initial state is specified by the configuration Q(0). A target configuration can
be specified by Q(θ), where θ is often equal to T , although the algorithm allows
specification of intermediate target states. A target configuration need not necessarily
specify all displacement and velocity components.

The whole movement is described by the collection of values at all time stations:

Q =
[

(Q0)T , (Q1)T , (Q2)T , . . . , (QNt)T
]T

(2.5)

which is a vector of length 2 Nd(Nt + 1).

A Hermitian interpolation is used in the algorithm for the description of a coordinate
value at any point within the interval, Fig. 2.1.
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The basic interpolation of one coordinate can be written as:

qi(t) = N1(t)q
j
i + N2(t)q̇

j
i + N3(t)q

j+1

i + N4(t)q̇
j+1

i for tj ≤ t ≤ tj+1

(2.6)
where N1, N2, N3 and N4 are the local shape functions, (Cook et al. 2002).

The coordinates at time t, q(t), can thereby be collected as:

q(t) = [N(t)]Q (2.7)

where the matrix N(t) is of size (Nd) × 2Nd(Nt + 1), but is sparse as only a few
functions are non-zero at time t, (Zienkiewicz and Taylor 2000). The description
gives C1 time continuity over time element borders.

The velocity and acceleration components are consistently described as:

v(t) ≡ q̇(t) =
[

Ṅ(t)
]

Q (2.8)

a(t) ≡ q̈(t) =
[

N̈(t)
]

Q (2.9)

2.1.2. Controls

In addition to internal forces related to the current configuration, two groups of ex-
ternal forces were considered. The first group consists of gravity and applied forces,
with known time variations. Displacement independent external forces are a priori
defined as p(t). The algorithm also allows a set of Nc a priori unknown controls,
ci(t) (1 ≤ i ≤ Nc). At time t, the acting controls are collected as:

c(t) =











c1(t)
c2(t)
...

cNc
(t)











(2.10)

The controls are discretized atNk time stations τ j ,

Cj = c(τ j) =
(

c1(τ
j), c2(τ

j), . . . , cNc
(τ j)

)T (2.11)

with 0 ≤ τ j ≤ T , and 1 ≤ j ≤ Nk, preferrably coinciding with a subset of the
displacement time stations. The whole set of unknown control components is collected
as:

C =
[

(C1)T , (C2)T , . . . , (CNk)T
]T

(2.12)

A linear interpolation is used in the algorithm for the controls, Fig. 2.2. For a specific
time instance t:

c(t) = [Nc(t)] C (2.13)
where the matrix Nc(t) is Nc × (NcNk), but very sparse: at most two values in each
row are non-zero.
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Figure 2.2: Example of interpolation of control forces from their values at chosen
time stations. At each time station only the value is known, leading to a locally linear
representation.

Controls can be of different nature. For example, in case of rotational movement joint
torques can be used as controls. Similarly, in a biomechanical model muscle forces or
muscle tensions may be used as controls. In the latter case, the muscle actuators are
often a redundant set for creating the joint torques.

2.1.3. Mechanical equilibrium equations

The dynamical system is governed by Ne ≡ Nd equilibrium equations, which can be
stated for a specific time instance t as, (Eriksson 2005):

Ma(t) + f(q(t), v(t)) − p(t) − Ecc(t) = 0 (2.14)

whereM is the mass matrix and q(t), v(t) and a(t) are the displacements, velocities
and accelerations, respectively. The vector f describes all internal forces and dis-
placement affected loads. In linear case, f (q(t), v(t)) = [K]q(t) + [D]v(t), where
[K] and [D] represent the stiffness and damping matrices respectively. p(t) denotes
the external forces acting in the system. The effects of controls c(t) are described by
an action description matrix Ec, of size Nd × Nc.

With these values, a time instance residual form is written:

e(t) ≡ e(q(t), v(t), a(t), p(t), c(t); t) = 0 (2.15)

where the equations must be formally derived for a specific structural system, by any
method, general enough for the problem context, (Calkin 1996; Knudsen and Hjorth
1996).

The Nd equilibrium equations given by Eq. (2.15) are demanded to be fulfilled at
2 · Nt collocation points over the total interval resulting in a set of 2NdNt equations,
cf. (Kaplan and Heegaard 2002). The resulting equations can be seen as

E(Q, C, P ) = 0 (2.16)

with P representing the external forces p(t) for all time stations.
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The choice of collocation points within each interval is arbitary; in this study, two
Gauss quadrature points are used as the collocation points within each of the Nt time
intervals (Eriksson 2005, 2007).

2.1.3.1. Boundary values and restrictions

A set of Nb linear equality conditions on the discrete coordinates are introduced by:

B(Q) ≡ BQ Q − bQ = 0 (2.17)

At least 2Nd conditions are needed to define an initial state at t = 0. Excessive
boundary conditions define a target state, and imply the need for at least NcNk =
Nb − 2Nd free control force components.

The movement of a system can be mechanically or physiologically restricted. Simple
kinematic restrictions can often be seen as linear inequalities in the coordinates as:

BRQ − bR ≤ 0 (2.18)
As the restrictions are valid at all time stations, the number of restrictions becomes
high.

