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Abstract

In this thesis the stability of generic boundary layer flows is studied from a
global viewpoint using optimization methods. Global eigenmodes of the in-
compressible linearized Navier—Stokes equations are computed using the Krylov
subspace Arnoldi method. These modes serve as a tool both to study asymp-
totic stability and as a reduced basis to study transient growth. Transient
growth is also studied using adjoint iterations. The knowledge obtained from
the stability analysis is used to device systematic feedback control in the Lin-
ear Quadratic Gaussian framework. The dynamics is assumed to be described
by the linearized Navier—Stokes equations. Actuators and sensors are designed
and a Kalman filtering technique is used to reconstruct the unknown flow state
from noisy measurements. This reconstructed flow state is used to determine
the control feedback which is applied to the Navier—Stokes equations through
properly designed actuators. Since the control and estimation gains are ob-
tained through an optimization process, and the Navier—Stokes equations typi-
cally forms a very high-dimensional system when discretized there is an interest
in reducing the complexity of the equations. A standard method to construct
a reduced order model is to perform a Galerkin projection of the full equations
onto the subspace spanned by a suitable set of vectors, such as global eigen-
modes and balanced truncation modes.

Descriptors: Global stability, control, estimation, absolute/convective in-
stabilities, model reduction.
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Matriz-free methods for the stability and control of boundary layers.
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Linear feedback control and estimation applied to instabilities in spatially de-
veloping boundary layers.

MATTIAS CHEVALIER, JEROME HEPFFNER, ESPEN AKERVIK, DAN S. HEN-
NINGSON. J. Fluid Mech., 588 (2007), pages 163-187.
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Global optimal disturbances in the Blasius flow using time-steppers.
ANTONIOS MONOKROUSOS, ESPEN AKERVIK, LucA BRANDT, DAN S. HEN-
NINGSON. Technical report.

Related paper, not included in thesis:
The use of global modes to understand transition and perform flow control.
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Summary






CHAPTER 1
Introduction

You find yourself out walking, your head filled with thoughts about work,
family, how to get by in the modern society. Suddenly your left foot steps
into a pond. At first you swear, then your eyes catch the motion of the water
that already has reacted to your invasion by turning the energy into beautiful
waves, searching for equilibrium. You feel a wind gust, autumn is coming so
the big weather systems from the Atlantic are building up. It is outdoors, so
it is okay to light a cigarette (though perhaps not from a health perspective).
Upon exhalation the cigarette smoke enters free air peacefully, suddenly to
break down into chaotic patterns. You come home and think that a cup of tea
would do good. The teapot never pours a straight beam! Some of the tea ends
up on the table. You think for yourself that one of these days you should learn
how to control this device.

We are constantly surrounded by flowing fluids. In most cases we are
only able to observe their behaviour, while in other cases we interact with
them to obtain our objectives. Meteorologists track the motion of the big
weather systems and strive for perfection in predicting them. On the other hand
engineers have constantly modified the behaviour of the air, by tweaking the
design of wings, to produce aeroplanes that gradually become more and more
fuel efficient. In all aspects of our interaction with flowing fluids a common
feature always observed is the presence of turbulence. Turbulence is the regime
known to be the counterpart of the laminar regime; a laminar flow is ordered
and predictable, whereas a turbulent flow is swirly and chaotic in its motion.

Understanding how fluid flows develop from being laminar, to becoming
turbulent, has been the occupation of transition research for over a century.
And still it is not fully understood. As early as in 1883 Osborne Reynolds
performed what is considered to be the first transition experiment. He studied
the flow inside a glass tube where he by injecting ink at the center line could
monitor the flow structures. When varying different quantities such as the
velocity of the fluid U, the pipe radius r and the viscosity v he could observe
totally different regimes. A non-dimensional number Re = %, known as the
Reynolds number, was found to govern the transition from laminar to turbulent
flow. This number can physically be understood to describe the ratio of inertial
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forces to viscous forces. If the Reynolds number is high, implying that inertia
is dominating, transition occurs more rapidly.

The importance of obtaining knowledge and finally of fully understanding
the transition process is substantial both from an industrial and an environmen-
tal point of view. Examples of the importance of this includes the resistance
(or drag) on aeroplanes, cars, trains and boats that are propagating through
a fluid. Around such objects a boundary layer forms, where following a frame
of reference fixed to the vehicle, the fluid accelerates from zero velocity at the
surface to the velocity of the object some distance outwards from the surface.
When the velocity and/or the boundary layer thickness increase, or in other
words the Reynolds number increases, the boundary layer turns turbulent. It
is well known that turbulent boundary layers exert more drag on the surface
than a laminar one. It is hence desirable to manipulate the flow in such a way
that the transition to turbulence is delayed, thereby reducing the drag. On the
other hand turbulence increases the mixing properties of the flow, and this has
implications when it comes to for instance combustion processes. These pro-
cesses rely on efficient mixing of the injected fluids (fuel and air) to maintain
a high reaction rate.

The transition process may be divided into three stages; receptivity where
disturbances enter the flow; disturbance growth where specific structures that
are unstable extract energy from the laminar unperturbed flow. If these struc-
tures become sufficiently energetic the third stage, known as the breakdown
stage, is entered. At this point many structures interact and redistribute en-
ergy to smaller and smaller scales until the flow is finally fully turbulent. A
visualisation of the disturbance growth and breakdown phase in the flat plate
boundary layer flow is shown in figure 1.1. The picture is based on a so called
large-eddy simulation in Schlatter et al. (2006).

This thesis deals with obtaining better knowledge on the second part of
this process, thereby placing it into the field of hydrodynamic stability. It also
deals with flow control, where the aim is to use the knowledge obtained from
the stability analysis in order to suppress disturbances from growing, hopefully
delaying transition to turbulence.

Hydrodynamic stability is in principle very simple. One takes a laminar
reference base flow. This might be the laminar flow around any object. Then
one perturbs the flow in any way one can think of and observes the resulting
evolution. In order to find some universal truth in the process however, one
has to make sure that one understands what is observed and how the flow has
been perturbed. Throughout the years experimental and theoretical studies
have been tightly connected. Often instability structures are first observed ex-
perimentally, where the evolution of the flow is observed in real time. However
in the experimental setting the main challenges are how to extract the relevant
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FiGURE 1.1. Transition along a flat plate boundary layer, vi-
sualised by the so called Ay criterion for vortex identification.
The flow is forced at an upstream location by waves at a certain
frequency. As the Reynolds number increases downstream due
to the thickening of the boundary layer, the flow disturbances
extract energy from the basic flow due to linear mechanisms.
As their amplitude becomes sufficiently large a phase of non-
linear breakdown renders the flow fully turbulent. (Picture is
obtained through private communication with Philipp Schlat-
ter, based on a large-eddy simulation in Schlatter et al. (2006)).

information and how to to obtain a sufficiently clean environment. In theo-
retical studies one has attempted to single out the important mechanisms of
the observed instabilities by studying simplified configurations by mathemati-
cal models. These mathematical models have typically been idealised versions
of the so called Navier—Stokes equations. In recent years, due to increased
computational capacity, numerical solutions to these equations in their full
form have become feasible, thereby more closely relating theoretical studies to
experimental.

While the subject of hydrodynamic stability is to understand the distur-
bance growth mechanisms, i.e. providing a model of the flow, flow control aims
at using this knowledge to correctly interact with it. The objective of the in-
teraction might be to delay transition to turbulence along an aeroplane wing
or it might be to promote turbulence in combustion processes. Control of fluid
flows can essentially be performed in two ways; either passively or actively. The
optimised shape of an aeroplane wing, the rough surface of the golf ball or the
evolutionary design of the skin of fish are all examples of passive control. By
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controlling flows in this manner no energy is put into the system, there is only
a cooperation with the flow. Using active control on the other hand, energy is
put into the system through actuators, hopefully saving more energy than what
is spent. Active control can be split into two main categories, namely open-loop
and closed-loop control. The former assumes exact knowledge of the system so
that the interaction with it is prescribed a priory. However if disturbances that
are not accounted for in the model are present, the controller will in general
fail. The latter, which is commonly called feedback control, uses information
from the system in order to detect the real disturbances present, making it
more robust to deviations from the assumed model. Systematic strategies for
feedback control rely on solving optimization problems using the equations de-
scribing the flow evolution. Hence we are again faced with the problem of the
complexity of the equations, and recent advances are also due to the increase
in computer power.



CHAPTER 2
Governing equations

The aim of this chapter is to introduce the equations used to describe the
behaviour of the flow. First the Navier-Stokes equations for incompressible
flows are introduced. The linearization step in order to study the evolution
of small disturbances necessary to both stability analysis and control design is
given in Section 2.2. Finally a discussion on a more compact way of writing
the equations, namely in state space form, is given in Section 2.3.

2.1. The incompressible Navier—Stokes equations

The equations describing the conservation of mass and momentum for Newto-
nian fluids are well established and have been around for more than 150 years.
They were the end result of the work of many of the great mathematicians
such as Isaac Newton, Daniel Bernoulli, Leonard Euler and others. The fi-
nal building bricks were however laid independently by Henry Navier and Sir
Gabriel Stokes, hence yielding the name of the Navier—Stokes equations, which
for incompressible flows can be written as

du+u-Vu = —Vp+ Re 'Au, (2.1)
V-u = 0.

Here u = (u,v,w)T are the velocity components in the three spatial directions
x = (z,y,2)T and p is the pressure. The term 9; denotes the partial time
derivative, V = (8,,0,,0,)" the gradient operator and A = V -V = 0,, +
Oyy + 0. the Laplacian. These equations are on non-dimensional form, where
the velocities have been scaled with a characteristic scale U and the spatial
differentiation operators with a characteristic length scale L. Typical velocity
scales are for instance bulk velocity of a pipe flow or the freestream velocity of
a boundary layer. Relevant length scales may for instance be the pipe diameter
or the boundary layer thickness. As already mentioned the non-dimensional
Reynolds number Re = % is a measure of the ratio of inertial forces to viscous
forces, with v being the kinematic viscosity. The above equations constitute a
set of nonlinear partial differential equations to be solved in a computational
spatial domain € from time ¢ = 0 to ¢t = T with a set of consistent boundary
(spatial edge of computational domain) and initial (starting time) conditions.

7
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Typical boundary conditions are the requirement of zero velocity at walls (no-
slip condition), sufficiently fast decay of velocity components at infinity or
periodic behaviour. In the same manner appropriate initial conditions consist
of prescribed velocity components at time ¢ = 0. The varying initial and
boundary conditions determine the specific behaviour of (2.1)-(2.2) for a given
set up. The left hand side of the momentum equation (2.1) describes the
inertia of the flow and is composed of a rate of change in time term J;u and
a convection term u - Vu that describes how a particle momentum is changed
due to transport with the flow. The right hand side of (2.1) contains the forces
that balance the inertia and consist of the pressure forces Vp and the viscous
forces Re~! Au. Incompressibility is described by (2.2).

Over the years several aspects of understanding fluid flows have been ad-
dressed through solutions of the Navier—Stokes equations. However, given the
complexity of the equations such as their ability to describe both laminar and
turbulent flows, it is still an ongoing field of research to solve them numerically
for relevant applications.

2.2. The linearized Navier—Stokes equations

The Navier—Stokes equations are as stated previously non-linear and complex
in nature. Important aspects of understanding the transition process can how-
ever be captured by studying solutions to the linearized version of the equa-
tions. This can be seen by inspection of the Reynolds—Orr equations for the
instantaneous energy growth of the disturbances, where non-linear terms are
only redistributing energy among different length scales (Schmid & Henningson
2001). Assume that a base flow U = (U, V,W)T and P is available. This base
flow might in principle be time dependent, but here we focus on the steady
state (0;U = 0) solution to (2.1) and (2.2). We perturb the base flow with
small disturbances

u=U+ed, and p=P+ef, e<<l. (2.3)

By inserting this in the Navier—Stokes equations (2.1) and (2.2) and keeping
the terms that are O(e) one arrives after dropping the primes at the linearized
Navier—Stokes equations

ou+U-Vu+u - VU = -Vp+ Re 'Au, (2.4)
V-u = 0. (2.5)

These equations are equipped with suitable boundary conditions and initial
condition u(x,t = 0) = up(x). The term e measures how small the perturba-
tions are and hence if the linearization is valid. If the magnitude of the terms
eu reach an amplitude of a few percent of the base flow magnitude, non-linear
terms become important and the linearization around this specific base flow is
no longer valid.
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2.3. State space formulation

When performing systematic analysis of the linearized Navier—Stokes equations
one is interested in the initial condition u(0) and what type of flow states u(t)
are reached at times ¢t > 0. By flow state we mean the entire velocity field
throughout the computational domain €2 at time ¢. It is preferable to put the
equations in a more compact form. In order to do so we define the velocities as
our state variable, i.e. u = (u,v,w)?. Many of the standard tools from linear
systems theory can readily be applied to the so called state space equation

Opu = Au, u(0) = uo. (2.6)

In particular the above system has a formal solution in terms of the evolution
operator

u(t) = 7 (t)ug = exp(At)uy. (2.7)
In order to cast the linearized Navier—Stokes equations (2.4) and (2.5) in the
form of (2.6) the pressure p has to be removed from the equations. To achieve
this, an important observation can be made from equations (2.4) and (2.5); for
incompressible flows the pressure only acts as a Lagrange multiplier to maintain
divergence free velocity fields. We follow the notation of Kreiss et al. (1994)
and let the linearized Navier—Stokes equations be written as

du=Au=—(U-V)u— (VU)u+ Re 'Au+ Vp, (2.8)

where the pressure is a known function of the divergence free velocity field u
and the base flow U

Ap =V (—(U-V)u-— (VU)u). (2.9)

Inversion of the Laplacian requires boundary conditions, and formally we may
obtain these by projecting (2.8) on the outwards pointing normal of the domain
n to obtain
dp
=
At solid walls it expected that all the velocity components are zero. This so
called no-slip condition reduces the above relation to

n- (—9u—(U-V)u— (VU)u+ Re 'Au). (2.10)

0
37:1 =n- (Re 'Au). (2.11)
If we let the solution of (2.10) be denoted as p = Ku we end up with the state
space system with A given by

A=—(U-V)—(VU) + Re 'A + VK. (2.12)

The operator A may also be defined using semi-group theory, where it is referred
to as an infinitesimal generator defined through the evolution operator 7 (t).
For an explanation of this way of defining A see e.g. Bagheri et al. (2008) or
Trefethen & Embree (2005).
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Note that it is possible to define the state variable to include both velocities
and pressure, but this leads to a generalized state space or descriptor system
form, where the left hand side is singular, rendering the system more difficult
to analyze. In Paper 1 and Paper 3 we have used the descriptor system form,
whereas in Paper 2, Paper 4 and Paper 6 the standard state space form (2.8)-
(2.10) is used. Throughout the rest of this introduction we will use the latter
form for simplicity. It is important to note though that regardless of the form
chosen the evolution operator 7 (t) defines the same solution u(t) at time ¢
given the same initial condition ug at time ¢ = 0.



CHAPTER 3
Numerical Simulations

In order to perform stability analysis and control design of the flows studied
in this thesis we need to access solutions of the Navier—Stokes equations. The
time evolution of the velocities for both the non-linear and linear Navier—Stokes
equations is obtained through numerical simulations. When numerically solving
partial differential equations a discretization of the variables is performed in
both time and space. The continuous spatial domain €2 is divided into discrete
grid points upon which the variables of interest, i.e. the velocities (u, v, w)” and
the pressure p, are required to approximately satisfy the governing equations.
Likewise the continuous time domain ¢t € [0, T is divided into discrete instances
of time.

3.1. Spectral methods

Methods for solving partial differential equations are mainly distinguished by
the way the continuous functions and their derivatives are discretized (or ap-
proximated). We focus here on the spatial approximation. On one hand there
are local methods, such as the finite difference, finite volume and finite el-
ement methods, where the main idea is to use near neighbour information
in order to approximate the functions and their derivatives. For instance in
the finite-difference method continuous functions are interpolated on the grid
by means of a sequence of overlapping local low order polynomials. Con-
sider a one-dimensional function f(z) depending only on x. The derivative
of the local interpolant is used to approximate the derivative of f(z). A stan-
dard quadratic interpolation gives a centered finite difference approximation
fe(zi) = (f(z; + h) — f(z; — h))/(2h) + O(h?), with h being the grid spac-
ing and O(h?) stating that the error goes as h?. There is in other words a
quadratic convergence upon grid refinement. In contrast global methods (or
spectral methods) approximate f(x) by global functions ¢(x) living in the en-
tire domain. Typical functions are the sines and cosines leading to the Fourier
method or transformed cosines leading to the Chebyshev method. With these
global approximations the derivatives at each grid point depend on all the
other grid points, i.e. fr(z;) = Zjvz”l f(x)0:0(z;) + O(h'/"), with exponen-
tial convergence upon grid refinement. The convergence properties of the global
methods are hence far superior to local methods, but are not easily applied to

11
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complex geometries. However the essence is that with the superior convergence
property fewer grid points are needed to approximate the continuous problem
with a sufficient accuracy. The result is a lower computational cost. It should
be noted that is possible to gain the best of both worlds by combining spectral
and finite element methods to obtain the Spectral Element Method (c.f. Deville
et al. 2002). For an in depth explanation of the convergence properties of local
and global methods see for instance Boyd (2000) and for the application of
spectral methods in fluid dynamics see either Canuto et al. (1993) or Peyret
(2002).

3.2. DNS, RANS and LES

The term Direct Numerical Simulation (DNS) reflects the manner in which a
certain class of numerical methods solve the Navier—Stokes equations. In this
framework no approximations as to the behaviour of the turbulence are made.
Instead one solves the equations for a domain 2 large enough to capture the
large scales of the physical problem and sufficiently small grid point distance
to capture the smallest scale of the turbulence. The discretized solution has to
resolve scales that are only slightly larger than the Kolmogorov scale, i.e. the
length scale at which the majority of the energy is dissipated by viscosity (for
a review of the DNS method see e.g. Moin & Mahesh 1998). It is with the
computer power available today however only possible to perform full DNS
for idealised situations and small domains. Understanding the flow of general
configurations such as the flow around a car, train or aeroplane is still out of
reach for DNS. For these applications the method to obtain knowledge about
mean quantities of the flow is through solving the so called Reynolds Averaged
Navier-Stokes equations (RANS) (see e.g. Wilcox 1998). In the RANS ap-
proach, the mean flow field is solved for whereas the effect of the turbulence is
modelled by the mean flow gradients. In between these two outer boundaries,
a new approach has started to gain popularity. In the Large Eddy Simulation
(LES) approach the large fluctuating scales are solved for but the small scales
are modelled through a sub-grid stress model (SGS) (Sagaut 2002).

3.3. How to handle the pressure

For all of the above approaches an important subject is how the pressure p is
handled. By inspection of (2.1)-(2.2) or (2.4)-(2.5) it becomes apparent that
the pressure does not have a separate time evolution equation. As stated in Sec-
tion 2.3; an interpretation of this is that in the incompressible Navier—Stokes
equations (both linear and non-linear) the pressure acts only as a Lagrange
multiplier completely determined by the velocities, its role being to enforce
divergence-free velocity fields V - u = 0. One standard way of handling this
is to perform a Fractional Step procedure (c.f. Kim & Moin 1985). In this
procedure intermediate velocities are updated with the pressure forces omit-
ted, in general not satisfying continuity. A projector, in the form of a Poisson
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type of equation, is introduced to update the corrected divergence free veloci-
ties. Another possibility is to take the divergence of the momentum equation
(2.1) to explicitly obtain the pressure Poisson equation. A complication with
both methods is related to the choice of boundary conditions for the pressure
(Rempfer 2006). A solution to this is provided by the Influence Matrix Tech-
nique of Kleiser & Schumann (1980). The pressure can however be removed
from the equations altogether by taking the curl of the momentum equations,
i.e. V x (2.1) and explicitly enforce divergence free solutions. This leads to the
vorticity formulation of the equations. However, also in this approach there
are some subtleties involved in defining proper boundary conditions.

Two DNS codes have been used in this thesis to solve both the non-
linear and linear Navier—Stokes equations. For the relatively simple flat plate
boundary-layer flows a highly accurate spectral DNS code was used. The draw-
back of this spectral code is that it only handles simple geometries. Hence to
do more complex geometries a combined finite difference-Chebyshev code was
applied.

3.4. A spectral DNS code

The Navier—Stokes equations are recast in wall-normal velocity-vorticity form,
thereby eliminating the pressure. In the streamwise  and spanwise z-direction
a Fourier transform is performed, whereas in the wall normal direction a
Chebyshev—tau technique is used. The method is hence spectral (or global)
in all three space directions. The time integration is carried out by a low stor-
age four step third order explicit Runge-Kutta scheme for the explicit terms
arising from the non-linear part of the equations, combined with a semi-implicit
Crank-Nicholson scheme for the terms stemming from the linear part of the
equations. By applying a pure spectral scheme the explicit nonlinear part
arising from the terms u - Vu gives rise to convolution terms which are typ-
ically too heavy from a computational perspective. In order to remedy this
the non-linear terms are computed instead by multiplication in physical space.
The efficiency on the procedure then relies heavily on the performance of the
Fourier transform needed to go back and forth between physical and spectral
space. Fortunately Fast Fourier Transforms (FFT) are now standard library
operations that have become very efficient. Once the non-linear terms are ob-
tained the implicit linear terms in the equations are solved efficiently in spectral
space.

The Fourier transform is only valid for periodic domains. However in order
to apply the method to non-periodic domains a fringe region technique is ap-
plied. This amounts to applying a forcing term on the Navier—Stokes equations
in a region close to the outflow to map the equations back to its inflow form.
A full description of the code can be found in Chevalier et al. (2007).
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3.5. A mixed finite-difference Chebyshev DNS code

In order to handle more complex geometries we use a mixed finite difference—
Chebyshev collocation discretization. The Navier—Stokes equations are solved
in primitive variables u = (u,v)” and p on a two-dimensional domain Q =
(0,Lg) x (n(x), Ly), with n(z) being a smooth function describing the lower
wall curvature. Instead of meshing the curved geometry a variable transforma-
tion of the wall normal variable § = y — n(z) is performed , thereby redefining
the differentiation operators V and A. The full details of this transformation
is given in Marquillie & Ehrenstein (2001). Once transformed the resulting
equations are solved on a rectangular domain with extra stiffness terms aris-
ing due to the variable transformation. For space discretization fourth—order
central finite differences are used for the second derivatives in the streamwise
z-direction, whereas the first derivatives in the same direction are handled
with eighth—order finite differences. In the wall normal direction a Chebyshev
collocation technique is applied. The time integration is carried out by an
implicit second—order backward Euler scheme for the Laplacian Au part of
the equations whereas the nonlinear convective terms u - Vu and the stiffness
terms due to the wall curvature are handled by an explicit second—order Adams
Bashforth scheme. This is the well known BDF-2 scheme. In order to ensure
divergence—free velocity fields a Fractional Step technique is employed.

3.6. Discretized state space formulation

For practical numerical calculations the equations (2.4)-(2.5) are discretized
in space on n, X n, X n, grid points, and as a consequence we write the
collection of discretized velocities as the n-dimensional vector v with n being
n = 3ng X ny X n,. In this formulation it is assumed that the operator A is
explicitly built by differentiation matrices to form the matrix A so that

Ou=Au, AeR™" (3.13)

with the initial condition ug. For details on how to obtain discrete differen-
tiation matrices from differentiation operators it is referred to Weideman &
Reddy (2000). Whenever a solution at time ¢ is needed the discretized form of
(2.7) is used, which simply represents marching a DNS forward in time with a
sufficiently high accuracy in both time and space. This is written as

u(t) = exp(At)ug. (3.14)
In this thesis the continuous form of the equations will be used for most parts,

but it should be noted that when performing numerical simulations of the
system it is in a discrete setting.



CHAPTER 4
Computation of eigenvalues

In the remaining part of this thesis we will need the concept of eigenvalues,
which classically in hydrodynamic stability analysis are used as a tool to un-
derstand the asymptotic behaviour of the linearized Navier—Stokes equations
(3.13). Later we will also see that eigenvalues are of interest for solving op-
timization problems. The discretized linearized Navier—Stokes equations can
be cast to a standard eigenvalue problem by assuming exponential time de-
pendence of the solutions, i.e. u = exp(At). Inserting this in the linearized
Navier—Stokes equations we arrive at

Al =\i, AER™"™ \eC, seC" (4.15)

where C denotes a complex number, C" a n-dimensional complex vector and
R™ ™ a real valued matrix of size n x n. We say that the pair (A, ;) is a
right eigenpair of A. Similarly we may formulate a left (or adjoint) eigenvalue
problem by A = 4/T\, where the pair ()\f, ) is a left eigenpair of A. The
superscript 7 denotes the complex conjugate transpose operation that reduces
to the ordinary transpose T for real vectors and matrices. An important obser-
vation can be done from the expression (4.15). Given an eigenpair ();, ;), the
action of A on #; only scales the vector with a factor A;, hence the evolution
of i1; is independent of all other eigenpairs. Further, if the real part of A; is
positive, then the solution i; grows exponentially, and the system is said to be
linearly unstable.

Although we here for simplicity focus on the solution of the standard eigen-
value problem (4.15) stemming from the state space form (2.8), a formulation
of the so called generalized eigenvalue problem stemming from the discretized
generalized state space form briefly discussed in Section 2.3 is readily obtained.
For details it is referred to Henningson & Akervik (2008) where that eigenvalue
problem is solved using the shift and invert strategy.

The eigenvalues of A are the m roots of the characteristic polynomial
pa(A) = det(A — AI). However it is known that no direct solution can be
found for a polynomial of degree more than four. This essentially means that
all eigenvalue solvers are iterative. The first eigenvalue solver around was the
so called power iteration scheme, where starting from a first guess v° the action

15
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of the matrix A is applied repeatedly
VO AVO AZVO L ATYO (4.16)

until convergence towards the eigenvector &, = A™vC with the largest mag-
nitude eigenvalue \; is obtained. The convergence of this method is Aj/Aq,
where )\, is the second largest in magnitude eigenvalue. Faster convergence
to any single eigenvalue close to the complex value p can be achieved by the
inverse iteration scheme A='& = 1/(\; — )@, but a main difficulty is how to
choose the shift p. A drawback of both these methods is that they are able to
compute only one eigenpair at the time.

4.1. The QR method

The quest for a method that could compute all the eigenvalues of A and do it
fast lead to the implicitly shifted QR method (Francis 1961). A crucial step
in the design of the QR method was the understanding gained from the Schur
decomposition which states that for a unitary matrix (spans an orthonormal
basis) Q, there exist an upper triangular matrix U such that

AQ=QU, Q,UeR*" (4.17)

where the diagonal of U contains the eigenvalues of A. The aim of the QR
method is to compute a unitary basis for A such that (4.17) is fulfilled. To this
end the first step is to bring A to upper Hessenberg form

AV = VH, V,HeR™" (4.18)

The matrix H is upper Hessenberg (almost upper triangular except for a subdi-
agonal) and V is unitary. This step is achieved either by Householder reduction
or by the numerically less stable modified Gram—Schmidt (MGS) procedure.
After the Hessenberg form is obtained an iteration scheme using a QR decom-
position on the shifted H; at step i is carried out as follows:

Hi,1 - ,ui,ll = QR (419)

where Q is unitary and R is upper triangular. Then H; and V; are updated
according to

Hi=Q"H;_1Q, and V= V,_1Q. (4.20)
As the iteration scheme proceeds different elements on the subdiagonal of H;
converge to zero at different rates and after a sufficient number of iterations

H; is upper triangular, thereby defining a Schur decomposition of A. Hence all
the eigenvalues of A can be picked from the diagonal of H;.

4.2. The Arnoldi method

Unfortunately the cost of the QR method is too high to be applied to many
problems such as those arising from the discretization of the Navier—Stokes
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equations in more than one spatial dimension. The power iteration and in-
verse iteration schemes are still possible to use, but they only produce single
eigenpairs. Nowadays the standard approach to deal with large problems is
through Krylov subspace projections together with the Arnoldi factorisation
(or Lanczos factorisation for Hermitian problems A = Af). A Krylov subspace
of size m is defined as follows

K = {V07AV07A2V07---aAm_lVO}' (421)

Note the similarity to the power method. The main difference is that while
the the power method throws away all but the last term, the Krylov subspace
contains all the generated information from the power sequence. While the
aim of the QR method is to compute all eigenpairs of A the Arnoldi method
aims at computing only a fraction of the eigenpairs. To this end the idea of the
Arnoldi method is to build a reduced Hessenberg matrix of size m x m, with
m << n. In other words the first step in the Arnoldi method is to build

AW = WH + fr,i1el, W e R™™ H ¢ R™*™, (4.22)

where W = col{wy, wa,..., wy,} are the unitary Arnoldi vectors, f,,41 is an
error term orthogonal to W and e, is the unit vector in the direction m. This
term measures to which extent the Krylov subspace fails to represent the action
of A. The need for a reduced size Hessenberg form rules out using Householder
reduction, so we are left with the modified Gram-Schmidt (MGS) procedure.
The MGS procedure can be stated as follows: Starting with a random initial
vector wy a Krylov sequence is built. At the j-th step a new vector is added
by means of the matrix vector product

w; = Aijl. (423)

The entries of the upper Hessenberg matrix H is created from the inner products
between the present vector w; and the previously added ones. The elements at
the j-th step are

Hi,j = WiHWj_l, 1= 1, ce ,j. (424)

A new Arnoldi vector is obtained by projecting w; on the space orthogonal to
all the previous vectors

w; = W; — (Hlﬁj wo + -+ ijjofl). (425)

The norm of w; forms the sub-diagonal element of the Hessenberg H;,; ; and
w; is normalized accordingly. The Arnoldi vectors are after m steps W =
col{wp, wi, ..., Wp_1}.

The Arnoldi method then proceeds by iteratively performing QR decompo-
sition of the small H converging to a few of the eigenpairs of A. The eigenvalues
0; obtained are called Ritz approximate eigenvalues A\; ~ 0; and the eigenvec-
tors y; obtained are called Ritz eigenvectors, related to the eigenvectors i; of A
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a)

A |=| Q@ QY

b) Qu

Fi1GURE 4.1. Figure showing the difference in Schur factorisa-
tion of A. a) The QR method. b) The Arnoldi method leading
to an approximate Schur factorisation

by ii; = Wy; and satisfy the following error criteria due to the orthonormality
of the Arnoldi vectors

|AG; — 055l = |Bmeny;l, (4.26)

with 5., = ||fn]. A schematical difference in the way the Schur factorisation
to obtain eigenvalues is performed in the QR method and the Arnoldi method
is shown in figure 4.2.

There are two main problems with the Arnoldi process: The first is that
one does not know beforehand how big m has to be in order to converge to the
desired number of eigenvalues, but in general m has to be much larger than
the number of desired eigenvalues. A way to keep the Krylov subspace fairly
small is to use either explicit or implicit restart of the Arnoldi method. This
essentially amounts to producing a Hessenberg of size m x m and compute
the eigenvalues. If there are p unwanted eigenvalues, then the part of the
Hessenberg containing the m — p wanted eigenvalues are kept, but the rest is
thrown away. Subsequently a new round of a p-step Arnoldi factorisation is
performed, and p new eigenvalues, hopefully belonging to the wanted set, are
computed. The second problem with the Arnoldi method is that as the Krylov
subspace becomes fairly large, the MGS produces Arnoldi vectors that are not
orthogonal to machine precision, leading to spurious eigenvalues. In this case
it is preferable to explicitly re-orthogonalize the basis. A common way to do
this is provided by the DKGS method (Daniel et al. 1976).

For a more thorough description of the Arnoldi method we refer to the user
guide of the ARPACK package (Lehoucq et al. 1997). Note that in principle it
is simple to implement your own Arnoldi solver, but this package provides an
easy to use interface to solving eigenvalue problems using the Arnoldi method,
with both implicit restarting and DKGS stabilization.

4.3. Time stepping, a way to avoid building the full matrix

In contrast to the QR method the Arnoldi method does not depend on the
explicit manipulation of the matrix A. This can be seen by inspection of the
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power sequence defining the Krylov subspace (4.21), where only the repeated
action of A on wy is needed. This is extremely important for large problems. As
an example a matrix stemming from the discretization of the three-dimensional
Navier—Stokes with 100 grid points in all directions leads to a system matrix
A with a storage requirement of O(1007'B), which is clearly infeasible to keep
in RAM on any computer architecture available today. However the storage
of each vector only needs O(50M B). Another observation to be made from
the Krylov subspace definition is that it defines an eigenvalue problem for
whatever matrix used to generate it. To this end note that snapshots at times
{T,2T,...,(m—1)T} from a DNS time integration (see equation (3.14)) yield
the Krylov subspace

K™ = {wy, exp(AT)wo, exp(2AT )wy, . . . ,exp((m — 1) AT )wp }, (4.27)
which defines an eigenvalue problem
ol = exp(AT)a. (4.28)

Due to the spectral transformation theorem one can conclude that the eigen-
vectors U are also eigenvectors of A and the eigenvalues A of A can be found
from the relation
log(c)
T
A conclusion that can be drawn from this is that for very large problems it
is preferable to use a time stepper technique (Tuckerman & Barkley 2000) in
order to compute eigenpairs of the system.

A=

(4.29)
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CHAPTER 5
Hydrodynamic stability

In the introductory chapter it was mentioned that stability enters as one of the
three components in understanding why a flow undergoes transition from the
laminar to the turbulent regime. In this chapter the aim is to introduce the
steps necessary to take in order to establish whether a flow is stable or not.

