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Optimal disturbances in boundary layer flows.

Martin G. Byström
KTH Mechanics, SE-100 44 Stockholm, Sweden

Abstract

This thesis deals with algebraic growth in boundary layer flows, within the
spatial framework. Adjoint-based optimization procedures are employed to
identify the initial disturbance which experiences the maximum amplification.
Such optimal disturbances are herein calculated in various boundary layer flows.
Firstly, two-dimensional boundary layers affected by suction is considered, and
comparisons are made between a developing boundary layer, where the lead-
ing edge region is unaffected by suction, and a non-developing boundary layer
where suction is applied over the entire streamwise interval. Based on the
numerical results, a hypothesis is presented to explain previous experimental
findings which indicates that the spanwise scale of the disturbances is set in
the leading-edge region. Secondly, swept boundary layers subjected to adverse
and favourable pressure gradients are considered. It is shown that the opti-
mal disturbances take the form of tilted vortices in the cross-flow plane. As
these algebraically growing disturbances evolve downstream, they are fed into
exponentially growing cross-flow modes when the critical Reynolds number is
exceeded. It is also shown that the basic shape of the disturbance remains
the same as it evolves from the region of algebraic growth to the super-critical
region of the boundary layer.

Descriptors: Optimal disturbance, boundary layer, suction, streaks, al-
gebraic growth, stability, transition.
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Preface

The thesis contains the following papers:

Paper 1. Martin G. Byström, Ori Levin & Dan S. Henningson. Optimal
disturbances in suction boundary layers. Eur. J. Mech., B/Fluids 26, 330–343.

Paper 2. Martin G. Byström, Ardeshir Hanifi & Dan S. Henningson. Opti-
mal disturbances in the Falkner–Skan–Cooke boundary layers. To be submitted

Division of work between authors
The numerical code employed for the first paper was already existing at KTH
mechanics. Martin Byström implemented new subroutines for the baseflow
and wrote the paper with assistance from Ori Levin and Dan Henningson. In
the second paper, the adjoint NOLOT code, developed at FOI and DLR, was
modified for the calculation of optimal disturbances by Martin Byström, who
wrote the paper with assistance from Ardeshir Hanifi and Dan Henningson.
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CHAPTER 1

Introduction

The transition from laminar to turbulent boundary layer flow may follow differ-
ent scenarios depending on the outside disturbance environment. Exponentially
growing waves arise in boundary layers subjected to low levels of free-stream
turbulence, Tollmien–Schlichting waves in two-dimensional flows and cross-flow
disturbances in three-dimensional boundary layers. The breakdown of these
waves causes transition. Another transition scenario may however occur in
boundary layers subjected to high or moderate levels of free-stream turbu-
lence. This kind of disturbance environment gives rise to elongated, streamwise-
oriented structures of alternating low and high velocity. These structures are
commonly referred to as streaks or Klebanoff modes after the experiments of
Klebanoff (1971). A number of experimental studies have shown that these
streaks grow algebraically in the downstream direction (Westin et al. (1994);
Matsubara & Alfredsson (2001); Fransson et al. (2005)). Further, as their
amplitude reach a critical level, the streaks break down to turbulence due to
secondary instability (Andersson et al. (2001); Brandt & Henningson (2002);
Hœpffner et al. (2005)). The theoretical framework which deals with the
growth of streaks is relatively modern. Ellingsen & Palm (1975) showed that
3D disturbances can attain linear growth over time in inviscid channel flow,
even when the flow does not posses any inflection point and thus is stable
according to classical eigenvalue analysis. The inviscid, algebraic growth will
eventually die out exponentially through viscous dissipation, as concluded by
Hultgren & Gustavsson (1981). This instability is therefore denoted algebraic
or transient growth. Landahl (1975,1980) illuminated the physical mechanism
behind transient growth, arguing that when a fluid element is lifted up in
the wall-normal direction it will initially maintain its horizontal momentum.
Hence, small perturbations in the wall-normal direction can cause large distur-
bances in the streamwise direction. This mechanism, commonly referred to as
the lift-up effect, is responsible for the formation of streamwise streaks.

The concept of optimal disturbances relates to various methods to iden-
tify the initial disturbance which maximizes the disturbance energy growth G,
defined as

G =
E2

E1
(1.1)
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where E denotes a norm of the disturbance energy. Within the temporal frame-
work one seeks to maximize the growth over a given time interval, E1 thus de-
notes the initial disturbance energy at time zero and E2 the energy at the end
of the temporal interval. Within the spatial framework, studied in this thesis,
the growth is maximized over a given streamwise interval, where E1 denotes the
energy at the inlet and E2 the energy at the outlet. Among the first to calcu-
late optimal disturbances numerically were Butler & Farrell (1992) and Reddy
& Henningson (1993). They considered the temporal development of three-
dimensional disturbances in shear flows and calculated the optimal disturbance
by optimizing over the eigenmodes of the Squire and Orr–Sommerfeld operator.
It was found that these disturbances consist of streamwise vortices that give rise
to streamwise streaks. Luchini (1996) studied the algebraic growth of three-
dimensional, spanwise periodic disturbances in the Blasius boundary layer. He
concluded that a mode with unbounded growth exists in the spatially broad-
ening boundary layer, where the effect of viscosity weakens with distance. The
study was however restricted to small spanwise wavenumbers, making it impos-
sible to determine the wavenumber associated with maximum energy growth.
This optimal wavenumber was later determined by Andersson et al. (1999) and
Luchini (2000), who independently calculated the optimal disturbance in the
developing Blasius boundary layer. They employed an adjoint-based optimiza-
tion procedure to calculate the optimal disturbance. In the current thesis we
will employ such optimization procedures to identify the optimal disturbances
in boundary layers affected by suction as well as in swept boundary layer flows.
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CHAPTER 2

Suction boundary layers

Paper 1 deals with the energy growth of non-modal disturbances in bound-
ary layers subjected to wall-suction. An adjoint-based optimization procedure
is employed to identify the initial disturbance associated with the maximum
energy growth, i.e. the optimal disturbance.

Fransson & Alfredsson (2003) carried out an experimental study of streaks
induced into a flat plate boundary layer by free-stream turbulence. Suction was
applied through the porous plate, the leading edge was however manufactured
from a solid material and thus free from suction. This setup, shown in fig-
ure 2.1, resulted in the formation of a Blasius boundary layer in the upstream
region, i.e. from the leading to the edge between the solid and the porous
plates. Downstream of this edge, where suction was applied, the flow evolved
into the asymptotic suction boundary layer (ASBL) which was reached within
the upstream half of the measurement interval. Herein, we will denote this
boundary layer a semi suction boundary layer (SSBL). The optimal disturban-
ces are calculated for both the SSBL and the ASBL, and comparisons are made
between these two base flows as well as with experimental results from Fransson
& Alfredsson (2003). The Reynolds number is set to Re = −U∞/Vw = 347
where U∞ is the free-stream velocity and Vw is the suction velocity, as shown
in figure 2.1. The scaling is described in detail in Paper 1, it is however useful
to note that the streamwise coordinate x is scaled such that the suction starts
at x = 1 in the SSBL.

In all calculations, the initial disturbance was introduced at the leading
edge. The streamwise position of the outlet was varied and the optimal energy
growth was calculated for streamwise intervals of varying length, as displayed
in figure 2.2. It was found that the maximum growth in the SSBL occurs
when the outlet is placed at the streamwise position where the suction starts,
i.e. over the upstream interval unaffected by suction. This is a result of the
relatively high suction rate employed by Fransson & Alfredsson (2003), with
lower suction rates the optimal energy growth will increase in the downstream
region affected by suction.

As expected, the optimal disturbances take the form of counter rotating,
streamwise oriented vortices, portrayed in figure 2.3. The vortices grow in
size and the cores become more distanced from the wall as the streamwise
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Figure 2.1. The semi suction boundary layer (SSBL).
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Figure 2.2. The growth G in the SSBL as function of the
streamwise coordinate x. The optimal spanwise wavenumber
of each respective interval was used, the frequency was set to
zero.

interval is prolonged. A comparative study between the SSBL and the ASBL
showed that the vortex cores of the optimal disturbance is located slightly
higher above the wall in the ASBL, while the downstream responses collapse
in long streamwise intervals. Figure 2.4 displays the energy growth in the
SSBL and the ASBL as function of both the spanwise wavenumber and the
streamwise coordinate. It was concluded that the energy growth as well as
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Figure 2.3. The optimal disturbance in the SSBL for the
streamwise intervals 0 ≤ x ≤ 2 (upper row), 0 ≤ x ≤ 6 (middle
row) and 0 ≤ x ≤ 10 (bottomrow).

the optimal spanwise wavenumber in the SSBL approach that in the ASBL
when the streamwise interval is prolonged. The energy growth is however
significantly higher in the SSBL over short intervals. These spatial results were
also compared to a previous temporal study of algebraic growth in the ASBL
by Fransson & Corbett (2003). It was found that the spatial methodology
predicts a maximum energy growth which is 16% higher than the temporal
result, the optimal spanwise wavenumber was however nearly identical.

There are a numbers of factors which need to be considered when comparing
the calculations presented herein to experimental results. In the calculations,
we assume that the disturbance enter the boundary layer at the initial point
of the streamwise interval and then evolves downstream without any influence
from the outside disturbance environment. This in in contrast to the experi-
mental conditions where the boundary layer is subjected to continuous forcing
from the free-stream turbulence over the entire streamwise interval. There
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Figure 2.4. Left column: the growth G as function of the
spanwise wavenumber β. Right column: the growth of the dis-
turbance with optimal wavenumber as function of the stream-
wise coordinate x. The SSBL (solid line) and the ASBL
(dashed line). The upper, middle and bottom row shows the
growth in the streamwise intervals 0 ≤ x ≤ 2, 0 ≤ x ≤ 6 and
0 ≤ x ≤ 10, respectively.

is also the possibility for nonlinear effects, which are not accounted for with
linearized equations employed herein. The calculations do however provide a
possible explanation for experimental findings which show that the spanwise
scale of the streaks in the SSBL is close to the scale of the streaks in the Blasius
boundary layer where no suction is applied. The present study has shown that
the relatively high suction rate makes it impossible for disturbances of the op-
timal scale in the ASBL to grow in the downstream region affected by suction.

6



This region will therefore be dominated by streaks of scales close to the opti-
mal scale in the Blasius boundary layer, since these disturbances have already
grown to large amplitudes in the upstream region unaffected by suction.
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CHAPTER 3

Swept boundary layers

In paper 2, we continue our study of algebraic instability in boundary layer
flows. The scene of the survey has changed to the three-dimensional (3D)
boundary layer over a flat, swept plate, where a constant pressure gradient is
present in the chordwise direction. The flow is independent of the spanwise co-
ordinate, this type of 3D flow is often referred to as 2.5D. For the incompressible
flow studied herein, the boundary layer is described by the Falkner–Skan–Cooke
similarity solution. The sweep angle is set to 45◦, both adverse and favorable
pressure gradients are considered. A parabolic set of disturbance equations are
employed to study the algebraic growth of spanwise periodic, stationary dist-
urbances with infinite wave length in the propagation direction. Both sub- and
supercritical Reynolds numbers are considered. An adjoint-based optimization
procedure is employed to calculate the optimal disturbances and the associ-
ated energy growth. For the figures presented in this chapter, two coordinate
systems are employed. The coordinates r1 and r2 are aligned with and perpen-
dicular to the incoming flow, respectively, while the coordinates s1 and s2 are
aligned with and perpendicular to the external streamline. The wall-normal
coordinate is denoted by r3 and s3. Further details on the coordinate systems
and scaling are given in Paper 2.

It is well known that disturbances in 3D boundary layers tend to be aligned
with the external streamline. The disturbance equations were therefore inte-
grated along this line, and the wavenumber in this direction was set to zero.
The disturbances were however found to deviate a small amount from the
streamline, as shown in figure 3.1. An iterative procedure was therefore imple-
mented, where the true propagation direction of the disturbance is identified
and employed as integration path. This line, which we denote the streakline, is
defined as the line which follows the maximum of the streamwise component
of the disturbance velocity.

First a sub-critical streamwise interval was considered and the optimal dist-
urbances calculated. Figure 3.2 shows the optimal disturbances at the inlet and
the resulting streaks at the outlet. In agreement with what has been found for
a number of 2D shear flows, the optimal disturbances takes the form of counter
rotating vortices, when the disturbances are projected onto the cross-flow plane
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Figure 3.1. Contours of positive (dark gray) and negative
(light gray) streamwise velocity. External streamline (dashed
line) and the streakline (solid line) used in the calculations,
following the maximum of the streamwise disturbance veloc-
ity. Note that the figure does not portray one plane at a fixed
wall-normal position, but rather a curved sheet which follows
the maximum of the streamwise disturbance velocity at each
chordwise station. Note also the high visual aspect ratio be-
tween the r1- and r2-axis.

(i.e. the plane perpendicular to the external streamline). The vortices are how-
ever not symmetric as in 2D flows, but tilted around the wall-normal axis. The
vortices are tilted anti-clockwise in the accelerated flow and clockwise in the
retarded flow. This difference is likely related to the cross-flow component of
the boundary layer, which changes sign with the pressure gradient. The vor-
tices gives rise to streaks of alternating low and high streamwise velocity (here
streamwise denotes the direction of the external streamline). These streaks at
the outlet are also displayed in figure 3.2, we gather that the orientation of
the disturbances change as they evolve downstream, such that the streaks in
the accelerated flow is tilted clockwise at the outlet while the streaks in the
retarded flow are tilted anti-clockwise.