The unknown controls might also be kinetically restricted. This demands, when all
control force time stations are collected:

BLC − bL ≤ 0 (2.19)

For further treatment, Eqs. (2.18) and (2.19) can be collected as:

BG

(

Q
C

)

− bG ≤ 0 (2.20)

2.2. Optimality of movement

When excessive control force components are present, an optimal solution can be
sought. This involves defining a ‘cost’ or ‘performance’ function which is then mini-
mized to obtain the best possible solution. The cost functions can be kinetic, kinematic
or combined in nature. Kinetic cost functions measure the costs on the control forces
needed to produce the desired motion. For instance, an integrated sum of squared
control forces over the considered time interval gives a cost function:

Πcc ≡
1

2

∫ T

0

(

∑

i

(ci(t))
2

)

dt =
∑

i

∑

j

Πj
i = CT

CccC (2.21)

with simple form for the matrix Ccc, (Eriksson 2005). This form is easily algorith-
mically handled, although a more natural measure for the needed force is a weighted
average control force norm:

‖c‖T =

√

2

T
Πcc (2.22)
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Another cost function proposed by Uno et al. (1989) measures the cost of rate of
change of control forces and can be stated as:

Πct ≡
1

2

∫ T

0

(

∑

i

(

dci

dt

)2
)

dt = CT
CctC (2.23)

Kinematic cost functions measure the cost on the state variables, rather than the con-
trol forces. Seeking an optimally smooth movement, a jerk cost can be formulated,
based on the idea by Flash and Hogan (1985). Jerk components are the third time
differentials of the displacements (constants in each interval) and can be written as:

j(t) ≡
...
q (t) = [

...
N(t)]Q (2.24)

A cost expression for the integrated sum of squared jerk components can thus be stated
as:

Πqj ≡
1

2

∫ T

0

(

∑

i

(ji(t))
2

)

dt = QT
CqjQ (2.25)

Similarly, a cost for accelerations and velocities can be defined as:

Πqa ≡
1

2

∫ T

0

(

∑

i

(ai(t))
2

)

dt = QT
CqaQ (2.26)

Πqv ≡
1

2

∫ T

0

(

∑

i

(vi(t))
2

)

dt = QT
CqvQ (2.27)

Based on the formulations above, the studied constrained optimization problem can
be stated as:

mimimize Πz ≡ Π(z)

under equality constraints b1(z) = 0

and inequalities b2(z) ≤ 0

(2.28)

In the developed form, the unknown z contains both the state variables and the control
forces:

z =

(

Q
C

)

(2.29)

and the cost function is based on these variables. Allowing any of the cost functions
discussed above, it can be written as:

Π(z) ≡ Π(Q, C) = αcC
T
CcC + αqQ

T
CqQ (2.30)

where



2.3. ALGORITHMIC IMPLEMENTATION 11

αcCc = αccCcc + αctCct (2.31)

αqCq = αqjCqj + αqaCqa + αqvCqv (2.32)

and the α coefficients choose the criterion for the minimization.

The equality constraints b1(z) = 0 include a non-linear part corresponding to the
set of equilibrium equations, Eq. (2.16) and a linear part representing the boundary
conditions, Eq. (2.17). The inequality constraints b2(z) ≤ 0 represent the restrictions
according to Eq. (2.20).

2.3. Algorithmic implementation

An algorithm is developed in Matlab that encompasses both aspects of numerical
methods discussed above. The function ‘fmincon’ included in the ‘Optimization tool-
box’ of Matlab offers a suitable format for solving the stated problem. Fmincon solves
nonlinear optimization problems by using sequential quadratic programming (SQP).
SQP is a popular technique for solving a nonlinearly constrained problem. A brief
discussion of SQP is provided in Appendix A.

Several other computational packages are available for constrained nonlinear opti-
mization. An important aspect for any algorithm is the size of the problem, which
often involves hundreds of variables and large numbers of equality and inequality con-
straints. The formulation is, however, extremely sparse for large problems. This fact
has only been exploited to a limited degree, but could allow significant improvements
in efficiency, (Beauwens 2004).

The algorithm takes as its basis a sufficiently complete mechanical formulation of
dynamics of a system. A convenient way to derive the dynamic equations is through
the Euler-Lagrangemethod, considering kinetic energies of the segments and potential
energies of all the loads, (Calkin 1996; Knudsen and Hjorth 1996; Winter 2005).

The developed algorithm consists of interaction of two main parts: a central com-
ponent ‘Optcon’ and a definition file specifying problem specific details. Optcon is
a common platform for all problems, while seperate definition files are needed for
different models. The working of the algorithm is summarized in Fig. 2.3.
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Problem Specific function
-Parameters
-Equilibrium equations
-Boundary conditions
-Constraints
-Optimality criteria
-Tolerance
-Initial guess
-Max. no. of iterations

OPTCON
-Central part
-Common for all
-Uses fmincon

OUTPUT
-State variables
-Controls

If no convergence,
start with new
initial guess

! !

"
#

If convergence

Optimization function

# "

Figure 2.3: Summary of the developed algorithm

Optcon uses the Matlab function fmincon for optimization calculations. Parameters of
the model, equilibrium equations, boundary conditions, constraints, optimality criteria
and the maximum number of allowable iterations are all supplied in a definition file.
To speed up the calculations gradients of the equilibrium equations and constraints
are required. These are obtained by differentiation of the equations by the variables.
Symbolic differentiation is easily carried out by packages like Mathematica, (Wolfram
Research, Inc., Champaign, IL., USA) and Maple (Maplesoft, Waterloo Maple Inc,
Canada).

An initial guess of the solution is needed to start the iterations and is supplied in
the problem definition file. Fmincon can even start calculation from an unfeasible
solution. But, as the complexity of the system rises, the specification of a suitable
initial guess can be troublesome. One method used was to obtain a solution with larger
value of tolerance and use this solution to obtain a solution with lower tolerance, and
repeat this process till a solution with desired amount of tolerance is obtained. It is
also possible for the solution to be attracted to a local optimum instead of a global
optimum and it is hard to ascertain whether a solution is globally or locally optimal.
One possible remedy is to start with different initial guesses and to see if they all
converge to the same solution; and if they do not, then pick the solution with the
smallest cost.