5.1. Flow cases

This thesis deals with a certain class of flows, namely those arising from the
flow over a wall. Due to the presence of the wall a boundary layer forms,
starting at the leading edge, where the velocity is decelerated from uniform
free stream velocity Uy to zero velocity at the surface. The boundary layers
are hence viscous in their nature. Another characteristics is that they are very
thin compared to their length, i.e. the streamwise length scale L is much larger
than the wall normal length scale §*, or in other words, the most drastic changes
occur when moving outwards from the wall. In this manner one can conclude
that the important length scale is §* = /21 /Us, known as the displacement
thickness, and hence the Reynolds number should be defined as Re = UWT‘S*. To
quantify how thin a boundary layer is for real applications one might consider
the boundary layer forming on the wings of an aeroplane cruising at 800 km/h.
Given a kinematic viscosity of v ~ 1.3107° m? /s one arrives at a displacement
thickness of §* ~ 0.4 mm one meter from the leading edge, if the flow stays
laminar. Ten meters downstream the thickness has developed to no more than
0* ~ 1.3 mm. The boundary layer is hence both thin and increases very slowly
downstream.

Two prototype boundary layer flows are studied here. The first one is the
classical flat plate boundary layer, also known as the Blasius boundary layer or
zero pressure gradient boundary layer, serving as a simple model of an unswept
aeroplane wing (see figure 5.1(a)). The computational inflow boundary is set
some distance downstream of the leading edge with corresponding Reynolds
number Res: = Uxdg /v, with §§ being the local displacement thickness of
the boundary layer. The second case studied is the flow over a smooth cavity
mounted on a flat plate as seen in figure 5.1(b). The length to depth ratio
is L/D =~ 25 and the two-dimensional Navier—Stokes equations is solved in a
physical domain 0 < z < 400, n(z) < y < 80, where x and y are the streamwise

20
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FicUre 5.1. Sketches of boundary layer flows with inflow
from the left. (a) Flat plate boundary layer flow; the flow is
slowly evolving with the boundary layer thickness § increasing
downstream. (b) The cavity flow; upstream and downstream
of the cavity there is a boundary layer flow, whereas in the
cavity there is a separated shear-layer flow.

and wall-normal coordinates. The lower wall is curved and described by the
function n(x). The smooth cavity is symmetric with respect to its center at
x. = 89, and its upstream part is given by

n(x) = —2.25 (tanh(a(x — b)) +1), 0<z <z, (5.30)

with @ = 0.2 and b = 39 matching smoothly the flat plate upstream and
downstream. At inflow the Blasius profile is introduced. The mean flow profile
develops downstream as a flat plate boundary layer flow, however at x ~ 30
there is a smooth expansion of the geometry generating a shear layer unstable
to Kelvin—Helmholtz instability. As the shear-layer develops downstream it
encounters a smooth contraction of the geometry at = ~ 150 so that the flow
again forms a developing boundary layer flow.

Boundary layer flows display the particular feature that the instability char-
acteristics may change throughout the domain. There can be regions where the
flow is stable, convectively unstable or absolutely unstable (Huerre & Monke-
witz 1990; Chomaz 2005). In a convectively unstable region the disturbances
are swept downstream with the flow while growing in size and amplitude. In
this case the disturbances disappear in absence of external forcing so that the
flow might be seen as a noise amplifier. The flat plate boundary layer flow
is a typical example of a convectively unstable configuration. Whenever the
base flow satisfies certain conditions, for example if there is a sufficiently large
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reverse flow in a separation bubble, the flow may become absolutely unstable,
characterized by disturbances growing both upstream and downstream of the
origin of generation, so that the flow itself will sustain the instability growth.
The cavity flow is an example of such a configuration.

5.2. Strategy

The stability characteristics of a base flow U to small perturbations u is deter-
mined by monitoring (measuring) the perturbation evolution as described by
the linearized Navier—Stokes equations introduced in Section 2.2. For clarity
the equations are repeated here in state space form

Ou = Au, (5.31)

given an initial condition u(0) = ug. The operator A is completely determined
by the base flow U and the boundary conditions. In order to measure the
departure from the base flow we introduce the norm based on the kinetic energy
of the flow

B(t) = ||u(t)||2:(u(t),u(t)):/u~udQ. (5.32)

Q

If the perturbation kinetic energy goes to zero as t — oo, implying that the
flow returns to its basic state, the flow is considered stable. Otherwise it
is unstable. Even if the kinetic energy vanishes asymptotically there might
however exist initial conditions of amplitude ag = |Jup| such that the flow
at a finite time triggers non-linear effects. Hydrodynamic stability deals with
the task of finding critical parameters such as critical Reynolds number, that
renders the flow to depart from the base flow either permanently or transiently.

The central element to inquiring asymptotic stability of A is to compute its
eigenvalues. This approach is often called modal instability analysis or normal
mode analysis. As described in Chapter 4 we may require that the system
(5.31) has a harmonic/exponential time dependence, i.e.

u=1tuexp(At), AeC. (5.33)
By putting ansatz (5.33) into (5.31) an eigenvalue problem is obtained
A= Ad, (5.34)

If \; is an eigenvalue of (5.31) with an associated eigenvector 0;, then the
action of A on 1, is a rescaling of @; with the factor A;. This implies that
the evolution of different eigenpairs (A;, ;) is independent of all the others
(Aksj, Urz;j). Further, if the complex eigenvalue A; = A} + A} has a positive
real part A} > 0 the solution (5.33) will grow exponentially.

Note that in addition to considering the response to initial conditions it
is also of interest to examine the response to forcing, where the equations are
equipped with a harmonic forcing term {f exp(iwt)}ear such that

Opa = Au + {f exp(iwt) }rea;, ug = 0. (5.35)
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In Paper 1 and Paper 6 we study the response of the flat plate boundary layer
flow to harmonic forcing. In this introductory part the subject of response to
forcing will be omitted, and it is referred to Schmid & Henningson (2001) or
Trefethen & Embree (2005) for details.

5.3. From eigenvalues to optimal growth

It is only recently due to increased computer power that the research commu-
nity has been able to perform systematic stability studies of the full equations
(2.4). A number of flows previously inaccessible to stability analysis are now
being investigated. These flows include cavities (Akervik et al. 2007; Sipp &
Lebedev 2007), cylinders (Giannetti & Luchini 2007), jets (Nichols et al. 2007),
backward facing steps (Blackburn et al. 2008) and separation bubbles (Gallaire
& Ehrenstein 2008; Marquet et al. 2008).

A method to deal with the problem of the high dimensionality of the equa-
tions has been to assume that the streamwise x and spanwise z directions are
periodic, hence allowing for Fourier decomposition. In this locally parallel as-
sumption the base flow is assumed to vary slowly in z and z directions such
that the perturbation variables can be written as the real part of

u = u(y,t)exp(i(ar + #2)), p=py,t)exp(i(ax + 82)), (5.36)

for the streamwise wavenumber « and spanwise wavenumber 3. Insertion into
(5.31) yields the famous Orr-Sommerfeld-Squire equations (Orr 1907; Sommer-
feld 1908; Squire 1933). From a practical point of view what is gained by the
Fourier transformation of system (5.31) is that instead of treating the problem
as one large problem, the equations for different wave numbers o and ( are
decoupled. In practice this means that the stability characteristics of a given
parallel mean flow U = (U(y),0,0)7 can be determined by looping over all the
relevant wave numbers. It is important to note that for some flows like for in-
stance pressure driven Poiseuille channel flow or the shear driven Couette flow
the Orr—Sommerfeld/Squire equations provide a fully valid set of equations.
For spatially inhomogeneous flows like the boundary layers studied in this the-
sis the Orr—Sommerfeld /Squire equations provide only an approximation that
can be justified based on dimensional arguments.

Preceding the Orr—Sommerfeld framework by almost thirty years, Rayleigh
formulated the necessary condition for inviscid modal instability. He found
that the base flow needed to have an inflectional profile in order for unstable
eigenvalues to appear. For the Orr—Sommerfeld equation a viscous instability
mechanism in the form of Tollmien—Schlichting (TS) waves was found as eigen-
solutions of the governing equations by Tollmien (1929); Schlichting (1933).
The existence of such solutions was experimentally shown to exist by Schubauer
& Skramstad (1947). In experiments however the T'S waves were seen as waves
propagating downstream while spatially growing. This apparent discrepancy
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was addressed and removed by Gaster (1965) who showed that it was possible
to connect the two perspectives through the so called Gaster transformation.

Although successful to explain the exponentially growing features of many
flow systems, the combination of the Orr—Sommerfeld/Squire equations and
the eigenvalue decomposition had its drawbacks. An apparent flaw was that
linear stability theory predicted both pipe and Couette flow to be linearly
stable for all Reynolds numbers, whereas in experiments and DNS both of
these flows turned turbulent. Also in the boundary layer flow discrepancies
between linear stability theory and experiments where discovered. The de-
termination of the critical Reynolds number for the Tollmien—Schlichting in-
stability, i.e. the neutral curve, could not be accurately captured using the
Orr-Sommerfeld /Squire equations. An extension of the locally parallel theory
was provided by the Parabolized Stability Equations (Bertolotti et al. 1992),
where the slow streamwise variation of the base flow is incorporated in better
agreement with experiments and DNS.

In addition experiments revealed that it was possible to also for boundary
layer flows obtain transition well below the critical Reynolds number predicted
by linear stability theory, thereby sharing features with the pipe and Couette
flow. A first convincing mathematical description of the possibility for such
a situation to occur in the linear inviscid framework was given by Ellingsen
& Palm (1975) who introduced the concept of algebraic growth. A physical
explanation to this process was given by Landahl (1980), who explained the
algebraic growth to be governed by a so called “lift-up” mechanism, where
a wall normal displacement of a fluid particle in a shear layer will lead to a
perturbation in the streamwise velocity perturbation. A mathematical frame-
work able to predict the lift-up mechanism was presented in Butler & Farrell
(1992); Reddy & Henningson (1993); Trefethen et al. (1993), showing that
the Orr—Sommerfeld/Squire equations supported transient growth, related to
the non-normal nature of the underlying operators. This modern approach to
stability has converged to the formulation of the stability problem as an opti-
mization problem, which may be solved either by singular value decomposition
of the evolution operator exp(.At), or by time-marching methods involving the
adjoint system (Schmid 2007).

5.4. Worst case disturbances

In the quest for stability of (5.31) we saw that the asymptotic limit as given by
eigenvalues A with real part greater than zero did not provide the full answer
to understanding why flows are unstable. In this section a framework for com-
puting the worst possible disturbances is given. By worst possible disturbances
we mean the disturbances that gives the largest growth at any time ¢ > 0. The
central element in determining these disturbances is to systematically utilise
the kinetic energy measure E, with the associated norm |lul|. Using the above
measure a natural definition of worst possible initial disturbance becomes: Find
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an initial condition ug of energy one such that the energy |[ul|?> = (u(t),u(t))
at time t is as large as possible. Mathematically this can be written

BIE t 2
G(0) = ma RO _ - Jexp(ADuo]
up0 [[ug | w0 lugl|

— [exp(AD)]?.  (537)

In order to calculate the optimal growth we are faced with the problem of eval-
uating the matrix norm of exp(\At). Computationally this amounts to perform-
ing a Singular Value Decomposition (SVD). There are however some problems
with this definition from a computational point of view. Firstly; the evaluation
of the exponential matrix for a large dense matrix is ill conditioned (Molder &
Van Loan 2003). Secondly; performing SVD of large matrices is computation-
ally very heavy. There are however ways to deal with this and below two such
approaches are given.

5.4.1. Projecting on the basis of eigenmodes

The eigenmodes of (5.31) constitutes a divergence free basis onto which the
system may be projected. By assuming that a small number of eigenmodes are
able to describe the relevant dynamics of the flow we write

m

u=> r(t). (5.38)

=1

Inserting this assumption into (5.31) we see that the flow dynamics is described
by

dk

— = Ak, k(0)=k 5.39

dz ) ( ) 05 ( )
where k = [k, Ka,...,knN] is the vector of expansion coefficients and A is a

diagonal matrix whose elements are given by A;; = ;. The flow perturbation
energy in this basis is |[ul|? = ||F exp(At)kol||?, where F is the Cholesky factor
of the Hermitian energy measure matrix M with entries M;; = f a a;d€.
Hence, the maximum growth expressed in the basis of eigenmodes reads

G(t) = ||Fexp (At)F~L|J2. (5.40)

The largest growth at time ¢ is given by the largest singular value of F exp (At)F~1
and the optimal initial condition is kg = F~'z, where z is the right singular
vector.

With this formulation of the problem the evaluation of the matrix expo-
nential is simple because A is diagonal. Also the computation of the SVD of
this matrix is computationally cheap if the number of modes m is small. From
(5.40) it can also be seen that the asymptotic growth of unstable eigenmodes is
captured, implying that one can view the optimal growth framework as a more
complete way of studying stability.
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5.4.2. Using the adjoint evolution operator

It is possible to avoid building the matrices involved in (5.37) altogether. The
central element in doing so is to make use of the adjoint evolution operator
T1(t) = exp(Aft) which given two test vectors p and q satisfies

(p.7q) = (T'p,q). (5.41)

The choice of inner product inner product dictates the form of 7T. In defining
the adjoint evolution operator the inner product in the time space domain
=0T x

(u,u)z:/OT(u,u)dt:/oT/QuTudet (5.42)

is used. By noting that the linearized Navier—Stokes equations can be written
as (0 — A)u = 0 we will recognise that the adjoint should satisfy the following

property
(u', (0; — Au)y = ((=9; — ANu',u)y =0 (5.43)

In order to move the action of the operators d; and A from u to u’ we will need
to perform integration by parts on the leftmost part of the above expression.
To arrive at the adjoint operator AT there are two possible strategies; either to
discretize the system in space including the boundary conditions and use the
discretized inner product, or to use the continuous variables and operators in
(5.43) to arrive at the the adjoint system (Giles & Pierce 2000). Once obtained
in its continuous form the system is discretized for numerical implementation.
We here outline the latter strategy. We utilise the Navier—Stokes equations and
the time space inner product to perform integration by parts

0= (ul, (8, — Au)x

T
:/ /(uT)T (Opu— (U-V)u— (VU)u+ Re 'Au+ Vp) dQdt
o Ja
T
:/ /uT (=0’ + (U - V)u' — (VU)Tu' + Re ' Au' + Vo) dQdt
0o Ja

+ /0 "BCdi /Q (u (T)Tu(T) dO2 — / (u (0))Tu(0) 92

Q

T
= (=0 — AHu' u)y —|—/ B.C.dt + (uf(T),u(T)) — (u'(0), u(0)).
0
(5.44)
The pressure for the adjoint equations o can similarly to the regular equations

be obtained through a Poisson equation, i.e. 0 = Kfuf. The B.C term contains
the inner product between boundary terms in the direct and adjoint solution.
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The above expression defines the adjoint linearized Navier—Stokes equations

—0pu’ = Afu = (U-V)u' — (VU) u' + Re7'Au' + VKTul, u(T) = uTT

(5.45)
if the boundary conditions of the adjoint system is set so that the integral
containing B.C. vanishes and the initial and end time inner products equals,
i.e.

(u'(T),u(T)) = (u!(T), T(T)u(0)) = (TH(T)u’(T),u(0)) = (UT(O)’U((()%)@)
This leads to the conclusion that the adjoint evolution operator .

ul (T —t) = exp(ATt)ul (1), (5.47)

is the operator that solves the Navier—Stokes equations backwards in time to
fulfil the inner product relation (5.43).
Having defined the adjoint evolution operator we may use it on (5.37) to

obtain the largest growth as

G0) — e EPLAN O (AN ) (g, exp(Ai) exp(AD)ug) (o

uo#0 (1107 uo) up#0 (110; ll())

The above expression is a Rayleigh quotient and therefore by definition an
eigenvalue problem. We can now write the optimization problem as

o(t)ug = exp(ATt) exp(At)up. (5.49)

The largest eigenvalue of this Hermitian matrix is the maximum possible growth
and the corresponding eigenvector is the structure in the flow that leads to the
largest growth. Note the similarity with the standard eigenvalue problem.
Whereas the eigenvalues of A or equivalently exp(AT') give the asymptotic
growth of the system, the eigenvalues of the above system yield the potential
for growth. Of course, to build the matrix exp(A't)exp(At) is in most cases
infeasible. Instead one can see this as the application of two DNS simulations;
one for the normal Navier—Stokes system and one for the adjoint Navier—Stokes
system, thereby making it suitable for solution by the Arnoldi method as de-
scribed in Section 4.3.

5.5. Global stability of the flat plate boundary layer flow

The stability of the flat plate boundary layer flow was possible to explain us-
ing the Orr—Sommerfeld /Squire equations, but it is of interest to interpret the
stability characteristics of this flow from a global perspective. In essence Paper
1 deals with the use of the two-dimensional temporal eigenmodes (we assume
two-dimensional disturbances and harmonic time dependence) to characterise
the growth due to two-dimensional structures. Figure 5.2(a) shows a subset
of the 1205 converged eigenvalues obtained by choosing a Krylov subspace of
dimension 2000. The branch of the spectrum associated with T'S-instability is
seen here marked with circles. These modes can be selected by identifying the
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FIGURE 5.2. (a) Eigenvalues of the linearized two-dimensional
Navier—Stokes system as obtained by the Arnoldi method. The
eigenvalues enclosed by circles belong to the TS branch. (b)
Streamwise velocity component of the eigenfunction related to
an almost neutrally stable eigenvalue m at the frequency \; =
0.055. (c) Eigenfunction corresponding to a high frequency
highly damped eigenvalue ms.

slightly damped eigenvalues with the corresponding eigenfunctions obtaining
their maximum values inside the boundary layer while decaying exponentially
in the free stream. Figure 5.2(b)-(c) shows examples of eigenfunctions associ-
ated with eigenvalues m; and my in figure 5.2(a). The streamwise wavelength
of the eigenfunctions increases as we go towards lower frequencies. The wall
normal structures of these are very similar to those obtained by local temporal
analysis. Apart from the TS branch, figure 5.2(a) also reveals that the global
spectrum give both the wall normal continuous spectrum (the slightly damped
eigenvalues) and the damped discrete Orr modes, which both can be linked
to the local temporal spectrum, however modified by non-parallel effects (see
Paper 1).

A first observation to be made is that all eigenvalues are stable, hence we
do not expect to see any single eigenmode dominating the flow. Tentatively
we examine the possibility of transient growth by projecting the system on m
two-dimensional eigenmodes as described in Section 5.4.1.

Figure 5.3(a) shows the envelope G as a function of time. The envelope
reveals at each instance of time the maximum possible amplification due to a
specific initial condition, i.e. there is a different initial condition leading to the
specific maximum growth at each instance of time. The solid thick line shows
the envelope using a sufficient amount of eigenmodes, leading to the combined
Orr mechanism and the T'S wave growth. The thin solid line shows the envelope
obtained when using only the TS type of modes in the optimization, revealing
that there is a gain with a factor of 20 in energy growth by initializing the T'S
wavepacket with the Orr mechanism.
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FIGURE 5.3. (a) Envelope of growth due to worst case ini-
tial conditions. Solid thick line shows the envelope using a
sufficient amount of eigenmodes, leading to the combined Orr
mechanism and the TS wave growth. The thin solid shows
the envelope obtained when using only the TS type of modes
in the optimization. (b) Time evolution for streamwise veloc-
ity with the combined Orr and TS mechanism. Note that the
maximum amplitude A is growing from frame to frame.

In figure 5.3(b) we see snapshots of the optimal disturbance at different
times of its evolution. At the initial time it is leaning backwards against the
shear. During the initial phase of development the disturbance is raised up,
exploiting the Orr mechanism, forming a wavepacket consisting of T'S-waves.
The wavepacket then grows as it propagates downstream and finally decays
as it leaves the window of observation. In several recent investigations it has
been found that the concept of transient growth in the form of wavepacket
propagation can be important in non-parallel flows analysed from a global
perspective. Using the Ginzburg-Landau equation Cossu & Chomaz (1997)
showed that the transient growth associated with a sum of damped global
modes can describe a spatially growing disturbance associated with a local
convective instability. The recent review of Chomaz (2005) further elaborates
on these ideas. Schmid & Henningson (2002) applied this concept to a falling
liquid curtain and found that in contrast to the evolution of single modes,
the sum of modes, i.e. the cooperation of modes that produces the largest
growth, was in fact able to bring out a physical mechanism of growth and
regeneration of the wavepacket, namely the triggering of a new wavepacket by
the pressure feedback of the disturbance created by the previous packet as it
hits the downstream end of the domain.

It is interesting to note that, as in the falling liquid sheet problem of Schmid
& Henningson (2002), the optimal sum of the global eigenmodes brings out the

29



30 5. HYDRODYNAMIC STABILITY

physical mechanism that optimally triggers wave packets also for boundary
layers. From the global approach we see that both TS waves and streaks
scenario can be seen as transient growth, i.e. neither of the mechanisms can be
seen to stem from single eigenmodes. The TS waves can be interpreted in terms
of streamwise non-normality, where the perturbations are growing while being
convected with the flow. Likewise the Orr mechanism which is present also
in the Orr—Sommerfeld equation can be seen as a wall normal non-normality,
where it is the propagation of the mean flow by the disturbances that creates
the instability. The famous lift up mechanism may be seen as a component-wise
non-normality, where there is a transfer of momentum from the wall normal
and spanwise velocities to the streamwise velocities (Marquet et al. 2008). Note
that using a sum of eigenmodes yields a low dimensional description of the
system. The direct computation of the optimal growth using the direct and
adjoint evolution operator may in many cases be the best choice of method.
Blackburn et al. (2008) studied a backward-facing step flow using a direct
approach and found that also for that geometry wavepackets originating at the
upstream end of the domain propagates downstream as they grow spatially. In
Paper 6 we study both the optimal initial condition and the optimal forcing
in the Blasius boundary subject to three-dimensional disturbances using this
approach, comparing the growth due to wave-packet propagation and the lift-
up mechanism.

5.6. Global stability of the cavity flow

Due to its rapid change in geometry, the cavity flow is not possible to analyse
using the Orr—-Sommerfeld/Squire equations. In the previous section we ob-
served that for the high Reynolds number flat-plate boundary layer flow the
optimal sum of eigenmodes yielded upstream tilted structures that efficiently
initialised Tollmien-Schlichting type of wave packets. With this knowledge in
hand we are ready to attack a strongly non-parallel problem, to see the inter-
action of convective and absolute instability.

In absolutely unstable flows any noise present in the high order numeri-
cal discretization will grow exponentially, making it impossible to numerically
compute a steady-state base flow for linearization by standard time-marching
methods. Therefore the Selective Frequency Damping technique proposed in
Paper 2 is used to recover the steady state at this Reynolds number. The
Navier—Stokes equations are forced by adding a term proportional to the dif-
ference between the flow state and a filtered solution. In order to examine the
stability of the flow we again compute the eigenvalues of the two-dimensional
linearized Navier—Stokes operator linearized about the unstable base flow.

As in Section 5.5 we use the Arnoldi procedure to obtain global eigen-
modes of the flow. For this highly non-parallel flow we find, as seen in figure
5.4(a), about 150 converged complex conjugate pairs of eigenmodes when using
a Krylov subspace of size m = 800. Two of the eigenvalues are found in the
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FIGURE 5.4. (a) Eigenvalues of the cavity flow at Re = 350.
There are two unstable modes labelled (the most unstable be-
ing labelled my), the distance in frequency of which is related
to the length of the cavity. (b) Vertical velocity component of
mode my. (¢) Vertical velocity component of mode ms.

unstable half plane, i.e. they have positive real part. An unstable eigenvalue
indicates that the flow is globally unstable, supporting self-sustained oscilla-
tions. Figure 5.4(b) shows the vertical velocity of the eigenfunction associated
with the eigenvalue labelled mi. All the slightly damped modes are quite
similar, they display Kelvin—Helmholtz type structures, all growing exponen-
tially throughout the shear-layer. Note that the distance in frequency A; of
these modes are set by the length of the cavity and the propagation speed of
disturbances in the shear layer, similar to the waterfall problem of Schmid &
Henningson (2002). Slightly more damped modes labelled ms in figure 5.4(a)
with corresponding eigenfunctions displayed in figure 5.4(c) are also present.
These eigenfunctions are reminiscent of the T'S modes obtained in section 5.5.

The non-normality of the operator we investigate allow the possibility of
transient growth also in this globally unstable flow configuration. Using an
eigenfunction expansion in a number of selected modes we optimize the energy
output in the same way as for the waterfall and Blasius problems. Figure 5.5(a)
shows the optimal energy growth using different numbers of global modes in the
eigenfunction expansion. Using one mode we observe the exponential growth
of the most unstable mode. Transient energy growth, due to non-normality of
the eigenmodes, results in a much faster growth up to ¢ = 200, followed by
a global cycle of approximately 300 time units. This cycle is associated with
the least stable eigenvalues in figure 5.4(a). Since the spacing in \; between
adjacent modes is A); =~ 0.02, and the corresponding eigenfunctions have a
very similar structure, they have the ability to cancel each other, giving rise to
a cycle with a period of 2r/A\; (Schmid & Henningson 2002). In order to get
a more physical feeling with the oscillating cycle we consider spatio-temporal
diagrams of the pressure field obtained from the eigenfunction expansion at a
height of y = 10 above the plate, tracing the development of the wavepacket.
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FIGURE 5.5. Optimal growth for the cavity flow. (a) Envelope
as obtained from the global mode expansion. Different lines
correspond to increasing number of eigenmodes included in
the optimization, 1,2,4,24,...,124,144 from bottom to top.
Using one eigenmode in the expansion results in the exponen-
tial growth of the least stable eigenmode. When including two
modes in the optimization there is a cancellation effect lead-
ing to an oscillating cycle. (b) Spatio-temporal diagram for
the pressure at y = 10, for the time evolution in the eigen-
mode system due to the worst case initial disturbance. The
horizontal lines show the location of the cavity lips. As the
wave packet reaches the downstream lip there is a significant
pressure reflection regenerating the wave packet.

The bottom horizontal line in figure 5.5(b) signifies the upstream lip and the
top horizontal line the downstream lip. We first see the wavepacket as it hits the
downstream end, then it appears again and again as the global cycle continues.
We also see vertical (instantaneous) pressure pulses when the waves hit the
trailing lip. If we trace back a wavepacket to the downstream lip of the cavity
we see that it is triggered by the pressure pulse of the previous wavepacket.
This instability mechanism may be seen as a destabilization of the global mode
by the pressure field, where the pressure constitutes an immediate feedback
mechanism and the strong streamwise non-normality causes a large growth of
the disturbances along the shear layer.



CHAPTER 6

Flow control

The interest in devising efficient controllers for real applications such as the flow
around vehicles is substantial both from an economic and environmental point
of view. A large portion of the drag on boats, aeroplanes and trains stems from
the turbulent boundary layer surrounding these, hence an important aspect of
flow control is to delay the transition to turbulence. Flow control in its widest
sense refers to any mechanism that modifies the behaviour of the flow. During
the last decade several strategies such as active, passive, open-loop, closed-
loop control have been implemented both numerically and experimentally with
various degrees of success. Passive control methods rely on modifying the mean
flow by means of disturbance generators, such as ribblets, roughness elements or
compliant walls, or by altering the shape of for instance an aeroplane wing. As
an example Fransson et al. (2006) showed experimentally that streaks induced
by roughness elements mounted on a flat plate could delay transition due to
Tollmien-Schlichting waves in the Blasius boundary layer flow.

This thesis deals with active feedback (closed loop) control, where the aim
is to control the flow at a disturbance level by minute perturbations of the flow.
Important reviews in the field of active feedback control include Gunzberger
(1996); Bewley (2001); Kim (2003); Kim & Bewley (2007). All results presented
are obtained in the numerical framework, but it should be kept in mind that the
goal is to approach the possibility of experimental implementation of feedback
controllers. The justification of applying linear feedback control to inherently
non-linear processes such as the evolution of fluid flows is threefold; first of all
the transition process consists of a linear stage, where small disturbances grow
until non-linear breakdown occurs (Schmid & Henningson 2001), secondly lin-
ear processes are important to sustain turbulence in wall-bounded turbulent
flows (Kim & Lim 2000), thirdly stochastic disturbance models can be intro-
duced in the linearized Navier—Stokes equations mimicking flow statistics of
full DNS (Jovanovi¢ & Bamieh 2001).

Over the years several important steps have been taken in the field of nu-
merical linear feedback control. Early studies focused on the parallel channel
flow (Joshi et al. 1997; Bewley & Liu 1998; Keun et al. 2001; Hogberg et al. 2003;
Heepfiner et al. 2005; Chevalier et al. 2005), where the Orr—Sommerfeld /Squire
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equations were sufficient to describe the linear mechanisms of the flow. Lin-
ear feedback control in the Orr—Sommerfeld/Squire framework has also been
applied to spatially developing flows in Hogberg & Henningson (2002); Cathal-
ifaud & Bewley (2004a,b). In Paper 5 we perform control in boundary layer
flows such as the Blasius and Falkner—Skan—Cooke flows following this strat-
egy. A substantial drawback with the assumption of locally parallel flow is that
distributed sensors and actuators along the wall are assumed, which is clearly
infeasible for experimental implementations, where only localized sensors and
actuators are possible.

In order to capture localized sensors and actuators controllers have to be
constructed using a global approach. This new approach is developed in Paper
3 and Paper 4. Since the linearized Navier—Stokes equations once discretized
constitute a very high dimensional system, the systematic manipulation of the
full equations becomes too demanding. Reduced representations of the equa-
tions by Galerkin projection onto global basis functions have received sub-
stantial attention during the last years. Specifically various models based on
proper orthogonal decomposition (POD) modes able to capture the non-linear
dynamics of the Navier—Stokes equations can be found in Gillies (1998); Noack
et al. (2003, 2004); Tadmor et al. (2004); Rowley et al. (2004). A problem with
using POD modes is that although they are optimal at capturing the energy
of the flow they do not in general capture the dynamically important low en-
ergy structures created by the actuator. Different strategies to overcome this
problem have been introduced in Gillies (1998) and in Tadmor et al. (2004).
For linear systems balanced truncation provides an attractive basis for model
reduction (Moore 1981), and examples of successful applications are channel
flow (Tlak & Rowley 2008), the flow around a pitching air foil (Ahuja & Rowley
2008) and the Blasius boundary layer flow (Bagheri et al. 2008).

Reduced order modelling provides the natural bridge to experimental im-
plementations of optimal controllers. Until recently the experimental commu-
nity has restricted their studies to the performance of the actuators their selves
and not the specific performance of different control laws. In experiments typi-
cal sensors are wall wires and hot films measuring wall shear stress (Alfredsson
et al. 1988), whereas actuators are provided by suction/blowing through holes
(Lundell 2007). An example of active feedback control for the Blasius boundary
layer is found in for instance Lundell (2007) who showed that arrays of wall
wires extracting wall shear stress connected to wall suction actuators could
by utilising simple control laws reduce the disturbance growth due to streaks.
Successful experimental implementations of optimal linear feedback control are
scarce, but an exception is Caraballo et al. (2008), who attenuate the peak
in the frequency response of the globally unstable square cavity flow. In that
work POD modes obtained from particle image velocimetry snapshots are used
to construct a reduced order model from which a Linear Quadratic Gaussian
controller is computed.



6.1. FEEDBACK CONTROL 35

6.1. Feedback control

In this thesis we deal with active control in the framework of closed loop feed-
back control. The essence of a closed loop controller is illustrated in figure 6.1.
The flow system may be seen as a plant onto which we have disturbances .
The plant may be the flow in a wind tunnel or as described by the Navier—
Stokes equations. From the plant we have measurements r available. These
measurements are fed into a controller which in real time (on line) computes
control signals ¢ that are fed back into the plant. A second set of measurements
s monitor how well the controller has been performing. An alternative set up is
an open loop controller where the outputs r are discarded in the computation
of the control signals, thereby enabling off line computation of the control law.
The latter control strategy is only reasonable if exact knowledge of the plant
dynamics is available, whereas the former is able to account for uncertainties
in the plant. The outputs r and s are obtained through sensors, which for flow
systems typically are located at the wall. Similarly the inputs ¢ are driving
actuators that allows for manipulation of the flow behaviour. The mapping of
the disturbances 1) onto the state needs in general to be modelled. For flow
systems this essentially amounts to describing the shape and location of typical
instability structures.

N — s
(disturbances) plant (monitor performance)
¢ r

(control signal) (sensor signal)

controller

FIGURE 6.1. Schematic view of a control setting. The flow is
seen as a plant driven by disturbance signals 1. From the plant
measurement signals 7 are into a controller which calculates a
control signal ¢ that is fed back into the plant. A second set
of measurements s monitors the performance of the controlled
system.

The most essential question for control is what to put in the “controller”
box, or in other words how to connect the sensors to the actuators in order to
obtain the desired goal. Simple controllers do exist, and the most popular in
industrial applications (control of robot arms, cd players, car steering systems
etc.) is the so called Proportional Integral Derivate (PID) controller. This
controller takes output signals r and calculates the control signal through the
relation

6(t) = Pr(t) + D% +1 /O r(r)dr, (6.50)
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where P, D and I are tunable constants. The tuning of the constants can be
done by a lead-lag technique working in the frequency domain, with a frequency
domain model of the plant available. This can also be seen as a pole placement
(moving eigenvalues) technique. For a general fluid dynamical system, which
has quite intricate dynamics (such as non-normality of the underlying operator)
the task of tuning the constants may become difficult (Glad & Ljung 1994).
There are other more systematic (and complicated) ways of constructing con-
trollers, namely controllers that stem from optimization of quadratic criteria.
The famous Linear-Quadratic-Gaussian (LQG) controller is an example of this
class of controllers. The essence of the LQG controller is that a Kalman filter
(state space filter) is running on the side of the plant continuously estimating
the state based on measurements. Based on the estimated state an optimal
controller computes control signals. There are of course drawbacks to using
this technique, the most obvious being that large scale optimization problems
have to be solved if the full state space equations are used as a basis for control.
In addition the Kalman filter has to be run on-line in order to yield the control
signals, typically at the cost of a DNS time integration. There are however
methods to cope with the high dimensionality of the system.