Secondly, the streamwise interval for the accelerated flow was extended
to include super-critical Reynolds numbers. The optimal disturbance and the
corresponding energy growth was calculated for this interval. Figure 3.3 shows
the energy growth of the optimal disturbances, the algebraic growth at the
upstream part of the interval pass over to exponential growth as the critical
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Figure 3.2. (a & c) Vector representation of optimal dist-
urbances in the Falkner–Skan boundary layers, projected onto
the cross-flow plane at the inlet. (c & d) Downstream response
to the optimal disturbances, contours of positive (black) and
negative (grey) streamwise velocity in the cross-flow plane. (a
& b), Favorable pressure gradient. (c & d) Adverse pressure
gradient.
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Figure 3.3. Energy growth of the optimal disturbance (black
dashed line), algebraic growth followed by exponential growth.
Data from a PSE calculation of a cross-flow mode (grey line)
with the same spanwise wavenumber is included for compari-
son. The dots are associated with figure 3.4.

Reynolds number is surpassed. Data from a calculation with parabolized sta-
bility equations for a cross-flow mode initiated at the neutral stability point has
been included for comparison. It can be seen that the growth rate of the opti-
mal disturbance collapse with that of the cross-flow mode in the super-critical
part of the interval. The disturbance profiles of the downstream response of
the optimal disturbance collapse perfectly with the profiles of the cross-flow
mode at the outlet (see figure 11 in paper 2). Hence, it was concluded that
the algebraically growing, non-modal disturbance pass over into an exponen-
tially amplified cross flow mode as the critical Reynolds number is surpassed.
From figure 3.3 it can also be concluded that the transition from algebraic
to exponential growth is a gradual process without any jumps in the growth
rate. Figure 3.4 portrays the amplitude functions at two streamwise stations,
marked in figure 3.3, where the disturbances receives algebraic and exponential
amplification, respectively. It is clear that no dramatic change has occurred
to the shape of the disturbance. It was therefore concluded that the physical
mechanism that drives the algebraic instability is similar to that responsible
for the exponential instability, and that the algebraic disturbances are feed into
exponentially amplified modes as the critical Reynolds-number is exceeded.
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û

Figure 3.4. Downstream response to the optimal disturbance
in regions of algebraic (solid line) and exponential growth
(dashed line), i.e. the chordwise positions marked by dots in
figure 3.3. Falkner–Skan–Cooke profiles at the same positions
(grey line). The chordwise, spanwise and wall-normal velocity
component are denoted u, v and w, respectively.

12



References

Andersson, P., Berggren, M. & Henningson, D. 1999 Optimal disturbances and
bypass transition in boundary layers. Phys. Fluids 11 (1), 134–150.

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the
breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60.

Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-
pressure-gradient boundary layers. J. Fluid Mech. 472, 229–261.

Butler, K. M. & Farrell, V. F. 1992 Three-dimensional optimal perturbations
in viscous shear flow. Phys. Fluids A 4 (8), 1637–1650.

Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487–488.

Fransson, J. H. M. & Alfredsson, P. H. 2003 On the disturbance growth in an
asymptotic suction boundary layer. J. Fluid Mech. 482, 51–90.

Fransson, J. H. M. & Corbett, P. 2003 Optimal linear growth in the asymptotic
suction boundary layer. Eur. J. Mech., B/Fluids 22, 259–270.

Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition in-
duced by free-stream turbulence. J. Fluid Mech. 527, 1–25.

Hœpffner, J., Brandt, L. & Henningson, D. S. 2005 Transient growth on bound-
ary layer streaks. J. Fluid Mech. 537, 91–100.

Hultgren, L. & Gustavsson, L. 1981 Algebraic growth of disturbances in a laminar
boundary layer. Phys. Fluids 24 (6), 1000–1004.

Klebanoff, P. S. 1971 Effect of freestream turbulence on the laminar boundary
layer. Bull. Am. Phys. Soc. 10, 1323.

Luchini, P. 1996 Reynolds-number-independent instability of the boundary layer
over a flat surface. J. Fluid Mech. 327, 101–115.

Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer
over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309.

Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers
subjected to free-stream turbulence. J. Fluid Mech. 430, 149–168.

Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows.
J. Fluid Mech. 252, 209–238.

Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. &

Alfredsson, P. H. 1995 Experiments in a boundary layer subjected to free

13



stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid
Mech. 281, 193–218.

14



Acknowledgements

I thank my supervisors Professor Dan Henningson, who gave me the oppor-
tunity for these studies, and Professor Ardeshir Hanifi who has guided me
through the work. I also thank Ori Levin who was my advisor during my first
time at the department.

I thank Docent Jens Fransson for many valuable comments on Paper 1. I
also thank Doctor Jan Pralits for his advice.

Furthermore, I like to thank everyone at department, in particular my
colleagues Carl-Gustav, Shervin, Luca, Lars-Uve, Astrid, Ori, Espen, Jérôme,
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Optimal disturbances in suction boundary

layers

By Martin G. Byström, Ori Levin and Dan S. Henningson

A well known optimization procedure is used to find the optimal disturbances
in two different suction boundary layers within the spatial framework. The
maximum algebraic growth in the asymptotic suction boundary layer is pre-
sented and compared to previous temporal results. Furthermore, the spatial
approach allows a study of a developing boundary layer in which a region at
the leading edge is left free from suction. This new flow, which emulates the
base flow of a recent wind-tunnel experiment, is herein denoted a semi suction
boundary layer. It is found that the optimal disturbances for these two suction
boundary layers consist of streamwise vortices that develop into streamwise
streaks, as previously found for a number of shear flows. It is shown that the
maximum energy growth in the semi suction boundary layer is obtained over
the upstream region where no suction is applied. The result indicates that the
spanwise scale of the streaks is set in this region, which is in agreement with
previous experimental findings.

1. Introduction

The transition from laminar to turbulent flow is a critical process in any engi-
neering application where the minimization of friction drag is a design objec-
tive. Transition prediction has traditionally been carried out by considering the
unstable eigenmodes of the Orr–Sommerfeld equations, i.e. the exponentially
growing Tollmien–Schlichting waves. However, under certain circumstances
other transition scenarios are more likely. It is well known that elongated,
streamwise-oriented structures of alternating low and high velocity develop in
boundary layers subjected to high or moderate levels of free-stream turbulence.
These structures are commonly referred to as streaks or Klebanoff modes after
the experiments of Klebanoff (1971). Since then, a number of experimental
studies have shown that these streaks grow algebraically in the downstream
direction (Westin et al. (1994); Matsubara & Alfredsson (2001); Fransson
et al. (2005)). Due to secondary instabilities, they break down to turbulence
when their amplitude reach a critical level (Andersson et al. (2001); Brandt
& Henningson (2002); Hœpffner et al. (2005)). The physical mechanism be-
hind the formation of streaks was first explained by Landahl (1975, 1980). He
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argued that when a fluid element is lifted up in the wall-normal direction it
will initially maintain its horizontal momentum. Hence, small perturbations in
the wall-normal direction can cause large disturbances in the streamwise direc-
tion. This mechanism is commonly referred to as the lift-up effect. Ellingsen
& Palm (1975) showed theoretically that three-dimensional disturbances can
grow linearly with time in an inviscid flow without inflection point.

Among the first to calculate optimal perturbations numerically were Butler
& Farrell (1992) and Reddy & Henningson (1993). Butler & Farrell (1992)
considered the temporal development of linear, three-dimensional perturba-
tions in a number of shear flows. They used a variational method to find the
optimal perturbations, i.e. the perturbations that gain the most energy in a
given time period. It was found that these perturbations resemble streamwise
vortices that give rise to streamwise streaks. Corbett & Bottaro (2000, 2001)
calculated the optimal perturbation of the Falkner–Skan boundary layer and
later the Falkner–Skan–Cooke boundary layer within the temporal framework.
The spatial framework is however more physically relevant than the temporal,
it has also the advantage of allowing studies of non-parallel flows such as the
developing Blasius boundary layer (BBL). Andersson et al. (1999) and Luchini
(2000) separately calculated the optimal disturbance in the non-parallel BBL.
The disturbance was introduced at the leading edge and it was found that the
optimal disturbance consists of streamwise aligned vortex pairs developing into
streaks. Levin & Henningson (2003) extended the work of Andersson et al.
(1999) to the Falkner–Skan boundary layer. The disturbance was however not
initiated at the leading edge, but at a downstream position optimized to give
the highest possible growth.

One method to delay transition is to apply suction through the surface
which the boundary layer develops over. The suction can be optimized to min-
imize the growth of different types of disturbances Balakumar & Hall (1999);
Pralits et al. (2002); Zuccher et al. (2004). Herein we will however study the
algebraic disturbance growth in boundary layers where uniform suction is ap-
plied. When uniform suction is applied over a flat plate, the boundary layer
will asymptotically approach the asymptotic suction boundary layer (ASBL),
as outlined in Schlichting (1979). Fransson & Alfredsson (2003) made an
experimental study on the algebraic growth of disturbances induced by free-
stream turbulence in the ASBL. A small region at the leading edge was however
free from suction, allowing a BBL to develop up to the point where the suction
set in. Downstream of this point the flow evolved into the ASBL, which was
reached within the upstream half of the measurement interval. In the present
paper, we will denote this type of boundary layer, where suction is applied
only over the downstream part of the interval, a semi suction boundary layer
(SSBL). Fransson & Alfredsson (2003) compared the disturbance growth in
the BBL and the SSBL. The disturbance energy was found to grow linearly
in the downstream direction, but when suction was applied the growth ceased



Optimal disturbances in suction boundary layers 23

so that the present amplitude level was kept essentially constant. The suction
also resulted in a twofold reduction of the boundary-layer thickness, despite of
this the spanwise scale of the streaks was maintained. Fransson & Alfredsson
(2003) argue that the initial spanwise scale is decided in the receptivity pro-
cess, this would explain the similarity of scales since a BBL is present at the
leading edge of the SSBL. Yoshioka et al. (2004) extended the work of Fransson
& Alfredsson (2003) to a number of turbulence levels, free-stream and suction
velocities. They found that the wall suction suppresses the disturbance growth,
for high suction rates the disturbance energy may even decay. For conditions
similar to those of the experiment by Fransson & Alfredsson (2003), it was
concluded that the disturbances initiated at the leading edge become mainly
passive and are convected downstream by the flow without changing the span-
wise scale. However, Yoshioka et al. (2004) argue that the spanwise scale of
the streaks approach the optimal scale in the ASBL when the conditions are
such that the difference in displacement thickness between the upstream and
downstream region is small. Fransson & Corbett (2003) used an adjoint-based
optimization procedure (Corbett & Bottaro (2001)) to calculate the optimal
perturbation in the ASBL within the temporal framework. The optimal veloc-
ity perturbation was found to be in good agreement with experimental data
from Fransson & Alfredsson (2003), but there was some discrepancy between
the optimal wavenumber and those experimentally observed.

In the present paper we calculate the optimal disturbances in the ASBL
and the SSBL within the spatial context. The calculations are carried out with
an adjoint-based optimization procedure implemented by Levin & Henningson
(2003), valid in the large Reynolds-number limit for a viscous, incompressible
flow. Furthermore, the spanwise wavenumber and angular frequency of the
disturbance as well as the streamwise interval length are optimized. The current
study was motivated by the wind-tunnel experiment by Fransson & Alfredsson
(2003). Results from this experiment have previously been compared with the
temporal study of the ASBL by Fransson & Corbett (2003). This study was
however restricted to a non-developing base flow. The spatial approach used
herein allows us to simulate the actual base flow of the experiments, i.e. the
SSBL. A comparison of the optimal disturbances in the ASBL and the SSBL
is then carried out to establish the effect of the differences between these two
suction boundary layers.

2. General formulation

We study the growth of optimal disturbances in a flat plate boundary layer
where suction is applied at the wall. As seen in figure 1, we denote the stream-
wise, wall-normal and spanwise coordinates x, y and z and the corresponding
velocities u, v and w, respectively. The time is denoted t, the pressure p, the
spanwise wavenumber and the angular frequency are denoted β and ω. The
kinematic viscosity and the density of the fluid are denoted ν and ρ.
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Figure 1. The semi suction boundary layer (SSBL).

The base flow of the ASBL is given by a simple analytic expression, first
derived by Griffith and Meredith Griffith & Meredith (1936)

U = U∞

(

1 − exp

[

Vw

ν
y

])

, V = Vw, (1)

where U∞ is the free-stream velocity and Vw is the suction velocity at the wall,
which assumes a negative value when suction is applied. This velocity profile is
an exact solution to both the full Navier–Stokes equations and the boundary-
layer equations. The displacement thickness δ1 of the ASBL is constant since
the base flow does not vary in the streamwise direction. The Reynolds number
based on this constant displacement thickness can also be written as the ratio
between the free-stream velocity and the suction velocity, from here on we will
refer to this as the suction Reynolds number Re

δ1 = −
ν

Vw
, Re =

U∞δ1
ν

= −
U∞

Vw
. (2)

Herein we will use a scaling based on the constant displacement thickness of the
ASBL to scale both mean flow and disturbances. This scaling, summarized in
table 1, will be referred to as the ASBL scalings. From here on we will use the
superscript * to distinguish non-scaled, physical quantities from those scaled in
accordance with table 1. Using scaled quantities we may rewrite equation (1)

U =
U∗

U∞

= 1 − exp

[

−
y∗

δ1

]

= 1 − exp [−y] , V =
V ∗

w

U∞

Re = Vw. (3)

The base flow of the SSBL can be divided into two regions. In the first
region, from the leading edge to the position where the suction starts, the base
flow was obtained by solving the Blasius similarity equation. In the second
region, where suction is applied, the base flow was obtained by numerically
solving the boundary-layer equations. The streamwise velocity is subjected to
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Table 1. The ASBL scalings

variable: x y, z t u v, w p β ω
scaling: δ1Re δ1 δ1Re/U∞ U∞ U∞/Re ρU2

∞
/Re2 1/δ1 U∞/(δ1Re)

homogeneous boundary conditions at the wall, the boundary condition for the
wall-normal component is given by the suction velocity Vw. We scale the SSBL
with the ASBL scalings given by table 1. The Reynolds number Re = −U∞/Vw

is however not physically relevant in the upstream region where no suction is
applied. The BBL of this region has previously been studied by Andersson
et al. (1999), Luchini (2000) and Levin & Henningson (2003). They used
boundary-layer scalings and defined a Reynolds number Rel = U∞l/ν, where
l is a fixed streamwise distance that is also used to scale x. In the SSBL, the
natural choice for l is the distance between the leading edge and the point
where the suction starts. Writing the starting position of the suction, xs, with
the ASBL scalings from table 1

xs =
x∗s
δ1Re

=
l

δ1Re
=
Rel

Re2
, (4)

we find that changing the starting position of the suction is equivalent to chang-
ing Rel, given that Re is kept constant. In the study of the SSBL presented in
§ 3.1 we set xs to unity in order to comply with the experiments by Fransson
& Alfredsson (2003). Setting xs to unity is equivalent to setting Rel = Re2,
this is beneficiary since it means that quantities scaled with the ASBL scalings
can be directly compared to quantities scaled with the boundary-layer scalings
and vice versa. Further details on the base flow of the SSBL will be given in
§ 3.1a.