Optcon also interacts with another component that supplies the desired optimization
function and its gradients, depending on the optimality criteria specified in the defi-
nition file. It is noted that the quadratic nature of the cost functions, cf. Eqs. 2.21,
2.23, 2.25 – 2.27 , enables easier differentiation. A fairly small value of tolerance
is supplied and the iterations run till this tolerance is met in the function value and
constraints. On succesful completion of optimization, state variables (displacements
and velocities) and controls are provided as the outputs. If no convergence is obtained
within the provided number of iterations, an error message is displayed.
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Thus, specification of the modelling process is manual and leaves options for further
development for more automatic implementation. User friendly interface by means
of interaction with other softwares like the musculoskeletal modelling package SIMM
(Musculographics Inc., Santa Rosa, CA) and Sophia (Lesser 1995) is possible. Effi-
cient plotting and visualizing of the results can be another important improvement in
the algorithm.
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CHAPTER 3

Examples

Some common day to day activities are analysed next. The initial studies deal with
simple upper limb movement in vertical and horizontal planes. More complex activ-
ities like jumping, stepping and weightlifting are also investigated. The movements
studied are of targeted control types, commonly associated with robotics. Initial con-
ditions (positions and velocities) and all or some of the final conditions are assumed
to be known. Intermediate states, if known, can be easily introduced too. The duration
of movement is always known.
As discussed earlier, redundancy exists in choosing paths during a certain motion.
How a certain trajectory is selected as the chosen human movement is not completely
understood. Several approaches have been assumed to guide the choice, for example,
minimization of smoothness of the trajectory, minimization of the joint torques or
minimization of the joint torque changes.

3.1. Movement of upper limb in the sagittal plane

The first example studied was the movement of upper limb in a sagittal plane. The
model consisted of two interconnected rigid links representing the upper and the lower
arm segments, as seen in Fig. 3.1. The arm configuration was described by two joint
angles, the elbow flexion angle q1 and the shoulder flexion angle q2, Fig. 3.1b.
Anatomical data for the model were chosen as L1 = 0.32 m, L2 = 0.25 m, with
gravity forces g1 = 11 N, g2 = 20 N, g3 = 5 N, based on anthropometrical data of
a 50th percentile male, Winter (2005); the weights g1 and g2 were assumed to act in
the centers of the segments, the hand weight g3 at the wrist joint. The external carried
load was assumed as p1 = 10 N at the wrist.
The first problem analysed was the movement of the arm from a vertical hanging
position (q1, q2) = (0, 0) to a horizontal straight position (q1, q2) = (0, π

2
) in a time

period of T = 0.5 s. The velocities and the accelerations at the initial and final time
instances were all zero. In order to carry out this movement, two control torques c1

and c2 were required at the elbow and shoulder joints respectively. T was divided into
Nt = 32 equal parts for discretization of the state coordinates. The controls c1 and c2

were discretized at Nk = 33 time stations, including the initial and final times.
Moment arm data for the major upper limb muscles were obtained from a model de-
veloped by Holzbaur et al. (2005) for use in the commercially available musculoskele-
tal modeling software SIMM, (Musculographics Inc., Santa Rosa, CA), cf. Delp and

15
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(a) (b)

Figure 3.1: Problem definition: a) musculoskeletal system; b) measures, coordinates,
loads, and resultant moment at joints.

Loan (1995). Moment arm is the shortest distance between the line of action of muscle
force and the joint’s centre of rotation, where it is assumed that the force is constant
along the whole muscle length. Muscle physiological cross sectional area (PCSA)
data were obtained from Holzbaur et al. (2005).

Relevant data for the eight muscles were derived by Heintz et al. (2006). The mo-
ment arms (MA1, MA2) and the PCSA values were used to evaluate maximum and
minimum joint control moment contributions, based on an assumed maximummuscle
tension of 330 kPa, (Garner and Pandy 2001). Used data are given in Table 3.1, with
muscle notation from Holzbaur et al. (2005)1.

Summing the negative and positive components of the resultant moment contributions
at the joints, see Table 3.1, restrictions were placed on c1 and c2 as follows:

−3.98 ≤ c1(t) ≤ 13.0 (3.1)
−7.65 ≤ c2(t) ≤ 5.69 (3.2)

where the values are given in Nm.

1The abbreviated muscle names refer to: Biceps long head, Brachialis, Brachioradialis, Triceps long head,
Deltoid (Ant., Post.), Pectoralis major clavicular, and Latissimus dorsi thoraic.
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Table 3.1: Used muscle data. Moment arm MA1 is at elbow and MA2 at shoulder,
positive for flexion, negative for extension. Muscular area PCSA is physiological cross
sectional area. Max-M1 andMax-M2 are limits for contributions to resultant moments
at the joints. Notation and PCSA data from a SIMM model based on Holzbaur et al.
(2005).

Muscle MA1 MA2 PCSA Max-M1 Max-M2
[10−3m] [10−3m] [10−4m2] [Nm] [Nm]

BICL 35.6 7.06 4.50 5.28 1.05
BRA 17.6 0 7.10 4.12 0
BRD 57.3 0 1.90 3.60 0
TRIL −21.2 −20.3 5.70 −3.98 −3.82
DELT1 0 17.2 8.20 0 4.64
DELT3 0 −8.21 1.90 0 −0.52
PMAJ1 0 −5.83 2.60 0 −0.50
LAT1 0 −30.4 2.80 0 −2.81

To prevent excessive elbow flexion, restrictions were put on the elbow angle q1 as
follows:

0 ≤ q1(t) ≤
3 π

4
(3.3)

No restrictions were put on the shoulder angle q2.

Simulations were performed with respect to the five criteria discussed in Section 2.2.
For scaling reasons, the cost functions were evaluated with either of αcc = 1, αct =
1 · 10−4, αqv = 1 · 10−2, αqa = 1 · 10−4 or αqj = 1 · 10−6, the others being zero; the
obtained results are denoted by the non-zero coefficient.

For obtained solutions, the five cost functions in Eqs. (2.21, 2.23, 2.25 – 2.27 ) were
evaluated. The similarities among the results obtained from five different cost criteria
were evaluated by calculating colinearity between displacement states Qi and Qj as:

γij =
QT

i · Qj

‖ Qi ‖ · ‖ Qj ‖
(3.4)

Further simulations were performed varying the total duration of the movement. For
these, αcc = 1 was used and variation in force cost was studied.

