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Abstract

Boundary-layer flow over bodies such as aircraft wings or turbine blades is
characterized by a pressure gradient due to the curved surface of the body.
The boundary layer may experience modal and non-modal instability, and the
type of dominant instability depends on whether the body is swept with respect
to the oncoming flow or not. The growth of these disturbances causes transition
of the boundary-layer flow to turbulence. Provided that they are convective
in nature, the instabilities will only arise and persist if the boundary layer is
continuously exposed to a perturbation environment. This may for example
consist of turbulent fluctuations or sound waves in the free stream or of non-
uniformities on the surface of the body. In engineering, it is of relevance to
understand how susceptive to such perturbations the boundary layer is, and
this issue is subject of receptivity analysis.

In this thesis, receptivity of simplified prototypes for flow past a wing is
studied. In particular, the three-dimensional swept-plate boundary layer and
the boundary layer forming on a flat plate with elliptic leading edge are consid-
ered. The response of the boundary layer to vortical free-stream disturbances
and surface roughness is analyzed, receptivity mechanisms are identified and
their efficiency is quantified.

Descriptors: Swept-plate boundary layer, surface roughness, free-stream tur-
bulence, cross-flow instability, streaks, leading-edge effects
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Preface

This thesis deals with the receptivity and the early stages of instability in spa-
tially evolving boundary-layer flows. A brief overview over the basic concepts
and methods is presented in the first part. The second part is a collection of
the following articles:

Paper 1. L.-U. Schrader, L. Brandt & D.S. Henningson, 2008
Receptivity mechanisms in three-dimensional boundary-layer flows. Journal of
Fluid Mechanics, Article in Press

Paper 2. L.-U. Schrader, S. Amin & L. Brandt, 2008
Transition to turbulence in the boundary layer over a smooth and rough swept

plate exposed to free-stream turbulence. To be submitted

Paper 3. L.-U. Schrader, L. Brandt, C. Mavriplis & D. S. Hen-

ningson, 2008
Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading

edge. Internal report
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Introduction



CHAPTER 1

Introduction

Cycling through the landscape with the wind gently blowing around the head
is often considered as a pleasant leisure activity, but it is also an example for
the relevance of fluid dynamics in everyday life. The aerodynamic forces on
the cyclist and his bike dominate in fact over the rolling-friction forces above a
speed of about 13 km/h, see Lukes et al. (2005), and account for circa 90% of the
total resistance at a racing speed of 32 km/h. Beyond 10 km/h the laminar flow
around the biker becomes unstable, causing a substantial raise in air resistance.
The instabilities occur inside the thin boundary layer forming on rider and
bicycle and are excited by perturbations arising for instance from the rough
material of the biker’s jacket or some fluctuations in the oncoming air stream.
The initial magnitude of the triggered instabilities follows from the receptivity

of the thin boundary layer to these perturbations, and the subsequent growth
from the stability characteristics of the layer. Once the primary instabilities
have reached a certain amplitude the boundary layer becomes susceptive to
secondary instability which is usually generated by high-frequency fluctuations
from outside and initiates the break-down of the laminar layer to its turbulent
state.

Receptivity, disturbance growth and break-down define the three basic
stages of transition of boundary-layer flow to turbulence. Though the receptiv-
ity process comes first on the route toward turbulence, researchers have initially
focused on the stability of boundary layers. This seems indeed natural, as the
stability is an intrinsic characteristic of the boundary layer, while receptivity
involves the interaction of the layer with its environment. In stability theory
the boundary-layer flow is treated as a dynamical system subject to certain ini-
tial and boundary conditions, and its stability characteristics are governed by
the stability equations. In the classic linear analysis these are derived from the
Navier-Stokes equations by considering small perturbations and linearizing the
equations about the basic flow, assuming locally parallel flow. The solutions
to the linear disturbance equations are wave-like disturbances with amplitudes
being functions of one spatial direction solely. Such disturbance waves have
indeed been observed in the experiments of Schubauer & Skramstad (1947) in
the two-dimensional incompressible flat-plate boundary layer, where they are
called Tollmien-Schlichting modes. On the other hand, the classic linear sta-
bility theory has failed in predicting the instability characteristics of Poiseuille
pipe flow, for example. This led to the development of the theory of transient
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1. INTRODUCTION 3

disturbance growth, see for instance Reddy & Henningson (1993), accounting
for the short-time behavior of the disturbance waves. The concepts of stability
analysis are revisited in section 2.1.

Receptivity theory links the boundary-layer instabilities to the perturba-
tions from the free stream or the wall. While the objective of a stability analysis
is to clarify whether disturbances can arise inside the boundary layer at given
conditions and at which rate they grow, a receptivity study is concerned with
how and at which incipient amplitudes these disturbances are excited by the ex-
ternal perturbations. The receptivity problem had been formulated already by
Morkovin (1969); however, the fundamental work of Goldstein (1983, 1985) and
Ruban (1985) on the mechanisms behind receptivity was first published about
fifteen years later. These early studies employed asymptotic analysis and have
later been complemented by the Finite Reynolds-Number Theory (FRNT), e.g.
in Crouch (1992, 1993); Choudhari & Streett (1992); Choudhari (1994), build-
ing again on the solution of the stability equations. The external perturbations
are incorporated in FRNT either through the boundary conditions or through
a forcing term, leading to inhomogeneous governing equations. Receptivity is
briefly reviewed in section 2.2.

It is worth noticing that receptivity has so far not entered in the transition-
prediction tools usually used in engineering and aeronautics. The most common
approach, the eN -method, builds on the classic linear theory, that is, neither
receptivity nor nonlinear and secondary-instability growth nor transient am-
plification are considered. This clearly points to the need of ongoing research
on receptivity and stability to improve the industrial prediction tools. Also
the cyclist might benefit from the insights on this research field: He is well ad-
vised to wear tightly fitting clothes of either very smooth material to prevent
laminar-turbulent transition or very rough material to avoid a long transitional
region in the boundary layer and to promote rapid break-down to turbulence.

                          growth

receptivity                                                    break-down

laminar region                                                                turbulent region

Figure 1.1. Receptivity, disturbance growth and break-down
are the three basic stages of laminar-turbulent transition.
Transition in the swept-plate boundary layer is shown here.
The flow is from left to right. Details can be found in Part II,
Paper 2.



CHAPTER 2

Theoretical background

2.1. Stability theory

Unsteady incompressible flow is governed by the time-dependent incompressible
Navier-Stokes equations along with the continuity condition,

∂ ~U

∂t
+ (~U · ∇)~U = −∇P +

1

Re
∇2 ~U , (2.1a)

∇ · ~U = 0 . (2.1b)

The instantaneous flow field is described by the velocity vector ~U(~x, t) =
(U ,V,W)T , solution to the equations (2.1), and the pressure field P(~x, t), both
depending on space ~x = (x, y, z)T and time t. The equations above are in
non-dimensional form with velocities normalized by the reference velocity Uref

and lengths by the reference length Lref . The characteristic scales define along
with the kinematic viscosity ν the Reynolds number,

Re =
UrefLref

ν
. (2.2)

The solution ~U(~x, t) depends on the initial state of the flow field at time t0,

~U(~x, t0) = ~U0 , (2.3)

and on the conditions at the boundaries of the domain of interest. An example
are the no-slip/impermeability conditions for the velocity at a solid non-porous
wall.

The objective of stability theory is to determine the evolution of small

disturbances ~u to the underlying base flow ~U , being a steady or time-periodic
solution of (2.1). If these disturbances grow in amplitude as time passes by
(temporal perspective) or as they are transported downstream by the basic
flow (spatial perspective), the boundary layer is unstable; if they, in contrast,
die out, the flow is stable. The disturbances are governed by the stability
equations, derived by substituting the decomposition

~U = ~U + ε~u (2.4a)

P = P + εp (2.4b)

into the equations (2.1). P is the mean pressure and p the pressure perturba-
tion. In linear stability analysis the disturbance amplitude ε in (2.4) is assumed
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2.1. STABILITY THEORY 5

to be small in comparison with Uref and the linearized stability equations are
solved, being readily to hand after discarding the terms of order ε2,

∂~u

∂t
+ (~U · ∇)~u + (~u · ∇)~U = −∇p +

1

Re
∇2~u , (2.5a)

∇ · ~u = 0 . (2.5b)

The solution for ~u requires again the specification of an initial state, e.g. a
disturbance-free incipient flow field, and boundary conditions, for instance zero
slip at a solid wall.

2.1.1. Classic eigenmode analysis

If space and time can be separated, a temporal eigenmode ansatz assuming
time-periodic instabilities may be substituted into decomposition (2.4),

~Q(x, y, z, t) = ~Q(x, y, z) + ε~q(x, y, z)e−iωt , (2.6)

where the velocity components and the pressure have been combined in the

vectors ~Q, ~Q and ~q for the instantaneous flow field and its mean and fluctuating
part, respectively. In classic linear theory, the ansatz (2.6) is simplified by
assuming a one-dimensional, ”locally parallel” basic flow and a ”normal-mode”-
like disturbance with an amplitude function depending on one spatial direction
alone,

~Q(x, y, z, t) = ~Q(y) + ε~q(y)ei(αx+βz−ωt) + compl. conjg. , (2.7)

This approach has in particular been successful in viscous theory based on
the Orr-Sommerfeld/Squire equations (Orr (1907); Sommerfeld (1908); Squire
(1933)) and is valid not only in strictly parallel flow, e.g. developed laminar
channel flow, but also for slowly varying inhomogeneous base flows. In two-
dimensional boundary-layer flow at large enough Reynolds numbers, for in-
stance, the predicted normal eigenmodes – the Tollmien-Schlichting waves –
are an accurate approximation of the disturbance waves first observed in the
experiment by Schubauer & Skramstad (1947). The derivation of the Orr-
Sommerfeld/Squire system from the equations (2.5) together with the parallel-
flow assumption is outlined in textbooks like Schmid & Henningson (2001);
Drazin (2002), and the result is written for three-dimensional (e.g. Falkner-
Skan-Cooke) flow and in wavenumber space here, indicated by the tilde,

∂

∂t

(

ṽ

η̃

)

=

(

(D2 − α2 − β2)−1LOS 0
iαW ′ − iβU ′ LSq

) (

ṽ

η̃

)

(2.8)

with the linear operators

LOS = (−iαU − iβW )(D2 − α2 − β2) + iαU ′′ + iβW ′′ +
1

Re
(D2 − α2 − β2)2,

LSq = −iαU − iβW +
1

Re
(D2 − α2 − β2) .

η̃ is the vertical vorticity; α and β are the stream- and spanwise wavenumbers;
D is the normal-derivative operator and the prime and double prime denote
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the first respective second derivative of the one-dimensional base flow. The
solution of the initial-value problem (2.8) is,

q̃ = eLtq̃|t=t0 , (2.9)

where q̃ = (ṽ, η̃)T for the Orr-Sommerfeld/Squire problem and the matrix
operator in (2.8) is labelled L. The key to stability analysis are the eigenvalues

σi and -functions ~φi of the matrix exponential,

eLt~φi = σi
~φi, |σ1| > · · · > |σn|. (2.10)

The instability condition stated above in words can now be mathematically
formulated:

Asymptotically unstable flow, if |σ1| > 1 , (2.11a)

Asymptotically stable flow otherwise. (2.11b)

The eigenvalues of eLt and those of the matrix operator L, denoted λi here,
are related via λi = 1

t
log σi with λi being a measure for the amplification rate

of the eigenmode ~φi.

Clearly from equation (2.11), only one eigenvalue governs the instabil-
ity characteristics of the basic flow, namely that pertaining to the least sta-
ble eigenmode. The amplitude function of this mode is non-zero inside the
boundary layer and tends to zero outside of it; hence, it is sometimes termed
boundary-layer mode. Grosch & Salwen (1978) have shown that besides the
boundary-layer modes there exists also a continuous eigenvalue spectrum in
boundary-layer flows with all eigenmodes being damped. The amplitude func-
tions of the continuous-spectrum modes differ significantly from those of the
boundary-layer modes in that they are oscillatory in the free stream and tend to
zero toward the wall. Therefore, they are sometimes labelled free-stream modes.
Due to their shape these modes are adequate as a model for vortical free-stream
perturbations in full Navier-Stokes simulations. This idea has been exploited
by Jacobs & Durbin (1998) for Blasius flow, where a simplified method for the
computation of the free-stream modes is presented. The free-stream modes have
later been used in Jacobs & Durbin (2001); Brandt et al. (2004) as a model for
free-stream turbulence in two-dimensional boundary-layer flow. The concept
of the continuous-spectrum modes is extended to Falkner-Skan-Cooke flow in
Part II of this thesis (Paper 1), where the free-stream modes are used in Direct
Numerical Simulations (DNS) to develop a model for receptivity of swept-plate
flow to free-stream vorticity. In Paper 2 the Falkner-Skan-Cooke free-stream
modes are employed for the generation of synthetic free-stream turbulence at
the inflow of the computational domain.

The discussion on the classic stability analysis is finalized by stating that
the accuracy of predictions from linear theory along with (2.7) drops whenever
”non-parallel effects” become important. A successful effort to reconcile the
classic theory with stability problems in flows with more than one inhomoge-
neous direction has been the development of the Parabolized Stability Equation
approach (PSE) by Herbert (see Herbert (1997) for a review). In PSE the basic
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flow is still resolved in one direction only, but it is allowed to develop moder-
ately in the other two directions. The PSE approach leads to parabolic stability
equations amenable to an efficient spatial marching technique and is thus ap-
propriate for parametric stability studies. Excellent agreement between results
from PSE and DNS on the evolution of cross-flow instability in Falkner-Skan-
Cooke flow was for instance demonstrated in Högberg & Henningson (1998).
Another attempt to broaden the classic stability analysis is the global-stability
theory where the eigenmode ansatz for spanwise periodic problems reads,

~Q(x, y, z, t) = ~Q(x, y) + ε~q(x, y)ei(βz−ωt) + compl. conjg. , (2.12)

i.e. the eigenmodes have two-dimensional amplitude-shape functions and are
periodic in only one spatial direction and in time. Global-mode theory is dis-
cussed in Theofilis et al. (2002); Åkervik & Henningson (2008).

2.1.2. Transient growth

The experiment by Schubauer & Skramstad (1947) appears convincing that
the instability characteristics of the Blasius boundary layer were predictable
by addressing the classic linear stability theory alone; however, already the
work by Taylor (1939) had cast a shadow on the classic approach. Continuing
research efforts revealed in fact that eigenmode analysis fails in predicting the
response of the Blasius boundary layer to free-stream turbulence, for instance.
Klebanoff (1971) observed boundary-layer disturbances differing seriously from
the TS-waves predicted by linear eigenmode analysis in that they occurred fur-
ther upstream, had a different shape and exhibited algebraic instead of expo-
nential amplification. These disturbances were later called ”Klebanoff modes”
though they are not modal in nature. Ellingsen & Palm (1975) demonstrated
for inviscid shear layers that there can indeed exist initial disturbances grow-
ing linearly in time instead of exponentially, producing a streaky pattern of
alternating high and low streamwise velocity. This kind of amplification was
termed ’transient growth’ in Hultgren & Gustavsson (1981) and shown to ex-
ist in viscous flow, as well. Landahl (1980) proposed a physical explanation,
building on the wall-normal displacement of fluid particles in shear flows by
weak pairs of counter-rotating stream-wise vortices, causing stream-wise veloc-
ity perturbations. This so-called lift-up mechanism is efficient in forcing axial
streaks of high and low stream-wise velocity alternating in the span-wise direc-
tion. The mathematical framework for transient growth is given in Butler &
Farrell (1992); Reddy & Henningson (1993); Trefethen et al. (1993) and in the
textbook by Schmid & Henningson (2001). It is based on the non-normality of
the linear Navier-Stokes – or in the example above – Orr-Sommerfeld/Squire
operator in shear flows, LL∗ 6= L∗L, where the star denotes the adjoint oper-
ator. Transient growth of an initial disturbance at time t = t0 is then given
by,

G(t) = ‖eLtq̃|t=t0‖
2 . (2.13)
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The condition for non-modal instability can be formulated by means of the
singular values σi

eL
∗teLt ~φi = σi

~φi, σ1 ≥ · · · ≥ σn ≥ 0. (2.14)

and reads

Transient growth, if σ1 > 1 , (2.15a)

No transient growth otherwise. (2.15b)

Transient amplification describes hence the short-time behavior of boundary-
layer disturbances, while linear growth is approached when t → ∞, reflected by
the attribute ”asymptotic” in (2.11). Transient growth is also called non-modal,
as the underlying mechanism does not rely on the evolution of a single growing
eigenmode but on the interaction between eigenmodes of Orr-Sommerfeld and
Squire type. This results in a boundary-layer disturbance changing its shape as
individual modes grow or decay in time and space at different rates. Transient
growth may for this reason occur before the subsequent exponential behav-
ior and trigger laminar-turbulent transition before the asymptotic instability
reaches relevant amplitude levels. The ”natural transition” mechanism due to
the latter disturbance is then ”bypassed”, and the transition route is called
bypass transition. Paper 3 deals with the receptivity and the early transient-
growth phase preceding bypass transition in the two-dimensional boundary
layer on a plate with elliptic leading edge, where the ”Klebanoff modes” play a
central role, as well. In Paper 2, a scenario is considered where both non-modal
and modal instabilities co-exist. The three-dimensional swept-plate boundary
layer under free-stream turbulence is considered there, and it is found that as-
ymptotic instability due to cross-flow modes outweighs transient instability in
form of the streaks.

Figure 2.1. Response of the boundary layer on a flat plate
with elliptic leading edge to vortical free-stream disturbances.
The reader is referred to Part II, Paper 3.



2.2. RECEPTIVITY 9

2.2. Receptivity

In the previous section the focus has been on the instability of boundary-
layer flow to modal and non-modal disturbances. It was also indicated that
boundary-layer instability needs a forcing from outside1 – for instance through
the free-stream turbulence in Klebanoff’s experiment – and that the nature and
the initial amplitudes of the disturbances inside the layer strongly depend on
the perturbation environment. Receptivity analysis extends the stability theory
by including the connection between the forcing through external perturbations
and the response of the boundary layer.

Perturbations residing in the free-stream or on the wall will always enforce
a disturbance inside the boundary layer. If the forced disturbance field is able
to feed the eigenmodes of the boundary layer with energy and a modal or non-
modal instability arises, the layer is said to be receptive to the perturbation
environment; if, in contrast, the forced response dies out, the boundary layer
is not receptive. Receptivity requires a resonance in frequency and wavenum-
ber between the enforced disturbance and the eigenmodes of the layer. In
laboratory experiments perturbation sources may be designed such that this
resonance is available, but many natural disturbance sources do not provide
wavenumber resonance. This is the case in particular for free-stream distur-
bances, the length scales of which are governed by the inviscid dynamics in the
outer flow, while the characteristic length of the TS-waves, for instance, are
dominated by the viscous effects in the boundary layer. Examples are sound
waves at low Mach numbers, possessing much larger wavelengths than the TS-
modes, and the vortical free-stream disturbances considered in Paper 1 in this
thesis with smaller chordwise wavelengths than the unstable cross-flow modes
in the swept-plate boundary layer investigated there.

Despite the lack of direct wavenumber resonance, two-dimensional
boundary-layer flow has been found to be receptive to free-stream sound under
certain conditions, and likewise, the three-dimensional swept-plate boundary
layer is demonstrated to be receptive to free-stream vortices in Paper 1. Gold-
stein (1983, 1985) was the first to propose an explanation for this apparent
contradiction by introducing the concept of length-scale conversion. He consid-
ered two-dimensional flat-plate boundary-layer flow exposed to a plane acoustic
free-stream disturbance. In the incompressible limit, the sound wave enforces a
Stokes wave with the frequency of the acoustic forcing and with zero streamwise
wavenumber. There is thus no direct wavenumber resonance between the Stokes
and the TS-mode unless a second steady source provides the TS-wavenumber.
This can be a non-uniformity at the wall, e.g. a roughness bump or a suction
hole in the plate; but also the rapidly developing regions of the mean flow
can convert the length scale of the enforced Stokes solution into that of the
TS-wave. Such regions are found near the leading edge of the plate, where
the boundary layer grows rapidly, or on a curved surface. Goldstein (1983,

1The focus is on convective instability here. In absolutely unstable flows the instability is
sustained without external forcing, see e.g. Schmid & Henningson (2001).
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1985) addressed asymptotic analysis to demonstrate receptivity through scale
conversion. Expansion of the disturbance in powers of 1

Re
leads to the triple-

deck equations which are linearized in terms of the disturbance amplitude and
govern the disturbance evolution in the limit of high Reynolds numbers. The
triple-deck formulation is only valid at the first neutral point (branch I) of the
unstable mode. A successful attempt to extend receptivity analysis to moder-
ate Reynolds numbers and to the regions away from branch I of the instability
was the Finite-Reynolds Number Theory (FRNT) first addressed by Zavol’skii
et al. (1983). FRNT builds on the same ideas as the classic linear stability
theory, namely (1) on the assumption of a one-dimensional ”locally parallel”
basic flow and (2) on small amplitudes of the external perturbations, allowing
for linearization. FRNT has been applied in two-dimensional flat-plate flow by
Crouch (1992) and Choudhari & Streett (1992) and in the Falkner-Skan-Cooke
boundary layer by Crouch (1993) and Crouch (1994).

The Finite-Reynolds Number Theory is briefly discussed here by consider-
ing an acoustic free-stream disturbance with amplitude εu and a steady rough-
ness bump with height εs in two-dimensional flow. In analogy with equation
(2.4a) the instantaneous flow field can be decomposed,

~U(x, y, t) = ~U(y) + εu~uu(x, y, t) + εs~us(x, y) + εuεc~uus(x, y, t) . (2.16)

The total disturbance environment inside the boundary layer consists thus of
the Stokes solution ~uu due to the free-stream sound, the steady disturbance
field ~us enforced by the roughness and the travelling wave ~uus with the acoustic
frequency and the length scales of the roughness. Like in classic stability theory,
ansatz functions in the form of ”normal modes” for the amplitude profiles of ~uu

and ~us are used in the FRNT,

~uu(y, t) = ~̃uu(y)e−iωt (2.17a)

~us(x, y) =
1

2π

∞
∫

−∞

~̃us(y;α)eiαxdα . (2.17b)

In the formulation of (2.17b) the roughness is assumed to be localized in chord-
wise direction; thus, the spectrum of the bump contains a large number of
chordwise wavenumbers α. An integration over all present wavenumbers is
then necessary to obtain the total steady contribution, leading to the Fourier
transform in (2.17b). Further, the dependence of the spectral coefficient ~̃us on

α must be specified, that is, a relation between the wavenumber spectrum H̃(α)
of the bump contour and the disturbance velocity due to the bump needs to be
established. In e.g. Crouch (1992) and in Paper 1 this is done by modelling the
surface roughness through a projection of the no-slip conditions at the hump
contour along the wall gradient of the mean flow onto the undisturbed wall,
leading to non-homogeneous boundary conditions,

~̃us(0;α) = −H̃(α)

(

∂~U

∂y

)

0

. (2.18)
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At the free-stream boundary y∞, a condition for the Stokes contribution ~̃uu is
prescribed,

~̃uu(y∞) =

(

e−iωt

0

)

. (2.19)

After plugging in decomposition (2.16) into the Navier-Stokes equations, lin-
earizing about the mean flow, sorting the terms of order εu, εs and εuεs and
applying the ansatz (2.17) along with the boundary conditions (2.18) and (2.19)
to the contributions of order εs and εu the steady disturbance field ~us due to
the roughness and the unsteady Stokes solution ~uu caused by the sound are
obtained.

However, the receptivity analysis aims at determining the amplitude of
the travelling wave ~uus in equation (2.16), since the boundary-layer instability,
here the TS-wave, is contained in this function. ~uus is found by substituting
the ansatz (2.17) into the contribution at order εuεs to the total disturbance.
The details of this derivation can be found in Crouch (1992); Choudhari (1994);
Collis & Lele (1999) and the result reads,

~uus(x, y, t) =
1

2π

∞
∫

−∞

~̃uus(y;α)ei(αx−ωt)dα . (2.20)

The form of the coefficient ~̃uus is obtained when applying boundary conditions
deduced from those in (2.18) and (2.19) to the contribution at order εsεu, see
Crouch (1992),

~̃uus(y;α) = εsεuH̃(α)Λ̃(α)~uus(y) , (2.21)

where ~uus(y) is a normalized amplitude function taking the form of a ”normal

mode”. The α-dependence of ~̃uus has been isolated in the function Λ̃ and the
amplitude in the factor εsεu. The bump shape H̃ enters in (2.16) through the
boundary conditions.

Clearly from (2.20), the travelling-wave field ~uus contains the frequency of
the free-stream sound and the wavenumbers provided by the roughness. There-
fore, as time t → ∞, ~uus will be entirely dominated by the unstable TS-wave.
This is reflected by the transfer function Λ̃(α) in equation (2.21) becoming
very large at the wavenumber αTS of the TS-wave, while the contributions at
α 6= αTS die out. Tam (1981) shows that the integral in equation (2.20) then

reduces to 2πiC̃(αTS), where C̃(αTS) is defined as

C̃(αTS) = lim
α→αT S

[(α − αTS)Λ̃(α)] . (2.22)

Since the amplitude function ~uus in (2.21) is normalized to be 1 at its wall-
normal maximum, the maximum amplitude of the TS-wave can be written as

ATS = εuεs|H̃(αTS)C̃(αTS)| . (2.23)

Equation (2.23) can be re-organized,

Crec =
ATS

εuεs|H̃(αTS)|
, (2.24)
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where Crec is the modulus of C̃(αTS). It should be noticed that equation (2.26)
relates the amplitude ATS of the boundary-layer instability to the amplitudes
εu of the sound wave and εs|H̃(αTS)| of the roughness in the form

Crec =
Initial instability amplitude

Amplitudes of the perturbation sources
, (2.25)

that is, Crec is a measure for the efficiency in energy transfer from the driving
perturbation sources to the TS-wave. Crec is called receptivity coefficient, and
it is in fact the key in receptivity analysis. Another interesting detail worth of
notice is that only the spectral content of the bump function at the instability
wavenumber, |H̃(αTS)|, enters in Crec, that is, the boundary layer is equally
receptive to two roughness bumps of different shape as long as they provide
the same amplitude at αTS .

As indicated above, Finite-Reynolds Number Theory builds on the as-
sumption of ”parallel flow”. Bertolotti (2000) presents an extension to include
non-parallel effects at first order and shows that the shape-independence of
receptivity to roughness is not always maintained. In Paper 1, Crec has been
determined through Direct Numerical Simulation (DNS) to characterize the re-
ceptivity of the three-dimensional swept-plate boundary layer to surface rough-
ness and vortical free-stream modes. This type of base flow supports cross-flow
instability which is three-dimensional, i.e. the spanwise wavenumber β has to
be considered, as well. Steady localized roughness with sinusoidal shape in
spanwise direction is shown to be efficient in exciting stationary cross-flow vor-
tices (”CF”) inside the boundary layer, and the receptivity coefficient is in this
case

Crec =
ACF

εs|H̃β(αCF )|
. (2.26)

Figure 2.2 displays the dependence of Crec on the spanwise wavenumber of the
roughness. Three bumps with different contours are considered, as indicated
by the three thick curves in (b). The figure shows that the shape-independence
of receptivity to roughness is observed for most of the investigated spanwise
wavenumbers. Further, the result obtained in parallel flow is plotted as a
thin line. This curve corresponds to the prediction for Crec by the FRNT
and exhibits a moderate deviance to higher values. The exclusion of non-
parallel effects leads thus to an over-prediction of roughness receptivity, i.e. the
predictions from FRNT are ”on the safe side”.

The discussion on receptivity is concluded by highlighting the usefulness
of the curves for Crec like those in figure 2.2: Once the dependence of Crec on
the spanwise wavenumber is known for a given Reynolds number, the curves
can be used to weight different instability components in a complex disturbance
environment. This is demonstrated in figure 2.3 and at length in Paper 2, where
the receptivity coefficients determined through simplified models for receptivity
to roughness and free-stream vorticity are applied to predict the total boundary-
layer disturbance in the flow over a swept plate. The figure shows that the
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Figure 2.2. (a) Roughness bump with chordwise localized,
spanwise sinusoidal shape. (b) Receptivity to three different
roughness elements. Thick lines: Receptivity coefficient Crec

in spatially evolving flow versus spanwise wavenumber of the
three roughness elements. Thin solid line: Receptivity coeffi-
cient in parallel flow. A detailed explanation of the figure is
found in Paper 1.

prediction is already quite successful if only a small number of individual modes
is considered.

The receptivity coefficients obtained from simplified linear models as those
in Paper 1 or from calculations based on FRNT can also be combined with es-
tablished transition-prediction tools such as the eN -method to provide a refined
prediction tool for industrial use, including the receptivity process. Since the
instability amplitudes in the eN -method are normalized with their magnitude
at the first neutral point of the instability, it is more adequate to apply receptiv-
ity coefficients defined at branch I instead of those computed at the receptivity
site. These coefficients are occasionally called effective receptivity coefficients,
denoted Ceff

rec here. Ceff
rec can be used to determine the disturbance amplitude

A(x) at any location in the linear regime downstream of the receptivity site, if
the N -factor of the instability is known,

A(x) = εs|H̃β(αCF )|Ceff
rec eN(x). (2.27)

Since the receptivity mechanisms depend on many influencing factors, for in-
stance the geometry of the problem of interest, the perturbation environment
and the nature of the dominant instabilities, the practical application of the
findings from receptivity analysis in an industrial context will require a vast
database of receptivity coefficients. This motivates the continuation of research
on this field to develop refined theoretical receptivity models. Direct Numerical
and Large-Eddy Simulations like those presented in this thesis will in the future
continue to serve as validation tools for these models.
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Figure 2.3. (a) Amplitude evolution of single unstable travel-
ling cross-flow waves in swept-plate flow and the corresponding
receptivity coefficients. The latter are used to weight the indi-
vidual evolution curves to obtain the envelope. (b) Swept-plate
boundary-layer response to free-stream turbulence in compar-
ison with the envelope from (a). See Paper 2 for a discussion.