For these two-dimensional steady base flows, the SSBL and the ASBL, we
consider three-dimensional and time-dependent disturbances. The disturban-
ces are taken to be periodic in the spanwise direction and in time. We consider
algebraically growing disturbances with weak streamwise variation, the stream-
wise wavenumber is thus set to zero. Either one of the disturbances u, v, w or
p can then be assumed to be of the form

f = f̂(x, y) exp [iβz − iωt] . (5)

Introducing this assumption in the non-dimensional, linearized Navier–Stokes
equations and neglecting terms of low order yields a parabolic set of distur-
bance equations as outlined in Levin & Henningson (2003). The disturbance
is subjected to no-slip boundary conditions at the wall, the wall-normal distur-
bance can be set to zero since we consider suction through a material of low
permeability (Fransson & Corbett (2003)). Together with boundary and initial
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conditions, the disturbance equations form an initial boundary-value problem
that can be solved through downstream marching for a disturbance with given
spanwise wavenumber and angular frequency.

The aim is to optimize the initial disturbance (û0, v̂0, ŵ0) at x0, the begin-
ning of the interval, in order to achieve maximum possible amplification of the
disturbance energy at x1, the end of the interval. We define the growth G over
the interval x0 ≤ x ≤ x1 as the ratio between the disturbance energy E at the
end and beginning of the interval.

G(x0, xs, x1, β, ω,Re) =
E(x1)

E(x0)
. (6)

Observe that the growth in the ASBL will not depend on the position where
the suction starts, xs, since we assume that it is located sufficiently far up-
stream so that the ASBL has been reached at the start of the interval. The
energy norm E is defined in the same way as stated in Andersson et al. (1999),
Luchini (2000) and Levin & Henningson (2003). As outlined in these papers,
in a high Reynolds-number flow the highest possible growth is achieved for an
initial disturbance with a zero streamwise component, due to the difference in
order between the streamwise component and the wall-normal and spanwise
components. This difference in order also makes it possible to neglect the wall-
normal and spanwise components at the end of the interval. It then follows
that the growth scales quadratically with Re in the large Reynolds-number
limit (Andersson et al. (1999); Luchini (2000); Levin & Henningson (2003)).

Since the initial boundary-value problem is linear and homogeneous an
input-output formulation can be adopted, such that the disturbance at the
final position is a linear function of the initial disturbance. By introducing the
adjoint equations, the optimal initial disturbance and the associated growth
can be calculated through power iterations. The optimization procedure used
herein to calculate the optimal disturbances in the SSBL and the ASBL was
implemented by Levin & Henningson (2003). It is similar to the procedures
that were used by Andersson et al. (1999) and Luchini (2000). A detailed
description of this procedure can also be found in the textbook by Schmid,
D. S. Henningson (2001).

3. Results

All results presented in this section have been subjected to convergence tests
in order to ensure their accuracy. Furthermore, the height of the calculation
box ymax was varied between 40 and 60 to make sure that the whole initial
disturbance was captured.

3.1. The semi suction boundary layer

3.1a. Base flow. In this section we study the SSBL in which a BBL develops
from the leading edge to the point where the suction starts. Downstream
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of this point a uniform suction is applied, in this evolution region the flow
evolves towards the ASBL. The streamwise distance needed for the flow to
reach the ASBL is decided by the strength of the suction and the thickness
of the BBL at the position where the suction starts. The SSBL emulates the
base flow of an experiment carried out by Fransson & Alfredsson (2003). In
this experiment, the boundary layer developed over a flat plate made of porous
material so that suction could be applied. The leading edge was however made
of an impermeable material, leaving this region free from suction. Fransson &
Alfredsson (2003) set the suction Reynolds number to Re = 347 and started
the suction 360 mm downstream of the leading edge, equivalent to setting
xs = x∗s /(δ1Re) to unity. As outlined in § 2, this allows us to make direct
comparisons with quantities scaled with the boundary-layer scalings. Herein
we study the SSBL over nine streamwise intervals, all starting at x0 = 0 and
with suction from xs = 1 to the end of the interval. The length of the interval
is varied by changing the end position from x1 = 2 to x1 = 10 in steps of one.

Fransson & Alfredsson (2003) used a non-dimensional evolution equation
to calculate the base flow of the evolution region between the BBL and the
ASBL. The exact agreement with their results validated the numerical solver
of the boundary-layer equations that was used in the present implementation.
A small modification of the base flow was however made since the SSBL is
discontinuous at xs = 1 where the suction starts. In order to remove this
discontinuity, we employ a strategy previously used by Zuccher et al. (2004)
and Corbett & Bottaro (2001), using a step function to smoothly increase the
suction from zero at x = 0.9 to full suction at x = 1.1. The used step func-
tion (Berlin & Henningson (1996)) has continuous derivatives of all orders and
gives the same mass flux through the wall as the discontinuous flow. Figure 2
shows a comparison of the displacement thickness of the discontinuous flow
and the modified continuous flow with smoothly applied suction. Despite the
smooth application of the suction, the flow undergoes a significant transforma-
tion over a short streamwise distance, a finer grid was therefore used in this
region and at the leading edge. Experimental data from Fransson & Alfredsson
(2003) is also included in figure 2, good agreement can be seen between the
calculated and measured displacement thickness.

Another approximation was done in the treatment of the leading edge. The
limit of the normal velocity of the BBL is infinity when x tends towards zero.
However, here we follow the work of Andersson et al. (1999) and set the normal
velocity to zero and the streamwise velocity to unity at the initial point of the
calculation interval.

3.1b. Optimal disturbances. The influence of the spanwise wavenumber β and
the angular frequency ω on the energy growth in the SSBL was studied for the
nine streamwise intervals defined in § 3.1a. Apart from when the ω-dependence
is studied, ω is set to zero for all calculations presented in this section.
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Figure 2. The displacement thickness δ1(x) of the SSBL at
Re = 347, scaled with the constant displacement thickness
of the ASBL. Discontinuous flow (dashed line) and approx-
imated continuous flow with smoothly applied suction (solid
line). Experimental data from Fransson and Alfredsson Frans-
son & Alfredsson (2003) (dots).

Figure 3 shows the growth as function of β for all nine streamwise intervals.
We gather that the optimal growth occurs at different β for each respective in-
terval, i.e. for each streamwise interval there is an optimal β that gives the
largest possible growth at the end of that interval. This optimal β and the cor-
responding optimal growth decrease as the interval is prolonged. The optimal
spanwise wavenumbers and the corresponding optimal growth are summarized
in table 2, § 3.2.

The ω-dependence is exposed in figure 4, which shows contours of constant
growth in the (ω, β)-plane for the streamwise interval 0 ≤ x ≤ 6. From the
figure we conclude that the optimal ω is zero, this conclusion was found to be
true for all the streamwise intervals studied here. This is in agreement with
what has been found for the BBL by Luchini (2000) and the Falkner–Skan
boundary layer by Levin & Henningson (2003).

The growth as function of the streamwise coordinate x is shown in figure 5
for all nine streamwise intervals. The optimal β of each respective interval was
used in these calculations and ω was set to zero. The optimization procedure
used herein optimizes the growth at the end of the streamwise interval. The
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Figure 3. The growthG in the SSBL at Re = 347 as function
of β for nine streamwise intervals ranging from 0 ≤ x ≤ 2 to
0 ≤ x ≤ 10 in steps of one.

optimal growth is thus the largest possible growth at the end of the streamwise
interval but does not necessarily constitute the largest growth in the interval.
As seen in figure 5 each curve has a maximum upstream of their respective end
position and these maxima exceed the optimal growth for all intervals. The
maxima are located in the suction part of the SSBL, except for the shortest
interval (0 ≤ x ≤ 2), which has the maximum located at the starting point of
the suction, i.e. at the end of the BBL. When the endpoint of the interval was
moved further upstream, towards the starting point of the suction, it was found
that the maximum remains located at this point. Due to the smooth application
of the suction (see § 3.1a), the maximum growth is reached slightly upstream
of xs = 1. It is however reasonable to assume that the maximum growth will
be reached at exactly xs = 1 in the discontinuous flow. The optimal interval
for the SSBL thus ends at the point where the suction starts. In this interval,
where no suction is applied, the base flow is simply the BBL for which it is well
known that the optimal spanwise wavenumber is β = 0.45 (Andersson et al.
(1999), Luchini (2000)).

Figure 6 shows the optimal disturbances in the SSBL for the streamwise
intervals 0 ≤ x ≤ 2 (solid line), 0 ≤ x ≤ 6 (dashed line) and 0 ≤ x ≤ 10 (dotted
line). For each respective interval the optimal β was used and ω was set to
zero. Figures 6 (a–b) show the optimal disturbance while figure 6 (c) shows
the downstream response of the optimal disturbance at the final position. The
downstream response takes the form of a streamwise elongated streak when



30 Martin G. Byström, Ori Levin and Dan S. Henningson

0 1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

β

ω

Figure 4. Contours of constant growth G in the SSBL at
Re = 347 in the (ω, β)-plane for the streamwise interval 0 ≤
x ≤ 6.

the spanwise periodic dependence is considered. The amplitude of the streak
is larger for short intervals than for long, but the shape of the streak remains
similar and the profile maximum is located at about the same wall-normal
distance from the wall, where the SSBL reaches approximately three quarters
of the free-stream velocity. From this we conclude that there is an optimal
shape, a streak located at a certain wall-normal position, that gives the highest
disturbance energy at the end of the interval.

The optimal disturbance, i.e. the wall-normal and spanwise components
shown in figures 6 (a–b), takes the form of streamwise aligned vortex pairs
when the spanwise periodic dependence is considered. We also observe that
the profile maxima move upward when the streamwise interval is prolonged.
Thus, the vortex cores of the initial disturbance move upward and the vortices
grow in size, as seen in figure 7. An explanation for this is that the suction
will draw the disturbance towards the wall as it evolves downstream. From
figure 6 (c) we saw that the downstream response of the optimal disturbance
is a streak located at a certain optimal wall-normal position. The cores of the
vortices, i.e. the optimal disturbance, must be located some distance higher in
the wall-normal direction in order to allow the suction to draw the disturbance
down to this optimal wall-normal position as it evolves over the interval. This
effect is stronger for longer streamwise intervals where the suction will act on
the disturbance over a longer distance. The vortex cores must therefore be
located higher for a long interval than for a short in order for the disturbance
to reach the optimal wall-normal coordinate at the end of the interval.
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Figure 5. The growthG in the SSBL at Re = 347 as function
of x for nine streamwise intervals ranging from 0 ≤ x ≤ 2 to
0 ≤ x ≤ 10 in steps of one. The optimal β of each respective
interval was used, ω was set to zero.

3.2. A comparison with the asymptotic suction boundary layer

In this section we study the energy growth of the optimal disturbance in the
ASBL and make a comparison between the SSBL and the ASBL. We study the
ASBL over the same streamwise intervals that were used for the SSBL, although
the suction is here applied over the whole interval. Since the base flow of the
ASBL does not vary in the streamwise direction (see § 2), it is however arbitrary
which interval we study as long as we keep the length constant. The Reynolds
number Re was set to 347, as in the study of the SSBL.

The optimal disturbance in the ASBL takes the form of streamwise aligned
vortex pairs that give rise to streamwise elongated streaks. This is in agreement
with the results from the temporal study of the ASBL by Fransson & Corbett
(2003). The dependence on the spanwise wavenumber β resembles that found
for the SSBL (see table 2) and the optimal angular frequency ω was found to be
zero irrespective of the interval length. Figure 8 shows the growth as function
of the streamwise coordinate for all nine streamwise intervals, the optimal β
for each respective interval was used in these calculations and ω was set to
zero. For all the intervals the optimal growth is exceeded by maxima upstream
of the endpoints. An optimization of the endpoint of the streamwise interval
was therefore carried out, it was found that the largest possible growth of G =
0.11 ·10−2Re2 occurs when x1 = 0.89 and β = 0.52, the dashed line in figure 8.
This result can be compared with the temporal study of the ASBL by Fransson
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Figure 6. The optimal disturbance in the SSBL at Re = 347
and for the streamwise intervals 0 ≤ x ≤ 2 (solid line), 0 ≤
x ≤ 6 (dashed line) and 0 ≤ x ≤ 10 (dotted line). (a–b) The
wall-normal component v̂0 and the spanwise component ŵ0 of
the optimal disturbance. (c) The downstream response of the
optimal disturbance, streamwise component û1. Observe that
the scaling of û differs a factor Re from the scaling of v̂ and
ŵ, see § 2. The grey line shows the ASBL, scaled down to
fit the figure. The ASBL has been reached (within graphical
accuracy) at the end of the streamwise intervals examined here.

& Corbett (2003). They found that the optimal disturbance, with β = 0.53,
gives rise to a growth of G = 0.99 · 10−3Re2 over the optimal temporal interval.
The spatial growth presented here is 16% higher than this temporal result. Biau
& Bottaro (2004), who carried out a study on optimal disturbances in the plane
Poiseuille flow, also found that spatial analysis gives higher growth than the
temporal analysis. The plane Poiseuille flow was implemented herein and the
growth calculated for the optimal wavenumber and interval given by Biau &
Bottaro (2004). The result matched that of Biau & Bottaro (2004) and thus
validated the used optimization procedure.