The basic case in this example used values of Nt and Nk such that Nk − 1 = Nt,
implying that state variables and the controls were discretized into the same numbers
of intervals. To study the effects of the values of Nt and Nk, next set of simulations
was performed withNt kept constant at 16 while using three values values (17,21,33)
for Nk.
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3.2. Tensions in muscles

In vivo measurement of muscle forces can be done only by invasive techniques like
the use of tendon transducers (Lehman et al. 1996). Such experiments are not easy to
carry out due to ethical and practical reasons. Calculating these forces by computer
simulations is an interesting alternative. The next set of simulations was aimed at
determining tensions in muscles during the upper limb movement.

Control torques at each joint can be calculated first as done in the previous section,
followed by force distribution among the involvedmuscles using static optimization at
each time instance, (Heintz et al. 2006; Heintz and Gutierrez-Farewik 2007). Another
option is to carry out these two issues simultaneously. For this, eight muscle tensions
instead of two joint torques were chosen as controls in optimization. A maximum
muscle tension of 400 kPa for each muscle was used as restriction, as no convergence
was obtained with the lower values. Though moment arms of muscles change with
orientation, averaged values were used.

Two cost criteria (minimum control forces and minimum control force changes) were
used. Jerk criterion was omitted as it did not involve control forces directly in calcu-
lations, and thereby produced random distribution among fully synergistic muscles,
unless a small value of other criterion, such as αcc was used together with αqj '= 0.

3.3. Movement of upper arm in the horizontal plane

Several studies in the past have studied the upper limb movement in the horizon-
tal plane, (Morasso 1981; Abend et al. 1982; Flash and Hogan 1985; Uno et al.
1989). These experiments on point to point targeted arm movement have demon-
strated straight or slightly curved arm trajectories with bell shaped tangential velocity
profile, (Flash and Hogan 1985; Uno et al. 1989).

The dynamic equations and settings were similar to those in the sagittal plane, but
without gravitational effects and external forces. No restrictions were introduced for
moments, while a restriction was introduced in the elbow angle to prevent hyperex-
tension, 0 ≤ q1. Simulations were performed for two different movements in the
horizontal plane. The first case involved a movement between two states located ap-
proximately in front of the body, while the second one included larger movements.
Similar movements were analysed in Uno et al. (1989) and Ohta et al. (2004).

Results from the simulations were compared with those from literature to observe
which optimality cost function gave the best matching results.

3.4. High jump

High jump has been a subject of investigation of several studies, (Pandy et al. 1990;
Selbie and Caldwell 1996; Spägele et al. 1999). A four link model was used to simu-
late high jumping, see Figure 3.2. The links represented foot, shank, thigh and upper
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Figure 3.2: High jump model, reproduced from Pandy et al. (1990)

Table 3.2: Parameters related to high jump model

Segments Length (m) Mass (kg) I (kgm2)
Foot 0.175 2.2 0.008
Shank 0.435 7.5 0.065
Thigh 0.400 15.15 0.126
HAT 0.343 51.22 6.814

body. All the motions were restricted in the sagittal plane. The four degrees of free-
dom q1, q2, q3 and q4 represented the angles the segments made with the horizontal.
Equations and relevant data were obtained from Pandy et al. (1990)

Table 3.2 shows the parameters of the model. Mass moments of inertia (I) are given
about the centres of the mass of the segments.

The initial part of jumping is the phase between the heel lift-off and the body lift-
off and this phase was analysed. The jump started from a crouching position and all
the segments except the foot were vertical when the lift-off took place. Boundary
conditions specified are shown in Table 3.3. Jump was simulated for two different
durations of T = 0.2 s and T = 0.4 s. Simulations were run using αct = 1. With
the values of velocities of the segments at the lift-off, the heights of the jump were
calculated.
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Table 3.3: Specified initial and final values for high jump model

Initial (t = 0) Final (t = T )
q1 [o] 34 60
q̇1 [rad/s] 0
q2 [o] 120 90
q̇2 [rad/s] 0
q3 [o] 30 90
q̇3 [rad/s] 0
q4 [o] 120 90
q̇4 [rad/s] 0

Table 3.4: Lower leg muscles

Muscle Function Average MA (m) PCSA (cm2)
1) Ilipsoas Hip flexion 0.0276 16.0
2) Rectus femoris Hip flexion 0.4040 12.5

Knee extension −0.4026
3) Glutei Hip extension −0.0167 60.7
4) Hamstring Hip extension −0.0473 30.0

Knee flexion 0.0390
5) Vasti Knee extension −0.0392 27.0
6) Gastrocnemius Knee flexion 0.0156 30.0

Ankle plantarflexion −0.0402
7) Tibialis Anterior Ankle dorsiflexion 0.0397 9.1
8) Soleus Ankle plantarflexion −0.0396 58.0

In order to model the foot-ground interaction in Pandy et al. (1990), a damped tor-
sional spring is used at the toes that applies moment, thereby keeping the foot seg-
ment above the ground. Here this was done by preventing the foot angle from being
less than than the initial value of 34o, that is, by introducing a restraint of the form
q1(t) ≥ 34o during the whole duration of movement.

Eight major muscle groups are responsible for human lower limb movements, (Acker-
mann and Schiehlen 2006). The muscles along with some of their properties (average
moment arms (MA) and PCSA) are listed in Table 3.4.

Average moment arm data were obtained from SIMM, and other muscle properties
like PCSA from Winter (2005). Positive values denote flexion while negative denote
extension.
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3.5. Walking/Stepping

Walking is one of the common humanmovements and has been a subject of analysis of
several different studies, (Onyshko and Winter 1980; Pandy and Berme 1988; Johans-
son and Magnusson 1991; Piazza and Delp 1996; Anderson and Pandy 2001; Kaplan
and Heegaard 2001; Ren et al. 2007). Walking/gait disorders are common. Mod-
elling provides information about joint torques and muscle forces and the knowledge
of these is useful in further understanding of the mechanism of gait and in treatment
of disorders. Movements similar to walking occur during other activities like stepping
and stair climbing. Stepping is analyzed in several studies (Flashner et al. 1987; Chou
and Draganich 1997; Armand et al. 1998; Chen and Lu 2006).