6.2. Inputs and outputs

In order to perform systematic manipulation of the linearized Navier—Stokes
equations we equip them with inputs that allow us to manipulate the flow

opu = Au+ B¢ + Byp = Au + Bf (6.51)
and outputs
s =Ciu c
. CQu,} =r=_Cu, (6.52)

that enable us to extract information. Here u is the state consisting of the
velocities and A is the discretized linearized Navier—Stokes operator. Without
loss of generality only single input and output signals are considered here. The
input operator By allows for the manipulation of the flow through the scalar
control signal ¢. The scalar measurement r is obtained through the operator
C;. Disturbances to the state equation are modelled by the input B; driven by
the scalar signal 1. We are able to monitor the behaviour of the controlled sys-
tem via the scalar signal s generated from the state via the output operator Cj.
It is convenient to group the inputs to obtain an input signal vector f = [, ¢]
with the corresponding input operator B = [B; Bz] and likewise the outputs to
an output signal vector r = [s, 7]7 with the corresponding output operator
C = [C1, Co]T. The state space formulation requires the inputs to be volume
forcing operators and the outputs to operate on the state u. If applying control
via boundary conditions for instance by means of blowing and suction it is con-
venient to perform a lifting procedure (Curtain & Zwart 1995). A derivation of
this procedure for the one dimensional Orr—Sommerfeld /Squire equations with
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distributed actuators is found in Hégberg et al. (2003), and similarly for the
two-dimensional Navier—Stokes equations with localized actuators the reader
is referred to Paper 4 for an explanation. The basic idea of that procedure
is to divide the solution into a particular part satisfying the boundary condi-
tions and homogeneous part with homogeneous boundary conditions. Then the
control problem of the total solution is written in terms of the homogeneous
solution forced by a steady state solution of the particular system.

Figure 6.2 shows the inputs and outputs for the two flow cases studied in
this thesis. For the convectively unstable Blasius case we model the disturbance
input B; to the system by an upstream located volume forcing as seen in figure
6.2(a). Remember from Section 5.5 that the dominating instabilities in the
flow were upstream located structures that are propagated downstream in the
form of wavepackets while being amplified. Downstream of the disturbance
the sensor Cs senses the incoming disturbances extracting the wall-shear stress
(Oyu) with the shape shown in figure 6.2(a). The actuator is a zero mass flux
wall blowing and suction device that is lifted to a state space forcing term
as described in Paper 4. In total the flow is now subject to input from both
disturbances and actuation, the effect of which is convected downstream. To
this end there is a sensor C; located downstream monitoring the performance of
the controller by extracting the wall-shear stress. In Figure 6.2(b) the control
setup for the globally unstable cavity flow is shown. In Section 5.6 it was shown
that the destabilising mechanism was wave packet propagation across the cavity
shear layer that triggered a pressure wave when hitting the downstream end of
the cavity. This makes it natural to assume that the disturbance B; should be
modelled by a volume forcing in the cavity shear layer and likewise that the best
location for sensor Cy is at the downstream cavity lip. Once the disturbances
hit the downstream lip the pressure wave immediately hits the upstream lip
of the cavity recreating vortical disturbances that again propagate across the
shear layer. It is hence at the upstream lip a suitable location for the actuator
By is found. In order to access the performance the full domain perturbation
kinetic energy is monitored. From the above it is evident that while finding
the best control law may be solved by optimization problems the placing of
actuators and sensors is an engineering judgement based on the knowledge of
the flow instability.

6.3. Model reduction

The linearized Navier—Stokes equations subject to control constitute a very
high dimensional system once discretized. Systematic control strategies involve
solving optimization problems that rely on direct manipulation of the system
matrices involved. In general this becomes computationally too demanding.
A way to avoid the problem of high dimensionality is by model reduction,
for which the aim is to construct a reduced order state space realization with
input-output characteristics that are similar to the original state space model.
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FIGURE 6.2. Set up of inputs and outputs for a) The flat plate
boundary layer flow. The input By models the upstream initial
receptivity phase. The wall blowing and suction actuator Bs is
located after the first sensor C; which measures the wall-shear
stress. The second sensor Co quantifies the effect of the control.
b) The shallow cavity flow. The actuator Bs is placed in the
vicinity of the upstream lip of the cavity and the sensor C,
measuring the skin friction is placed at the downstream lip of
the cavity The unknown stochastic disturbances Bj is assumed
to be located upstream in the shear layer. The output C; is
not shown because it measure kinetic energy in the whole do-
main.

The standard procedure to obtain a reduced state space model is by Galerkin
projection on a set of suitable vectors. In this thesis we have used two different
sets of vectors, namely the eigenmodes of the linearized equations and the
balanced truncation modes (Moore 1981).

Given a set of input operators 1 and B a crucial element for control design
is to quantify their effect on the state. The systematic approach to quantifying
this effect is commonly given by the controllability Gramian, which measures
the energy of the states u that can be reached by the inputs

To = / exp(AT)BBT exp(Afr)dr, (6.53)
0

for the input B = [B; Bz]. The controllability Gramian once diagonalized pro-
vides a way to rank different states according to how they can be influenced by
the inputs B. In the same manner, given output operators C; and Co the most
easily observed states are quantified by the observability Gramian

To :/ exp(AT7T)CTC exp(AT)dr, (6.54)
0
for the outputs C = [C; Co]T. The observability Gramian provides upon diago-
nalization a way to rank the states according to how easily they are detected
by the outputs. Both measures (6.53) and (6.54) are obtained as solutions of
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Lyapunov equations, which in their direct form are computationally too heavy.
Most methods to deal with this issue are based on subspace projections (Saad
& Gv 1990), and the snapshot method (c.f. Sirovich 1987; Rowley 2005) falls
under this category. The key elements in the snapshot method are; to replace
the upper integration limit in (6.53) and (6.54) with a sufficiently large finite
time; to introduce a numerical quadrature to obtain discrete approximations
to the integrals; and finally to project the solutions on the snapshots. A set
of snapshots for the controllability Gramian is obtained by doing two forward
simulations (DNS) subject to initial conditions By and By to obtain the col-
lection of snapshots X of size n x 2m for the discretized state. In addition a
set of adjoint snapshots for the observability Gramian is obtained through two
adjoint simulations subject to end conditions C; and Cy to end up with Y of
size n x 2m. The discretized gramians are formally given by J. = XXT and
J, = YYT. The balanced modes are the modes that mutually diagonalize J,
and J,, i.e. they are the eigenmodes of J.J,. To this end it can be seen that
the singular value decomposition of the small 2m x 2m sized matrix Y7 X is
sufficient to obtain these modes. For a more in depth explanation to the snap-
shot method for computing balanced modes it is referred to Rowley (2005).
For stable systems the balanced truncation modes provides the preferable ba-
sis for model reduction due to their inherent quantification on how well the
input-output behaviour is captured.

Although in its original form balanced truncation applies to stable systems
only, it is possible to extend it to unstable systems by projecting out the unsta-
ble eigenmodes of the system and creating an augmented system of balanced
modes and eigenmodes (Ahuja & Rowley 2008). If the aim is to stabilise an
absolutely unstable flow it is possible to use only the eigenmodes as a total
basis for projection (Akervik et al. 2007).

Whether we use the eigenmodes or the balanced modes we denote the

basis as V = [vi,Va,...,V,,] and the corresponding adjoint basis as VI =
[VLV;, ...,vl ], where m is the number of modes kept in the reduced order

representation of the system. Typically m should be chosen as small as possible.
The direct and adjoint modes satisfy the bi-orthogonality condition

(V;ra vj) = dij. (6.55)

The flow state u is expanded in the basis as in Section 5.4
u=>y r;(t)v; = Vk(t), (6.56)
j=1

for the flow state k = [k, Ka,.. .,/{m]T. The above relations enable us to
perform a Galerkin projection of the linearized Navier—Stokes equations via
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the inner products

Ay = (v, Av))

Bii = (Vj,Bl) By = (VI,BQ)
The reduced matrix A is of size m x m and the input matrices B; are of sizes
m x 1. If the eigenmodes are used as a basis for reduction, the matrix A is
diagonal with the eigenvalues on the diagonal, but for the balanced modes

the matrix is in general full. The reduced order representation of the output
operators is obtained via the expansion (6.56)

Cii =Cyvy, Ca,i = Cav;. (6.58)
Finally we end up with the reduced system
k = Ak + Bi¢ + By,
s= Gk (6.59)
r, = Gk,

(6.57)

to be used for systematic control design in the LQG framework.

6.4. LQG control of the Navier—Stokes equations

In the design of an LQG controller our concern is to find an optimal mapping
from the output r to the input ¢ so that a quadratic measure of the disturbances
are minimized. An example of such a measure is the total kinetic energy in the
domain, but it might also be based on a measurement at a specific location. A
direct formulation of the optimization problem results in a sequence of coupled
non-linear equations, and there are no robustness guaranties to the resulting
controller (see e.g. Lewis & Syrmos 1995). On the other hand by splitting
the problem in two, where an optimal controller is built using full knowledge
of the state (Linear Quadratic Regulator), but replacing that state with an
estimated state reconstructed from the measurement based on a Kalman filter,
results in a controller with certain desirable properties. For instance if the full
information controller and the Kalman filter are both stable, then the resulting
controller is also stable, as guaranteed by the separation principle (Zhou et al.
2002).

6.4.1. The Kalman Filter

Let the first step in the LQG design be to reconstruct the state from the
measurements r discarding the output s. The state equations can be written
as

(6.60)
r= C2k +g9,

where we have added measurement noise g. To explicitly state that there
are uncertainties in the system, both ¢ and g are considered to be stochastic

{/}: Ak + Bip + Byg,  k(0) = ko
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uncorrelated white noise processes, only known through their covariances. The
detailed form of the initial condition kg is assumed to be unknown, and only
covariance data is available. The stochastic nature of the uncorrelated inputs
1, g and kg renders also the state k stochastic. The time evolution of the state
covariance P = E{k*k} is governed by a Lyapunov equation (Kailath et al.
1999).

The process of estimating a linear system with noisy and a limited amount
of information is an optimal filtering problem (Kailath et al. 1999). Now let
the state equation itself serve as a time-domain filter

k= Ak + Bop + L(r — ), k(0) =0

. (6.61)
Cok,

>
Il

for the estimated state k. The above equation is the famous Kalman filter,
where neither state disturbances nor measurement noise is present. A forcing
term L(r — 7) is introduced to force the estimated state towards the noisy
unknown state based on the measurement differences in the two systems. This
forcing vanishes when the difference in the measurements is zero. The error
k = k — k involved in this process has the evolution equation

k=(A+ LGk - Lg, (6.62)

with corresponding covariance P. The task is now to find the optimal forcing
gain L that minimises the quadratic measure trace(P) in the infinite horizon.
The resulting optimization problem can be solved by a Lagrange multiplier
technique where the objective function is subject to the constraints of satisfying
the Lyapunov equation for the estimation error covariance P. It can be seen
that the solution is given by an algebraic Riccati equation for P, and the optimal

gain L can be extracted from
L=—-Pclg. (6.63)

Here G is the variance of the measurement noise. The optimal gain L is now
designed such as to drive the estimated state k towards the unknown state
k based on the measurement difference r — 7. For a detailed derivation of
the estimation process the reader is referred to Kailath et al. (1999), and for
a discussion on how to model the stochastic disturbances for fluid flows it is
referred to Heepflner et al. (2005); Chevalier et al. (2005).

6.4.2. The Linear Quadratic Regulator

When designing an optimal full information controller we take a deterministic
approach, where we assume that full state information is available and that the
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measurement s is used as an objective function
k = Ak 4 By,
s = Cik + (.
The measurement s is equipped with a term £¢ that allows us to add the control

signal strength to the objective function

Is])? = / ICik|2 + 267 par. (6.65)
0

(6.64)

Minimisation of this expression can also be achieved through a Lagrange mul-
tiplier technique where the constraint is the state equation k = (A — BaK)k.
The optimal control gain K is obtained as the solution of an algebraic Riccati
equation. As stated earlier the separation principle guarantees that the optimal
measurement feedback control is given by

o(t) = Kk(t), (6.66)

where k is indeed the state estimate provided by the Kalman filter. Note that in
general the cost functions for both control and estimation can be time varying
functions and in this case the gains K and L become time dependent and their
solution is governed by differential Riccati equations (see e.g. Lewis & Syrmos
1995).

6.4.3. Application to the Navier—Stokes

Applying the optimal controller to the Navier—Stokes equations amounts to
solving the system
Oyu= NS(u) + B¢, r = Cau,
: . . (6.67)
k=(A+BK+ LGk —Lr, ¢=Kk.
The evolution of the flow state u is updated for example by means of a DNS
time-stepper technique. At every time step measurements r are extracted,
driving the small estimated state k. The estimated state is updated on-line
by any suitable time-integration procedure, feeding back at every time step
control signals ¢ to the DNS. It is important to note that if we were using the
full equations for the control design, it would have been necessary to solve a
full DNS on-line in order to obtain the estimated state. Hence it can be seen
that model reduction is essential both to solve the optimization problems and
to construct realizable controllers for on-line use.

6.5. Control of the flat plate boundary layer flow

For the flat plate boundary layer flow discussed in Section 5.5 we use the 70
most dynamically important balanced truncation modes as a projection basis
for model reduction. The performance of the controller is tested using the prop-
agating wavepacket stemming from the optimal initial condition. This case is
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F1cURE 6.3. Control of the wavepacket due to the worst case
initial condition. (a) Solid black line shows uncontrolled en-
ergy evolution and dashed black line shows the controlled en-
ergy. (b) Output signal as measured by the sensor Cy driving
the controller. (¢) Control signal fed into the wall actuator.
(d) Signals from the sensor C measuring the objective func-
tion. Solid black line shows uncontrolled case whereas dashed
black line shows the controlled case.

interesting because the controller is not designed specifically for this configu-
ration and it has only a limited window in time to counteract the disturbances
that are propagating through the domain in the form of a localized wavepacket.
In figure 6.3(a) the full domain kinetic energy as a function of time is shown
as a solid black line for the uncontrolled evolution and as a dashed line for
the controlled case. The effect of the controller is evident. The measurement
signal detected by the sensor Cs is shown in figure 6.3(b) revealing that the
sensor picks up the front of the wavepacket arriving at ¢ ~ 350. A time lag
of ~ 300 consistent with the speed of the propagating wavepacket (¢ = 0.3) is
observed until the controller starts acting on the information (see figure 6.3(c)).
The downstream measurement, i.e. the objective function to be minimized, is
shown in figure 6.3(d) as a black solid line for the uncontrolled case and as a
dashed black line for the controlled case. It can be seen that also this measure
shows a satisfactory performance of the controller.

6.6. Control of the cavity flow

For the absolutely unstable cavity flow studied in Section 5.6 we use the eigen-
modes of the two-dimensional linearized Navier—Stokes equations as our pro-
jection basis for model reduction.

The control and estimation gains are computed using the LQG framework
presented in Section 6.4. In order to assess the performance of the computed
control and estimation gains the linear reduced order controller is coupled to
the full non-linear DNS and applied to the same configuration that led to
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the evolution shown in figure 5.5. A reduced model consisting of the four
least stable eigenmodes is considered, sufficient to at least move the unstable
eigenmodes to the stable half plane. Note that this small model cannot fully
capture the transient growth associated with the initial propagation of the wave
packet (see third line from bottom in figure 5.5(a)), however as already stated,
for control purposes it is the actuator to sensor dynamics that is crucial to
capture. The shear layer acts as a filter to retain only the leading eigenmodes
once the wavepacket has propagated across the cavity. Indeed figure 6.4(a)
shows that when control is applied to the full Navier—Stokes equations in terms
of DNS, the exponential energy growth is turned into exponential decay after
the first peak. It is not possible to control the initial energy growth as the
first wavepacket has to propagate down once before the controller knows that
it exists.

The sensor signals for the controlled and uncontrolled case are shown in
the inset of figure 6.4(a). The sensor signal from the controlled case decays
after the first reflections of the wavepacket at ¢ ~ 125. The spatio-temporal
diagram for the controlled flow in figure 6.4(b) is to be compared with figure
5.5(b). When the control is applied one still observes the vertical rays of the
global pressure oscillations but the wavepacket regeneration is reduced, leading
to a decrease in the levels of fluctuations at each cycle, i.e. flow stabilization.
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FIGURE 6.4. a) Energy obtained from DNS of the uncon-
trolled flow (thin solid line) and controlled flow using model
with four modes (thick solid). After the first reflection has
taken place the controller counteracts regeneration at the up-
stream cavity lip and thereby turns exponential growth into
exponential decay. Inset shows the sensor signal in the uncon-
trolled case as thin solid line and controlled using four modes
as thick solid line. b) DNS of controlled flow using an estima-
tor constructed from reduced model formed by the four least
stable eigenmodes. As can be observed by comparison with
the uncontrolled case displayed in figure 5.5 the regeneration
of the disturbances at the upstream cavity lip is diminished.
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CHAPTER 7

Conclusions and outlook

Modern hydrodynamic stability theory has converged towards the formulation
of the stability problem as an optimization problem, thereby sharing the strat-
egy with systematic control theory. There is in other words little difference
from a toolbox point of view in determining the stability characteristics of a
flow and constructing a controller for it. This thesis has explored the use of
global eigenmodes of generic boundary layer flows in order to perform sta-
bility analysis and also as a basis for model reduction. It has been possible
to describe the main destabilising mechanisms by using a sum of eigenmodes.
However the complexity of the systems to be studied in the coming years makes
the route of going through the reduced basis of eigenmodes seem intractable.
First of all creating the full discretized matrix of the Navier—Stokes equations
is not an option for three-dimensional flows due to the vast memory require-
ments. Secondly, by using a time-stepper technique it is difficult to obtain
a large number of eigenmodes needed for solving the optimization problem.
Furthermore our computations have shown that the summing of eigenmodes
becomes ill-conditioned when the system is very non-normal. Thus it seems
more natural to use eigenmodes to describe global instability of the flow and as
an initial step towards understanding the optimal growth features of the flow.
To obtain fully reliable results on optimal growth one needs in general to solve
the optimization problem using direct and adjoint DNS.

Model reduction provides a natural bridge from systematic feedback con-
trol in the numerical framework to experimental implementations. There are
however still a few steps necessary to take in order to get there. The most
important seems to be the detailed modelling of real actuators in the numerics.
As it is at the present stage, the wall blowing and suction actuators are mod-
elled by wall functions prescribing an analytic injection profile through a slot.
In reality the actuators are small pipes with their own inherent flow dynamics.
By using balanced truncation as a model reduction basis it is possible to get a
small model that captures well the input output behaviour, but in order to do
so the actuator has to be well described. Efforts should be put into creating
reasonable actuators in the numerics that match the real ones. This consid-
eration also applies to the numerical modelling of sensors. In other words the
main steps towards realisability is to capture the input output behaviour in an
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experiment by DNS. Once that is achieved it is envisioned that Direct Numer-
ical Simulation will be used as a tool to construct controllers that optimally
couple sensors to actuators such that systematic flow control can be used in
real applications.

The teapot will perhaps in the end pour a straight beam.



CHAPTER 8

Summary of papers and division of work

Paper 1

Global two-dimensional stability measures of the flat plate boundary-layer flow
EsPEN AkERvIK, UWE EHRENSTEIN, FRANCGOIS GALLAIRE AND DAN S.
HENNINGSON

Eur. J. Mech. B/Fluids, 27 (2008), pages 501-513

This paper deals with the use of global eigenmodes to compute optimal
growth and optimal forcing in the flat plate boundary layer flow. A conver-
gence in the number of eigenmodes needed in describing the optimal initial
condition is obtained. The Orr mechanism is revisited and it is shown that
this mechanism is not separated from the Tollmien—Schlichting mechanism, in
fact they cooperate. The optimal forcing structures are similar to the optimal
initial condition.

The writing of the paper was done by EA in collaboration with UE with
feedback from FG and DH. The computation of the eigenmodes were done by
EA and UE. The computation of the optimal initial condition was done by
EA and the optimal forcing by EA and UE. Direct numerical simulations were
performed by UE using a code developed by Matthieu Marquillie and UE.

Paper 2

Steady solutions of the Navier—Stokes equations by selective frequency damping.
ESPEN AKERVIK, LucA BRANDT, DAN HENNINGSON, JEROME H(EPFFNER,
OLAF MARXEN, PHILIPP SCHLATTER.

Phys. Fluids 18, 068102 (2006).

A highly accurate numerical description of the base flow is necessary for sta-
bility analysis. Previously, for cases without symmetries, the Newton method
was used to solve for steady solutions of the Navier—Stokes equations. We pro-
pose a method based on selective frequency damping, easy to implement in
existing direct numerical simulation codes to stabilise steady state solutions,
and thus reach them by time marching. The method was used in Paper 3 for
the computation of the globally unstable base flow in the separated boundary
layer flow.

The writing of the paper was done by LB and PS, with feedback from all
authors. The computations of the cavity flow was done by EA, and by OM
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for the recirculation bubble. The analysis of the stabilization and choice of the
design parameters was done by JH.

Paper 3

Optimal growth, model reduction and control in a separated boundary-layer flow
using global eigenmodes.

ESPEN AKERVIK, JEROME H@®EPFFNER, UWE EHRENSTEIN, DAN HENNING-
SON.

J. Fluid Mech., 579 (2007), pages 305-314.

This paper deals with optimal growth and control of a globally unsta-
ble cavity flow. Optimal growth analysis yields an upstream located initial
wavepacket. This wavepacket propagates through the shear layer in the cavity
and pressure reflections regenerate the disturbances upstream. A reduced or-
der model for control based on as few as 4 eigenmodes is built, and the LQG
controller is run in parallel to the DNS at a low computational cost. The
satisfactory performance of the controller, combined with the low on-line com-
putational effort provides promising perspectives of using reduced order models
based on global eigenmodes for fluid flows.

The writing of the paper was done in collaboration by EA, JH and UE,
with feedback from DH. The controller optimisations were done by JH and EA
with a code developed by JH. The eigenmode computations were performed by
EA with a code developed by UE. Implementations and computations of the
steady base flow and the controller was done by EA with a direct numerical
simulation code developed by Matthieu Marquillie and UE.

Paper 4

Matriz-free methods for the stability and control of boundary layers.

SHERVIN BAGHERI, ESPEN AKERVIK, LucA BRANDT, DAN S. HENNINGSON.
AIAA Journal, submitted.

This paper deals with matrix-free methods for the stability analysis and
control design of the two-dimensional spatially developing Blasius boundary-
layer. Both stability analysis and control design relies on solving very large
eigenvalue problems. Iterative and adjoint-based techniques are employed to
compute both asymptotic and short time growth. For control design the input-
output behavior of the system is of interest and the snapshot-method is em-
ployed to compute a system consisting of a few balanced modes that correctly
capture this behavior. The inputs are external disturbances and wall actuation
and the outputs are sensors that extract wall shear stress.

The writing of the paper was done by SB, EA and LB with feedback from
DH. Stability calculations using both the matrix and time stepper techniques
were performed by EA. Implementation of the matrix solver was performed by
EA, whereas the matrix-free method was implemented in collaboration between
EA and Antonios Monokrousos. The input-output formulation was developed
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by SB, who also implemented corresponding controller codes. Extensions to
wall actuation/sensing were implemented by EA. Numerical computations for
control were performed by EA.

Paper 5

Linear feedback control and estimation applied to instabilities in spatially de-
veloping boundary layers.

MATTIAS CHEVALIER, JEROME H@EPFFNER, ESPEN AKERVIK, DAN HEN-
NINGSON.

J. Fluid Mech., 588 (2007), pages 163-187.

The method to build covariance of the stochastic sources of excitation
is applied to control and estimation in spatially developing boundary layer
flow. Several cases of fundamental interest are considered: unstable Tollmien—
Schlichting waves, unstable cross-flow vortices, transient growth and streaks.
This paper is the follow up of Hogberg & Henningson (2002) that focused on
the control part.

The writing of the paper was done by MC, with feedback from JH, EA and
DH. The computation of the control and estimation gains were performed by
MC and EA with a computer program developed by JH and Marcus Hogberg.
The direct numerical simulation was performed by MC and EA using a code
originally developed at the Department of Mechanics.

Paper 6

Global optimal disturbances in the Blasius flow using time-steppers.
ANTONIOS MONOKROUSOS, ESPEN AKERVIK, LUucA BRANDT, DAN S. HEN-
NINGSON.

Technical report.

The stability of a high Reynolds number flat plate boundary-layer Blasius
flow to three-dimensional disturbances is studied using a time-stepper tech-
nique. Both the optimal initial condition leading to the largest growth at finite
times and optimal forcing leading to the largest regime response at given fre-
quencies are studied. A Lagrange multiplier technique is used to formulate the
optimization problems. Both the optimal initial condition and the optimal forc-
ing is for large spanwise wavenumbers governed by the lift-up mechanism. For
small spanwise wavenumbers it is the Orr mechanism combined with oblique
wave packet propagation that dominates.

The writing of the paper was done by EA, AM and LB with feedback
DH. The computation of the optimal initial conditions was performed by EA,
whereas the optimal forcing results were obtained by AM. The implementation
of the adjoint DNS and the optimal forcing power iteration scheme was per-
formed by AM, whereas the Arnoldi iteration scheme using ARPACK method
was implemented by EA.

Related paper, not included in thesis:
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The use of global modes to understand transition and perform flow control.
DAN HENNINGSON AND ESPEN AKERVIK.
Phys. Fluids 20, 031302 (2008).

This paper is a review of the use of global eigenmodes as a tool for under-
standing stability, building on the papers Schmid & Henningson (2002), Paper
1 and Paper 3. As such we felt that including this paper would lead to repeti-
tion of material. For readers who are new to the field of stability using global
eigenmodes, this would however be most suitable paper to read first. Three
flow cases are studied, starting with the simple waterfall problem of Schmid &
Henningson (2002), through the more realistic Blasius flow (Paper 1) to finally
end up with the more complicated Cavity flow (Paper 3). The details, such as
the importance of summing eigenmodes, how to compute an Arnoldi factori-
sation and how to obtain a Riccati equation for control using a reduced order
model, are treated more thoroughly than in Paper 1 and Paper 3.

The writing of the paper was done in collaboration by DH and EA. Most of
the material from the waterfall problem were taken from Schmid & Henningson
(2002), whereas the remaining results were produced by EA.
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The stability of the two-dimensional flat plate boundary-layer is studied by
means of global eigenmodes. These eigenmodes depend both on the streamwise
and wall-normal coordinate, hence there are no assumptions on the streamwise
length scales of the disturbances. Expanding the perturbation velocity field in
the basis of eigenmodes yields a reduced order model from which the stability
characteristics of the flow, i.e. the initial condition and forcing function leading
to the largest energy growth, are extracted by means of non-modal analysis. In
this paper we show that, even when performing stability analysis using global
eigenmodes, it is not sufficient to consider only a few of the least damped seem-
ingly relevant eigenmodes. Instead it is the task of the optimization procedure,
inherent in the non-modal analysis, to decide which eigenmodes are relevant.
We show that both the optimal initial condition and the optimal forcing struc-
ture have the form of upstream tilted structures. Time integration reveals
that these structures gain energy through the so called Orr mechanism, where
the instabilities extract energy from the mean shear. This provides the opti-
mal way of initiating Tollmien-Schlichting waves in the boundary layer. The
optimal initial condition results in a localized Tollmien-Schlichting wavepacket
that propagates downstream, whereas the optimal forcing results in a persistent
Tollmien-Schlichting wave train.

1. Introduction

Boundary layers, jets and mixing layers are examples of convectively unsta-
ble flows, where disturbances are amplified while being advected downstream.
In these configurations, the flow relaxes in the absence of external disturban-
ces. For certain parameter ranges, for example if the reversed flow in separated
boundary layers becomes large, the flow might become absolutely unstable. In-
stead of constantly requiring external input to maintain the flow disturbances,
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pockets of absolutely unstable regions support self-sustained oscillations. Fol-
lowing a phase of linear growth of the global mode, there is a saturation into a
non linear limit cycle with the absolutely unstable flow domain acting as a wave
maker shedding vorticity into the convectively unstable region. When the flow
under consideration is slightly non-parallel it is possible to determine criteria
for transition from globally stable, to convectively unstable and finally to ab-
solutely unstable based on classical local analysis (Huerre & Monkewitz 1990).
In local analyses the streamwise and spanwise directions of the flow are taken
to be homogeneous, yielding eigenvalue problems depending only on the wall
normal direction. When the length scales of the disturbances becomes compa-
rable to those of the base flow, which is the case for highly non-parallel flows, it
is clear that one has to resort to a global formulation of the stability problem,
treating also the streamwise direction as inhomogeneous. The resulting matrix
eigenvalue problem is typically very large, but owing to increased computer ca-
pabilities and efficient large scale eigenvalue solving strategies based on Krylov
methods, it is nowadays tractable to compute global eigenmodes for many flow
cases.

As the relevance of global analysis is well established for highly non-parallel
flows (Akervik et al. 2007), there are still some important issues to be dealt with
when it comes to applying this methodology to slightly non-parallel situations.
Considering the model problem provided by the Ginzburg-Landau equation
with spatially varying coefficients, Cossu & Chomaz (1997) demonstrated that
the non-normality of the streamwise eigenmodes leads to transient growth. This
non-normality is considered to be associated with the streamwise separation
of the direct and adjoint global modes due to the basic advection (Chomaz
2005). Schmid & Henningson (2002) advocated the robustness of optimally
summing the streamwise eigenmodes when studying a model problem for a
falling liquid curtain. They showed that the sum of modes, in contrast to single
modes, yielded results in agreement with experiments. The use of global modes
as a tool for studying the stability characteristics of the slightly non-parallel
boundary-layer flow was addressed in Ehrenstein & Gallaire (2005). They
found that a superposition of the damped global eigenmodes associated with
Tollmien-Schlichting (TS) type of structures gave rise to a localized wavepacket
at the inflow boundary. The wavepacket would grow while being advected
downstream, in close agreement with direct numerical simulation results.

It is now well accepted that when incoming disturbances exceed a certain
amplitude threshold the flat-plate boundary layer is likely to undergo transi-
tion due to three-dimensional instabilities through the lift-up effect (Ellingsen
& Palm 1975; Landahl 1980). This transient growth scenario, where streamwise
vortices form into streamwise streaks by the action of the mean flow, was stud-
ied for a variety of shear flows in the locally parallel assumption (cf. Butler &
Farrell 1992; Reddy & Henningson 1993; Trefethen et al. 1993). The extension
to the non-parallel flat plate boundary layer was performed at the same time
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by Luchini (2000); Andersson et al. (1999) marching the parabolized stability
equations in the streamwise direction.

While emphasizing the strength of three-dimensional disturbances in gen-
eral shear flows, Butler & Farrell (1992) found a two-dimensional instability
mechanism not related to the TS-waves. This instability could extract energy
from the mean shear by transporting momentum down the mean momentum
gradient through the action of the perturbation Reynolds stress. This means
that structures that are tilted against the shear, will first rise to an upright
position while borrowing energy from the mean flow, after which the energy is
returned to the mean flow and the disturbances decay. They referred to this as
the Reynolds stress mechanism, commonly also known as the Orr mechanism.

In this paper we re-address two-dimensional stability mechanisms in the
flat-plate boundary-layer flow, by considering the cooperation or competition
of the wall-normal non-normal effects responsible for the Orr mechanism and
the streamwise non-normal effects triggering the T'S-waves, bearing in mind
that the latter are the building blocks for the onset of the so-called classical
transition in a low-level noise environment (Herbert 1988). The analysis is
based on the computation of temporal two-dimensional modes and is hence
free from any assumption concerning spatial length-scales. The non-normality
of these eigenmodes of the linearized Navier-Stokes operator is shown to lead
to large energy gain due to combination of the Orr and TS mechanisms.

The paper is organized as follows. Section 2 is devoted to the description of
the numerical tools. Convergence results of the global eigenvalue spectrum are
provided in Section 3. The optimal initial condition leading to the maximum
energy gain is computed and discussed in Section 4. The signalling problem,
that is the the determination of the optimal harmonic forcing distribution of
the Navier-Stokes system in a Direct Numerical Simulation sense (DNS), is
addressed in Section 5. In particular, the disturbance flow evolution obtained
through projection on the set of global eigenmodes is compared to the forced
Navier-Stokes dynamics. Some conclusions are provided in Section 6.

2. Numerical tools
2.1. Basic state

The Navier—Stokes equations are solved by means of direct numerical simula-
tion (DNS), both in order to obtain a steady state base flow for linearization
and to compute the evolution of disturbances on top of this base flow. The
Reynolds number Re = Uy d*/v = 1000 is based on the freestream velocity
U, the displacement thickness §* at inflow x = 0 and the kinematic viscosity
v. All variables are made dimensionless with U,, and §*. The computational
domain is 0 < z < 1000, 0 < y < 80. At inflow a Blasius profile is prescribed
and at outflow a classical advection condition is imposed. No slip condition is
enforced at the wall y = 0 whereas at the top y = 80 the flow is freestream
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uniform, i.e. the streamwise velocity component is © = Uy, and the wall nor-
mal component is v = 0. The DNS procedure has previously been used in
Ehrenstein & Gallaire (2005). The flow variables are discretized using fourth-
order finite differences in streamwise direction (with 5120 grid points) and
Chebyshev-collocation in the vertical direction (with 97 collocation points).
The steady state U = (U(z,y), V(x,y)) and P(x,y) is obtained by integrating
the Navier—Stokes in time by means of the DNS.

2.2. Two-dimensional temporal modes

By splitting the total flow field into a mean and a perturbation/fluctuating
part U+u and P+ p and by linearizing the Navier-Stokes equations about the
base flow one can easily recognize that the disturbance flow field with velocity
components u(x,y,t) and pressure field p(x,y, t) satisfy the partial differential
equations
ou U U 1 o
n =—(U-V)u—(u-V) —Vp—i—EV u,
0=V u.

