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Abstract

Fluid flows mainly driven by capillary forces are presented in this thesis. By means
of modeling and simulations, interesting dynamics in capillary-driven flows are
revealed such as coalescences, breakups, precursor films, flow instabilities, rapid
spreading, rigid body motions, and reactive wetting.

Diffuse-interface methods model a fluid interface as having a finite thickness
endowed with physical properties such as surface tension. Two diffuse-interface
models that are based on the free energy of the system are presented. The binary
model, more specifically the coupled Navier-Stokes/Cahn-Hilliard equations, was
used to study different two-phase flows including problems related to microfluidics.
Numerical issues using this model have been addressed such as the need for mesh
adaptivity and time-step restrictions. Moreover, the flexibility of this model to
simulate 2D, axisymmetric, and 3D flows has been demonstrated.

The factors affecting reproducibility of microdroplet depositions performed un-
der a liquid medium are investigated. In the deposition procedure, sample solution
is dispensed from the end of a capillary by the aid of a pressure pulse onto a
substrate with pillar-shaped sample anchors. In both the experimental and nu-
merical study it was shown that the deposited volume mainly depends on the
capillary-substrate distance and anchor surface wettability. Furthermore, a critical
equilibrium contact angle has been identified below which reproducible depositions
are facilitated.

The ternary model is developed for more complicated flows such as liquid phase
sintering. With the introduction of a Gibbs energy functional, the governing equa-
tions are derived, consisting of convective concentration and phase-field equations
which are coupled to the Navier-Stokes equations with surface tension forces. Ar-
bitrary phase diagrams, surface energies, and typical dimensionless numbers are
some input parameters into the model. Detailed analysis of the important capil-
lary phenomena in liquid phase sintering such as reactive and nonreactive wetting
and motion of two particles connected by a liquid bridge are presented. The dy-
namics of the wetting is found to match with a known hydrodynamic theory for
spreading liquids. Factors affecting the equilibrium configuration of the particles
such as equilibrium contact angles and volume ratios are also investigated.

Descriptors: capillary-driven flows, wetting, Cahn-Hilliard /Navier-Stokes sys-
tem, multicomponent and multiphase flows, parallel adaptive computing, diffuse-
interface, phase-field method, liquid phase sintering, microfluidics.






Preface

This thesis pertains to the study of capillary phenomena at the microscale. In the
first part, a short introduction to the basic concepts, theories, applications, and
methods within the field is presented. The intention of the author is to provide
basic relevant information that complements the papers which are presented in the
second part of this thesis, as well as list some references for further reading. The
second part consists of the following papers:

Paper 1. Villanueva, W. and Amberg, G. 2006 Some generic capillary-driven
flows. Int. J. Multiphase Flow, 32, p.1072-1086.

Paper 2. Villanueva, W., Sjodahl, J., Stjernstrom, M., Roeraade, J., and Am-
berg, G. 2007 Microdroplet deposition under a liquid medium. Langmuir, 23 (3),
p.1171-1177.

Paper 3. Do-Quang, M., Villanueva, W., Singer-Loginova, 1., and Amberg G.
2007 Parallel adaptive computation of some time-dependent materials-related mi-
crostructural problems. Bulletin of the Polish Academy of Sciences, to appear.

Paper 4. Villanueva, W., Gronhagen, K., Amberg, G., and Agren, J. 2007 Multi-
component and multiphase modeling and simulation of reactive wetting. Submitted
to Physical Review E.

Paper 5. Villanueva, W., Gronhagen, K., Amberg, G., and Agren, J. 2007 Mul-
ticomponent and multiphase simulations of liquid phase sintering. To be submitted.

Paper not included in this thesis:

Villanueva, W. and Amberg, G. 2006 Phase-field simulations of free boundary mi-
croflows. Proceedings of the 2nd Int. Conf. on Transport Phenomena in Micro and
Nanodevices. Barga, Italy.
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Division of work between paper authors

Paper 1. The respondent performed the simulations with guidance from Gustav
Amberg (GA). The respondent wrote the paper with input from GA.

Paper 2. The problem was suggested by Johan Roeraade and GA. The respondent
performed the simulations with guidance from GA. Johan Sjodahl (JS) performed
the experiments with feedback from all authors. The respondent analysed the data
and wrote the paper with input from JS on the experimental part, and feedback
from all authors.

Paper 3. The parallel adaptive scheme was coded and verified by Minh Do-Quang
(MD) and wrote the dendritic growth part with input from Irina Singer-Loginova.
The respondent performed the capillary-driven flows and wrote this part. The re-
spondent was responsible for the literature reviews and documentation of the paper
with guidance from MD and feedback from GA.

Paper 4. The model was based on previous works of all authors. The respondent
nondimensionalised the model with input from Klara Gronhagen (KG). The simu-
lations were performed by the respondent with input from KG and feedback from
CA and John Agren (JA). The respondent was responsible for the writing with
input from KG and feedback from GA and JA.

Paper 5. The model used is similar to Paper 4. The simulations were performed by
the respondent with input from KG and feedback from GA and JA. The respondent
was responsible for the writing with input from KG and feedback from GA and JA.
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Introduction and Summary






CHAPTER 1

Basic concepts

1.1. Surface tension

The concept of surface tension can be viewed in two ways. It can be thought of
as a force per unit length or a surface free energy per unit area (Probstein 2003;
Adamson 1990).

Consider a liquid-gas system forming an interface, see Fig. 1.1. Molecules sense
and interact with each other. A molecule in the bulk liquid is attracted by all
neighbouring molecules from all directions. Any attraction by another molecule
from one direction is always balanced by another molecule from the opposite di-
rection. On the other hand, a molecule on the interface is attracted inward and to
the side but no outward attraction to balance the inward attraction since there are
not so many molecules outside in the gas. This unbalanced attraction will tend the
surface to contract. Surface tension effects can be observed in many commonplace
phenomena such as drops formed by liquids in air or in another liquid, thin films

and coatings, liquid jets, and capillary rise. For discussions on the molecular causes
of capillarity, see (Rowlinson & Widom 1982; Israelachvili 1992).
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FIGURE 1.1. Molecular interactions at the interface and in the bulk
liquid for a plane liquid-gas interface.

8

The term surface free energy is also being used interchangeably with surface
tension. This stems from the fact that the energy of a molecule at the surface
is higher than that of a molecule in the bulk liquid. So, a 'wandering’ molecule

1



2 1. BASIC CONCEPTS

would then increase the free energy of the system if it moves to the surface coming
from the interior, and decrease the system’s free energy if it does otherwise. Since
the free energy of the system must tend to a minimum, the surface will tend to
contract, exposing its least possible surface area.