Figure 3.3 shows various stages of the gait cycle. The cycle consists of two primary
stages: Stance phase comprising of about 60 % and swing phase comprising of the 40
% of the total cycle, (Sutherland et al. 1994). Before the swing phase there is double
support phase which lasts about 10 % of the whole gait cycle. In double support phase
both feet are on the ground simultaneously, and the swing leg undergoes toe-off at
the end. In order to reduce computational cost, the gait cycle can be assumed to be
bilaterally symmetrical and only 50 % of the cycle need to be analyzed, (Anderson
and Pandy 2001). A full gait cycle forms one stride and each stride is made of two
steps, thus a step forming 50 % of the gait cycle.

Figure 3.3: Various stages of gait cycle, reproduced from Sutherland et al. (1994)

A simple dynamic model is created to run gait simulations, similar to the one used
by Armand et al. (1998) to analyze stepping. Complicated models are avoided be-
cause of higher computational cost involved. The model consists of four segments.
Stance leg is kept straight and is represented by only one segment, while swing leg
has three segments representing the stance leg and the swing femur, shank and foot.
The four degrees of freedom, q1, q2, q3 and q4, represent the angle made by the stance
leg with the ground and the angles at the hip, knee and ankle joints of the swing
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Table 3.5: Parameters related to gait model

Segments Length (m) Mass (kg) I (kgm2)
Stance leg 0.6191 5.796 1.1141
Swing thigh 0.2698 3.60 0.0273
Swing shank 0.3493 1.674 0.0186
Swing foot 0.0554 0.522 0.0003

leg respectively, Figure 3.4. Anatomical data and other relevant data were obtained
from Winter (2005). The model takes into account movements in the sagittal plane
only.

Figure 3.4: Walking model, reproduced from Armand et al. (1998)

Parameters related to the model are shown in Table 3.5, where Is denote the moment
of inertias of the segments at the centre of mass, except for the stance leg where it is
the moment of inertia around the ankle. Initial and final values for state variables were
obtained from Gutierrez (2003). These are shown in Table 3.6.

The duration of movement was 0.47 s, which was equal to half of the averaged total
duration for one gait cycle in the experiments. For temporal discretization, Nt = 32
and Nk = 33 were used. Restrictions were put on the state variables to prevent
physiologically impossible states. One such case of knee hyperextension was avoided
with restriction:
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Table 3.6: Initial and final values for gait model

Initial (t = 0) Final (t = T )
q1 [rad] 1.83 1.03
q̇1 [rad/s] -2.00 -3.00
q2 [rad] 4.52 5.32
q̇2 [rad/s] 0 0.65
q3 [rad] 4.32 5.20
q̇3 [rad/s] -3.53 0.52
q4 [rad] 6.07 6.80
q̇4 [rad/s] -6.53 0.55

q3(t) − q2(t) ≤ 0 (3.5)

Amounts of ankle dorsi- and plantarflexion more than 15o = π/12 were also pre-
vented as:

q4(t) − q3(t) ≥ 5π/12 (3.6)
q4(t) − q3(t) ≤ 7π/12 (3.7)

To handle the double support phase at the start of the cycle, additional nonlinear con-
straints were introduced to constrain the toe position of the swing leg for the first 4
out of 32 total time stations. Equality constraints created some numerical problems,
so instead two nonlinear inequality constraints were given; thus allowing toe position
to vary by a very small amount (10−5m).

3.6. Weightlifting

Lifting of a weight is a common activity and has been analyzed in several stud-
ies, (Chaffin and Andersson 1991; Hsiang et al. 1999; Chang et al. 2001). Weighlifting
is also a popular sport and a common action involves lifting of the barbell from ground
to about neck height in a single movement. Similar movement is also frequently en-
countered in robotics, where robots are designed to perform tasks such as lifting and
moving goods from one position to another. Chang et al. (2001) used minimization of
joint torques as criterion to analyse the lifting movement and compare the results with
experimental studies.
A five segment model was used to simulate weightlifting, Figure 3.5. The five links
represent the shank, thigh, body, upper arm and lower arm. Angles made by these
segments with horizontal are denoted by q1, q2, q3, q4 and q5.
The total duration T = 1s was discretized as Nt = 32 andNk = 33.
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Figure 3.5: Weightlifting model

Table 3.7: Parameters related to weightlifting model

Segments Length (m) Mass (kg) I (kgm2)
Shank 0.431 4.27 0.1369
Thigh 0.428 7.00 0.1342
Body 0.504 47.50 9.8302
Upper arm 0.326 1.96 0.0215
Lower arm 0.256 1.54 0.0220

Table 3.8: Specified initial and final values for weightlifting model

Initial (t = 0) Final (t = T )
q1 [rad] 0.8727 1.3090
q̇1 [rad/s] 0
q2 [rad] 2.6180 1.5708
q̇2 [rad/s] 0
q3 [rad] 0.3491 1.7453
q̇3 [rad/s] 0
q4 [rad] 4.8869 5.2360
q̇4 [rad/s] 0
q5 [rad] 5.0615 7.0686
q̇5 [rad/s] 0



CHAPTER 4

Results

4.1. Movement of upper limb in sagittal plane

Some of the results from performed simulations can be seen in Figs. 4.1, 4.2 and
4.3. Variation of angular orientations, angular velocities and control moments at the
two joints are shown for three different cost functions defined by non-zero αcc, αct

and αqj . Results for αqa closely match those for αqj . A sample movement pattern
(αcc = 1 solution) can be seen in Fig. 4.4, which shows the arm positions for every
second time station during the movement.
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Figure 4.1: Variation of angles with time for three different cost functions

Five cost terms evaluated for the obtained solutions are given in Table 4.1; the different
minimization functions are indicated by their non-zero α coefficients.