(1)
After discretization in the space variables this system can be written

d

;B4 = Aq, (2)
where q = [u, p]T and B is the projection of the total disturbance field q on
its velocity components, i.e.Bq = [u,0]. Note that in (2) a divergence-free
velocity field trivially satisfies BAq = Aq. Taking the exponential Ansatz for
the time dependence q(z,y,t) = q(z,y)e ! yields the generalized eigenvalue

problem
7iwqul = Aql (3)

with a divergence free velocity field @; associated to each eigenmode q;. The
computational domain used for the eigenmode calculations is 0 < x < L,, 0 <
y < L. In the wall normal y-direction a height of L, = 40 was found sufficient
to also resolve the eigenvectors associated with the low frequency part of the
spectra. In the streamwise x-direction different lengths L, have been consid-
ered, but the main parts of the results are presented for L, = 800. Indeed
the flat-plate boundary layer flow is convectively unstable and the box length
will set a bound on the timescale at which the spatially growing disturbance
wavepacket leaves the domain. Accordingly, the eigenmodes and the instabil-
ity mechanisms will also be function of the box length. At the wall and at
free-stream homogeneous Dirichlet conditions are imposed and at inflow and
outflow the non-homogeneous Robin conditions proposed in Ehrenstein & Gal-
laire (2005) have been used. These boundary conditions essentially amount
to matching the streamwise derivative of the global mode with spatial local
analysis so that du/0x = icu. The local dispersion relation connecting the
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wave number « to the frequency w is nonlinear, but performing a Gaster-type
of transformation

azao,r+%(wo)(w—wo)~-~ (4)
yields a good linear approximation, as long as the imaginary parts of the com-
plex frequency and wavenumber are small. Here the real frequency wq is chosen
such that ag = ag, at the inflow boundary, that is at a frequency of neutral
instability for the Blasius profile at inflow. Figure 1 shows the real part of the
complex wavenumber «,. as function of the real frequency, as provided by the
local dispersion relation for the Blasius profile at inflow Re = 1000, which is
indeed close to its linear approximation (4) depicted as the dotted line. The
domain is mapped into [—1, 1] x [-1, 1] and a Chebyshev-Chebyshev collocation
discretization is used for the stability system. Chebyshev-collocation provides
the most efficient discretization in terms of grid size, which puts a reasonable
bound on the dimension of the resulting generalized matrix eigenvalue problem.
Consequently, the basic steady flow computed by means of DNS is interpolated
on the new grid (cf. Ehrenstein & Gallaire (2005) for details). We have cho-
sen to consider the steady state for the Navier-Stokes system, rather than the
self-similar solution of the flat-plate boundary-layer equations. One goal of
the present analysis is to compare the Navier-Stokes dynamics with the time
evolution of the eigenmodes system. It will be shown in Section 4 that a collo-
cation grid with 250 x 45 collocation points yields converged stability results.
The resulting eigenvalue problem is still far too large to be solved by stan-
dard QZ algorithms. Large-scale Krylov subspace projections with dimension
m = 2000 together with the Arnoldi algorithm (Nayar & Ortega 1993) proved
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suitable to provide a complete, with respect to the disturbance dynamics, set
of eigenvalues and corresponding eigenmodes.

2.3. Mode superposition

When determining the possibility of growth in a flow system the notions of
optimal initial condition and optimal forcing are essential. These features are
both closely related to the non-normality of the underlying operators (Schmid
& Henningson 2001). We will here give a brief summary on how these optima
are computed. The dynamical system (2) obtained after discretization defines
an initial value problem by adding the initial condition

u(0) = ug ()

for a divergence-free velocity field uyg. We are looking for initial disturbances
that maximize the energy at time ¢

2

w0 |[uol[%
and a convenient form of this expression can be obtained by expanding the
solution in terms of the generalized eigenmodes u(t) = Zf\il ki(t)q;. Recall
that the eigenmodes are the solutions to the generalized eigenvalue problem
(3). Keeping in mind that the pressure acts as Lagrange multiplier in order to
maintain divergence free velocity fields, the flow dynamics is then determined
purely by the velocity components of the eigenmodes. Hence the flow dynamics
is described by

dk
— = Ak, k(0) = ko, (6)
dt
where k = [k1, Ka,...,knN] is the vector of expansion coefficients and A is a
diagonal matrix whose elements are given by A;; = —iw;. The flow perturbation

energy in this basis is ||u||% = ||F exp(At)ko||3, where F is the Cholesky factor
of the Hermitian energy measure matrix M with entries M;; = [affa;dzdy.
Hence, the maximum growth expressed in the basis of eigenmodes reads

G(t) = ||F exp (A)F1[|3. (7)

The largest growth at time ¢ is given by the largest singular value of F exp (At)F~!
and the optimal initial condition is kg = F~'z, where z is the right singular
vector. Alternative ways of computing the optimal initial condition are by cal-
culus of variations (Butler & Farrell 1992) or by time-marching/space-marching
algorithms involving the adjoint operator (Luchini 2000; Andersson et al. 1999).

Let us now formulate the optimal forcing frequency and the corresponding
forcing function. Consider the harmonically forced system

0
an =Aq+ {qfexp(—iQt)}, Qreal (8)
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The asymptotic long time response for the stable system reads

a,(t) = —(A +iQB) 'qy exp (—iQ). (9)
Expressing the state in the basis of eigenmodes yields
k. (t) = —(A + QL) "'k exp (—iQ). (10)

The maximum response to the harmonic forcing at a frequency €2 expressed in

this basis is
R() — max%lle _ |[F(A + QL) 'F |5 (11)
ar |laylle
The norm of the the resolvent is readily obtained as the largest singular value
of F(A +4iQI)~'F~! and the optimal forcing ky is retrieved from the right
singular vector z through the expression k; = F~'z. In a similar manner the

asympotic response can be obtained from the left singular vector.

Two different contributions to large resolvent norms may be identified:
resonances are triggered whenever the forcing frequency is chosen close to an
eigenvalue of the system. On the other hand, the optimal forcing may ex-
ploit the large condition number of F, related to the non-orthogonality of the
eigenvectors.

3. The spectra and convergence of optima
3.1. Global Spectra and mode structures

Figure 2 shows the spectra obtained for the inflow Reynolds number Re =
1000 displayed as stars. The box size of L, = 800, L, = 40 required N, =
250 and N, = 45 in order to yield converged results. The largest Krylov
subspace size considered is m = 2000. We found that increasing the number of
points in both the streamwise and wall-normal direction only moved the most
damped eigenvalues, associated with areas of a resolvent norm of the order of
10% (Trefethen & Embree 2005). As can be observed from the figure, there
are many eigenmodes obtained by the eigenvalue calculation. We can identify
several branches which all can be related to the spectrum of a parallel Blasius
boundary layer, as found by solving the Orr-Sommerfeld equations, though
modified by non-parallelism and boundary conditions.

From figure 2 one can observe that there is a branch of the global spectra
which is identifiable as TS waves. This branch is marked with squares. The
mode labelled m; is the least stable eigenmode for this specific box. In figure 3
a) the spatial structure of the streamwise velocity component of this eigenfunc-
tion is shown. The TS type of eigenfunctions have wall normal profiles that
match the ones obtained from the OS equation, however with the difference
that the global eigenfunctions are spatially evolving downstream. As shown in
Ehrenstein & Gallaire (2005), the global eigenfunctions exhibit a spatial growth
that locally match weakly non parallel TS waves at the corresponding global
eigenfrequency.
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FIGURE 2. Stars show spectra at Re = 1000. Included are
also contours in the complex plane indicating size of Krylov
subspace according to |w — og] < R. (...) shows R = 0.08,
(.--) shows R = 0.1 and (-._) shows R = 0.12. Eigenvectors
corresponding to labels mq, ms and mg are depicted in figure 3.
Note especially that m, represents the TS type of eigenmodes,
whereof the others are enclosed by squares.

100 200 300 400 500 600 700

FIGURE 3. Streamwise component of eigenvectors correspond-
ing to the eigenvalues labelled m; to mg in figure 2. a) (m;)
Least stable TS type of mode. b) (ms3) Mode associated with
the wall normal continuous branch. ¢) (mg) Orr type of mode.
The last two are typical modes that due to cancelling with
other non-orthogonal modes contribute to the Orr mechanism.
Note that the domain is truncated at y = 10 for visualization
purposes.
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FIGURE 4. a) Solid lines trace three branches (the TS branch
and two damped branches) of the spectra computed from the
Orr-Sommerfeld equation when the wavenumber is varied con-
tinuously at Re = 1374. Stars show the spectra already de-
picted in figure 2. Notice that for the Orr-Sommerfeld equa-
tion the TS branch crosses over to the unstable half plane,
whereas in the global setting, the non-parallel baseflow ren-
ders the global spectrum stable. b) Comparison of spectra
computed using the Robin boundary conditions (stars) and
Dirichlet-Neumann (circles). One can see that the TS branch
is slightly more damped using Dirichlet-Neumann. The con-
tinuous spectra is also more damped. Note that the discrete
damped branches traced in a) are not significantly affected by
the change of boundary conditions.

The modes labelled ms in figure 2 reach their maximum in the free stream
and are reminiscent of the continuous spectrum of the local Orr-Sommerfeld
analysis of a Blasius boundary layer flow. In the latter case the phase speed
wy /. is close to the free stream velocity. In our non parallel framework, since
;- is not prescribed, the modes are aligned on a series of equidistant distorted
S shapes.

The eigenmode labelled mg is representative of a wall normal discrete
damped branch. From figure 3 c) it can be seen that the eigenfunction dis-
plays downstream tilted structures with an amplitude maximum inside the
boundary layer. One might call these eigenmodes Orr modes, given their tilted
structure, reminiscent of late stages of the Orr mechanism.

Let us further compare our global non parallel analysis to the well-known
stability analysis of the parallel Blasius flow studied by means of the Orr-
Sommerfeld equation. Such a comparison is not straightforward, since for each
local position, and for each axial wavenumber, a full discrete and continuous
spectrum is retrieved from the Orr-Sommerfeld equation. We found that the
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best comparison could be done at the position x = 300, corresponding to a
local Reynolds number of Re = 1374. In figure 4 a) we have represented
some temporal stability branches of the discrete Orr-Sommerfeld spectrum, as
they evolve when the axial wavenumber is continuously varied. More precisely,
we depict as continuous lines in figure 4 a) the trace of the TS branch and
two damped branches of the Orr-Sommerfeld equations as the wave number is
varied. One can clearly see that global and local analysis yield quite similar
results. Noticeable though is that under the locally parallel assumption the
TS branch does cross over to the unstable half plane with an unstable range
of axial wavenumbers, whereas, in the global setting the locally non parallel
base flow renders the global spectrum stable. As discussed in Ehrenstein &
Gallaire (2005), this is linked to the convective nature of the boundary layer
flow. The damped branches are even more similar in the global and local
settings, especially concerning the most damped branch which the mode mj3
is part of. Note that the wall normal shapes of the eigenfunctions are very
similar in the global and local setting, but the global eigenfunctions are spatially
evolving, growing as we move downstream.

Figure 4 b) compares the global spectra obtained with the Robin boundary
conditions and the spectra obtained using homogeneous Dirichlet at inflow and
homogeneous Neumann conditions at outflow. Clearly the different boundary
conditions gives different damping rates for the TS type of eigenmodes, but
the frequency of the least stable TS eigenmode is the same. Later we will
explain that the different damping rates do not affect how the different set
of modes describe the dynamics of the flow in the interior of the domain. It
can also be seen that the boundary conditions strongly influence the location
of the eigenvalues in the complex plane as the Dirichlet-Neumann boundary
conditions yield a more damped continuous branch. However, ms3 types of
modes, associated with tilted damped modes of Blasius flow are not especially
sensitive to the choice of boundary conditions.

3.2. Convergence of optima

The number of global two-dimensional temporal modes obtained depends strongly
on the size of the Krylov subspace, and it may even depend on the value of the
shift used in the shift and invert procedure. Further, the location of the eigen-
values in the complex plane seem to be somewhat sensitive to the boundary
conditions used. However, we will now show that the optimal transient growth
that may be retrieved from them are far more robust. By selecting only the
TS type of modes, Ehrenstein & Gallaire (2005) could obtain a growth in en-
ergy of one order of magnitude for Re = 780 and a box length of 500 for the
propagating wavepacket. In this paper we will show that by adding the other
types of modes, one obtains a much larger growth which is associated with
the combination of the Orr mechanism (Butler & Farrell 1992) and the spatio-
temporal growth of the wavepacket formed by TS wave type of structures. An
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FiGURE 5. Envelope of optimal growth for different Krylov
subspace sizes. (...) corresponds to R = 0.08, (-__) to R = 0.1
and (-._) to R = 0.12. The solid line shows the envelope
including all modes obtained (R = 0.16). The inset shows a
zoom at the maximum, indicating that the optimal growth is
converged at R = 0.12. The kink in energy at time ¢ ~ 100
will be explained together with figure 6.

important issue that is discussed is the convergence of the optimal growth re-
sults in terms of number of modes included in the expansion. We here take the
tentative approach, gradually increasing the number of modes used to describe
our flow state, searching for convergence. To our knowledge no analysis similar
to that performed by Gustavsson (1979) for the Orr-Sommerfeld equation has
been published on the two dimensional problem.

The total number of eigenvalues obtained by the Arnoldi method when
using a Krylov subspace of size m = 2000 was 1205. For a given dimension of a
Krylov subspace the Arnoldi method recovers converged eigenvalues contained
within a circle of radius R around the shift value og. Note that for this case the
suitable shift value of oy = 0.08 could be taken a priori from local theory, but
within reasonable limits the choice of o is not crucial when working with such
large Krylov subspaces. Increasing the Krylov subspace dimension is equivalent
to drawing a larger circle in the complex space, where eigenvalues are obtained.
The resulting eigenvalues hence satisfy

lw —0oo| <R, (12)

where the radius R depends on how large the Krylov subspace is. Figure 2
shows the radius resulting from three different Krylov subspace sizes on top
of the spectra. The optimal growth envelope G(t), as computed according to
equation (7), obtained using different truncations is shown in figure 5. We
stress that the envelope reveals at each instance of time the maximum possible
amplification due to a specific initial condition, i.e.there are possibly different
initial conditions leading to the specific growth at each instance of time. It
is seen that a radius of R = 0.08, corresponding to 715 eigenmodes, is not
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sufficient to obtain converged results. A converging trend is seen for a radius
of R = 0.1, corresponding to 854 modes, whereas for R = 0.12 (1014 modes)
one may neglect the modification of the optimal growth envelope induced by
a further increase of modes included in the optimization procedure. As men-
tioned earlier the spectra obtained when using Robin boundary conditions at
inflow and outflow differed substantially in terms of damping rate w; from the
spectra obtained using the Dirichlet-Neumann boundary conditions. In order
to examine the influence of the different localization of eigenvalues in the com-
plex plane we performed the optimal growth analysis using modes from both
type of boundary conditions, truncating the basis at R = 0.12. Indeed we did
find that the optimal initial condition obtained using both sets are identical
and the subsequent time evolution remains exactly the same.

Cossu & Chomaz (1997) was working on the model problem of Ginzburg-
Landau mimicking convective growth. They conjectured that the more parallel
the base flow becomes, the more non-normal the operator becomes and that
consequently more modes are needed in order to locate optimal perturbations
upstream. The flat plate boundary layer becomes more parallel with increasing
Reynolds numbers. Indeed by performing the same convergence study for the
lower Reynolds number of Re = 500 we observed convergence could be obtained
already at a radius of R = 0.08, i.e. a small number of modes are needed.

4. Optimal initial condition

In the previous section we mentioned that it was possible to get a larger growth
than that obtained when considering only the propagation of the TS type of
wavepacket, and that this was due to the Orr mechanism. The thick solid line
in figure 6 shows the envelope using an eigenmode expansion corresponding to
a radius of R = 0.12 in a log scaling in order to emphasize the quick growth
due to the Orr mechanism. Plotted as a thick dashed line in figure 6 is the
envelope obtained when using only modes related to the TS instabilities, how-
ever multiplied by a factor of &~ 20. This effectively means that one through
the Orr mechanism has gained a factor of &~ 20 compared to using only TS
type of eigenfunctions. As earlier mentioned the envelope of the growth yields
the maximum possible growth at each instance of time, with possibly different
initial conditions leading to the optimal growth at different times. The thin
solid line in figure 6 shows the actual energy evolution obtained by initializing
the flow system with the structures leading to the global maximum growth at
time ¢ = 1594. The thin dash-dotted line shows the actual energy evolution
of the disturbance leading to maximum energy growth at time ¢ = 98. One
can see that the optimal growth due to this pure Orr mechanism is a fast
growing fast decaying disturbance. Note that the growth-factor as well as the
corresponding optimal time (¢t = 98 and F = 41.6) are approximately twice as
high as those provided by the local analysis of Butler & Farrell (1992) for a
parallel Blasius boundary layer at Re = 1000 (¢t = 45 and F = 28). However,
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F1GURE 6. Thick lines show envelopes of energy growth due
to initial conditions. The thick solid line shows the envelope
when using a Krylov subspace corresponding to R = 0.12 and
the thick dashed line shows the envelope obtained when using
only the TS type of modes in the optimization, magnified by
a factor of 20, i.e.there is a gain of ~ 20 in combining the
Orr and TS mechanism. The thin lines shows actual energy
evolution when initializing the flow system with the structures
that leads to the maximum growth at time ¢ = 98 (thin dash-
dotted) and ¢t = 1594 (thin solid).

according to the time evolution of the streamwise velocity during the growth
interval displayed in figure 7, it becomes clear, that comparison with the local
theory should not be attempted using the inlet Reynolds number Re = 1000
but rather with a local Reynolds number representative of the location of the
initial condition (using for instance the midpoint of the support of the initial
perturbation, located at x = 610, this yields Re = 1700). We have therefore
performed local optimal growth calculations based on a parallel Blasius bound-
ary layers of displacement thickness 1.7 (corresponding to the local Reynolds
number Re = 1700), yielding an optimal time ¢ = 120 with corresponding opti-
mal growth 34.8, closer to the result provides by the global optima. Note that
there is no reason that the local results based on the parallel flow assumption
should perfectly match with the global non parallel computations. The corre-
sponding optimal wavelength from local theory equals 25 and is depicted by an
double arrow in figure 7 a), comparing favourably with the underlying wave-
length in the wavepacket. Our local computations have further shown a ten-
dency for the Orr mechanism of increasing optimal growth, increasing optimal
time and increasing optimal wavenumber, when the boundary layer thickness
and thereby the Reynolds number both increase. This tendency is clearly illus-
trated by figure 8 which shows for various box lengths, L, = 800,600,400 for
the different frames from top to the bottom, that the optimal initial condition
for this pure Orr mechanism is always located as far downstream as possible
within the box. In contrast to the downstream located structures that yield
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FIGURE 7. Time evolution of streamwise velocity with the Orr
mechanism at Re = 1000 leading to the energy evolution de-
picted as the thin dash-dotted line in figure 6. a) Initial con-
dition. b) t = 50. ¢) The maximum is located at t = T = 98
for which Ep/Ey = 41.6. The double arrow in a) shows the
wave length of 25 as predicted by local theory.

the maximum growth for short times (see thin dash-dotted line in figure 6),
the structures that leads to a large growth at larger times (see the thick line)
are located far upstream as depicted in figure 9 a). The energy gain due to the
upstream Orr mechanism is only half of that of the downstream located one
(compare thin-solid and thin dash-dotted lines in figure 6, however as can be
seen from figure 9 the disturbances gain energy through the Orr mechanism,
after which they have the form of a TS type of wavepacket that propagates
throughout the domain. The above results demonstrate that while the long-
time behaviour of the disturbance is governed by the travelling wavepacket, its
starting amplitude is optimized through the Orr mechanism.

5. Optimal forcing

Since boundary layers are convectively unstable, acting thereby as noise am-
plifiers, a preeminent role is played by the response to forcing, rather than by
the detailed time-evolution of the initial condition, and the optimal forcing is
therefore a relevant measure of the maximum possible growth that may be ob-
tained in the box. While the evolution due to the optimal initial condition can
be seen as a wave packet propagating, eventually leaving the computational
box (or measurement section), the response from the flow to forcing will be
persistent structures that at each streamwise station have a fixed amplitude,
oscillating around the mean flow. In this section we are investigating the struc-
ture of the optimal forcing and the response at different frequencies. Figure
10 shows the resolvent norm as defined in (11), where a large value indicates a
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FIGURE 8. Initial conditions corresponding to the pure Orr
mechanism for different domain lengths. a) L, = 800, b)
L, = 600 and c¢) L, = 400. The vertical lines indicates the
end of the computational domain. The optimal initial condi-
tion is always located close to the outflow boundary, consistent
with the prediction made in local analysis ; namely that the
Orr mechanism has increasing growth potential for increasing
Reynolds number.

large response to the given real frequency 2. Note that the magnitude of the
resolvent norm is both influenced by the distance dist(A 4 iQ1I) in the complex
plane to the eigenvalues and the condition number cond(F) = ||F||2||F (|2 of
the Cholesky factor of the energy measure. For normal operators the condition
number is unity, hence the distance from an eigenvalue and the resolvent norm
coincide. However, in our case the discretized dynamical matrix A is highly
non-normal, so the condition number is considerably larger than unity. The
dash-dotted line in figure 10 shows the gain due to the resonance effects asso-
ciated with forcing close to an eigenvalue, whereas the thin solid line shows the
gain obtained by including only TS type of modes in the optimization. When
using a sufficient number of modes (corresponding to a radius R = 0.12 in the
complex plane) we again observe a considerable increase in growth potential.
The peak of the response for all cases is at the frequency 2 = 0.055 and the
streamwise component of the corresponding forcing structure is shown in the
inset in figure 10. Analogous to the optimal initial condition case, when using a
sufficient number of modes in the optimization procedure Orr type of structures
are produced, efficiently initializing TS waves. The optimal forcing structure
is however more elongated in the streamwise direction than the optimal initial
condition. The Orr mechanism provides a factor of five in gain compared to
forcing only TS type of structures and a factor of 25 compared to exploiting
pure resonant effects. The neutral point for this frequency (branch I) predicted
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FiGURE 9. Time evolution for streamwise velocity with the
combined Orr and TS mechanism. Note that the amplitude is
growing from frame to frame. a) ¢ = 0, maximum amplitude
A=02Db)t=50, A=0.38c) t =100, A =0.52 d) ¢t = 480,
A=1.0¢e)t =960, A=2.78 and f) t = 1440, A = 5.8.

by local theory is located at x = 0. We would expect the optimal forcing to be
located in the vicinity of this neutral point, and indeed the forcing is located
close to branch I. For lower frequencies we observe that the optimal forcing
structures move further downstream and consist of longer wave lengths.

5.1. Direct Numerical Simulation results

A verification of the ability of the eigenmode system to capture the relevant
dynamics of the flow is performed by applying the optimal forcing in DNS. For
this purpose the real part of the optimal forcing device qy exp(—i€2t) has been
interpolated on the DNS grid and added as a forcing function to the Navier-
Stokes system. The time evolution in the eigenmode system is given explicitly
in terms of the expansion coefficients

k(t) = —(A +4QI) 'k (exp (—iQt) — exp(At)). (13)

Note that equation (10) describes the asymptotic response of the system. Fig-
ure 11 shows the pointwise energy integrated in the wall-normal direction,



Global two-dimensional stability measures 79

6x 10
4, —{
e —— ‘
300 400 500
2F « 4
0 ‘
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ficure 10. Response to forcing at different frequencies. The
thick line solid line shows the resolvent using a set of modes
satisfying |w — 0.08] < 0.12. The thin solid lines shows the re-
solvent including only TS type of modes and the dash-dotted
line shows the gain due to resonance. It is clear that one thr-
ough non-normal effects have gained a factor of ~ 25 (compare
thick solid with dash-dotted line), whereas one through the
Orr mechanism has gained a factor of &~ 5 compared to using
only TS type of modes. The peak response of all systems is at
Q0 = 0.055. The inset shows the streamwise velocity compo-
nent of the corresponding optimal forcing structure using all
modes.

comparing the evolution in the DNS (solid lines) and the eigenmode system
(dash-dotted lines). Snapshots are taken at times 80, 720, 1360 and 2000 with
the amplitude growing as time increases. The response from the optimal forcing
is the Orr mechanism followed by a TS wave. At time 2000 the disturbance has
filled the box and the energy reaches a threshold where TS waves occupy most
of the domain. The simple evaluation of 919 expansion coefficients yields an
evolution in close agreement with the DNS, which for comparison has 1.5 x 108
degrees of freedom. At time 2000, even though the two systems are in phase
an amplitude difference appears, most likely due to nonlinear effects as well as
to some possible weak reflections in the eigenmode system.

6. Conclusions

For highly non-parallel flows the validity of the local approach is questionable
rendering the global eigenmodes the natural tool for stability analysis. If the
flow under consideration is only slightly non-parallel local analysis may still
provide correct results, but it is nevertheless interesting to establish the stability
characteristics of the flow in terms of the global eigenmodes of the operator.
The global eigenmodes provides the “full” description of the dynamics within
the computational box. The Arnoldi method together with the shift and invert
strategy locates the eigenmodes closest to the shift value within a radius in
the complex plane given by the size of the Krylov subspace. The computed
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F1cURE 11. Evolution of pointwise energy integrated in wall-
normal direction at times 80,720, 1360 and 2000. Solid lines
shows DNS whereas dash-dotted shows eigenmode system.
The amplitude is growing with increasing times. Note that
at time 2000 the disturbance has filled the box and the en-
ergy reaches a threshold where TS waves occupy most of the
domain. Note that the lines showing the integrated energy at
time ¢ = 80 are not visible due to their small amplitudes.

eigenmodes serve as a reduced basis in view of stability investigations, for which
the basic procedure is to study features related to the pseudospectra, such as
optimal initial conditions and optimal forcing. For the slightly non-parallel flow
case studied here, many eigenmodes are needed in order to obtain converged
results in terms of these measures. Both the optimal growth and optimal forcing
analysis show that a combined effect of the Orr and TS-wave mechanism yields
a large potential for downstream amplification in this convectively unstable
regime. It is the description of the upstream located tilted Orr structures
that requires a large number of modes; the description of the TS waves only
requires about 20 eigenmodes. Optimal forcing structures are applied both in
the eigenmode system and in the DNS, and the subsequent time-evolutions in
the two systems match very well. This confirms the robustness of optimally
summing eigenmodes in order to bring out the important dynamics of the flow.
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A new method, enabling the computation of steady solutions of the Navier-
Stokes equations in globally unstable configurations, is presented. We show
that it is possible to reach a steady state by damping the unstable (temporal)
frequencies. This is achieved by adding a dissipative relaxation term propor-
tional to the high-frequency content of the velocity fluctuations. Results are
presented for cavity-driven boundary-layer separation and a separation bubble
induced by an external pressure gradient.

1. Introduction

The knowledge of a steady base-flow solution of the governing Navier-Stokes
equations is fundamental to instability studies and flow control. In the former
case it allows for both linear modal and non-modal analyses and weakly non-
linear approaches, whereas in the latter case the stabilization of such a base
flow can be adopted as a design target. Recent developments, for example as
reviewed in Theofilis (2003), have allowed the research community to examine
the stability of flows in increasingly complex configurations and to compute
two- and three-dimensional eigenmodes, the so-called global modes (Chomaz
2005). Unfortunately, when the flow under consideration is globally unsta-
ble, it is virtually impossible to numerically compute a steady-state solution of
the Navier-Stokes equations by time-marching methods, in particular for high-
order schemes with inherently low numerical dissipation. In some limited cases
solutions can be obtained by, e.g., artificially setting the velocity component in
certain directions to zero or enforcing symmetries in the system, the most stud-
ied example for the latter case being the two-dimensional flow around a circular
cylinder. For other cases, the only remaining possibility is the class of New-
ton iteration methods, which require heavy computational resources for large
systems. In this article, we propose a simple numerical approach to compute
steady solutions of the Navier-Stokes equations in unstable configurations. We
show that it is possible to reach a steady state by damping the most dangerous
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frequencies and thus quenching the corresponding instability. The method is
adapted from large-eddy simulation (LES) techniques, in particular considering
the work of Pruett et al. (2003, 2006).

2. Problem formulation

Consider the nonlinear system ¢ = f(g), with appropriate initial and boundary
conditions for the vector quantity ¢ under the operator f(gq). (A dot is used
here to denote the derivative with respect to time). For a flow problem, the
above system is the Navier-Stokes equations. A steady state gs is then given
by ¢s = f(gs) = 0. If f is unstable, any ¢ # ¢s will quickly depart from
qs- In order to stabilize the above system we propose to apply regularization
techniques common in control theory, in this case in the form of proportional
(P) feedback control. This amounts to adding to the right-hand side a linear
term forcing towards a target solution w,

—x(g —w) , (1)

where x is the control coefficient. The theoretical target solution for the control
is of course the steady-state solution ¢,, which is however not available a priori.
Therefore, the actual target solution is a modification of ¢ with reduced temporal
fluctuations, i.e. a temporally low-pass filtered solution w = T'*xq, defined as the
convolution of ¢ with the temporal filter kernel T'. For the method to converge
asymptotically in time to an exact solution of the steady equation, the filter
cut-off frequency should be lower than that of the flow instabilities. Therefore,
in the following, the unstable frequency will be referred to as high frequency.
With these definitions, the modified system is written as

¢=flq) —x(I-=T)x*q, (2)

where [ is the identity operator. As ¢ is approaching ¢s, the filtered solution
w = T % ¢ will in turn approach ¢, therefore reducing the control influence.
If ¢ is the actual steady solution, the time-filtered value w will be identical
to ¢ = ¢s, yielding a vanishing forcing. Hence the steady solution gs of the
controlled system (2) is also a steady solution of the original problem. Note
that there is no generation of new artificial steady states.

A related technique is also used in large-eddy simulation (LES) for the
temporal approximate deconvolution model (TADM) (see Pruett et al. 2006).
Working with spatial filters, a similar relaxation term has been successfully ap-
plied in the spectrally-vanishing viscosity (SVV) concept introduced by Tadmor
(1989) and in the (spatially filtered) approximate deconvolution model (ADM)
of Stolz et al. (2001) and the ADM-RT model of Schlatter et al. (2004). Follow-
ing these modeling ideas, a different interpretation of the method can be given
as follows. To attenuate unstable high-frequency temporal oscillations and thus
reach a steady state we include in the momentum equations an additional linear
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regularization term, expression (1). This term is effectively damping the high-
frequency content of q. Two parameters have to be chosen in the stabilization
procedure, the filter shape 7" and the control gain y. Time-domain filters are
discussed first.

3. Time-domain filter

For a continuous function ¢(t), a causal low-pass time filter is defined

a(t) = / T(r -t A) q(r)dr | 3)

where q is the temporally filtered quantity, T is the parameterized filter kernel
and A its associated filter width (Pruett et al. 2003). To be admissible, the
kernel 7" must be positive and properly normalized. Additionally, in the limit
of vanishing filter width the filter (3) must approach the Dirac delta function.
Probably the simplest example of such a filter is the exponential kernel,

1 —t
T(r—tA) = ZGXP(TT) ) (4)
with the corresponding transfer function in Fourier/Laplace space
0
) 1
H(w, A) = ‘/700 T(T, A)exp(le)dT = m 5 (5)

where w is the circular frequency and i = v/—1. The cutoff frequency of the
filter is defined as R(H (w.; A)) = 1/2 and is given by w, = 1/A. The trans-
fer function of the filter is represented in figure 1 for a fixed filter width A.
Note that the transfer function has a considerable imaginary part, which leads
to a phase lag in the filtered signal relative to the original signal. For real
applications, the integral formulation of the filter (3) is impractical, since it
requires the storage of the complete time history of the signal q. Therefore, the
equivalent differential form is adopted,

- q—q

which can be readily advanced in time using any integration scheme.

The order of the filter is defined as the index of the first non-vanishing
derivative of R*(H (w)) with respect to w at w = 0, i.e. the filter (5) is of second
order. Based on the exponential filter, also higher-order low-pass filters can be
constructed by repeated application of the primary low-pass filter H (Pruett
et al. 2006). The use of higher-order filters allows a better control over the
separation between damped and undamped frequencies. For specific cases,
i.e. if the separation between instability mode and relevant flow phenomena is
small, such a filter can be beneficial, e.g. in terms of convergence rate. Figure
1 displays the transfer function of 10*"-order filter (degree N = 4, i.e. four
applications of the exponential filter) with adapted filter width. This is one
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FI1GURE 1. Real and imaginary part of the transfer function
H of the exponential filter for degree N = 0 and N = 4,
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particular case of the general formulation where the shape of the filter transfer
function can be tailored for specific demands (Kailath 1980).