It is interesting to compare the optimal disturbance in the SSBL with that
in the ASBL since it will expose how the differences in the base flow at the
beginning of the interval affect the disturbance as it evolves downstream. One
would expect that the differences between the disturbances will go towards
zero as the streamwise interval is prolonged since the base flow of the SSBL
approaches that of the ASBL.
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Figure 7. The optimal disturbance in the SSBL at Re = 347
for the streamwise intervals 0 ≤ x ≤ 2 (upper row), 0 ≤ x ≤ 6
(middle row) and 0 ≤ x ≤ 10 (bottom row).

The left column of figure 9 shows the growth as function of the spanwise
wavenumber β for both the SSBL (solid line) and the ASBL (dashed line) while
the right column shows the growth as function of the streamwise coordinate x.
The angular frequency ω was set to zero and the optimal β was used when the
growth as function of x was calculated. Three different streamwise intervals
were used, 0 ≤ x ≤ 2, 0 ≤ x ≤ 6 and 0 ≤ x ≤ 10. For the shortest interval,
shown in the upper row, the SSBL gives a 30% higher optimal growth than the
ASBL. The optimal growth also occurs at a lower spanwise wavenumber for the
SSBL than for the ASBL. Studying the growth as function of x, we gather that
the reason for the large difference in growth is the contribution from the BBL
at the beginning of the SSBL. The middle row shows the interval 0 ≤ x ≤ 6,
for this interval the curves lie much closer, but the SSBL still gives a slightly
higher optimal growth than the ASBL. The optimal spanwise wavenumber is
however the same. The contribution from the BBL is also much smaller, this
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Figure 8. The growth G in the ASBL as function of x at
Re = 347 for nine streamwise intervals ranging from 0 ≤ x ≤ 2
to 0 ≤ x ≤ 10 in steps of one (solid lines) and for the optimal
interval 0 ≤ x ≤ 0.89 (dashed line). The optimal β of each
respective interval was used in these calculations and ω was
set to zero.

explains why the optimal growth in the SSBL ends up so much closer to that in
the ASBL. Finally we examine the long streamwise interval 0 ≤ x ≤ 10, shown
in the bottom row of figure 9. The curves collapse when we study the growth as
function of the spanwise wavenumber, but a small difference can still be seen at
the beginning of the streamwise interval. A more detailed comparison is done
in table 2, which states the optimal spanwise wavenumber and corresponding
optimal growth for all streamwise intervals. We conclude that the optimal
growth and spanwise wavenumber in the SSBL go towards those in the ASBL
when the streamwise interval is prolonged.

In figure 10 we compare the optimal disturbance in the SSBL (solid lines)
and the ASBL (dashed lines). The upper row shows the wall-normal component
v̂0 while the bottom row shows the spanwise component ŵ0. The left, middle
and right columns show the disturbances in the streamwise intervals 0 ≤ x ≤ 2,
0 ≤ x ≤ 6 and 0 ≤ x ≤ 10, respectively. This figure reveals that there
are significant differences between the optimal disturbance in the SSBL and
the optimal disturbance in the ASBL. For the shortest streamwise interval,
the shapes of the disturbance profiles differ, especially for the ŵ component
which is larger close to the wall in the SSBL than in the ASBL. For the longer
intervals, the disturbances assume more or less the same shape, but the profile
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Figure 9. Left column: the growth G as function of β. Right
column: the growth of the disturbance with optimal β as func-
tion of x. The SSBL (solid line) and the ASBL (dashed line)
at Re = 347. The upper, middle and bottom row shows the
growth in the streamwise intervals 0 ≤ x ≤ 2, 0 ≤ x ≤ 6 and
0 ≤ x ≤ 10, respectively.

maxima are still located slightly higher in the ASBL than in the SSBL. This is
due to the fact that the suction acts on the disturbance over a longer distance
in the ASBL where the suction is applied over the whole interval. When the
v̂ and ŵ components in the longest interval are plotted at x = 1 (not shown
here), the disturbances in the ASBL and the SSBL almost collapse.

The optimal disturbance evolves downstream to the final position of the
interval, shown in figure 11. The differences are now much smaller and only
clearly visible for the shortest interval. There is no significant difference in
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Table 2. The optimal growth and spanwise wavenumber in
the ASBL and the SSBL at Re = 347 for nine streamwise in-
tervals of different length.

x1 2 3 4 5 6 7 8 9 10
βASBL 0.38 0.32 0.29 0.26 0.24 0.23 0.21 0.20 0.19
βSSBL 0.35 0.31 0.28 0.26 0.24 0.23 0.21 0.20 0.19

GASBL/Re
2 · 102 0.096 0.075 0.059 0.048 0.039 0.033 0.028 0.024 0.021

GSSBL/Re
2 · 102 0.12 0.088 0.065 0.050 0.040 0.033 0.028 0.024 0.021
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|ŵ0|

|v̂0|

0 ≤ x ≤ 2 0 ≤ x ≤ 6 0 ≤ x ≤ 10

Figure 10. The optimal disturbance in the SSBL (solid line)
and the ASBL (dashed line) at Re = 347. The upper and
bottom row shows respectively the wall-normal component v̂0

and the spanwise component ŵ0.

the wall-normal distribution or shape of the disturbances, we conclude that for
long intervals the downstream response of the optimal disturbance in the SSBL
and the ASBL have the same shape and wall-normal distribution.
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Figure 11. The downstream response û1 of the optimal dis-
turbance in the SSBL (solid line) and the ASBL (dashed line)
at Re = 347.

3.3. Comparison with experimental results

As previously mentioned, Fransson & Alfredsson (2003) made an experimental
study on the development and growth of disturbances induced into the SSBL by
free-stream turbulence. The suction Reynolds numbers was Re = 347 and the
suction started 360mm downstream of the leading edge. Fransson & Alfredsson
(2003) found that the spanwise wavenumber of the streaks depends on the level
of the free-stream turbulence. Three grids were used to achieve different levels
of turbulence; 1.4%, 2.2% and 4.0%. For these turbulence levels the measured
spanwise wavenumbers were β = 0.33, β = 0.41 and β = 0.47, respectively.
Fransson & Alfredsson (2003) furthermore report that the spanwise scale of
the streaks is maintained when suction is applied compared with the no-suction
case. According to Fransson & Alfredsson (2003), the initial spanwise scale is
probably set by the receptivity process in the BBL at the leading edge of the
SSBL. The optimal wavenumber in the ASBL is β = 0.53 (Fransson & Corbett
(2003)) with temporal analysis and β = 0.52 with the spatial analysis presented
herein. Fransson & Corbett (2003) argue that the experimentally measured
spanwise wavenumber approaches the optimal wavenumber as the free-stream
turbulence level is increased. Their reasoning is that a high level of free-stream
turbulence will provide enough energy over the whole range of scales to allow
the boundary layer to amplify the disturbance with a wavenumber close to
that of the optimal disturbance. There is however a discrepancy between the
optimal and the measured wavenumber, even for the highest turbulence level.
Fransson & Corbett (2003) found good agreement between the downstream
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response to the optimal disturbance and experimentally measured disturbance
profiles (Fransson & Alfredsson (2003)). Equally good agreement was obtained
with the present spatial analysis of the SSBL (not shown in figure).

In the present study the suction Reynolds number was set to Re = 347 and
the suction was started at xs = 1, emulating the base flow of the experiment
by Fransson & Alfredsson (2003). In § 3.1b it was shown that in this base
flow the optimal growth decays when the endpoint of the interval is moved
downstream of the point where the suction starts. The growth in the down-
stream region can therefore never surpass that obtained over the BBL in the
upstream region where no suction is applied. The following hypothesis could
therefore provide an explanation to why Fransson & Alfredsson (2003) found
that the spanwise scale of the streaks in the SSBL is close to the scale in the
BBL. The free-stream turbulence contains a broad spectrum of spanwise scales,
disturbances of scales close to the optimal scale in the BBL will experience the
greatest growth and thus become dominating in the upstream region where
no suction is applied. Other scales could however be present at the down-
stream position where the suction starts. It is possible that disturbances of
different scales are continuously induced into the boundary layer downstream
of the leading edge region, due to the forcing from the free-stream turbulence.
Disturbances of scales close to the optimal in the ASBL should experience the
greatest growth in the downstream region where suction is applied. There is
however no possibility for these disturbances to grow and become dominating,
since even disturbances of the optimal scale decay in the downstream region
(§ 3.1b). The streaks which dominated in the upstream region will therefore
continue to dominate in the downstream region. This could explain why the
experimentally observed streaks in the SSBL are of almost the same spanwise
scale as those dominating in the BBL. The fact that the optimal growth de-
cays in the downstream region is due to the relatively high suction rate used in
the present study. Calculations with the present implementation have however
shown that the maximum energy growth can be located downstream of the
point where the suction starts, if the suction rate is sufficiently low. These
results are not included in the present study since our primary interest lies in
emulating the base flow of the experiments by Fransson & Alfredsson (2003).

Yoshioka et al. (2004) extended the study of Fransson & Alfredsson (2003)
to different turbulence levels, suction and free-stream velocities. For conditions
close to those of the experiment by Fransson & Alfredsson (2003), Yoshioka
et al. (2004) found that the disturbances are passively convected downstream
without changing the spanwise scale. By simultaneously changing the suction
and free-stream velocity, the suction Reynolds number was kept constant while
the displacement thickness in the ASBL region was increased, thereby decreas-
ing the difference in displacement thickness between the BBL upstream and
the ASBL downstream. For these conditions, Yoshioka et al. (2004) argue that
the scale of the streaks approach the temporal optimal scale in the ASBL. In



Optimal disturbances in suction boundary layers 39

the current study it has been shown (table 2) that the spanwise scale of the
optimal disturbance in the ASBL depends on the streamwise interval length.
Although the optimal scale in the optimal interval (0 ≤ x ≤ 0.89) is nearly
identical to that found with temporal analysis (Fransson & Corbett (2003)),
it is significantly wider in longer intervals.

To summarize, the experimental findings show that the spanwise scale of
the streaks in the SSBL is close to the scale of the streaks in the BBL where
no suction is applied. A possible explanation is provided in the current study,
which shows that the relatively high suction rate makes it impossible for dist-
urbances of the optimal scale in the ASBL to grow in the downstream region
affected by suction. This region will therefore be dominated by streaks of scales
close to the optimal scale in the BBL, since these disturbances have already
grown to large amplitudes in the upstream region unaffected by suction. There
are however important differences between the calculation of optimal distur-
bances presented herein and the experimental conditions. In the calculation of
the optimal disturbance we assume that the disturbance enter the boundary
layer at the initial point of the streamwise interval and then evolves down-
stream without any influence from the outside disturbance environment. In
the experiment the boundary layer is subjected to continuous forcing from the
free-stream turbulence over the entire streamwise interval. It is also possi-
ble that nonlinear effects that are not accounted for in the calculation of the
optimal disturbances occur in the experiment.

4. Conclusions

The energy growth of optimal disturbances was studied by means of linearized
equations for the semi suction boundary layer (SSBL) and the asymptotic suc-
tion boundary layer (ASBL). The suction Reynolds number was set to 347.

Firstly, the algebraic growth in the SSBL was studied. It was found that the
optimal disturbance consists of streamwise aligned vortex pairs that give rise to
streamwise streaks. This disturbance gives rise to the highest possible growth
when the streamwise interval ends at the point where the suction starts. The
base flow of this optimal interval is the BBL, the optimal spanwise wavenumber
in the SSBL is therefore the same as that in the BBL, β = 0.45 (Andersson
et al. (1999); Luchini (2000)). When the interval is prolonged beyond the
starting point of the suction, the optimal spanwise wavenumber decreases, the
optimal angular frequency is however zero irrespective of the interval length.
Furthermore, it was found that the vortices, i.e. the optimal disturbance, grow
as the interval is prolonged and that the cores of the vortices move upward in
the wall-normal direction. This effect is due to the suction which draws the
disturbance down towards the wall. The vortex cores must therefore be located
higher initially in a long interval where the suction will act on the disturbance
over a longer distance.
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Secondly, the optimal disturbance in the ASBL was studied and a compar-
ison with the SSBL was made. The optimal disturbance in the ASBL closely
resembles that in the SSBL. The cores of the vortices, i.e. the optimal distur-
bance, are however located higher in the ASBL due to the fact that the suction
acts on the disturbance over the whole streamwise interval. This difference van-
ishes as the disturbance evolves in the streamwise direction, the downstream
response is therefore the same over long intervals. Furthermore, it was found
that for short intervals the SSBL gives a significantly higher growth due to
the contribution from the BBL. The optimal spanwise wavenumber was also
lower for the SSBL than for the ASBL for these intervals. As the streamwise
interval was prolonged the optimal growth and spanwise wavenumber in the
SSBL approached those in the ASBL.

Finally, a comparison was made with experimental results from Fransson
& Alfredsson (2003) and Yoshioka et al. (2004). This comparison showed that
both the experimental findings and the results presented herein support the
theory that the spanwise scale of the disturbances is set in the BBL at the
leading edge of the SSBL.
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Optimal disturbances in the

Falkner–Skan–Cooke boundary layer

By Martin G. Byström, Ardeshir Hanifi and Dan S.
Henningson

The algebraic growth of spanwise periodic, stationary disturbances is studied
in the sub-critical Falkner–Skan–Cooke boundary layer. An adjoint-based op-
timization procedure is used to find the initial disturbances associated with the
maximum energy growth. It is shown that these optimal disturbances take the
form of tilted vortices in the cross-flow plane. The vortices give rise to tilted
streaks of alternating high and low streamwise velocity. Secondly, the stream-
wise interval was extended to include the super-critical part of the boundary
layer. As the disturbances evolve downstream into this region, the algebraic
growth growth pass over to exponential amplification. A comparison to calcu-
lations with parabolized stability equations shows that the disturbances evolve
into cross-flow modes in the super-critical flow. The disturbance shape does
not undergo any dramatic changes as the disturbances evolve from the sub-
critical to the super-critical flow. It is therefore concluded that similar physical
mechanisms drive both the algebraic and the exponential instability.