CHAPTER 3

Numerical methods

The results compiled in Paper 1 and 2 have been obtained by using the sim-
ulation code Simson, building on a global spectral method and described in
Chevalier et al. (2007). For the computations of the flow over the flat plate
with leading edge presented in Paper 3, the code Nek5000 employing the
Spectral-Element Method by Patera (1984) has been addressed, see Tufo &
Fischer (1999). Both numerical approaches are discussed in the papers in Part
II of this thesis, and the reader is referred to the respective sections. Here,
the focus is on a comparison between the global spectral technique and the
Spectral-Element Method, see table 3.1, to highlight their applicability and
limitations.

In global spectral methods, the solution to the Navier-Stokes equations is
approximated by a linear combination of sinusoidal or polynomial basis func-
tions prescribed over the entire numerical domain, as indicated by the label
global. In contrast, the polynomial basis functions used in the Spectral-Element
Method are defined on sub-domains called spectral elements, and the method
is thus a local approach. It has its local nature in common with the Finite-
Element Method (FEM), while the orthogonality of the basis functions dis-
tinguishes it from FEM. The benefit of the local approach is its geometric
flexibility and the availability of two refinement strategies: (1) through the re-
duction of the element size (h-refinement) and (2) by raising the order of the
basis polynomials (p-refinement). Thus, the Spectral-Element Method allows
for localized refinement, while in the global approach, an increase in resolution
along one direction always affects the whole numerical domain. On the other
hand, the global spectral method ensures exponential convergence as the mesh
is refined, while the convergence rate of the Spectral-Element Method is usually
lower. This together with the possibility of employing Fast-Fourier Transforms
ensures the high efficiency of the global spectral approach.

In summary, the global spectral method is due to its performance the pre-
ferred tool when the geometry of the simulation domain can be kept simple
and when sufficiently smooth solutions to the governing equations are expected.
For complex geometries or flow fields with local steep gradients, requiring lo-
calized refinement, the Spectral-Element Method is an accurate alternative to
finite-difference or -volume methods. The discussion of the two approaches is
concluded with the remark that the Spectral-Element Method passes into a

15
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global spectral method, when the physical domain of interest is decomposed
into one single element.

Table 3.1. Global spectral method versus Spectral-Element Method.

Global spectral method Spectral-Element Method

Simulation
code

Simson Nek5000

Programming
language

Mainly Fortran77 Mainly Fortran77

General Global approach Local approach
characteristics Fourier-Galerkin-

Chebyshev tau method
Galerkin method

Fast Fourier transforms
Special fea-
tures

Fringe technique

Numerical
grid

Equidistant in the hori-
zontal directions, Gauss-
Lobatto-Chebyshev nodes
in the vertical direction

Sub-domains (spectral
elements) with arbitrary
shape, Gauss-Lobatto-
Legendre points

Basis func-
tions/ spatial
discretization

Fourier modes in the hor-
izontal directions, Cheby-
shev polynomials in the ver-
tical direction

Polynomial interpolation of
Lagrange form at Legendre
nodes

De-aliasing 3
2 -rule in the horizontal di-
rections

Filtering at the high-
est wavenumbers, over-
integration

Time integra-
tion

Implicit/explicit split-
ting: Four-step third order
Runge- Kutta method
+ second-order Crank-
Nicholson

Implicit/explicit splitting
technique: Third-order
backward differentiation
+ third-order Adams-
Bashforth

Parallelisation MPI and OpenMP MPI
Partitioning into slices in
span-wise direction

Element-wise partitioning

Applications Incompressible laminar and
turbulent flow: Channel
flow, 2D and 3D boundary-
layer flow on flat plates

Massively parallel simula-
tions of incompressible lam-
inar and turbulent flow in
complex geometries

Limitations To problems which can be
made periodic using the
fringe technique

Less efficient than the global
spectral method

Simple geometries, e.g. no
curved walls or leading edge



CHAPTER 4

Summary of the papers

Paper 1

Receptivity mechanisms in three-dimensional boundary-layer flows.

In this article receptivity mechanisms in swept-plate flow under favorable pres-
sure gradient are analyzed. The sensitivity of the boundary layer to perturba-
tions arising from the surface of the plate or from the free stream is termed re-

ceptivity. Two different disturbance sources are considered: a surface-roughness
element being localized in the chord- and sinusoidal in the span-wise direction
and a vortical free-stream disturbance modelled by a continuous-spectrum Orr-
Sommerfeld mode. In the presence of these disturbances the boundary layer
response is dominated by steady and unsteady cross-flow modes, respectively.
The efficiency of energy transfer from the forced disturbance due to the rough-
ness and the free-stream vorticity to the cross-flow instability is quantified in
terms of the receptivity coefficient. A parameter study is performed to identify
the length scales of the perturbation with most efficient receptivity.

The receptivity mechanism for unsteady cross-flow waves due to free-stream
vorticity has been explained for the first time in the paper. The focus has
been on demonstrating the link between penetration and decay of the free-
stream disturbance and the receptivity of the boundary layer to it. It has
been found that scale conversion is a key element and that receptivity to free-
stream vorticity is most efficient in the rapidly evolving upstream region of
the layer. Further, to determine whether steady or unsteady cross-flow modes
are dominant prior to the breakdown of the boundary layer to turbulence, a
combination of surface roughness and free-stream vorticity has been considered.
It has been found that stationary cross-flow vortices dominate the boundary-
layer response below an amplitude of the free-stream vortex of about 0.5%.

Paper 2

Transition to turbulence in the boundary layer over a smooth and rough swept

plate exposed to free-stream turbulence.

This article is closely linked with Paper 1 in that the material on receptiv-
ity presented there is extended. Swept-plate boundary-layer flow with free-
stream acceleration in chordwise direction is considered, being a prototype for
swept-wing flow downstream of the leading edge and upstream of the pres-
sure minimum of the wing. The flow is exposed to two different perturbations

17
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sources: free-stream turbulence and localized wall roughness with random am-
plitude along the span. Thus, the disturbance sources are more complex than
those studied in Paper 1, and the focus has been on demonstrating that the
receptivity coefficients presented there are also applicable in a more realistic
perturbation environment.

In addition to the receptivity study, a description of the break-down to tur-
bulence of the swept-plate boundary layer is included in Paper 2. The numerical
simulation of transition in three-dimensional boundary-layer flow is a novelty
and has not been addressed before. Here, Large-Eddy Simulations are per-
formed with the aim of identifying the relevant disturbance structures excited
by free-stream turbulence and random wall roughness at different disturbance
amplitudes.

Paper 3

Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading

edge.

Two-dimensional flow over a flat plate with leading edge of elliptic shape is
investigated in Paper 3. The focus is on studying the boundary-layer response
when leading-edge- and surface-curvature effects are included. The Spectral-
Element Method is addressed, allowing for the simulation of flow around bodies
with curved surface. A vortical disturbance is imposed at the inflow plane of
the computational domain. In order to isolate the effect of the three vorticity
components on the response of the boundary layer, free-stream perturbations
with axial, vertical and span-wise vorticity are considered separately. It has
been found that the disturbance inside the boundary layer is dominated by long
streaks triggered through low-frequency axial free-stream vorticity. However,
at low frequencies, also wall-normal free-stream vorticity contributes to some
extent to the total disturbance amplitudes in the boundary layer, in particular
if the leading edge is blunt. The vertical vortex tubes in the free stream are
wrapped around the leading edge and tilted, and this mechanism triggers axial
vorticity. For span-wise free-stream vorticity of high frequency, the formation of
Tollmien-Schlichting waves is enhanced in the presence of a blunt leading edge.
This leading-edge effect is, however, of minor importance, as the amplitudes of
the TS-waves remain low in comparison of those of the low-frequency streaks.



CHAPTER 5

Outlook

In the present thesis receptivity of spatially evolving boundary layers to free-
stream turbulence and wall roughness is investigated. Three-dimensional
boundary-layer flow of Falkner-Skan-Cooke type and two-dimensional flow past
a flat plate with elliptic leading edge have so far been considered. Both types
of flow accommodate various characteristics of the flow over a swept wing: the
chordwise pressure gradient, the streamline curvature and the cross flow in the
case of the swept-plate configuration and the consideration of leading edge and
wall curvature in the case of the flat plate with elliptic nose. A natural ex-
tension is then to combine these ingredients in order to refine the model for
swept-wing flow.

At the Department of Mechanics, experiments on receptivity of the bound-
ary layer on a swept flat plate with elliptic leading edge are currently carried
out in the Minimum-Turbulence Level (MTL) wind tunnel within the European
TELFONA project. Apart from the pressure distribution due to the leading-
edge curvature, a favorable pressure gradient is imposed in the free stream by
means of the bump-shaped roof of the test section. In this way a Falkner-Skan-
Cooke like velocity distribution is obtained in the free stream above the flat
plate. The boundary layer is perturbed by placing tiny cylindrical roughness
elements near the leading edge and by inserting a turbulence grid upstream of
the plate. In the continuation of the present research project, simulations of
this configuration will be performed by means of the Spectral-Element Method,
and the results on receptivity to roughness and free-stream turbulence will be
compared with the experimental findings.

The Spectral-Element Method opens the possibility of accurately studying
the flow around bodies of interest in aeronautics or turbo-machinery. One
example is the flow field over a concave wall where other instability types than
those considered in this thesis come into play. If the radius of curvature is of
the order of the boundary-layer thickness, the centrifugal forces become large
enough to create a wall-normal pressure variation. This leads to centrifugal
instability and the formation of Görtler vortices. Simulations of this scenario
will together with the present results provide insights which will in the future be
useful for the computation of the transitional and turbulent flow field around a
full-wing model. Such simulations will, however, require modelling techniques
for the smallest disturbance structures in the flow field such as the sub-grid
models applied in LES.
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Receptivity mechanisms in three-dimensional

boundary-layer flows

By Lars-Uve Schrader, Luca Brandt & Dan S. Henningson

Linné Flow Centre, Department of Mechanics
Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Journal of Fluid Mechanics, Article in Press

Receptivity in three-dimensional boundary-layer flow to localized surface rough-
ness and free-stream vorticity is studied. A boundary layer of Falkner-Skan-
Cooke type with favorable pressure gradient is considered to model the flow
slightly downstream of a swept-wing leading edge. In this region stationary and
travelling cross-flow instability dominates over other instability types. Three
scenarios are investigated: the presence of low-amplitude chordwise localized,
spanwise periodic roughness elements on the plate, the impingement of a weak
vortical free-stream mode on the boundary layer and the combination of both
disturbance sources. Three receptivity mechanisms are identified: steady recep-
tivity to roughness, unsteady receptivity to free-stream vorticity and unsteady
receptivity to vortical modes scattered at the roughness. Both roughness and
vortical modes provide efficient direct receptivity mechanisms for stationary
and travelling cross-flow instabilities. We find that stationary cross-flow modes
dominate for free-stream turbulence below a level of about 0.5%, whereas higher
turbulence levels will promote the unsteady receptivity mechanism. Under the
assumption of small amplitudes of the roughness and the free-stream distur-
bance, the unsteady receptivity process due to scattering of free-stream vor-
ticity at the roughness has been found to give small initial disturbance ampli-
tudes in comparison to the direct mechanism for free-stream modes. However,
in many environments free-stream vorticity and roughness may excite interact-
ing unstable stationary and travelling cross-flow waves. This nonlinear process
may rapidly lead to large disturbance amplitudes and promote transition to
turbulence.

1. Introduction

The classical transition path to turbulence in laminar boundary-layer flow is
characterized initially by the receptivity phase, i.e. the conversion of external
perturbations into boundary-layer disturbances, subsequently by linear and
nonlinear growth of the disturbances and finally by the breakdown to turbu-
lence via secondary instability. Despite the fact that the linear amplification
of the unstable waves can now be accurately estimated, reliable values for the
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initial condition of these perturbations need to be provided. Commonly used
industrial transition-prediction tools, e.g. the eN -method, exclude the receptiv-
ity phase. In order to overcome the need of ”guessing” the initial disturbance
conditions, receptivity has been studied analytically, experimentally and nu-
merically in the past.

1.1. Receptivity of Blasius flow

The foundation of receptivity studies had already been laid in the eighties by
Goldstein (1983, 1985) and Ruban (1985), who employed asymptotic analy-
sis to investigate receptivity at the first neutral point of Tollmien-Schlichting
(TS) instability in Blasius flow. They pointed out that resonance regarding
frequency and wave vector between the external disturbances and the unstable
eigenmode of the base flow is necessary to trigger boundary-layer instability.
The excitation of TS waves, for instance, requires unsteady external perturba-
tions, e.g. acoustic or vortical free-stream disturbances. However, free-stream
perturbations feature in general larger chordwise wavelengths than the discrete
eigenmodes of the mean flow. Hence, scale reduction is necessary to trigger
TS instability by free-stream disturbances. Goldstein (1985) shows that scale
conversion requires a short-scale downstream variation of the base flow. This
requirement is fulfilled in two regions: shortly downstream of the leading edge
where the boundary layer grows rapidly, and in the vicinity of a localized surface
non-uniformity. Thus, two different receptivity mechanisms to unsteady free-
stream perturbations are imaginable: (1) a direct process in the leading-edge
region, associated with the unsteady free-stream disturbance, and (2) a mech-
anism associated with the interaction between unsteady free-stream perturba-
tions and the steady disturbance induced by localized surface non-uniformity.
For acoustic free-stream perturbations only the second receptivity mechanism
proved to be efficient.

1.2. Receptivity of three-dimensional boundary layers

Three-dimensional boundary layers can be found on swept wings or blades and
are therefore of importance in aeronautics and turbomachinery. In particular,
the flow over a swept flat plate subject to a chordwise pressure gradient has
often been considered in literature. This is a prototype for swept wings, being
referred to as Falkner-Skan-Cooke boundary layer. Most studies focus on cross-
flow instability waves, since they dominate the perturbation scenario inside the
boundary layer, given a large sweep angle. In contrast to TS instability, cross-
flow instability is of inviscid type and can be stationary as well as travelling.

Results on receptivity and stability in three-dimensional boundary-layer
flow have been reviewed by Saric et al. (2003). In the nineties, the Finite
Reynolds-Number Theory (FRNT), originally developed by Zavol’skii et al.

(1983) for two-dimensional boundary layers, has been addressed by e.g. Crouch
(1993), Choudhari (1994) and Ng & Crouch (1999). In contrast to asymptotic
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analysis, FRNT is valid for moderate Reynolds numbers and can be applied up-
stream and downstream of the first neutral point of the instability. It is based
on perturbation equations of Orr-Sommerfeld/Squire type and incorporates in
its usual formulation the parallel-flow assumption. External disturbances are
included in Finite Reynolds-Number Theory as non-homogeneous boundary
conditions, e.g. for wall roughness, or as an additional forcing term, e.g. for
acoustic free-stream waves. Finite Reynolds-Number Theory further assumes
that the excited boundary-layer disturbances are convective in nature. The
work by Crouch (1993) and Choudhari (1994) deals with Falkner-Skan-Cooke
boundary-layer flow exposed to both surface non-uniformities and acoustic free-
stream perturbations. These authors consider linear receptivity to localized
small-amplitude roughness elements, exciting steady cross-flow instability, and
an unsteady receptivity mechanism due to a weak planar acoustic free-stream
wave scattered at the roughness, generating travelling cross-flow modes. They
characterize the receptivity process by an efficiency coefficient, which relates the
initial amplitude of the instability mode to that of the triggering perturbations.
Although Crouch (1993) and Choudhari (1994) found higher efficiency for the
unsteady receptivity mechanism, the steady receptivity process to roughness
gave larger initial disturbance amplitudes. This is due to the interaction of two
small-amplitude disturbances in the case of unsteady receptivity. They con-
cluded therefore that stationary cross-flow vortices are more likely to dominate
transition in swept-wing flow under flight conditions than travelling cross-flow
instability.

Ng & Crouch (1999) and Collis & Lele (1999) consider receptivity to local-
ized roughness of flow over a swept parabolic cylinder. While the former authors
use this configuration as base flow for a FRNT study, Collis & Lele (1999) per-
form both non-parallel FRNT calculations and Direct Numerical Simulations
based on linearized perturbation equations. Spatial evolution of the boundary
layer and surface curvature are included in their work. They found that non-
parallel effects attenuate steady receptivity, while convex curvature enhances
it. As in Crouch (1993) and Choudhari (1994) the most efficient receptivity
sites were found slightly upstream of the first neutral point of the triggered
stationary instability. Also Bertolotti (2000) studied the effect of non-parallel
mean flow on receptivity to localized roughness for swept-wing flow. He em-
phasizes that non-parallel effects are substantial especially in the leading-edge
vicinity. This is, on the one hand, due to rapid boundary-layer growth, on
the other hand to highly curved streamlines in this region. Bertolotti performs
his analysis in Fourier space, expanding to first order the base flow and the
disturbance in the streamwise coordinate about the roughness location. The
receptivity amplitude is then expressed as the sum of a zeroth- and a first-order
contribution, and two separate efficiency coefficients are introduced. While the
zeroth-order part resembles the formulation for the receptivity amplitude in
Finite Reynolds-Number Theory, the first-order contribution also involves the
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derivative of the Fourier amplitude of the roughness with respect to the insta-
bility wavenumber. Bertolotti (2000) found that non-parallel effects attenuate
roughness receptivity, as well.

1.3. Receptivity to vortical free-stream disturbances

The numerical studies mentioned above are limited to acoustic free-stream dist-
urbances. In turbomachinery, for instance, vortical perturbations in the free
stream are often more relevant. Experimental work has been done on recep-
tivity and transition of three-dimensional boundary layers subject to vortical
free-stream disturbances, for instance by Bippes & Deyhle (1992) and Reibert
et al. (1996). Also these studies revealed that steady cross-flow disturbances
dominate the boundary-layer response at the typically low turbulence levels un-
der flight conditions. However, this may not be the case in noisy environments
and for wind-tunnel tests, see Saric et al. (2003).

While receptivity of three-dimensional boundary-layer flow to free-stream
vortices is not as well-examined, many publications on numerical and exper-
imental studies of two-dimensional boundary layers subject to vortical free-
stream disturbances are available; see for example Jacobs & Durbin (1998,
2001), Brandt et al. (2004), Bertolotti & Kendall (1997), Kendall (1998), Frans-
son et al. (2005) and the review by Saric et al. (2002). Buter & Reed (1994)
consider two-dimensional flow past a flat plate with an elliptic leading edge,
exposed to time-periodic spanwise free-stream vortices. They found a recep-
tivity mechanism for TS instability, which is, however, weaker than acoustic
receptivity studied earlier by Lin et al. (1992) for the same configuration. The
receptivity process becomes completely different, when the free-stream pertur-
bations contain also streamwise vorticity. Then, the key structures prior to
transition are no longer TS waves but streamwise streaks of alternating high-
and low-momentum fluid. The formation of the streaky pattern is due to the
interaction between non-normal eigenmodes of the base flow. Bertolotti (1997)
found for Blasius flow that maximum receptivity is obtained for free-stream
vortices with zero streamwise wavenumber. He suggests a linear receptivity
mechanism, by which the free-stream vortices diffuse into the boundary layer
close to the leading edge and cause the formation of the streaks inside it. This
process has been confirmed by Bertolotti & Kendall (1997) in an experiment
with controlled free-stream conditions through the generation of a weak ax-
ial vortex by a micro wing upstream of a flat plate with elliptic leading edge.
Although its core was located outside the boundary layer the streamwise vor-
tex was able to produce a rather strong perturbation inside it. The work also
includes results from a numerical model of this flow configuration, and good
agreement between the measured and the numerically determined amplitude
function of the boundary-layer perturbation has been found. Berlin & Hen-
ningson (1999) consider both streamwise modes and a pair of oblique waves
in the free stream. Apart from the linear receptivity mechanism, being ef-
ficient only for streamwise free-stream vorticity, they also found a nonlinear
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receptivity mechanism due to the interaction of two streamwise or two oblique
free-stream vortices. Jacobs & Durbin (1998) suggest an alternative model for
vortical free-stream disturbances in Blasius flow, based on the concept of the
continuous spectrum of the Orr-Sommerfeld/Squire operator. They show that
penetration of the vortical mode into the boundary layer is crucial for recep-
tivity and that deepest penetration is obtained for low-frequency free-stream
vorticity at low Reynolds numbers. The model of Jacobs & Durbin (1998) is
used by Brandt et al. (2002) and compared with the oblique-mode model of
Berlin & Henningson (1999). These authors found similar nonlinear receptiv-
ity mechanisms for both types of free-stream disturbances. To obtain a more
realistic model for turbulence in the outer flow, Jacobs & Durbin (2001) and
Brandt et al. (2004) consider the superposition of a large number of modes
from the continuous Orr-Sommerfeld/Squire spectrum, weighted to obtain a
typical energy-density spectrum of isotropic turbulence. For free-stream tur-
bulence dominated by low frequencies mainly the linear receptivity mechanism
was found to cause the streak generation, whereas receptivity to high-frequency
free-stream turbulence is characterized by the nonlinear mechanism. Zaki &
Durbin (2005) show that bypass transition can be observed in numerical simu-
lations, if only two vortical free-stream modes are prescribed at the inflow: one
of low and one of high frequency. While the low-frequency mode is responsi-
ble for the generation of streaks, the high-frequency mode triggers secondary
instability upon the streaky flow.

The influence of streamwise pressure gradient on receptivity and transition
in the presence of free-stream vorticity was investigated in Zaki & Durbin (2006)
by Direct Numerical Simulation of two-dimensional boundary-layer flow sub-
ject to a Falkner-Skan pressure distribution. That work also includes a study
of the interaction between the continuous-spectrum modes and the boundary
layer in Falkner-Skan flow, as has already been presented before by Maslowe &
Spiteri (2001). Zaki & Durbin (2006) found that the free-stream modes pen-
etrate less under adverse and more under favorable pressure gradient into the
boundary layer than in Blasius flow; nonetheless, transition onset and comple-
tion are moved upstream for the former and downstream for the latter pressure
distribution. The authors conclude that deep penetration of the free-stream
modes is not crucial for the receptivity process in two-dimensional boundary
layers.

Receptivity mechanisms in three-dimensional swept-plate flow, however,
are much less studied than in Blasius flow, as stated by Saric et al. (2003).
Results from Direct Numerical Simulations (DNS) with a spectral method are
herein presented to characterize the receptivity of three-dimensional boundary
layers. A spatial approach is employed, capturing non-parallel effects on recep-
tivity due to the streamwise evolution of the mean flow. The focus lies on cross-
flow vortices, as well. Two perturbations are considered: localized roughness
elements at the wall and vortical disturbances in the free-stream. Three recep-
tivity mechanisms are investigated: steady receptivity to roughness, unsteady
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receptivity to free-stream vorticity and unsteady receptivity due to scattering
of a vortical mode at a localized roughness element. The first two mechanisms
depend on the amplitude of the roughness element and the free-stream-mode,
respectively, while the third receptivity process involves the product of two
disturbance amplitudes. The three mechanisms are characterized in terms of a
receptivity coefficient as a measure for their efficiency.

The paper is organized in the following fashion: Section 2 discusses the
base flow (2.1), the numerical method (2.2) and the modelling of the surface-
roughness element and the vortical free-stream disturbance (2.3). Section 3
focuses on steady receptivity to localized surface roughness, and section 4 deals
with direct unsteady receptivity to a vortical free-stream mode. The advection
of single vortical modes along a plate with localized roughness defines the third
receptivity process being investigated in section 5. In section 6 the efficiency
of the receptivity processes for stationary and travelling cross-flow instability
is compared. The results are discussed and summarized in section 7.

2. Flow configuration and numerical approach

2.1. Base flow

The flow over a swept flat plate subject to a chordwise pressure gradient is
considered, a frequently studied prototype for swept wings. The base flow
is obtained through the solution of the three-dimensional time-dependent in-
compressible Navier-Stokes equations, initialized with the Falkner-Skan-Cooke
similarity profiles. This type of flow includes most of the features of the flow
over the wing – the chordwise pressure drop, the streamline curvature and the
cross flow, but not the surface curvature. The pressure gradient and the cur-
vature of the external streamlines are included in Falkner-Skan-Cooke flow by
assuming the following free-stream velocity distribution

U∞(x) ≡ U∗

∞
(x∗)

U∗

∞
(x∗

0)
=

(

x∗ + x∗

0

x∗

0

)m

(1a)

W∞ ≡ W ∗

∞

U∗

∞
(x∗

0)
= tanφ0 = const , (1b)

where U and W are used for the chord- and spanwise mean velocity and starred
quantities have physical dimensions. The exponent m denotes the flow accel-
eration, related to the frequently used Hartree parameter βH via

m =
βH

2 − βH
. (2)

The angle φ0 is the sweep angle at the reference station x∗

0. Owing to the
chordwise flow acceleration, the free-stream velocity vector is turned more and
more into the x∗ direction downstream, forming a curved streamline. The
external streamline is sketched in figure 1, where the Falkner-Skan-Cooke base-
flow profiles are shown with the coordinate system adopted. In this figure,
the mean flow is decomposed along the free-stream direction at x∗

0 rather than
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Figure 1. Wall-normal profiles of the streamwise and the
cross-flow velocity for Falkner-Skan-Cooke boundary-layer
flow.

along the chord- and spanwise coordinates x∗ and z∗. This decomposition
shows a non-zero velocity in the cross-stream direction inside the boundary
layer – the cross flow, resulting from a force imbalance between the pressure
and the centrifugal forces. The cross-flow profile exhibits an inflection point
and supports inviscid instability, referred to as cross-flow instability. Note that
instability waves propagating in the direction of the cross flow have negative
spanwise wavenumber β and positive chordwise wavenumber α in the chosen
coordinate system.

The Falkner-Skan-Cooke boundary-layer flow is independent of the span-
wise direction z∗, and is governed by the two-dimensional boundary-layer equa-
tions, see for instance Schlichting (1979). For the free-stream velocity distri-
bution in equation (1), the boundary-layer equations for the chordwise and
wall-normal mean velocities U∗ and V ∗ can be re-arranged in a single equation
by introducing the stream function f(η), while the chordwise and the normal
coordinate x∗ and y∗ can be replaced by one single similarity variable η,

η =

√

m + 1

2

U∗

∞
(x∗)

ν∗x∗
y∗ . (3)

If the spanwise velocity W ∗ is expressed as W ∗ = W ∗

∞
g(η), the boundary-layer

equations can be transformed into a set of ordinary differential equations for
f(η) and g(η),

f ′′′ + ff ′′ + βH(1 − f ′2) = 0 (4a)

g′′ + fg′ = 0 (4b)

with boundary conditions

η = 0 : f = f ′ = g = 0 (5a)

η → ∞ : f → 1, g → 1 . (5b)
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Figure 2. Reynolds number (—–) and external streamline
angle (----) as a function of the chordwise coordinate.

Self-similar profiles for the chordwise and the spanwise velocity U∗ and W ∗

are obtained from f ′(η) and g(η). They are referred to as the Falkner-Skan-
Cooke similarity profiles in literature. Further details can be found in Schmid
& Henningson (2001) or Högberg & Henningson (1998).

Throughout the remainder of this paper non-dimensional variables are
used. Lengths are made dimensionless by the chordwise boundary-layer dis-
placement thickness δ∗0 ≡ δ∗(x∗

0) at the reference location x∗

0 and velocities
by the chordwise free-stream velocity U∗

∞,0 ≡ U∗

∞
(x∗

0). The dimensionless ref-
erence station x0 is located downstream of the leading edge of the plate and
corresponds to the inflow plane of the computational domain. The reference
length δ∗0 and the reference velocity U∗

∞,0 define the Reynolds number at the
computational inlet,

Reδ∗

0
=

U∗

∞,0δ
∗

0

ν∗
, (6)

where ν∗ is the kinematic viscosity. The local Reynolds number Reδ∗ is defined
by replacing δ∗0 and U∗

∞,0 in (6) by their local values δ∗(x) and U∗

∞
(x). Figure 2

shows the relation between the local Reynolds number Reδ∗ and the chordwise
coordinate x (solid line). Also the local angle φ of the external streamline is
displayed versus x (dashed line).

The inflow Reynolds number is Reδ∗

0
= 220 for most of the present results,

corresponding to an inflow station at x0 = 167δ∗0 downstream of the leading
edge. The parameters m and φ0 in equation (1) are chosen to obtain conditions
similar to those of the airfoil experiments at Arizona State University by Reibert
et al. (1996). These authors report among other results the N-factor of the
steady cross-flow instability wave with 12mm spanwise wavelength at different
chordwise stations. The local N-factor measured on the swept airfoil at 10%
chord is approximately obtained at the corresponding station on the swept flat
plate, if m = 0.2, or βH = 0.333, is selected. In addition, this value gives a
chordwise free-stream velocity distribution, which matches sufficiently well the
cp distribution reported by Reibert et al. (1996). The sweep angle at x∗

0 is set to
φ0 = 45◦, as in the experiment. The cross-flow component is most pronounced
at this angle, and the cross-flow instability waves dominate over other types of
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instabilities. Also note that the streamwise and spanwise free-stream velocity
are equal at the reference location for φ0 = 45◦, i.e. U∞(x0) = W∞(x0) = 1.

2.2. Numerical method

The present results are obtained by means of a simulation code based on
spectral methods to solve the three-dimensional time-dependent incompress-
ible Navier-Stokes equations, see Chevalier et al. (2007). The algorithm builds
on a Fourier representation along the chord- and spanwise coordinates x and
z and on Chebyshev polynomials in the wall-normal direction y, together with
a pseudo-spectral treatment of the nonlinear terms. The time integration is
based on a four-step third-order Runge-Kutta method for the nonlinear terms
and a second-order Crank-Nicolson scheme for the linear terms. Aliasing errors
from the computation of the nonlinear terms are removed in wall-parallel planes
by the 3/2-rule, whereas a grid refinement normal to the plate has turned out
to be more convenient than dealiasing.