The colinearities between the full displacement vectors Q of the obtained solutions
calculated according to Eq. (3.4) are shown in Table 4.2.

It was noted that other locally optimal solutions could be found for the case αcc =
1, if the initial guess to a solution was modified, Eriksson (2005). Further, a test
with αcc = 0.5 and αqj = 0.5 · 10−5 gave a solution with Πcc = 17.6 N2m2s,
Πct = 1241.5 N2m2/s Πqj = 8.56 · 105 rad2/s5, Πqa = 4.78 · 103 rad2/s3, and
Πqv = 31.3 rad2/s.

25



26 4. RESULTS

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0  

10 

20 

Time (s)

An
gu

la
r v

el
oc

ity
 (r

ad
/s

)

 

 

q1´ αcc
q2´ αcc
q1´ αct
q2´ αct
q1´ αqj
q2´ αqj

Figure 4.2: Variation of angular velocities with time for three different cost functions
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Figure 4.3: Variation of control moments with time for three different cost functions

The samemovementwas analyzed next but with different total movement durationsT .
Fig. 4.5 shows the variation of control force cost with increasing time. The solutions
essentially showed waiting states before starting the same movement if T ≥ 0.65
seconds. Similar conclusions were reached for other cost criteria.
Increasing the number ofNk resulted in oscillating behavior of control forces, as seen
in Fig. 4.6 where three values of Nk (17,21,33) were used. Decreasing the number of
Nk number did not have major effect.
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Final horizontal position

Initial
vertical
position

Figure 4.4: A sample movement pattern

Table 4.1: Evaluation of the different cost terms for solutions from different minimiza-
tion criteria

Min. Cost term
crit. Πcc, Eq. (2.21) Πct, Eq. (2.23) Πqj , Eq. (2.25) Πqa, Eq. (2.26) Πqv , Eq. (2.27)
αcc 13.2 3553 2.57 · 107 17.5 · 103 45.9
αct 14.3 1753 1.10 · 107 11.0 · 103 40.2
αqj 18.9 10106 2.89 · 106 8.4 · 103 40.5
αqa 18.6 8305 3.64 · 106 8.2 · 103 38.4
αqv 19.4 10887 4.50 · 107 13.7 · 103 31.9

[N2m2s] [N2m2/s] [rad2/s5] [rad2/s3] [rad2/s]

Table 4.2: Evaluation of colinearites for Q vectors for five different minimization
criteria

Cij αcc αct αqj αqa αqv

αcc 1.0000 0.9675 0.9471 0.9462 0.9226
αct 0.9675 1.0000 0.9709 0.9790 0.9650
αqj 0.9471 0.9709 1.0000 0.9982 0.9420
αqa 0.9462 0.9790 0.9982 1.0000 0.9555
αqv 0.9226 0.9650 0.9420 0.9555 1.0000
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Figure 4.6: Effects of changing number ofNk, Nt is kept constant at 16
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4.2. Tensions in muscles

Using muscle tensions as controls, the contribution of the involved muscles can be
seen in Figs. 4.7 and 4.8. Fig. 4.7 corresponds to the minimization of squared muscle
tensions, αcc = 1, whereas Fig. 4.8 corresponds to the minimization of squared rates
of change of muscle tensions, αct = 1.
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Figure 4.7: Contribution from individual muscles evaluated for αcc = 1
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Figure 4.8: Contribution from individual muscles evaluated for αct = 1

Biceps long head and deltoid anterior muscles were seen to play the major roles in
both cases, although the action of biceps was more prominient for minimization with
αct compared to that with αcc criterion.
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4.3. Movement of upper limb in horizontal plane

Trajectories of the lower arm end point for solutions based on three different mini-
mization criteria (αcc, αct and αqj ) can be seen in Figs. 4.9 and 4.10.
The velocity of the end point for the three different criteria can be seen in Fig. 4.11.
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Figure 4.9: Trajectory of the wrist (Small movement)
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Figure 4.11: Velocity of the wrist (Large movement)

4.4. Vertical jumping

The results from high jump simulations performed for durations T = 0.2 and T = 0.4
seconds can be seen in Figs. 4.12 and 4.13. A sample movement pattern can be seen
in Fig. 4.14.
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Figure 4.12: High Jump 0.2 s

From the angular velocities of the segments at the final state, the upward velocity of
the centre of mass of the body was calculated to be 1.45 m/s for 0.2 s jump, while it
was 3.1 m/s for 0.4 s duration jump. The heights reached were, thereby, about 11 and
50 cms respectively.
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Figure 4.13: High Jump 0.4 s

Figure 4.14: High Jump pattern
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4.5. Walking/Stepping

The results from gait simulations are shown in Figs. 4.15 and 4.16. Experimental
results from Gutierrez (2003) are included for comparision.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−20

0

20

40

60

80

100

Time (s)

An
gl

es
 (d

eg
re

es
)

 

 

Hip sim
Knee sim
Ankle sim
Hip exp
Knee exp
Ankle exp

Figure 4.15: Gait simulation - a single step, sim - simulation, exp - experimental

Figure 4.16: Gait pattern - a single step

For analysis of swing phase alone, variation in hip, knee and ankle angles are shown
in Fig. 4.17 and the pattern of movement in Fig. 4.18.
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Figure 4.17: Gait simulation - swing phase, sim - simulation, exp - experimental

Figure 4.18: Gait pattern - swing phase
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4.6. Weightlifting

Some of the results from weightlifting simulations can be seen in Figs. 4.19 and 4.20.
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Figure 4.19: Weightlifting - segmental angles

Figure 4.20: Weightlifting pattern
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CHAPTER 5

Discussion

The main objective of this study was to compare the effects of different optimization
criteria in modelling the dynamics of several common human movements. Performed
simulations and obtained results indicate that the developed viewpoint and algorithm
are efficient in the study of complex but primarily moderate sized forward dynamics
problems. Different criteria for optimal movements can be easily introduced. Also,
restrictions in form of linear and nonlinear constraints can be specified to give an
improved description of human movements.