1. Introduction

Ellingsen & Palm (1975) showed that three-dimensional (3D) disturbances can
attain linear growth over time in inviscid channel flow, even when the flow
does not posses any inflection point and thus is stable according to classical
eigenvalue analysis. The inviscid, algebraic growth will eventually die out expo-
nentially through viscous dissipation, as concluded by Hultgren & Gustavsson
(1981). This instability is therefore denoted algebraic or transient growth. Lan-
dahl (1975,1980) illuminated the physical mechanism behind transient growth,
arguing that when a fluid element is lifted up in the wall-normal direction it will
initially maintain its horizontal momentum. Hence, small perturbations in the
wall-normal direction can cause large disturbances in the streamwise direction.
This mechanism, commonly referred to as the lift-up effect, is responsible for
the formation of streamwise streaks in boundary layers subjected to vortical
disturbances such as free-stream turbulence. Such disturbances are also known
as Klebanoff modes, after the experimental study by Klebanoff (1971). Since
then, this type of disturbances have been studied in a number of experiments,
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see e.g. Matsubara & Alfredsson (2001). From a mathematical viewpoint, the
transient growth is due to the non-orthogonality of the governing equations, as
outlined in Trefethen et al. (1993). Butler & Farrell (1992), Henningson et al.
(1993) and Reddy & Henningson (1993) computed the disturbances associated
with the maximum transient growth in various parallel flows by optimizing
over the eigenmodes of the Orr–Sommerfeld operator. Hanifi et al. (1996) ex-
tended this methology to compressible flow. Luchini (1996) studied 3D, span-
wise periodic disturbances in the Blasius boundary layer. He concluded that a
mode with unbounded growth exists in the spatially broadening boundary layer,
where the effect of viscosity weakens with distance. The study was however
restricted to small spanwise wavenumbers, making it impossible to determine
the wavenumber associated with maximum energy growth. This wavenumber
was later determined by Andersson et al. (1999) and Luchini (2000), who in-
dependently used adjoint-based optimization to identify the initial disturbance
associated with maximum energy growth in the developing Blasius boundary
layer. As in previous studies, it was found that these disturbances take form
of streamwise oriented vortices which give rise to streamwise streaks through
the lift-up effect. Tumin & Reshotko (2003) expanded the spatial analysis to
the developing, compressible boundary layer.

The spatial analysis of transient growth has so far been restricted to two-
dimensional (2D) boundary layers. For such flows it can be stated that the dist-
urbances responsible for maximum algebraic growth bears little resemblance
to the instabilities predicted by classical eigenvalue analysis, i.e. Tollmien–
Schlichting waves (TS-waves). The former has the form of stationary stream-
wise aligned vortices which gives raise to infinitely elongated streamwise streaks
with short spanwise wavelength, while the latter consists of travelling waves
with short wavelength in the streamwise direction and long wavelengths with
respect to the spanwise axis. The 2D boundary layer can thus be considered
a scene where algebraic and exponential instability constitutes two different,
competing physical mechanisms. Which type of instability that causes the tran-
sition to turbulence is largely down to the external forcing which the boundary
layer is subjected to. The situation is different in the swept boundary layers,
where stationary unstable eigenmodes exists. These modal instabilities take
the form of vortices, nearly aligned with the external streamline, and elongated
streamwise streaks. The exponentially growing eigenmodes of the 3D boundary
layer thus resembles the algebraically growing, non-modal disturbances of the
2D boundary layer. The question therefore arises, whether algebraic and expo-
nential growth may be driven by the same physical mechanism in 3D boundary
layers.

Corbett & Bottaro (2001) utilized temporal analysis to study transient
growth in the Falkner–Skan–Cooke boundary layer, and employed an adjoint-
based optimization procedure to determine the optimal initial disturbance
which produces the greatest energy gain over a given time interval. It was
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found that these optimal disturbances take the form of vortices nearly aligned
with the external streamline, which over time give rise to streamwise streaks.
Sub- and super-critical Reynolds numbers were considered and algebraically
growing disturbances were compared to exponentially amplified eigenmodes. It
was found that these two types of disturbances are similar, Corbett & Bottaro
(2001) concluded that in swept flows the algebraic growth may precondition the
boundary layer to exponential instabilities, i.e. the algebraically growing dist-
urbances are fed into cross-flow eigenmodes as the critical Reynolds number is
exceeded. The temporal analysis employed by Corbett & Bottaro (2001) does
however not allow a study where the downstream development of the disturban-
ces can be monitored as they evolve from the sub- to the super-critical domain
of the boundary layer. Herein we will employ spatial analysis to perform such
a study, presented in § 5.4.

Further motivation for studies of algebraic growth in swept boundary layers
comes from the widespread appearance of such flows within aeronautical ap-
plications. Traditionally, the design of air-plane wings have often been aimed
at prolonging the upstream region of accelerated flow, in order to delay the
growth of TS-waves. A strong favorable pressure gradient will however also
create a flow prone to cross-flow instability. The low-turbulence environment
encountered at free-flight conditions is unlikely to trigger traveling disturban-
ces. Stationary disturbances can however be initiated by sub-micron roughness
on the wing surface, as described in Radeztsky et al. (1999).

Herein we will study stationary, spanwise periodic disturbances with in-
finite wavelength along the propagation direction in the Falkner–Skan–Cooke
boundary layer. These disturbances experience algebraic growth in sub-critical
flows, and exponential growth as they evolve downstream, into the super-
critical domain of the boundary layer. The focus on stationary disturbances is
motivated by the fact they are the most likely to cause transition, as discussed
above. In § 3 we will introduce a parabolic set of equations which governs
these disturbances. An adjoint-based optimization procedure is employed to
identify the initial disturbances associated with the maximum energy growth,
as described in § 4. In § 5.3 we will show that these optimal disturbances take
the form of vortices, nearly aligned with the external streamline, which give
rise to streamwise streaks. The growth of these disturbances change from al-
gebraic to exponential when the chordwise interval is extended to include the
super-critical part of the boundary layer. In § 5.4 it is shown that the resulting
disturbances are identical to modal disturbances calculated with parabolized
stability equations (PSE) in the super-critical region.

2. The Falkner–Skan–Cooke boundary layer

In the present report we will study the growth of small disturbances in a devel-
oping boundary layer over a swept, flat plate of infinite span, where a pressure
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gradient is present in the chordwise direction. The scene of the survey is il-
lustrated in figure 1, which also presents the utilized reference systems. Their
definitions are as follows: i) Cartesian coordinate system aligned with the plate,
denoted by x, where x1, x2 and x3 are the axes in, respectively, the chordwise,
the spanwise and the wall-normal directions. The corresponding velocity com-
ponents are denoted U , V and W , respectively. ii) Cartesian coordinate system
aligned with incoming flow, denoted by r. iii) Curvilinear, orthogonal coordi-
nate system aligned with the external streamline, denoted by s. The axes s1

and s2 are, respectively, parallel and perpendicular to the streamline, and s3 is
normal to the plate. Hereafter, we will refer to these as the streamwise, cross-
stream and wall-normal axes. The corresponding velocities will be denoted Us,
Vs and Ws, respectively. iiii) Non-orthogonal, curvilinear coordinate system
which is utilized in the computations, as outlined in § 3. The coordinate axes
ξ1, ξ2 and ξ3 are, respectively, aligned with the streamline, parallel to the lead-
ing edge and normal to the plate. It can be noted that the wall-normal axis
has the same direction in all four coordinate systems.

Our study will be restricted to flows with a fixed chordwise pressure gra-
dient where the chordwise velocity at the boundary layer edge (superscript e)
is given by a simple expression,

Ue = C
(

x1
)m

, (1)

where m = βH/ (2 − βH) and βH is the Hartree parameter. Furthermore, it
follows from the infinite span approximation that the spanwise component V e

is constant in the chordwise direction and that the flow is independent of the
spanwise coordinate. For such simple 3D flows, often referred to as 2.5D, a
family of similarity solutions exists for incompressible flows. The 2D Falkner–
Skan similarity solutions (see e.g. Schlichting (1979)) were first extended
to 2.5D boundary layers by Cooke (1950), as outlined in Corbett & Bottaro
(2001). They are therefore named the Falkner–Skan–Cooke similarity solutions.

Although the present study is carried out for flows correctly described by
the Falkner–Skan–Cooke similarity solutions, the meanflow was obtained by
solving the compressible boundary layer equations. The motivation is that the
present implementation will be utilized in future studies where the effect of
compressibility, surface curvature and non-constant pressure gradients will be
accounted for.

Figure 2 presents the streamwise and cross-flow velocity profiles, which are
obtained from the cartesian velocity components by the following relations

Us = U cosΦ + V sin Φ, (2)

Vs = −U sin Φ + V cosΦ. (3)

where Φ denotes the streamline angle, defined as Φ = arctan (V e/Ue).
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Figure 1. Flow over an infinite, flat plate with a sweep angle
Λ. The streamline angle, i.e. the local angle between the
external streamline (dashed line) and the chordwise axis (x1),
is denoted Φ. The four coordinate systems, denoted by r, x, ξ
and s, are defined in § 2.
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Figure 2. Profiles of the streamwise (Us) and the cross-flow
(Vs) velocity components in the Falkner–Skan–Cooke bound-
ary layers with a sweep angle of Λ = 45◦. Favorable and
adverse pressure gradients of, respectively, βH = 0.1 (dashed
line) and βH = −0.05 (solid line).
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The relatively weak pressure gradients studied herein introduce cross-flow
components which are small compared to the streamwise velocity. Further-
more it can be noted that the cross-flow component changes sign with βH . As
outlined in § 5.3, this has a bearing on the shape of the optimal disturbance.

In this report we will restrict our studies to boundary layers within the
Falkner–Skan–Cooke family with a sweepangle of Λ = 45◦. We consider both
an accelerated flow with a chordwise pressure gradient of βH = 0.1 and a
retarded flow; βH = −0.05. The chordwise velocity at the boundary layer
edge (1) is chosen such that Φ = Λ = 45◦ at the chordwise position r1/l = 1,
where Rl = Ull/ν = 106 and Ul = Us

(

r1 = l, r3 = r3max

)

. We will employ two

reference lengths for the presented figures, l and δl =
√

νl/Ul.

3. Disturbance equations

In this section we will discuss the appropriate scaling, coordinate system and
disturbance equations for our studies of transient growth in the Falkner–Skan–
Cooke boundary layer. Herein, R denotes the Reynolds number R = U0δ0/ν
where U0 is the chordwise velocity of the external flow at x1 = x1

0 and δ0 =
√

νx1
0/U0. Andersson et al. (1999) and Luchini (2000) employed the linearized

disturbed boundary layer equations (LDBLE) in their independent studies of
transient growth in the Blasius boundary layer. This analysis was later ex-
tended to the Falkner–Skan boundary layer by Levin & Henningson (2003),
who presented a comparative study of algebraically growing streaks, governed
by the LDBLE, and exponentially growing TS-waves governed by the PSE.
Both set of equations are derived from the linearized Navier–Stokes equations,
with the disturbance q̃ assumed to be of the form

q̃
(

x1, x2, x3, t
)

= q̂
(

x1, x3
)

exp

[

i

(
∫

α dx1 + βx2 − ωt

)]

. (4)

where q̂ is a complex amplitude function, α and β are the chordwise and span-
wise wavenumbers, respectively, and ω is the angular frequency. The principal
difference is that the PSE accounts for disturbances with a rapid, oscillatory
variation in the chordwise direction while the LDBLE assumes a slow, non-
oscillatory variation, hence the chordwise wavenumber is zero. Due to the
different choices of scaling, the LDBLE is a Reynolds-number independent set
of equations, identical to the Görtler equations with zero Görtler number (see
Floryan & Saric (1979) and Hall (1983)), while the PSE are Reynolds-number
dependent.

In his study of transient growth in the Blasius boundary layer, Luchini
(2000) noted that the region of maximum algebraic instability, at zero fre-
quency, is well separated from the region of the classical exponential instabil-
ity in the frequency-Reynolds-number plane. In 3D boundary layers, where
stationary cross-flow modes receive exponential amplification, no such sepa-
ration exists. We can therefore expect a scenario where algebraic growth at
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sub-critical Reynolds-numbers is followed by exponential amplification further
downstream. It is clear that the spatial analysis of transient growth in 2D
boundary layers cannot readily be extended to 3D flows. There are principal
differences that need to be taken under consideration: i) Contrary to studies
of algebraic growth in 2D boundary layers, the 2.5D problem is not Reynolds-
number independent. That is, at some downstream position the neutral sta-
bility point for stationary modal disturbances will be passed and the algebraic
growth will pass over to exponential amplification. The valid disturbance equa-
tions must therefore be Reynolds-number dependent. ii) The boundary layer
scaling employed by Andersson et al. (1999) and Luchini (2000), where the
spanwise component is considered an order lower than the chordwise com-
ponent, is not valid for 2.5D boundary layers at high sweepangles. iii) The
chordwise wavenumber α can not be set to zero in the 2.5D flow, since the
disturbances are not aligned with this axis.

The PSE has successfully been employed in studies of stationary cross-flow
modes, see e.g. the comparison with DNS results in Högberg & Henningson
(1998). According to Corbett & Bottaro (2001), the physical mechanism be-
hind transient growth in the Falkner–Skan–Cooke boundary layer is similar to
that of the exponentially amplified cross-flow modes. Bagheri & Hanifi (2007)
(paper + private communication) modified the PSE to obtain a parabolic set of
equations, which was employed to calculate the algebraic growth of longitudi-
nal vortices. They considered disturbances with infinite chordwise wavelength
and kept O

(

R−2
)

terms, namely Wx1 û (W and û are the wall-normal and
chordwise components of the meanflow and the disturbance, respectively) in
the wall-normal momentum equation. Calculations showed that this term has
a significant impact on algebraic instabilities but no bearing on the exponen-
tially growing TS-waves. Furthermore, Bagheri (2006) omitted the chordwise
gradient of the disturbance pressure, p̂x1 , from the chordwise momentum equa-
tion. This term, associated with rapid oscillations in time, is neglectable for
the stationary disturbances associated with the maximum algebraic growth.
The calculated energy growth agreed very well with that reported by Levin &
Henningson (2003).