The swept-plate boundary layer develops along the chordwise direction,
while the streamlines change continuously direction. For the simulation of such
spatially evolving flows the required chordwise periodicity is established by the
implementation of a ”fringe region”at the downstream end of the computational
domain, as described by Nordström et al. (1999). In this region the velocity

field ~U is forced to the desired velocity profiles ~U0 by an additional term in

the Navier-Stokes equations. Here, ~U is used for the instantaneous velocity

field to distinguish it from the base flow ~U . ~U0 indicates the desired inflow,
i.e. the Falkner-Skan-Cooke similarity profiles, and may also contain incoming
disturbances. The equation solved is,

∂ ~U
∂t

= NS(~U) + λ(x)( ~U0 − ~U) , (7)

where NS denotes the right-hand side of the momentum equations, and λ(x)
is a smooth forcing function, being non-zero only in the fringe region.

Along the plate, no-slip conditions apply for the basic and the perturbed
flow in the case of vortical free-stream perturbation, while non-homogeneous
boundary-conditions are employed to model the surface roughness, see sub-
section 2.3. At the free-stream boundary, a von-Neumann condition is used
for the computations with free-stream vortical modes, and the computational
domain is chosen high enough to ensure independence of the boundary-layer
response from the location of and the conditions at the top boundary. To
compute the base flow and the disturbed flow in the case of surface roughness
the asymptotic condition proposed by Malik et al. (1985) is employed,

y = y∞ :
∂~̂u

∂y
+

√

α2 + β2~̂u =
∂ ~̂U

∂y
+

√

α2 + β2 ~̂U . (8)

This condition is equivalent to the requirement of zero vorticity at the free-
stream boundary y∞, allowing to place it nearer the boundary layer, and it
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is applied in Fourier space, as indicated by the hat. ~U stands for the mean
flow, ~u for the disturbance velocity and α and β for the chord- and spanwise
wavenumber, respectively. As the mean flow is independent of and the per-
turbed flow periodic in the spanwise direction z, cyclic boundary conditions
are applied along z.

The simulation code provides the possibility of solving the nonlinear and
the linearized perturbation equations about any three-dimensional base flow.
Herein, the linearized perturbation equations are solved for the studies of direct
receptivity to roughness and free-stream vortices presented in the sections 3
and 4 and the nonlinear equations for the unsteady receptivity problem to
free-stream vorticity in combination with roughness described in section 5.

2.3. Disturbance generation

In the present paper the receptivity of the three-dimensional swept-plate bound-
ary layer is studied for two different types of external disturbances – steady
roughness elements on the plate surface and unsteady vortical disturbances in
the free stream. This section reports how these two types of disturbances are
modelled and implemented in the simulation code.

2.3.1. Surface roughness

A chordwise localized, spanwise periodic roughness element

h(x, z) = εh · hx(x) · sin(βRz) (9)

is placed downstream of the inflow plane x0. εh is a small parameter describing
the maximum amplitude of the roughness bump, and βR = 2π/Lz is the span-
wise wavenumber of the roughness bump. The spanwise length scale of the
roughness element and the spanwise width Lz of the computational domain
are hence identical. Roughness elements of different spanwise scales will be
considered separately, owing to the assumption of linear flow behavior and the
spanwise homogeneity of the base flow. The chordwise shape hx(x) is

hx(x) =

[

S

(

x − hstart

hrise

)

− S

(

x − hend

hfall
+ 1

)]

, (10)

where S is a smooth step function,

S(ξ) =







0, ξ ≤ 0
1/

(

1 + e(1/(ξ−1)+1/ξ)
)

, 0 < ξ < 1
1 ξ ≥ 1

. (11)

The parameters hstart, hend, hrise and hfall in (10) indicate the start and
end station of the bump, i.e. hx(x) 6= 0 on [hstart, hend], and the extension of
the rising and the falling flank of the smooth step. The roughness element is
not meshed but modelled by non-homogeneous boundary conditions along the
plate. The no-slip conditions along the bump contour h(x, z) are projected from
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the bump surface to the undisturbed wall y = 0 via a Taylor series expansion,
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0

, hstart ≤ x ≤ hend

~0 , elsewhere

, (12)

where u, v and w are the components of the disturbance velocity. Since the
roughness height εh is assumed to be small, the Taylor series is truncated at
first order. The parameters used in equations (9) and (10) are specified when
presenting the results in section 3, where the model for roughness receptivity
will be motivated in the context of previous studies reported in literature.

2.3.2. Free-stream and boundary-layer modes

The unsteady free-stream disturbance is modelled by adding a single vorti-
cal mode to the base flow in the fringe region. To analyze the effect of sin-
gle waves of specific wavenumbers and frequencies Fourier modes would be a
natural choice. However, in the presence of the plate the vortical mode has
to decay smoothly to zero towards the wall. Eigenfunctions associated with
the continuous wavenumber spectrum of the Orr-Sommerfeld/Squire operator
for three-dimensional boundary-layer flows are therefore used to represent the
free-stream modes, as for example in Jacobs & Durbin (1998) and Brandt et al.

(2004). These continuous-spectrum eigenfunctions are sometimes also denoted
continuous modes, while the eigenfunctions from the discrete wavenumber spec-
trum of the Orr-Sommerfeld/Squire operator are called discrete modes.

Grosch & Salwen (1978) first introduced the concept of the continuous
spectrum for the Orr-Sommerfeld/Squire operator by relaxing the free-stream
boundary conditions at y → ∞. The derivation is outlined here since it is
presented for the first time for three-dimensional boundary layers. In the limit
y → ∞ the Orr-Sommerfeld/Squire system simplifies to a set of two decoupled
homogeneous ordinary differential equations with constant coefficients,

(D2 − α2 − β2)2ṽ− iReδ∗(αU∞ + βW∞ − ω) (D2 − α2 − β2)ṽ = 0 ,(13a)

(D2 − α2 − β2)η̃− iReδ∗(αU∞ + βW∞ − ω) η̃ = 0 . (13b)

ṽ and η̃ are the amplitude functions in spectral space for the normal velocity v
and vorticity η of the continuous Orr-Sommerfeld/Squire eigenmodes, α is the
chordwise wavenumber and D = d/dy. Defining

γ2 ≡ −iReδ∗(αU∞ + βW∞ − ω) − α2 − β2 , (14)

(13) can be re-written as

(D2 − α2 − β2)(D2 + γ2)ṽ = 0 (15a)

(D2 + γ2)η̃ = 0 . (15b)
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Further, equation (14) can be re-ordered to obtain a quadratic equation in α
with solution

α =
i

2
[

√

(Reδ∗U∞)
2

+ 4(iReδ∗(βW∞ − ω) + β2 + γ2) − Reδ∗U∞] , (16)

which is the dispersion relation for the continuous Orr-Sommerfeld/Squire
eigenmodes. The term (D2 + γ2) in (15) suggests the interpretation of γ as
a wall-normal wavenumber. The solution to (15) reads,

ṽ = Ae−iγy + Beiγy + Ce−
√

α2+β2y + De
√

α2+β2y (17a)

η̃ = Ee−iγy + Feiγy . (17b)

The constants A through F result from the boundary conditions on the plate
and in the outer flow. To avoid a non-physical ”exploding” solution as y →
∞, the fourth fundamental solution for ṽ should be dropped. In practice, to
compute the free-stream modes, the upper boundary is located a sufficiently
large wall-normal distance y∞ away from the plate. There, one may impose
arbitrary normalization conditions ṽ∞ and η̃∞. The boundary conditions for ṽ
and η̃ at the wall and in the free stream read then

y = 0 : ṽ = Dṽ = η̃ = 0 (18a)

y = y∞ : ṽ = ṽ∞, η̃ = η̃∞ . (18b)

These five conditions determine the constants in (17), and a shooting method
can be employed to solve equations (13). Jacobs & Durbin (1998) observe,
however, that shooting techniques do often not converge, in particular when ω
is small. They suggest instead a method to impose a boundedness condition
for the eigenfunction ṽ at y∞, based on the evaluation of (D2 + γ2)ṽ at two
points y1 and y2 in the free stream,

[

(D2 + γ2)ṽ
]

y1

[(D2 + γ2)ṽ]y2

= e
√

α2+β2
·(y2−y1) . (19)

This amounts to a boundary-value problem for ṽ with the conditions (18a) at
the wall and condition (19) near the free stream boundary. The normalization
(18b) is then used to scale the mode to the desired energy. In summary, the
spatial eigenvalue α is obtained from (16) and the associated eigenfunctions for
ṽ and η̃ from the numerical solution of the Orr-Sommerfeld/Squire system to-
gether with the boundary conditions (18) and (19). The chordwise and spanwise
spectral velocities ũ and w̃ are computed from the definition of η̃ in conjunction
with the continuity equation. The shape of a continuous eigenmode along the
wall-normal coordinate y is shown in figure 3(a). Clearly, the amplitude of the
eigenfunction is quenched to zero towards the plate, as desired, and oscillates
in the free stream. Therefore, the continuous modes are herein also referred
to as free-stream modes. Figure 3(b) shows the wall-normal amplitude for an
eigenmode from the discrete spectrum of the Orr-Sommerfeld/Squire operator.
Since it is large inside the boundary layer and tends to zero in the outer flow, the
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Figure 3. (a) Wall-normal shape of a free-stream eigenmode
from the continuous spectrum of the Orr-Sommerfeld equation,
(α, β) = (0.130,−0.140), αi = 0.00081, γ = 0.377, ω = −0.01.
(b) Amplitude in wall-normal direction of a travelling dis-
crete boundary-layer eigenmode, (α, β) = (0.102,−0.140),
αi = 0.00474, ω = −0.01.

discrete modes are often called boundary-layer modes. In contrast to the free-
stream modes, which are always damped, there exist unstable discrete modes
in 3D boundary layers for certain parameter combinations (m,φ0;Reδ∗ , β, ω),
where β and ω are the spanwise wavenumber and the angular frequency of
the eigenmode. The cross-flow instability waves are an example for unstable
discrete modes, and the right plot of figure 3 shows indeed a cross-flow mode.

As already mentioned, the vortical free-stream mode is imposed in the
fringe region and re-cycled to the inflow plane of the computational domain.
Therefore, when computing the continuous mode, the Reynolds number is fixed
to the inflow value Reδ∗

0
, whereas β, γ and ω can be chosen arbitrarily. In

section 4, the choice of the continuous-spectrum eigenmodes as a model for
free-stream disturbances will be motivated.

To study the spatial evolution of the unstable modes, one may superimpose
a discrete boundary-layer mode on the base flow in the same manner as the
continuous free-stream mode. The spatial eigenvalues and eigenshapes of the
discrete modes are computed by solving the spatial Orr-Sommerfeld/Squire
eigenvalue problem, as described in Schmid & Henningson (2001), for instance.

2.4. Computational domain and numerical resolution

Table 1 compiles the dimensions Lx, Ly and Lz of the computational domain
together with the corresponding resolution Nx, Ny and Nz along the spatial
coordinates. Also the range of inflow Reynolds numbers Reδ∗

0
and the type

of disturbance forcing are listed in the table. Three different computational
boxes, A, B and C, have been used to obtain the results for receptivity to wall
roughness, vortical free-stream modes and their combination. Note that the
spanwise width Lz of the domain has been varied for Box A and B to study



42 L.-U. Schrader, L. Brandt & D.S. Henningson

Table 1. Dimensions and resolution of the computational do-
main. Inflow Reynolds number and type of disturbance forc-
ing. ”SR” stands for ”surface roughness” and ”FS” for ”free-
stream mode”.

Box Lx × Ly Lz Nx × Ny × Nz Reδ∗

0
Disturb.

A 883.2 × 20.0 12.0...73.0 768 × 65 × 8 220 SR
B 2048.0 × 50.0 23.0...73.0 512 × 97 × 4 220...353 FS
C 3072.0 × 50.0 33.0, 66.0, 99.0 1536 × 97 × 12 220 SR+FS

the receptivity when varying the spanwise wavenumber of the unstable waves,
and that the inflow Reynolds number Reδ∗

0
has been also varied when studying

the effect of free-stream modes. The box dimensions Lx, Ly and Lz have been
scaled in such a way that the physical box dimensions Lxδ∗0 , Lyδ∗0 and Lzδ

∗

0

and thus the resolution remain unchanged for all values of Reδ∗

0
. The listed

values of Lx, Ly and Lz for Box B refer to Reδ∗

0
= 220.

3. Receptivity of stationary modes to localized wall roughness

It is known that surface roughness provides an efficient mechanism for the ex-
citation of steady cross-flow instability waves if the roughness contour contains
the wavenumber of the instability; see for instance Crouch (1993), Choudhari
(1994) or Bertolotti (2000). The receptivity process, connecting the forcing
due to the roughness element with the response of the boundary layer, is de-
scribed in terms of the receptivity coefficient CR(βR, ω;m,φ0), where βR is the
spanwise wavenumber of the roughness, and the frequency ω is zero for steady
surface roughness,

CR =
AR

εh · H(αCF )
. (20)

AR is the receptivity amplitude, i.e. the amplitude of the excited steady cross-
flow instability at the roughness station xR, defined at the center of the bump.
H(αR) denotes the representation of the chordwise bump shape hx(x) in Fourier
space, and αCF is the chordwise wavenumber of the excited stationary cross-

flow instability at xR. Here, the wall-normal maximum of
√

u2 is chosen as
the measure for the boundary-layer response, where u is the chordwise distur-
bance velocity. CR may be interpreted as the efficiency of the forcing mecha-
nism – here the roughness bump – in exciting the least stable eigenmode of the
boundary layer – here the steady cross-flow mode. A similar definition is used
in Crouch (1993), Choudhari (1994) and Ng & Crouch (1999) in the context
of Finite Reynolds-Number Theory. In contrast to these studies non-parallel
effects on the receptivity process are included here by employing Direct Numer-
ical Simulation. Various roughness elements are considered, differing in their
chordwise shape hx(x) as well as in their spanwise wavenumber βR. Most of
the results are obtained by using roughness with maximum amplitude εh be-
ing much smaller than the characteristic length δ∗0 of the basic flow such that
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Table 2. Three different chordwise shape functions hx(x) for
surface roughness. Parameters according to equations (9) and
(10).

Shape εh hstart hend hrise hfall

I 0.021 4.6 32.2 11.5 11.5
II 0.021 9.2 27.6 6.9 6.9
III 0.021 13.8 23.0 3.45 3.45

the linearized perturbation equations are valid. In subsection 3.2 also higher
roughness elements are considered and the nonlinear disturbance equations are
solved. Three chordwise roughness contours are considered, with parameters
compiled in table 2. In order to investigate the dependence of the receptivity
coefficient CR on the spanwise scale of the roughness, the width Lz of the do-
main is changed according to table 1 in the previous section. The values listed
for Box A correspond to spanwise roughness wavenumbers βR between 0.09
and 0.52.

3.1. Low-amplitude roughness

Figure 4 shows the boundary-layer response to perturbations caused by rough-
ness elements of different spanwise wavenumbers βR (thick lines). For each
case a second simulation employing a smooth plate is performed, where the
wall-normal velocity distribution of the stationary cross-flow eigenmode at
|βCF | = βR is prescribed at the inflow plane. The response of the base flow to
this initial condition is displayed as a thin line in figure 4. Comparison of the
thick and the thin curves reveals that the flow response in the vicinity of the
roughness is characterized by transient behavior, while the downstream evolu-
tion of the boundary-layer disturbance is fully determined by the excited steady
cross-flow instability. The receptivity amplitude AR is extracted from the to-
tal disturbance (thick lines) by tracing back the contribution of the unstable
cross-flow mode (thin lines) to the roughness station xR. It can be concluded
that surface roughness provides an efficient linear mechanism for the excitation
of zero-frequency cross-flow instability.

Figure 4 also suggests that the efficiency of the receptivity mechanism is
strongly dependent on the spanwise wavenumber of the roughness element.
Further, to verify the assumption of shape independent receptivity, roughness
elements of different chordwise shape are considered. These two aspects have
been investigated in detail, and the result is reported in figure 5. In 5(a) the
three chordwise roughness contours under consideration are displayed in phys-
ical (insertion) and in Fourier space. Depending on their spanwise wavenum-
ber βR these roughness elements will force different unstable boundary-layer
modes with different efficiency. This is highlighted in the figure by the symbols,
marking the spectral component H(αCF ) for roughness elements of βR = 0.09
(⋄), 0.19 (◦) and 0.44 (¤). H(αCF ) measures to which degree the chordwise
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Figure 4. Boundary-layer response to roughness at xR =
18.4 (Reδ∗ = 234), expressed as wall-normal maximum of
the chordwise disturbance-velocity amplitude (thick lines), and
evolution of the excited steady cross-flow instability waves
(thin lines).
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Figure 5. (a) Three roughness shapes in physical (insertion)
and spectral space. The symbols mark the Fourier component
of the spectral bump shape at the chordwise wavenumber αCF

of the excited steady cross-flow eigenmode (i.e. αCF = αR),
shown for three spanwise wavenumbers of the roughness: βR =
0.09 (⋄), 0.19 (◦) and 0.44 (¤). (b) Thick lines: Receptivity
coefficient in spatially evolving flow versus spanwise wavenum-
ber of the roughness for the three bump shapes in (a). The
roughness is placed at xR = 18.4 (Reδ∗ = 234). The sym-
bols correspond to those in (a). Thin solid line: Receptivity
coefficient in parallel flow.

wavenumber αCF of the triggered stationary cross-flow mode is represented in
the three spectral shape functions. In figure 5(b) the influence of chordwise
shape and spanwise wavenumber of the roughness on the receptivity coefficient
is depicted. Results for receptivity in parallel boundary layers are included, as
well (thin curve). They are obtained by employing the same roughness elements
in parallel base flow for the Reynolds number at the roughness station, i.e.
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Reδ∗ = 234. The receptivity coefficients CR in parallel flow could be extracted
solely for wavenumbers pertaining to unstable or marginally stable cross-flow
modes. Only in these cases the least stable mode is clearly distinguishable from
the total disturbance further downstream. It can be concluded from figure 5(b)
that non-parallel flow (thick lines) is less receptive to roughness-induced per-
turbations than parallel flow (thin line). In particular roughness elements of
large spanwise wavenumber, triggering instabilities with short wavelengths, give
lower receptivity coefficients in spatially developing flow. This is in line with
the findings of Collis & Lele (1999) who demonstrated that non-parallel effects
attenuate roughness-related receptivity. They used the steady solution to flow
around a swept parabolic cylinder as base flow and applied a bump of Gaussian
shape near the leading edge.

Two additional conclusions can be drawn from figure 5(b): (1) An optimal
spanwise wavenumber, βR ≈ 0.19, can be identified, at which the receptiv-
ity process in non-parallel flow is most efficient. (2) For the three roughness
contours under consideration the receptivity coefficient is independent of the
specific shape over a large range of values for βR. However, for βR & 0.41 the
shape-independence of CR is broken. For roughness contour I (solid line) the
CR curve exhibits a remarkable jump around βR = 0.44. Comparing figure 5(a)
and (b) reveals that this jump is occurring, as bump shape I has almost zero
component H(αCF ) at the instability wavenumber (αCF , |βCF |) = (0.40, 0.44)
(square symbol). Also the amplitude AR of the unstable eigenmode is small,
if βR = 0.44, as shown in figure 4. The receptivity coefficient CR no longer
provides a shape-independent, universal measure for receptivity to roughness,
if both numerator and denominator in definition (20) become small. In such
situations CR describes the receptivity process improperly; moreover, CR is
no longer well-defined, when H(αCF ) is zero. Also the receptivity coefficients
computed from the roughness contours II and III start to differ for large values
of βR, i.e. when the bump is longer than the cross-flow wavelength.

Unlike in parallel flow, where the receptivity amplitude AR of the cross-
flow mode vanishes as H(αCF ) → 0, low values of AR are still observed in
downstream evolving boundary layers, even when the spectrum of the roughness
element contains no energy at all at the instability wavenumber. The receptivity
coefficient CR, derived for parallel base flow, cannot capture this non-parallel
effect. To provide an improved measure for roughness-related receptivity when
H(αCF ) becomes small, Bertolotti (2000) suggests an alternative expression
for the receptivity amplitude,

AR = εh|CR,0H(αCF ) + CR,1H
′(αCF )| , (21)

i.e. a second term depending on the slope H ′(αCF ) ≡ (dH/dα)αCF
is intro-

duced. Bertolotti derives relation (21) by expanding the base flow and the
disturbance in the chordwise direction about the roughness station xR. The
expansion is truncated at first order and analyzed in spectral space. As shown
in Bertolotti (2000), the term CR,0H(αCF ) represents the contribution to AR
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Figure 6. Thick lines: Receptivity coefficients |CR,0| (—–
) and |CR,1| (----) according to equation (21). Thin lines:
Receptivity coefficient CR, equation (20), as in figure 5(b).

at zeroth order, while CR,1H
′(αCF ) is the first-order correction due to the

non-parallel evolution of the base flow.

The zeroth- and first-order receptivity coefficients CR,0 and CR,1 can be
extracted from the present DNS data by solving the following linear system,

(

CR,0

CR,1

)

=
1

εh

(

H1 H ′

1

H2 H ′

2

)

−1

αCF

(

AR,1

AR,2

)

DNS

, (22)

using two of the roughness contours under consideration. The validity of
Bertolotti’s ansatz for AR is checked by applying equation (21) with the coeffi-
cients CR,0 and CR,1 from (22) to results obtained when forcing with the third
roughness contour,

AR,3|pred = εh(CR,0H3 + CR,1H
′

3)αCF
≡ AR,3|DNS . (23)

AR,3|pred denotes the wave amplitude and phase predicted by model (21), and
AR,3|DNS is the receptivity amplitude obtained by DNS. AR,3|pred = AR,3|DNS

is indeed obtained with good accuracy for all spanwise wavenumbers under con-
sideration, both in terms of amplitude and phase. The receptivity coefficients
|CR,0| and |CR,1| are plotted versus βR in figure 6. Clearly, there is very good
agreement between the standard receptivity coefficient CR and the zeroth-order
coefficient |CR,0| for βR . 0.41. In this regime receptivity to roughness is ad-
equately described by a receptivity coefficient based only on H(αCF ). For
βR & 0.41, however, the correction term CR,1H

′(αCF ) is no longer negligible.
|CR,0| drops down in this region and does no longer exhibit the peak seen in
the curve for CR. |CR,0| in combination with |CR,1| is thus a more appropriate
measure for receptivity to roughness bumps with very low spectral amplitude
H(αCF ) than the standard coefficient CR. Following Bertolotti (2000) who
attributes the contribution proportional to H ′(αCF ) to the non-parallel nature
of the base flow, we conclude from figure 6 that the non-parallel correction
CR,1H

′(αCF ) is most important for large wavenumbers of the triggered un-
stable boundary-layer mode. The wavelength of the cross-flow disturbance is
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then considerably shorter than the chordwise extent of the roughness element.
Since |CR,0| and |CR,1| fulfill equation (21) for all three roughness contours,
they represent to first order a shape-independent, universal measure for recep-
tivity to roughness. To summarize, the non-parallel nature of the base flow
becomes manifest in two ways: a stronger effect over the whole wavenumber
range plotted in figure 5(b) and a weaker effect only for large wavenumbers
displayed in figure 6.

A roughness element with even larger chordwise length may be designed
such that the spectral shape has a zero crossing at (αCF , βCF ) = (0.17,−0.19),
that is, at the most receptive wavenumber. We have performed a simulation
with a bump with H(αCF = 0.17) = 9.6 · 10−2, which is about 60 times
smaller than the spectral amplitude of the short bump contour III at that
wavenumber. The difference in amplitude AR of the triggered unstable mode
is, however, much less; AR is 9.6 · 10−4 for the long versus 1.7 · 10−3 for the
short roughness element. The curve for the classical receptivity coefficient CR

would again exhibit large peaks at every zero crossing of the spectral contour
H, while the curves for |CR,0| and |CR,1| look smooth. They differ, however,
from the corresponding curves in figure 6 in that the contribution of the first-
order coefficient |CR,1| becomes stronger. We conclude that the receptivity
coefficients |CR,0| and |CR,1| preserve their independence of roughness shape
only within a limited range of bump length. For longer, less localized roughness
elements, contributions related to higher derivatives of H are likely to come into
play. We want to emphasize, however, that the classical receptivity coefficient
CR is nevertheless an appropriate representation of roughness receptivity in the
framework of localized receptivity.

The response of the base flow to disturbances introduced by localized rough-
ness elements at different chordwise stations xR is studied next. Bump shape
III is considered here. The spanwise scale of the roughness is chosen to be
λz = 50 inflow displacement thicknesses, corresponding to βR = 0.126. These
values match approximatively the spanwise scale of the roughness array in the
experiments by Reibert et al. (1996). As shown in the previous section the
standard receptivity coefficient CR is independent of the roughness shape at
βR = 0.126 and can thus be used here. The dependence of CR on the chordwise
position xR of the roughness element is depicted in figure 7 (solid line). The
dashed line shows the effective receptivity coefficient CR,eff , compensating for
the local decay or growth of the excited steady cross-flow instability at xR,

CR,eff =
CR

eNR

= CR
AI

AR
=

AI

εhH(αCF )
, (24)

where NR is the N-factor of the cross-flow disturbance at xR, and AI is the
amplitude at the first neutral point of the cross-flow mode. While CR is a
measure for the receptivity process only, CR,eff can be used to determine the
disturbance amplitude A(x) in the linear regime downstream of the roughness,

A(x) = εhH(αCF )CR,effeN(x). (25)
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Figure 7. Receptivity coefficient for surface roughness as a
function of the chordwise station xR of the roughness element
(—–). Roughness shape III is used, and βR = 0.126. Effective
receptivity coefficient CR,eff (----). The circle marks the first
neutral point of the excited steady cross-flow mode.

The receptivity process is most efficient upstream of the first neutral point and
drops down rapidly downstream of it. This is in line with results for parallel
flow, obtained by Finite Reynolds-Number Theory, see for example Crouch
(1993).

3.2. Larger-amplitude roughness

In the previous section receptivity to localized surface roughness of low ampli-
tude was discussed. The amplitude AR of the excited unstable cross-flow mode
is then proportional to the height εh of these tiny roughness elements, leading
to constant receptivity coefficients as εh is changed. In this section receptivity
to roughness with higher amplitude is investigated to identify at which bump
height nonlinear behavior starts to affect the receptivity. The roughness ele-
ments used here are of shape I, II and III and have a fixed spanwise wavenumber
of βR = 0.19. This choice guarantees efficient receptivity and negligible non-
parallel effects, as seen before. The height of the roughness elements is chosen
in the range 0.02 ≤ ε ≤ 0.2. At the highest bump amplitude ε = 0.2 a region
of linear growth of the unstable mode is no longer clearly identified, whereas
the flow downstream of the roughness is characterized by saturating cross-flow
modes. Nonlinear behavior is hence apparent at this roughness amplitude. But
also below this height nonlinearity has an effect on receptivity, as illustrated
in figure 8. Beyond ε = 0.05 CR becomes dependent on both the amplitude
and the shape of the roughness element. In particular the dashed-dotted curve
obtained by inserting the shortest roughness element (shape III) deviates to
lower values from the constant CR found for low roughness height. Bump I,
conversely, retains a constant receptivity efficiency even for nonlinearly behav-
ing cross-flow modes. In summary, the deviation of CR from its value for tiny
roughness remains rather small for the plotted range of roughness amplitudes,
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Figure 8. Effect of bump height on receptivity to surface
roughness. βR = 0.19. Bump shape I (—–), II (----) and III
(-·-·-).

i.e. nonlinearity has a weaker effect on the receptivity process than on the
subsequent growth of the triggered instability (saturation).

4. Receptivity of travelling cross-flow modes to vortical

free-stream disturbances

In this section we investigate whether three-dimensional boundary-layer flow
over a smooth plate is receptive to vortical free-stream perturbations. The dis-
turbance is modelled by means of eigenfunctions from the continuous wavenum-
ber spectrum of the Orr-Sommerfeld/Squire operator, which are often called
continuous modes. Since free-stream turbulence is in general an unsteady
phenomenon, the study is restricted to the unsteady receptivity process. In
particular, receptivity to one single free-stream mode is examined, nonlinear
interaction with other modes being neglected. The computation of the Orr-
Sommerfeld solution ṽ and the Squire solution η̃ in the free stream has been
outlined in subsection 2.3.2. The chordwise and spanwise disturbance velocities
ũ and w̃ can be calculated from the normal velocity ṽ and vorticity η̃ as

ũ = ũOS + ũSq =
iα

α2 + β2
Dṽ − iβ

α2 + β2
η̃ , (26a)

w̃ = w̃OS + w̃Sq =
iβ

α2 + β2
Dṽ +

iα

α2 + β2
η̃ . (26b)

The Orr-Sommerfeld and the Squire solution are hence coupled in the ũ and the
w̃ component of the eigenmode (ũ, ṽ, w̃, η̃)T . Instead of such a full continuous-
spectrum mode a continuous mode without the η̃ contribution can be consid-
ered, i.e. (ũOS , ṽ, w̃OS , 0)T . As only the contribution of the Orr-Sommerfeld
equation is present in such a mode, it is referred to as Orr-Sommerfeld mode
here. The use of Orr-Sommerfeld modes as a model for free-stream vorticity
can be justified as follows. In the flow upstream of the leading edge of the
plate there is no coupling between normal velocity and vorticity. Homogeneous
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isotropic turbulence is an example of an incoming flow with independent evo-
lution of ṽ and η̃. The coupling sets in, when the flow attaches to the plate
at the leading edge. The Orr-Sommerfeld mode forces the corresponding set of
Squire modes and develops gradually into a full mode. This is a viscous, slow
process. In the simulations the free-stream mode is introduced a short distance
downstream of the leading edge, where the forcing of the Squire modes and
thus the coupling between ṽ and η̃ has just been initiated. For the cases con-
sidered here the shape of the free-stream disturbance is still similar to that of
the Orr-Sommerfeld mode without the η̃ contribution.