The units of surface tension is usually given in force per unit length, and
equivalently, energy per unit area. Typical values are: water-vapor, 72.94 mN/m,
ethanol-vapor, 22.39 mN/m, and mercury-vapor, 486.5 m/N/m, all at 20°C (Adam-
son 1990).

Surface tension depends on temperature and it decreases as the liquid temper-
ature increases. Moreover, surface tension could also be altered by surface-active
materials, termed surfactants, that creates a monolayer at the surface. It can be
shown, using the Gibbs equation that there is a decrease in surface tension with
an increase in concentration of surfactants adsorbed at the interface (for more
discussions, see Adamson 1990; Probstein 2003).

1.2. Wetting

When a fluid/fluid interface makes a contact with a third phase, usually a solid
surface, we have a phenomenon called wetting. It is widespread in physical and
biological sciences such as the rise of sap in plants (which is a vital subprocess in
photosynthesis), penetration of liquids into porous rock, and many others.

medium

liquid

[
Ll

O s Oy solid

FIGURE 1.2. Wetting of a liquid drop on a solid surface.

The wetting of a liquid on a solid surface can be classified into two types
(de Gennes et al. 2004): total wetting, when the liquid spreads completely; and
partial wetting, when the liquid at equilibrium rests on the solid with a con-
tact angle 6., see Fig. 1.2. Both are characterized by the spreading parameter
S = osm — (05 + o), where the o’s are surface tensions at the solid/medium
(medium is either air or another liquid), solid/liquid, liquid/medium interfaces,
respectively. S > 0 corresponds to total wetting and S < 0 corresponds to partial
wetting. High-energy surfaces such as metallic surfaces has higher og); values,
thus increases S, compared to low-energy surfaces such as plastics. Wettability
can also be controlled through surface roughness and surface coatings. Surface
roughness enhances wetting when the surface is hydrophilic and the opposite if the
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surface is hydrophobic. Examples of superhydrophobic surfaces include bird feath-
ers and lotus leaves that have equilibrium contact angles of 150 and 170 degrees,
respectively.

There is a relation between the static equilibrium contact angle 6. and the

interfacial tensions (see Fig. 1.2), and this is given by the Young’s equation (Young
1805),

OsmM — OSL
cos O, = —————

(1.1)
with the assumption that S < 0 and the solid surface remains rigid and smooth.
For a solid surface that is rough or has impurities, the static contact angle may
not be unique but lies between the static advanced and receded contact angles
(Johnson & Dettre 1964). This is called the contact-angle hysteresis.

The quantity & = cos 6, is often referred to as the wetting coefficient. This
quantity when plotted against the surface tension oy, (of different alkanes) gives
the Zisman plot (Zisman 1964). It is useful in the determination of critical surface
tension of different surfaces which is related to their wettabilities.

OLM

Another important concept in the study of wetting is the dynamic contact
angle. To illustrate this, let us start with a liquid drop spreading on a smooth solid
surface. As the wetting line moves, the contact angle changes approaching a stable
value which is the equilibrium contact angle ..

Many theories have been proposed to explain how the contact angle changes
with respect to parameters in the system (for details, see Berg 1993).

For 6. close to 0, the apparent dynamic contact angle depends solely on the
Capillary number Ca

= —MLU
OLM

Ca (1.2)

where pp is the viscosity of the liquid and U is the wetting speed,
0. = fu(Ca), (1.3)

as first postulated by Hoffman (1975) using silicone oils in glass capillaries. Hoffman
did not provide an explicit mathematical form for the universal master curve fy he
obtained. Tanner (1979), however, was the first one to derive the power law which
is valid for Ca <« 1,

., ~ const - Cal/?, (1.4)

from hydrodynamic theory, that fits Hoffman’s experimental data. Voinov (1976),
on the other hand, had obtained earlier a similar result from a hydrodynamic
analysis. Thus, Eqn. 1.4 is referred to as the Hoffman-Voinov-Tanner (HVT) law
(Kistler 1993). Numerous empirical correlations have also been proposed to include
other dimensionless parameters or to capture the universal master curve obtained
by Hoffman, such as Jiang’s correlation (Jiang et al. 1979).
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Cox (1986) provided a more general analysis of the dynamics of wetting. Cox’s
theory states that given two immiscible fluids with viscosity ratio A = pps/pr and
at a leading order in Ca,

9(6.) — g(6.) = Caln(c™) (1.5)

where 6, is the apparent dynamic contact angle, 6, is the static equilibrium contact
angle, € is a very small constant parameter, and the function g(0) is given by

* do
o) = | 22
AN TC) (16)
and
£(0) = 2sin 0{\*(6% — sin” 0) 4+ 2\[0(7m — 0) + sin” 0] + [(7 — 6)* — sin” 0]} (1.7)

(62 — sin? 0)[(7 — 6) + sinf cos 0] + [(7m — )% — sin 0] (6 — sinf cos h)

Similar to the HVT law, Cox’s theory is valid for Ca < 1 and A\Ca < 1.
Furthermore, for liquid/solid systems with complete wetting (65 = 0) and negligible
air viscosity, Cox’s theory and similar equations proposed by Hocking & Rivers
(1982) and Voinov (1976) corroborate the experimental finding of Hoffman (1975)
that the apparent contact angle is primarily a function of Ca (Kistler 1993).

A wealth of information regarding wetting can be found in (Adamson 1990;
de Gennes 1992; Berg 1993; de Gennes et al. 2004) and references therein. An
early review and interesting experiments on moving contact lines are discussed in
Dussan (1979) and Dussan & Davis (1974), respectively.



CHAPTER 2
Applications

The study of capillary phenomena has gained much attention recently. This increas-
ing interest is motivated not only by fascination in naturally-occuring phenomena
such as motion of drops, bubbles, and waves but also its importance in applied
fields ranging from industrial and biomedical and pharmaceutical to microfluidic
systems. We discuss a few examples of these coming from two disciplines, powder
metallurgy (Upadhayaya 2000) and microfluidics (Squires & Quake 2005; Karni-
adakis et al. 2005; Tabeling 2005). In particular, we are interested in the study of
liquid phase sintering (German 1985) and two-phase flows at the microscale.

2.1. Liquid phase sintering

Liquid phase sintering is a technological process that combines different metals
to make products like ceramics, alloys, lamp filaments, dental fillings, insulators,
carbides, bearings, turbines, blades, knives, and many more. Our improved and
growing knowledge of materials properties such as hardness, toughness, and melting
temperature, have aided us in creating new materials that exhibit some properties
that we desire. Take for example a cemented tungsten carbide with cobalt additive
(WC-Co) used for cutting and machining tools. They have excellent hardness and
fracture toughness as a result of the combination of tungten carbide’s hardness
and cobalt’s toughness. For a recent review of the general process of sintering, see

Olevsky (1998).