Herein we will employ a similar set of parabolic equations to study transient
growth in the Falkner–Skan–Cooke boundary layer. In order to do so, we must
however first find an integration path along which the wavenumber can be set
to zero. It is well known that disturbances tend to be aligned with the exter-
nal streamline in 3D boundary layers, i.e. the streamwise wavenumber is zero.
We will therefore formulate the disturbance equations for the non-orthogonal
coordinate system ξ where the first axis ξ1 is aligned with the external stream-
line. From the geometry given by figure 1, the following relationships between
the cartesian and the non-orthogonal, curvilinear coordinate systems can be
established,
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dx1 = cos
(

Φ
(

ξ1
))

dξ1, dx2 = dξ2+sin
(

Φ
(

ξ1
))

dξ1, dx3 = dξ3. (5)

Jacobian transformation was herein employed to define the partial deriva-
tives of the cartesian coordinates with respect to the non-orthogonal coordi-
nates. From the relations above, the following operators can be defined

∇ ψ =

[

∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

]

=

[

c̃
∂ψ

∂ξ1
− t̃

∂ψ

∂ξ2
,
∂ψ

∂ξ2
,
∂ψ

∂ξ3

]

(6)

∇ · ~F =
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
= c̃

∂F 1

∂ξ1
− t̃

∂F 1

∂ξ2
+
∂F 2

∂ξ2
+
∂F 3

∂ξ3
(7)

∇× ~F =

[

∂F 3

∂x2
−
∂F 2

∂x3
,
∂F 1

∂x3
−
∂F 3

∂x1
,
∂F 2

∂x1
−
∂F 1

∂x2

]

= (8)

[

∂F 3

∂ξ2
−
∂F 2

∂ξ3
,
∂F 1

∂ξ3
− c̃

∂F 3

∂ξ1
+ t̃

∂F 3

∂ξ2
, c̃
∂F 2

∂ξ1
+ t̃

∂F 2

∂ξ2
−
∂F 1

∂ξ2

]

where c̃ = 1/ cos (Φ), t̃ = tan (Φ), and ψ and ~F denotes, respectively, an arbi-
trary scalar and vector function. Note that from these operators the Laplacian
can be defined as

∇2 ~F = ∇
(

∇ · ~F
)

−∇×
(

∇× ~F
)

(9)

The conservation of mass, momentum and energy and the equation of state
serves as the governing equations for the flow of a viscous, compressible, ideal
gas. Expressed in primitive variables, these equations can be written in vector
notation as

ρ [
∂u

∂t
+ (u · ∇)u] = −∇p+

1

R
∇[λ(∇ · u)] +

1

R
∇ · [µ(∇u + ∇uT )], (10)

∂ρ

∂t
+ ∇ · (ρu) = 0, (11)

ρcp[
∂T

∂t
+ (u · ∇)T ] =

1

RPr
∇ · (κ∇T ) + (γ − 1)M2[

∂p

∂t
+ (u · ∇)p+

1

R
Φ], (12)

γM2p = ρT, (13)

with viscous dissipation given as

Φ = λ(∇ · u)
2

+
1

2
µ[∇u + ∇uT ] : [∇u + ∇uT ]

where A : B = AijBij . Here t represents time, ρ, p, T stand for density, pressure
and temperature, u is the velocity vector. The Mach-number is denoted M and
the Prandtl-number Pr. The quantities λ, µ stand for the second and dynamic
viscosity coefficient, γ is the ratio of specific heats, κ the heat conductivity,
cp the specific heat at constant pressure. All flow quantities are made non-
dimensional by the corresponding reference flow quantities at the chordwise
position x1

0, except the pressure which is referred to twice the corresponding
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dynamic pressure. The reference length is δ0 =
√

νx1
0/U0. Using the operators

(6-9), the partial derivatives of the equations are rewritten from the cartesian
coordinate system to the non-orthogonal, curvilinear coordinate system. Note
that we keep the cartesian velocity components in the equations. The flow
and material quantities are decomposed into a mean part and a disturbance
q̃ = [ũ, ṽ, w̃, p̃, T̃ , ρ̃], where u, v, w are the cartesian velocity components in
the chordwise, spanwise and wall-normal direction, respectively. Under the
infinite span approximation the mean flow is considered to be independent of
the spanwise coordinate ξ2. By subtracting the equations for the mean flow and
removing the products of disturbances, a linearized set of disturbance equations
is obtained. The disturbances are assumed to be spanwise periodic and non-
oscillatory in the streamwise direction, hence the streamwise wavenumber is
set to zero. Herein we will only consider stationary disturbances, the total
disturbance (4) can thus be simplified to

q̃
(

ξ1, ξ2, ξ3
)

= q̂(ξ1, ξ3) exp
(

iβξ2
)

. (14)

Furthermore it is assumed that the variation along the streamline is weak,
i.e. ∂/∂ξ1 ∼ O

(

R−1
)

. Note that here we modify the PSE by assuming that
W is of the same order as the other velocity components of the meanflow.
Introducing the disturbance (14) into the linearized equations and dropping
terms associated with the streamwise pressure gradient yields a parabolic set
of disturbance equations:

Aφ̂ + B
∂φ̂

∂ξ3
+ C

∂2φ̂

∂ξ3∂ξ3
+ D

∂φ̂

∂ξ1
= 0, (15)

where φ̂ = (ρ̂, û, v̂, ŵ, T̂ )
T
. Note that the equation of state has been employed

to express the disturbance pressure as a function of the density and tempera-
ture, the system is thus reduced to five equations. The elements of the matrices
A, B, C, D are given in appendix B.

The velocity disturbances are subjected to no-slip boundary conditions and
vanishing in the free-stream, the same conditions are applied to the disturbance
temperature

û = v̂ = ŵ = T̂ = 0 at ξ3 = 0 (16)

û = v̂ = ŵ = T̂ = 0 at ξ3 = ξ3max (17)

Furthermore, the initial conditions must be specified at the inlet:

φ̂
(

ξ1 = 0, ξ3
)

= φ̂in

(

ξ3
)

(18)

where φin = [ρin, uin, vin, win, Tin]
T is the known initial disturbance. Note that

the choice of φin is not arbitrary, it must satisfy the boundary conditions (16-
17), as outlined in § 4. Due to the parabolic nature of the equations (15), it is
not necessary to specify any boundary conditions at the outlet. Together with
the boundary and initial conditions (16-17,18), the disturbance equations (15)
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forms an initial-boundary-value problem that can be solved through a down-
stream marching procedure. A detailed description of the numerical scheme
employed herein can be found in Hanifi et al. (1994).

4. Adjoint optimization procedure

We are interested in identifying the initial disturbance (18) that is optimal in
the sense that it maximizes the growth of the disturbance energy, defined as

G =
Eout

Ein
(19)

where Eout and Ein are the energy norms at the outlet and inlet of the con-
sidered chordwise domain. Here we follow the work of Hanifi et al. (1996) and
Tumin & Reshotko (2003), who studied optimal disturbances in compressible,
2D boundary layers, and use the Mack energy norm (Mack (1969))

Ein =

∫ ξ3

max

0

ρ
(

|û|2 + |v̂|2 + |ŵ|2
)

dξ3 (20)

Eout =

∫ ξ3

max

0

ρ
(

|û|2 + |v̂|2 + |ŵ|2
)

+
|T̂ |2

(γ − 1)T 2M2
dξ3 (21)

It should be noted that the energy norms presented here differs from those used
by Tumin & Reshotko (2003) in the sense that all three velocity components
are included. Tumin & Reshotko (2003) employed a method first suggested
by Luchini (2000), valid in the high Reynolds-number limit, where the initial
disturbance is confined to the cross-flow components and the optimization is
carried out only with respect to the energy of the streamwise component at the
outlet. Herein we follow the work by Andersson et al. (1999), and consider all
three velocity components at both the inlet and the outlet.

We will employ an adjoint-based optimization procedure to identify the
initial disturbance φin which maximizes the energy growth (19). Such adjoint
procedures were first utilized for studies of algebraic growth in spatially devel-
oping boundary layers by Andersson et al. (1999) and Luchini (2000), to which
the interested reader is referred. An extensive study on this subject can also
be found in the monograph by Schmid & Henningson (2001). Here, we will
only outline the basic concepts of such procedures.

The initial-boundary value problem (15-18) is linear and homogeneous, and
can be regarded as an input-output problem, where the disturbance equations
(15) acts as a linear operator A on the initial disturbance φin (the input) to
produce a downstream disturbance φout (the output) at the outlet

φout = Aφin (22)

Employing operator theory, it can be shown that the maximum growth Gmax

is the largest eigenvalue λmax of the eigenvalue problem

A∗Aφ = λφ (23)
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and the optimal initial disturbance φin is the corresponding eigenvector φ.
Here A∗ represents the adjoint to the operator A. To solve the eigenvalue
problem (23) and determine the optimal disturbance, we employ power itera-
tions of the form

φn+1 = A∗Aφn (24)

The action of the operator A on an initial disturbance φn, i.e. Aφn, is
given by the disturbance equations (15) and the boundary conditions (16-17).
In order to perform the power iterations (24), we must however also determine
the action of the adjoint operator A∗. Remembering that A∗ is the adjoint of
the operator A, which represents the disturbance equations (15), we derive the
adjoint equations, as shown in appendix A

Ãφ∗ + B̃
∂φ∗

∂ξ3
+ C̃

∂2φ∗

∂ξ3∂ξ3
− D̃

∂φ∗

∂ξ1
= 0, (25)

where φ∗ = (ρ∗, u∗, v∗, w∗, T ∗)
T

are the adjoint variables and the matrices

Ã, B̃, C̃ and D̃ are defined in appendix A. By considering the boundary
terms obtained in the derivation of the adjoint equations (see appendix A), the
following boundary conditions for the adjoint variables are imposed

u∗ = v∗ = w∗ = T ∗ = 0 at ξ3 = 0 (26)

u∗ = v∗ = w∗ = T ∗ = 0 at ξ3 = ξ3max (27)

(28)

The adjoint equations must be marched in the upstream direction. The initial
conditions, derived in appendix A, must therefore be set at the outlet ξ1 = ξ1out

ρ∗ = −ρŵd41/ (d11d44) (29)

u∗ = ρ (û+ ŵd41d12/ (d11d44) − ŵd42/d44) /d22 (30)

v∗ = ρv̂/d33 (31)

w∗ = ρŵ/d44 (32)

T ∗ = T̂ /
(

(γ − 1)T 2M2d55

)

(33)

where dii denotes the ii element of the matrix D, defined in appendix B. From
the upstream solution of the adjoint equations at ξ1 = ξ1in, a new candidate solu-
tion for the optimal disturbance is set, see equation (48-52) in appendix A. The

initial disturbance φ̂in is however constrained in the sense that it must satisfy
the boundary conditions (16-17). Andersson et al. (1999) introduced a linear
operator to enforce continuity, and included this constraint in the derivation
of the adjoint system. It was shown that the procedure comes down to solv-
ing a least-square problem, where the candidate optimal disturbance obtained
from the adjoint solution is replaced by the closest disturbance which satisfy
continuity. Furthermore, Andersson et al. (1999) utilized the least-square fit to
enforce the valid boundary conditions on the disturbance. Due to the complex-
ity of deriving such a procedure for the compressible disturbance equations (15)
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expressed in a non-orthogonal coordinate system, a more simplistic approach
have been employed herein. As outlined in appendix A, the no-slip boundary
conditions can be enforced by omitting one single term from the candidate
initial disturbance (48-52). The modified initial disturbance, which satisfy the
boundary conditions (16-17), is

ρ̂in = 0 (34)

ûin = (u∗d22 + w∗d44) /ρ (35)

v̂in = v∗d33/ρ (36)

ŵin = w∗d44/ρ (37)

T̂in = 0 (38)

As seen in figure 7, the difference in energy growth between the candidate
initial disturbance (48-52) and the modified initial disturbance (34-38) is well
within 1%. In practise, the power iterations (24) is carried out as follows:

• step 1: The disturbance equations (15) is marched downstream. A
starting guess for the initial disturbance φin must be provided in the
first iteration.

• step 2: The initial conditions for the adjoint equations at ξ1 = ξ1out is
set from the downstream disturbance φout, according to (29-33).

• step 3: The adjoint equations (25) are marched in the upstream direc-
tion.

• step 4: The initial disturbances φin is computed from the adjoint solu-
tion at ξ1 = ξ1in, according to (34-38). The loop is restarted from step
1.

The power iterations (step 1 - 4) are repeated until the energy
growth is converged.

5. Results

5.1. Verification

The validity of the governing equations (15), derived for a non-orthogonal curvi-
linear coordinate system, was verified by a comparison with a previous study
of the 2D Falkner–Skan boundary layer by Levin & Henningson (2003). This
comparison also served to verify the implementation of the adjoint-based opti-
mization procedure presented in § 4. Levin & Henningson (2003) calculated the
optimal disturbances in three 2D meanflows subjected to chordwise pressure
gradients of, respectively, βH = 0.1, βH = 0.0 and βH = −0.1. Furthermore,
they optimized the spanwise wavenumber and the chordwise positions where
the disturbances were initiated in the boundary layer. The present implemen-
tation was employed to calculate the optimal disturbances and corresponding
energy growth for these spanwise wavenumbers and chordwise intervals. The
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Figure 3. The optimal disturbance (a) and corresponding en-
ergy growth (b) in the Blasius boundary layer. Present imple-
mentation (dashed black line) with Λ = 45◦, non-orthogonal
coordinate system employed. Data from Levin & Henningson
(2003) (grey line). The energy norm E is given by expres-
sion (21) in § 4.

results were in excellent agreement with the data from Levin & Henningson
(2003).