4.1. Penetration depth and chordwise decay

Two different characteristics of the Orr-Sommerfeld free-stream modes have
been identified to play a role for unsteady receptivity: their ability to penetrate
into the boundary layer and their downstream decay rate. Jacobs & Durbin
(1998) introduce the penetration depth ∆ as the distance from the boundary-
layer edge, at which the magnitude of the eigenshape ṽ has decayed to 1% of
its free-stream value. They obtained a relationship for Blasius flow between ∆,
frequency ω and Reynolds number Re =

√

U∗

∞
x∗/ν∗,

∆ ∼ (ωRe)−b , (27)

where the exponent b takes values of the order of 0.1 depending on the wall-
normal wavenumber γ. Zaki & Durbin (2005) point out that not only the
penetration depth, but also the decay rate of the vortical disturbance has to be
considered. The free-stream mode is efficient in perturbing the boundary layer
if it penetrates deeply into it or if it decays slowly and thus carries enough
energy downstream. At fixed Re and ω these two features are competitive:
Deeply penetrating modes with large γ decay rapidly, while modes with smaller
γ penetrate and decay less. Maslowe & Spiteri (2001) present a similar analysis
for the continuous-spectrum modes of a two-dimensional boundary layer in a
streamwise pressure gradient modelled by the Falkner-Skan similarity solution.
They find that relation 27 holds also for the adverse pressure-gradient boundary
layer. However, the constant of proportionality is different, as shown in Zaki
& Durbin (2006): Penetration depth is reduced in adverse and enhanced in
favorable pressure gradient as compared to Blasius flow.

We perform a similar investigation of penetration depth and decay rate
of the continuous-spectrum modes in the three-dimensional boundary layer. A
parametric study for free-stream modes in Falkner-Skan-Cooke flow is presented
in figure 9. The behavior of the penetration depth ∆ (solid) and decay rate
αi (dashed) of the continuous Orr-Sommerfeld modes is shown for ranges of
Reynolds number (a), angular frequency (b), wall-normal wavenumber (c) and
spanwise wavenumber (d). ∆ is normalized by the 99% boundary-layer thick-
ness and is defined as the distance below the boundary-layer edge, at which
the chordwise disturbance amplitude |ũ| has dropped to 5% of its maximum
value in the outer flow. Figure 9(a), (b) and (c) reveal that deeply penetrating
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Figure 9. Penetration depth ∆ (—–) and decay rate αi (---
-) of the continuous Orr-Sommerfeld modes for ranges of Rey-
nolds number Reδ (a), angular frequency ω (b), wall-normal
wavenumber γ (c) and spanwise wavenumber β (d). The plots
are based on (Reδ, ω;β, γ)=(220,-0.01;-0.14,0.126).

free-stream modes suffer indeed from a strong decay. In figure 9(a) a large pen-
etration depth of more than 25% of the boundary-layer thickness is obtained
at small Reynolds numbers, i.e. close to the leading edge of the plate, while ∆
quickly drops downstream.

It is interesting that the penetration depth assumes large values in the
positive ω half-plane in figure 9(b) and that the maximum is obtained at ω =
0.08. This is in contrast to the result for Blasius flow, equation (27), where ∆
approaches its maximum for ω → 0. The most unstable cross-flow modes are,
however, obtained for ω < 0, i.e. the negative frequency range is more relevant
for the study of receptivity to continuous modes. It should be noticed that
the counterpart of ω in the dispersion relation for Blasius flow is the quantity
(ω − βW∞) in equation (16) here, which is positive in figure 9(b) also in the
range of negative ω. We could not find a relation for the penetration depth ∆
corresponding to equation (27), neither in terms of ωRe nor of (ω − βW∞)Re.
In light of the observation by Maslowe & Spiteri (2001) that the free-stream
modes in Falkner-Skan flow behave similar to those in Blasius flow, it can be
concluded that the different behavior of ∆ with ω, β and Re is a result of the
spanwise component of the base flow.
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As shown in figure 9(c) penetration depth grows with increasing wall-
normal wavenumber. The free-stream modes of smallest normal length scale
penetrate the boundary layer to a depth of up to 70% of its thickness, although
they die out rapidly.

In figure 9(d) a region of deep penetration exists, while the decay rate is
small. The curve for ∆ exhibits a remarkable peak at small spanwise wavenum-
bers. These waves have also a small chordwise wavenumber. At β = 0 the con-
tinuous mode becomes a two-dimensional wave. The most deeply penetrating
free-stream modes are thus long waves propagating nearly perpendicular to the
leading edge. However, these modes are irrelevant for the present receptivity
study, since they do not trigger boundary-layer instabilities. The most unstable
travelling eigenmodes are found at negative values of β, while α > 0. These
disturbances propagate in the direction of the cross flow. In this wavenumber
regime the penetration depth for free-stream vorticity is almost constant at a
level of ≃ 28%.

To conclude, comparison with the results in Jacobs & Durbin (1998) reveals
that in Falkner-Skan-Cooke flow, mean shear hampers the penetration of free-
stream vorticity into the boundary layer much more than in Blasius flow.

4.2. Scale conversion

Direct excitation of travelling boundary-layer instability waves requires an ex-
ternal perturbation with matching wavenumber vector and frequency. Free-
stream disturbances, however, have in general different length scales than the
unstable eigenmode of the boundary layer. Goldstein (1985) demonstrates for
Blasius flow that there is nonetheless a receptivity mechanism to acoustic free-
stream disturbances, triggering Tollmien-Schlichting (TS) instability. He in-
troduces the concept of scale reduction, by which the large length scale of the
acoustic wave is converted into the smaller scale of the TS wave. Goldstein
(1985) shows that the scale-conversion process is efficient in particular around
a surface irregularity. Scattering of acoustic waves at roughness elements, suc-
tion holes or other types of wall disturbances has indeed been shown to be an
efficient receptivity mechanism for TS waves, e.g. in Crouch (1992), Choudhari
& Streett (1992) and Crouch & Spalart (1995).

Also in swept-plate flow the horizontal length scales of the free-stream
perturbations differ from those of the boundary-layer disturbances. In Figure 10
the angle ψ = arctan(αr/|β|) of the horizontal wavenumber vector of a vortical
free-stream mode and a travelling cross-flow mode is compared. Both modes
are computed at a frequency of ω = −0.01 and a spanwise wavenumber of β =
−0.14. The angle of the outer streamline is also plotted for comparison, showing
that the free-stream vortex is closer aligned with the external streamlines than
the unsteady cross-flow wave. Clearly, the wavenumber vectors for the free-
stream wave and the cross-flow mode are not aligned at any location, which
reflects their different chordwise wavenumber αr = Re{α}. Specifically, the
chordwise wavenumber of the travelling cross-flow mode is smaller than that
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Figure 10. Horizontal wavenumber angle ψ = arctan(αr/|β|)
for the continuous Orr-Sommerfeld mode (ω = −0.01, β =
−0.14, γ = 0.126, —–) and the excited travelling cross-flow
wave (----) and local angle φ of the external streamline (-·-·-).
The symbols mark the wave angle of the forced boundary-layer
disturbance and are extracted from DNS data.

of the free-stream disturbance. Further, the relative misalignment between
the two waves is nearly constant versus Reδ∗ . Therefore there is no direct
resonance between the vortical free-stream disturbance and the unsteady cross-
flow instability at any location in the flow, and it can be concluded that length-
scale conversion will be a key element for unsteady receptivity also in three-
dimensional boundary layers. This becomes in fact evident in figure 10 by the
symbols showing the wave-vector angle of the largest fluctuations inside the
boundary layer, when it is forced by a vortical free-stream mode. These data
have been extracted from a DNS velocity field. Upstream, the wave vector
of the forced disturbance is closer aligned with the free-stream mode, while it
turns into the direction of the excited cross-flow mode further downstream. It
becomes also apparent that in contrast to Blasius flow, the chordwise length
scale of the free-stream disturbance needs to be enhanced rather than reduced
to match that of the boundary-layer eigenmode. Since scale conversion relies
on rapid mean-flow changes, it is expected to be efficient in particular in the
strongly developing upstream region of the boundary layer and around wall
roughness.

4.3. Receptivity coefficient

Receptivity of the Blasius boundary layer to vortical disturbances in the outer
flow has been thoroughly investigated in the past. Different models for free-
stream vorticity have been employed: streamwise vortices by Bertolotti (1997)
and Bertolotti & Kendall (1997), oblique waves by Berlin & Henningson (1999)
and eigenmodes from the continuous spectrum of the Orr-Sommerfeld/Squire
operator by e.g. Jacobs & Durbin (2001), Brandt et al. (2002), Brandt et al.

(2004) and Zaki & Durbin (2005). In all cases the receptivity process was
characterized by the formation of streamwise elongated structures, referred to
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Figure 11. (a) Response of the non-parallel three-
dimensional boundary layer to free-stream vorticity. Thick
lines: Spatial evolution of the boundary-layer disturbance,
excited by a continuous Orr-Sommerfeld mode (ω = −0.01,
β = −0.14, γ = 0.126) at Reδ∗ = 220. Thin lines: Spatial
evolution of the corresponding cross-flow instability wave. (b)
Response of a parallel Falkner-Skan-Cooke boundary layer at
Reδ∗ = 360 to a continuous Orr-Sommerfeld mode (ω = −0.01,
β = −0.14, γ = 0.126).

as streaks, while the excitation of TS waves was bypassed. The streaks are
not eigenmodes of the base flow and undergo algebraic instead of exponential
growth.

In this paper we investigate the receptivity mechanism to free-stream
vorticity in the three-dimensional swept-plate boundary layer. Figure 11(a)
shows the evolution of the boundary-layer disturbance, when a continuous
Orr-Sommerfeld mode is prescribed at the inflow plane of the computational
domain. A transient region can be identified up to x ≃ 1000, whereas further
downstream the evolution of the boundary-layer disturbance is fully determined
by exponential growth of unsteady cross-flow instability. Hence, the swept-
plate boundary layer supports receptivity for travelling cross-flow modes to
free-stream vortices. From figure 10 it is clear that there is no location where
the wavenumbers of free-stream disturbance and unstable eigenmode match.
Wavenumber reduction from the forcing wavenumber αFS to the eigenmode
wavenumber αCF through chordwise mean-flow variations is thus a require-
ment for the excitation of the observed cross-flow instability.

The upstream transient growth of the boundary-layer disturbance in figure
11(a) is mainly due to the forcing of Squire modes by the Orr-Sommerfeld
free-stream mode, as also seen in Zaki & Durbin (2005). These are all stable
but non-normal, thus giving rise to non-modal growth. Some transient behavior
might also result from the fact that the free-stream modes are eigenmodes of the
Orr-Sommerfeld/Squire operator, which might cause some initial adjustment
to the non-parallel mean flow. We performed tests on domains with different
length of the fringe region and height of the free stream. This had small effects
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on the adjustment of the free-stream mode and we found that the growth of
the unstable eigenmode was hardly affected.

The significance of the strongly non-parallel upstream region of the three-
dimensional base flow for the receptivity due to free-stream vorticity becomes
evident through figure 11(b). This plot shows the response of the parallel
Falkner-Skan-Cooke boundary layer to forcing with a free-stream vortical mode
at an unstable Reynolds number, and the result is obtained by means of DNS
of the parallel mean flow. Clearly, no unstable cross-flow wave is excited, that
is, removing the non-parallel nature of the base flow deactivates the unsteady
receptivity mechanism seen in figure 11(a). This observation also confirms that
the required length-scale conversion discussed in the previous sub-section is
only supported in the spatially developing flow.

The receptivity mechanism for travelling cross-flow instability is quantified
in terms of the receptivity coefficient CV = CV (β, ω;m,φ0),

CV =
AR

εv
, (28)

where AR is the receptivity amplitude of the excited unsteady cross-flow wave,
and εv is the maximum amplitude of the vortical free-stream mode, assumed to
be small. Both amplitudes are taken at the inflow plane of the domain, where
the free-stream mode is prescribed. They are measured in terms of the wall-

normal maximum of
√

u2. Figure 12 shows the influence of (a) the wall-normal
wavenumber, (b) the spanwise wavenumber and (c) the angular frequency of the
Orr-Sommerfeld free-stream mode on the receptivity coefficient. The vortical
disturbance is computed at Reδ∗ = 220. Figure 12(d) displays the dependence
of CV on the chordwise station, at which the vortical mode is introduced in
the free stream. Figure 12(a) shows that receptivity is most efficient for free-
stream modes with a large wall-normal length scale. The maximum in CV

is obtained at γ = 0.063. This corresponds to a normal scale of λy = 30.44
times the 99% boundary-layer thickness at the inflow plane. Large receptivity
coefficients are also observed in the range of small values for λy, namely at
γ = 1.508 (λy = 1.27 inlet 99%-thicknesses), where CV > 0.3. In contrast, CV

drops down to almost zero for the intermediate scales. Comparison with figure
9(c) in section 4.1 suggests that the receptivity mechanism is most efficient
for vortical free-stream modes of either low decay rate or large penetration
depth. On the other hand typical energy spectra for turbulent fields reveal that
turbulent kinetic energy is concentrated on the small wavenumbers. Hence, the
deeply penetrating vortical modes of large γ might in practice be unimportant
for the transition process, in spite of the rather large receptivity coefficients
associated with them. In figure 12(b) an optimal spanwise wavenumber of
β = −0.14 can be identified, at which CV is maximum. Compare with steady
receptivity to surface roughness, section 3.1, being most efficient at β = −0.19.

Figure 12(c) shows that the efficiency of the receptivity process increases
when ω approaches zero. The figure is restricted to the negative ω half-plane,
where the unstable cross-flow modes are found. Inspection of figure 9(b) reveals
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Figure 12. Dependence of the receptivity coefficient to free-
stream vorticity on the wall-normal wavenumber (a), the span-
wise wavenumber (b) and the angular frequency (c) of the vor-
tical mode. In (d) the influence of the chordwise station on CV

is shown, at which the free-stream disturbance is prescribed
(—–). Effective receptivity coefficient (----). The circle shows
the first neutral point of the excited unsteady cross-flow mode.
The plots are based on (Reδ, ω;β, γ)=(220,-0.01;-0.19,0.126),
marked by the cross.

that the increase of CV for ω → 0 can again be attributed to a large penetration
depth. Also Jacobs & Durbin (1998) found maximum receptivity in Blasius
flow for the deeply penetrating vortical modes of low frequency. Figure 12(d)
displays the dependence of CV on the chordwise station, where the free-stream
mode is prescribed. This location is equivalent with the inflow plane. Hence,
various domains with different inflow Reynolds numbers Reδ∗,0 are used for
this study, and the vortical mode is computed at the according inflow Reynolds
number. The origin in the figure complies with Reδ∗,0 = 220. As in section 3.1,
figure 6, it is again meaningful to consider the effective receptivity coefficient,

CV,eff =
CV

eNR

= CV
AI

AR
=

AI

εv
, (29)
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to take the decay or growth of the cross-flow instability at the inflow plane into
account. NR is the N-factor of the unsteady cross-flow mode at the inlet and
AI is its amplitude at the first neutral point. Clearly, receptivity to free-stream
vorticity is most efficient at x = 0 (Reδ∗,0 = 220) where the boundary layer
is thin and highly non-parallel. The same result has been obtained in figure
6 for steady receptivity to surface roughness. It can be concluded that the
scale-conversion process required for receptivity is most efficient in the rapidly
evolving region near the leading edge. However, the curves in figure 12(d)
suggest that even larger receptivity coefficients can be expected upstream of
Reδ∗,0 = 220 in the immediate vicinity of the leading edge. These receptivity
sites can, however, not be addressed by the present numerical method.

In summary, the unsteady receptivity mechanism due to vortical free-
stream modes herein proposed has characteristics in common with both the
localized and non-localized receptivity processes so far discussed in literature.
On the one hand, the vortical disturbance resides in the entire free stream and
acts non-locally on the boundary layer. In contrast to Blasius flow, on the
other hand, where the excitation of streak-like disturbances inside the bound-
ary layer is non-localized, the present mechanism for unsteady cross-flow modes
in three-dimensional flow is efficient only near the leading edge. In this limited
region, the basic flow is sufficiently non-parallel to provide the length scale of
the cross-flow instability through scale conversion. This is a characteristic of
localized receptivity.

5. Combination of roughness and free-stream vorticity

In the presence of both surface roughness and free-stream turbulence station-
ary and travelling cross-flow modes will coexist in three-dimensional boundary
layers and compete with each other. This situation is modelled here by con-
sidering the combination of a spanwise periodic localized roughness element
on the plate and a vortical Orr-Sommerfeld mode in the free-stream, both as-
sumed to have small amplitudes. In section 3 and 4 it was demonstrated that
there exists a direct receptivity mechanism to localized roughness and vortical
free-stream disturbances, causing the occurrence of stationary and travelling
cross-flow modes in the boundary layer. These mechanisms will still be present
in the case of combined surface roughness and free-stream vorticity. Both the
steady and the unsteady receptivity process may then give amplifying eigen-
modes, which interact continuously and force a wavelike disturbance. This
process builds thus on the combination of the two direct receptivity mecha-
nisms discussed in the previous sections, followed by nonlinear interaction.

Next we examine whether there exists also a receptivity mechanism based
on scattering of free-stream vorticity at the roughness in boundary layers of
Falkner-Skan-Cooke type. For this purpose the mean flow is exposed to a
vortical mode of spanwise wavenumber βV = −0.381 together with a roughness
element with βR = 0.190. The response of the base flow is plotted in figure
13. While a stationary cross-flow mode evolves from the steady disturbance
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Figure 13. Combination of free-stream vorticity and surface
roughness. The roughness element (βR = 0.190) excites an un-
stable steady eigenmode (----), while the vortical free-stream
mode (βV = −0.381) does not trigger a growing travelling
mode (-·-·-). In combination, however, they excite travelling
cross-flow instability (—–, thick curve).

field due to the roughness (dashed line), no unstable travelling cross-flow wave
is excited by this particular free-stream mode (dashed-dotted line). Unsteady
cross-flow instability is nevertheless observed in figure 13 (solid line), as deduced
by comparing with the evolution curve for the travelling cross-flow wave at
βCF = −0.190 (thin solid line). The unsteady cross-flow mode is thus triggered
by the interaction between the growing steady disturbance field caused by the
roughness and the decaying unsteady perturbation due to the vortical free-
stream disturbance. The spanwise wavenumber of the travelling eigenmode
is given by βCF = βV + βR, the frequency ω is provided by the free-stream
disturbance and the chordwise wavenumber αCF by the roughness contour.
Hence, the roughness element is responsible for the scale-enhancement process.
To conclude, a receptivity mechanism for travelling cross-flow instability has
been identified, linearly depending on the amplitudes of both the free-stream
vorticity and the surface roughness. It can be seen as the cross-flow counterpart
of the classical mechanism for Tollmien-Schlichting instability in Blasius flow
proposed by Goldstein (1985) and Ruban (1985), which builds on the scattering
of acoustic free-stream disturbances at localized surface roughness.

5.1. Receptivity coefficient

The receptivity mechanism displayed in figure 13 and explained in the previous
section results in the excitation of a travelling unstable eigenmode of the base
flow. It can be quantified in terms of a receptivity coefficient,

CV R =
AR

εvεhH(αCF )
, (30)

where AR is the receptivity amplitude of the excited travelling cross-flow wave
at the roughness station, and εv and εh are the amplitudes of the vortical
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ω -0.01 -0.01 -0.01
βV -0.063 -0.381 -0.571
βR 0.127 0.190 0.381
βCF -0.190 -0.190 -0.190
CV R 0.109 0.067 0.013

Figure 14. Interaction between a decaying unsteady distur-
bance due to free-stream vorticity and an amplifying steady
disturbance caused by localized roughness. Three combina-
tions of the spanwise wavenumbers βV and βR of the vortical
mode and the roughness element are considered. Excitation
of an unstable travelling cross-flow mode with spanwise scale
βCF = −0.190.

free-stream disturbance and the roughness element. H(αCF ) is the Fourier
component of the roughness bump at the wavenumber of the steady distur-
bance. Definition (30) is in analogy with the efficiency coefficient for receptivity
to free-stream sound in combination with roughness, as used e.g. by Crouch
(1993) and Choudhari (1994) for Finite Reynolds-Number Theory calculations
in Falkner-Skan-Cooke flow.

5.2. Results

The spanwise wavenumber βCF of the travelling cross-flow wave excited via
the combination of roughness and free-stream vorticity is obtained through the
sum of the wavenumbers βV and βR of the interacting unsteady and steady
disturbance,

βCF = ±βV ± βR , (31)

i.e. four different unsteady waves per (βV , βR) combination can be forced at
second order. In principle an infinite number of such combinations may be
considered. Here, ω, βV and βR are chosen to keep the frequency and span-
wise scale of the generated mode constant and to examine the efficiency of the
receptivity process when varying the spanwise scale of free-stream mode and
roughness. In figure 14 three (βV , βR) combinations are reported, all summing
to βCF = −0.190. The specific summation of β and ω is highlighted by the ar-
row diagrams in figure 14. In the inserted table the receptivity coefficient CV R

is compiled. The largest coefficient is obtained in case (a), when the spanwise
wavenumber of the free-stream mode is one third and that of the roughness
element is two thirds of the instability wavenumber βCF . For case (c) the re-
ceptivity process is one order-of-magnitude weaker, showing that the difference
between the forcing wavenumbers, βV and βR, and the forced wavenumber βCF

should not be too large.
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Figure 15. Coefficient for receptivity to free-stream vorticity
combined with surface roughness versus chordwise location (—
–) and effective receptivity coefficient (----). The spanwise
wavenumbers of the vortical mode and the roughness element
are |βV | = 0.381 and βR = 0.190 (case (b) in figure 14). Circle:
First neutral point of the excited unsteady cross-flow wave.

In figure 15 the receptivity coefficient CV R is plotted versus the chordwise
station. Also the effective receptivity coefficient is shown again. Case (b) in
figure 14 is considered here. Like the direct receptivity mechanisms for steady
and unsteady cross-flow modes, the receptivity process due to combination
of free-stream vorticity and roughness becomes most efficient in the region
between the leading edge of the plate and the first neutral point of the excited
travelling cross-flow wave.

It has been shown above that unstable travelling disturbances can occur,
even if the unsteady forcing does not contain any unstable wavenumbers. An-
other scenario builds on coexisting unstable stationary and travelling cross-flow
modes forcing an unsteady disturbance wave by interaction. This is then not a
receptivity process on its own but a combination of the two direct receptivity
mechanisms, followed by interaction between the triggered instability waves.
Such a situation is displayed in figure 16, where the forced wave (solid line) has
again a wavenumber of β = −0.190. The chordwise wavenumber Re{α} and
the growth rate Im{α} of this wave are obtained as the sum of the chordwise
wavenumbers and growth rates of the interacting cross-flow modes. This ex-
plains why the growth rate of the induced wave is larger than that of the unsta-
ble cross-flow mode with the same spanwise wavenumber and frequency, figure
13. Modes continuously forced by two unstable waves are therefore expected
to have a large influence during the transition process. Both mechanisms, the
excitation of unsteady cross-flow instability and the forcing of travelling waves
by interacting cross-flow modes, need to be addressed in three-dimensional
boundary layers.
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Figure 16. Combination of free-stream vorticity and surface
roughness. Both the roughness element (βR = 0.095, ----)
and the vortical free-stream mode (βV = −0.095, -·-·-) ex-
cite unstable cross-flow eigenmodes, which interact and force
a harmonic wave with βf = −0.190 (—–).

6. Steady versus unsteady cross-flow instability

An important issue of receptivity and instability studies in three-dimensional
boundary-layer flow is to determine whether stationary or travelling cross-flow
vortices dominate the disturbance environment inside the boundary layer, see
for example the review by Saric et al. (2003). In the sections 3 through 5 three
receptivity mechanisms for steady and unsteady cross-flow instability have been
investigated. Their efficiency has been quantified in terms of the receptivity
coefficients CR, CV and CV R, equations (20), (28) and (30), which can be used
to assess the initial amplitude of the disturbance. In contrast to CV , CR and
CV R involve the spectral amplitude H(α) of the roughness shape. In order
to compare the receptivity amplitudes AR of the excited steady and unsteady
cross-flow instabilities it is therefore convenient to re-formulate the receptivity
coefficients of the three studied mechanisms in terms of a coefficient C̃,

C̃R =
AR

εh
= H(αCF )CR , (32a)

C̃V =
AR

εv
= CV , (32b)

C̃V R =
AR

εvεh
= H(αCF )CV R . (32c)

Table 3 compiles the three receptivity processes and the largest associated co-
efficients C̃. The maximum in C̃R is obtained for a roughness element of shape
I and a spanwise wavenumber of βR = 0.157. C̃V is largest for a free-stream
mode of βV = −0.14. The coefficient C̃V R for receptivity due to coupling at
roughness is maximum, when a roughness element of βR = 0.127 is combined
with a free-stream mode of βV = −0.063.

Whether steady or unsteady cross-flow instability is dominant at the recep-
tivity site will depend on the relative amplitude of the wall roughness and the



62 L.-U. Schrader, L. Brandt & D.S. Henningson

Table 3. Receptivity mechanisms for steady and unsteady
cross-flow (”CF”) instability and their efficiency. Amplitude

coefficients at the receptivity site (C̃) and at x = 710 (C̃710).

Extern. perturb. Recp. mech. Excited disturb. C̃ C̃710

Roughess direct steady CF mode 0.221 2.27
Vort. mode direct unstd. CF mode 0.469 10.54
Vort. mode+rougn. coupling unstd. CF mode 1.784 44.22

vortical free-stream mode. In the following discussion, it is assumed that the
amplitude of the roughness element is εh = 0.025, i.e. 2.5% of the boundary-
layer displacement thickness at the inflow plane and about 2.4% of the local
displacement thickness at the roughness station. This value corresponds ap-
proximatively to a roughness height of k = 6µm, as in the experiments by Reib-
ert et al. (1996). Such a roughness bump will excite a steady cross-flow mode

with an initial amplitude of AR = εhC̃R = 5.53 · 10−3. A travelling cross-flow
wave of same amplitude is obtained via direct receptivity, if a free-stream vortex
with amplitude εv = AR/C̃V = 0.012 acts on the boundary layer. To obtain
AR = 5.53 · 10−3 via the mechanism due to unsteady disturbance scattering at
the roughness, a free-stream mode with amplitude εv = AR/(εhC̃V R) = 0.124
needs to interact with the roughness-induced steady disturbance. Two conclu-
sions can be drawn: (1) Direct unsteady receptivity for travelling cross-flow
instability is about ten times more efficient than unsteady receptivity to free-
stream vorticity scattered at roughness of εh = 0.025 (≃ 6µm) height. (2)
Given εh = 0.025, stationary cross-flow modes will dominate at the receptivity
site as long as the vortical free-stream disturbance has an amplitude lower than
εv = 1.2% of the chordwise free-stream velocity.

The dominating cross-flow modes at the receptivity site are not necessar-
ily the most dangerous instability waves further downstream. To estimate the
relevant disturbances in the region of linear growth, the downstream ampli-
tudes of the different instability waves have to be compared with each other,
thus accounting for the initial amplification of the different unstable waves.
Here, the comparison is performed at the position x = 710, which corre-
sponds approximately to the second measurement station in the experiments
by Reibert et al. (1996). Amplitude coefficients in analogy with equation
(32) are used by replacing the receptivity amplitude AR by the wave ampli-

tude at x = 710, A710. They are denoted C̃710 and listed in the last col-
umn of table 3. Note that C̃710 is largest for roughness of βR = 0.217 and
for free-stream vorticity of βV = −0.190, i.e. other spanwise wavenumbers
than those at the receptivity site are dominant at x = 710. The compari-
son of the downstream disturbance amplitudes leads to the following conclu-
sions: (1) The stationary cross-flow mode caused by 6µm roughness amplifies to

A710 = εhC̃R,710 = 0.057. Travelling cross-flow instability excited via the direct
receptivity process reaches the same amplitude at x = 710, when free-stream
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vorticity with εv = A710/C̃V,710 = 5.38 · 10−3 acts on the boundary layer. (2)
The receptivity process for free-stream vorticity combined with roughness re-
quires a continuous-spectrum mode with εv = A710/(εhC̃V R,710) = 5.13 · 10−2

and can again not compete with the direct receptivity mechanism. Also contin-
uous forcing of a non-modal wave by interacting cross-flow instability, briefly
mentioned at the end of section 5, is not relevant at x = 710, since a free-stream
vortex with εv = 8.63% would be needed to obtain A710 = 0.057.

For the roughness considered above the amplitude of the disturbance is
still relatively low at x = 710, namely ≃ 6% of the free-stream velocity. Fur-
ther downstream, the competition between the stationary and the travelling
cross-flow modes can lead to different results, since unsteady cross-flow modes
amplify at larger growth rates than steady cross-flow waves. Therefore, lower
free-stream turbulence intensities than those estimated above can lead to a
transition scenario dominated by travelling cross-flow modes. Also the wave
forced by interaction between two unstable modes grows faster than the station-
ary cross-flow modes. To summarize, in the presence of micron-sized roughness
steady cross-flow instability will dominate in the boundary-layer region up to
x = 710, unless the free-stream disturbances have amplitudes of more than
≃ 0.5% of the free-stream velocity.

7. Conclusions

Receptivity of the three-dimensional boundary layer developing on a swept
flat plate is investigated by Direct Numerical Simulation. The ability of wall
roughness, free-stream vortical modes and their interaction to trigger steady
and travelling cross-flow modes is shown. The base flow, solution to the Navier-
Stokes equations with Falkner-Skan-Cooke profiles as initial condition, is chosen
with a sweep angle of 45◦ and a Hartree parameter βH = 0.33 defining the free-
stream acceleration.