Described in a simpler way, the tungsten carbide and cobalt powders, of typical
fine-grained sizes of about 1 — 10 microns in diameter, are evenly mixed and ma-
chine pressed. The cobalt has lower melting temperature which is about 1300°C.
The mixed material is heated until the cobalt softens. The cobalt then wets the
solid grains and occupy the pores in the microstructure and due to surface tension
forces exerted by liquid bridges pulling the solid particles together, the material
rapidly rearranges and the cobalt can occupy more pores leading to a more com-
pact structure. This is actually the most important stage in the process as it
contributes the most in the overall densification of the compact (German 1985).
The next stage called solution-reprecipitation is slower but higher densification is
still expected due to mass diffusion that initiates the growth of a larger grain at
the expense of a smaller grain. This is called coarsening or Ostwald ripening. The
last stage is much slower and is dominated by processes common to solid state
sintering which include grain growth, contact growth, grain coalescence, and pore
elimination that all contribute to a more dense structure. Interestingly, people
from ancient Mesopotamia had long practiced a similar process to make clay bricks

5
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for constructing their homes and buildings. The clay bricks were made of clay in
its liquid phase mixed with straw, pressed, and were either baked or sun-dried.

Some important factors influence the densification of the compact microstruc-
ture such as the amount of liquid present, particle size, solubility of the solid in
liquid, contact angle, dihedral angle (German 1985). Moreover, wettability is the
most significant phenomenon in liquid phase sintering, as stressed out by German
(1985) and in experiments carried out by Motta et al. (2004) and Taguchi et al.
(2004).

Theoretical work on the densification during liquid phase sintering is presented
in (Kingery 1959). A densification rate as a function of time, particle size, and tem-
perature is proposed. An analysis of the capillary forces in liquid-phase sintering
have been done by Heady & Cahn (1970). They derived an interparticle force be-
tween two spherical particles connected by a liquid bridge. The interparticle force
had two major contributions, the surface tension forces, and the pressure difference
caused by the surface curvature. On the other hand, Huppmann & Riegger (1975)
used a circle approximation and rederived this interparticle force as a function of
interparticle distance. They performed an experiment on tungsten spheres coated
with copper in which analytical and experimental results were compared.

Svoboda et al. (1995) developed a quantitative model for liquid phase sintering.
Their densification rate accounts for rearrangement, grain shape accommodation
by contact flattening, and pore filling and grain coarsening in the final stages of
sintering. Their model, however, does not account for wettability. In addition,
cases where small rearrangement were only considered. A pore filling theory is de-
veloped by Lee & Kang (1997). In their theory both densification and grain growth
are taken into account in the calculation of shrinkage in contrast to Kingery’s the-
ory that only takes densification into account. A computer simulation of particle
rearrangement in the presence of liquid is presented in (Lee et al. 1999). The cal-
culated capillary force between particles connected by a liquid bridge is a function
of their distance with constants related to the elasticity. Anestiev & Froyen (1999)
have also studied the rearrangement process due to capillary forces by calculating
mean interparticle distances in time. They extended the analysis of Heady & Cahn
(1970) to include friction force arising from the movement of the spherical particle
through the liquid.

A quantitative model that describes the evolution of the microstructure during
liquid phase sintering with dependencies on the phase diagram of the system, sur-
face energies, and complete physicochemical properties of the materials involved,
has not, to the author’s knowledge, been reported yet in the literature. Notably,
one of the motivations of the present thesis stemmed from this observation.

2.2. Microfluidics

Microfluidics is a rapidly developing field that deals with the study of fluid flows
in artificial microsystems. Promising applications of microfluidics include lab-on-
a-chip systems such as DNA testing in a small portable device that may contain
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miniaturized devices such as micro-pumps, valves, mixers, separators, and reac-
tors. Micromixers are essential in a lab-on-a-chip device. It is well known that in
microchannels the flow is laminar and mixing is only based on molecular diffusion.
Thus to attain rapid mixing, the mixer should be designed so as to create more
intermaterial surface where diffusion between fluids takes place. Early successful
implementations of passive mixers can be found in (Liu et al. 2000; Stroock et al.
2002). In (Stroock et al. 2002) for example, asymmetric grooves were built at the
bottom of the channel to create transverse secondary flows. Other applications of
microfluidics include microfilter systems that can be used to collect and identify
chemical or biological entities from the environment; micropropulsions and nozzles
that are essential for microspacecrafts (Karniadakis et al. 2005).

Some challenges in microfluidics include effective manipulation of drops or bub-
bles in microchannels, effective separation of microparticles in a fluid medium, and
chaotic mixing.

The role of surface tension in the formation and/or manipulation of drops is
important, and the study of which is rapidly increasing, partly due to the many
fascinating effects that can be observed and its numerous possible applications in
engineering and technology.

For example, the use of a t-junction to generate droplets has been demonstrated
by Thorsen et al. (2001). In their study, there were two competing stresses, vis-
cous stress that extend and drag the column of liquid to be formed to droplets
and surface tension that tries to minimize the interfacial area. Different pattern
formations have been shown that are largely affected by the geometrical properties
of the system.

When a drop is placed on a solid surface, it spreads and finds its equilibrium
configuration, that is, with the given interfacial energies, the drop assumes an equi-
librium contact angle with the surface (see Fig. 1.2). By actively modifying these
interfacial energies, the drop moves and adjusts to another equilibrium contact an-
gle. There are many ways to effectively manipulate drops such as thermowetting,
optowetting, and electrowetting (Squires & Quake 2005). Since surface tension is
temperature dependent, the application of thermal gradients on a droplet lying on
a horizontal surface induces a gradient in surface tension, which in turn induces a
Marangoni flow in the droplet that makes it able to move (Brochard 1989). The
concept has been successfully applied in DNA analysis devices (Burns et al. 1998).

The use of light can also drive a droplet into motion. Ichimura et al. (2000)
demonstrated the manipulation of drops reversibly by spatially controlled photoir-
radiation of a photosensitive substrate surface.

By the application of a potential difference between the drop and the sub-
strate, the solid/liquid surface behaves as a capacitor and its interfacial tension
ogr decreases. With the modified interfacial tension, the drop adjusts to a new
equilibrium contact angle given by the Lippman equation (Squires & Quake 2005).

In this thesis the study of free surface flows at the microscale is presented. The
aim has been to model and simulate different phenomena involving flows mainly
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driven by capillarity. The emphasis is on the importance of surface and geometrical
properties of a given system, and how surface tension plays a significant role.