The calculations in the 2D boundary layers described above were carried
out with an orthogonal coordinate system. In order to verify the use of the
non-orthogonal coordinate system, we consider the flow over a flat plate with
zero pressure gradient, placed at an angle to the free-stream. This flow is a
2.5D boundary layer with a non-zero spanwise component when studied in the
x reference frame, but reduces to the 2D Blasius boundary layer when studied
in the r reference frame (see § 2). We can therefore compare results from the
present implementation, where the non-orthogonal coordinate system ξ has
been employed, to results from the 2D study by Levin & Henningson (2003).
The angle between the streamwise axis ξ1 and the spanwise axis ξ2 is constant
at 90◦ − Λ for this flow. Figure 3 shows the results from a calculation with
Λ = 45◦, and a comparison with data from Levin & Henningson (2003). Both
the shape of the optimal disturbance and the corresponding energy growth are
in close agreement. Sweep angles up to Λ = 80◦ have been tested with equally
good agreement. This comparative study verified that calculations with the
non-orthogonal coordinate system ξ produces correct results, even when the
angle between the horizontal coordinate axes ξ1 and ξ2 is as small as 10◦. Note
that Levin & Henningson (2003) employed an optimization procedure valid in
the high Reynolds-number-limit where the initial disturbance is constrained
to the cross-flow components, i.e. the streamwise component of the initial
disturbance is set to zero. Herein we follow Andersson et al. (1999) and consider
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Figure 4. Contours of positive (dark gray) and negative
(light gray) streamwise velocity. External streamline (dashed
line) and the streakline (solid line) used in the calculations,
following the maximum of the streamwise disturbance veloc-
ity. Note that the figure does not portray one plane at a fixed
wall-normal position, but rather a curved sheet which follows
the maximum of the streamwise disturbance velocity at each
choordwise station. Note also the high visual aspect ratio be-
tween the r1- and r2-axis.

3D initial disturbances, as outlined in § 4. It was however shown by Andersson
et al. (1999) that these two different optimization procedures produce the same
result in the high Reynolds-number-limit.

5.2. Integration path

As outlined in § 3, the calculations are carried out under the assumption that
the wavenumber is zero along the ξ1 -axis. This axis is aligned with the external
streamline, since it is known that disturbances in 3D boundary layers evolves
nearly along this line. Calculations with the present implementation does how-
ever reveal that the disturbances are not perfectly aligned with the streamline,
as seen in figure 4. This small deviation is equivalent to a small, but non-zero
wavenumber with respect to the ξ1-axis. Although such a small deviation will
only cause neglectable errors locally, the cumulative effect may be significant
when the disturbance equations (15) are integrated over a long streamwise dis-
tance. Furthermore, it was found that a small non-zero wavenumber makes
the problem significantly harder to resolve. It is thus essential to identify and
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align the ξ1-axis with the propagation direction of the disturbances. Herein, we
will define the disturbance trajectory as the line which follows the maximum
of the streamwise disturbance velocity. This line will hereafter be denoted the
streakline.

An iterative procedure was utilized to identify the streakline. As a first ap-
proximation, the external streamline serves as integration path and the optimal
disturbance is calculated with the procedure described in § 4. The streakline is
identified from the downstream development of the initial disturbance, and a
new calculation is carried out along this new integration path. Once again the
streakline is identified and a new calculation is carried out. This procedure was
repeated until the streakline became fix. It was however found that the shape
of the disturbances was rather insensitive to the choice of the integration path,
only a few iterations was thus necessary. It must be stated that the streak-
line is not well defined in the small upstream part of the streamwise interval
where the initial, vortical disturbance has yet to produce a sizable, well-defined
streak. Different choices for the integration path over this small domain were
tested, such as different extrapolations of the downstream, well-defined streak-
line. It was however found that the different choices of integration path in
this small domain had no significant impact on the results. Furthermore it can
be noted that another definition of the streakline was tested, defined as the
line which follows the maximum disturbance energy based on the horizontal
velocity components. This line was however found to coincide with that based
on the maximum of the streamwise component, except in the small upstream
region where the streak has yet to arise.

5.3. Optimal disturbances and energy growth

In this section we will study the optimal disturbances in boundary layers within
the Falkner–Skan–Cooke family with a sweepangle of Λ = 45◦. We consider
both an accelerated flow with a chordwise pressure gradient of βH = 0.1 and
a retarded flow; βH = −0.05. The chordwise velocity at the boundary layer
edge (1) is chosen such that Φ = Λ = 45◦ at the chordwise position r1/l = 1,
where Rl = Ull/ν = 106 and Ul = Us

(

r1 = l, r3 = r3max

)

. We will employ two

reference lengths for the presented figures, l and δl =
√

νl/Ul.

Figure 5 presents the regions of exponential instability for stationary modes
in the accelerated and retarded Falkner–Skan–Cooke boundary layers. In this
section we will restrict our study of optimal disturbances to a sub-critical chord-
wise interval, 0.005 ≤ r1/l ≤ 0.25, in order to study purely transient growth. In
§ 5.4 we will extend this interval to super-critical flows and study the evolvement
of algebraically growing, non-modal disturbances into exponentially amplified
modes.
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Figure 5. Neutral stability curve for stationary cross-flow
modes in the Falkner–Skan–Cooke boundary layer at 45◦

sweepangle with favorable pressure gradient of βH = 0.1 (black
line) and adverse pressure gradient of βH = −0.05 (grey line).

From a physical viewpoint it is desirable to start the calculations at the
leading edge, in order to capture the process where vortical free-stream distur-
bances enters the boundary layer. There are however several problems associ-
ated with this upstream region. The Falkner–Skan–Cooke family of similarity
solutions are discontinuous at the leading edge. For the normal velocity we
have that limr1

→0W → ∞, and in retarded flows it follows from equation
(1) that limr1

→0 U
e → ∞. Despite these difficulties, which applies to the 2D

case as well, Andersson et al. (1999) and Luchini (2000) independently car-
ried out studies of transient growth in the Blasius boundary layer where the
disturbances where introduced at the leading edge. Luchini (2000) utilized a
jump condition to solve the singularity problem, while Andersson et al. (1999)
carried out a study where the inception point was gradually moved towards
the leading edge. They found that no dramatic changes occurs in the shape of
the optimal disturbance or in the downstream response when the leading edge
is approached, and concluded that the calculations could be initiated at the
leading edge if the normal velocity is set to zero in the first calculation point.
Neither Andersson et al. (1999) or Luchini (2000) did however address the
problem that the boundary layer equations are not valid in this region. Levin
& Henningson (2003), who studied optimal disturbances in the Falkner–Skan
boundary layers with favorable, zero and adverse pressure gradients, optimized
the point of inception. They found that the maximum growth occurs when the
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disturbance is introduced into the boundary layer a significant distance down-
stream of the leading edge. The difficulties associated with the leading edge
was therefore not considered.

For the swept flows studied herein, a new set of leading edge related prob-
lems arise in addition to those encountered in the 2D studies. The streamline
angle, Φ = arctan (V e/Ue), is undefined at the leading edge in Falkner–Skan–
Cooke boundary layers with non-zero pressure gradients. In accelerated flows
we have limr1

→0 Φ = 90◦, since limr1
→0 U

e = 0. The axes ξ1 and ξ2 of the
non-orthogonal coordinate system will thus collapse at the leading edge. In
retarded flows, where limr1

→0 Uw → ∞, the limit of the streamline angle is
limr1

→0 Φ = 0◦. Both the accelerated and the retarded flow will undergo a very
rapid transformation in the vicinity of the leading edge, where the streamline
angle draws away from the extreme value at the leading edge. Furthermore,
if it is assumed that the optimal disturbance takes the form of vortices more
or less aligned with the external streamline, it is clear that the orientation of
these vortices will vary rapidly when the point of inception is moved upstream
towards the leading edge. Furthermore, the deviation of the streakline from
the external streamline, described in § 5.2, is most severe near the leading edge.

Due to the difficulties discussed above, the point of inception was set a
small distance downstream of the leading edge, at r1/L = 0.005. Figure 6
presents the energy growth of the optimal disturbances as function of the
spanwise wavenumber, for both the accelerated and the retarded flow over
the chordwise interval 0.005 ≤ r1/l ≤ 0.25. As discussed in § 4, the initial dis-
turbance is optimized to produce the maximum energy growth (19) over this
interval. The figure also displays the level of convergence, since results calcu-
lated with both 1600 and 3200 chordwise points are included. We gather that
the maximum transient growth in the accelerated flow occurs for β/δl = 0.54,
while the optimal spanwise wavenumber is β/δl = 0.57 in the retarded flow.
The retarded flow gives rise to twice the transient growth of the accelerated
flow. Levin & Henningson (2003), who studied optimal disturbances in the
2D Falkner–Skan boundary layers, also found that retarded flows gives rise to
higher transient growth. The energy growth of the optimal disturbances, with
optimal wavenumbers, is shown as function of the coordinate r1 in figure 7.
A comparison between the initial disturbances with no-slip and un-physical
boundary conditions is also shown, see § 4.

Figure 8 portrays the disturbance profiles of the optimal disturbances,
with optimal spanwise wavenumber. As previously noted by Corbett & Bot-
taro (2001), who determined optimal disturbances in the Falkner–Skan–Cooke
boundary layers within the temporal framework, the physical mechanism be-
hind the transient growth is not evident from the modulus of the amplitude
functions. In contrast to 2D boundary layers, the cross-flow component does
not appear to have a sign shift. The physically relevant disturbance is however
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Figure 6. Energy growth of the optimal disturbances as func-
tion of the spanwise wavenumber β. Falkner–Skan–Cooke
boundary layers with favorable (circles) and adverse (squares)
pressure gradients of, respectively, βH = 0.1 and βH = −0.05.
Growth over the interval 0.005 < r1/l < 0.25, calculated with
3200 points (solid line) and 1600 points (dashed line).

the real part of the total disturbance (14), which can also be written as

q̃R = q̂R cos(βξ2) − ûI sin(βξ2) (39)

where R and I denotes real and imaginary parts, respectively. A better per-
ception of the physical situation can therefore be gained from figure 9 which
shows a vector representation of the real part of the optimal disturbance in
the cross-flow plane. It is apparent that the optimal disturbances take the
form of counter-rotating vortices, similar to the optimal disturbances found in
2D flows. The vortices are however not symmetric as in 2D boundary layers,
but tilted around the wall-normal axis. The vortices are tilted anti-clockwise
in the accelerated flow and clockwise in the retarded flow. This difference is
likely related to the cross-flow component of the boundary layer, which changes
sign with the pressure gradient. As the disturbances evolve downstream their
orientation changes, the streaks at the end of the interval are therefore tilted
clockwise in the accelerated flow and anti-clockwise in the retarded flow, i.e.
the opposite of the initial disturbance.
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Figure 7. The upper curves show the energy growth of the
optimal disturbance in the retarded flow (βH = −0.05), the
lower curves show the energy growth in the accelerated flow
(βH = 0.1). The dashed lines correspond to initial disturban-
ces which satisfy no-slip boundary conditions while the solid
lines corresponds to un-physical initial disturbances, see § 4.

5.4. Non-modal and modal cross-flow disturbances

In 2D boundary layers the regions of transient and modal growth are well sep-
arated in the (ω,R)-plane, as noted by Luchini (2000) in his study of transient
growth in the Blasius boundary layer. The maximum transient growth occurs
for stationary disturbances, and the growth decays rapidly with increasing fre-
quency, while the exponential growth occurs for modal disturbances of rela-
tively high frequencies. In 3D boundary layers no such separation exists, since
stationary modes can receive exponential amplification. Stationary cross-flow
modes are a more common cause of transition than their traveling counterparts
in free-flight conditions (Reed & Saric (1989)). The stationary modes take the
form of vortices, nearly aligned with the external streamline, and streaks of
alternating high and low streamwise velocity. It is thus clear that this expo-
nential instability resembles the algebraic instability described in § 5.3. This is
contrary to the situation in 2D boundary layer, where the modal disturbances
are traveling waves and bears little resemblance to the disturbances associated
with algebraic instability.

In this section we will calculate the optimal disturbance in the accelerated
flow, βH = 0.1, over the chordwise interval 0.005 ≤ r1/l ≤ 1.0, thus including
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ûs

Figure 8. (a-b) Optimal disturbances in the Falkner–Skan–
Cooke boundary layers at r1/l = 0.005, βH = 0.1 (solid line)
and βH = −0.05 (dashed line). All components normalized
with ŵmax. (c-d) Downstream response to the optimal distur-
bance at r1/l = 0.25, normalized with ûmax. Falkner–Skan–
Cooke profiles (grey line) included in (d).

super-critical flow. This allows us to study a scenario where transient growth
pass over into exponential growth, to illuminate the differences and similar-
ities between these instabilities. Corbett & Bottaro (2001) considered sub-
and super-critical Reynolds-numbers, comparing algebraically growing distur-
bances to exponentially amplified eigenmodes. They concluded that the alge-
braically growing disturbances are fed into cross-flow eigenmodes as the critical
Reynolds-number is exceeded. The temporal analysis employed by Corbett &
Bottaro (2001) does however not allow a study where the downstream devel-
opment of the disturbances can be monitored as they evolve from the sub- to
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Figure 9. (a & c) Vector representation of optimal distur-
bances in the Falkner–Skan boundary layers, projected onto
the cross-flow plane at r1/l = 0.005. (c & d) Downstream
response to the optimal disturbances at r1/l = 0.25, contours
of positive (black) and negative (grey) streamwise velocity in
the cross-flow plane. (a & b): Favorable pressure gradient,
βH = 0.1. (c & d): Adverse pressure gradient, βH = −0.05.
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Figure 10. Energy growth of the optimal disturbance (black
dashed line), algebraic growth followed by exponential growth.
Data from a PSE calculation of a cross-flow mode (grey line)
with the same spanwise wavenumber, β/δl = 0.34, is included
for comparison. The dots are associated with figure 12.

the super-critical domain of the boundary layer. The spatial approach applied
herein will however allow such a study, where both the algebraic growth and
the subsequent exponential amplification of the disturbances is investigated.