Receptivity of steady cross-flow vortices to localized spanwise periodic
roughness elements is examined first. Our results reproduce the main features
of previous studies in literature: Roughness forces directly the unstable steady
eigenmodes inside the boundary layer, and receptivity increases when the sur-
face roughness is located upstream of the neutral stability points. In this work,
the focus is on the validity of the local approximation for non-parallel flows,
which is based on the assumption that receptivity is proportional to the spectral
content of the roughness shape at the chordwise instability wavenumber. This
enables the definition of receptivity coefficients independent of the particular
shape of the roughness element. The present results show that this approxi-
mation is valid as long as the chordwise extension of the roughness is smaller
than the wavelength of the unstable mode. For less localized roughness, the
receptivity process becomes dependent on the shape of the roughness element.
However, a first order correction can be introduced as in Bertolotti (2000); this
amounts to a second receptivity coefficient which multiplies the derivative of
the spectral shape of the roughness H ′(α). This contribution is almost zero
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for very localized roughness elements, characterized by flat Fourier transforms
with H ′(α) ≈ 0, and significant for waves not represented by the roughness
shape, H(α) ≈ 0, i.e. waves shorter than the characteristic chordwise length of
the surface irregularity. However, we found that the correction after Bertolotti
(2000) gives roughness-shape independent receptivity coefficients only within a
limited range of chordwise bump lengths.

The influence of bump height on receptivity has been presented, as well. For
the roughness elements under consideration it has been shown that nonlinear
effects on receptivity come into play beyond a bump amplitude of about 5% of
the displacement thickness, leading to slowly decreasing efficiency coefficients
as the roughness height is increased. Nonlinearity has, however, a weaker effect
on receptivity than on the subsequent growth of the unstable cross-flow mode.

Free-stream vortical modes impinging on a three-dimensional boundary
layer are modelled by the continuous-spectrum eigenmodes of the linearized
Orr-Sommerfeld/Squire operator. To the best of our knowledge, the modes
pertaining to the three-dimensional base flow are examined for the first time
in this work. The three-dimensional base flow is shown to cause a significantly
larger damping of the continuous modes towards the wall, which are therefore
confined outside the shear layer. Unlike in two-dimensional boundary layers,
the most penetrating modes are found to be quasi two-dimensional waves, with
very small values of the spanwise wavenumber. This can be explained by the
fact that two-dimensional waves become insensitive to the spanwise (or cross-
flow) velocity component. These modes are also associated to low values of the
chordwise wavenumber and represent therefore large horizontal structures with
scales much larger than those of the unstable waves.

The direct receptivity mechanism in the presence of free-stream modes
is entirely due to the non-parallel nature of the base flow. This provides
the streamwise variations necessary for the scale-conversion process, by which
the unstable cross-flow modes are excited. Free-stream modes have also been
used previously to investigate the receptivity of two-dimensional boundary-
layer flows, where they are shown to trigger significant transient growth of
low-frequency modes. However, this is not observed in the present case, which
can be explained by the presence of strong inflectional instabilities in three-
dimensional boundary layers and by the favorable pressure gradient, reducing
transient effects.

The efficiency of receptivity to free-stream vorticity is measured in terms
of a receptivity coefficient, defined by the ratio between the initial amplitude
of the unstable travelling mode and the level of fluctuations in the free stream.
The magnitude of the receptivity coefficient is determined by two competing ef-
fects. On the one hand, modes with fast variations in the wall-normal direction
experience larger decay rate in the chordwise direction and are therefore less
effective in forcing the boundary layer along significant chordwise distances. At
the same time, though, these modes are less sheltered by the mean shear and
have therefore larger support inside the boundary layer. The three-dimensional
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base flow has been shown to be receptive to both deeply penetrating vortical
modes with small wall-normal scale and slowly decaying modes with large nor-
mal length scale. The results also demonstrate that the scale conversion of the
free-stream mode is more efficient at lower Reynolds numbers, i.e. where the
streamwise variations of the base flow are more significant. This points to the
need for correct modelling of leading-edge effects in order to capture the initial
entrainment of the free-stream modes.

The coupling between steady perturbations excited by wall roughness and
unsteady disturbances induced by free-stream vorticity is investigated, as well.
The results indicate that the stationary and travelling modes can efficiently
force a wave with the frequency of the external vortical disturbance and a
spanwise wavenumber given by the sum of those of the generating modes. If
the two interacting modes are both unstable, they continuously force an un-
steady wave amplifying at a rate equal to the sum of the growth rates of the
interacting parent modes. On the other hand, modal travelling cross-flow in-
stability is observed when the vortical free-stream mode cannot directly trigger
an unsteady growing disturbance, showing that also a receptivity mechanism
related to the scattering of free-stream modes on the roughness surface is avail-
able. However, the receptivity coefficients related to this receptivity process are
much smaller than for the mechanism in the absence of roughness. Travelling
cross-flow instability is therefore triggered via direct receptivity to free-stream
vorticity in low-noise environments.

The relative importance of the two direct receptivity mechanisms is esti-
mated by considering a roughness height of the order of 2.5% of the boundary
layer displacement thickness. It is found that steady cross-flow instability will
dominate in the boundary layer, unless the free-stream disturbances have am-
plitudes of about ≃ 0.5% of the free-stream velocity. Note that the latter
estimate can be considered conservative for the travelling modes since it is
based only on the initial growth of the unstable waves.

The receptivity mechanisms due to coupling of free-stream modes at rough-
ness presented in this work may become important at high levels of free-stream
turbulence. In this case, one should also consider the nonlinear interaction
among free-stream modes. This type of interaction is indeed found to be the
dominant mechanism in the case of streaks forced in the Blasius boundary layer
by free-stream turbulence intensities larger than 3.5% (see Brandt et al. 2004).
In three-dimensional boundary layers, one can expect an even larger relevance
of these nonlinear effects; in this case the interaction between two exponen-
tially growing modes may continuously induce waves with large amplification
and quickly create a disturbed boundary layer flow. To better analyze this
scenario, full nonlinear simulations are the most suitable tool, and future work
is planned in this direction.
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Receptivity, disturbance growth and transition to turbulence of the three-
dimensional boundary layer developing on a swept flat plate are studied for
both smooth and rough walls by means of numerical simulations. The flow
under investigation is subject to a favorable pressure gradient and represents
therefore a model for swept-wing flow downstream of the leading edge and
upstream of the pressure minimum of the wing. The boundary layer is per-
turbed through two different disturbance sources: free-stream turbulence and
localized surface roughness with random distribution in the spanwise direction.
The intensity of the turbulent free-stream fluctuations ranges from conditions
typical for free flight to the high levels usually encountered in turbo-machinery
applications. The free-stream turbulence excites initially non-modal streak-like
disturbances as in two-dimensional boundary layers, soon evolving into modal
instabilities in the form of unsteady cross-flow modes. The latter grow faster
and dominate the downstream disturbance environment inside the boundary
layer. Hence, the laminar-turbulent transition of the studied flow does not
follow the bypass route. The results show that the receptivity mechanism is
linear for the disturbance amplitudes under consideration, while the subsequent
growth of the primary disturbances rapidly becomes affected by nonlinear sat-
uration in particular for free-stream fluctuations with high intensity. The flow
is also receptive to the localized roughness strip, and the boundary-layer re-
sponse is characterized by stationary cross-flow modes. The mode with most
efficient receptivity dominates the disturbance environment inside the bound-
ary layer, and the disturbance environment in the layer is less complex than
in the case of free-stream turbulence. When both free-stream fluctuations and
wall roughness act at the same time on the boundary layer, the transition is
dominated by steady cross-flow waves unless the incoming turbulence intensity
is larger than about 0.5%. Transition to turbulence occurs in the form of local-
ized turbulent spots appearing randomly in the flow. For the case of travelling
cross-flow modes induced by free-stream turbulence, the flow structures at the
breakdown are analyzed.
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1. Introduction

Receptivity, disturbance growth and breakdown – these are the fundamental
stages through which a laminar flow becomes turbulent. Numerous issues are
involved in the transition process, e.g. how external perturbations enter the
boundary layer and excite internal disturbances (receptivity), how the latter
grow (instability), and when and where the flow first becomes turbulent (break-
down). The relevance of these issues is closely related to the ability of predicting
the flow and thus to applications, where for instance drag reduction on aircraft
wings by suppression or downstream delay of transition is of interest (flow con-
trol). Such measures require a clear understanding of how the flow becomes
turbulent.

1.1. Transition in two-dimensional boundary layers

Transition originating from exponentially growing eigenmodes of the two-
dimensional base flow known as Tollmien-Schlichting (TS) waves is called nat-

ural transition and is observed in flow with low background disturbance levels.
When these primary waves grow above a threshold amplitude, the flow becomes
susceptible to secondary instability which is three-dimensional in nature and
characterized by the occurrence of the so called lambda vortices. Depending on
the intensity of the external disturbance environment two kinds of secondary
instability with different frequency, called H- and K-type have been observed
before the flow becomes fully turbulent. A review of natural transition can be
found in Herbert (1988) and Kachanov (1994).

Several experiments, see e.g. Taylor (1939), Klebanoff (1971), Kendall
(1985), Westin et al. (1994) and Fransson et al. (2005), reveal however that
transition in boundary-layer flows exposed to free-stream turbulence of high in-
tensity does not origin from exponentially growing TS-waves, but rather from
the growth of perturbations elongated in the streamwise direction: Natural
transition is ’bypassed’. Ellingsen & Palm (1975) have demonstrated that ini-
tial disturbances can amplify linearly with time in inviscid shear layers, pro-
ducing a streaky pattern of alternating high and low velocity. This kind of
amplification has been termed ’transient growth’ in Hultgren & Gustavsson
(1981) and shown to exist also in viscous flow. Landahl (1980) proposes a
physical explanation, which builds on the wall-normal displacement of fluid
particles in shear flows by weak pairs of counter-rotating streamwise vortices
causing streamwise velocity perturbations. This so-called lift-up mechanism
is effective in forcing streamwise oriented streaks of high and low streamwise
velocity alternating in the spanwise direction. The mathematical framework
for transient growth is compiled in Schmid & Henningson (2001) and is based
on the non-normality of the linear Navier-Stokes operator in shear flows. Tran-
sient amplification is not described by a single growing eigenmode but by a
sum of eigenmodes of Orr-Sommerfeld and Squire type (non-modal growth).
This results in a boundary-layer disturbance changing its shape as individual
modes grow or decay in time and space at different rates. Transient growth
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may for this reason occur before the subsequent exponential behavior, and it
is the underlying mechanism of bypass transition.

Bypass transition is observed in the presence of free-stream turbulence.
While most components of the turbulent fluctuations are highly damped inside
the boundary layer, the low-frequency oscillations can enter it and form long
streaky structures. Besides the wind-tunnel experiments mentioned above, this
transition scenario has also been investigated in numerical studies (Jacobs &
Durbin 2001; Brandt et al. 2004) where the breakdown to turbulence could
be analyzed in detail. As the streaks grow downstream, they become sus-
ceptive to high-frequency secondary instability triggered by the free-stream
turbulence (Zaki & Durbin 2005; Hœpffner & Brandt 2008) or by streak in-
teractions (Brandt & de Lange 2008), and breakdown to turbulent spots is
initiated. These spots appear at random locations, grow in size and number
and merge with each other, until the flow is completely turbulent.

1.2. Transition in three-dimensional boundary layers

Boundary layers on swept wings, plates and wedges, on cones or on rotating
disks are three-dimensional, and the transition mechanisms differ from those
in two-dimensional flows owing to the existence of different instability types.
Saric et al. (2003) list four kinds of instability being active in different regions
of the boundary layer: attachment-line, Görtler, streamwise (TS-waves) and
cross-flow instability. The focus is here on the latter instability type since the
basic flow under consideration is accelerated swept-plate flow. Cross-flow in-
stability is related to the inflectional velocity profile of the cross component
of the mean flow. The base flow is therefore characterized by strong inviscid
instability, unlike two-dimensional boundary layers, and the cross-flow modes
can also be stationary (see also the review article by Bippes 1999). Instabilities
typical for two-dimensional boundary layers are usually most relevant in de-
celerating flows, for instance in the rear portion of a wing, whereas cross-flow
instability is intensified in the forward part by the favorable pressure gradi-
ent downstream of the leading edge. At the same time, the favorable pressure
gradient in this region suppresses the growth of TS-waves, and cross-flow in-
stability becomes therefore the dominant transition mechanism for this type
of flows. Whether steady or unsteady cross-flow waves lead to transition is
a frequently addressed issue in the context of swept flows, the relevance of
which is also connected to the need of correlating wind-tunnel experiments to
free-flight tests with significantly lower levels of external vortical disturbances.
Experiments by Deyhle & Bippes (1996) and White et al. (2001) and numeri-
cal studies by e.g. Crouch (1993), Choudhari (1994) and Schrader et al. (2008)
suggest that steady cross-flow modes induced by wall roughness dominate in
an environment of low-amplitude free-stream disturbances (at free-flight condi-
tions), whereas travelling modes become dominant at higher intensities of the
background disturbance (e.g. in turbo-machines or some wind-tunnel tests).
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As the cross-flow waves grow downstream in amplitude they distort the chord-
wise mean-velocity profiles in spanwise direction. This causes doubly inflected
profiles being inviscidly unstable and susceptive to high-frequency secondary
instability. Results on secondary instability building on the Parabolized Stabil-
ity Equations (PSE) are available in Malik et al. (1994) for swept Hiemenz flow
and Malik et al. (1999) and Haynes & Reed (2000) for the swept-wing config-
uration, and findings from Direct Numerical Simulation (DNS) are presented
in Wintergerste & Kleiser (1996, 1997) using the temporal framework and in
Högberg & Henningson (1998) and Wassermann & Kloker (2002, 2003) for the
spatial perspective.

The purpose of the present work is to study the receptivity and growth of
cross-flow instability and non-modal streaky disturbances in swept-plate flow
under free-stream turbulence, surface roughness and a combination of both.
Simulations of the flow over a swept plate exposed to free-stream turbulence
are presented here for the first time. In a previous investigation, Schrader
et al. (2008) analyzed the receptivity mechanisms for three-dimensional swept
boundary layers. The aim of that study was to isolate the effect of different
components of a realistic disturbance source. Free-stream perturbations were
modelled by single free-stream (Orr-Sommerfeld) modes. That study demon-
strated that travelling cross-flow modes can be forced directly by vortical dist-
urbances in the free stream via a scale-conversion process. In addition, the
scattering of free-stream modes on chordwise localized surface roughness with
spanwise periodicity was examined. The results in Schrader et al. (2008) show
that the receptivity mechanism based on the coupling of free-stream modes
at roughness may become important only for high levels of free-stream turbu-
lence. However, in three-dimensional boundary layers, one can expect that the
interaction between two exponentially growing modes may continuously induce
waves with large amplification and quickly create a disturbed boundary-layer
flow. To better analyze this scenario, full nonlinear simulations are therefore
the most suitable tool, and they are presented here. We employ more complex
models for the disturbance sources by considering a superposition of a large
number of Orr-Sommerfeld/Squire modes with random phases and a turbulent
energy spectrum to represent free-stream turbulence as well as localized rough-
ness with spanwise random amplitude. These more realistic disturbances will
bring nonlinear effects into play, and a comparison with the results in Schrader
et al. (2008) will enable us to identify the impact of nonlinearity on receptivity
to free-stream turbulence and roughness.

Besides the receptivity and the disturbance growth, also the breakdown of
the three-dimensional boundary layer is herein investigated. The first part of
the results is meant to illustrate the disturbance structures inside the boundary
layer during growth, saturation and breakdown of the primary instabilities. In
the second part, the focus is on the early receptivity process, where the recep-
tivity coefficients for unsteady and steady cross-flow instability are compared
with those in Schrader et al. (2008).
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Figure 1. (a) Wall-normal profiles of the streamwise and
the cross-flow velocity for Falkner-Skan-Cooke boundary-layer
flow. (b) Reynolds number (—–) and external streamline angle
(----) as a function of the chordwise coordinate.

2. Flow configuration and numerical approach

2.1. Base flow

Boundary-layer flow over a swept flat plate is herein considered. The mean flow
is obtained by solving the Navier-Stokes equations with the Falkner-Skan-Cooke
velocity profiles as initial condition. This configuration often serves as a proto-
type for swept-wing boundary-layer flow, including many of its characteristics
as the chordwise pressure gradient, the streamline curvature and the cross flow,
while the leading edge and the surface curvature are not taken into account.
The chordwise pressure gradient is quantified by the Hartree parameter βH ,
which is chosen to be βH = 0.333. This defines a favorable pressure-gradient
boundary layer with chordwise flow acceleration,

U∗

∞
(x∗) = U∗

∞,0

(

x∗ + x∗

0

x∗

0

)

βH
2−βH

and W ∗

∞
= U∗

∞,0 tanφ0 , (1)

where U and W indicate the chord- and spanwise mean velocity and the star
denotes dimensional quantities. The sweep angle φ0 is defined at a reference
station x∗

0, which corresponds to the inflow plane of the computational do-
main. The sweep together with the chordwise flow acceleration causes curved
streamlines and a force imbalance inside the boundary layer driving a secondary
mean-flow component in the cross-stream direction, the cross flow. The stream-
and cross-wise velocity profiles of a swept boundary-layer flow are depicted in
figure 1(a), where the coordinate system adopted is also shown. Due to its in-
flection point, the cross-flow profile supports inviscid instability modes, denoted
also cross-flow modes. Note that instability waves propagating in the cross-
stream direction have negative spanwise wavenumber β and positive chordwise
wavenumber α in the chosen coordinate system.
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The Falkner-Skan-Cooke boundary layer is homogeneous in the spanwise
direction z∗. This, together with the free-stream velocity distribution in equa-
tion (1), enables the introduction of a similarity variable η = η(x∗, y∗) and the
derivation of ordinary differential equations for the functions f(η) and g(η).
The mean-flow profiles U∗ and W ∗, defined as f ′(η) and g(η), exhibit therefore
a self-similar behavior. They are referred to as Falkner-Skan-Cooke velocity
profiles, and further details on their derivation can be found in Högberg &
Henningson (1998) and Schrader et al. (2008).

In the continuation, non-dimensional variables will be used, where lengths
are normalized by the chordwise boundary-layer displacement thickness δ∗0 ≡
δ∗(x∗

0) at the reference location x∗

0 and velocities by the chordwise free-stream
velocity U∗

∞,0 ≡ U∗

∞
(x∗

0). Reference length and velocity define the Reynolds
number at the computational inlet,

Reδ∗

0
=

U∗

∞,0δ
∗

0

ν∗
, (2)

where ν∗ is the kinematic viscosity. The local Reynolds number Reδ∗ is ob-
tained by replacing δ∗0 and U∗

∞,0 in (2) by their local values δ∗(x) and U∗

∞
(x).

Figure 1(b) shows the Reynolds number Reδ∗ and the local angle φ of the exter-
nal streamline versus the chordwise coordinate x. The inflow Reynolds number
is fixed at Reδ∗

0
= 220, which translates into a reference station of x0 = 167δ∗0

downstream of the virtual boundary-layer origin. Also the Reynolds number
Rex based on the chordwise location will occasionally be used; it is related to
Reδ∗

0
via

Rex = [x0 + xU∞(x)]Reδ∗

0
. (3)

The plate sweep angle is φ0 = 45◦: The chord- and spanwise free-stream ve-
locities are equal at x0, and their normalized value is U∞(x0) = W∞(x0) = 1.
The sweep angle under investigation is characterized by a significant cross-flow
component and thus by a strong cross-flow instability. The basic flow is com-
pletely described by Reδ∗

0
, βH and φ0, which are chosen to correspond to the

values used in Schrader et al. (2008). This set of parameters defines conditions
similar to those of the airfoil experiments at Arizona State University reported
in Reibert et al. (1996).

2.2. Numerical method

The present results are obtained using a spectral method to solve the
three-dimensional time-dependent incompressible Navier-Stokes equations, see
Chevalier et al. (2007). The simulation code builds on a Fourier representation
along the chord- and spanwise coordinates x and z and on Chebyshev polyno-
mials in wall-normal direction y, along with a pseudo-spectral treatment of the
nonlinear terms. Time advancement is based on a four-step third-order Runge-
Kutta method for the nonlinear terms and a second-order Crank-Nicholson
scheme for the linear terms. Aliasing errors from the computation of the non-
linear terms are removed in wall-parallel planes by the 3

2 -rule, while grid refine-
ment in normal direction has turned out to be more convenient than dealiasing.
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Along the wall a zero-slip condition is imposed for the mean velocity
and disturbance, while von-Neumann conditions are employed at the far-field
boundary above the plate. The choice of a periodic condition at the spanwise
boundaries of the computational domain follows from the independence of the
mean flow from the spanwise coordinate z and the assumption of a spanwise
periodic perturbation velocity field. The swept-plate boundary layer develops
along the chordwise direction: the boundary layer grows and the streamlines
change continuously direction. To obtain nonetheless the chordwise periodicity
required by a Fourier representation, a ”fringe region” is used at the down-
stream end of the computational domain, as described by Nordström et al.

(1999). In this region the velocity field ~U is forced to the desired inflow veloc-

ity profiles ~U0; they consist of the Falkner-Skan-Cooke similarity profiles in the
present case with/without incoming disturbances, i.e. free-stream turbulence.
The forcing is accomplished by an extra term in the Navier-Stokes equations,
and the equation solved reads,

∂ ~U
∂t

= NS(~U) + λ(x)( ~U0 − ~U) , (4)

where NS indicates the right-hand side of the momentum equations, and λ(x)

is a smooth forcing function active only in the fringe region. ~U denotes the

instantaneous velocity field; note that ~U will be used to indicate the reference
base flow.

2.3. Sub-grid scale modelling

The present study requires a computational domain of rather large spanwise
and wall-normal size to accommodate a free-stream turbulence field with a wide
enough range of length scales. The resolution of all scales would, however, result
in prohibitively large computational costs such that the simulations are only
affordable by employing a Large-Eddy Simulation (LES) model. The ADM-RT
subgrid-scale model by Schlatter et al. (2006) is used for the present simulations,
building on the Approximate Deconvolution Model (ADM) by Stolz & Adams
(1999). This model has been successfully applied in incompressible transitional
and turbulent flow (see, among others, the recent work by Monokrousos et al.

2008). LES relies on spatial filtering of the flow field and on the solution for
filtered velocities, as indicated with the bar in the equations of momentum and
mass conservation,

∂ūi

∂t
+

∂ūiūj

∂xj

= − ∂p̄

∂xi

+
1

Re

∂2ūi

∂xj∂xj

− ∂τij

∂xj

, (5a)

∂ūi

∂xi

= 0 . (5b)

The spatial filtering is implicit through the reduced resolution of the LES grid
here. The main ingredient of the ADM-RT model is the so-called relaxation
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term (RT) used as a closure for the subgrid-scale stresses τij ,

∂τij

∂xj

= χHN ∗ ūi with HN = (I − G)N+1 . (6)

HN denotes a three-dimensional high-pass filter of high order derived from
the low-order low-pass filter G in Stolz et al. (2001), and the star stands for
convolution in physical space. Here, HN is characterized by the exponent N = 5
and the cut-off wavenumber κc = 2π/3 of the filter G. Numerical stability is
ensured by a model coefficient χ in the range 0 ≤ χ ≤ 1/∆t. Here we chose
χ = 0.2, as in Schlatter et al. (2006, 2007); Monokrousos et al. (2008). The role
of the RT term in (8) is to drain kinetic energy from the resolved fluctuations
at the smallest represented length scale and thereby to model the impact of
the unresolved motion on the resolved structures. In contrast to the classical
Smagorinsky model the term χHN of the ADM-RT model acts directly on the
filtered velocities and not indirectly via the eddy viscosity and the mean strain
rate. Further details can be found in the references mentioned above. Note that
all the simulations were performed adding the sub-grid scale stresses. However,
the computations focusing on the boundary-layer receptivity consider only the
initial phase of the disturbance growth. In these cases, the extra relaxation term
is practically zero and the computations can be considered as direct numerical
simulations.

2.4. Disturbance generation

As in Schrader et al. (2008), two different disturbance sources are considered,
a vortical perturbation in the free stream and a roughness element on the wall
near the inflow plane of the computational domain. These two types of dist-
urbances have been shown to be the most relevant in swept boundary layers
in several studies. However, while the disturbances in Schrader et al. (2008)
consist of one single spanwise wavenumber to isolate the wavenumber depen-
dence of the receptivity, a more realistic disturbance environment is studied
here. The free-stream perturbation is composed of a large number of vortical
modes with random phase angles to obtain an adequate model for free-stream
turbulence, while the surface roughness exhibits a random shape in spanwise
direction. Care has been taken to include the modes with spanwise wavenum-
ber at or near the wavenumbers of maximum growth and of largest receptivity
as identified in Schrader et al. (2008). The free-stream turbulence at the inflow
plane and the roughness element are shown in figure 2(a) and (b), and their
numerical generation is described below.

2.4.1. Free-stream turbulence

The turbulent inflow disturbances are numerically generated in the same way
as in Jacobs & Durbin (2001) and Brandt et al. (2004), i.e. by the super-
position of eigenmodes from the continuous spectrum of the Orr-Sommerfeld
and Squire operator – however, modified here for the Falkner-Skan-Cooke base
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Figure 2. (a) Turbulent free-stream fluctuations at the inflow
plane of the computational domain for a turbulence intensity
of 2.53% of U∞,0. (b) Chord- and spanwise contour of the wall
roughness. The root-mean-square amplitude is 0.1 (----).

flow. In contrast to the Fourier modes, these waves accommodate the pres-
ence of the plate and the boundary layer in that they are oscillatory only in
the free stream while damped toward the wall; they are therefore often la-
belled free-stream modes. A wave vector ~κ = (Re{α}, γ, β)T is associated to
each free-stream mode, where the complex chordwise wavenumber α is the
eigenvalue of the corresponding Orr-Sommerfeld and Squire problem and the
wall-normal wave-number γ determines the position along the continuous spec-
trum (see e.g. Schmid & Henningson 2001). After choosing spanwise and wall-
normal wavenumber β and γ and angular frequency ω, the eigenvalue α of the
continuous-spectrum modes can be easily obtained from analytical expressions,
as the set of Orr-Sommerfeld and Squire equation simplifies to a system of ordi-
nary differential equations in the free stream. The velocity profiles pertaining
to each eigenfunction can be computed numerically whereas the free-stream
behavior can also be obtained analytically. The derivation of the dispersion re-
lation and the details on the computation of the eigensolutions in Falkner-Skan
Cooke flow are presented in Schrader et al. (2008), and the dispersion relation,
repeated here, reads

α =
i

2
[

√

(Reδ∗U∞)
2

+ 4(iReδ∗(βW∞ − ω) + β2 + γ2) − Reδ∗U∞] . (7)

An isotropic perturbation field is obtained in Fourier space by considering 20
concentric spherical shells of radius κ spanning the range of wave vectors of
length κl ≤ κ ≤ κu. The limits κl and κu depend on the size and resolution
of the computational domain and are chosen to be κl = 0.05 and κu = 1.1.
Forty points are distributed with constant spacing on each shell: These define
the wave vectors and continuous-spectrum eigenmodes to be included in the
expansion for the free-stream disturbance,

~uFST =

20
∑

k=1

ak

40
∑

l=1

~̂ukl(y; γ)ei(αklx+βklz−ωklt). (8)
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In the expression above, ~̂ukl denotes the wall-normal disturbance-velocity pro-
files of the free-stream mode and contains the wall-normal oscillations. The
randomness inherent in turbulent fields is obtained through a random rotation
of the shells, provided by random phase angles of the complex coefficients ak

in (8) as well as by the random phase in the complex function ~̂ukl (see Brandt
et al. 2004). The amplitude of ak is defined according to

|ak| = |a(κk)| =

√

1

40
E(κk)(κk+1 − κk) , (9)

i.e. the energy density pertaining to the wavenumber κk of the k-th shell is
equally distributed among all modes in the shell. The energy distribution is
approximated by the von-Kármán spectrum

E(κ) =
2

3
L Tu0

a(κL)4

[b + (κL)2]
17

6

with a = 1.606, b = 1.350 . (10)

L ≈ 1.56L11 is a characteristic large length scale of the fluctuating field with L11

being the longitudinal length scale derived from the two-point velocity correla-
tions. The turbulence intensity Tu is the relevant measure for the disturbance
amplitude, defined as

Tu =

√

1

3
(u2 + v2 + w2) . (11)

The vortical free-stream perturbation generated in this fashion is inserted in
the fringe region of the computational domain, from where it is recycled to the
inflow plane. The wall-normal distribution of the free-stream fluctuations at
the inlet are depicted in figure 2(a).

2.4.2. Surface roughness

The surface roughness is modelled in a similar way as in Schrader et al. (2008),
that is, through non-homogeneous boundary conditions for the disturbance
velocities u, v and w at the wall,





u
v
w





wall

=



























−h(x, z)∂U
∂y

0
−h(x, z)∂W

∂y





wall

, hstart ≤ x ≤ hend

~0 , elsewhere .

(12)

In the expression above, h(x, z) is the shape of the roughness bump,

h(x, z) = εhhx(x)hz(z) , (13)

with the amplitude εh and the functions hx(x) and hz(z) depending on the
chord- and spanwise coordinate, respectively. hx(x) builds on the smooth step
function S used in Schrader et al. (2008), rising from x = hstart along the flank
hrise, falling till x = hend along hfall and centered at the location xr = (hstart+
hend)/2, which is the nominal roughness station. hz(z) is obtained through an
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Table 1. Parameters of the surface-roughness shape in equa-
tion (16).