CHAPTER 3

Mathematical modeling

3.1. Modeling wetting

The wetting phenomena can be viewed as a free interface problem where the in-
terface between the two immiscible fluids are deformable and free to change their
shape in order to minimize their surface energy. The problem can be modeled with
the front-tracking (Unverdi & Tryggvason 1992), level set (Sussman et al. 1994),
volume-of-fluid (Hirt & Nichols 1981), or diffuse-interface methods such as the
phase-field method (Jacqmin 1999). Interestingly, molecular dynamics simulations
has also been used to study the dynamics of wetting (Yang et al. 1991; Coninck
et al. 1995; Fan & Cagin 1995; Jin et al. 1997).

—markers =41 ﬁni‘E width

PR

(2

C,=-1
(©)

FIGURE 3.1. Modeling wetting with (a) front-tracking, (b) level set,
and (c) phase-field method.

The front-tracking method explicitly tracks an interface by markers, see Fig.
3.1a. The Lagrangian markers are evenly distributed on the interface together
with some connectivity. The markers are advected by a velocity field defined on a
discrete Eulerian grid by which interpolation of the velocity field from the grid to
the Lagrangian points is implemented. In many cases, clustering occurs, so markers
are inserted or deleted to preserve the quality of the interface. In 3D with surface
elements, this gets much more complicated.

In the standard level set method, a signed distance function ¢ is used. The
interface is defined as having the zero contour (see Fig. 3.1b). The movement of
the interface is governed by a partial differential equation of Hamilton-Jacobi type,
ie., Oyp+u-Ve = 0. Similar to the front-tracking, clustering of contours takes
place, so reinitialization is done to preserve the property of the signed distance
function. An issue of non-conservation of this method has been addressed, for
example, in (Olsson & Kreiss 2005). An application of the level set method to
moving contact lines has been presented, for example, in (Singh & Joseph 2005;
Mukherjee & Kandlikar 2007; Lesage et al. 2007; Son & Hur 2007). The contact
angle is prescribed on the solid surface with n- (Ve /|V|) = cos 6, where n is the
unit outer normal on the solid surface and 6 is the contact angle. The contact line

9



10 3. MATHEMATICAL MODELING

will move according to a slip velocity, taken either by relaxing the no-slip boundary
condition in which the slip velocity is proportional to the shear stress on the wall,
or compute an ’effective numerical slip’ in terms of the prescribed contact angle,
(for details, see Singh & Joseph 2005).

The level set has been coupled to the volume-of-fluid method to combine their
advantages, a more accurate interfacial curvature of the level set and the conser-
vation properties of the volume-of-fluid (Son & Hur 2002). In the volume-of-fluid
method, a color function ( is introduced to identify the shape and evolution of
the interface. The function distinguishes one fluid from another by associating a
distinct value for each bulk phases, say 0 and 1. Computational cells that have
values between 0 and 1 are assumed to contain part of the interface. Similar to
the level set, the movement of the interface is governed by 0;( + u-V({ = 0. An
inherent difficulty in this method is the reconstruction of the interface by finding
an approximation to the section of the interface in each computational cell given
only the volume/area fraction (.

In this thesis, diffuse-interface methods are implemented. Some advantages of
such models are mass conservation, handles topological changes very well, no inter-

vention required during simulation, and flexibility to simulate 2D, axisymmetric,
and 3D flows.

3.2. Diffuse-interface methods

Diffuse-interface methods consider the interface between the two fluids to have a
non-zero thickness endowed with physical properties such as surface tension. For a
review of the development of diffuse-interface models applied to different interfacial
phenomena, see Anderson et al. (1998). Phase-field models are particular type of
diffuse-interface models that are based on fluid free energy, an idea that can be
traced to van der Waals (1893). For reviews of phase-field models and simulations
for microstructure evolution, see (Chen 2002; Boettinger et al. 2002). The main
drawback of phase-field models is the thickness of the interface. Although in reality
there is an existing region where a property of one fluid changes to the other, the
current capability of computers only allows us to have a thickness way much more
than the thickness of this region.

Two commonly employed phase-field models are the Cahn-Allen and Cahn-
Hilliard theory. Cahn-Allen equations describe the evolution of a nonconserved
quantity and commonly used in solidification and nucleation problems (Boettinger
et al. 2002; Loginova et al. 2003, among many others). The Cahn-Hilliard theory,
on the other hand, describe the evolution of a conserved order parameter and is
used in spinodal decomposition problems (see for example Cahn 1961; Badalassi
et al. 2003; Kim et al. 2004), contact-line dynamics (Seppecher 1996; Jacqmin
1999, 2000; Villanueva & Amberg 2006, to name a few), microfluidics applications
(Villanueva et al. 2007, or Paper 2 in this thesis), and many more.

One notable feature of the Cahn-Hilliard theory is that the force singularity aris-
ing in the classical model of moving contact lines as pointed out by Huh & Scriven
(1971) is no longer present due to mass transfer across the interface, for details see
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Seppecher (1996). Whereas other methods require some special treatment on the
contact line region to make it move.

In what follows is a derivation of the Cahn-Hilliard equation based on the works
of (van der Waals 1893; Cahn 1961; Jacqmin 1999).

Consider the case of an isothermal, viscous, incompressible binary fluid con-
sisting of two components, A and B. We can introduce an order parameter, a
phase-field C, to characterize the two different phases which is analogous to the
relative concentration between the two. In each bulk phase, C' assumes a distinct
constant value and changes rapidly but smoothly in the interfacial region. For
example, component A assumes the value C'y = —1 while component B takes the
value C'p = 1 and the transition from C'4 to Cp describes the interfacial region (see
Fig. 3.1c).

The free energy of the system can be postulated as

1 2
F= [0+ 5a(VCP) a0+ [ lrss+ (s —oslalCNds (1)

that is the sum of the bulk energy g (C), gradient energy %a(VC’)Z, and wall free
energy osr, + (0sm — 0s1)g(C). The function VU is a double-well positive function
that has two minima corresponding to the two stable phases. A simple example of
such function is (C'+ 1)*(C — 1) which has minima at Cy 5 = +1 and a peak of
high energy at C' = 0. The constant parameters a and (3 are used to control the
surface tension and the interface thickness. The function ¢g(C') is chosen such that
g(C4) = 0 and g(Cp) = 1. The parameter ogy, is the interfacial energy between
the solid and the liquid and g, is the interfacial energy between the solid and the
medium.

Consider a variation in F,
0F = / {ﬂ\IJ’(C)(SC + onC’(S(VC)} ds? +/ (osm —os1)g' (C)6CdS  (3.2)
Q o0
then integration by parts yields,

5?:/{@’(0)—av20}50d9
Q

(3.3)
+ {an-VC+(JSM —USL)g’(C’)}éCdS.
a9
The boundary integral vanishes by taking,
an - VC + (osy — 0s1)9' (C) =0, on 012, (3.4)
which is called the wetting condition. Define the chemical potential n
n =BV (0) — aViC. (3.5)

The variation in F is simplified to,

5F = / n3C Q. (3.6)
Q
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Any variation in composition 6C' causes a variation in free energy d.F, however, it
is not known at this point if the free energy F increases or decreases as a result.
Looking at it in a different way, if we postulate that the free energy of the system
must always decrease, obeying laws of thermodynamics, then we should only allow
certain variations in composition that satisfy our assumption.