4. Stabilization of unstable steady solution

Analysis of the dynamics of the augmented system is presented in order to
elucidate the stabilization procedure and quantify the effect of the control pa-
rameters. Considering system (2) with the exponential temporal filter (6), i.e.
w = ¢, the new system becomes
¢=flg) —x(g—7) o
7=(-9)/A '
The effect of the regularization can be illustrated by considering the eigenvalues
of system (7) linearized about the steady state. Introducing the Jacobian A of
f at the steady state g5, the linearized system is

(3) - (AJAXI —ﬁA) (Z) : (8)
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Assume p = p, + ip; is a complex eigenvalue of A (i.e. —iugp = A¢) with
corresponding eigenvector ¢. Observation of the structure of system (8) sug-
gests that the eigenvectors of the new system will be [¢, a¢]T where « is a
complex number to be determined, and the corresponding eigenvalue will be
A = A(p, a, x). Introducing this ansatz in (8), o and A are obtained as

—F+/F21+4A
ot = 2AX+ X, with Fi= A(=ip—x) + 1,
AE = p—ix(1-a). 9)

The two solutions at and o~ give two eigenvalues AT and A~ for the modified
system, originating from the same eigenvalue p of the original system. The
eigenvalue AT can be seen as the damped original eigenmode, whereas A~ is
roughly associated to the filtering and corresponds to the 1/A term in (8). The
mapping ¢ — A* in the complex plane is illustrated in figure 2 for parameters
X = 0.02 and A = 15. Two lines are represented (indicating possible eigenval-
ues p of the original system), with imaginary parts 0.01 and —0.03, respectively.
(These regions approximately correspond to the eigenvalues we are interested
to damp in the cavity flow presented below). Each line is mapped into two
curves, the dashed one corresponding to A", and dash-dotted line to A~. The
arrows indicate how two points of the original solid lines are mapped into the
new eigenvalues. It can be seen that points with large real part (corresponding
to large circular frequency) are simply damped, i.e. shifted downwards, by a
constant value y, with virtually no shift along the real axis. Points of small
real part are moved towards the origin exhibiting both a decrease in frequency
and change in growth rate (imaginary part). The width of the hump forming
at low frequencies is related to the filter cutoff frequency, i.e. 1/A. Tt should
be noted that a stable eigenvalue p with low frequency will never be mapped
into the unstable region.

In summary, the filter cutoff w,. is related to the frequency of the relevant
instabilities and should be smaller than those frequencies at which perturbation
growth is expected. The gain Y is related to the growth rates of the instabilities
and should be large enough to move the instability modes to the lower half
plane. However, choosing a large x will render the system evolution slow,
since the low-frequency eigenvalues associated with the filter, A~ , move towards
the origin of the complex plane. The system will eventually converge to a
steady state, but very slowly owing to the low damping rates. In order to have
A1 as the least damped eigenvalue, x needs to satisfy pu; < x < p; + 1/A.
Similarly, when choosing A large, the additional eigenvalues, whose imaginary
parts cluster around w, = 1/A, will make the subsystem for g very slow. A
balance has to be found for each system at hand to obtain quick convergence
of all the time scales of the system. Testing several parameter pairs on the
linear system (8) can be helpful. In cases where the Jacobian A cannot be
approximated, like for the separation bubble presented below, the frequency of
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FIGURE 2. Mapping of two lines (u; = 0.01 and p; = —0.03,
) in the complex plane due to the modified (linear) sys-
tem (8). Two points originate from each complex eigenvalue i,
one point corresponding to A* (----) and one corresponding
to A~ (——). x = 0.02, w. = 1/A = 1/15.

the instability can be estimated by considering the resulting unstable flow. As
a guideline, the regularization parameter x is chosen to be twice the growth
rate of the dominant disturbance. The cutoff frequency, w. = 1/A is chosen in
such a way that the unstable disturbances are well within the damped region,
e.g. we ~ 1/2wqist. If the growth rate is unknown, one can estimate x to be
slightly smaller than p; + 1/A ~ 1/A assuming small ;.

5. Results

The selective frequency damping (SFD) method is applied to compute the
steady state of the two-dimensional flow over a long cavity, and of the separation
bubble induced by an external pressure distribution. Implementation of the
present method into an existing code amounts to increasing the memory to store
the filtered variable g, adding the forcing term in the original time-marching
scheme and advance the linear equation (6).

The streamfunction pertaining to the steady state of the cavity-driven sep-
arated flow is displayed in figure 3, where the streamwise and wall-normal
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coordinates are made non-dimensional with the inflow boundary-layer displace-
ment thickness 6*. The inflow profile is the Blasius profile at Reynolds number
Res~ = 350. This value has been chosen by gradually increasing it until a
global unstable flow is obtained. The streamwise extent of the computational
domain is L, = 409, with the cavity being confined to an area of = € [30, 150],
whereas the wall-normal height is L, = 80. The numerical code uses fourth-
order central finite differences and Chebyshev collocation in the streamwise
and wall-normal direction, respectively. The time integration is carried out
by a semi-implicit second-order backward Euler/Adams-Bashforth scheme as
described in Marquillie & Ehrenstein (2003). Time history of the streamwise
velocity measured just above the cavity is shown in figure 4 for two different
simulations. In the first simulation, the SFD is active from the beginning of
the computation where a zero initial condition is used, whereas in the second
simulation SFD is switched on at time ¢ = 3000. Both simulations eventually
converge to the exact same steady state, in one case smoothly and in the other
by damping the existing oscillations, the saturated unstable global mode.

0 50 100 150 200
X

Ficurge 3. Contour lines of the steady-state streamfunction
for the cavity case. Zero streamfunction is indicated by the
thick line, solid lines indicate positive values with spacing 0.2,
dotted lines negative values (spacing 0.025). The recirculation
zone inside the cavity and the upward flow motion at the point
of reattachment of the shear layer are clearly visible.
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FIGURE 4. Time history of streamwise velocity measured just
above the cavity at © = 153.4, y = 0.8485. (—-—): Simulation
started with zero initial condition. ( ): SFD turned on at
t = 3000. Both cases are converging to identical steady states.

In the case of the separation bubble, a flow field subject to a pressure gradi-
ent prescribed via the streamwise velocity at the upper boundary is computed.
The equations are solved in vorticity-velocity formulation, with the relaxation
term —y (192 — 52) being added to the right-hand side of the transport equation
for the spanwise vorticity 9,. The code uses fourth /sixth-order finite differences
on a Cartesian grid for the streamwise and wall-normal discretization together
with an explicit fourth-order Runge-Kutta time integration (Kloker 1998). For
the present case, a Blasius profile is prescribed at the inflow (Res»=1000) while
at the upper boundary, the streamwise velocity is quickly decreasing to about
10% of the free-stream velocity and then increasing again. The box size is
L, x L, =562 x 64, and x=0.4, A=0.75. Two different resolutions (801 x 193
and 1601 x 385) were used, with the time step adapted accordingly. The result-
ing steady state is shown in figure 5. To check convergence towards an exact
solution of the steady equations, the absolute difference between the filtered
and the unfiltered vorticity ¥, — . was sampled over time and its maximum in
the domain is plotted in figure 6. Without the SFD, no steady state could be
reached. The damped oscillatory behavior visible in figure 6 is not related to
the frequency of the vortex shedding. It is conjectured that this is an indication
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of a stable oscillatory movement of the bubble itself, i.e. so-called flapping of
the separation bubble. Note that the quantity ¥, — 1, displayed in figure 6 is in
fact proportional to both the amplitude of the relaxation term and the time de-
rivative of the evolution equation of the filtered solution, ¥,. The simultaneous
vanishing (to order 10~°, which is sufficiently accurate for most applications) of
Y, /0t and the relaxation term as ¢ becomes large implies that ), and ¥, each
essentially attain time independence; that is, a steady state has been achieved.
Additionally, both grid resolutions showed the exact same convergence behav-
ior which further stresses the point that an actual physical solution has been
found. We also checked that no drifting of the steady solution is present by
considering the evolution of 9. (t + 1) — ¥.(t) over time ¢ with 7" being large
compared to the dominant shedding frequency. A similar behavior as in figure
6 was found and the diagram is therefore not shown here. In the case of the
laminar separation bubble, the flow parameters are not incremented to follow
a bifurcation but the pressure distribution is chosen arbitrarily to have an un-
stable flow. We thus show that the method allows attainment of a steady state
without any initial guess. Of course, the initial condition becomes relevant in
cases where multiple steady states coexist.

40 - : : -

F1GURE 5. Contour lines of the streamfunction for the separa-
tion bubble. Zero streamfunction is indicated by the thick line,
solid lines indicate positive values with spacing 0.1, dashed
lines negative values (spacing 0.005).
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Ficure 6. Convergence towards steady state for the
separation-bubble case, showing the maximum difference
between the filtered and unfiltered vorticity field, D =

max, , [, — 0] lower resolution, [J higher resolution.

6. Conclusions

A simple numerical approach to compute steady solutions of the Navier-Stokes
equations is presented. The most attractive advantages of such a strategy can
be summarized as follows. It is easy to implement into an existing numerical
code; it does not require a good initial guess of the solution; steady states can
be computed without specific knowledge of the critical bifurcation parameters.
To our experience, the SFD method appears to be very robust, and therefore
this procedure provides a viable alternative to the classic Newton method.
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Two-dimensional global eigenmodes are used as a projection basis both for
analysing the dynamics and building a reduced model for control in a prototype
separated boundary-layer flow. In the present configuration, a high aspect ratio
smooth cavity-like geometry confines the separation bubble. Optimal growth
analysis using the reduced basis shows that the sum of the highly non-normal
global eigenmodes are able to describe a localized disturbance. Subject to this
worst-case initial condition, a large transient growth associated with the devel-
opment of a wavepacket along the shear layer followed by a global cycle related
to the two unstable global eigenmodes is found. The flow simulation procedure
is coupled to a measurement feedback controller, which senses the wall shear
stress at the downstream lip of the cavity and actuates at the upstream lip.
A reduced model for the control optimization is obtained by a projection on
the least stable global eigenmodes, and the resulting linear-quadratic-gaussian
controller is applied to the Navier—Stokes time integration. It is shown that
the controller is able to damp out the global oscillations.

1. Introduction

Open flows, such as boundary layers, wakes and mixing layers are subject to
convective instabilities, where the flow acts as an amplifier of disturbances as
they are transported downstream. For some of the flow cases and in particu-
lar parameter ranges, self-sustained oscillations may occur. This self-sustaining
mechanism can be captured by the unstable global eigenmodes of the linearized
Navier—Stokes operator. However, a combination of damped global modes is
also capable of representing convective instabilities in non-parallel flows (Cossu
& Chomaz 1997; Schmid & Henningson 2002; Ehrenstein & Gallaire 2005). Nu-
merical investigations performed by Marquillie & Ehrenstein (2003) addressed
separated boundary-layer flow produced by two-dimensional bump geometries.
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They showed that elongated separation bubbles are likely to undergo bursting
leading to unsteadiness. By confining the recirculation bubble between two
successive bumps on the plate, Marquillie & Ehrenstein (2003) interpreted the
flow oscillations in terms of the existence of a global saturated mode oscillat-
ing at a well-defined period. Building on their findings we introduce a smooth
high aspect-ratio (length to depth ratio L/D = 25) cavity-like geometry, which
induces a geometrically confined separation bubble in the boundary-layer flow
as seen in figure 1. Note that this flow case differs from the sharp-edged small
aspect-ratio (typically L/D = 2) high Reynolds number compressible cavity
flow arising in aerospace applications (see e.g. Rowley & Williams 2006). We
view this flow case as a prototype separated flow, where both streamwise non-
normality and global instability play a central role. In this non-parallel config-
uration global eigenmodes of the linearized Navier—Stokes operator becomes a
natural tool for stability analysis. In this paper we first show that a sum of the
non-normal global modes well describes the development of a wavepacket and
the onset of a global oscillating cycle associated with the two unstable eigen-
modes. Given this ability to reproduce the flow dynamics, the eigenmodes
are used as a basis for a Petrov/Galerkin projection, enabling us to build a
reduced-order model for control.

During the last decade modern control theory has increasingly been ap-
plied to fluid flow problems, given the available computer capacities and sen-
sor/actuator developments. Linear optimal control theory has been intro-
duced to flow systems governed by linear instability mechanisms (Bewley &
Liu 1998), as for instance spatially developing boundary layers (Hogberg &
Henningson 2002) and it may also be relevant for nonlinear flows, such as tur-
bulent boundary-layers (Kim 2003). Optimal control of fluid flow based on full
state-space representation of the flow field necessitates manipulation of very
high-dimensional dynamical systems. In weakly non-parallel flow configura-
tions the problem may become tractable by determining control and estimation
kernels for individual wavenumbers in the approximately homogeneous space
directions (Hogberg & Henningson 2002). In practical flow situations full state
information is not available, hence the flow state must be estimated based on
sensor measurements. The estimation process can be seen as an optimal fil-
tering problem using a Kalman filter, based on the linearized Navier—Stokes
equations. Appropriate stochastic models for the relevant statistics of sensor
noise and external disturbances are essential in order to extract the relevant
information from the system (Heepftner et al. 2005). In the present work we
use the linear quadratic gaussian (LQG) control synthesis, where the two sub-
problems of full information control and estimation are solved separately in an
optimal manner. Combining the two leads to an optimal measurement feed-
back control, where the estimated flow is used for control feedback (see e.g.
Lewis & Syrmos 1995).
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FIGURE 1. Streamlines of steady state base flow solution used
for stability analysis at Re = 350. The thick line represents
the zero level contour. Note the large aspect ratio of L/D = 25
and the smooth lips.

The design of the controller is intimately related to model reduction and
the usual procedure is that of projecting the equations onto a subspace. One
possible approach is to use the proper orthogonal decomposition modes of the
excited flow, thereby capturing the high-energy content of the flow. Balanced
truncation provides a more attractive basis by selecting vectors that are equally
controllable and observable. When the system becomes large (e.g. 1000 states
or more) the standard approach of directly solving Lyapunov equations needed
for balanced truncation becomes intractable. Rowley (2005) discussed a com-
putationally tractable approach to obtaining the balancing vectors, based on
time-marching algorithms. In globally unstable flow configurations, the global
eigenmodes of the linearized Navier—Stokes system form a natural projection
basis due to their immediate physical interpretation. For instance one can judge
the best placement of the sensors and actuators for observability and control-
lability, intimately connected to the localization of the least stable direct and
adjoint modes respectively (Chomaz 2005).

2. Flow configuration and numerical methods

The Navier—Stokes equations are solved in the domain 0 < x < 400, n(z) <y <
80, large enough to recover freestream uniform flow. All variables are made non-
dimensional with the displacement thickness ¢* and the free-stream velocity
Uy at the inflow x = 0, where a blasius profile is prescribed. The Reynolds
number is defined as Re = U,,0* /v, where v is the kinematic viscosity. The
function n(z) is the graph of the wall. The smooth cavity is symmetric with
respect to its centre at x. = 89, and its upstream part is given by n(z) =
—2.25 (tanh(a(zx — b)) +1),0 < = < z, with a = 0.2 and b = 39 matching
smoothly the flat plate upstream and downstream.

The streamlines in a subset of the computational domain for the steady
state at Re = 350 are depicted in figure 1. Note that the main effect of
the smooth cavity is the generation of a recirculation zone and a shear layer.
The Direct Numerical Simulation (DNS) procedure has previously been used
in Marquillie & Ehrenstein (2003). Accounting for wall curvature a mapping
transforms the physical coordinates into the computational ones, which are
discretized using fourth-order finite differences in streamwise direction (with
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2048 grid points) and Chebyshev-collocation in the vertical direction (with 97
collocation points).

2.1. Steady state

We found that above Re = 325 the flow became subject to self-sustained oscil-
lations. For a general geometry of this type it is the Reynolds number combined
with the length to depth ratio L/D and the non-dimensional depth D/§* that
constitutes the relevant non-dimensional quantities, however when fixing the
length and depth of the smooth cavity the Reynolds number is the only relevant
bifurcation parameter. In a globally unstable regime any noise present in the
high order numerical discretization will grow exponentially, making it impossi-
ble to numerically compute a steady-state solution by standard time-marching
methods. Therefore the technique proposed in Akervik et al. (2006) is used to
recover the steady state at the current Reynolds number of Re = 350. The
Navier—Stokes equations are forced by adding a term proportional to the dif-
ference between the flow state and a filtered solution. If ¢ = NS(gq) represents
the nonlinear Navier—Stokes system, the modified system reads

¢=NS(q) —x(¢—7q). ¢="(a-7a/A, (1)
where the rightmost equation represents the differential form of a causal low-
pass temporal filter. The steady state of (1) is also a steady state of the
Navier—Stokes system. A filter width of A = 15 has been chosen such that the
frequencies of the instability are targeted and a damping coefficient x = 0.02
was found to be appropriate (see Akervik et al. 2006).

2.2. Eigenmodes

The global eigenmodes are computed linearizing the Navier—Stokes system
about the steady state U(x,y) = (U(x,y),V(z,y)). The disturbance flow

field u(z,y,t) = a(z,y) e~ ! and pressure p(z,y,t) = p(z,y) e ! satisfy
the partial differential system
—iwit = —(U-V)a—(a-V)U-Vp+ év%, (2)
0 = V- (3)
After discretization this is written
—iwBq; = Aq; with adjoint iw;B"q = Afq; (4)

for the eigenfunction q; with corresponding adjoint eigenfunction ql+, B is the
projection of the total disturbance field on the velocity components; AF is
the adjoint discretized operator (conjugate transpose) and the bi-orthogonality
condition (qy, qu) = 0; with respect to the finite-dimensional inner product
applies. The operators of the eigenvalue problem have been discretized on a
domain of extent 0 < z < 300, n(z) <y < 75, sufficiently large to produce con-
verged eigenmodes. Homogeneous Dirichlet boundary conditions are used at
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FIGURE 2. Eigenvalues of the direct problem (4). There are
two unstable modes. The modes labelled m; — mg is depicted
in figure 3.

all boundaries except at the outflow, where homogeneous Neumann condition
is imposed. The domain is mapped into [—1,1] x [-1,1] and a Chebyshev-
Chebyshev collocation discretization is used. The basic steady flow is then
interpolated on the new grid. A similar procedure has been used in Ehren-
stein & Gallaire (2005) for the computation of global modes in the flat plate
boundary layer. A collocation grid with 350 x 65 collocation points yielded
converged stability results. The resulting eigenvalue problem is far too large to
be solved by standard @QZ algorithms. However Krylov subspace projections
with dimension m = 800 together with the Arnoldi algorithm (see Nayar &
Ortega 1993) proved suitable to recover the part of the spectrum relevant for
our analysis. here the eigenfunction figure For the steady state shown in figure
1 the spectrum is depicted in figure 2. For the present parameters there are
2 unstable eigenvalues labelled my and mg3 (only half of the spectrum with
wy, > 0 is shown). Figure 3a)-f) show the vertical velocity components of the
direct eigenfunctions associated with the eigenvalues labelled m; — mg in fig-
ure 2, respectively. As can be seen, there are many similar eigenfunctions, a
typical feature of non-normal operators, and in the following section we will
describe the implications of this when it comes to optimal growth. The verti-
cal velocity component of the adjoint eigenfunction corresponding to the least
stable eigenvalue ms is depicted in figure 3g). We observe a clear separation in
space between the direct (see figure 3c)) and adjoint eigenfunctions, indicating
a strong streamwise non-normality (see Chomaz 2005).

3. Optimal growth

here the envelope

For sufficiently low-amplitude flow perturbations q(t), an eigenmode ex-
pansion

alt) = > rla, (5)

=1
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FIGURE 3. a)-f) Vertical velocity components of direct eigen-
functions corresponding to the eigenvalues labelled m; — mg
in figure 2, respectively. g) Adjoint eigenfunction correspond-
ing to mg, the most unstable eigenvalue. Black indicates large
negative values and white indicates large positive values, with
the grey tones adjusting accordingly. The domain is truncated
at y = 14.

can be used to describe the flow dynamics. The flow evolution is initiated by
superimposing the optimal initial condition qy on the steady state, leading to
the maximum energy growth ||q(¢)||z at a given time ¢:

t
G(t = maxw.
a0#0 ||qol|z

The procedure to compute the optimal initial condition is outlined in Schmid
& Henningson (2001) and the subsequent energy envelope for the present flow
case is depicted in figure 4a). Using one mode we observe the exponential
growth of the most unstable mode. All of the direct eigenfunctions shown in
figure 3 are similar; they are oscillatory and exponentially growing along the
shear layer. By optimally summing the non-normal eigenmodes, cancellation
results in an upstream-located initial wavepacket. This leads to a fast transient
growth up to t = 200, followed by a global cycle with a period of approximately
300 time units. This cycle is associated with the least stable eigenvalues in
figure 2. Since the real parts of these modes are a distance of § ~ 0.02 apart,
and the corresponding eigenfunctions have a very similar structure, they have
the ability to cancel each other, giving rise to a “beating” with a period of
27 /0. Schmid & Henningson (2002) observed the same phenomena studying a
model equation for a falling liquid curtain. Figure 4b) shows the actual energy
evolution when integrating the eigenmode system (thick line) and DNS system
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FIGURE 4. a) Envelope of maximum energy growth from
initial conditions.  The different lines correspond to in-
creasing number of eigenmodes included in the optimization,
1,2,4,24,...,124,144 from bottom to top. b) One realization
using initial condition based on 100 modes: Thick line shows
eigenmode system integrated in time and thin line shows DNS
evolution.

150

160 180 200

FIGURE 5. Snapshots of y-integrated streamwise velocity at
times 0, 25, ..., 150, showing propagation of wavepacket in the
eigenmode system. The thick line shows the initial distur-
bance. The vertical lines indicates the approximate start and
end of the recirculation region.

(thin line) in time using the optimal initial condition based on 100 modes,
confirming the ability of the eigenmode system to describe the relevant flow
dynamics. Note that in the DNS system the initial condition is superimposed
to the steady state.

xt diagram

The initial evolution of the wavepacket in the eigenmode system is shown in
figure 5. We observe the spatial exponential growth in disturbance amplitude
as the wavepacket propagates along the shear layer. The spatio-temporal dia-
gram of the dynamics in the DNS system is depicted in figure 6, where one sees
the convection and growth of the wavepacket along the shear layer, and regen-
eration at the upstream cavity lip. A global pressure change, visible in the form
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FIGURE 6. x/t diagram for a) the vertical flow velocity at
y = 2 and b) the pressure at y = 10, tracing the quantities in
the streamwise direction and in time at their respective vertical
position. Black indicates large negative values whereas white
indicates large positive values. The flow initial condition is
the optimal initial condition. The horizontal lines show the
location of the cavity lips. The oblique lines trace the path of
the wavepacket back to its origin and the triggering position
at the upstream lip of the cavity at the first reflection.

of vertical rays, occurs when the wavepacket reaches the downstream cavity lip;
the subsequent propagation of the regenerated wavepacket is emphasized by the
oblique line. This instability mechanism may be seen as a destabilization of
the global mode by the pressure field, where the pressure yields an immediate
feedback mechanism and the strong streamwise non-normality causes a large
growth of the disturbances along the shear layer.

4. Control

To control the cavity flow, we introduce one sensor and one actuator as sketched
in figure 7. The actuator is located at the upstream limit of the cavity, where
the least stable adjoint eigenfunctions have their maximum, so as to trigger
the most efficient response. The least stable adjoint eigenfunction is shown in
figure 3g). The sensor is placed in the vicinity of the downstream cavity lip
where the eigenfunctions have large amplitude. The sensor measures the wall
shear stress [ C(z)(0u/dy)dx, where C(z) is a Gaussian function with a width
of ~ 20. This operation may formally be written as r = CPN5¢ for the flow
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F1GURE 7. Sketch of the control setting, with a volume forc-
ing actuator, and a wall skin friction sensor.

state ¢. The actuator is a volume forcing of Gaussian shape on the vertical
velocity component located close to the wall at the upstream cavity lip, with a
width of ~ 20 and a height of ~ 2.

A dynamic model for the cavity flow is built using the eigenmode expansion
(5). Based on this model a LQG control procedure gives rise to the system

k = Ak + Biw + Boo, r=Ck+g,
ke = Ak, + Bop — L(r — 1), 1o = Cke, (6)
b = Kk,.

The vector k(t) = [k1(t),...,kn(t)]T of the expansion coefficients of the flow

obeys the model dynamics, where A is now the diagonal matrix of the eigen-
values. The external disturbances are modelled as white noise stochastic in-
put w(t) with variance W, and B; is the projection on the eigenmodes of the
Gaussian-shaped spatial forcing function centered at x = 50. The projected
actuator is denoted Bs, and ¢(t) is the actuation signal. These projections are
achieved by performing the inner product with the adjoint modes. The mea-
surement is denoted r, and C is the measurement matrix. The measurement
is corrupted by a stochastic sensor noise g(t) with variance G2. An estimator
is built, with estimated state k., obeying the model dynamics, and with an
estimation feedback forcing L(r — r.). The estimation gain L will be designed
such that the estimated state k. converges to the flow state k, i.e. minimizes
the mean kinetic energy of the estimation error k — k.. The control actuation
¢ is a feedback of the estimated flow state, with control feedback gain K that
will be designed such as to minimize a weighted sum of the flow mean kinetic
energy and the actuation effort.

A central issue is the controllability and observability of the flow for the
chosen actuator and sensor pair. Since, as observed in §3 the eigenmodes
capture the relevant dynamics, the magnitude of the projections By and C
of the actuator and sensor indicate the controllability and observability for
each eigenmode. In this manner one can choose the shape and location of the
actuator and sensor based on the magnitude of these coefficients on the relevant
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FIGURE 8. Impulse response G(7) from measurement signal
to control signal. The controller uses information from about
350 time units in the past.

modes as a measure of the quality of the representation of the actuator and
sensor in the reduced system. We have checked that the response from an
impulsive input from the actuator in the DNS and in the eigenmode system
give the same measurement signal in the two systems.

The optimal feedback gains K and L that minimize the flow and estimation
error mean kinetic energy are found by the solution of two algebraic Riccati
equations (see Skelton 1988)

0= AR X, + X.A— X.Bol~2BEX, + Q,
0= AX. + X.AH - X.CHG-2CX, + B,WBH,

for the matrix unknowns X, and X., and the feedback gains can be obtained as
K= —{"2ByX. and L = —X.CFG2. In our computations, we have assumed
an external disturbance w with unit variance (W = 1). The control penalization
and sensor noise variance were chosen £ = 5-10° and G = 7 - 10° in order to
enforce low amplitude feedback gains. The matrix Q is defined such that k Qk
measures the kinetic energy of the disturbances.

Once the two Riccati equations are solved and the feedback gains are ob-
tained, we can couple the flow and the controller in the following manner

G =NS(q) + BP9, r=CPNSg (7)

ko= (A+ BoK + LC)k, — Lr, ¢ = Kk, (8)

where BPNS and CPN9 are the actuator and sensor expressed in the DNS.
The measurement 7 is driving the estimated state k., which in turn is updated
online by a Crank-Nicholson time-integration procedure, feeding back at every
time step the control signal ¢ to the DNS.

To emphasize the linear relation between the measurement signal and the
control signal through the controller system, we can write

b(t) = / KeAHBK4LOT 1y 2yar n(t) = 0, < 0, (9)
—_—
0
Gg(m)
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FIGURE 9. a) Energy of the uncontrolled flow (thin solid line),
controlled flow using model with 4 modes (thick solid) and
25 modes (dashed). Inserted frame shows the sensorsignal in
the uncontrolled case as thin solid line and controlled using
4 modes as thick solid line. b) x/t diagram for the pressure
when the control is applied. This is to be compared to figure
6b).

where G(7) is the impulse response from r to ¢, and illustrates how the ac-
tuation ¢(t) depends on past measurements r(t — 7). The impulse response
is shown in figure 8. Note that this formulation could provide an alternative
hardware implementation of the controller. In order to assess the performance
of the computed control and estimation gains the controller is applied to the
same configuration that led to the evolution shown in figure 6. Reduced models
consisting of the 25 and the 4 least stable eigenmodes are considered. Figure
9a) shows that when control is applied, the exponential energy growth is turned
into exponential decay after the first peak. There is an almost equivalent per-
formance for both controller dimensions. The sensor signals for the controlled
and uncontrolled case are shown in the inserted frame in figure 9a) . The
sensor signal from the controlled case decays after the first reflections of the
wavepacket at ¢ &~ 125. It is not possible to control the initial energy growth,
before the wavepacket has reached the sensor located at the downstream cavity
lip. The 2/t diagram for the controlled flow in figure 9b) is to be compared with
figure 6b). When the control is applied one still observes the vertical rays of the
global pressure changes but the wavepacket regeneration is reduced, leading to
a decrease in the levels of fluctuations at each cycle, i.e. flow stabilization.
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5. Conclusions

The cavity flow considered here may be seen as a prototype of non-parallel flow
with self-sustained global instability behaviour. Due to the non-normallity of
the underlying operator, computed eigenmodes are sensitive to numerical errors
and require high resolution even when using spectral collocation. This sensi-
tivity is however mostly seen in loss of accuracy for the location of eigenval-
ues in the complex plane; the mechanism of wavepacket propagation followed
by pressure reflections obtained through optimally summing the non-normal
modes proved robust and in close agreement with DNS, even at lower resolu-
tion. Despite the fact that about 100 modes are required for converged results
of optimal growth, much fewer modes are needed for a stabilizing controller.
There is only a negligible loss of control performance when using as few as 4
modes in the reduced model. The small controller is run in parallel to the DNS
at a low computational cost, and provides the feedback control signal based on
the measurement signal taken from the full DNS. The satisfactory performance
of the controller, combined with the low online computational effort provides
promising perspectives of using reduced order models for fluid flows, built by
projection on global eigenmodes in the LQG framework.
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This paper presents matrix-free methods for the stability analysis and con-
trol design of high-dimensional systems arising from the discretized linearized
Navier-Stokes equations. The methods are applied to the two-dimensional spa-
tially developing Blasius boundary-layer. A critical step in the process of sys-
tematically investigating stability properties and designing feedback controllers
is solving very large eigenvalue problems by storing only velocity fields at dif-
ferent times instead of large matrices. For stability analysis, where the entire
dynamics of perturbations in space and time is of interest, iterative and adjoint-
based optimization techniques are employed to compute the global eigenmodes
and the optimal initial conditions. The latter are the initial conditions yield-
ing the largest possible energy growth over a finite time interval. The leading
global eigenmodes take the shape of Tollmien-Schlichting wavepackets located
far downstream in streamwise direction, whereas the leading optimal distur-
bances are tilted structures located far upstream in the boundary layer. For
control design on the other hand, the input-output behavior of the system is
of interest and the snapshot-method is employed to compute balanced modes
that correctly capture this behavior. The inputs are external disturbances and
wall actuation and the outputs are sensors that extract wall shear stress. A
low-dimensional model that capture the input-output behavior is constructed
by projection onto balanced modes. The reduced-order model is then used to
design a feedback control strategy such that the growth of disturbances are
damped as they propagate downstream.

1. Introduction

Control of wall-bounded transitional and turbulent flows has been the subject
of several research efforts owing to the high potential benefits. In these fluid-
mechanics systems, due to the large flow sensitivity, dramatic effects on global
flow parameters may be achieved by minute local perturbations using devices
sensing and acting on only small parts of the flow with a small amount of energy.

115



116 Bagheri, Akervik, Brandt, Henningson

Such control devices can be used to obtain reduction of the skin-friction drag,
for example, implying relevant savings of the operational cost of commercial
aircrafts and cargo ships.

In this paper we perform stability analysis and control design for the Bla-
sius flow. The work is motivated by the need to provide efficient numerical
tools to analyze complex flows and design efficient control strategies. Although
we present results for the Blasius flow the methodology is applicable to any
complex flow described by the direct and adjoint linearized Navier—Stokes equa-
tions. The techniques in this paper share a common methodology: very large
eigenvalue problems are solved based only on snapshots of the velocity field at
different points in time. No large matrices are stored. Therefore the main tool
is a code that time integrates the forward and adjoint linearized Navier-Stokes
equations. This so called timestepper technique has become increasingly pop-
ular in both stability analysis (Blackburn et al. 2008; Barkley et al. 2002) and
for control design (Bagheri et al. 2008a).

It is now well understood that wall-bounded flows are very sensitive to spe-
cific perturbations (Schmid & Henningson 2001). In particular, boundary layer
flows support convective instabilities and behave as noise amplifiers (Huerre &
Monkewitz 1990). Convectively unstable shear flows are stable from a global
point of view (Huerre & Monkewitz 1990; Chomaz 2005); wave packets gen-
erated locally, grow in amplitude as they travel downstream and finally decay
or leave the observation window. This behavior can be captured by a non-
modal analysis (see e.g. Schmid 2007). It is therefore meaningful to analyze
the spatial structure of the initial conditions and forcing yielding largest pos-
sible energy growth over a finite time interval. This optimization problem can
be solved efficiently for complex flows by solving the direct and adjoint Navier-
Stokes equation for the linear evolution of perturbation about a steady state
(c.f. Barkley et al. 2002, 2008).

Two aspects in flow control have been identified as crucial in order to apply
feedback control in more complex flows and to move towards an implementation
in wind-tunnel tests. They are; i) model reduction to significantly decrease
the cost of both constructing the controller and running it online, thus allow
the fast computation of the control signal directly from the sensor output; ii)
the need to naturally consider localized sensors and actuators. Both these
aspects are addressed in Bagheri et al. (2008a). In this paper, the results of
Bagheri et al. (2008a) are extended by introducing wall actuation and wall
shear stress measurements instead of idealized volume forcing actuation and
velocity measurements inside the flow. The incorporation of actuators and
sensors at the physical boundaries in our design, brings us one step closer to
using the controller in actual experiments.

Model reduction becomes essential in order to apply modern control theo-
retical tools to fluid flow systems. For linear control, the aim is to build a model
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of low dimension that captures the input-output behavior of the Navier-Stokes
system and use this model for optimal feedback control design. Balanced trun-
cation (Moore 1981) is a method for model reduction that takes into account
both the flow structures most easily influenced by the input and the flow struc-
tures to which the outputs are most sensitive. The method provides a set of
bi-orthogonal modes, called the balanced modes, that serve as a projection ba-
sis for model reduction. The method employed to compute the balanced modes
is the snapshot-based balanced truncation introduced by Rowley (2005). This
method has been recently applied to the channel flow (Ilak & Rowley 2008), the
flow around a pitching airfoil (Ahuja et al. 2007) and the Blasius flow (Bagheri
et al. 2008a).