εh hstart hend hrise hfall

0.05, 0.1 6 34 12 12

expansion in sinusoidal functions with 16 different spanwise wavenumbers and
random phases. hx(x) and hz(z) then read

hx(x) =

[

S

(

x − hstart

hrise

)

− S

(

x − hend

hfall

+ 1

)]

(14a)

hz(z) =

16
∑

n=1

sin (nβ0z + φrand
n ) (14b)

with the fundamental spanwise wavenumber β0 = 2π/Lz defined by the span-
wise width Lz of the computational domain and a random angle φrand

n . The
characteristic roughness height εh in equation (13) is

εh =

√

h2
z

∣

∣

∣

∣

xr

, (15)

i.e. the root-mean-square of the random spanwise hump contour at the rough-
ness station xr. The parameters of the roughness contour are compiled in table
1, and the chord- and spanwise roughness contours hx and hz are shown in
figure 2(b) for a characteristic amplitude of εh = 0.1.

2.5. Computational domain

The present study consists of two parts – (1) the identification of the charac-
teristic disturbance structures inside the layer throughout the entire transition
process and (2) the description of the receptivity and the early stages of instabil-
ity of the swept-plate boundary layer. Therefore, two computational domains
with different chordwise length are used herein, a long one, ”L”, to capture the
breakdown of the boundary layer and a short one labelled ”S” for the receptivity
study. The size Lx×Ly×Lz, resolution Nx×Ny×Nz and length Lfringe of the
fringe region of the boxes L and S are listed in table 2 together with the Rey-
nolds number Reδ∗,0 defining the location of the inflow plane. Dimension and
resolution of the numerical domain have been chosen after a preceding study
on the influence of the domain size and the sub-grid scale stresses reported in
the following.

2.5.1. Domain size and resolution study

The resolution in wall-normal direction y is finer than in the wall-parallel planes,
see table 2, in particular inside the boundary layer due to the clustering of the
Chebyshev points near the wall. The normal resolution is in fact comparable to
that in Brandt et al. (2004), where sub-grid scale models were not used. Since
the flow is swept at 45◦, the resolution requirements in x and z direction are
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Table 2. Size and resolution of the computational domains
”L” and ”S”, length of the fringe region and inflow Reynolds
number.

Box Reδ∗,0 Lx × Ly × Lz Nx × Ny × Nz Lfringe

L 220 1500 × 90 × 200 768 × 121 × 128 135
S 220 750 × 90 × 200 384 × 121 × 128 80
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Figure 3. Boundary-layer response to free-stream turbulence
with Tu0 = 3.96% and L = 10. Study of the influence of
chordwise resolution of the computational domain ”L” on (a)
the skin-friction coefficient and (b) the evolution of the wall-
normal maximum of the root-mean-square of the chordwise
disturbance-velocity component. Nx = 256 (—-); 384 (----);
512 (-·-·-) and 768 (—–, grey).

expected to be similar. The choice of resolution is motivated by the disturbance
structures inside the boundary layer, which are expected to be elongated and
almost aligned with the free-stream velocity. The laminar structures preced-
ing the breakdown, which will be cross-flow modes, can thus be fully resolved,
while the SGS model will compensate mainly for unresolved small wall-parallel
length scales occurring after the turbulent breakdown. The simulations feature
a wall-normal resolution typical for DNS and the resolution study is therefore
restricted to the chord- and spanwise direction. Figure 3 shows in (a) the influ-
ence of the chordwise resolution on the skin-friction coefficient and in (b) the
chordwise fluctuation amplitude in terms of the maximum of the root-mean-
square, both obtained with the long box L. The downstream development of
skin friction is often used as an indicator for the laminar-turbulent transition lo-
cation in the boundary layer. The results are clearly resolution dependent: The
transition location, identified by the rapid increase of the skin-friction, moves
drastically upstream as the chordwise resolution is increased from Nx = 256
to Nx = 384. This trend becomes slower at a further increase in resolution,
and the transition location is observed at nearly the same downstream location
when the numerical resolution is further refined from Nx = 512 to 768. The
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reason for the strong dependence of the transition location especially at the low-
est values of Nx becomes evident in figure 3(b): While the early transient and
linear growth phase is captured with similar accuracy in the different cases, the
subsequent rapid amplification observed around x ≈ 600 is completely under-
predicted on the coarser domains (as discussed later, this stage is related to
the appearance of high-frequency secondary instability of the cross-flow modes).
Small structures responsible for the excitation of secondary instability are not
represented on the coarsest grids. As shown in Monokrousos et al. (2008), an
accurate LES of transitional flows needs to account for all physical mechanisms
involved. These authors demonstrate that, despite the lower resolution used
in the LES a good prediction of the dominating flow physics and the processes
leading to turbulent breakdown can be obtained via appropriate subgrid-scale
modelling. It is also shown in Monokrousos et al. (2008) that the LES is able to
capture the instantaneous structures just prior to turbulent breakdown. Here,
it is concluded from figure 3 that a further refinement of the mesh beyond 768
nodes (below ∆x = 1.95) will only weakly affect the results while significantly
increasing the computational costs. As shown later, we are indeed able to re-
solve the relevant instantaneous structures just prior to turbulent breakdown
at this resolution.

On the short domain S, on the other hand, a finer resolution is computa-
tionally feasible. Two modifications of box S in table 2 are considered, first
a refinement in the streamwise direction, from ∆x = 1.95 to 1.46, and second
a higher resolution (1.5 times) in the z direction. The vortical perturbation
prescribed at the inlet of the original and the modified domains is composed of
modes with wavenumbers between κl = 0.05 and κu = 1.1 with a turbulence
intensity of Tu0 = 2.53% and a characteristic length of L = 10. It becomes
clear from figure 4(a) that the receptivity and the subsequent growth of the
instability obtained on the coarsest grid do not differ from the results on the
two refined meshes. From this plot and figure 3 it can be concluded that the
resolution adopted here is fine enough.

Next, the influence of the width Lz of the numerical domain on the
boundary-layer response is examined. This is investigated here by considering
the shorter box S with Lz = 300 and Nz = 192, i.e. the spanwise resolution is
kept fixed. For a fair comparison, the parameters defining the free-stream tur-
bulence are left unchanged: the turbulence intensity considered is Tu0 = 3.96%
and the integral length L = 10. Figure 4(b) shows the downstream evolution of
the excited boundary-layer disturbance in the wider domain as well as in box
S. The initial transient disturbance growth is slightly enhanced in the wider
domain whereas the disturbance growth rate further downstream is hardly af-
fected. This difference can be explained by the nonlinear interactions occurring
between wider structures at the initial receptivity phase. The spanwise scale of
the disturbance is not changed by the increased domain size as shown by the
identical growth rates downstream. Note, however, that the results are obtained
for the second highest free-stream turbulence intensity studied, Tu0 = 3.96%,
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Figure 4. Study of the influence of resolution and size of
the computational domain. Boundary-layer response to free-
stream turbulence with L = 10. (a) Tu0 = 2.53%. Variation
of chord- and spanwise resolution of box S, see table 2. Nx ×
Ny × Nz = 384 × 121 × 128 (—–); 512 × 121 × 128 (----);
384×121×192 (-·-·-). (b) Tu0 = 3.96%. Variation of spanwise
size of box S. Lz = 200 (—–); Lz = 300 (----).

and the agreement between the curves is expected to become better at lower
Tu0. In light of the rather small influence of Lz on the boundary-layer re-
sponse and for the sake of the computational costs the subsequent simulations
are performed on the default domain in table 2 with Lz = 200.

2.6. Characterization of the free-stream turbulence

The numerical generation of the turbulent free-stream perturbation has been
outlined in subsection 2.4. Due to the distribution of the disturbance wavenum-
bers on concentric spherical shells with equidistant spacing the resulting dis-
turbance field is homogeneous and isotropic. In swept-plate flow with favorable
pressure gradient, however, the mean flow is subject to chordwise acceleration,
i.e. ∂U

∂x
> 0. This gives rise to non-zero production terms in the Reynolds-stress

transport equation, see for instance Pope (2001). Thus, the three fluctuation
components will not decay at the same rate, but a redistribution of turbulent
kinetic energy among the components is expected. The turbulent disturbance
field will then deviate from the initial isotropic state as the perturbation is
convected downstream. Figure 5 displays the behavior of the artificial tur-
bulence field in the free stream. In figure 5(a), the downstream decay of the
turbulence intensity at three different levels above the plate is plotted. The
turbulent inflow conditions are Tu0 = 3.96% with L = 10. It is apparent
that the turbulence intensity decays at a rate similar to that in homogeneous
isotropic turbulence, where the energy decay obeys a power law. In Fransson
et al. (2005) the exponent of this law has been experimentally determined as
−0.6 for grid-generated turbulence, while the parameters C and xr depend on
the turbulence grid. Here, the curve fit has been done with C = 1.73 and
xr = −600. The plot also shows that the decay rate depends only weakly
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Figure 5. Downstream decay of free-stream turbulence with
inflow turbulence intensity of Tu0 = 3.96% and integral length
L = 10. (a) Downstream evolution of Tu0 measured at three
levels above the plate, y = 30 (—–); 35 (----) and 45 (-·-·-
). Comparison with energy decay characteristic for grid tur-
bulence (-∗-∗-), see Fransson et al. (2005). Here, C = 1.73
and xr = −600. (b) Decay of the three fluctuation compo-
nents measured at y = 40 for free-stream turbulence with

Tu0 = 3.96%.
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√
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√

w2 (-·-·-).

on the wall-normal level and hence that homogeneity is maintained across the
free stream. However, figure 5(b) reveals that the turbulent kinetic energy is
not equally distributed among the fluctuation-velocity components, and their
individual decay differs. The adjustment to the free-stream conditions is occur-
ring already in the fringe region and in the region near the inflow plane where
∂U
∂x

and the streamline curvature are maximum. The wall-normal fluctuations
are larger than their chordwise counterpart. This can be explained by consid-
ering the production terms in the Reynolds-stress transport equation for the
chordwise u and wall-normal v fluctuations in accelerating flows.

P11 = −2u2
∂U

∂x
, (16a)

P22 = −2v2
∂V

∂y
= 2v2

∂U

∂x
. (16b)

A negative production term is seen in the first equation, whereas positive pro-
duction of wall-normal fluctuations is caused by the flow acceleration where
the continuity equation has been used to relate the mean flow gradients. En-
ergy is drained from the u-component of the free-stream turbulence into the
v-component by the chordwise acceleration of the underlying mean flow. The
spanwise velocity fluctuations, initially strong, decay rapidly until they reach
amplitudes similar to those pertaining to u. The relative enhancement of the
wall-normal fluctuations can be also related to the stretching of chordwise vor-
ticity, as observed e.g. in the convergent section of a wind tunnel, while the drop
of u and w to the decrease of wall-normal vorticity induced by the negative ∂V

∂y
.
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Table 3. Amplitude of the forcing disturbance. Turbulence
intensity of the free-stream turbulence at the inflow plane and
root-mean-square height of the surface-roughness strip.

Disturbance source Amplitude
Free-stream turbulence Tu0 · 102 0.17; 0.42; 0.84; 1.26; 1.69;

2.11; 2.53; 2.95; 3.96; 5.06
Surface roughness εh · 102 5; 10

3. Results

The response of the three-dimensional swept-plate boundary layer to different
disturbance environments is studied under the condition of a favorable pressure
gradient. Three perturbation scenarios are considered: a turbulent field resid-
ing in the free stream and entering the numerical domain at the inflow plane, a
spanwise oriented surface-roughness strip with random amplitude placed just
downstream of the inlet and the combination of both disturbance sources. The
effect of the disturbance amplitude on the boundary-layer response is investi-
gated, where the amplitude is expressed in terms of the turbulence intensity
for the free-stream disturbance and the root-mean-square height for the rough-
ness. The values considered are compiled in table 3. First, results obtained on
the long computational domain (box L) under a high-amplitude disturbance
environment are presented. This ensures that the breakdown of the boundary
layer to the turbulent state is captured inside the computational domain. The
aim of this first part is to illustrate the transition to turbulence of the swept-
plate boundary layer and to identify the relevant disturbance structures prior
to transition. In the second part, the early stages – receptivity and growth
of the primary instabilities – are documented through results obtained on the
short domain (box S). Here, also perturbation sources with lower amplitude
are considered to identify when and where nonlinear interaction between the
different boundary-layer disturbance structures becomes important. The sta-
tistics presented in the following are obtained by averaging in time and in the
spanwise direction.

3.1. Part I: Breakdown

The skin-friction coefficient provides a good indication of the transition loca-
tion. This is shown in figure 6(a) for free-stream turbulence with inflow inten-
sities of Tu0 = 2.53% and 3.96%. The completion of transition is observed at
lower Rex when increasing the level of the external disturbance.

Perturbations enter the boundary layer in the form of low-frequency modes
elongated in the free-stream direction. The wall-normal maximum of the chord-
wise and spanwise velocity fluctuations is reported in figure 6(b). In swept
boundary layers, susceptible to cross-flow exponential instabilities, all com-
ponents of the perturbation velocity are seen to grow at a similar rate, see
the range Rex ∈ [1 · 105, 2 · 105]. This is typical of modal instability; in the
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Figure 6. Visualization of the breakdown to turbulence of
swept-late boundary-layer flow exposed to free-stream turbu-
lence with inflow turbulence intensity of Tu0 = 2.53% (----)
and 3.96% (—–) through (a) the rise in skin friction and (b)
the downstream evolution of the chord- (black) and spanwise
disturbance-velocity components (grey).

two-dimensional flat-plate boundary layer, indeed, only the streamwise velocity
component is seen to grow at the initial stages of the transition while the cross-
stream components decay (Brandt et al. 2004). This flow is characterized by
the non-modal amplification of the streaks. After this initial phase, a fast in-
crease in amplification rate is observed first for the case of highest free-stream
turbulence, Rex ≈ 2.2 · 105, and later for the lower intensity Tu0 = 2.53%,
Rex ≈ 3 · 105. This is associated to the rise in skin friction coefficient in
figure 6(a) and to the appearance in the flow of high-frequency secondary in-
stabilities and of turbulent spots. The overshoot in the curves for the velocity
fluctuations can be related to the maximum values of the skin friction. At the
end of the computational domain the level of velocity fluctuations is almost the
same for the two cases; this indicates that the flow is reaching a fully turbulent
state. An overall picture of the transition in swept boundary layers exposed to
free-stream turbulence is provided in figure 7. This figure displays a time series
of snapshots of the flow in a wall-parallel plane in side the boundary layer,
y = 2 , together with a view of the free-stream fluctuations in a plane located
at y = 40, that is well above the shear layer close to the wall, figure 7(a). The
results are obtained with an inflow turbulence of intensity Tu0 = 3.96% and
length scale L = 10, and the snapshots are taken after the flow field has reached
a statistically converged state. The flow is from left to right. As seen in (a), the
finer length scales of the external disturbance disappear further downstream,
indicating the decay of the free-stream turbulence. Plots (b) through (g) show
that the instabilities in the laminar region of the boundary layer appear in the
form of long structures, tilted about 45◦ with respect to the chord of the plate.
Around x = 500 these structures have reached an amplitude high enough for
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Figure 7. Free-stream turbulence with intensity Tu0 =
3.96% and integral length L = 10 and the response of the
swept-plate boundary layer to it. The flow is from left to
right. (a) Downstream evolution of the chordwise fluctuation
u in the free stream at y = 40. (b)-(g) Boundary-layer re-
sponse in terms of the chordwise fluctuation u at y = 2 at
different instants of time.

the boundary layer to become susceptive to secondary instabilities. These high-
frequency modes are triggered at random locations by the high-frequency com-
ponents of the free-stream turbulence and grow rapidly in amplitude. Patches
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Figure 8. Boundary-layer response to free-stream turbulence
with intensity Tu0 = 3.96% and integral length L = 10. y-z
planes showing contour lines of chordwise disturbance velocity
in the boundary layer at four chordwise locations upstream of
the breakdown location. (a) x = 200, (b) x = 400, (c) x = 500
and (d) x = 600. The contour lines show level between -0.1
and +0.1 with spacing ∆ = 0.01; solid lines indicate u ≥ 0,
dashed lines u < 0. Note that the plots are not at an equal
aspect ratio.

of irregular motion are seen to appear further downstream, forming local re-
gions of turbulence called spots. The spot first seen in figure 7(b) grows in
size with time; a second spot occurs in plot (c) and both become wider and
longer as they travels downstream. At time t = 6230, figure 7(e), a third spot
can be identified in the lower part of the domain, and later , image (g), the
three turbulent spots have almost merged to form one large region of turbulent
motion. Downstream of x = 700 the boundary layer is fully turbulent, and
the turbulent region is constantly fed by new merging spots incident from the
upstream laminar part of the layer. It becomes apparent that the dominant
disturbance structures in the fully turbulent boundary layer are still elongated
and tilted in the free-stream direction (Schlatter & Brandt 2008).

Figure 8 characterizes the wall-normal and spanwise length scales of the
disturbance structures inside the boundary layer by showing contour lines of
the chordwise disturbance velocity in the cross-stream plane at four different
downstream locations. At x = 200, plot (a), the instability structures still
feature rather low amplitudes and large spanwise length scales of about 10,
i.e. comparable to the integral length of the forcing free-stream turbulence.
Further downstream, at x = 400 and 500, the cross-flow modes have amplified,
the gradients in u have become steeper and the structures have grown in size in
the wall-normal direction with the boundary layer, while their spanwise size has
decreased with respect to the layer thickness, see plots (b) and (c). In figure 8(d)
a region of large disturbance amplitudes, steep gradients in u and fine spanwise
scales is identified near the center of the domain, while the perturbation field
in the neighborhood is smoother. This highly perturbed region is what we refer
to as turbulent spot and indicates where the boundary layer first approaches
the turbulent state. Note also that these turbulence patches are located closer
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to the wall than the original cross-flow modes. Similarly to the case of two-
dimensional boundary layers, the late-stage high-frequency instability is coming
from the upper part of the boundary layer towards the wall (Jacobs & Durbin
2001; Brandt et al. 2004; Zaki & Durbin 2005).

3.2. Part II: Receptivity

First, free-stream turbulence with different turbulence intensity is considered.
The synthetic turbulence is prescribed at the inflow plane of the computa-
tional domain and is convected in the free stream while decaying. This distur-
bance source will therefore fill the entire free stream and act non-locally on the
boundary layer. Secondly, the boundary-layer response to surface roughness
is investigated. A thin roughness strip with a step-like contour in x- and a
random shape in z direction is placed parallel to the leading edge near the in-
flow plane of the domain. This disturbance source is hence confined to a small
downstream region and interacts locally with the boundary layer, in contrast to
the free-stream turbulence. Finally, both free-stream turbulence and roughness
are included at the same time in the simulation. This enables us to address
a frequently discussed issue in the context of three-dimensional swept-plate
boundary layers, namely whether the boundary-layer response is dominated by
steady or unsteady disturbances. The following results are obtained on the
short domain, box S, which is sufficiently long to include receptivity, primary
disturbance growth and nonlinear interaction even for the lowest amplitudes of
the forcing disturbance.

3.2.1. Response to free-stream turbulence

Figure 9 depicts the downstream evolution of the boundary-layer distur-
bance forced by free-stream turbulence with different intensities in the range
Tu0 ∈ [0.17, 5.06]%. The free-stream turbulence intensity is defined by its
value at the inflow plane, thus when the effects of the flow acceleration have
already been active, see discussion in section 2.6. In figure 9(a) and (b) the
wall-normal maximum of the root-mean-square of the chordwise fluctuation u
is shown versus Rex for increasing inflow turbulence intensities. This quantity
is the most commonly used indicator of the growth of the disturbances inside
the boundary layer. The results pertaining to the lowest turbulence intensities
are reported in (a), while those for the highest free-stream turbulence levels
are shown in (b). Note that the curve obtained at lowest Tu0 is repeated in
figure (b) for comparison. Initially, Rex . 5 · 104, the instability growth is
dominated by transient behavior, followed by a region of almost linear growth.
The linear regime extends nearly throughout the whole domain for the weak
free-stream perturbations with Tu0 = 0.17% and Tu0 = 0.42%, whereas the
curves obtained in a disturbance environment of higher intensity start to bend
off for Rex > 1.5 · 105. This indicates that nonlinear interaction between in-
dividual disturbance components becomes relevant for Tu0 > 0.42%, causing
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Figure 9. Boundary-layer response to free-stream turbulence
with integral length L = 10 and different intensities: (a) Tu0 =
0.17% (—–); 0.42% (----); 0.84% (-·-·-); 1.26% (-◦–◦-); 1.69%
(—–, thin) and 2.11% (----, thin). (b) Tu0 = 0.17% (—–
); 2.53% (----); 2.95% (-·-·-); 3.96% (-◦–◦-) and 5.06% (—
–, thin). (c) shows the data from (a) scaled with the inlet
turbulence intensity Tu0 and (d) the curves from (b) scaled by
Tu0.

saturation of the primary disturbances. At the highest inflow turbulence lev-
els of Tu0 = 3.96% and 5.06%, secondary instability growth is already seen
within the short domain, apparent through the upward bending growth curve
for Rex & 2.2 · 105. The extent of the region of linear exponential growth and
the onset of nonlinear behavior becomes clearer in the figures 9(c) and (d),
where the curves of the plots (a) and (b) are shown after re-scaling with the
inflow turbulence intensity. Clearly, the initial disturbance amplitude and the
incipient transient growth scale with Tu0 for all intensities under investigation,
indicating that the receptivity process is linear. In particular, the first data
point at Rex,0 can be interpreted as the receptivity coefficient based on Tu0,
describing the efficiency of receptivity to free-stream turbulence. Here, a value
of about 0.17 is obtained. At the lower intensities in figure 9(c), the primary
instability growth depends linearly on Tu0 in the region with Rex . 1.7 · 105

, while saturation of the amplitude sets in further downstream. Figure 9(d)
reveals that the curves obtained at the higher intensities Tu0 do not collapse
as well with the data for Tu0 = 0.17% as in (c), showing that the dependence
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of the primary instability evolution on the incoming turbulence intensity be-
comes nonlinear at the highest levels of Tu0 considered here. In particular, the
larger amplification observed can be explained by the nonlinear forcing among
unsteady modes of low frequency and different spanwise scale.

The turbulent free-stream perturbation is composed of a large number of
spanwise length scales and time scales and will therefore excite cross-flow modes
with different spanwise wavenumbers β and angular frequencies ω inside the
boundary layer. This leads on the one hand to initial transient disturbance
growth, as discussed above, but on the other hand also to a competition between
unstable modes with different β and ω, growing at different rates and becoming
dominant at different downstream locations. Therefore, the curves for the
evolution of the boundary-layer instabilities in figure 9 do not exhibit a clean
exponential behavior; instead, they represent the envelope for the evolution
of individual unstable cross-flow waves. Figure 10(a) provides data for the
downstream development of the amplitude of a large number of unstable modes
with ω = −0.01 and with various spanwise wavenumbers. The curves are
obtained through the solution of the Parabolized Stability Equations (PSE).
As the receptivity is not included in the PSE framework, the evolution curves
need to be weighted with the corresponding receptivity coefficients. Here, the
coefficients for vortical free-stream disturbances computed by Schrader et al.

(2008) and displayed in the insertion of figure 10(a) are used. In order to
obtain the total amplitude of the boundary-layer disturbance, the envelope of
the weighted amplitude-evolution curves is computed and compared with the
present results from the full nonlinear simulation of a swept boundary layer
exposed to free-stream turbulence in figure 10(b). Although the envelope curve
only includes cross-flow modes with frequency ω = −0.01 it provides a good
approximation of the actual disturbance growth observed in the simulations.
This demonstrates on the one hand that low frequencies like ω = −0.01 play
a major role during the receptivity process and on the other hand that the
receptivity coefficients computed in Schrader et al. (2008) for the single free-
stream vortex also describe receptivity to free-stream turbulence properly.

Next, the characteristic size and spacing of the boundary-layer instability
structures is investigated. In figure 11 the spacing ∆z between the disturbance
structures in the region of primary instability growth is displayed versus the
chordwise coordinate. ∆z is determined by computing the spanwise two-point
correlations u(z)u(z + ∆z)/u2(z) for the chordwise fluctuation u and is defined
as twice the location ∆zmin of the first minimum of the obtained correlation
curve, ∆z(x) = 2∆zmin(x). It can be interpreted as the spanwise spacing
between two adjacent instability structures with a disturbance velocity in the
same direction, for instance two contiguous cross-flow modes or two high-speed
streaks. Figure 11(a) shows the characteristic spacing obtained under free-
stream turbulence of the lower intensities Tu0 ≤ 1.69%, revealing that ∆z is
independent of Tu0 in this range and that it slowly drops downstream. In (b)
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Figure 10. Boundary-layer response to forcing with free-
stream turbulence of Tu0 = 0.17%. (a) Growth of cross-flow
modes with angular frequency ω = −0.01 and various span-
wise wavenumbers in the range (-0.27,-0.09) obtained through
the PSE method (—–, thin). The curves are weighted with the
corresponding receptivity coefficients (insertion, from Schrader
et al. (2008)). The envelope curve is also shown (—–, thin).
(b) Boundary-layer response for Tu0 = 0.17% (—–) in com-
parison with the envelope curve from (a) (----).
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Figure 11. Characteristic spanwise spacing between the dis-
turbance structures excited by free-stream turbulence at var-
ious intensities. (a) Tu0 = 0.17% (—–); 0.42% (----); 0.84%
(-·-·-); 1.26% (-◦–◦-); 1.69% (—–, thin) and 2.11% (----, thin).
(b) Tu0 = 0.17% (—–); 2.53% (----); 2.95% (-·-·-); 3.96% (-
◦–◦-) and 5.06% (—–, thin). (c) and (d) show the same data
as (a) and (b), respectively, but ∆z is normalized by the local
instead of the inflow displacement thickness.

a slightly faster decrease of the spacing is observed for the more intense free-
stream fluctuations, in particular for the two largest values of Tu0 = 3.96% and
5.06%. This is in line with the experimental findings in Matsubara & Alfredsson
(2001) for the two-dimensional boundary layer exposed to turbulence from grid
B, where the downstream decrease in spacing has been reported to be slower
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under free-stream turbulence of low intensity than in high-level turbulence.
Note also the rapid drop in ∆z for Tu0 = 5.06% downstream of x = 500,
revealing that breakdown to turbulence is observed within the domain at this
high intensity. The disturbance structures prior to transition break rapidly up
into smaller scales in this region. Upstream of the location of breakdown, ∆z
increases somewhat before it finally drops. The increase in spacing is also seen
at the second highest turbulence intensity of Tu0 = 3.96%, indicating that
transition is imminent. In the plots 11(c) and (d) the data from (a) and (b) are
shown re-scaled with the local displacement thickness instead of its inflow value.
These figures demonstrate that the characteristic size of the primary instability
decreases relative to the local size of the boundary layer for all values of Tu0.

3.2.2. Response to surface roughness

As demonstrated in Crouch (1993), Choudhari (1994) and Schrader et al.

(2008), for example, steady surface roughness provides an efficient receptivity
mechanism for steady cross-flow vortices. Here, a chordwise localized spanwise
surface-roughness strip with the shape shown in figure 2(b) is placed on the
plate near the inflow plane of the computational domain, while the free stream is
now disturbance-free. Two roughness elements with different root-mean-square
heights are considered, εh = 0.05 and 0.1. In comparison with the humps used
in Schrader et al. (2008) these amplitudes appear to be large; however, the
total perturbation induced by the roughness strip will be distributed among
the 16 spanwise wavenumbers present in the bump shape. Due to the forcing
at various wavelengths, different cross-flow waves may appear at the same time
and compete with each other. This is seen in figure 12, showing the response of
the boundary layer to forcing through the roughness strips with εh = 0.05 and
0.1. In figure 12(a) the growth of various steady cross-flow modes with span-
wise wavenumbers included in the roughness contour is depicted. The curves
are weighted with the corresponding receptivity coefficients for roughness taken
from Schrader et al. (2008) and their envelope is computed and compared with
the downstream evolution of the disturbance amplitude observed in the simula-
tions with random roughness strip, see figure 12(b). The envelope is dominated
by the cross-flow mode β = −0.22, the mode of strongest receptivity among
those forced in the simulation (Schrader et al. 2008). The agreement between
the envelope and the evolution curve for the boundary-layer disturbance is
good, revealing that the receptivity coefficients computed within the linear ap-
proximation and for the simplified roughness model in Schrader et al. (2008)
are also valid for the receptivity to the more complex roughness strip consid-
ered here. The nonlinear interaction between the forced cross-flow waves is
not significant at the present roughness amplitudes; instead, the disturbance
growth exhibits a rather clean exponential behavior. Moreover, the dependence
of the boundary-layer response on the characteristic roughness height is linear
for the values of εh considered, that is, the solid curve for εh = 0.05 in figure
12(b) collapses with the dashed line for εh = 0.1, if the former is multiplied by
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Figure 12. Boundary-layer response to forcing by means of a
surface-roughness strip. (a) Growth of steady cross-flow modes
with various spanwise wavenumbers in the range (-0.47,-0.097)
and included in the spanwise shape of the roughness (—–,
thin). The curves are from Schrader et al. (2008) and weighted
with the corresponding receptivity coefficients from the same
reference (insertion). The envelope curve is also shown (—–,
thick). (b) Boundary-layer response for εh = 0.05 (—–) and
εh = 0.1 (----) in comparison with the envelope curve from (a)
(—– and ----, thin).

2. Note again that the rms-value of the roughness amplitude is 10% of the lo-
cal boundary-layer displacement thickness, a value higher than those typically
expected in real configurations.