Note that the composition obeys mass conservation,

oC
- LT = 3.7
o +V-J=0 (3.7)

where J is a flux.
Now, consider a variation in C,

5C = %—fdt = —dtV - J (3.8)

where dt is an infinitesimal time. Substitution of Eqn. 3.8 into Eqn. 3.6 and using
the divergence theorem give

5f:—dt/nV~JdQ
Q

(3.9)
:dt/ J-VndQ—/ (n-J)ndS.
Q o0
The boundary integral vanishes by taking,
n-J=0  ond (3.10)
which means no flux is allowed across the boundary.
Simply,
0F = dt/ J - VndS. (3.11)
Q

Our aim is to guarantee a decrease in free energy after an infinitesimal time dt,
that is, the evolution of C is such that 6F < 0. Choosing the flux to be of the form

J = —krVn, k>0 (3.12)
and substitution into Eqn 3.11, we have

OF = —dt/ kVn - VndQ = —dt/ x(Vn)2dQ < 0, (3.13)
Q Q

which guarantees a decrease in free energy.
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Thus, the Cahn-Hilliard equation, modified to account for fluid motion, is given
by

%—?+(U'V)C—I€V2’r] in QxT
n = BV (C) — aV3C in QxT
n-vVn=20 on 0f) (3.14)
an - VC + (osy — 051)g'(C) =0 on 99
C(', O) = C() in €

where u(x, ) is the velocity field and x assumed to be constant. The Cahn-Hilliard
equation models the creation, evolution, and dissolution of diffusively controlled
phase-field interfaces (Bates & Fife 1993).

3.3. Navier-Stokes flow

The isothermal, viscous, and incompressible Navier-Stokes equations form the basis
for studying many phenomena concerning fluid flow. The system consists of partial
differential equations expressing conservation of momentum and mass, respectively,
and reads

)
p(a—?+u-Vu):—vp+v-(u(Vu+VuT))+F n OxT
V-u=0 in ox7 (315
u(-,0) =uy in Q

where p is the density, p is the viscosity, u(x,t) is the velocity vector, p(x,t) is the
pressure, and F' is the sum of all the given driving forces such as surface tension
and gravity forces.

A surface tension force that is related to the order parameter is needed when
coupling the Navier-Stokes equations with the Cahn-Hilliard equation. Following
the derivation of Jacqmin (1999), the free energy changes in time due to convection
according to:

oF 0F oC
o™ o 50 0 (319
Note that
oC
E . - —V . (u C) (317)

Integration by parts combined with the divergence theorem yield,

oOF OF
E ——/QwV(UC)dQ,

5F a
S (2 : ) aq.
/mn <5Cu0)d5+/gu CV((SC)d

conv

(3.18)
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The boundary integral vanishes due to boundary conditions. The rate of change
of kinetic energy E due to surface tension forcing is always opposite to the change
in free energy. Then,

E
—8—]: :8_ :/u-FdQ. (3.19)
at conv at kinetic Q
Thus the surface tension forcing is given by
0F
F—_ )= , 3.20
cv < 5 C’) CVn (3.20)

It is demonstrated in (Anderson et al. 1998) that diffuse-interface models such
as the one presented here approach asymptotically the free-boundary formulation
which is done by adopting the sharp-interface limit.



CHAPTER 4

Computational aspects

4.1. Numerical treatment

Partial differential equations (PDEs) are mathematical descriptions of many phys-
ical phenomena. Their exact or classical solutions cannot be found in most cases.
In the era of scientific computing, many numerical methods have been proposed to
find an approximate solution of the original PDE. Common methods include the
finite difference, spectral, finite volume, and finite element method.

In the finite difference method, the domain is discretised with a finite number
of grid points. Approximate solution at the grid points is obtained by replacing
derivatives with an appropriate difference quotients (stencils). The finite difference
method, owing to its simplicity and ease of use, has been used in many phase-field
calculations (Wheeler et al. 1993; Warren & Boettinger 1994; Murray et al. 1995;
Braun et al. 1997).

Spectral methods assume wavelike solutions of the underlying PDE. They have
advantages in solving periodic problems, among others and have also been suc-
cessfully applied in the study of hydrodynamic stabities in shear flows (Schmid &
Henningson 2001).

Finite volume methods are also commonly used especially in commercial Com-
putational Fluid Dynamics (CFD) codes. Here, the domain is discretised into
control volumes and then nodal/vertex values that are typically located at the cen-
ter of the control volume are sought by solving the governing equations integrated
over the control volume.

In this thesis, the finite element method is used. The finite element method is
known to be a powerful and flexible tool for flows with complicated geometries.

4.2. Finite element discretisation

The Galerkin finite element method finds weak solutions of a variational /weak form
by a piecewise polynomial approximation in space, time, or space/time. The finite
element method is very popular in the structural mechanics community where it
originated and it is recently gaining popularity in solving fluid dynamical prob-
lems especially in flows with complicated geometries, (for a thorough numerical
treatment of the subject, refer to Gresho & Sani 1998).

The standard procedure for setting up the variational form is to multiply the
PDE with a test function and integrate over the entire domain. Apply integration
by parts where necessary and choose appropriate function spaces.

15
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As an example, the variational formulation of the Cahn-Hilliard equation (Eqn.
3.14) without convection for simplicity, reads: Find C,¢ € H'(€) such that for
almost all ¢ € (0,7)

aC
() +6(Ve, Vx) =0 ¥y € H{(Q)

(¢, x) — BY'(C),x) —a(VC,VX) =1 (C),x)r =0 VxeH (Q)

where (-,-) is the L2-scalar product and v = ogy — 0s5r. An Ly-space is defined
as Ly(Q) = {v| [,v® < oo} while the Hilbert space H'(Q) = {v|v € Ly(Q2),Vv €
Ly(Q)}.

We now proceed in setting up a Galerkin finite element discretisation of the
coupled Cahn-Hilliard and Navier-Stokes equations. We simplify the discussion
by assuming a homogeneous Dirichlet boundary condition for the velocity, and
specific use of continuous piecewise linear functions. Our finite element treatment
for the Navier-Stokes is similar to those of Hansbo & Szepessy (1990) without the
streamline diffusion method.