The results can be analyzed from both numerical and biomechanical point of views,
though the accuracy of the results should be considered in the light of both assump-
tions and simplifications made. The proposed method and the developed algorithm
can be used for more advanced biomechanical studies with incorporation of muscle
mechanics and additional pysiological/anatomical properties. Possibility also exists
for applications in other fields of engineering, (Eriksson and Tibert 2006).

It is obvious from the results that the optimization criterion used significantly affects
the obtained solution. There is much discussion in literature on whether kinematic or
kinetic optimization criteria are more suitable in predicting human movements.

For movements in vertical plane, Table 4.1 shows several interesting results, one being
that for creating the smoothest solution (using αqj = 1), the magnitudes of the control
forces are higher (around 15 to 20%) than those needed in αcc = 1 and αct = 1
criteria solutions, cf. Eq. (2.22). Table 4.2 shows that αct and αqj solutions are
similar. This is expected, as force is proportional to acceleration, so rate of change
in force can be expected to have close relation to jerk which is the rate of change
of acceleration. Carrying out a desired movement in lesser time can be expected to
demand more effort. This is precisely what is observed from Fig. 4.5, but it is noted
that the algorithm will show a waiting state before the movement if the time is longer
than the optimal. Minimum time has been used as optimization criterion in studies of
human movements, (Pandy et al. 1995). The result shows that in this example, there
exists an optimal duration of movement.

Force distribution among muscles deals with the issue of redundancy as more muscles
than strictly needed are available. Physiological cross-sectional areas of muscles and
moment arms are the contributing factors for force distribution among muscles. Cri-
teria based on the control components are able to decide the force distribution among
the muscles, but those based on the state variables, such as the jerk criterion, are not

37
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able to do so. A criterion essentially minimizing jerk (αqj '= 0) can, however, be
accompanied by a small value of αcc to resolve this computational ill-posedness.

The movements observed are upper arm flexion/extension at the shoulder joint and
lower arm flexion/extension at the elbow joint. Biceps brachii, brachialis and brachio-
radialis are the major muscles flexing the elbow joint while triceps brachii acts as the
extensor at the elbow joint, (Palastanga et al. 2002). The main muscles flexing the
arm at the shoulder joint are anterior deltoid and biceps brachii, while those extending
the arm are triceps, posterior deltoid, pectoralis major and latissimus dorsi, (Palas-
tanga et al. 2002). The high levels of activity seen in biceps long and deltoid anterior
(Figs. 4.7 and 4.8) match the expected behaviour.

It should be noted that in the physiological situation the moment arms of muscles
change with the orientation of the segments and hence with time. But for simplicity,
constant averaged values were used for the simulations. For more accurate results,
change in moment arms with arm configuration must be accounted for and this is left
as future work. Future work should also focus on the activation dynamics of muscles,
as the present examples allow immediate regulation of forces, within stated limiting
values.

For movements in the horizontal plane, slightly curved trajectories were obtained for
smaller movements for the three simulation criteria used, Fig. 4.9. On the other hand,
for larger movements, the control force criterion gives strongly curved paths while jerk
cost gives a circular path with elbow angle remaining unchanged, Fig. 4.10. Regarding
velocity profile, results from moment rate and jerk criteria match single peak bell
shaped velocity profile (Fig. 4.11) described in previous studies, (Flash and Hogan
1985; Uno et al. 1989).

The analysis of high jump has been simplified to a large extent. The optimization
criterion used in this setting was minimization of rate of moments, as this fitted the
setting of the developed algorithm. Moments at the joints are created by muscles, so
it seems reasonable to assume minimal moment change as optimization criterion, as a
simple consideration of the delays in muscular force productions.

A simulated jump height of 33 cm has been reported in Pandy et al. (1990), who
used maximum height reached by the centre of mass of the body as optimal control
performance criterion. But the results obtained here show large variation in jump
height and this can be attributed to simplifications made in the model. It is also noted
that the present optimization method sees this problem in a very different manner than
other criteria such as maximization of the jump height and velocity. Therefore, the
two views should be seen as complementary rather than replacements of each other.

For gait simulation, handling of the double support phase presents some difficulties
as constraining the toe position for a certain duration introduces additional nonlinear
equality equations that have to be fulfilled. Using two nonlinear inequality constraints
instead of one equality constraint is numerically stable. This also shows the possibility
for specifying complex boundary conditions in the algorithm. Longer step length can
be attributed to the simplification made by representing the stance leg with a single
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straight segment. This also gives too high lift of the heel in the initial phase and
excessive knee flexion, Fig. 4.16.
Gait simulation for a single step shows excessive knee flexion, but that the for swing
phase alone gives good results. Results from weighlifting also match with those from
Chang et al. (2001). Different cost criteria were attempted for both gait and weightlift-
ing models, but the criterion related to minimization of rate of change of control
forces/torques (nonzero αct) seemed to produce more reliable results in both cases.
The values ofNk andNt affect the speed of calculation as these directly contribute to
the number of unknown variables. Choosing too small values do not properly describe
the dynamics of the system, whereas too high values demand higher computational
cost. Trial and error approach was taken to ensure proper combination. In addition,
study of variations ofNk with chosenNt, Fig. 4.6, shows that the discretization points
for controls must be less than or preferably coincident to those for state variables.
The calculation time is an important parameter. With most problems, it was of the
order of few minutes. In some cases the iterations diverged instead of converging to
an optimal point. The remedy used was changing the initial guess and running the
simulations again. Often, after slight modifications, the algorithm could be used for
evolution problem, which is represented by the initial value differential equations in-
stead of the boundary value differential equations mainly discussed here, (Eriksson
2005, 2007). Using the evolution solution as the initial guess is an attractive alterna-
tive.
As discussed previously, trajectory planning is a key area in robotics. The proposed
method is a viable option to study such problems. With appropriate modifications in
the algorithm, other optimization criteria can be introduced. It should be stated that
the quadratic forms of the used criteria enable easier differentiation to obtain the gra-
dients. Other optimization criteria (for example, Cartesian jerk instead of angular jerk
criterion) may introduce nonlinearities, but can still be used with proper modifications
in the algorithm.
Comparision of different optimization criteria (in case of the larger models) was done
visually. Though not shown, results obtained from optimization with πcc criterion
were markedly different from those from πct criterion for the weightlifting model,
unless extensive constraints were used. With large number of variables and equations,
the solution space is big and several possible solutions can exist. Constraints are often
required to initially reduce the solution space and arrive at a feasible solution.
Extensive simplifications and assumptions used and lack of representation of real
physiological behaviour imply that it is hard to draw definite biomechanical conclu-
sions from the results. In most models the final conditions only specify displacements,
as final velocities can be obtained only with experimental studies. Using more bound-
ary conditions can be expected to give more reliable results. Nevertheless, results
obtained indicate the possiblity of using the present method to solve wide classes of
dynamic problems.
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CHAPTER 6