3.2.3. Response to free-stream turbulence with surface roughness

Three-dimensional boundary-layer flow in engineering applications is often sub-
ject to disturbances from more than one source. Examples are free-stream
sound from the jet engine of an aircraft impinging on the boundary layer over
a wing with surface imperfections or free-stream turbulence interacting with
the layer over a slightly rough turbine blade. Here, we consider the combina-
tion of the two perturbation sources studied in the previous sections: turbulent
fluctuations in the free stream and a localized random-roughness strip in the
upstream part of the swept-plate boundary layer. As seen before, these two per-
turbations excite travelling and stationary cross-flow instability, respectively,
which will coexist and compete with each other for the combined disturbance
environment considered here. It is then of interest to determine which type
of disturbance – steady or unsteady cross-flow vortices – dominate inside the
boundary-layer prior to transition and cause its breakdown to turbulence. This
issue has so far mostly been addressed through wind-tunnel experiments, see
the review by Saric et al. (2003). In Schrader et al. (2008), a numerical analysis
of the same boundary-layer flow as considered here is presented, involving the
combination of simplified models for free-stream vorticity and roughness. In
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Figure 13. Swept-plate boundary layer exposed to turbulent
fluctuations of (a) Tu0 = 0.42% and (b) Tu0 = 0.84% and
a localized wall-roughness strip with root-mean-square ampli-
tude εh = 0.1. The thin grey curves represent the unsteady
(----) and the steady disturbance evolution (—–) due to tur-
bulence and roughness alone. Their sum (—–, thick, grey) is
compared with the total disturbance (----, black) observed in
the simulations with combined perturbation sources.

that work, the threshold in turbulence intensity, above which travelling cross-
flow instability dominates over the stationary disturbance waves has been esti-
mated to Tu0 = 0.5%. We perform a similar analysis here but apply the more
complex representations for free-stream turbulence and surface roughness de-
scribed in subsection 2.4. Figure 13 shows the response of the swept-plate
boundary layer for different combinations of the amplitudes Tu0 and εh of
the free-stream turbulence and the roughness. Two situations differing in the
inflow intensity Tu0 of the turbulent free-stream fluctuations are considered,
Tu0 = 0.42% in (a) and 0.84% in (b). The amplitude of the roughness strip
is identical in both cases, namely εh = 0.1. The evolution of the boundary-
layer disturbance obtained in the presence of the two perturbation sources is
displayed together with the development of the perturbation induced by the
free-stream fluctuations and wall roughness acting separately. In figure 13(a)
the steady cross-flow modes dominate over the travelling waves, while the sit-
uation is the opposite for the larger free-stream turbulence intensity as shown
in (b). It can thus be concluded that the threshold, above which the unsteady
modes become significant is passed in the region 0.42% < Tu0 < 0.84%. This
estimate is in agreement with the value of 0.5% given in Schrader et al. (2008).
Figure 13 further reveals that the total boundary-layer disturbance seen in the
simulations with both turbulence and roughness can be correctly estimated by
summing the unsteady and the steady contribution. This observation holds in
the steady wave dominated case in (a) as well as in the travelling mode dom-
inated situation in (b) and one can speculate that it will also apply for larger
and lower values of the free-stream turbulence when the unsteady and steady
cross-flow modes will more clearly dominate the perturbed boundary layer.
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The interaction between the travelling and stationary disturbance appears to
be negligible for the configuration under consideration and an accurate predic-
tion of the boundary layer response can therefore be obtained by considering
the different disturbance sources independently.

4. Conclusions

Receptivity, disturbance growth and breakdown in the three-dimensional
boundary layer developing on a swept flat plate under a favorable pressure
gradient has been investigated. The flow has been perturbed through a non-
localized source – a turbulent flow field in the free stream – and a localized
source – a wall-roughness strip with random spanwise distribution. Also the
combination of both disturbance sources has been considered. At the conditions
under investigation the basic flow is unstable to cross-flow instability, and both
disturbance sources are efficient in exciting travelling and stationary cross-flow
vortices, respectively, inside the boundary layer.

In the first part of the paper the route of laminar-turbulent transition is
illustrated by describing the disturbance structures being dominant during the
different stages of transition. While there exist publications on wind-tunnel
experiments in swept-plate flow, e.g. by Bippes (1999), the present work is to
our knowledge the first presenting a numerical simulation of cross-flow mode
dominated transition in the swept-plate boundary layer exposed to free-stream
turbulence. Our study reveals that the early stages on the route to turbu-
lence are characterized by the co-existence of non-modal disturbances (streaks)
and modal instability (unsteady cross-flow waves), when free-stream turbu-
lence acts on the boundary layer. Due to their large amplification rates the
cross-flow modes dominate the disturbance environment inside the layer prior
to the breakdown. This is in opposite to the two-dimensional boundary layer,
where modal and non-modal disturbances co-exist, as well, but the TS-waves
are not relevant in comparison to the streaks. In the three-dimensional bound-
ary layer the growth of the unstable eigenmodes is thus not ”bypassed”, that is,
for the present configuration laminar-turbulent transition in swept-plate flow
triggered by free-stream turbulence is not bypass transition, in contrast to two-
dimensional boundary-layer transition. When the roughness strip is placed on
the wall the dominant pre-transitional structures are steady cross-flow vortices.
Even if some transient behaviour is observed in the vicinity of the roughness,
non-modal disturbances do not play any role in transition triggered through
localized random roughness.

The second part of the paper focuses on the receptivity of the three-
dimensional boundary layer and the early stages of primary disturbance growth.
The receptivity coefficients derived in Schrader et al. (2008) for simplified re-
ceptivity models are applied here and compared with the amplification curves
obtained from the present fully nonlinear simulations. This is in practice done
by weighting the curves for the evolution of the various excited unstable modes
with their individual receptivity coefficients and computing the envelope curve.
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Although the receptivity model in Schrader et al. (2008) accounts for one –
however, dominant – angular frequency only, good agreement between the am-
plification seen in the present simulations and the envelope has been found for
the case of free-stream turbulence. This suggests that the receptivity mecha-
nisms for the different excited modes are independent of each other and that
the linear receptivity model from Schrader et al. (2008) is also valid for the re-
ceptivity to a complex free-stream turbulence field of relatively high intensity.
The same conclusion can be drawn for receptivity to localized roughness with
random spanwise amplitude, for which the agreement between the disturbance
amplitudes predicted by the linear receptivity model and the amplitudes ob-
served in the simulations is even better than for forcing through free-stream
turbulence. This is, however, expected in light of the less complex disturbance
environment inside the boundary layer in the case of surface roughness.

Finally, a situation has been herein studied, where unsteady and steady
cross-flow vortices co-exist in the boundary layer. This is the case when free-
stream turbulence acts on a three-dimensional boundary layer over a plate with
localized wall roughness. As stated in the review by Saric et al. (2003), the sta-
tionary cross-flow vortices dominate the pre-transitional boundary layer when
the intensity of the free-stream turbulence is low. This has been confirmed here:
For low-amplitude roughness and an inflow turbulence intensity of about 0.4%
the total boundary-layer disturbance is dominated by the steady contribution
triggered by the roughness, while at a turbulence level of 0.8% the unsteady
cross-flow instability is more energetic than the steady mode. This is also in line
with the estimation given in Schrader et al. (2008), where the threshold above
which travelling cross-flow waves become important has been found for a free-
stream disturbance amplitude around 0.5%. Thus, for the boundary-later flow
examined here, even in the presence of two distinct disturbance sources, where
nonlinear interactions could be expected, a correct prediction of the transition
location can be obtained investigating the development of individual cross-flow
modes.

In summary, the receptivity coefficients obtained from the simplified lin-
ear models used in Schrader et al. (2008) can be combined with established
transition-prediction tools such as the eN -method to provide a refined predic-
tion method including the receptivity process. This presumes, however, the
exact knowledge of the receptivity coefficients for the disturbances being rel-
evant in the flow of interest. In Schrader et al. (2008) it has been shown
that simplified methods with less computational costs than DNS or LES, for
instance the method based on Finite-Reynolds Number Theory (e.g. Crouch
(1992); Choudhari (1994)), can provide accurate enough receptivity coefficients
for different flows and disturbance conditions. However this is not always the
case; Collis & Lele (1999) investigated by direct numerical simulation the re-
ceptivity to roughness close to the leading edge of a parabolic body. The
results show that receptivity is enhanced by convex surface curvature and sup-
pressed by non-parallelism. Comparing the receptivity coefficients from the
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direct numerical simulations with several theoretical approaches, these authors
concluded that the accurate prediction of cross-flow instability receptivity near
a realistic leading edge must account for the strongly non-parallel flow near the
upstream neutral point. Unfortunately, stability predictions using a perturba-
tion approach for non-parallel effects proved inadequate for the most dangerous
cross-flow mode for the conditions studied in this work. A similar indication
on the relevance of the leading-edge region was drawn in Schrader et al. (2008)
when analyzing the receptivity to free-stream vortical modes. Thus, while the
good news are that receptivity coefficients obtained for single modes appear to
be sufficient to predict the transition location in swept boundary layers even
in the presence of free-stream turbulence, simpler perturbation approaches for
theoretical non-parallel receptivity prediction may prove inadequate. Further
research is indeed required to verify this claim.

The authors wish to acknowledge Philipp Schlatter, Antonios Monokrousos,
Ardeshir Hanifi and Dan Henningson for fruitful discussions. The PSE data
used were kindly provided by David Tempelmann. This research is supported
by VR (The Swedish Research Council). SNIC computing facilities located at
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Receptivity of the two-dimensional boundary layer developing on a flat plate
with elliptic leading edge is studied. Vortical perturbations in the oncoming
free stream are considered, impinging on two leading edges with different aspect
ratio to identify the effect of bluntness. The relevance of the three vorticity
components of a realistic free-stream turbulence field is illuminated by consid-
ering axial, vertical and spanwise free-stream vorticity separately at different
angular frequencies. It has been found that the boundary layer is most receptive
to low-frequency axial vorticity, triggering a streaky disturbance pattern dom-
inated by alternating positive and negative streamwise perturbation velocity.
This is in line with earlier numerical studies on the flat-plate boundary layer
disregarding the leading edge, and we find that the effect of leading-edge blunt-
ness is weak in the presence of axial free-stream vortices alone. On the other
hand, the spanwise free-stream vorticity component is also able to excite non-
modal instability in particular at low frequencies, and the upstream transient
boundary-layer response to this kind of forcing is considerably stronger when
the leading edge is blunt. It can thus be concluded that the total boundary-
layer response to a full free-stream turbulence field is enhanced especially in the
presence of a bluff leading edge. Vertical free-stream vortices are found to be
least relevant for the excitation of boundary-layer instability. At high frequen-
cies the boundary layer becomes receptive for Tollmien-Schlichting (TS) modes
in particular due to spanwise free-stream vorticity. However, the amplitude of
the TS waves is small compared with the streak amplitudes for the boundary
layers and the free-stream perturbations investigated here.

1. Introduction

In early numerical receptivity studies on flat-plate boundary-layer flow under
free-stream disturbances the effects of the leading edge have not been taken into
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account. Instead, the plate has been assumed to be infinitely thin and the focus
has been on the boundary-layer region downstream of the leading edge. An
example is the work on acoustic receptivity based on Finite Reynolds-Number
Theory, e.g. in Crouch (1992) and Choudhari & Streett (1992). Flow around a
flat plate of finite thickness with an upstream vortical free-stream disturbance
has theoretically been investigated by Goldstein & Wundrow (1998). Since
the 1990s there is also a larger number of numerical simulations on acoustic
receptivity of flow around leading edges. Here, we present results obtained by
means of the Spectral-Element Method with the aim to study the receptivity
to free-stream vorticity of flow over a flat plate with blunt and sharp elliptic
leading edge.

1.1. Leading-edge receptivity to sound

In most numerical studies about receptivity to free-stream perturbations in
combination with leading-edge effects the focus is on free-stream sound. Lin
et al. (1992) investigate receptivity of the two-dimensional boundary layer on
a flat plate with elliptic leading edge to a planar sound wave of frequency pa-
rameter F = 110, 230 and 333. The acoustic disturbance is modelled through
an unsteady free-stream boundary condition for the streamwise velocity com-
ponent. Three leading-edge aspect ratios are considered, a:b = 3, 6 and 9.
Further, Lin et al. (1992) introduce the modified super-elliptic (MSE) lead-
ing edge with zero curvature at the juncture to the plate and with nearly the
same nose radius of curvature as the ordinary elliptic leading edge. The mean
flow is at Reynolds number Reb = 2400 based on the plate half-thickness b.
The authors find that receptivity of Tollmien-Schlichting (TS) waves to sound
decreases with increasing aspect ratio (decreasing nose radius). The total recep-
tivity, i.e. the sum of the contributions from the leading edge and the juncture,
remains nearly constant when replacing the ordinary elliptic leading edge by
a MSE shaped of same aspect ratio. The contribution of juncture receptivity
to the downstream TS amplitude is substantial (up to 50%), which is due to
the decay of the leading-edge induced TS wave upstream of branch I. Fuciarelli
et al. (2000) present results obtained for a MSE leading edge with aspect ratio
a:b = 6 and a mean flow at Reb = 2400, as in Lin et al. (1992). Receptivity is
measured in terms of branch-I coefficients in that work. Moreover, the effect of
angle of incidence of the sound wave is studied with the result that receptivity
is more than four times as efficient at an angle of 15◦ than in the symmetric
case.

Wanderley & Corke (2001) consider sharper MSE leading edges with as-
pect ratios of a:b = 20 and 40. The Reynolds number is again Reb = 2400
when based on plate half-thickness and ReL = 106 when expressed in terms
of the plate length. The frequency parameter of the acoustic forcing is varied
between F = 30 and 120. The authors do not only show branch-I receptivity
coefficients but also extrapolated coefficients at the leading edge. While the
TS-wave amplitude at branch I is again the weakest for the sharpest leading
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edge, the opposite holds for the receptivity amplitude at the leading edge. This
is due to the larger decay rate of the TS wave from the leading edge to branch
I in the lower adverse pressure gradient of the 40 : 1 leading edge. Wander-
ley & Corke (2001) also show the superposition of TS instability triggered at
the leading edge and at the junction with the plate, which becomes apparent
through local maxima and minima in the receptivity amplitude when plotted
versus the downstream coordinate.

1.2. Leading-edge receptivity to vortical free-stream disturbances

In comparison with receptivity to sound, less publications on leading-edge re-
ceptivity to free-stream vortical disturbances are available. Buter & Reed
(1994) present results obtained for a two-dimensional plate with MSE lead-
ing edge of aspect ratio 6 and a baseline flow at Reynolds number Reb = 2400,
as in Lin et al. (1992). The free-stream disturbance, however, is of vortical
type and imposed along parts of the far-field boundary. Both symmetric and
asymmetric vortical disturbances with respect to the airfoil axis are consid-
ered, and the frequency parameter is F = 230. The asymmetric perturbation
results in an oscillating vertical disturbance component at the nose (oscillating
stagnation point), leading to larger TS-wave amplitudes as compared with the
symmetric vortical forcing. The TS-mode amplitudes are found to depend lin-
early on the forcing amplitude for both symmetric and asymmetric free-stream
vorticity. However, both types of vortical disturbances cause weaker receptivity
for TS waves than free-stream sound presented in Lin et al. (1992). Buter &
Reed (1994) also investigate the influence of surface curvature by replacing the
ordinary elliptic leading edge by the MSE type. Although receptivity at the
juncture to the plate becomes weaker for the smoother MSE leading edge the
total receptivity increases due to a larger pressure-gradient maximum and an
upstream shift of branch I of the TS instability.

Due to the limitation to two spatial directions, the study of Buter & Reed
(1994) is restricted to spanwise free-stream vorticity. As soon as streamwise
vortices are present the disturbance environment inside the boundary layer and
the transition scenario change. Modal boundary-layer disturbances like TS
waves are no longer dominant, while non-modal streaky structures become im-
portant. This so-called bypass transition has been extensively studied in wind-
tunnel experiments on flat-plate flow, e.g. by Kendall (1985, 1998) and Mat-
subara & Alfredsson (2001); Fransson et al. (2005), revealing the importance of
low-frequency chordwise free-stream vortices for the excitation of the primary
streaks. In Bertolotti & Kendall (1997) an experiment with a controlled axial
free-stream vortex generated by a micro wing upstream of the leading edge is
described. This type of disturbance is in fact shown there to be efficient in
exciting non-modal streak-like instability in the boundary layer. A comparison
between measured and numerically obtained disturbance-amplitude functions
is also included in Bertolotti & Kendall (1997) and exhibits good agreement.
In most of theses wind-tunnel experiments the plates were equipped with an
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elliptic leading edge, which highlights the relevance of this geometry also for
numerical simulations. There are numerical studies on bypass transition of the
flat-plate boundary layer available in literature, for instance in Jacobs & Durbin
(2001), Brandt et al. (2004) and Zaki & Durbin (2005). The leading edge is not
included there; however, the characteristic structures of bypass transition ob-
served in the experiments could be reproduced in these simulations. Nagarajan
et al. (2007) consider the effect of leading-edge bluntness on bypass transition
through a mixed DNS/LES approach (DNS inside the boundary layer, LES in
the free stream). The leading edge is of super-elliptic shape with two aspect
ratios, a:b = 6 and 10. Homogeneous isotropic turbulence is imposed at the in-
flow plane, and the turbulence intensity is set to Tu = 3.5% and 4.5%, while the
integral length scale is Lt = 0.03a and Lt = 0.045a. The mean-flow Reynolds
number based on the semi-major axis a of the leading edge is Rea = 50000.
The authors show that for the sharper leading edge and lower turbulence inten-
sity studied, transition is initiated through instabilities on low-speed streaks, as
demonstrated before by Jacobs & Durbin (2001) and Brandt et al. (2004). In
contrast, increasing the leading-edge bluntness and/or the turbulence intensity
leads via the growth of a localized, wave-packet like streamwise vortical distur-
bance to transition, and the onset of transition is moved upstream. Xiong &
Lele (2007) investigate by means of LES the flow around an isothermal leading
edge exposed to free-stream turbulence. They consider a blunt leading edge
in the form of a regular ellipse with aspect ratio a:b = 3. The mean flow is
at ReD = 42000, where D is the leading-edge diameter of curvature, and the
free-stream turbulence intensity and length scale are Tu = 5% and Lt = 0.1D,
respectively. The focus of their work is on the explanation of heat-transfer
enhancement typically observed around the leading edge in stagnation-point
flows, when free-stream turbulence is present.

Since the model for vortical free-stream perturbations used in Nagarajan
et al. (2007) and Xiong & Lele (2007) – numerically generated isotropic tur-
bulence – is already rather complex, it is difficult to extract details about the
early receptivity process from their data. The purpose of this work is to employ
simpler models for free-stream vorticity by considering streamwise, wall-normal
and spanwise free-stream vortices separately.

2. Numerical approach and flow configuration

2.1. Numerical method

The results are obtained by using the Spectral-Element Method (SEM) pro-
posed by Patera (1984) to solve the three-dimensional time-dependent incom-
pressible Navier-Stokes equations. The implementation used here has been de-
veloped and described by Tufo & Fischer (1999). Within the SEM the physical
domain is decomposed into sub-domains called spectral elements. In three-
dimensional space these can be for instance hexahedra, tetrahedra, prisms or
pyramids with or without deformation, allowing for geometric flexibility and
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hence applicability to complex engineering problems. The SEM shares this flex-
ibility with the Finite-Element Method (FEM) and is likewise a local approach.
The major difference between SEM and FEM is in the choice of the basis func-
tions to represent the solution to the governing equations on the elements:
While piece-wise linear profiles are usually addressed in the FEM framework,
high-order orthogonal polynomials are employed in the SEM. In the original
implementation by Patera (1984) the Lagrange interpolation polynomials were
defined on Gauss-Lobatto-Chebyshev points, whereas the simulation code em-
ployed here builds on interpolation at Gauss-Lobatto-Legendre (GLL) nodes.
The expansion for the flow variables reads,

~u[~x(l)(r, s, t)] =

N
∑

i=0

N
∑

j=0

N
∑

k=0

~̂u
(l)
ijkhi(r)hj(s)hk(t) . (1)

(r, s, t)T is the local coordinate vector for element l, and ~x(l) is the mapping onto
the global GLL mesh; hi, hj and hk are the N th-order Lagrange polynomials

in the three local spatial directions of element l and ~̂uijk is the nodal spectral
velocity coefficient. The polynomial order N of the basis functions is usually
between 7 and 15 and is identical in the three spatial directions here. The
spectral nature of the SEM is reflected in the exponential convergence of the
solution for sufficiently smooth flow fields, as the resolution of the numerical
domain is refined by raising the polynomial degree N . Apart from this so-called
p-refinement the SEM provides a second refinement strategy, the h-refinement,
through reduction of the size of the spectral elements. This allows for localized
refinement of the computational domain, in contrast to the grids used in global
spectral methods.

The time integration of the Navier-Stokes equations in the present SEM
simulation code is discussed at length in Fischer (1997) and employs a high-
order operator-splitting method for the temporal discretization such as in
Maday et al. (1990). The convective terms are computed either with an
explicit third-order Adams-Bashforth scheme or via a third-order backward-
differentiation method, where the latter has been used for the present simula-
tions. The spatial discretization follows from a variational formulation (see for
example Fischer et al. 2002).

Besides the availability of local refinement, the paramount benefit of the
SEM is its suitability for element-wise parallelization of the computations. The
implementation by Tufo & Fischer (1999) used here is optimized for simulations
on large parallel supercomputers.

2.2. Base flow

Semi-infinite flat plates with leading edges of modified super-elliptic shape
(MSE) are considered. The super-ellipse is defined by

(y

b

)2

= 1 −
(

a − x

a

)p

, (2)
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Figure 1. (a) Leading edge with aspect ratio a:b = 6 of MSE
(—–) and ordinary elliptic shape (----). The y axis is five
times enlarged. (b) Surface curvature of the leading edges in
(a). The dotted line marks the juncture between leading edge
and flat plate.

where the exponent p is

p = 2 +
(x

a

)2

. (3)

This type of geometry has been proposed in Lin et al. (1992), as it provides
smoothness in curvature at the juncture to the plate, in contrast to an ordinary
ellipse. a and b are the semi-major and -minor axes of the ellipse. The exponent
p rises smoothly from 2 to 3 from the tip of the leading edge to the juncture
with the plate, which results in zero-curvature at the juncture. To identify the
influence of leading-edge curvature and thus mean-flow pressure gradient, two
leading edges are herein investigated, a blunt one with aspect ratio a:b = 6
and a sharp one with a:b = 20. Figure 1(a) shows the 6:1 MSE leading edge
in comparison to a leading edge with ordinary elliptic shape. The MSE type
is slightly fuller than the ordinary elliptic type; however, the most remarkable
feature is the smoothness in curvature at the junction with the plate seen in
figure 1(b).

Figure 2 displays the mesh around the 6:1 leading edge, on which the
governing equations are discretized. In (a) the elements in the upstream part
of the grid are depicted, while (b) gives a close-up view of the nose region
including the distribution of the GLL nodes inside the spectral elements. In
the upstream region of the grid the full body is meshed, which allows for the
introduction of disturbances being non-symmetric about the symmetry plane
of the body. A large portion of the mesh is clipped in the lower part of the
domain to reduce the computational effort. Since the base flow is independent
of the spanwise direction, a two-dimensional grid is sufficient to compute it.
The parameters of the mesh are listed in table 1. The number of elements in
tangential direction is slightly raised in the grid around the body with the 20:1
leading edge, as its sharper nose needs a finer resolution. Note that some of the
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Figure 2. Computational grid for the leading edge with as-
pect ratio a:b = 6. (a) Distribution of the spectral elements in
the upstream part of the body. (b) Close-up view of the nose
region. Grey dots: Gauss-Lobatto-Legendre (GLL) points.

Table 1. Parameters of the numerical grids used to compute
the two-dimensional basic an the three-dimensional unsteady
flow: Size of the domain in axial, vertical and spanwise direc-
tion (Lax ×Lvt ×Lsp), number of spectral elements in tangen-
tial, normal and spanwise direction (ntg ×nno ×nsp), spectral
polynomial order N and total number of degrees-of-freedom
Ntot.

a:b Lax × Lvt × Lsp ntg×nno×nsp N Ntot

Mean flow 6 0.324 × 0.08 69 × 11 9 62200
20 0.324 × 0.08 72 × 11 9 64900

Unsteady flow 6 0.324× 0.08× 0.036 69 × 11 × 8 9 4540600
20 0.324× 0.08× 0.036 72 × 11 × 8 9 4737700

elements in surface-tangential direction are located below the symmetry plane
of the body. For the numerical grid around the blunt body with 6:1 leading
edge, for example, 50 out of the 69 elements in tangential direction are located
above the axis of symmetry. The polynomial order inside the elements is 9
in either directions. Thus, the number of points in tangential direction is 622
with 451 points above the symmetry plane, and 100 points are used in normal
direction.

The semi-minor axis b of the elliptic leading edge, which is at the same time
the half-thickness of the plate, is set to b = 2.4·10−3. The reference velocity U∞

is one, and the kinematic viscosity is chosen such that the Reynolds number
based on b is Reb = U∞b/ν = 2400, as in Lin et al. (1992), Buter & Reed
(1994) and Wanderley & Corke (2001). The outflow boundary is located at
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ReL = U∞L/ν = 288000, where L is the length of the body captured in the
domain.

On the wall no-slip conditions are prescribed. The condition for the mean
flow along the far-field boundary (inflow plane and free-stream boundary) is
of Dirichlet type and is obtained from a potential-flow solution around the
body thickened by the displacement thickness of the boundary layer on it. The
thickness of the layer is estimated by combining a preliminary inviscid solution
with a boundary-layer solver. This procedure allows for far-field boundaries
located rather close to the body, while the desired zero-pressure gradient along
the flat plate is still obtained. The inflow plane is 15 plate half-thicknesses
ahead of the nose of the body, where the free stream is still nearly uniform and
the presence of the body is hardly felt. This is seen in figure 3 showing the far-
field boundary conditions for the mean velocities when the blunt obstacle with
a:b = 6 is considered. The axial velocity defect on the stagnation streamline
is less than 2.5% of the reference velocity U∞, and the displacement expressed
in vertical mean velocity is about ±1% of U∞. Varying the inflow location
revealed that the chosen position is an adequate compromise between the two
intentions of obtaining inflow uniformity on the one hand and limiting the
upstream domain size and thus the computational cost on the other hand.
Note also that the deviance from the uniform inflow is less for the flow around
the sharp body with a:b = 20. The upper and lower free-stream boundaries
are 16.7 times the half-thickness away from the centerline of the body. This
corresponds to a distance between the flat plate and the free-stream boundary
of 12.5 outflow boundary-layer thicknesses δout

99 . At the outflow boundaries
above and below the symmetry plane a von-Neumann condition implying zero
mean stress is applied to U and V .

2.3. Perturbed flow

The perturbed flow is computed on a three-dimensional mesh, the x-y planes of
which correspond to the two-dimensional base-flow grid. In spanwise direction
8 spectral elements with a total of 73 points are used, and the width of the
domain is 15 times the plate half-thickness. The three-dimensional simulations
are initialized with the plane base flow, and a periodic condition is applied at
the spanwise boundaries of the computational domain.

Time-dependent vortical free-stream disturbances are imposed at the inlet
boundary of the domain. The study is separated into three parts by considering
free-stream perturbations composed of only one vorticity component at a time,
that is, the other two components of the vorticity vector (ξ, η, ζ)T are put to
zero. Disturbance velocities representing pure axial vorticity, for instance, can
be derived from the definition of ξ and the incompressibility constraint,

ξ =
∂w

∂y
− ∂v

∂z
, (4a)

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
. (4b)
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Figure 3. Dirichlet conditions for the mean flow at the far-
field boundaries, extracted from the potential-flow solution
around the blunt body (a:b = 6 with b = 2.4 · 10−3) thick-
ened by the displacement thickness. (a) Axial and (b) vertical
mean velocity.

The vorticity and velocity component pointing in the same direction (ξ and u
here) evolve independently of each other in a uniform free stream. Therefore,
without loss of generality, the disturbance velocity parallel to the non-zero
vorticity component is set to zero in the inflow region, and the corresponding
term on the right-hand side of (4b) is dropped. However, a disturbance field
with one vorticity component alone is sustained only in the absence of mean
shear, as is the case in the flow field far upstream of a body. Figure 3 shows,
though, that the mean flow is weakly sheared at the inflow plane such that a
small adjustment of the vortical disturbance to the underlying flow is expected.
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Assuming spatially periodic solutions, that is, Fourier modes of the form

φ = φ̂ei(αx+βz+γy), where φ is a placeholder for the velocity respective vorticity
components, system (4) can be rewritten as

iξ̂ = βv̂ − γŵ , (5a)

0 = γv̂ + βŵ . (5b)

The velocity amplitudes v̂ and ŵ can therefore be expressed in terms of the

streamwise vorticity ξ̂,

v̂ =
iβ

β2 + γ2
ξ̂ and ŵ = − iγ

β2 + γ2
ξ̂ . (6)

v̂ and ŵ are thus obtained by selecting a certain wavenumber vector (γ, β)T in
the inflow plane, the size Ly×Lz of which defines the fundamental wavenumber
(γ0, β0)

T = 2π(1/Ly, 1/Lz)
T . Here, 19 modes with spanwise wavenumbers

ranging from 0 to 18 times β0 are superposed, and the normal wavenumber is
5 times γ0. The total disturbance is then

φ = Re







18
∑

j=0

φ̂je
i(αx+βjz+5γ0y+θr,j)







, (7)

where θr is a random phase angle. The vorticity amplitude ξ̂ in relation (6)
can be arbitrarily chosen and is set to one here, implying that the vorticity of
the 19 components in the sum of (7) is equal. The total disturbance velocities
v and w in the form of (7) are scaled such that the mean fluctuation amplitude
εv on the inflow plane, defined here as

εv =

√

0.5(v2 + w2) , (8)

is εv = 10−4. The bar in equation (8) denotes the vertical average of the span-
wise root mean square of the disturbance velocities. The chordwise wavenumber
α in the oscillatory term in (7) can be freely selected and is in practice replaced
by the angular frequency ω via Taylor’s hypothesis, assuming U∞ = 1 at the
inlet boundary.