Recently, several groups have suggested and pursued the combination of
computational fluid dynamics and control theory, thus going past early at-
tempts of flow control based on physical intuition or on a trial-and-error basis
(see the review in Kim & Bewley 2007). The reader is also referred to Bagheri
et al. (2008b) for a thorough review of the many tools used in flow control.
In early work from our group (Hogberg & Henningson 2002; Hogberg et al.
2003), a linear model-based feedback control approach, that minimizes an ob-
jective function which measures the perturbation energy, is formulated where
the Orr—Sommerfeld/ Squire equations model the flow dynamics. The latter
equations describe the linear evolution of perturbations evolving in a parallel
base flow. The control problem is combined with a state estimator: The so
called Kalman and extended Kalman filter have been implemented in order
to reconstruct the flow in an optimal manner by only considering distributed
wall measurements. These studies have also shown the importance of physi-
cally relevant stochastic models for the estimation problem (Hoepffner et al.
2005; Chevalier et al. 2006), where stochastic noise needs to describe accurately
enough the unmodeled dynamics, like uncertainties and nonlinearities. Based
on these models the estimator is shown to work for both infinitesimal as well as
finite amplitude perturbations in direct numerical simulations of transitional
flows (Chevalier et al. 2007 a; Monokrousos et al. 2008). These studies however
assumed a parallel base flow and distributed sensing and actuation at the wall.

The paper is organized as follows: The modal and nonmodal stability anal-
ysis is presented in section 2. We start with describing the flow setup and formu-
lating two eigenvalue problems. We continue with showing how the eigenvalue
problems can be solved iteratively and finally present results for the Blasius
flow. Section 3 deals with the control design. We introduce inputs, outputs
and write the system in the state-space formulation. A brief summary of the
LQG framework is provided before model reduction based on balanced modes
is introduced. The snapshot method used for model reduction is explained
and results on the performance of the reduced-order and controller are shown.
Section 4 provides concluding remarks.
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F1GURE 1. The configuration used for the control of perturba-
tions in a two-dimensional flat-plate geometry. The computa-
tional domain Q = (0, L;) x (0, L, ), shown by the gray region,
extends from x = 0 to = 1000 with the fringe region starting
at = 800. The first input By, located at (2, yw) = (35, 1),
models the initial receptivity phase, where disturbances are in-
duced by free-stream turbulence, acoustic waves or wall rough-
ness. The actuator, By, provides a mechanism to manipulate
the flow, in this case by a wall blowing and suction centered at
2, = 400. Two sensors C; and Co, measuring the skin friction
at the wall, are located at x, = 300 and x, = 750 respectively.
The upstream measurements are used to estimate the incom-
ing perturbations, while the downstream sensor quantifies the
effect of the control.

2. Stability Analysis
2.1. Flow Configuration and the Initial Value Problem

We consider the two-dimensional incompressible flow over a flat plate with
constant free-stream velocity Us, as shown in figure 1. Starting from the lead-
ing edge a viscous boundary layer evolves downstream. The evolution of the
streamwise velocity u, the wall-normal velocity v and the pressure p in time
t and space (x,y) is governed by the incompressible non-linear Navier—Stokes
equation (see e.g. White 1991). Our analysis deals with the evolution of infin-
itesimal perturbations on this laminar boundary layer solution and is limited
to the computational domain shown by the gray area in figure 1: The inflow
boundary is set to the downstream position corresponding to a Reynolds num-
ber Res: = Usxdy/v = 1000, where 4 is the local displacement thickness of
the boundary layer and v is the kinematic viscosity. Throughout the paper
all variables are non-dimensionalized by Uy and d;. The length and height
of the domain are L, = 1000 and L, = 30 in the streamwise direction x and
wall-normal direction g, respectively.

The steady state, about which a linearization is performed, is obtained by
marching the nonlinear governing equations in time. The linearized Navier-
Stokes equations with boundary conditions can be cast (c.f. Bagheri et al.
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2008a; Kreiss et al. 1993; Bewley et al. 2000)) as an initial-value problem

u = Au (1)
u = ug at t=0. (2)

with u = (u,v)”. However, in general, it is not always possible to have an
explicit form for the operator A, and once it is discretized it will have very
large dimension, i.e. the number of grid points times the number of velocity
components n = 2N, N,. Our analysis will therefore be entirely based on the
solution of the linearized Navier—Stokes equations that can be represented by
an evolution operator

u(z,t) = 7 (t)u(z,0) = e*ug. (3)

The evaluation of the evolution operator 7 (¢) is the key to both stability analy-
sis and control design, all of which will be discussed in the subsequent sections.
However, this operator also poses the greatest computational challenge due
its dimension. The dimension, n, of the discretized operator depends on the
number of non-homogeneous spatial directions of the base flow. Except for one-
dimensional base flows the operator must be approximated. As an example, the
storage of the one dimensional Orr-Sommerfeld matrix for the evolution of dist-
urbances in parallel flows requires approximately 1MB of memory, the system
matrix for the present spatially inhomogeneous flow with the numerical scheme
introduced above requires approximately 200GB, while the memory usage for
a full three-dimensional system would be of the order of 200TB. However, the
action of 7 (t) on any flow field simply represents integrating the Navier-Stokes
equations in time and therefore the evolution operator can be approximated
by numerical simulation of the governing equations. In what follows the reader
should equate 7 (t)u(s) with a Direct Numerical Simulation (DNS) starting
with an initial condition u(x, s) and providing u(zx,t + s) at a later time. In
this so called “timestepper approach”, system matrices are never stored and
storage demands in memory are of the same order as a small number of flow
fields. Numerically, the equations are solved with the pseudo-spectral DNS
code described in Chevalier et al. (2007b), where the spatial operators are ap-
proximated by Fourier expansion in the streamwise direction with N, = 768
equally distributed points and Chebyshev expansion in the wall-normal direc-
tion on IV, = 101 Gauss-Lobatto collocation points. A fringe region enforces
periodicity in the streamwise direction (Chevalier et al. 2007b).

2.2. Modal Stability

The first step in the understanding of the fluid problem at hand is examin-
ing the hydrodynamic stability of the flow, i.e. the behavior of infinitesimal
disturbances to a base flow. In particular, modal stability deals with the re-
sponse behavior of the baseflow to disturbances as time tends to infinity. This
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FIGURE 2. (a) Eigenvalues of A as computed by the shift and
invert Arnoldi method (shown as stars) and eigenvalues com-
puted by time-stepping using the evolution operator 7 (ty)
(shown as circles). The slightly damped eigenvalues, corre-
sponding to Tollmien-Schlichting (TS) modes, and the free-
stream propagating modes are found by both methods. (b)
Streamwise velocity component of the least stable TS eigen-
vectors, marked kp in (a). (¢) Streamwise velocity component
of a high frequency but more damped TS mode, marked ks in

().

asymptotic response is governed by the eigenmodes of the evolution operator

oi¢; =T(tr)p;,  loa] > oz > ... (4)
for a fixed time t; large enough. The stability of disturbances as ¢ty — oo
is determined by the eigenvalue with the largest magnitude. If |o1| > 1, the
system is linearly globally unstable. Note that the evolution operator 7 has
the same eigenfunctions as A and the eigenvalues A\; of A can be related to
those of 7 through \; = In(o;)/t;.

2.3. Nonmodal stability

The amount of information obtained from the eigenvalue problem (4) is limited
to the asymptotic flow response and does not reveal the short time behavior
of disturbances inherent to many flow systems. Relevant transient growth
(Schmid & Henningson 2001) of perturbations is indeed observed for many
fluid dynamical systems due to the non-normality of the operator A (an op-
erator which does not commute with its adjoint) and nonmodal analysis is
concerned with finding instabilities that are amplified in a finite time interval.
Furthermore, a competition between nonmodal and modal growth is observed
in many systems, for example for three-dimensional perturbations in the Blasius
boundary layer (Levin & Henningson 2003). For such flows, different transition
scenarios can be observed depending on the external ambient noise. Therefore,
in order to examine the largest possible disturbance growth due to all possible
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FIGURE 3. (a) Eigenvalues of 7*7 computed using the for-
ward and adjoint timestepper with ¢,, = 1800. (b) Streamwise
velocity component of the optimal disturbance corresponding
the largest eigenvalue in (a). (c) Streamwise velocity compo-
nent of a suboptimal, corresponding to the third largest eigen-
value in (a).

unit-norm initial conditions ug we will consider the energy associated to the
disturbance at any time t,,

||u(tm)||2 = (T(tm)uoa T(tm)uo) = (uO,T* (tm)T(tm)UO)- (5)

In the expression above the perturbation kinetic energy is the relevant norm and
the adjoint evolution operator 7 *(t,,) is introduced. Applying this operator
corresponds to the integration of an adjoint state from time ¢,, to time 0.
One can show (Bagheri et al. 2008a) that an initial-value problem for the
adjoint linearized Navier-Stokes equations governed by A* but with negative
time derivative can be associated to the adjoint evolution operator 7*. For a
derivation of the adjoint operators in general we refer to Giles & Pierce (2001)
and for this particular setup to Bagheri et al. (2008a).

Initial conditions experiencing the largest nonmodal growth correspond to
the leading eigenvalues of the operator 7*(t,,)7 (t,,), i.e.

oi$; = T*(tm)T(tm)¢j7 o1 >o09>--->0. (6)

In particular, the first unit-norm eigenvector ¢, is the optimal initial condition,
resulting in the largest energy growth at time t,,. If its corresponding eigen-
value is larger than one, o1 > 1, the system can support nonmodal growth. The
corresponding flow state at time ¢, can be found by the evaluation of 7 (¢,,)¢;.
In order to obtain a full map of the potential for transient growth the com-
putations are repeated for different times t¢,,. Note that when the system is
discretized, we are again faced with a very large eigenvalue problem.
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2.4. Iterative Timestepping technique

The eigenvalue problems defined in (4) and (6) provide information about the
modal and non-modal flow behavior of the system, respectively. The dimension
of the matrices obtained by discretizing the operators appearing in (4) and (6)
is too large to be solved by direct methods, such as the standard QR method.
Therefore one has to resort to iterative methods, such as the Arnoldi method
(Lehoucq et al. 1998), which is based on the projection of the large matrix onto
a lower-dimensional subspace. This results in a significantly smaller system
that can be solved with direct methods. In addition, as mentioned above, in
many cases only instantenouos velocity fields at different times are available.
A particular subspace is the Krylov subspace K spanned by snapshots taken
from flow fields separated by a constant time interval At,

K = span{ug, F(At)ug, F(2At)ug, ..., F((m — 1)At)up} (7)

with F(t) = 7(t) (modal stability) or F(t) = 7*(¢)7 (t) (nonmodal stability)
and ug is the initial guess that should contain nonzero components of the
eigenmodes. By orthonormalizing I with an m-step Arnoldi factorization we
obtain a unitary basis V' on the which F can projected on; F(At) ~ VH vt
This leads to small eigenvalue problem of the form HS = 35 which can easily
be solved to recover the eigenmodes by ® = V'S,

2.5. Results

Results on modal and non-modal stability of the two-dimensional perturbations
of the Blasius boundary layer are presented in this section. As mentioned above,
the flow under investigation here is locally unstable but globally stable. Locally
unstable perturbations, the Tollmien-Schlichting waves, grow while travelling
downstream eventually leaving our control domain. From a global point of view
the flow is then stable since disturbances have to be continuously fed upstream
to avoid that the flow returns to its undisturbed state at each streamwise
position. However, a significant transient growth of the disturbance energy
in the domain is associated to the propagation of the unstable wave-packet
(Ehrenstein & Gallaire 2005; Akervik et al. 2007a). This is also referred to as
streamwise non-normality (Cossu & Chomaz 1997; Chomaz 2005).

2.5a. Modal stability. For two-dimensional perturbations of the Blasius bound-
ary layer flow the memory requirements are still small enough to enable the
storage of the system matrix A (the discretized operator A) in memory; the
leading eigenmodes from the matrix eigenvalue problem \;¢; = A¢; can thus
be obtained by means of the shift and invert Arnoldi procedure. Figure 2(a)
shows the eigenvalues obtained by the shift and invert matrix method as black
stars. In the spectrum, one can identify several branches which all can be
related to corresponding modes in the spectrum of a parallel Blasius bound-
ary layer, as found by solving the Orr-Sommerfeld equations, though modified
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FIGURE 4. (a) Energy growth when optimizing for different
times. The maximum is achieved for time ¢,, = 1800 for
which the maximum energy is £ = 2.35 - 10%. (b) Thin line
repeats the energy evolution leading to the maximum growth
at t,, = 1800, whereas thick line shows the energy evolution
obtained when projecting the system onto a small number of
eigenvectors related to the TS branch in Figure 2(a). The
latter clearly does not account for the initial gain due to the
Orr mechanism, but by rescaling and shifting in time the two
curves collapse, showing that the long time evolution is gov-
erned by propagating TS waves.

by non-parallelism and boundary conditions (Akervik et al. 2007a). The up-
per branch can be identified as pure Tollmien-Schlichting (TS) waves. These
modes are characterized by slightly damped eigenvalues with the corresponding
eigenvectors obtaining their maximum values inside the boundary layer while
decaying exponentially in the free stream. More stable modes can be associ-
ated to modes of the continuous spectrum, that is modes oscillating in the free
stream and decaying inside the boundary layer.

Figure 2(b) and figure 2(c) show two examples of T'S eigenvectors asso-
ciated with eigenvalues marked k; and k2 in Figure 2(a). As a consequence
of the convective nature of the instabilities arising in the Blasius flow where
disturbances grow in amplitude as they are convected in the downstream direc-
tion, the global eigenmodes are located far downstream where the flow energy
is the largest. The streamwise wavelength of the eigenvectors increases as we
go towards lower frequencies. The wall normal structure of these modes are
very similar to those obtained by local temporal analysis in the framework of
the Orr—-Sommerfeld equation. The amplitude of the waves is exponentially
increasing downstream: this, together with the temporal decay rate given by
the eigenvalue, accounts for the spatial behavior of the mode. The matrix-free
method based on the timestepper introduced in section 2.4 successfully locates



124 Bagheri, Akervik, Brandt, Henningson

600 800

F1cURE 5. Time evolution for streamwise velocity with the
combined Orr and TS mechanism, when initiated with the
optimal initial condition from ¢,, = 1800. Note that the max-
imum amplitude is growing from frame to frame following the
energy evolution given in figure 4(b).

the least damped eigenvalues by solving the eigenvalue problem (4). The eigen-
values are shown as circles in figure 2(a), and are in perfect agreement with the
results obtained by the matrix method.

Note that all the eigenvalues are damped, indicating that we will never ob-
serve the evolution of single eigenmodes in the flow, but rather we should focus
our attention on the non-modal behavior, in other words the transient growth
scenario. It is possible to project the system (5) on a set of eigenmodes ob-
tained from (4), thereby approximating the flow dynamics by a low-dimensional
model living in the space spanned by a finite number of eigendirections(Schmid
& Henningson 2001). For globally unstable flows, only one or few eigenmodes
may be sufficient to capture the physical mechanism of the instability, see e.g.
the shallow rounded cavity flow in Akervik et al. (2007b), where an oscillating
cycle could be captured by the sum of two unstable eigenmodes. However for a
boundary layer flow like that studied here, it is shown in Akervik et al. (2007a)
that O(1000) eigenmodes are needed to capture the full instability mechanism.
With the present discretization and boundary conditions, moreover, the sum of
the 1500 eigenmodes obtained from the Arnoldi method is not able to correctly
describe the Orr mechanism(Orr 1907; Akervik et al. 2007a) as obtained by the
optimization via the time-stepper defined in (6). This is most likely due to the
presence of eigenmodes related to the fringe region among the least damped
eigenmodes. This points to the limitations of using eigenvalues as a general tool
to study stability of complex systems characterized by strong non-normality.
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2.5b. Nonmodal stability. Figure 3 shows the spectrum and two eigenfunctions
of the eigenvalue problem (6) computed using the timestepper with ¢,, = 1800.
Since 7*7 is a self-adjoint positive-definite operator, its eigenvalues are real
and positive. Moreover, the eigenvalues shown in figure 3(a) come in pairs
with similar maginitudes. The corresponding velocity fields have the same
wavepacket structure 90 degrees out of phase, representing traveling struc-
tures. The most unstable mode, i.e. the optimal disturbance and a suboptimal
mode are shown in figure 3(b) and (c¢). They both have a spatial support
far upstream, where the sensitivity of the flow is the largest. The modes are
tilted in the upstream direction, “leaning” against the shear layer. As noticed
by Butler & Farrell (1992), the upstream tilting of the optimal initial conditions
can be attributed to the wall-normal non-normality of the governing operator;
perturbations extract energy from the mean shear by transporting momentum
down the the mean velocity gradient (the so-called Orr mechanism). It is also
noteworthy to remark on the separation of the spatial support of the optimal
disturbance modes shown in figure 3(b)(far upstream) and global eigenmodes
shown in figure 4(far downstream). This separation is associated to streamwise
non-normality of the system (Chomaz 2005). Finally, note that there is nearly
one order of magnitude between the energy of first pair and second pair of
eigenvalues shown in figure 3(a). As a consequence, one can expect a selec-
tion of disturbances in a randomly forced flow that resembles the flow response
obtained when using the optimal disturbance as initial condition.

The energy evolution when solving for the largest eigenvalues of (6) at
times ¢t = {100, 200, ...,2000} is reported in figure 4(a). When optimizing for
short times the optimal initial condition consists of upstream tilted structures
that exploit the Orr mechanism only (Akervik et al. 2007a) to extract energy
from the flow. Increasing the optimization time, the upstream-tilted structures
move upstream, towards the start of our computational domain, weighting the
possibility of growth due to the local Orr mechanism with the energy gain asso-
ciated to the amplification and propagation of T'S waves. The maximum energy
growth in this box is obtained for final time ¢,, = 1800. The corresponding
optimal initial condition is shown in the top frame in figure 5. In figure 4(b)
we compare the energy evolution due to this optimal initial condition with the
energy evolution obtained when projecting (6) onto the space spanned by a
small number of modes, all part of the T'S branch in figure 2. The evolution
in the reduced system clearly does not capture the initial energy gain due to
the Orr mechanism; however by rescaling the energy curve and shifting it in
time to account for the initial gain due to the Orr mechanism, the subsequent
evolution (amplification and propagation of the TS waves) is almost perfectly
matching that of the full system. These results indicate that when computing
optimal perturbations in the space spanned by some of the system eigenvalues
care has to be taken in checking the general validity of the results.
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The detailed evolution of the streamwise velocity due to the optimal ini-
tial condition at time ¢t = 1800 is shown in figure 5. At the initial time the
structures are leaning backwards against the shear. During the initial phase
of the development the disturbance is raised up, gaining energy through the
Orr mechanism (Orr 1907; Akervik et al. 2007a) and forming a wavepacket
consisting of TS-waves. The wavepacket then propagates downstream, grows
in size and finally leaves the computational domain; the energy evolution for
this flow is reported in figure 4(b).

3. Control Design
3.1. Introducing Inputs and Outputs

The next step after the analysis of the internal dynamics of our linear system is
to manipulate it or in other words to control it. In particular, our objective is
to minimize the perturbation energy resulting from the growth of instabilities
during the transition process in order to suppress or delay turbulence. To this
end, we introduce actuators and sensors, or the inputs Byw, u,¢ and outputs
C;1,Cy into our system;

u= Au+ Blw,
u(z,0,t) = uup(t) = (0,0, ()" (1), (8)
z(t) = Ciu
y(t) = Cou.

In the above expression, the wall actuation is a blowing and suction with func-
tion vy, (2)p on the wall normal velocity with streamwise shape given by equa-
tion (A2) in Appendix A. The linearized Navier-Stokes equations is now forced
with external disturbances represented by the term 51 ()w(t) on the right-hand
side of equation (8a). External disturbances enter the boundary layer upstream
through some receptivity mechanism such as free-stream turbulence or acoustic
waves interacting with roughness as shown schematically in figure 1. In prac-
tice, the entire spatio-temporal evolution of disturbances is not available and
it is therefore necessary to monitor the disturbance behavior through measure-
ments. To accomplish this task, two sensors, C; and Cy are introduced that
measure the shear stress at the wall. The partial information of the incoming
perturbations provided from the first sensor measurements (Cy in figure 1) is
used to reconstruct the actual flow dynamics by using a Kalman filter. Based
on this flow estimation we can alter the behavior of disturbances by injecting
fluid through blowing/suction holes in the wall. This type of actuation cor-
responds to imposing an inhomogeneous boundary condition u,, at the wall
y = 0 as given in equation (8b). Measurements provided by the second sensor
C1 located far downstream is used to determine whether our controller have
been successful in reducing the shear stress at the wall. It thus plays the role
of an objective function.
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3.2. The lifting procedure and state space formulation

Unfortunately, the formulation (8) based on wall actuation does not fit into the
standard state-space formulation used in systems and control theory. There-
fore, the boundary term w,,(z)¢(t) = (0, v, (7)) T is lifted into a volume forc-
ing (Curtain & Zwart 1995). In the same manner as Hogberg et al. (2003), we
split the solution u into a homogeneous part u;, and a particular part u,, so
that u = uj, + u,. The particular solution fulfils the boundary conditions

u, =Au, )
uy(2,0,t) = (0,v0(2)) (1),

and the homogeneous part satisfies homogeneous boundary conditions. In prin-
ciple we can seek any solution u,, of the above system, but one suitable choice
is to use the steady steady state Au, = 0. This is obtained by marching the
DNS in time subject to steady (¢ = 1) wall blowing v,,(x) until a stationary
state 1, = 0 is obtained. In the following we denote this solution Z(x). The
inhomogeneous boundary condition is satisfied by this solution, enabling us to
write the particular solution for all times as u, = Z¢, implying that the total
field is given by u = uy, + Z¢(t). Again expressing the equation for u in terms
of the homogeneous and particular solution we get

u, = Aup, + AZ¢ — Zp = Auy + Bagp. (10)
Here we have used that AZ = 0. Further we have defined the input operator
By = —Z for the homogeneous system. The evolution of the state u;, and ¢

can be written as an augmented system for 4 = (uy, )7 as
u=Aa+ Byp, with A= (“3 8) , By = (%) b= (11)

Note that in the lifted system (11) the control signal is given by time derivative
of the boundary control signal, ¢ = ¢. Similarly the input operator B; is
extended to B; = (B1,0)T and the outputs are augmented to ¢ = (C1,C12)
and CAQ = (CQ,CQZ).

The system (8) with inhomogeneous boundary condition can now be writ-
ten in the standard state-space form

@ = Au+ Bf, (12)
y = Cu+tDf, (13)
where we have omitted the superscript . Furthermore, B = (81,0, By) contains
the two input operators, C = (C1,Cs) the two output operators, f = (w, g, d)
input time signals and y = (y, z) the output time signals. We have introduced

the additional feed-through term D to model the effects of measurements noise
(g) and to penalize the actuation effort ¢,

D:<8gé). (14)
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The outputs are now directly forced by in the inputs. The first output, or
the objective function, can be written as z(t) = Cyu + ¢ which results in the
objective functional®

J2lf? = / (ICrull + 1267) dt, (15)

For large values of the scalar [ the control effort is considered to be expensive,
whereas small values indicate cheap control. The second output y(t) = Cou+ayg
is forced with noise g to model the uncertainty that may exist in the measure-
ments under realistic conditions. It can be considered as a third forcing, but
rather than forcing the Navier—Stokes equations it forces the measurements.
Large values of the scalar « indicate high level of noise corruption in the out-
put signal, whereas for low values of o the measurement y reflects information
about the flow field with high fidelity.

3.3. The LQG/Hy Problem

The LQG/Hs framework provides a controller that minimizes the cost func-
tional (15). It is appropriate if the system operator A accurately describes the
flow dynamics, whereas a precise knowledge of external disturbances and the
degree of noise contamination of the measurements are not available. We refer
to Anderson & Moore (1990); Zhou et al. (2002); Bagheri et al. (2008b) for
further details on the Hsy control algorithm, as we will only outline the main
steps here. The method can be extended (the so called Ho, method) in or-
der to guarantee certain robustness properties. The control problem from an
input-output viewpoint, or the Hsy problem, can be formulated as follows:

Find an optimal control signal ¢(t) based on the measurements y(t) such
that the in the presence of external disturbances w(t) and measurement noise
g(t) the output z(t) is minimized.

The determination of the control signal ¢ is based only on the measure-
ments from the sensor Co. However, for linear systems — due to the separation
principle (Zhou et al. 2002) — the feedback control law can be determined
assuming that the complete velocity field is known. The forcing needed to re-
produce the flow only from wall measurements can be computed independently.
Hence, the design of the Hs-controller is performed by solving two quadratic
matrix equations called Riccati equations (Zhou et al. 1999) that are indepen-
dent of each other. Solving the first Riccati equation we obtain the feedback
type of control signal ¢ = Ku. The second Riccati equation provides the estima-
tion feedback gain £ = so that the observer it = (A+ LCy)u+ Ly can estimate

1We assume that the cross weighting between the state and control signal is zero (Zhou et al.
1999).
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the state i from the wall stress measurements. Finally, the compensator is
obtained by the combination of these two as

U = (A4 BoK+ LCy)a— Ly,
¢ = Ku (16)

This compensator runs online next to the experiments. Based on wall shear
stress measurements y extracted by the first sensor, it provides an optimal
control signal ¢ proportional to the estimated flow 1.

Any adequately accurate spatial discretization of the Navier-Stokes equa-
tions linearized about two or three dimensional baseflows results in a system
with at least n > 10° degrees of freedom. Due to the high dimensional state-
space we can in general not solve the Riccati equations. Moreover, it would be
very expensive to run the compensator online, since it has the same dimension
as the full system. Therefore, to be able to apply modern control theoretical
tools, it is important to construct a much smaller model of the Navier-Stokes
system.

3.4. The Model Reduction Problem and Balanced Truncation

The main features of the flow behavior which are relevant to preserve in the
reduced order model is the input-output (I/O) behavior of the system, i.e. the
relation between disturbances, wall actuation and the sensor outputs. Rather
than investigating entire dynamics of flow fields at different times, the I/O be-
havior considers the time signals, f(¢) and y(t). Fortunately, the I/O behavior
has significantly simpler dynamics compared to stability analysis where the
entire flow dynamics is under investigation.

The model reduction problem for the preservation of input-output dynam-
ics can be posed as following: Find the state-space system of order r < n,

£ = Axk+ Bf,
y = Crk+Df. (17)

so that for any input f the difference between the output of the original and
of the reduced system is small, i.e.

supM: IG = Grlloo < € (18)
P VAl

with €, < 1. Equivalently, the model reduction error can be written in terms
of the associated transfer functions G, = C(sI—A)"'B and G = C(s[—A)"'B
in the frequency domain s € C instead of the time-domain.

One way to compute the reduced-order model (17) with a nearly minimal
model reduction error (18) is called balanced truncation (Moore 1981). The
method can be introduced in many different ways. In this section we will
outline the method in manner that is reminiscent of the optimization problems
that arise in the stability analysis. The presentation follows closely Bagheri
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FIGURE 6. The operators used to examine the system input-
output behavior. The controllability operator L. relates past
inputs to the present state, while the observability mapping £,
relates the present state to the future outputs. Their combined
action is expressed by the Hankel operator H.

et al. (2008a), where also definitions of appropriate Hilbert spaces and adjoint
operators are provided. Whereas, in stability analysis we were concerned with
the properties of the evolution operator 7 (t), here our focus will lie on the so
called Hankel operator (Glover 1999) that maps input signals to output signals.
In particular, it is defined as the mapping from past inputs f(t) : t € (—o0, 0]
to future outputs y(¢) : t € [0, ),

0
y(t) = HF(t) = c/ T(t - 1)Bf(r)dr. (19)
— 00
The amplification of the output signal at time ¢ is given by

ly@I* = (R, HE) = (f. HHE). (20)

In particular, the unit-norm input signals that result in the largest output
response are the eigenmodes of H*H, i.e.

H*Hfj:U?fj, o1 > 09 > ... (2]_)

where the square root of the eigenvalues 0]2- are called the Hankel singular

values (HSV). If oy > 1, then the unit-norm input signal f; active in the past

t € (—o0,0] will generate an amplified output signal in the future ¢ € [0, c0).
Upper and lower bounds of the model reduction error for balanced reduced-

order model of order r is given by the HSV as

n
Orp1 < ||G— GT”OO <2 Z gj. (22)
Jj=r+1

To obtain the balanced reduced-order model (17) and its associated transfer
function G, we project Navier-Stokes equations including inputs and outputs
onto a set of bi-orthogonal modes, referred to as the balanced modes. These
modes can be derived by decomposing the Hankel operator into H = L£,L.
(shown schematically in Figure 6) which is possible since the operator (19)
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characterizes the I/O behavior via a reference state ug. In one part, the con-
trollability operator L., generates the reference state from past input signals,
i.e.

0
= [ T(=1)Bf(r)dr = L (D). (23)

The range of L., i.e. the restriction of the state-space to all possible initial
states that we are able to reach with f(¢) is called the controllable subspace.
In particular the initial conditions that require the smallest input effort to reach
are called controllable states and are the leading eigenmodes of the controlla-
bility Gramian

P=LLE= / Tr (T)BB*T™(7)dr. (24)
0

The other part of the Hankel operator is the observability operator £, operator
which generates future outputs from the reference state,

y(t) = CT(t)uO = [,0110. (25)

If L,ug = 0 for an initial condition ug, then ug is unobservable, since it cannot
be detected by the sensors. The observable states on the other hand are the
initial conditions that are responsible for the largest output signals. These
states the leading eigenmodes of the observability Gramian,

Q=_LL, = / T ceT(n) dr. (26)
0

Using the mapping £. and £, we can now obtain the balanced modes
{¢;}7L; by mapping the most dangerous inputs signals f;, i.e. right eigen-
vectors of H*H onto the state-space; ¢; = L.f;. A set of modes that are
bi-orthogonal to ¢, ((¢;,%;) = di;) can be found from ; = L3g,, where
g; are the left eigenvectors of the Hankel operator (see Bagheri et al. 2008a,
for further details). The projection of the full Navier-Stokes equations on the
balanced modes; A4; ; = (¢¥;, A¢;), B1 = (¢;, B1) and C1 = C1¢; results in the
balanced reducer-order model (17).

Traditionally, the balanced modes are defined as the eigenvectors of the
product of the controllability and observability Gramian. This formulation is
easily obtained by noting that

LMHHf; =L LLLL S = U?chj (27)
which results in the following eigenvalue problem for the balanced modes
PQp, = 02¢,. (28)

Similar to the modal and nonmodal analysis we end up with a very large
eigenvalue problem when the state-space system is discretized.
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FIGURE 7. (a) Singular values of Hankel operator. The
streamwise velocity component of first and third direct are
shown in (b) and (d) respectively.Their associated adjoint
modes are shown in (c¢) and (e).

3.5. The Snapshot Method

In this section a brief summary of the snapshot method (Sirovich 1987) for
solving the eigenvalue problem (28) is presented. It is based on the recognition
that the controllability and observability Gramians are the state correlation
matrices generated from the impulse response of the forward and adjoint states
respectively. The method for the computation of the balanced modes based on
snapshots was introduced by Rowley (2005) where it is also described in more
detail.

The method has similarities to the Krylov-method presented earlier to
compute global eigenmodes and optimal disturbances. This time, we will build
two Krylov subspaces but avoid iterative techniques by exploiting the fact that
the input and output spaces are much smaller than the state-space. In our case
we have two inputs and two outputs (i.e. »r = p = 2) whereas the dimension of
the state-space is approximately n = 10°. The controllability and observability
subspaces are, respectively,

X = span{B,T(At)B,7(2A)B,...,T((m — 1)At)B} (29)
Y = span{C*, T*(At)C*, T*(2At)C*,..., T*((m —1)At)C*}. (30)
Each element of X contains snapshots from DNS simulations of the impulse

response of each input B;. Similarly, each element of Y contains snapshots
from adjoint DNS simulations of the impulse response of each output C;.

In a discretized setting, X is a n X (rm) matrix and Y a n X (pm) matrix.
The Gramians can be approximated with P ~ X X7 At and Q ~ YYTAL.
Thus the eigenvalue problem (27) can then be approximated as

PQo; ~ (A’ X XYY ¢, = o?,. (31)
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FIGURE 8. (a) The error at capturing the peak frequency is
shown with circles. The upper and lower theoretical bounds
are depicted with solid lines. (b) The largest singular values
o of the transfer function |G(iw)| from all input to all outputs
computed using the time-stepper is shown with circles. The
largest response is for w = 0.055 with a peak value of 3.86 -
10%. The frequency response of the reduced model with rank
2 (dotted), 40 (dash-dotted) and 74 (thick solid). Note that
already the small model with rank 2 locates the frequency
where the original system is most amplified.

This eigenvalue problem is of size n X n and prohibitively expensive to solve for
Navier-Stokes system. One can again resort to Arnoldi method and iterative
techniques to solve the above eigenvalue problem as suggested in Willcox &
Peraire (2002). However, this can be avoided by expanding the sought-after
balanced modes in snapshots, i.e. ¢; = X H ;. The column vector H ; contains
the expansion coefficients. This leads to small eigenvalue problem of size pm x
rm for H,

(XYY" X)H; =0H;. (32)

Usually the number of snapshots m times the number inputs (r) or outputs (p)
is significantly smaller than the number of states n, which makes this method
computationally tractable for systems of very large dimensions.

3.6. Results

3.6a. Performance of Reduced-Order Model. Figure 7 shows the spectrum and
two eigenfunctions obtained by solving the eigenvalue problem (28) using the
snapshot method. The first and third balanced modes and their associated
adjoint modes are shown in figure 7(b). The singular values come in pairs
(2j—1,7), resolving the n-th harmonics (Ilak & Rowley 2008; Ahuja et al. 2007;
Bagheri et al. 2008a). Therefore the second and fourth balanced mode looks
like first and third mode respectively, but shifted in the streamwise direction.
We observe that the leading balanced modes (figure 7(a) and (c)) appear as
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wavepackets located at the downstream end of the domain, whereas the adjoint
balanced modes (figure 7(b) and (d)) are upstream tilted structures located at
the upstream end of the domain. The adjoint modes are similar to the linear
optimal disturbances shown in figure 5(a) and the balanced modes are similar
to global eigenmodes shown in figure 2(b). The adjoint balanced modes thus
account for the output sensitivity and the direct balanced modes for the most
energetic structures.