Conclusions and Future work

Study of the forward dynamic models of several common human activities has yielded
interesting results, in addition to verifying the usefulness of the developed algorithm.
Results show that the method, based on temporal discretization followed by optimiza-
tion, can successfully solve small to medium scale problems of varying complexities.
The number of unknowns in the models typically vary between 100-1000 and similar
numbers of equality and non-equality constraints exist. The algorithm is deemed suit-
able for analysis of similar applications in other fields, such as structural engineering
and robotics.

Smoothness of resulting movement and economy in force usage were primary opti-
mization criteria tested. From a physiological viewpoint, a criterion based on the rate
of change of forces/torques seems better than other criteria tested, as it is close to the
smoothness or jerk criterion, but is more well defined for redundant systems. Muscles
can not act instantaneously, as there is a history and activaton dependence in force
recruitment. To certain extent this problem is addressed by the αct criterion as it tends
to make control forces change slowly.

Forward dynamics calculations are generally computationally expensive, but the algo-
rithm converges reasonably efficiently with a good initial guess to a solution. Regard-
ing convergence, it is believed impossible to strictly verify that an obtained solution
is a global minimum for the formulated problem, (Nocedal and Wright 1999), but
intelligent interpretation of results can probably always verify this.

One of the drawbacks of the stated formulation is the large numbers of equations and
variables involved. Better ways to solve optimization problem may be needed for
larger and more complex system. Several available optimization algorithms are being
investigated, such as the method of moving asymptotes (MMA), (Svanberg 2002) and
the ‘SNOPT’ optimization algorithm in its Comsol Script implementation (COMSOL
AB, Stockholm).

Future work can be related to two different aspects of the models: mathematical and
biomechanical. From the mathematical point of view, focus can be put on the follow-
ing points:

• An important aspect is how to handle the very sparse matricesmore effectively.
This can considerably speed up the calculations.

• More advanced optimization algorithmsmay be necessary for larger problems.
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• Handling of constraints such as complex nonlinear constraints and specifying
a guess to initiate the solution process can be a subject of further analysis.

• Although not being of particular concern in present models, distinguishing be-
tween global and local optimal solutions is a problem that can be encountered
when dealing with more complex models.

• Alternative ways of formulation to point collocation include Galerkin method
for the weak formulation of the equations, (Zienkiewicz and Taylor 2000;
Cook et al. 2002).

To make the models more realiable from the biomechanical point of view, the follow-
ing factors can be considered:

• More anatomical and physiological aspects should be incorporated, such as
limits on maximum and minimum joint moments or muscles forces and accu-
rate information about moment arms and cross-sectional areas of muscles as
functions of configuration.

• Muscle activation dynamics deals with mechanisms behind the force produc-
tion in muscles (Pandy 2001; Ackermann and Schiehlen 2006). This can be
incorporated in the models by using muscle activation levels as controls. This
will present further computational challenge as controls then enter in nonlinear
forms.

• The primary aim of this study was to compare results for different optimization
criteria, rather than with experimental results. Still, carrying out experimental
studies to compare the results from the simulations is an important future step.

• It is not entirely known which cost fuction is appropriate in which movement
situation; a combination of various cost criteria may have to be tested to ensure
accurate description of a movement.

• Studies on human movements seem to agree that a movement is produced
through a planning process and a real-time feedback criterion. This study has
only considered the planning phase, but the performance phase is well worthy
of further analysis.

In conclusion, it can be said that human movements are complex activities and in or-
der to model them, great simplifications are often necessary. In this study, the body
parts have been modelled as rigid segments and the movements of these segments
have been studied from a purely mechanical point of view, with neural control com-
pletely ignored. In spite of these shortcomings, the present method provides a simple
way to increase the understanding of human movement strategies and provides several
meaningful conclusions.
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APPENDIX A

Sequential Quadratic Programming

The basic idea of SQP is to model the nonlinear problem by a quadratic subproblem at
each iterate and to define the search direction as the solution of this subproblem. An
estimate of the Hessian of the Lagrangian is updated in each iteration using a BFGS
method (Nash and Sofer 1996; Nocedal and Wright 1999).
The nonlinear problem to be solved is:

mimimize Π(z) subject to
b1(z) = 0

b2(z) ≤ 0

(A.1)

Lagrangian L is formed as:
L(z, λ) = Π(z) + λT b (A.2)

where λ are the Lagrange multipliers and b includes both b1 and b2. In SQP, the
problem is then stated as:

mimimize
1

2
pT Hkp + ∇Π(zk)T p subject to

∇b1(zk)T p + b1(zk) = 0

∇b2(zk)T p + b2(zk) ≤ 0

(A.3)

whereHk denotes the Hessian of the Lagrangian and p is the search direction.
p at the current iterate k is used to find next solution as:

zk+1 = zk + pk (A.4)
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