The velocity amplitude functions resulting from wall-normal vorticity η
plus v = 0 and spanwise vorticity ζ along with w = 0 are derived in the same
way as shown above, and the expressions read

û = − iβ

α2 + β2
η̂ and ŵ =

iα

α2 + β2
η̂ (9)

in the case of vertical vorticity and

û =
iγ

α2 + γ2
ζ̂ and v̂ = − iα

α2 + γ2
ζ̂ , (10)

when pure spanwise vorticity is considered. In the expression (8) for the distur-
bance amplitude εv, v and w are substituted by the respective non-zero velocity
components. Again, α in the above relations is replaced by the frequency ω,
herein expressed in terms of the frequency parameter F = (ν · 106/U2

∞
)ω. The
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ûi

z

β/β0

−0.01 0 0.01

−2

0

2

x 10
−4

0 10 20
0

1

2

x 10
−6

(b)

ui

ûi
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Figure 4. Vortical free-stream disturbances at the inflow
plane with normalized frequency F = 96. Streamwise (—–
), vertical (----) and spanwise (—–, grey) disturbance veloci-
ties in physical (top) and wavenumber space (bottom) corre-
sponding to (a) axial vorticity (ξ, 0, 0)T , (b) vertical vorticity
(0, η, 0)T and (c) spanwise vorticity (0, 0, ζ)T . The curves are
extracted at y = 1.4 · 10−2. The symbols in the bottom plots
mark the β0 = 0 contribution, the fundamental β1 component
and its harmonics. The dotted line shows the cut-off wavenum-
ber.

resulting disturbance velocities ensure a divergence free incoming field and are
shown in figure 4. In (a) the free-stream perturbation is characterized by axial,
in (b) by vertical and in (c) by spanwise vorticity, and the normalized frequency
is F = 96. The profiles are plotted versus the spanwise coordinate z (top) and
wavenumber β (bottom) at a fixed vertical level above the symmetry plane of
the plate. The representation in spectral space indicates the contribution of
the components with different spanwise wavenumber to the total perturbation
and follows from equations (6), (9) and (10) along with the constraint of equal
vorticity in all components. Note that the individual spectral components of
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Table 2. Parameters for the leading edge and the free-stream
vortical disturbances.

a:b 6:1 20:1
Vort. comp. ξ, η, ζ ξ, η, ζ

F 16, 96 16, 96

the spanwise vortical free-stream disturbance in figure 4(c) are all at equal
strength, following from the independence of (10) from β. In contrast, the ax-
ial and vertical disturbance-vorticity fields are dominated by low-wavenumber
components. Further note that the mean component β = 0 is a sinusoidal
function of the normal coordinate y with zero average across the vertical coor-
dinate, i.e. the mean flow is not altered on average by the perturbation. At the
vertical level chosen in figure 4 the mean contribution has its maximum.

3. Results

Results are obtained for a blunt and a sharp MSE leading edge to capture the
effect of nose radius, surface curvature and the resultant pressure distribution
on receptivity to free-stream vortices. Only one component of the vorticity
vector (ξ, η, ζ)T is not zero at a time, that is, receptivity to axial, vertical and
spanwise free-stream vorticity is studied separately to isolate the single contri-
butions. Further, the effect of angular frequency is illuminated by considering
low as well as high values for the frequency parameter F . Spanwise size and
resolution of the computational domain are chosen to accommodate 18 differ-
ent spanwise wavelengths, of which the shortest is about 0.8 times and the
longest 15 times the plate half-thickness b (0.6 times and 11.3 times the 99%
boundary-layer thickness δout

99 at the outflow plane). The vortical disturban-
ces also contain a component with spanwise wavenumber β = 0. The vertical
wavenumber γ is chosen such that the normal length scale is about 6.7 times
as large as b (5 times δout

99 ). The amplitude of the free-stream perturbation
is εv = 10−4 such that nonlinear interaction between disturbance structures
of different spanwise scales remains small. In summary, the parameter study
amounts to the 12 simulations compiled in table 2.

3.1. Basic flow

3.1.1. Validation of the far-field boundary conditions

In order to validate the method described in subsection 3.1 to compute the
Dirichlet boundary conditions for the basic flow we have chosen to compare
the pressure distribution obtained through two-dimensional simulations with
the present SEM code with results published in Wanderley & Corke (2001).
There, a 20:1 and a 40:1 MSE leading edge are considered. Figure 5 depicts
the chordwise distribution of the pressure coefficient cp. As seen from the plot,
the desired constant pressure is obtained downstream in the flat-plate region of
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Figure 5. Chordwise distribution of the pressure coefficient
along a body with 20:1 and with 40:1 leading edge. Compari-
son with results published in Wanderley & Corke (2001).

the body, and good agreement between the cp-curves calculated here and those
shown in Wanderley & Corke (2001) is observed for both leading edges.

3.1.2. Mean flow

Figure 6 gives a characterization of the mean flow around the body with blunt
(6:1) and sharp leading edge (20:1) in comparison with Blasius boundary-layer
flow. In (a) the pressure coefficient cp is plotted versus the streamwise coordi-
nate x. The juncture with the plate is located at x = 0 for both bodies. The
suction peak on the blunt leading edge is more distinct and located nearer the
junction than on the sharp one, and the adverse pressure gradient is stronger.
Therefore, the constant pressure distribution expected in the flat plate region
is attained further downstream on the body with blunt nose. Figure 6(b) shows
the mean wall vorticity ζw along the surface coordinate s. As expected, the ζw

distribution according to the Blasius approximation is reached further upstream
on the plate with slender leading edge. In (c) the boundary-layer displacement
thickness δ∗ is displayed versus s. While δ∗ follows the

√
s distribution typical

for the zero pressure-gradient boundary layer downstream of the junction, it
increases more rapidly on the curved part of the surface than it would do in
Blasius flow. In particular on the blunt leading edge the boundary layer grows
faster in the region of flow deceleration.

3.2. Unsteady flow

Unsteady flow caused by vortical free-stream perturbations is considered. First,
a preceding study on a two-dimensional grid involving spanwise free-stream
vortices is carried out to estimate the significance of Tollmien-Schlichting (TS)
instability. Subsequently, results from three-dimensional simulations charac-
terizing the behavior of the vortices in the free stream are presented to show
how the perturbation field prescribed at the inflow plane changes due to the
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Figure 6. Comparison of the mean flow past the blunt (—–,
a:b=6) and the sharp leading edge (----, a:b=20) with the Bla-
sius boundary layer (—–, thin). (a) Pressure coefficient versus
streamwise coordinate. The juncture with the plate is located
at x = 0, as indicated by the dotted line. (b) Wall vorticity
versus surface coordinate. The juncture is marked with sym-
bols (◦, a:b=6; ⋄, a:b=20). (c) Displacement thickness. The
symbols in (c) correspond to those in (b).

presence of the body as the vortices are convected downstream. The knowl-
edge of the downstream variation of the free-stream disturbance is crucial, since
free-stream modes are a non-localized disturbance source acting on the entire
boundary layer. In the second part, the response of the layer to the different
vortical components of the free-stream disturbance is investigated. Receptivity
to perturbations of different angular frequency is discussed, and the effect of
leading-edge bluntness on receptivity to free-stream vorticity is identified.

3.2.1. TS instability

Simulations on a two-dimensional domain similar to those in Buter & Reed
(1994) have been performed. The grid resembles that for the mean flow listed
in table 1 except for the number of elements in tangential direction, ntg, which
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Figure 7. (a) Boundary-layer response to spanwise free-
stream vorticity with β = 0, F = 96 and εv = 10−4. In-
stantaneous disturbance velocities u (top) and v (bottom) in
the x-y plane. Leading edge with aspect ratio a:b = 6. (b)
Wall-normal maximum of the r.m.s. of u (—–) and v (----)
normalized by εv for the blunt (a:b = 6, black lines) and the
sharp leading edge (a:b = 20, grey lines).

has been increased to 125 for the blunt and 136 for the sharp leading edge.
Therefore, the outflow Reynolds number is ReL = 7.7 · 105. Spanwise free-
stream vorticity with the same vertical wavenumber as that in figure 4(c) is
considered, but only the spanwise wavenumber β = 0 is included. The ampli-
tude of the free-stream disturbance is εv = 10−4 and the frequency is F = 96.
Figure 7 shows the response of the boundary layer to this kind of forcing. In
(a) planes of streamwise and vertical disturbance velocity u and v are shown
for the blunt leading edge, a:b = 6, and in (b) the r.m.s. of u and v, normalized
by the forcing amplitude, is displayed for both leading edges. Both plots show
that TS instability is observed at F = 96 and that the entire unstable region is
captured inside the domain. In figure 7(b) it is apparent that the amplitude of
the TS waves is more than three times larger for the blunt leading edge than
for the sharp one. However, the normalized amplitude achieves a maximum of
only 7.5% of the amplitude of the oncoming free-stream disturbance, i.e. TS
instability is weak even on the plate with blunt nose.

3.2.2. Free stream

In the following results from three-dimensional simulations with free-stream
perturbations like those in figure 4 are presented. Figure 8 illustrates the
downstream evolution of the vortical free-stream disturbances at two vertical
levels: near the boundary-layer edge and far above it. Plots (a), (b) and
(c) show the root mean square (r.m.s.) in time and spanwise direction of the
disturbance velocities due to axial, vertical and spanwise free-stream vorticity at
a frequency of F = 16. In (d), (e) and (f) the evolution of the velocities is shown
for F = 96. It is apparent in particular in (e) and (f) for the high frequency
that the zero velocity component at the inflow plane is rapidly forced when the
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Figure 8. Downstream evolution of the free-stream perturba-
tion. The disturbance amplitude at the inlet is εv = 10−4. The
r.m.s. in time and spanwise direction of the three disturbance
velocities u (—–), v (----) and w (-·-·-) is displayed at two ver-
tical levels: near the boundary-layer edge at y = 6.6 · 10−3

(1.3δout
99 , thick black curves) and far in the free stream at

y = 2.4 · 10−2 (6.8δout
99 , thin grey lines), where δout

99 is the
boundary-layer thickness at the outflow. (a)–(c) F = 16; (d)–
(f) F = 96. (a) and (d) Axial free-stream vorticity; (b) and (e)
vertical free-stream vorticity; (c) and (f) spanwise free-stream
vorticity.

flow approaches the body. Two regions of adjustment are observed: an initial
adaptation at the inflow plane related to the tilting of the incoming vorticity
by the curved streamlines around the obstacle and an adjustment due to the
attachment of the flow to the body, apparent as a ”jump” in the curves. In the
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case of vorticity (0, η, 0)T in plot (b) and (e) the mean shear leads to a tilting
of the vertical vorticity parcels around the z axis such that the streamwise
disturbance velocity decreases in favor of the normal component. In (c) and (f)
it is seen that the spanwise vortex parcels are tilted around the x axis, which
leads to an increase of the spanwise disturbance account of the normal velocity
component. This mechanism is caused by the velocity fluctuations rather than
the mean flow. No rapid forcing of the zero u component at the inflow plane is
in contrast seen in figures 8(a) and (d) since the mean shear is not able to tilt the
axial vortex tubes. Moreover, the figures show the expected downstream decay
of the disturbance velocities. The spanwise vortical free-stream perturbation
displayed in (c) – especially its streamwise velocity component – suffers from
the strongest decay, as it also contains significant energy at the smallest scales,
compare with figure 4(c).

In summary, figure 8 shows that the mean flow and the fluctuations cor-
rect the free-stream perturbation prescribed at the inflow plane by tilting and
stretching the vortex tubes. The vortices with short streamwise scale at F = 96
are more sensitive to these processes than those with large streamwise length
scale at F = 16. The adjustment is fast such that the free-stream disturbance
is physically correct when it impinges on the obstacle. Tilting and stretching of
free-stream vortices is generally observed in flows around aerodynamic bodies,
and these processes will have an impact on the receptivity of the boundary
layer. An example is a field of homogeneous isotropic turbulence generated
by a turbulence grid in a wind tunnel, which will become anisotropic as it
approaches the aerodynamic model in the test section.

3.2.3. Boundary layer

Figure 9 provides an illustration of the boundary-layer response to a low-
frequency free-stream disturbance with axial vorticity at F = 16 – (a) to
(c) – and to a high-frequency free-stream perturbation of spanwise vorticity
at F = 96 – (d) to (f). As shown in figure 4 the axial free-stream vortical
disturbance is dominated by large velocity structures, whereas in the span-
wise vorticity field, the smallest prescribed wavelengths are also visible. The
length-scale distribution in the free stream is enforced around the nose of the
body, as seen in figure 9(a) and (d). However, further downstream where the
boundary layer forms, the disturbance environment is characterized by smaller
spanwise scales than those in the attachment region in (a), whereas the forced
scales in (d) are sustained. The free-stream perturbation enforces also a stream-
wise length scale upon the flow inside the boundary layer, see figures (b) and
(e). The elongated low-frequency streamwise disturbances in (b) due to ax-
ial free-stream vorticity persist inside the entire layer and grow in amplitude
downstream. The structures in (e) are, by contrast, only strong in the curved
part of the body while decaying in the flat-plate region. Clearly, the strength
of the boundary-layer response to low-frequency axial vorticity is significantly
larger than that to high-frequency spanwise vortical modes. Figures 9(c) and
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Figure 9. Boundary-layer response to vortical free-stream
perturbations with axial vorticity at a frequency of F = 16,
(a)–(c), and spanwise vorticity at F = 96, (d)–(f). The instan-
taneous streamwise disturbance velocity is shown; in (c) and
(f) the vertical and spanwise components are also included.
Plots (a) and (d) display the region around the nose of the
body, (b) and (e) illustrate the maximum disturbance levels
inside the boundary layer and (c) and (f) depict the location
of the dominant axial, vertical and spanwise disturbance struc-
tures on the x-y plane at z = 0.
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Figure 10. Downstream evolution of the boundary-layer dis-
turbance excited by axial free-stream vorticity with amplitude
εv = 10−4 and frequency parameter (a) F = 16 and (b)
F = 96. The spanwise averaged temporal Fourier transform
of the streamwise disturbance u is shown. The development
of disturbance components with different frequencies is plotted
separately: Steady disturbance, F0 = 0 (—–, grey); fundamen-
tal component, F1 = F (—–, black); first harmonic, F2 = 2F
(----); second harmonic, F3 = 3F (-·-·-). The leading edge
with aspect ratio a:b = 6 is considered.

(f) illustrate the matching between the axial size of the boundary-layer distur-
bance and the streamwise length scale of the free-stream disturbance. It is also
seen that the boundary-layer disturbance is dominated by the stream- and the
spanwise component, whereas the vertical fluctuations are hardly present. The
relevance of low-frequency spanwise disturbance velocity for streak formation
has been pointed out by Leib et al. (1999). As mentioned above, the character-
istic amplitude εv of the free-stream disturbances is small – εv = 10−4 – to limit
nonlinear effects. This is examined in figure 10, showing to which extent the
forcing frequency F and the frequencies F0 = 0, F2 = 2F and F3 = 3F due to
nonlinear interaction are present in the spectrum of the boundary-layer distur-
bance. The curves represent the temporal Fourier transform of the streamwise
disturbance velocity, averaged in spanwise direction. Plot (a) shows the results
for F = 16 and plot (b) those for F = 96. Figure (a) reveals that the boundary-
layer response to low-frequency axial free-stream vortices with F = 16 is clearly
dominated by the component with the fundamental forcing frequency F . The
contributions at zero frequency and the higher harmonics attain in contrast
only small amplitudes. At F = 96, plot (b), the disturbance amplitudes are
in general lower than at F = 16 and they decay downstream. The fundamen-
tal frequency component is still the strongest, but the relative importance of
the steady disturbance has increased to some 20% of the total disturbance,
whereas the higher harmonics are negligible. It can be concluded that non-
linear effects are negligible at low frequency and moderate at high frequency
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Figure 11. Downstream evolution of the boundary-layer dis-
turbance excited by free-stream vorticity with amplitude εv =
10−4 and frequency parameter F = 16. The wall-normal max-
imum of the r.m.s. in time and spanwise direction of the dis-
turbance velocities u (—–), v (----) and w (-·-·-) inside the
boundary layer is displayed. Two leading edges with differ-
ent aspect ratio a:b are considered, and the flow is exposed to
three different vortical free-stream disturbances (ξ, η, ζ)T . (a)
a:b = 6, (ξ, 0, 0)T ; (b) a:b = 6, (0, η, 0)T ; (c) a:b = 6, (0, 0, ζ)T ;
(d) a:b = 20, (ξ, 0, 0)T ; (e) a:b = 20, (0, η, 0)T and (f) a:b = 20,
(0, 0, ζ)T .

for a free-stream disturbance amplitude of εv = 10−4. They become less rel-
evant when the external perturbation is dominated by vertical and spanwise
vorticity (not shown here). Therefore, the subsequent analysis is restricted to
the dominant disturbance components with the fundamental frequency. The
observations from figure 9 are quantified in figures 11 and 12 by considering the
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wall-normal maximum of the r.m.s. of the three disturbance components u, v
and w in the boundary layer. The r.m.s values are computed by averaging in
time and in spanwise direction, and they are normalized with the amplitude εv

of the free-stream disturbance. The plots show the response of the boundary
layer on the plates with blunt and sharp leading edge to axial, vertical and
spanwise vortical free-stream modes. The frequency parameter in figure 11 is
F = 16 and in 12 F = 96. Clearly from figure 11, the free-stream disturbance
dominated by axial vortices is most efficient in triggering boundary-layer insta-
bility. The disturbance exhibits amplification proportional to the growth of the
boundary layer in the upstream region and levels out downstream at a value
being about 13 times larger than the amplitude of the oncoming free-stream
fluctuations. Comparison between figure 11(a) and (d) reveals that the distur-
bance amplitude is slightly larger in the boundary layer on the bluff body and
that the upstream amplification rate in the curved region is somewhat higher.
However, the effect of leading-edge bluntness on receptivity to axial vorticity
is rather moderate. The effect of geometry is, by contrast, larger if the free-
stream perturbation is dominated by vertical and spanwise vortices. This is
concluded from comparing figure 11(b) and (c) with (e) and (f). In partic-
ular the free-stream fluctuations dominated by spanwise vorticity are able to
trigger strong upstream transient growth, which is most notable on the plate
with the blunt leading edge in plot (c). The disturbance obtained is, however,
not the same as in figure (a), and its amplitude diminishes downstream. Plot
(f) shows a weaker disturbance with different amplification in the slender-body
boundary layer. Differences between the response of the layers around the 6:1
and 20:1 leading edge are also identified in figures 11(b) and (e). These plots
reveal that free-stream fluctuations dominated by vertical vortices are signifi-
cantly less efficient in exciting disturbances in the boundary layer than span-
wise and in particular axial vortices. The obtained amplitudes are weak and
the disturbance is dominated by the spanwise velocity component, whereas the
streamwise velocity indicating boundary-layer streaks remains small. Figure 12
displays the boundary-layer response to forcing at higher frequency, F = 96.
The instabilities inside the layer are significantly weaker than those triggered by
low-frequency free-stream perturbations at F = 16 except for the case of ver-
tical free-stream vorticity shown in (b) and (e). Strong transient amplification
is seen in the case of spanwise free-stream vorticity in figures 12(c) and (f), but
the disturbance dies out further downstream. Comparing the two plots reveals
again that upstream transient growth is enhanced by leading-edge bluntness.

To summarize the results in figure 11 and 12, the downstream disturbance
amplitude of the streamwise velocity in the boundary layer is maximum when
axial free-stream vortices act on the layer. Spanwise free-stream vorticity is able
to trigger strong upstream transient growth, while the disturbance amplitude
decays downstream. The boundary layer is clearly least receptive to vertical
free-stream vortices. Finally, we conclude that the disturbance intensity inside
the boundary layer is considerably higher at F = 16 than at F = 96.
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Figure 12. Downstream evolution of the boundary-layer dis-
turbance excited by free-stream vorticity with amplitude εv =
10−4 and frequency parameter F = 96. The wall-normal maxi-
mum of the temporal-spanwise r.m.s. of the three disturbance
velocities u (—–), v (----) and w (-·-·-) inside the boundary
layer is displayed. Two leading edges with different aspect
ratio a:b are considered, and the flow is exposed to three dif-
ferent vortical free-stream disturbances (ξ, η, ζ)T . (a) a:b = 6,
(ξ, 0, 0)T ; (b) a:b = 6, (0, η, 0)T ; (c) a:b = 6, (0, 0, ζ)T ; (d)
a:b = 20, (ξ, 0, 0)T ; (e) a:b = 20, (0, η, 0)T and (f) a:b = 20,
(0, 0, ζ)T .

To investigate the dominant transverse length scales of the boundary-layer
disturbance, the spectral composition ûtz of the streamwise velocity signals
with the fundamental frequency is considered. ûtz is obtained through Fourier
transformation in time and spanwise direction. Figure 13 depicts the results
obtained when free-stream vorticity with F = 16 is considered. The spanwise
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wavenumber composition is shown at two chordwise positions, x1 and x2, where
x1 is located at a distance of 0.048 and x2 of 0.248 length units downstream
of the tip of the plate. For the sharp body, a:b = 20, x1 corresponds to
the junction between the leading-edge region and the flat plate, whereas x1

is located slightly downstream of the junction in the case of the blunt leading
edge, a:b = 6. Figures 13(a) and (d) show that the peak in the curves moves
to slightly higher wavenumbers from location x1 to x2, where it is found at
β4 = 4β0. This corresponds to a wavelength of λ4 = 9 · 10−3, i.e. about three
times the boundary-layer thickness δ99(x2). As seen before, the influence of
the leading-edge geometry is small in a perturbation environment dominated
by axial free-stream vorticity. The differences in amplitude become larger when
vertical free-stream vortices are considered. The blunt leading edge, plot (b),
enhances the boundary-layer response to vertical vortices as compared with the
sharp nose, plot (e). In both cases, the fundamental wavenumber β1 dominates
at x1, whereas two peaks at β3 = 3β1 at β9 = 9β1 are identified downstream at
x2. The amplitudes are, however, irrelevant in comparison with those in figures
13(a) and (d). In the case of spanwise free-stream vorticity the peak at x2 is
obtained at β7 = 7β1, which is about 1.5 times δ99(x2).

Figure 14 reveals that the amplitude peaks are obtained at the same span-
wise wavenumbers for F = 96 as in the low-frequency environment, F = 16,
when axial and spanwise free-stream vortices are considered. In the former
case, the most energetic transverse scales are again about 3 times as large as
the downstream thickness δ99(x2), and in the latter case they are circa 1.5
times δ99(x2). The longitudinal scale is, however, shorter at F = 96 and the
obtained streaks experience attenuation from x1 to x2 instead of amplification.
The forced response due to vertical free-stream vorticity, plots (b) and (e),
dies out rapidly, and no dominant wavenumber can be singled out. This type
of vortical free-stream disturbance is thus unimportant at low as well as high
frequencies. Finally, note that the component (F, β = 0) is very weak in all
plots in figure 13 and 14, that is, TS-instability is difficult to trigger through
the weak vortical disturbances under consideration. The free-stream vorticity
amplitude is εv = 10−4 here, and the disturbance energy is distributed among
19 components with different spanwise wavenumber. The contribution at β = 0
is therefore too weak to excite TS waves with noteworthy amplitudes.

3.2.4. Nonlinear effects

Figure 10(b) suggests that disturbance components at frequencies other than
the fundamental forcing frequency become detectable already at low ampli-
tudes of the high-frequency forcing. In particular a steady disturbance is
visible, entering at second order through interaction between fundamental-
frequency instabilities. The relevance of nonlinear effects at high frequencies
has been pointed out by Leib et al. (1999) who present a theoretical study
on laminar boundary layers subject to vortical disturbances. They attribute
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Figure 13. Fourier transform in time and spanwise direc-
tion of the streamwise disturbance velocity versus the spanwise
wavenumber, plotted at two different streamwise locations x1

(----, 0.048 length units downstream of the nose tip of the
body) and x2 (—–, 0.248 units downstream of the nose). The
frequency of the free-stream vorticity is F = 16. Two leading
edges with different aspect ratio a:b and three different vortical
free-stream disturbances (ξ, η, ζ)T are considered. (a) a:b = 6,
(ξ, 0, 0)T ; (b) a:b = 6, (0, η, 0)T ; (c) a:b = 6, (0, 0, ζ)T ; (d)
a:b = 20, (ξ, 0, 0)T ; (e) a:b = 20, (0, η, 0)T ; (f) a:b = 20,
(0, 0, ζ)T .

the downstream increasing discrepancy between their results and experimen-
tally obtained disturbance amplitudes to the high-frequency components of the
disturbance and suggest nonlinear effects to come into play in a quasi-steady
manner. Here, the case in figure 10(b) is reconsidered (F = 96); however, the
amplitude of the axial free-stream vorticity is 20 times larger than before, i.e.
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ûtz

β/β0

0 10 20
0

0.005

0.01

(e)
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Figure 14. Fourier transform in time and spanwise direc-
tion of the streamwise disturbance velocity versus the spanwise
wavenumber, plotted at two different streamwise locations x1

(----) and x2 (—–), see the caption of figure 13. The frequency
of the free-stream vorticity is F = 96. (a)–(f) are explained in
the caption of figure13.

εv = 2 · 10−3. Figure 15(a) shows the boundary-layer response to such kind
of forcing. The maximum r.m.s. in streamwise velocity u normalized by εv

is displayed versus the chordwise coordinate x. Upstream transient behavior
is followed by downstream amplification being nearly linear in x. This sug-
gests the competition between two growth mechanisms, as clarified in figure
15(b): The upstream transient growth is caused by a directly forced instability
at F = 96, whereas the downstream amplification is in a steady component,
F = 0, which outweighs the amplitude of the directly forced contribution.
It can be concluded that nonlinear interaction between individual disturbance
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Figure 15. Downstream evolution of the boundary-layer dis-
turbance excited by axial free-stream vorticity with amplitude
εv = 2 · 10−3 and frequency parameter F = 96. In (a) the
r.m.s. in time and spanwise direction of the streamwise distur-
bance u is depicted. The spanwise averaged temporal Fourier
transform of u is considered in (b), showing the development
of disturbance components with different frequencies is plotted
separately: Steady disturbance, F0 = 0 (—–, grey); fundamen-
tal component, F1 = F (—–, black); first harmonic, F2 = 2F
(----); second harmonic, F3 = 3F (-·-·-). The leading edge is
at aspect ratio a:b = 20.

components is relevant for the free-stream disturbance of still low intensity con-
sidered here (εv = 0.2% of U∞). Nonlinearity becomes manifest mainly in the
zero-frequency component generated in a high-frequency vortical perturbation
environment. Nonlinear interaction will be the object of future investigations.

4. Conclusions

A study of the response of the boundary layer on a flat plate with elliptic lead-
ing edge to vortical free-stream disturbances is herein presented. The effect of
leading-edge geometry is included in the investigation by considering a blunt
and a sharp elliptic leading edge with aspect ratio 6:1 and 20:1. Simplified mod-
els for the vortical free-stream fluctuations are applied by setting two of the
three vorticity components to zero. This allows us to single out the receptivity
of the flow to axial, vertical and spanwise free-stream vortices. A free-stream
perturbation field with zero divergence is obtained by putting the disturbance
velocity parallel to the free-stream vorticity to zero. On approaching the ob-
stacle the disturbance field is distorted by mean shear and fluctuations. This
results in the forcing of vorticity and velocity in the components being initially
zero at the inflow plane.

Results can be summarized as follows: The boundary layer is most recep-
tive to axial free-stream vortices with low frequency which generate non-modal
instability in the form of long streaks inside the layer. The streamwise distur-
bance velocity is clearly dominant. This is in line with earlier experimental
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findings and with numerical studies disregarding the leading edge. It has been
found here that the disturbance amplification is slightly enhanced when the
sharp leading edge is replaced by the blunt one, which is due to the more dis-
tinct region of adverse pressure gradient on the bluff body. However, the effect
of leading-edge bluntness remains small in the presence of axial vortices. This
is in contrast with the response of the boundary layer to spanwise free-stream
vorticity: The latter is able to excite non-modal instability in the curved part
of the body. This becomes manifest in significant upstream transient growth,
being clearly stronger in the boundary layer on the plate with blunt leading
edge. This finding is again ascribed to the stronger adverse pressure gradient
and is in line with results in Levin & Henningson (2003), for example. Little
receptivity to vertical free-stream vortices has been observed here, and it is
concluded that the vertical vorticity component is least relevant for receptivity
to free-stream turbulence. The plate considered here is, however, rather thin –
its thickness is comparable with the boundary-layer thickness at the outflow.
A bluffer obstacle may be more efficient in tilting the vertical vorticity parcels,
as suggested in Goldstein & Wundrow (1998), which are then wrapped around
the leading edge and force axial vorticity.

The boundary layer is less receptive to free-stream vortices at high fre-
quency. Non-modal instabilities at lower amplitudes are obtained inside the
layer which decay downstream. However, at large enough amplitudes (0.2%
here) high-frequency axial vortices are efficient in generating a steady nonlinear
contribution to the disturbance, which is rapidly intensified downstream and
dominates the boundary-layer disturbance there. Nonetheless, the total dis-
turbance amplitude remains considerably lower than that of the low-frequency
streaks. High-frequency spanwise vorticity triggers again upstream transient
growth, but on a lower amplitude level than low-frequency spanwise free-stream
vortices.

Tollmien-Schlichting (TS) instability has been observed at rather low am-
plitudes in two-dimensional simulations with spanwise vortices in the free-
stream. Leading-edge bluntness enhances receptivity for TS waves. In the
three-dimensional simulations the TS modes have been found to be negligible
even in the boundary layer over the plate with blunt leading edge, although the
high-frequency spanwise free-stream vorticity also contains a component with
β = 0. It is, however, weak such that the TS mechanism cannot compete with
the non-modal instability.

The authors wish to acknowledge Dr. Paul Fischer for providing the sim-
ulation code and Dr. Ardeshir Hanifi for his support in the generation of the
boundary conditions for the mean flow.
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