Let F = {7} be a finite element triangulation of { where the elements 7 have
the smallest angle uniformly bounded away from 0. Let 0 =ty <t; < --- <ty =T
be a partition of [0,7] into subintervals I,, = (¢,,t,41) of lengths k, = t,11 — t,
and introduce space-time ’slabs’ S,, = Q x [,,. Forn =0,1,...,N, let K}! = {n}
be the corresponding subdivision of S, into elements n = 7 x I, and define

Vi ={v e [HY S : v|, € Pi(r) x Pi(I,)¥n=71x I, € K},v=00nT x I,}

N
V=[] W
n=0

Qr ={q € H'(Sn)laly € Pi(7) x Pi(I)Vn =1 x I,, € K}'}

(4.1)

(4.2)

N
Qn=1[]er
n=0

where Pj(w) denotes the set of polynomials of degree one on w and d = 1,2,3 is
the space dimension.

The finite element approximation now reads: Find (C, ¢, u,p) € Qp X Qp X V}, X
@, such that forn =0,1,..., N,

(% +u-VC,q)s, +k(Vo,Vq)s, =0, (4.3a)

(¢,9) = BY(C), @)s, — VT, Vq)s, = (g (C), Q)rxs, =0,  (4.3b)
(paa—lt1 +pu-Vu+ Vp,v)g, +u(Vu,Vv)g, = (F,v)g,, (4.3¢)
(V-u,q)s, =0, V(v,q) € V' x Q) (4.3d)

where (-, -)a is the Lo-scalar product in Ly(A).
Solving the Navier-Stokes equations implicitly is computationally expensive.

This is one reason why the use of projection methods are increasingly popular
(Gresho & Sani 1998; Guermond et al. 2006). In projection methods, one needs
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to solve at each time step a sequence of decoupled equations for the velocity and
pressure. As an example, we present the incremental fractional-step algorithm
presented in (Guermond & Quartapelle 1998). In this scheme, the pressure at the
viscous step is made explicit and then corrected at the projection step. The scheme
is presented using the original form of the Navier-Stokes.

The first step is to consider an advection-diffusion equation

u"t — 4"

pk— + pu” . vun+1 _ Mv2un+1 4 Vpn — Fn+1 (44)
n+1

then perform the projection step

ﬁn+l o

p

n+1

e + V(" —p") =0, (4.5a)

kn—i—l
v-a"tt =0, (4.5b)

Applying V- in Eqn.4.5a, a Poisson equation for the pressure is obtained,

p

_v2(pn+1 _pn) — _k
n+1

Vo't (4.6)

With the relation 0" = u™ — k"—;lV(p" — p" 1), the end-of-step velocity can be
eliminated and the viscous step becomes

un+1 —u”
- - 4 pun . vun+1 o Mv2un+1 4 v(2pn _pn—l) — Fn—l—l' (47)

1%
kn—l—l

The finite element discretisation of the two Equations 4.7 and 4.6 can be done
in a similar way as discussed above.

Furthermore, a pressure stabilization term €,(Vp, Vq),, where € ~ h? can be
added in the projection step to improve stability. The pressure stabilization term
with the above equal-oder interpolation circumvents the Ladyshenskaya-Babuska-
Brezzi (LBB) condition (Hughes et al. 1986).

More detailed discussions on the finite element analysis of the Cahn-Hilliard
equation can be seen in (Elliott & Larsson 1992; Barrett & Blowey 1995, 1999;
Garcke et al. 2001; Barrett & Blowey 2002) and references therein. While fi-
nite element analysis of the Navier-Stokes equations including streamline diffusion
methods, adaptive methods, projection methods, etc., can be found in (Hansbo
& Szepessy 1990; Hoffman 2002; Becker & Rannacher 2001; Gresho & Sani 1998).
For a general numerical treatment of PDEs, refer to (Eriksson et al. 1996; Larsson
& Thomée 2003) along with (Debnath & Mikusinski 1999; Evans 1998).

After setting up the finite dimensional analog of the weak form, the next step
is to solve the corresponding discrete system of equations.
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Using the basis of hat functions {®;},, we have for example for the variable
C,

Clx,t) = Z by (1)®;(x) (4.8)

and determine the nodal values ¢; at time t using the Galerkin orthogonality
(Eqn. 4.3a). The hat function ®; associated to node x; has the property that
®;, € @, and ®(x;) = 1if j = [ and ®;(x;) = 0 otherwise. Substitution of
Eqn. 4.8 into Eqn. 4.3a leads to a M x M linear system of equations,

A =b (4.9)

where b is the load vector that comes from both the previous solution and the
second term of Eqn. 4.3a if that is taken explicitly.

A finite linear system of algebraic equations can be solved in two ways, direct
methods or iterative methods. For dense matrices (with few zeros), it is advan-
tageous to use direct methods. While for sparse matrices, iterative methods are
generally used such as the generalized minimum residual method (GMRES), conju-
gate gradient method (CG), multigrid method, etc. (for further reading, see Saad
1996). While the GMRES is more oftenly used, the CG method performs very well
with symmetric and positive definite matrices. The use of preconditioners is also
essential for a more efficient algorithm. It should also be noted that there is no
definite general guidelines on which iterative method to use.

Different numerical schemes have been proposed to treat the Cahn-Hilliard/
Navier-Stokes system (Badalassi et al. 2003; Kim et al. 2004). Here a simple nu-
merical scheme is proposed and described as follows: At every time step,

1. Advect the composition C' with C; +u - VC = 0. The streamline diffusion
method can be included in this step.

2. Linearize and lump the chemical potential 1. While solving for the non-
convective C' with a CG, n is updated and solved inside CG’s iteration loop. A
diagonal solve is used to compute 7 in this step.

3. Solve n again with a standard CG for a more accurate surface tension forcing
in the Navier-Stokes equations.

4. Solve the Navier-Stokes equations using a projection method. A pressure
stabilization term can be included.

This scheme has been successfully applied in (Villanueva et al. 2007, or Paper
2 in this thesis) under the framework of a finite element solver called FemLego
(Amberg et al. 1999; Do-Quang et al. 2007).

The computational error using the finite element method has three sources: (1)
Galerkin discretization, because the solution is approximated by piecewise poly-
nomials, (2) numerical quadrature error arising from evaluating the integrals, (3)
solution of the discrete problem, from solving the resulting discrete systems only
approximately. For more details, see (Eriksson et al. 1995).
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4.3. Parallel adaptive computation

In most initial value problems the regions of interest occur only in certain parts of
the domain. Mesh adaptivity offers a way to greatly reduced the computational cost
of solving the initial value problem given a computational resources and a desired
accuracy. In this way, computational resources are more concentrated on regions
where the solution changes rapidly. The use of mesh adaptive computations are
almost mandatory in many problems especially in convection-dominated problems
and free boundary flows. In many cases both mesh refinement and derefinement are
needed. While refinement tries to keep the solution accurate enough, derefinement
makes the computation as efficient as possible by making sure that computational
resources are not wasted or unnecessarily used. For the same reason of reducing the
computational and storage requirements, the adaptive computation can be done in
a parallel computing environment.