The projection of the full Navier-Stokes equations on the balanced modes;
A ; = (Yj,A¢;),B1 = (¥;,B1) and Cy = C1¢,; results in the reducer-order
model (17). The model reduction error (18) is shown in figure 8(a) together
with the theoretical bounds given by the Hankel singular values in (22). The
infinity norm of the transfer function equals the peak value of the frequency
response. Estimating the model reduction error amounts to the calculation of
the difference of the peak values of the reduced-order and the Navier—Stokes
system. We observe the error norm remains approximately withing the bounds
given by the Hankel singular values for the first 50 modes. Higher modes be-
come increasingly ill-conditioned and as a consequence the numerical round-off
errors increase, the bi-orthogonality condition is gradually lost and the reduced
system is no longer balanced. However, the singular values shown figure 7(a)
decrease rapidly, indicating that the I/O behavior of the chosen setup can be
captured by a low-dimensional model.

To investigate this further, the amplitudes of the transfer functions with
s = iw, i.e. the frequency response, are displayed in figure 8(b) for reduced-
order models of order r = 2,40 and 70 and for the full DNS model of order 10°.
All frequencies in the interval [0,0.13] are amplified and the most dangerous
frequency, i.e. the peak response, is approximately w = 0.055. From figure 8(b)
we observe that the reduced-order model of order 2 captures the most impor-
tant aspect of the input-output behavior, which is the response of the most
dangerous frequency. The model with 40 modes is able to estimate the gains
of all the amplified frequencies, but fails to capture the damped low and high
frequencies. Adding 30 additional modes results in a model that preserves the
input-output behavior correctly for nearly all frequencies.

Finally, the impulse responses from all inputs to all outputs of the reduced-
order model (17) are compared to the full Navier-Stokes system (12). In fig-
ure (9) three signals B; — Ci, By — C3 and By — C; are shown with lines.
The response of Cy to forcing in Bs is zero, since disturbances traveling up-
stream are quickly damped. These impulse responses were obtained by using
the time-stepper with ~ 10° degrees of freedom. The impulse responses of the
reduced-order model (17) with r = 70 given by y(t) = Ce* B are shown with
dashed lines. We observe that reduced-model registers the same signal as the
full model from all inputs to all outputs. The wavepacket triggered by the
impulse of By reaches the first sensor Cy after 600 time units and the second
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FIGURE 9. The impulse response from By — Cy (a), By — C;
(b) and By — C; (c). The solid line represents direct numerical
simulations with 10° degrees of freedom and the dashed line
the balanced reduced-model with 50 degrees of freedom.
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FiGUuRrE 10. Control of the wavepacket due to the worst case
initial condition. (a) Solid line shows uncontrolled energy evo-
lution (as in figure 4 (b)) and dashed line shows the energy for
the cheap controller. (b) Output signal as measured by the
sensor Cy driving the controller. (¢) Control signal fed into the
wall actuator. (d) Signals from the sensor C; measuring the
objective function. Solid line shows uncontrolled case whereas
dashed line shows the controlled case.

sensor C; after 1500 time units. The wavepacket triggered from the actuator
Bs reaches the second sensor after 600 time units.

3.6b. Performance of Controller. In this section a reduced-order feedback con-
troller, with the same dimension as the reduced-order model (r = 70) of the
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previous section, is developed. The closed-loop behavior of the system and the
objective function will be investigated and compared to the uncontrolled case
for the flat-plate boundary layer flow. In particular, the output z of the closed-
loop, i.e. the compensator (16) connected to the full Navier—Stokes model (8)
is compared to the linearized Navier—Stokes equations without control when
the system is forced with stochastic excitation or initiated with an optimal
disturbance.

Three controllers are investigated; (i) cheap control/low noise contamina-
tion with control penalty [ = 1 and noise parameter o = 102, (ii) expensive
control /high noise contamination with I = 10? and o = 107 and (iii) an inter-
mediate case with [ = 10 and « = 10°.

The performance of the cheap controller in case (i) for the control of the
optimal initial condition discussed in Section 2 is examined first. This case is
interesting because the controller is not designed specifically for this configu-
ration and it only has a limited window in time to counteract the disturbances
that are propagating through the domain in the form of a localized wavepacket.
In figure 10(a) the full domain kinetic energy as a function of time is shown
as a solid black line for the uncontrolled evolution and as a dashed line for
the controlled case. The effect of the controller is evident. The measurement
signal detected by the sensor Cs is shown in figure 10(b) revealing that the
sensor picks up the front of the wavepacket arriving at ¢ ~ 350. A time lag
of a2 300 consistent with the speed of the propagating wavepacket (0.3 Us) is
observed until the controller starts acting on the information (see figure 10(c)).
The downstream measurement, i.e.the objective function to be minimized, is
shown in figure 10(d) as a black solid line for the uncontrolled case and as a
dashed black line for the controlled case. It can be seen that also this measure
shows a satisfactory performance of the controller.

The three different controllers are tested on a flow case which is forced
by the upstream disturbance input B; with a random time signal. The wall-
normal maximum of the rms-values of the streamwise velocity component in
cases with and without control are shown in figure 11. The rms-value grows
exponentially downstream in the uncontrolled case until the fringe region at
x = 800. The rms of the controlled perturbation grows only until it reaches
the actuator position where it immediately begins to decay. At the location
of the objective function C; (z = 750), the amplitude of the perturbations is
one order of magnitude smaller than in the uncontrolled case for the cheapest
controller.

The rms values in the case of the expensive (case ii) and intermediate con-
trol (case iii) are shown with dashed and dashed-dotted lines respectively. The
expensive control is very conservative as the measurement signals are highly
corrupted and the control effort limited; it results only in a small damping
of the disturbances. The intermediate controller (case iii) is more cautious in
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FIGURE 11. The rms-values of the uncontrolled system (thin
solid line), cheap controller (thick solid line), intermediate
controller (dash-dotted line) and expensive controller (dashed
line). The gray bar represent the size (defined as 99% of the
spatial support) and location of the two inputs, whereas the
darker bars correspond to the two outputs.

Modes EVP Snapshots Method
Global modes Top=0¢ T (jAt)ug Arnoldi
Optimal disturbances T*7T¢ =o0¢ T*(JAL)T (jAt)uy Arnoldi
Balanced modes PQo=0c¢ CT*(jAt)T(jAt)B Snapshot

TABLE 1. Eigenvalue problems to solve and the corresponding
subspace method used in order to obtain measures for stability
and control.

reducing the perturbation energy just downstream of the actuator when com-
pared to the cheap controller. It is interesting to note, however, that at the
location where the objective function is measured, the disturbance amplitude
has decreased nearly as much as with the cheap controller, although the total
perturbation energy is larger over the entire domain.

4. Conclusion

Two prerequisites for successful control design are stability analysis and model
reduction. The former provides a sound understanding of the instabilities, sen-
sitivities and growth mechanisms in the flow, whereas the latter provides a
simple and small model that is able to capture the essential dynamics. This
preparatory work for control design amounts to solving various large eigenvalue
problems as listed in table 1. The short-time and asymptotic behavior of distur-
bances can be completely characterized by the solution of two large eigenvalue
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problems involving the evolution operator of the linearized Navier-Stokes equa-
tions 7. The global spectrum of 7, determine the asymptotic growth/decay,
dominant temporal frequencies and the dominant spatial location of instabil-
ities. The global spectrum of 7*7, determine the short-time growth/decay
of disturbances and the spatial structure of the most dangerous disturbances.
This knowledge is indispensable for actuator and sensor placements. Sensors
are placed where the flow energy is large, whereas actuators are placed where
the flow sensitivity is large in order to minimize the input effort. Since the
relation between a few inputs and outputs has much simpler dynamics than
the instability physics a reduced-order model can be constructed by solving
a third eigenvalue problem involving the inputs, outputs and the evolution
operator. This results in the balanced modes. The computation of the three
sets, global eigenmodes, optimal disturbances and balanced modes is performed
with a time-stepper thereby avoiding to store large matrices. When the entire
flow dynamics is of interest the high dimensions of the state require iterative
techniques. When the I/O behavior is of interest, on the other hand, compu-
tational tractability depends on the number of inputs and outputs. Therefore
the snapshot method can be employed in the case of few inputs and outputs.
The results of this paper also enhance our previous work (Bagheri et al. 2008a)
by incorporating actuation and sensing at the wall. The next step towards ap-
plying the controller in experiments, is to design a similar control strategy for
three-dimensional disturbances in the Blasius flow. Rows of localized actuators
and sensors at the wall in the spanwise direction and more realistic disturbance
environments, such as free-stream turbulence will be modeled.

Appendix A. Inputs and outputs

The expression of inputs By, u,, and outputs C; and Cs are given in this section.
The input B is modelled by Gaussian type of volume forcing

Ow,zVw,y 22 T — Ty Y=
|: TOwyTw.z :|exp( 710@ f)/w,y)v wa@ N Ow,x ’ PYUHZ/ o O'w,y )
(A1)

with (0o =4, 0w,y = 0.25) determining the width and height of the function
of the function centered around (z,, = 35, y, = 1). The actuator is in this case
a localized zero mass-flux actuation on the wall-normal velocity, u,, = (0,v,,)7
at the lower wall given by

Vo(@) = (1 - (”:j‘b)Q) exp (W) , (A2)

with the width o, , = 2.5 and centered at z, = 400. Finally, both mea-
surements extract approximately the wall normal derivative of the streamwise



Maitriz-free methods 139

velocity component (wall shear stress) in limited regions at the wall

/Q(%,ws,yDy 0) <z> dQ, (A3)

(v — x4)? 1 y?
v mew (E5EE) = Then(GE).

0%

The center of the function is z. = 300 for the output Co and x. = 750 for Cy,
and the width of the regions are determined by o5, = 5 for both sensors. The
operator D, denotes the y-derivative. The y-dependent weighting relies on a
width parameter o5, = 0.05. Note that in the limit o5, — 0 the function
approaches the delta function so that (A3) defines the exact wall wall shear
stress at the wall. The reason for using an approximation to the wall shear
stress is the need for an adjoint sensor C* (see Section 3.4), which is derived
with the respect to the signal to state inner product (as explained in Bagheri
et al. 2008a)

where

(r,Cu)s = (C*r,u)q. (A5)
These inner products are defined as
(r,s)s=7"s and, (p,q)o= / p’qdQ. (A6)
Q

for the scalars r and s, and the states q and p. The adjoint sensor obtained
from this definition is in other words

(r,Cu)s = /QTT (%,x%,ypy 0) udQ = /QrT (2y757x’ys7y/037y O) u dQ
= (C'r,u)g,
(AT)

where we have used integration by parts and the boundary conditions in y.
This leads to the recognition of the adjoint sensor in the definition of the
observability Gramian (26) as

2
o = (211%,%70541/ f’w) | (A8)
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This paper presents the application of feedback control to spatially developing
boundary layers. It is the natural follow-up of Hogberg & Henningson (2002),
where exact knowledge of the entire flow state was assumed for the control.
We apply recent developments of stochastic models for the external sources of
disturbances that allow the efficient use of several wall measurement for es-
timation of the flow evolution: the two components of the skin-friction and
the pressure fluctuation at the wall. Perturbations to base flow profiles of the
family of Falkner—Skan—Cooke boundary layers are estimated by use of wall
measurements. The estimated state is in turn fed back for control in order
to reduce the kinetic energy of the perturbations. The control actuation is
achieved by means of unsteady blowing and suction at the wall. Flow pertur-
bations are generated at the upstream region in the computational box and are
propagating in the boundary layer. Measurements are extracted downstream
over a thin strip, followed by a second thin strip where the actuation is per-
formed. It is shown that flow disturbances can be efficiently estimated and
controlled in spatially evolving boundary layers for a wide range of base flows
and disturbances.

1. Introduction

There is much to be gained in the application of control to fluid mechanical
systems, the most widely recognized and targeted aim being the reduction of
skin friction drag on airplane wings. Flow control is a growing field and much
research effort is spent in both fundamental understanding and direct applica-
tion of control methods. For a review see e.g. Bewley (2001) and Hogberg &
Henningson (2002).
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Linear control theory gives powerful model-based tools for application of
control to fluid systems provided the system at hand can be well described
by a linear dynamic model. The theory of Linear—-Quadratic—-Gaussian control
(LQG) is one of the major achievements in the field of control theory. It gives
a methodology to compute the optimal, measurement based, control when the
dynamic model is linear, the objective is quadratic, and the external sources of
excitations are stochastic. This theory is applied to boundary layer control in
the present work.

Feedback control design can be conceptually and technically decomposed
into two subproblems. The first subproblem is to estimate the flow state from
noisy wall measurements. In our case, the state is the flow perturbation about
the known base flow profile. The estimator is a simulation of the dynamic
system that is run in parallel to the flow. Its state is forced by a feedback of
the measurements in order to converge to the real flow state. The estimated
state is in turn used for feedback control of the flow which constitutes the
second subproblem. The closed loop system with estimation and control is
commonly referred to as measurement feedback control or compensator.

This paper is the necessary follow-up of Hogberg & Henningson (2002) in
which full information control was applied to spatially developing flows. The
use of stochastic models for external sources of excitation was introduced in
Hoepfner et al. (2005) and Chevalier et al. (2006), which allows computation
of well-behaved estimation feedback kernels for three wall measurements: the
two components of the skin-friction and the wall pressure. Each of these three
measurements provide the estimator with additional information on the in-
stantaneous flow state. This variety of measurements is instrumental when
complex flows are targeted. This improvement of the estimation thus makes
it possible to apply the full theory of feedback control to complex flow cases
such as the transitional scenarios presented in this paper. For this reason,
we have systematically reconsidered the flow cases of Hogberg & Henningson
(2002), where exact knowledge of the entire flow state was assumed, and ap-
plied measurement-feedback control, where the estimated flow state is used for
control. We compared the performance between the full information control of
Hogberg & Henningson (2002) and the present estimation based control, and
found satisfactory performance.

One of the major limitations to the application of control to spatially dis-
tributed systems (system in space and time, usually described by partial dif-
ferential equations) is the realization of the sensing and actuation that would
handle relatively fast events as well as small scales of fluid motion. In addition,
control over physical surfaces typically requires dense arrays of sensors and ac-
tuators. Recent development in MEMS technology and related research may
lead to solutions of this problem. For application of MEMS technology to flow
control see e.g. Yoshino et al. (2003).
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Several recent investigations have pursued the application of LQG-type
feedback control to wall-bounded flow systems. A recent overview of this
progress is given in Kim (2003). Hogberg et al. (2003a) demonstrated the
localization of the feedback kernels. This property allows a local application of
the control, i.e. only the local properties of the system (dynamics, disturbance
sources and measurement information) are necessary for control. The efficiency
of the control scheme we use here was illustrated in Hégberg et al. (2003b),
where relaminarization of a fully developed turbulent flow was achieved. In
Hoepfner et al. (2005) and Chevalier et al. (2006), the focus was on the esti-
mation performance. By introducing a relevant model for the external source
of disturbance, it was possible to improve the estimation performance on both
transitional and turbulent flows.

The procedures of control design are based on the manipulations of a linear
dynamic model for the flow system, which is typically of large order. In the case
of spatially invariant systems, i.e. system for which the dynamics is independent
of some spatial coordinates, the problem can be decoupled in a parameterized
family of smaller systems. In our case, we assume spatial homogeneity over
the two horizontal directions. After Fourier transforming, this allows to design
and tune the controller and estimator for individual wavenumber pairs.

In a spatially developing flow like the boundary layer, this procedure can
still be used, even though the spatial invariance in the streamwise direction is
lost. Indeed, the localization of the control and estimation kernels ensures that
the feedback is local, so that the flow can be assumed to be locally parallel.
In Hogberg & Henningson (2002), the actuation was successfully applied over
a strip parallel to the leading edge in Falkner—Skan—Cooke (FSC) boundary
layers, and the control feedback law was computed based upon the local Rey-
nolds number. In Hogberg et al. (2003¢), a measurement strip was added, and
the subsequent state estimate was used for control. The present paper aims at
the application of the recent development and improvement on the estimation
of the complex flow cases where the full information control was shown to be
successful in Hogberg & Henningson (2002).

The structure of this paper is as follow. In §2, the flow system is described:
dynamics, input and output. In §3, we outline the main issues for the feed-
back control and estimation. The numerical method is described in §4. The
performance of the control in several flow cases is shown in §5, and concluding
remarks are given in §6.

2. System description
2.1. Flow dynamics

The Navier—Stokes equations are linearized about solutions of the FSC bound-
ary layer. Favourable and adverse pressure gradients can be accounted for as
well as the effect of a sweep. To obtain the family of FSC similarity solutions
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we assume that the chordwise outer-streamline velocity obeys the power law
Ur = Ug(z*/x§)™ and that the spanwise free-stream velocity W is constant.
In the expression above, Uj is the free-stream velocity at a fixed position x§,
the physical distance from the leading edge, and the asterisks () denote di-
mensional quantities. Note that the Blasius profile is a special case of the FSC
boundary layer with zero cross-flow component and no pressure gradient. If we
choose the similarity variable £ as A

€)= My g
one can derive the following self-similar boundary layer profiles,
" 4+ " 4 Bn(1 — f?) =0,
g'+fg =0,

where the Hartree parameter 3, relates to the power law exponent m as 3;, =
2m/(m + 1). The accompanying boundary conditions are

f=f=g=0, for £€=0,

ff—1, g—1, as & — oo.

The complete derivation can be found in e.g. Schlichting (1979) and Cooke
(1950). From the FSC similarity solutions f and g, we construct the nondi-
mensional velocity profiles

U(y) = F(ew), (12)
W) = 3= alE(). (1b)

for a fixed x = (z* — xf) /04 and where y = y*/65. The symbol 5 denotes the
displacement thickness at position z* = z. The velocity profiles (1a) and (1b)
are then used as base flow when constructing the linear dynamic model for the
flow disturbance and the initial conditions for the direct numerical simulations
(DNS).

Once linearized, the system can be transformed to Fourier space by as-
suming local spatial invariance. This implies that the non-parallel effects are
small, i.e. the base flow is slowly developing in the streamwise direction. Af-
ter transformation to the velocity—vorticity (v — n) formulation, we obtain the
Orr—Sommerfeld /Squire equations (see e.g. Schmid & Henningson 2001)

v LOS 0 v
) = , 2
(77> ( Le 55@) <77) @
Los = A7 =i(k,U + k.W)A + ik U + ik, W" 4+ A?/Re],

Lsg = —i(k,U + E,W) + A/Re, (3)
Lo =ik W' — kU,

where
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and where the Laplacian operator is denoted A = D? — k2 and D is the wall-
normal derivative and k* = k2 + k2. The boundary conditions are defined
as

’U(O, t) =% D’U(O, t) =0, 77(07 t) =0,

4
v(y,t) =0, Dov(y,t) =0, n(y,t)=0, as y— oo. )
The control actuation affects the system through a non-homogeneous bound-
ary condition on the wall-normal velocity () (time varying wall blowing and
suction). The Reynolds number Re is based on the free-stream velocity and

displacement thickness.

In order to apply tools from control theory, see for example Lewis & Syrmos
(1995), it is convenient to write the linearized fluid system in the general state-
space form

4= Aq+ Bauc.+ B1f, q(0) = qo, 5)

y=Cq+y,
where ¢ is the state, A is the linear operator representing the dynamics of the
system. The external disturbances, denoted by f, force the state through the
input operator By, and ¢ is the initial condition. The operator By transforms
a forcing on (u,v,w) to a forcing on (v,n), since the flow state is expressed in
this formulation. The control signal u. affects the system through the input
operator By. Operator C extracts the measurements from the state variable,
and g adds a stochastic measurement noise with given statistical properties.
The noisy measurement is then denoted by .

The controlled Orr—Sommerfeld/Squire system can be cast into the for-
malism of (5) by means of a lifting procedure (see e.g. Hogberg et al. 2003a)
where the control at the wall now enters the flow through a volume forcing term
instead of as an inhomogeneous boundary condition at the wall. This is done
by decomposing the flow state into a time varying homogeneous component
(subscript h) and a steady particular (subscript p) component

(0) = (i0) () !

The augmented state ¢, incorporating the actuation variable, thus reads

Uh (y7 t)
q=1"n (ya t) ; (7)
o(t)
and augmented operator A and operator B (see §3) can be written
_ (Loss Lossap (@

with

. Los 0
Loss = (Ec ﬁSQ) , 9)
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and where the particular solution g, is chosen to satisfy the numerically conve-
nient equation Logs ¢, = 0 with a unity boundary condition on the wall-normal
velocity at the wall. With this formulation the control signal becomes u. = ¢.

2.2. Stochastic disturbances

2.2a. Modeling of the external disturbances. The description of a dynamical
system can also include a description of its input (external sources of excita-
tions) and its output (measurements, possibly corrupted by noise). The perfor-
mance of the state estimation relies on the construction of a proper model for
the flow disturbances. Indeed, if the external sources of perturbations in the
flow are well identified, it becomes an easy task to estimate the flow evolution
using a dynamic model of the system.

The external sources of perturbations in typical aeronautical applications
can be wall roughness, acoustic waves, and free-stream turbulence. In the case
where the sensors are distributed over a strip in the boundary layer, upstream
instabilities can generate waves that are to be considered as disturbances to
the estimator.

We will assume the external disturbance forcing f = (fi, f2, f3)7 in (5) to
be a zero-mean stationary white Gaussian process with auto-correlation

E[fj<xaya Zat)fk(x + Tz,y/,z + rz,t/)] - 5(t - t/) ijfk (y,y/,rx,rz),
——

Temporal Spatial

where d(-) denotes the Dirac d-function.

The remaining property to be described is the spatial extent of the two-
point, one-time, auto-correlation of f over the whole domain

ijfk(yaylyrmarz) - E[f](a:,y,z,t)fk(x + vaylvz + Tzat)]~

The corresponding quantity in Fourier space is a covariance operator, obtained
for any wavenumber pair {k,, k. } via the following integration over the homo-
geneous directions

Rfjfk(y)y/7kl'7kz) ://ijfk(yvyl7T%""z)eii(kITZJrkzrz)dede-

Our model for the covariance of f assumes that the disturbance has a localized
structure in space (i.e., the two-point correlation of the disturbance decays
exponentially with distance) and that the correlations between forcing terms on
different velocity components are zero. We assume a model for the covariance
of the external forcing f of the form

R 1 (0, ks k) = d(ks ) 056 MY (9,9, (10)

d(ky, k) = exp [_ (kﬁd—kof - (kzd—zk(;ﬂ . (11)

where
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k.

FIGURE 1. The covariance of f, for the FSC problem (cases
12-13 in table 1), is depicted in (a). From top to bottom and
right to left each square represent the covariance for fi, fa,
and f3. The wavenumber space amplitude function is shown
in (b). The peak is set at {0.25,—0.25}, about the mode that
is triggered in the FSC simulations.

The model parameters kO and k2 can be used to locate the peak energy of the
disturbances in Fourier space, and d, and d. to tune the width of this peak.
These parameters are specific for each flow case, e.g. for a typical TS-wave the
peak energy will be at kY = 0.3 and k2 = 0, or for a typical streamwise streak,
the choice will be £ = 0 and kY = 0.49.

The y-variation of Ry, is given by the function

(?J_W} 7 (12)

Y(y o) —

M (y7y)e><p{ 24,
where the design parameter d, governs the width of the two-point correlation
of the disturbance in the wall-normal direction. A common choice of the sto-
chastic model has been to consider an uncorrelated model in the wall-normal
direction. However, in Hoepffner et al. (2005) it was shown that better estima-
tor performance could be achieved by using a physically motivated stochastic
model similar to the model described in this section. The model specific pa-
rameters for all flow cases presented are given in table 2.

Other forms for d(k,, k) are also possible, and may be experimented with
in future work. Note that we will denote R = Ry = diag(Ry, 5, Ryopos Ry fs)
in the sections that follow.
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2.2b. Sensors and sensor noise. The measurements used in this study are the
streamwise and spanwise shear stresses and the wall pressure fluctuations de-
fined as

1 Ju 1 4
Ty = Txy|wall = @ aiy = ﬁﬁ(kxD2U - kan)|walla
wall
1 ow 1
Tz = sz‘wall = E aiy = Eﬁ(kzDQU + ka:Dn)‘walla
wall
11
P = p|wall = EﬁD3U|WaH .

which yields the following measurement matrix C'

Z‘km-D2|wall *ikzD|wall
C=—— ikzD2|wall ikxD|wall
Dglwall 0

In Heepffner et al. (2005) it was discussed how the estimator performance de-
grades when different measurements are left out.

Each of the three measurements is assumed to be corrupted by random
sensor noise processes, the amplitude of which is determined by the assumed
quality of the sensors. The covariance of the sensor noise vector g can thus be
described in Fourier space by a 3 x 3 matrix G where the diagonal elements o
are the variances of the sensor noise assumed to be associated with each indi-
vidual sensor. The covariance for each sensor can be written on the following
form

Ry, (1),9. (1) = 00 (t — '), (13)

where §,,. denotes the Kronecker delta. Thus, in the present work, we assume
that the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can be
better trusted. For a given covariance of the external disturbances, the tuning
of the assumed overall magnitude of the sensor noise in the Kalman filter design
thus provides a natural “knob” to regulate the magnitude of the feedback into
the estimator.

3. Compensation

The system is now described: its dynamics is governed by (2), it is excited
by external sources of disturbance as in (11) and the sensor information is
corrupted by noise as in (13). We can now apply the procedure of LQG control
and estimation governed by system 5.
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FIGURE 2. Steady-state control convolution kernels relating
the flow state ¢ (a) and 7 (b) to the control at {x =0, y =
0, z = 0} on the wall. Positive (dark) and negative (light)
isosurfaces with isovalues of £20% of the maximum amplitude
for each kernel are illustrated. The kernels correspond to cases
12-13 in table 1 and 3.

3.1. Controller

To construct an optimization problem we need to define an objective function.
The performance measure for optimality is chosen as a weighted sum of the
flow kinetic energy and the control effort. We thus aim at preventing small
disturbances from growing, and achieve this goal with the minimum possible
actuation energy. The objective functional thus reads

J:/(f%+ﬂﬁwmt (14)
0

where 12 is included to penalize the time derivative of the control u. = ¢, and

_( @ Qq
o= (o 0+ o) (18)

where the term 7° is an extra penalty on the control signal itself. The operator
@ represents the energy inner-product in the (v,7) space

o (VY = L7 (e 4|20
o e () =gz (k o + |5

with k? = k2 + k2.

We now want to find the optimal K that feeds back the state to update
the control u. = Kq. It can be found as the solution of an algebraic Riccati
equation (ARE)

2

2
+ |77|2) dy, (16)

NX+XA—%X&@X+Q:O (17)
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where X is the unique non-negative self-adjoint solution. Note that the linear
feedback law does not depend on the disturbances present in the flow and is
thus computed once and for all for a given objective function and base flow.
The optimal control gain K is

1
K =-5BiX. (18)

A sufficient range of wavenumber pairs are computed and after Fourier trans-
formation in both horizontal directions, we obtain physical space control con-
volution kernels. Examples of such control kernels are depicted in figure 2.

3.2. Estimator

We build an estimator analogous to the dynamical system (5) as

G =Aq+ Byue = L(y—9), 4(0) = do,
N R (19)
y=10Cq,
where ¢ is the estimated state and gy represents the measurements in the esti-
mated flow.

Kalman filter theory, combined with the models outlined in §2.2a and §2.2b
for the statistics of the unknown external forcing f and the unknown sensor
noise g respectively, provides a convenient and mathematically-rigorous tool for
computing the feedback operator L in the estimator described above such that
4(t) converges to an accurate approximation of ¢(t) (see e.g. Lewis & Syrmos
1995, p. 463-470). Note that the volume forcing v, = L(y — ) used to ap-
ply corrections to the estimator trajectory is proportional to the measurement
difference in the flow and in the estimator § =y — .

The problem reduces to solving an algebraic Riccati equation similar to
equation (17)

0= AP+ PA* — PC*G~'CP + B1RB;, (20)

where P is the unique non-negative self-adjoint solution. The optimal gain L
that minimizes the expected energy of the state estimation error at steady state
is

L=—-PC*G™%. (21)

Estimation convolution kernels are exemplified in figure 3.

3.3. Eaxtension to spatially developing flows

When solving the linear control problem and computing optimal control and es-
timation gains we have linearized about a base flow profile at a specific stream-
wise position, hence assuming a parallel base flow. However, due to the non-
parallel base flows in the DNS, errors will be introduced when the control signal
and estimation forcing are computed. Based on findings in Hogberg & Hen-
ningson (2002), Hogberg et al. (2003b), Hogberg et al. (2003¢), and Chevalier
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(v) (n)

FIGURE 3. Steady-state estimation convolution kernels relat-
ing the measurements 7, 7., and p at the point {z =0, y =
0, z = 0} on the wall to the estimator forcing on the interior
of the domain for the evolution equation for the estimate of
(left) © and (right) 7. Positive (dark) and negative (light) iso-
surfaces with isovalues of +£10% of the maximum amplitude
for all kernels illustrated. The kernels correspond to case 13
in tables 1 and 3.
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et al. (2006) it was expected that the controller and the estimator had some ro-
bustness properties with respect to changes in the base flow profile. Due to the
fact that the convolution kernels themselves, for proper choices of parameters,
are localized indicates that only local information is needed which relaxes the
requirement of constant base flow profile. For almost all control and estimation
gains, the base flow profile in the centre of the control and measurement regions
have been used. For the longer control interval in the optimal perturbation flow
case, the same gains were used as for the shorter interval.

The control and estimation convolution kernels for the Falkner—Skan—Cooke
boundary layer flow, corresponding to cases 12-13 in table 1, are depicted in
figures 2 and 3. Both the control and estimation kernels were computed with
a physical box size of 100 x 10 x 125.7 with 192 x 65 x 125.7 Fourier, Cheby-
shev, Fourier modes. Furthermore, the kernels were based on the mean-flow
at x = 95 and = = 200 for the estimation and control respectively. For all
cases studied the general behaviour of the control kernels are the same in the
sense that they all reach upstream in order to get information about the per-
turbations present in the flow. Correspondingly the estimation kernels reach
downstream from the point of sensoring yielding information on how each mea-
surement should force the estimator. However, due to the differing base flows
and their inherent instabilities the kernels will differ in shape and extent. The
streamwise length of the sensing/actuation strip is limited above due to the
non-parallel base flow, and below by the physical extent of the convolution
kernels. The control and estimation region lengths used in this paper for the
spatial flow cases were chosen in this range. Note that the performance of the
controller /estimator degrades with “out of limit” parameters but will generally
still produce reasonable results.

4. Numerical issues
4.1. Direct numerical simulations

All direct numerical simulations have been performed with the code reported
in Lundbladh et al. (1992) and Lundbladh et al. (1999), which solves the in-
compressible Navier—Stokes equations

ou _ NS(u)+A(z)(u—uy) +F,

ot
V-u=0,

by a pseudo-spectral approach. The velocity vector u is defined as u =
(u,v,w)T. In the subsequent we will divide the velocity field into a base flow
U = (U,V,W) and a disturbance part u’ = (v/,v’,w’") so that u=U +u’. In
order to allow spatially developing flows, a fringe region technique as described
in e.g. Nordstrém et al. (1999) has been applied. This forcing is implemented in
the term A(z)(u—uy), where A(z) is a non-negative function which is nonzero
only in the fringe region located in the downstream end of the computational

(22)
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box. The outflow and inflow conditions are determined by the desired velocity
distribution uy. The other additional forcing term F = [Fy, F5, Fg,]T is used
e.g. to enforce a parallel base flow in temporal simulations, or to introduce
perturbations in the spatial simulations.

At the lower wall a no-slip boundary condition is applied where it is also
possible to apply zero mass-flux blowing and suction. An asymptotic free-
stream boundary condition is used to limit the computational box in the wall-
normal direction, at a constant height from the lower wall (see e.g. Malik et al.
1985).

The computational domain is discretized in space by Fourier series in both
horizontal directions and with Chebyshev polynomials in the wall-normal di-
rection. The time integration uses a four-step low-storage third-order Runge—
Kutta method for the advective and forcing terms whereas the viscous terms
are treated by a Crank-Nicolson method. The incompressibility condition is
enforced implicitly by expressing the flow state in the wall-normal velocity and
wall-normal vorticity state space.

4.2. Temporal simulations

When needed, we add a volume forcing vector F = [Fy, Fy, F5]T to enforce a
parallel base flow, defined as

P = _OU(y,t) iazU(y,t)
ot Re 0y2 ~

Fy =0, (23)
1 0°W(y,t)

" Re 0y?

The velocity profiles U(y, t) and W (y, t) are given for a spatial position z,.. To

further allow for a moving frame we make the following variable transformation

x, = o + ¢t where ¢ is the reference frame speed and let U(z,,y) = U(zo +

ct,y) =U(t,y).

Fs; =

4.3. Spatial simulations

4.3a. Fringe region. By adding the fringe forcing mentioned in §4.1 we can
enforce flow periodicity and thus apply spectral methods allowing us to solve
spatially developing flows. The fringe function is defined as

T — Tstart T — Tend
AMz)=dpax |S| —— | =S| —— 24
( ) |: < A1rise ) ( Afall ) :| ( )

where the ramping function S is defined as

0, xr <0,
S(x)=< 1/ {l—i-exp(ﬁ—i—%)], 0<z<l, (25)
1, x> 0.