Figure 10 shows the energy growth of the optimal disturbance with the
spanwise wavenumber β = 0.34/δl. For comparison, we have included data
from a PSE calculation of a cross-flow mode with the same wavenumber, ini-
tiated at the point of neutral stability. It is clear that the algebraic growth of
the optimal disturbance is followed by exponential growth, where the growth
rate collapse with that of the modal disturbance. The reason is apparent from
figure 11 which presents the amplitude functions of the cross-flow mode as
well as the downstream response of the optimal disturbance at the end of the
streamwise interval, r1/l = 1.0. The close agreement proves that the opti-
mal disturbance has evolved into a cross-flow mode. From figure 10 it can be
concluded that the transition from algebraic to exponential amplification is a
gradual process without any jumps in the growth rate. Figure 12 portrays the
amplitude functions at two streamwise stations, marked in figure 10, where the
disturbances receives algebraic and exponential amplification, respectively. It
is clear that no dramatic changes has occurred to the shape of the disturbance.
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Figure 11. Downstream response to the optimal disturbance
(dashed black line) at r1/l = 1.0, compared to a PSE calcula-
tion of the cross-flow mode (grey line) with the same spanwise
wavenumber, β/δl = 0.34.

We thus conclude that the physical mechanism that drives the algebraic insta-
bility is similar to that responsible for the classical exponential instability, and
that the algebraic disturbances are feed into exponentially amplified modes as
the critical Reynolds-number is exceeded.

6. Conclusions

A parabolic set of disturbance equations were herein employed to study alge-
braic and exponential instability in the Falkner–Skan–Cooke boundary layer.
An adjoint-based optimization procedure was utilized to identify optimal dist-
urbances, i.e. the initial disturbance which receives the greatest amplification
over a given chordwise interval. Two different flows were considered, one with
a favorable chordwise pressure gradient of βH = 0.1 and one with an adverse
pressure gradient of βH = −0.05. The sweepangle was set to Λ = 45◦, and the
Reynolds number was set to Rl = Ull/ν = 106.

First a study was carried out over an interval restricted to sub-critical
Reynolds numbers, 0.005 ≤ r1/l ≤ 0.25, where the growth of the initial dist-
urbances is purely algebraic. It was found that the optimal disturbances takes
the form of counter-rotating vortices when projected onto the cross-flow plane.
The optimal spanwise wavenumbers were found to be β/δl = 0.54 in the ac-
celerated flow and β/δl = 0.57 in the retarded flow. Contrary to findings from
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Figure 12. Downstream response to the optimal disturbance
at r1/l = 0.16 (solid line) and r1/l = 0.60 (dashed line), i.e.
the chordwise positions marked by dots in figure 10. Falkner–
Skan–Cooke profiles at the same positions (grey line).

studies of optimal disturbances in 2D boundary layers, these vortices are not
symmetrical about the wall-normal axis, but tilted in the cross-flow plane. As
the disturbance evolves downstream, the direction of the tilting changes. The
tilting is opposite in flows with favorable and adverse pressure gradient, since
the cross-flow component of the Falkner–Skan–Cooke boundary layer changes
sign with the pressure gradients.

Secondly, the optimal disturbance was calculated in the accelerated flow,
βH = 0.1, over a chordwise interval which includes super-critical flow, 0.005 ≤
r1/l ≤ 1.0. The spatial analysis employed herein allowed a study of the dist-
urbances as they evolved downstream, from the sub-critical region of algebraic
growth into the classically unstable region of exponential amplification. It was
shown that the disturbances are of the same basic shape in the regions where
they receive algebraic and exponential amplification. Hence, it was concluded
that similar physical mechanisms are responsible for both the algebraic and the
exponential instability of the Falkner–Skan–Cooke boundary layer.
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7. Appendix A

7.1. Derivation of the adjoint equations

The adjoint equations (25), are derived with respect to the inner product

(ψ,ϕ) =

∫ ξ1

out

0

∫ ξ3

max

0

ψHϕ dξ3 dξ1 (40)

where ψ and ϕ are two arbitrary vector functions. Taking the inner product of
the adjoint state vector φ∗ and the disturbance equations (15), and employing

integration by parts to move the derivates from φ̂ to φ∗, we arrive at

(

φ∗, Aφ̂ + B
∂φ̂

∂ξ3
+ C

∂2φ̂

∂ξ3∂ξ3
+ D

∂φ̂

∂ξ1

)

=

(

Ãφ∗ + B̃
∂φ∗

∂ξ3
+ C̃

∂2φ∗

∂ξ3∂ξ3
− D̃

∂φ∗

∂ξ1
, φ̂

)

+

∫ ξ1

out

0

[

φ∗H

(

B −
∂C

∂ξ3

)

φ̂+
∂φ∗H

∂ξ3
Cφ̂+ φ∗HC

∂φ̂

∂ξ3

]ξ3

max

0

dξ1 +

∫ ξ3

max

0

[

φ∗HDφ̂
]ξ1

out

0
dξ3 (41)

where the matrices of the adjoint equations (25) are defined as

Ã = AH −
∂BH

∂ξ3
+

CH

∂ξ3∂ξ3
−
DH

∂ξ1
(42)

B̃ = −BH + 2
∂CH

∂ξ3
(43)

C̃ = CH (44)

D̃ = DH. (45)

and the superscript H denotes conjugate transpose. The left-hand side and the
first term of the right-hand side of equation (41) are both zero, since these inner
products include the disturbance equations (15) and the adjoint equations (25),
respectively. The boundary terms, i.e. the remainder of the right-hand side,
must therefore also be zero. We thus have

∫ ξ1

out

0

[

φ∗H

(

B −
∂C

∂ξ3

)

φ̂+
∂φ∗H

∂ξ3
Cφ̂+ φ∗HC

∂φ̂

∂ξ3

]ξ3

max

0

dξ1 = 0 (46)

∫ ξ3

max

0

[

φ∗HDφ̂
]ξ1

out

0
dξ3 = 0 (47)
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Introducing the boundary conditions of the state variables (16-17) into (46),
we can determine the boundary conditions for the adjoint variables (28) as

u∗ = v∗ = w∗ = T ∗ = 0 at ξ3 = 0

u∗ = v∗ = w∗ = T ∗ = 0 at ξ3 = ξ3max

Furthermore, by identifying the energy norms (20-21) in the boundary term (47)
we can determine the initial conditions (29-33) for the adjoint equations

ρ∗ = −ρŵd41/ (d11d44)

u∗ = ρ (û+ ŵd41d12/ (d11d44) − ŵd42/d44) /d22

v∗ = ρv̂/d33

w∗ = ρŵ/d44

T ∗ = T̂ /
(

(γ − 1)T 2M2d55

)

and the optimal initial conditions (34-34) for the state equations

ρ̂ = 0 (48)

û = (ρ∗d12 + u∗d22 + w∗d44) /ρ (49)

v̂ = v∗d33/ρ (50)

ŵ = w∗d44/ρ (51)

T̂ = 0 (52)

The term ρ∗d12/ρ in (49) must however be omitted in order to satisfy the
boundary conditions (16), as discussed in § 4. Further details on the adjoint
Nolot-code can be found in Pralits et al. (2001).

8. Appendix B. Operator matrices

The non-zero components of the matrices A, B, C and D in equation (15) are
a (1, 1) = D3 (W ) + c̃D1 (U) + iβ

(

V − t̃U
)

a (1, 2) = c̃D1 (ρ) − it̃βρ
a (1, 3) = iβρ
a (1, 4) = D3 (ρ)

a (2, 1) = D1 (U)U +D3 (U)W − it̃β
γM2 T

a (2, 2) = ρ
(

c̃D1 (U) + iβ
(

V − t̃U
))

+ µ
R
β2
(

1 + t̃2l2
)

a (2, 3) = − µ
R
t̃l1β

2

a (2, 4) = ρD3 (U) + i
R

dµ
dT
t̃βD3 (T )

a (2, 5) = −i
γM2 t̃βρ+ 1

R

(

dµ
dT

(

−D33 (U) + it̃l0βD3 (W )
)

−D3 (U) d2µ
dT 2D3 (T )

)

a (3, 1) = Uc̃D1 (V ) +D3 (V )W + iβ
γM2T

a (3, 2) = ρc̃D1 (V ) − µl1 t̃
R
β2

a (3, 3) = ρiβ
(

V − t̃U
)

+ µ
R
β2
(

l2 + t̃2
)

a (3, 4) = ρD3 (V ) − iβ
R

dµ
dT
D3 (T )
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a (3, 5) = iβ
γM2 ρ+ 1

R

(

− dµ
dT

(D33 (V ) + il0βD3 (W )) −D3 (V ) d2µ
dT 2D3 (T )

)

a (4, 1) = D3 (W )W + c̃D1 (W )U + 1
γM2D3 (T )+

µ
R

l2
ρ

(

D33 (W ) + c̃D13 (U) + iβ
(

D3 (V ) −D3 (U) t̃
))

a (4, 2) = ρc̃D1 (W ) + 1
R

(

il0D3 (T ) dµ
dT
βt̃+ µl2

ρ

(

c̃D13 (ρ) − iD3 (ρ)βt̃
)

)

a (4, 3) = − iβ
R
l0

dµ
dT
D3 (T ) + D3(ρ)

ρ
iβ
R
µl2

a (4, 4) = ρ
(

D3 (W ) + iβ
(

V − t̃U
))

+ 1
R
µβ2

(

1 + t̃2
)

+ D33(ρ)
ρ

µ
R
l2

a (4, 5) = 1
γM2D3 (ρ) +

1
R

(

−D3 (W )D3 (T ) d2µ
dT 2 l2 + dµ

dT

(

−D33 (W ) l2 + iβ
(

−D3 (V ) + t̃D3 (U)
))

)

a (5, 1) = γ−1
γ

(

WD3 (T ) + iTβV + t̃βU
)

+ cp (−WD3 (T ) − c̃UD1 (T ))

a (5, 2) = (γ − 1)M2
(

c̃D1 (p) − 2 iµ
R
l0βD3 (W )

)

− ρcpc̃D1 (T )

a (5, 3) = −2 iµ
R
l0β (γ − 1)M2D3 (W )

a (5, 4) = (γ − 1)M2 2iµ
R
β
[

D3 (V ) − t̃D3 (U)
]

− ρcpD3 (T )

a (5, 5) = ρ
(

dcp

dT
(−WD3 (T ) − Uc̃D1 (T )) + i

[

γ−1
γ

− cp

]

β
(

V − t̃U
)

)

+

1
RPr

[

dκ
dT
D33 (T ) + d2κ

dT 2 (D3 (T ))2 − κβ2
(

t̃2 + 1
)

]

+

γ−1
R

dµ
dT
M2

[

(D3 (U))
2

+ (D3 (V ))
2
+ l2 (D3 (W ))

2
]

+
γ−1

γ
WD3 (ρ)

b (1, 1) = W
b (1, 4) = ρ

b (2, 2) = ρW − 1
R

dµ
dT
D3 (T )

b (2, 4) = it̃β µ
R
l1

b (2, 5) = − 1
R
D3 (U) dµ

dT

b (3, 3) = ρW − 1
R

dµ
dT
D3 (T )

b (3, 4) = − iµ
R
βl1

b (3, 5) = − 1
R
D3 (V ) dµ

dT

b (4, 1) = 1
γM2T + µ

R
l2
ρ

(

2D3W + c̃D1U + iβV − t̃βU
)

b (4, 2) = µ
R

(

l2
ρ
D1ρ− iβt̃

)

b (4, 3) = iµ
R
β

b (4, 4) = ρW + l2
R

(

2µD3(ρ)
ρ

− dµ
dT
D3 (T )

)

b (4, 5) = 1
γM2 ρ−

l2
R

dµ
dT
D3 (W )

b (5, 1) = γ−1
γ
WT

b (5, 2) = 2 (γ − 1)M2 µ
R
D3 (U)

b (5, 3) = 2 (γ − 1)M2 µ
R
D3 (V )

b (5, 2) = 2 (γ − 1)M2 µ
R
l2D3 (W )

b (5, 5) = ρW
[

γ−1
γ

− cp

]

+ 2
RPr

dκ
dT
D3 (T )
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c (2, 2) = − µ
R

c (3, 3) = − µ
R

c (4, 1) = l2
µ

Rρ
W

c (5, 5) = κ
RPr

d (1, 1) = c̃U
d (1, 2) = c̃ρ
d (2, 2) = c̃ρU
d (3, 3) = c̃ρU
d (4, 1) = c̃l2

µ
ρR
D3U

d (4, 2) = c̃l2
µ

ρR
D3ρ

d (4, 4) = c̃ρU
d (5, 5) = −c̃cpρU

where c̃ = 1/ cos (Φ) , t̃ = tan (Φ) , Di = ∂
∂ξi , Dij = ∂2

∂ξi∂ξj and lj = λ
µ

+ j
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Hall, P. 1983 The linear development of Görtler vortices in growing boundary layers.
J. Fluid Mech. 130, 41–58.

Hanifi, A., Schmid, P. & Henningson, D. S 1996 Transient growth in compressible
boundary layer flow. Phys. Fluids 8 (3), 826–837.

Hanifi, A., Henningson, D. S., Hein, S. & Bertolotti, F. P. 1994 ’Linear Non-
local Instability Analysis - the linear NOLOT code’. FFA TN 1994-54, See also
Hein et al. 1994.

Henningson, D., Lundbladh, A. & Johansson, A. 1993 A mechanism for by-
pass transition from localized disturbances in wall-bounded shear flows. J. Fluid
Mech. 250, 169–238.
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