Some transient problems are way too complex to be solved without the use of
parallel adaptivity. However, the design and implementation of an efficient and
reliable parallel adaptive algorithm remains difficult because there are many issues
that must be resolved especially in the parallel implementation.

For a parallel solver to be efficient, the total workload must be evenly dis-
tributed to each processor which is done by partitioning the mesh in such a way
that each processor takes the same number of elements and communication between
processors should be kept minimum. The communication between processors and
exchange of data can also be made efficient by having a sound data management
(Laszloffy et al. 2000) as well as keeping less information to be shared with other
processors. Since computational power of individual processors can be increased
with increasing demand, focusing more on ways of improving communication be-
tween processors offers a great deal of efficiency. Without adaptivity, the mesh
does not change and exchange of information is limited only on the data on the
partition boundary. Mesh repartitioning is also unnecessary as well as mesh migra-
tion. The inclusion of adaptivity, however, which is done in parallel often requires
the mesh to be repartitioned to keep a balanced workload. Mesh migration is then
unavoidable. Moreover, the standard use of adaptive refinement /derefinement also
requires keeping the history of refinements, to facilitate derefinement and maintain
the nestedness of the mesh (Rivara 1989). But this greatly increases the commu-
nication cost because it is an added information that has to be shared between
processors and also requires some memory to keep the information. A scheme pro-
posed by (Do-Quang et al. 2007, or Paper 3 in this thesis), however, does not keep
the history of refinement but keeps a local information about the node and edge
level. This information can be used to track back to the previous level of mesh
refinement, i.e., it is used to identify which nodes, edges or faces to be removed and
generate another set of information to be used for the next level of derefinement.



CHAPTER 5
Summary of results

Paper 1. Some generic capillary-driven flows.

. ORI
R
BE MMM

FI1GURE 5.1. Wetting of a liquid droplet on a solid surface. Concen-
tration field at nondimensional time t = 0, 1, 10, 200 with Ca = 1.0,
Re = 1.0, Pe = 1.5 - 10*, Cn = 0.01 and k = 0.9063 (. ~ 25°). The
mesh and velocity field are superimposed in (c) and (d), respectively.

In this paper, numerical simulations of some generic capillary-driven flows such
as basic wetting of a liquid drop on a solid surface, sintering-like flows, and im-
bibition of of liquids into a porous medium are presented. The coupled Cahn-
Hilliard /Navier-Stokes system previously discussed is nondimensionalized and used
to model the given problems.

Figure 5.1a shows a 2D drop lying on a solid surface with Ca = 1.0, Re = 1.0,
Pe = 10%, and Cn = 0.01. The wetting coefficient is ¥ = 0.9063 which is equiva-
lent to 6, ~ 25° using Eqn. 1.1. The drop is surrounded by another liquid with
density and viscosity similar to the drop. In Fig. 5.1a, the drop is in contact with
the surface at 158° apparent contact angle. Then the drop starts to spread and
wets the surface with a 141° apparent contact angle (Fig. 5.1b). In Fig. 5.1c,

20
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the drop spreads further with 77° apparent contact angle. The adaptive mesh is
superimposed and shows fine resolution along the vicinity of the interface. Finally,
the drop closely reaches the equilibrium contact angle of 6, ~ 25° in Fig. 5.1d.
The spreading is fast in the first stage and then slowly reach the equilibrium static
contact angle. The velocity field is also superimposed and gives a symmetric profile
with two vortices. In the final time considered, we measured an apparent contact
angle of 26°, one degree higher than the theoretically set value of 25°.

The apparent contact angle is also plotted versus the Capillary number for dif-
ferent interface thicknesses in Figure 5.2. The limited scatter that is present in
Fig. 5.2 is attributed to uncertainites in determining the apparent contact angle.
Nevertheless, the apparent contact angle is found to be fairly independent of the
interface thickness. Moreover, the values taken on the dependence of the contact
angle on the Capillary number is fairly close to Cox’s theory (see Section 1) with
viscosity ratio A = 1, parameter ¢ = 0.05, and static equilibrium contact angle
0. = 25°. This result is an update of Paper 1. The numerical results were com-
pared with Cox’s theory as opposed to Hoffman’s experiment that was shown in
the appended paper. The values of Hoffman’s experiment were for silicone oils in
air.

Paper 2. Microdroplet deposition under a liquid medium.

It this paper, a numerical and experimental study of the factors affecting re-
producibility of depositing microdroplets under a liquid medium is presented. In
the deposition procedure, sample solution is dispensed from the end of a capillary
by means of a pressure pulse onto a substrate with pillar-shaped sample anchors.
The model used is the Cahn-Hilliard /Navier-Stokes sytem, similar to the one used
in Paper 1 except that gravity forces are included. We have implemented a semi-
implicit scheme to avoid a severe time-step restriction imposed by the fourth order
Cahn-Hilliard equation. An axisymmetric model with mesh adaptivity was imple-
mented. The results showed that the deposited volume mainly depends on the
capillary-substrate distance and the anchor surface wettability. A critical equilib-
rium contact angle has been identified below which reproducible depositions are
facilitated.

Figure 5.3 shows an experimental microdroplet deposition of acetonitrile/water
made from a height of 96um under liquid fluorocarbon on a 50pum anchor. The
corresponding numerical microdroplet deposition made from a height of 100um
is shown in Fig. 5.4. The numerical simulations capture the deformation of the
liquid column and the pinning of the wetting lines on the edges of both surfaces.
The volume of the deposited droplet in the simulation is 28 pL. compared to the
experimental value of 27 + 1 pL.



22 5. SUMMARY OF RESULTS
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FIGURE 5.2. Dependence of the contact angle on the Capillary num-
ber: (o), (4), (), and (O) with different Cahn number Cn and (-)
Cox’s theory with viscosity ratio A = 1, e = 0.05, and 6, = 25° (see
Eqn. 1.5).

(@) (b) (]

FIGURE 5.3. Experimental microdroplet deposition of acetoni-
trile/water made from a height of 96um under liquid fluorocarbon
on a 50um anchor. The volume deposited is 27 + 1 pL.

I (a) .|(b).H

FIGURE 5.4. Numerical microdroplet deposition made from a height
of 100pum. The volume deposited is 28 pL.
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Paper 3. Parallel adaptive computation of some time-dependent materials-related
microstructural problems.

o3 835 83

(a) ®) ©

FI1GURE 5.5. Three-dimensional generic sintering with a fixed matrix
of solid particles (larger spheres). Isosurface at ¢ = 0,2,10 with
Ca=0.1, Re = 0.1, and Pe = 10*.

In this paper, some materials-related microstructural problems calculated using
the phase-field method are presented. A proposed parallel adative scheme is used
to perform the calculations. The scheme keeps the level of node and edge for 2D
and level of node and face for 3D instead of the complete history of refinements
to facilitate derefinement. The information is local and exchange of information
is minimized and also less memory is used. The parallel adaptive algorithms that
run on distributed memory machines are implemented in the numerical simulation
of dendritic growth and capillary-driven flows.

In Fig. 5.5, a successful implementation of the scheme to simulate capillary-
driven flows is demonstrated. The compact microstructure consists of six solid
particles (larger spheres) and thirteen softer drops that are evenly distributed.
The drops spread over the solid grains and phase deformation, coalescence, pore
migration and pore elimination take place. The numerical simulations also demon-
strate the flexibility of the Cahn-Hilliard /Navier-Stokes sytem with 3D flows.

Paper 4. Multicomponent and multiphase modeling and simulation of reactive
wetting.

We have developed a multicomponent and multiphase model with fluid motion.
The model is used to study reactive wetting in the case where concentration change
of the spreading liquid and the substrate occurs. The model is based on a Gibbs
energy functional of a given system. The governing equations consist of convective
concentration and phase-field equations which are coupled to the Navier-Stokes
equations with surface tension forces. Arbitrary phase diagrams, surface energies,
and typical dimensionless numbers are some input parameters into the model. An
axisymmetric model with an adaptive finite element method is utilized. Numeri-
cal simulations were done revealing two stages in the wetting process. First, the
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F1GURE 5.6. Concentration profiles of the B-atoms for nonreactive
and reactive (b-d-f) at nondimensional times t = 0,10, and 175,
respectively. Isolines are plotted in (d) and (f) with B-isoconcentrates
0.10,0.15, and 0.20 (top to bottom).

convection-dominated stage where rapid spreading occurs. The dynamics of the
wetting is found to match with a known hydrodynamic theory for spreading lig-
uids. Second, the diffusion-dominated stage where we observed depression of the
substrate-liquid interface and elevation of the contact line region.

Figure 5.6 shows the concentration profiles of B-atoms for two cases with non-
reactive and reactive case. The maximum concentration is 0.65 which is in the
substrate in all cases. With nonreactive (Fig. 5.6a), the concentration of B starts
with 0.26 in the spreading liquid compared to a much smaller value of 0.03 in the
OIC case (Fig. 5.6b). In the succeeding Figures 5.6d and 5.6f, we see the transport
of B-atoms into the spreading liquid while no observable change in B-concentration
with the nonreactive case. This draws us to the conclusion that the transport of
atoms across the interface changes the bulk energies causing the depression of the
substrate-liquid interface.
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Paper 5. Multicomponent and multiphase simulations of liquid phase sintering.

(c)

FI1GURE 5.7. The evolution of the microstructure during liquid phase
sintering with a metastable equilibrium contact angle 6,, = 36° at
dimensionless time ¢ = 0, 2, 20, 100, respectively.

Using the general model presented in Paper 4, numerical simulations of liquid
phase sintering are presented. Important dynamics in liquid phase sintering such as
rapid wetting and motion of particles due to capillarity are studied. Some factors
that are known to significantly affect the dynamics of the sintering process such
as contact angles and volume ratios are investigated. Comparison with existing
theories on the motion of particles in liquid phase sintering is also discussed.
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In Fig. 5.7a, twelve liquid drops distributed over a matrix of twelve spherical
solid particles of equal sizes is shown. The size of the liquid drops are smaller than
the solid particles. In Fig. 5.7b, the liquid drops rapidly wet the solid grains. Then
in Fig. 5.7c, more spreading is observed and at this time coalescence between liquid
drops occurs and also the joining of two solid grains upon contact. In Fig. 5.7d,
due to capillary forces the compact undergoes rearrangement in which more coa-
lescences and pore shrinkage/elimination occur.



CHAPTER 6
Conclusions and outlook

The diffuse-interface models that are presented in this thesis for binary and ternary
systems are based on the free energy of the system and they are often referred to as
phase-field based models. Basically, the free energy of a given system is the sum of
all bulk, gradient, and wall energies. Starting from the free energy, the derivation
of phase-field based models follows from basic laws of thermodynamics. Thus, the
governing equations are expected to point toward the right physics.

The binary model, more specifically the coupled Navier-Stokes/Cahn-Hilliard
equations, was used to study different two-phase flows including problems related
to microfluidics. Numerical issues using this model have also been addressed such
as the need for mesh adaptivity and time-step restrictions. Moreover, the flexibility
of this model to simulate 2D, axisymmetric, and 3D flows has been demonstrated.
In addition, agreement with theory and experiments has been established.

The ternary model, on the other hand, is developed for more complicated flows
such as liquid phase sintering. Detailed analysis of the dynamics involved during
liquid phase sintering is shown. In particular, reactive and nonreactive wetting and
the motion of particles due to capillarity are investigated.

The long term goal for modeling and simulation of liquid phase sintering is
that, given the real parameters of the materials involved, one should be able to
simulate and directly observe the evolution of the microstructure during the sin-
tering process as if the experiment is being done. The simulations will not just
reveal the underlying mechanisms at the microlevel but also provide densification
rates, final shape after shrinkage/expansion, existence of cracks, sizes of pores, etc.
In addition, the manipulation of the control parameters can also assist in creating
new types of materials before the actual experiment or testing is done. It may still
be a long way to go but the mathematical model presented here is geared towards
the realisation of the abovementioned goal.

Many interesting problems in two-phase flows still remain elusive, at least from
a computational point of view. The effects of surface roughness such as hysteresis
are common in many applications. Similarly, the effects of surface-active materials
or surfactants are either destructive or constructive depending on the application.
Electrowetting is also an interesting computational problem since there are still
many intricacies observed at or near the wetting line that requires analysis (Quilliet
& Berge 2001). The process of boiling is a common phenomena that still puzzles
many scientists. It would be interesting to see how a bubble grows from a nucleation
site and investigate the factors affecting bubble size before departure and frequency
of generation.

27
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A computational framework for these problems requires a basic description of
the interface, for instance a diffuse-interface model; an equation that governs the
motion of fluid, such as the Navier-Stokes equations; and the inclusion of additional
effect /s, for instance in the boiling problem discussed above the heat equation can
be included and coupled to the other governing equations. Then possibly one
can identify factors that affect the process under study, identify thresholds for
reproducibility, or effectively incorporate or isolate different physical effects into or
from a model for different case studies.

Modeling and simulations of capillary phenomena can be viewed as a way to
understand capillary effects and its intricacies, and also effectively explore areas or
problems where theory and experiments have their limitations.
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