158

M. Chevalier, J. Hepffner, E. Akervik and D. S. Henningson

Case Flow Perturbation FEstimation Control
Ty € r?2 1 T, €
0 A Eigenmode
1 A Eigenmode 0 102 [0,25.14]
2 A Eigenmode [0,25.14] 0 102 [0,25.14]
3 B TS-wave
4 B TS-wave 0 10% [100,250]
5 B TS-wave [0, 100] 0 102 [100,250]
6 C  Optimal
7 C  Optimal 0 102 [300,450]
8 C  Optimal [0, 300] 0 102 [300,450]
9 C  Optimal 0 10% [300,750]
10 C  Optimal [0, 300] 0 102 [300,750]
11 D Random
12 D  Random 0 10% [175,325]
13 D  Random [40, 150] 0 10% [175,325]
14 E Stationary
15 E  Stationary 0 10%* [150,300]
16 E  Stationary [40, 150] 0 102 [150,300]
Flow Resolution Box
A Temporal FSC 4 x 129 x4  25.14 x 20 x 25.14
B Spatial Blasius 576 x 65 x4 1128 x 20 x 12.83
C Spatial Blasius 576 x 65 x4 1128 x 20 x 12.83
D Spatial FSC 192 x 49 x 48 500 x 8 x 251.4
E Spatial FSC 768 x 65 x 24 500 x 8 x 25.14
Flow Fringe
Tstart  Lmix Amix Aris‘.e Afall
B Spatial Blasius 928 928 50 30 15
C Spatial Blasius 1028 1028 40 100 20
D Spatial FSC 350 400 40 100 20
E Spatial FSC 350 400 40 100 20

TABLE 1. The tables contain detailed information about the
simulations performed in this study. Both the control and
estimation kernels are computed based on a velocity profile
from the centre of each domain except for cases 9-10 where the
same control kernels were used as for cases 7-8. The rise and
fall distance of the control region and the measurement regions
are always Az = 5. The domain z,, denotes the measurement
region used in the estimator and the domain x. denotes the
region where blowing and suction is applied in the control part
of the simulations. The estimator model parameters for the

different cases are given in table 3.
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Parameter Cases Parameter Cases
3-5 6-10 11-13  14-16
Ty —201.06 —158.16 o 20.95  20.95
w 0.06875 0 ag 0.001
k. 0 0.4897 as 0.0036
Qg 10-° Tscale 10 10
ts 0 Yscale 1 1
t, 20 Zscale —25.14
Zcenter 0 0
lskew 1
Nmodes 21
tat 1

TABLE 2. Volume forcing parameters for the spatial simula-
tions. Note that negative coordinates indicate positions up-
stream of the inflow boundary.

The parameters Zgiary and zenq define the start and end location of the fringe
domain, whereas the parameters Aise and A,y define the rise and fall distance
of the fringe function.

In order to enforce the inflow boundary condition at the downstream end of
the domain we construct the following blending function which gives a smooth

interpolation between two velocity profiles. Let the velocity components be
defined as

n = Ula) + UG = ) = U] S (522 ) o = L),

L — Tmix

n = W) + [V (o = o) = W) 8“5

) + w}(x - lwayazvt)7

(26)
where [, is the box length in the streamwise direction. The parameters xpix
and Apix are both blending parameters. The former is the start of the blending
region and the latter is the rise distance of the blending. Additional forcing to
add streaks or different wave forms can be added through the velocity compo-
nents (u}, v}, w}) directly in the fringe.

4.3b. Perturbations. To introduce perturbations into the spatially evolving flow
an external volume force can be applied locally in the computational domain.
This forcing can either be applied in the fringe region, as for the optimal dis-
turbance and the T'S-wave case, or in the physical flow domain.

In order to introduce unsteady perturbations in the physical computational
domain, we use a random forcing, acting only on the wall-normal component
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of the momentum equations

F2rand = ay exp[f((m - xccntcr)/xscalc)2 - (y/yscalc)z]f(zv t)’ (27)
where
F(zt) = [(1 = b(t)h*(2) + b(t)R 1 (2)] (28)

and
k = floor(t/tqas),

bt) = 37— 27, (29)
pP= t/tdt - k7

where floor denote rounding to the next smaller integer, and h*(z) is a Fourier
series of unit amplitude functions with random phase generated at every time
interval k. Within each time interval ¢4, the function b(t) ramps the forcing
smoothly in time. The maximum amplitude is determined by a; and the forcing
is exponentially decaying in both the streamwise and wall-normal directions
centred at Zeenter- The number of modes with non-zero amplitude is determined
by the parameter ny0qcs. This forcing has been used to generate the travelling
cross-flow vortices described as cases 11-13 in table 1 with the corresponding
parameters given in table 2.

Generating disturbances in the fringe region is done through prescribing the
components (u’s, vy, w';) in equation (26). Since we are looking at the evolution
of linear disturbances, these components can be taken as the eigenfunctions of
the parabolized stability equations, known as the PSE (Bertolotti et al. 1992;
Herbert 1997). Input to the eigenvalue problem is a given real frequency w, an
appropriate Reynolds number Re and a real spanwise wavenumber kf. A set of
equations valid for both algebraically and exponentially growing disturbances
was derived in Levin (2003), capturing the different scales associated with the
two growth scenarios. Having obtained the complex eigenvalues kf () and the
eigenfunctions § = (a(z,y), (z,y), w(z,y))T from the solution of the PSE, one
can readily formulate the forcing applied in the fringe as the real part of

qy = a5 q(x,y) exp (iRe /
x

where x; is typically the start of the fringe region and a, is the amplitude of
the disturbance. The ramping function S is given by equation (25) and ts and
t, are used as time ramping parameters.

T

k1 (€)dé + ikl z — iwt) S <t ; ts) (30)
f T

4.3c. Zero mass-flur actuation. The numerical model in the DNS does not
allow for net inflow or outflow, we thus have to enforce a zero-mass flux through
the actuation strip by the transformation

Sb(x’z) = (@('Twz) +C)H(m)7 (31)
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where

_ /,Z/QC@(%Z)H(w)dmdz
o Zl/xH(x)dx

H(z) =8 (“””(Zmlﬂ)) ~S (“””(leﬂ)) . (33)

The parameter S(x) is defined as in equation (25) and z. denotes the centre of
the control interval. Parameters [ and [ are respectively the length and width
of the control domain and Ax is the rise and fall distance of the actuation.

c

and

4.4. Compensator algorithm

The compensator algorithm is depicted in figure 4. The “real” flow could be an
experimental setup where only wall information is extracted. In our studies the
“real” flow is represented by a DNS. The estimator is another DNS, which is
used to recover the state from sensor information. The compensation algorithm
can be sketched in the following steps

1. Take wall measurements in both real and estimated flows

2. Compute the estimator volume forcing based on precomputed estima-
tion gains and the difference of the wall measurements from the real and
estimated flows

3. Apply the volume forcing to the estimator flow to make it converge to
the real flow

4. Compute the control signal as a feedback of the reconstructed state in
the estimator

5. Apply the control signal in both the real and estimated flows

5. Flow cases

In order to evaluate the compensator performance in transitional flows we test
a range of different flow cases. To ease the comparison with the full information
controller results reported in Hogberg & Henningson (2002) we study partly
the same flow cases and the same control parameter [ = 100 has been used.
However, some control regions have been moved further downstream to fit also a
measurement region into the computational domain. Note that in principle we
could have overlapping control and measurement regions. The computational
parameters for each flow type are listed in table 1, 2 and 3.

5.1. Single eigenmode

To validate the numerical implementation of the control and the estimator forc-
ing we studied a temporal FSC boundary layer flow where the Reynolds number
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—L./2

y Actual flow

y Estimated flow

Yts

Fi1GURE 4. Compensator configuration. The upper box repre-
sents the “real” flow where the light grey rectangle along the
wall is the measurement region (x € [z7", 25"]) and the corre-
sponding dark grey rectangle is the control area (z € [z, x§]).
In the beginning of the box a perturbation is indicated as a
function of the wall-normal direction. This perturbation will
evolve as we integrate the system in time. The estimated flow
system is depicted in the lower box. Here the volume force
that is based on the wall measurements and the estimation
gains is shown as a grey cloud in the computational domain.

at the beginning of the simulation box was Re = 337.9 with a free-stream cross-
flow velocity component W, = 1.44232 U, (x = 0) and a favourable pressure
gradient m = 0.34207 as defined in §2.1. The same flow setup is also studied
in a spatial setting in §5.4. In the case of temporal flow the measurement and
control regions overlap since they both extend over the complete wall.

The initial disturbance is the unstable eigenfunction associated with the
eigenvalue ¢ = —0.15246 + ¢0.0382 that appears at k, = 0.25 and k, = —0.25.
The exponential energy growth of the uncontrolled eigenmode is depicted in
figure 5 as a thick solid line. In the same figure the full information controller
is plotted as a thick dashed line and the disturbance energy decays rapidly in
time and levels out. All thin lines are related to the compensator simulation.
The thin solid line represents the disturbance energy in the estimator and it
increases initially to quickly align with the energy growth of the actual state.
This can also be viewed through the estimation error plotted as a thin dash-
dotted line which decays exponentially in time. The compensator control is
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Parameter Cases
3 5 8 & 10 13 16
KO 0.25 0.28 0.0 0.25 0.25

K0 —0.25 0.0 049 —-0.25 -0.25
dy 0.10 0.25 0.15 0.20 0.20
d, 0.50 0.10 0.50 0.50 0.50
d, 0.10 0.25 0.15 0.20 0.20
o, 2956 4.0 0.20 0.20 0.20
o 2.21 0.30 0.20 0.20 0.20
o, 14783 2000 300 30000 30000

TABLE 3. Estimator model parameters. The parameters k2,
K9, dg, dy, and d. all relate to the covariance model of the ex-
ternal disturbances and the parameters -, a,,, and o, relate
to the modeling of the sensor noise. See §2.2 for definitions of
the parameters.

shown as the thin dashed line. Initially when the estimated state is poor the
controller is not very efficient. However as the estimated state improves the
compensator control is also improving.

5.2. TS-wave

The TS-wave perturbation is applied in a spatially developing Blasius bound-
ary layer with an inflow Reynolds number of Re = 1150. This base flow can
be obtained as a similarity solution described in §2.1 with m = 0. The per-
turbations are introduced by means of forcing in the fringe region as described
in §4.3b. Since the TS-wave is a pure two-dimensional instability, the span-
wise wavenumber in (30) is kf = 0. These waves are forced at the dimen-
sionless oscillating frequency F' = 59, relating to the physical frequency w as
F = 10%27wv/UZ. This value is chosen according to Levin (2003) where it
was found to be the most unstable. The unstable area for this wave extends
from Branch I at = —124 (Re =~ 949) to branch IT at x = 621 (Re ~ 1854).
The measurement region is x € [0,100] and the control region is = € [100, 250]
so that they are both located in the exponential growth region. The simulation
parameters correspond to cases 3-5 in table 1 and the parameters defining the
fringe forcing are given in table 2.

Figure 6 shows the uncontrolled energy growth and decay as the solid thick
line. Full information control, displayed as the thick dash-dotted line, performs
perfectly, lowering the amplitude of the energy by approximately five decades.
The estimator builds up energy levels throughout the whole estimation region,
reaching almost the amplitude of the original flow. This is visualized as the
thin solid line.
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F1GUrE 5. Time evolution of the perturbation energy of the
uncontrolled unstable eigenmode at k, = 0.25,k, = —0.25in a
FSC boundary layer and the corresponding controlled system.
Solid: uncontrolled energy growth (case 0). Dashed: full in-
formation control applied (case 1). Solid-thin: energy growth
in the estimator when no control is applied. Dash-dotted-thin:
the estimation error when no control is applied. Dashed-thin:
compensator control is applied (case 2). The simulations cor-
respond to cases 0—2 in table 1.

Note that the difference between the compensator control and full informa-
tion control in Figure 6 is exaggerated due to the logarithmic scale. In fact this
difference is of the same order of magnitude as the energy difference between
the real and estimated flow. Indeed by extending the estimation region (and
moving the control region further downstream) one can get a closer agreement
between the compensator and the full information controller. Note however
that there is an interest in controlling the TS-wave evolution as far upstream
as possible. Choosing the moderate estimation region length of 100, the com-
pensator still manages to lower the energy levels by almost three decades.

Figure 7(a) shows a snapshot of an x—y plane of the wall-normal uncon-
trolled velocity field. The forcing has been turned on long enough to let the
waves propagate throughout the whole computational box. In figure 7(b) the
compensator control has been active for 926 time units, corresponding to ap-
proximately fifteen periods of the forcing. At this instance of time there are
still large amplitude disturbances present far downstream, but as can be seen
from figure 7(c), 30 periods later the contour-levels of the disturbances are
small throughout the whole domain. It is evident that the unsteady blowing
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FIGURE 6. Spatial evolution of the perturbation energy of a

TS-wave in a spatially growing boundary layer. Solid: un-

controlled energy growth. Solid-thin: estimated flow energy.

Dashed: full information control applied. Dash-dotted: com-

pensator control applied.

and suction has effectively diminished the disturbances, leaving the remaining
TS-wave to be advected out of the domain by the base flow.

Instantaneous control signals for the full information control and the com-
pensator control are shown in figure 8. The control signals mimic waves with
decaying amplitude in the streamwise direction. The large amplitude at the
beginning of the control interval is due to the fact that the controller manages
to do the job within only a few wavelengths of the T'S-wave, hence leaving large
amplitude control further downstream unnecessary.

5.3. Optimal perturbation

The compensator performance is also studied for transiently growing perturba-
tions, also known as optimal perturbations after Butler & Farrell (1992). The
spatial optimal perturbations in a Blasius boundary layer have been computed
by Andersson et al. (1999) and Luchini (2000). The optimal perturbation is
introduced at x = —158.16 and then marched forward to z = 0 with the tech-
nique developed in Andersson et al. (1999). The perturbation is introduced
in the fringe region to give the proper inflow condition, as described in §4.3
and with the choice of parameters displayed in table 2. The perturbation is
optimized to peak at x = 237.24.

The base flow is essentially the same as the one described in §5.2, with the
same box-size but with a smaller fringe region and a lower Reynolds number.
Here the local Reynolds number at the inflow is Re = 468.34 (Andersson et al.
(2000)). The simulation parameters are given in table 1 as cases 6-10.
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FIGURE 7. Snapshots of the wall-normal perturbation veloc-
ity for controlled and uncontrolled TS-waves. (a) The TS-wave
with no control. (b) Compensator control applied during 15
TS-wave periods which corresponds to 926 time units. (c)
Compensator control applied during 45 T'S-wave periods. The
unsteady wall blowing and suction effectively eliminates distur-
bances, with the result that the original T'S-wave disturbances
are advected out of the domain. The black to white scales lie
within the interval v € [-9.87 - 1075,8.18 - 1077

Figure 9 shows the energy of the uncontrolled flow, estimated flow, full in-
formation control and compensator control once steady state has been reached.
The compensator control manages to reduce the disturbance energy to almost
the same level as the full information control does. Here the energy is defined
as

21/kY  poo
E = / / (u? +v* +w?)dydz, (34)
0 0

where the spanwise wave number is k0 = 0.4897. Two different lengths of
the control regions have been implemented. Both types of controllers for both
control intervals work well at reducing the perturbation energy. In the case
with a narrow control strip the perturbation energy starts to grow again since
a stronger component of the growing disturbance remains.

The control signal for the full information and compensator control cases,
applied in the interval x € [300, 750], are depicted in figure 10. The actuation
presents a peak at the beginning of the control region and then a fast decay
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FicUure 8. Control signal when the control has been turned
on for 926 time units. Solid: Full information control. Dash-
dotted: Compensator control.

which levels out progressively. A similar feature is reported in Cathalifaud &
Luchini (2000) where control is applied over the whole domain.

5.4. Travelling cross-flow vortices

The FSC boundary layer flow studied in this paper is subject to several other
studies, for example Hogberg & Henningson (1998) and Hogberg & Henningson
(2002). Originally it was an attempt to reproduce experimental results where
travelling cross-flow modes have been observed (see e.g. Miiller & Bippes 1988).
A random perturbation in space and time that generates cross-flow vortices
downstream is applied, as described in §4.3b. The specific numerical details
can be found under cases 11-13 in tables 1 and 2.

In case 11 we compute the time evolution of the forcing as it develops down-
stream and forms the cross-flow vortices. When the simulations have reached
a statistically steady state the disturbance energy is sampled and averaged in
time and the spanwise direction as shown in figure 13. The energy growth of
the perturbation is shown as a black solid line. In case 12 we apply full infor-
mation control. Exponential decay then replaces the uncontrolled exponential
growth, as shown by the dashed line in figure 11. However almost adjacent
to the downstream end of the control region the disturbances start to grow
exponentially. Indeed, this wave is unstable over the whole box, and resumes
growth behind the control strip. In the same figure the perturbation energy
for the compensator is plotted as a dash-dotted line.

In figure 12 the evolution in time of the perturbation energy, integrated
throughout the computational box in space, is shown. The energy in the esti-
mator is shown as a thin-solid line which is zero at time ¢ = 0 but as time evolves
reaches the same level as the perturbation energy in the real flow. From figure
12 it is also evident that the estimator is able to adapt to the time variations
of the perturbation energy.
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FIGURE 9. Spatial energy evolution of the optimal perturba-
tion. Solid: no control. Thin-solid: estimated flow energy
employing stochastic forcing according to parameters given in
table 3 but with d, = 2.0. Thin-dotted: estimated flow en-
ergy with spatially uncorrelated stochastic forcing. Dashed:
full information control applied in region € [300,450]. Dash-
dotted: compensator control with measurement region z,, €
[0,300] and the control region z. € [300,450]. Thin-dashed:
full information control applied in region x € [300,725]. Thin
dash-dotted: compensator control with the measurement re-
gion x,, € [0,300] and the control region z. € [300,725]. The
flow cases correspond to cases 6-10 in table 1.

The control gains are computed for the base flow at position = = 250
which is the centre of the control domain z € [175,325]. The estimator gains
are centred at = 95 and the measurements are taken in = € [40,150]. In figure
13(a) the uncontrolled flow for the wall-normal perturbation velocity is plotted
at y = 1.0. The corresponding plot for the compensated flow is depicted in
figure 13(b).

5.5. Stationary cross-flow vortices

Stationary perturbations introduced at the beginning of the computational
domain, with large enough amplitudes, will generate stationary nonlinearly
saturated cross-flow vortices that develop downstream.

The control is acting in the interval z € [150,300] and the control kernels
are computed based on the mean flow at z = 225 with [ = 102. The measure-
ment region is in the interval x € [40,150] and the the estimation kernels are
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F1GURE 10. The control signal for the optimal disturbance
case after the initial transient. Solid: full information control.
Dashed: compensator control in domain. The simulations cor-
respond to case 9 and 10 in table 1.

-2

10

l Il Il Il Il Il Il
0 0 50 100 150 200 250 300 350

T

FIGURE 11. Time averaged perturbation energy for cross-flow
vortices in a Falkner—Skan—Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. Thin-solid: estimator energy. The sim-
ulations correspond to cases 11-13 in table 1.
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FIGURE 12. Time evolution of the disturbance energy inte-
grated throughout the computational box. During the first
2000 time units the flow is uncontrolled. At time ¢t = 2000 the
compensator is turned on. Solid: energy in the flow. Thin-
solid: energy in the estimator.

computed based on the base flow centred in that interval. The complete set of
parameters for these simulations is given as cases 14-16 in table 1.

The full information control has been applied to both a flow with fully
developed cross-flow vortices throughout the computational domain as well as
a flow where the control is turned on at the same time as the perturbation is
first introduced in the upstream region. Both approaches give the same result
after the initial transients, due to the control. However the transition phase in
the former case requires smaller time steps due to stronger transients. There
could also be a problem in the former case if too strong wall-normal velocities
are generated due to technical limitations in the spectral code that are being
used.

For estimation-based control, two approaches regarding the initial state of
the estimator have been attempted. First the control is applied after a well
converged estimated state is obtained. This leads to full actuation strength
immediately. To avoid a strong initial actuation, we turn on estimator and
control at the same time. The results shown here have been produced with the
latter method.

The simulation is run until a stationary state has been reached and the cor-
responding energy is shown in figure 14. The solid line shows the perturbation
energy and the thin line shows the corresponding estimator state energy. The
dashed and dash-dotted lines show the full information and compensated con-
trol cases respectively. In both cases, oscillations in the upstream part of the
control region indicate that there are nonlinear interactions taking place. As
reported in Hogberg & Henningson (2002), the full information control turns
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v O

FIGURE 13. Snapshots of the wall-normal velocity component
at y = 1.0. The flow state is depicted in part (a). In (b) the
effect of the compensator control is shown. In the controlled
flow the actuation was applied in 2000 time units. The black
to white scales lie within the interval v € [—0.00045, 0.00055].

exponential growth into exponential decay, and downstream of the control re-
gion, new cross-flow vortices appear due to the inflectional instability. The
compensator control never reaches exponential decay but rather maintains a
more or less constant perturbation energy throughout the control interval.

5.6. Impact of stochastic modelling on estimation

We have seen that the performance of the estimator can be improved if the
external excitation sources are well described by the stochastic model of §2.2.
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FIGURE 14. Perturbation energy growth for cross-flow vor-
tices in a Falkner—Skan—Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. Thin-solid: estimator energy. The sim-
ulations correspond to cases 14-16 in table 1.

The parameters given in table 3 are chosen to fairly well fit each specific per-
turbation for the different flow cases we have considered. In this section we
perform a quantitative comparison of the estimator performance applied to the
streaky flow case of §5.3 for three sets of model parameters; the uncorrelated
model, and the correlated model with two different correlation lengths in the
wall-normal direction.

A first comparison of the estimation performance for different models was
shown in figure 9. Using the correlated model with d, = 2.0, the upstream
part of the streak energy was over predicted while the downstream part was
slightly under predicted, however yielding the lowest overall energy of the esti-
mation error when compared to other choices of wall-normal correlation length
parameter d,. On the other hand the estimator built from the uncorrelated
stochastic model has correct energy levels in the first half of the measurement
region, but is simply not able of converging to good estimate of the flow down-
stream, where the flow response has largest energy. Note that d, = 0.5 gives
the best compensator performance due to its slightly better energy level match
in the upstream region of the flow.

When changing the stochastic properties of the external forcing the strength
of the resulting gains changes. In order to keep the strength of the gains on
the same level, keeping in mind that they act directly as forcing terms in the
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dy dy dy K0 K o an o Jr, Jr. JIp
0.10 0.15 0.15 0.0 0.49 0.20 0.20 300 | 18.3619 21.5604 0.0562

TABLE 4. Reference values, according to integral (35), of the
estimation gains for the streak instability. All gains in the
comparison study are scaled to match these values for J. , J;,
and J, respectively.

estimator, we scale them to maintain a reference value of the integrated quan-

tities
L. rLs (Y
Jy = / / / L3 dyda dz, (35)
0 0 0

where y represents the different measurements 7,, 7, and p. The integrated
quantities of (35) for the reference stochastic model is given in table 4.

In figure 15 the time history of the difference in energy of the estimation
error between the three stochastic models is shown. The solid and the dashed
line show the estimator results based on correlated stochastic forcing with the
parameters d, = 2.0 and d, = 0.5 respectively, see equation (12). The dash-
dotted line represents the uncorrelated stochastic forcing. All three estimators
converge to reasonable energy levels, however the best performance is obtained
with the parameter d, = 2.0. For larger values of d, the estimation error starts
to increase again. Similar behaviour is observed for the other flow perturbation
scenarios.
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6. Conclusions

Based on findings on how to improve the performance state estimation perfor-
mance, reported in Heepffner et al. (2005), combined with the state-feedback
control used in, for instance, Bewley & Liu (1998) and Hogberg & Henningson
(2002), viscous instabilities, non-modal transient energy growth and inflectional
instabilities in spatially developing boundary layer flows are controlled based
on wall measurement.

The key to the improved performance of the estimator is the design of a
relevant stochastic model for the external sources of disturbances.For this pur-
pose we choose a correlation length. We also choose an amplitude distribution
in wavenumber space such that it represents the most dominant wavenumbers
in the specific flow being studied. This procedure leads to resolution indepen-
dent well resolved estimation gains for the three measurements: streamwise
and spanwise skin frictions and wall pressure. Both the sensor noise and the
external disturbances are assumed to be white noise processes. As the estima-
tor is switched on, there is an initial transient that propagates with the group
velocity of the dominating disturbances through the computational domain.
Upstream of this transient the estimate is converged. This feature makes the
compensator control efficient since little extra time is needed to have a good
state estimate where it is needed for control, i.e. above the actuation region.
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Global optimal disturbances in the Blasius flow
using time-steppers
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Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
Technical Report

The stability of the Blasius flat-plate boundary-layer flow to three-dimensional
disturbances is studied by means of optimisation methods at relatively high
Reynolds numbers. We consider both the optimal initial condition leading to
the largest growth at finite times and the optimal time-periodic forcing lead-
ing to the largest asymptotic response. Both optimisation problems are solved
using a Lagrange multiplier technique, where the objective function is the ki-
netic energy of the flow perturbations and the constraints involve the linearised
Navier—Stokes equations. In both cases the evolution equations for the La-
grange multiplier are the adjoint Navier—Stokes equations. The approach pro-
posed here is particularly suited to examine convectively unstable flows, where
single global eigenmodes of the system do not capture the downstream growth
of the dusturbances. The optimal initial condition for spanwise wavelengths
of the order of the boundary layer thickness are streamwise vortices exploiting
the lift-up mechanism to create streaks. For long spanwise wavelengths it is
the Orr mechanism combined with oblique wave packet propagation that dom-
inates. It is found that the latter mechanism is dominant for the relatively
high Reynolds number and the long computational domain considered here.
The spatial structure of the optimal forcing is similar to the that of the op-
timal initial condition, and the response to forcing is also dominated by the
Orr/oblique wave mechanism, however less so than in the former case. The
lift-up mechanism is, as in the local approach using the Orr—Sommerfeld squire
equations, most efficient at zero frequency and degrades slowly for increasing
frequencies.

1. Introduction

The flat-plate boundary layer is a classic example of convectively unstable
flows; these behave as a broadband amplifier of incoming disturbances. As a
consequence, a global stability analysis based on the asymptotic behavior of
single eigenmodes of the system will not capture the relevant dynamics. From
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this global perspective all the eigenmodes are damped, and one has to resort to
an input/output formulation in order to obtain the initial conditions yielding
the largest possible disturbance growth at any given time and the optimal
forcing via an optimization procedure. The aim of this work is to investigate
the global stability of the flow over a flat plate subject to external perturbations
and forcing and to examine the relative importance of the different instability
mechanisms at work, see discussion below. The approach adopted here can be
extended to any complex flow provided a numerical solver for the direct and
adjoint linearized Navier-Stokes equations is available.

Recently the stability of the spatially-evolving Blasius flow subject to two-
dimensional disturbances have been studied within an optimisation framework
projecting the system onto a low-dimensional subspace consisting of damped
Tollmien-Schlichting (TS) eigenmodes (Ehrenstein & Gallaire 2005). These re-
sults were extended by Akervik et al. (2008), who found that by not restricting
the spanned space to include only TS modes, the optimally growing structures
could exploit both the Orr and TS wave packet mechanism to yield a substan-
tially higher energy growth. The Orr mechanism was studied in the context
of shear flows in the Orr—Sommerfeld/Squire equations framework by Butler
& Farrell (1992), who termed it the Reynolds stress mechanism. This insta-
bility extracts energy from the mean shear by transporting momentum down
the mean momentum gradient through the action of the perturbation Reynolds
stress. In other words disturbances that are tilted against the shear can borrow
momentum from the mean flow while rotating due to the shear until aligned
with it. This mechanism is also referred to as wall-normal non-normality. From
the local point of view the TS waves appear as unstable eigenvalues of the Orr—
Sommerfeld equation. In the global framework however the global eigenmodes
belonging to the TS branch are damped (Ehrenstein & Gallaire 2005), and the
evolution of TS waves consist of cooperating global modes that produce wave
packets. Considering the model problem provided by the Ginzburg-Landau
equation with spatially varying coefficients, Cossu & Chomaz (1997) demon-
strated that the non-normality of the streamwise eigenmodes leads to substan-
tial transient growth. This non-normality is considered to be associated with
the streamwise separation of the direct and adjoint global modes due to the
basic advection and it is also termed as streamwise non-normality (Chomaz
2005).

It is now well established that when incoming disturbances exceed a certain
amplitude threshold the flat-plate boundary layer is likely to undergo transition
due to three-dimensional instabilities arising via the lift-up effect (Ellingsen &
Palm 1975; Landahl 1980). This transient growth scenario, where streamwise
vortices induce streamwise streaks by the transport of the streamwise momen-
tum of the mean flow, was studied for a variety of shear flows in the locally
parallel assumption (c.f. Butler & Farrell 1992; Reddy & Henningson 1993;
Trefethen et al. 1993). The extension to the non-parallel flat plate boundary
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layer was performed at the same time by Andersson et al. (1999) and Luchini
(2000) by considering the steady linear boundary-layer equations parabolic in
the streamwise direction. In both of these papers the optimal forcing structures
were located at the leading edge and a Reynolds number independent growth
was found for the evolution of streaks at large downstream distances. Levin
& Henningson (2003) examined variations of the position at which disturban-
ces are introduced and found an optimal forcing position downstream of the
leading edge. In the global framework an interpretation of the lift-up mecha-
nism is presented e.g. in Marquet et al. (2008): Whereas the TS mechanism
is governed by a transport of the disturbances by the base flow, the lift-up
mechanism is governed by a transport of the base flow by the disturbances. In-
herent to the lift up mechanism is the component-wise transfer of momentum
to the streamwise velocity component from the two others (component-wise
non-normality).

The standard way of solving the optimisation problems involved in the
determination of optimal initial condition (or forcing) is to directly calculate
the matrix norm of the discretized evolution operator (or resolvent) of the
system. In the local approach, where the evolution is governed by the Orr—
Sommerfeld/Squire equations it is clearly feasible to directly evaluate the ma-
trix exponential. In the global approach it is in general difficult and in some
cases impossible to build the discretized system matrix. One possible remedy
is to compute a set of global eigenmodes and project the flow system onto the
subspace spanned by the eigenvectors to obtain a low dimensional model of
the flow (Schmid & Henningson 2001; Akervik et al. 2007, 2008). The direct
approach of introducing the adjoint evolution operator and solve the eigenvalue
problem of the composite operator only using Direct Numerical Simulations is
preferable. This approach is commonly referred to as a time-stepper technique
(Tuckerman & Barkley 2000), and has been applied to several generic flow
cases such as backward facing step flow (Blackburn et al. 2008), separation
bubbles (Marquet et al. 2008) and the flat-plate boundary-layer flow subject
to two-dimensional disturbances (Bagheri et al. 2008).

In this paper we study the stability of the flat-plate boundary-layer flow
subject to three-dimensional disturbances from a global perspective using a
time-stepper technique. The base flow only has two inhomogeneous direc-
tions, namely the wall normal and streamwise, thereby allowing a decoupling
of Fourier modes in the spanwise direction only. Both optimal initial condition
and optimal forcing are considered for a range of spanwise wavenumbers, seek-
ing to find the optimal wavenumber. In the case of optimal initial conditions,
we optimize over a range of final times, while time-periodic optimal forcing
are computed for a range of frequencies. Whereas the computation of optimal
initial condition is well known in the global time-stepper context (see refer-
ences above), the formulation of the optimal forcing problem in this framework
is novel. The analysis proposed can have direct implications for flow control
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as well: The optimization procedure allows us to determine the location and
frequency of the forcing to which the flow under consideration is most sensitive.

The paper is organised as follows. Section 2 is devoted to the description of
the base flow and the governing linearised equations. Section 3 and 4 describe
the Lagrange approach to solving the optimization problems defined by the op-
timal initial conditions and optimal forcing, respectively. The main results are
presented in section 5; the paper ends with a summary of the main conclusions.

2. Basic steady flow, governing equations and norms

We investigate the stability of the classical spatially-evolving two-dimensional
flat-plate boundary-layer flow subject to spanwise harmonic disturbances. The
computational domain starts at a distance from the leading edge given by the
Reynolds number Re, = Uyox/v = 3.38-10° or Res« = 1.72¢/Re, = U 8j /v =
103. Here U, is the uniform free stream velocity, 6* is the local displacement
thickness and v is the kinematic viscosity. We denote the displacement thick-
ness at the inflow position §;. All variables are non-dimensionalized by U
and &3. The corresponding non-dimensional inflow position is xg = 337.7. The
non-dimensional height of the computational box is L, = 30 and the length is
L, = 1000, while the spanwise width L, is defined in each simulation by the
Fourier mode under investigation. We solve the linearized Navier—Stokes equa-
tions using a spectral DNS code described in Chevalier et al. (2007) on a domain
Q=[0,Ly] x [0,L,] x [0, L.]. In the wall normal y direction a Chebyshev-tau
technique with n, = 101 polynomials is used; the no-slip condition is enforced
at the wall, whereas the Blasius solution is recovered at y = L,.. In the stream-
wise and spanwise directions we assume periodic behaviour, hence allowing for
a Fourier transformation of all variables. In the streamwise direction the contin-
uous variables are approximated by n, = 768 Fourier polynomials, whereas in
the spanwise direction we solve for each wavenumber separately, a decoupling
justified by the spanwise homogeneity of the base flow. Since the boundary
layer flow is spatially evolving a fringe region technique is used to ensure that
the flow is forced back to the laminar inflow profile at = 0 (Nordstrom et al.
1999). The fringe forcing is quenching the incoming perturbations and is active
at the downstream end of the computational domain, x € [800, 1000], so that
x = 800 can be considered as the effective outflow location, corresponding to
Re, = 1.138 - 10°. The steady state used in the linearization is obtained by
marching the nonlinear Navier—Stokes equations in time until the norm of the
time derivative of the solution is numerically zero. Thus the two-dimensional
steady state with velocities U = (U(z,y),V(z,y),0)T and pressure II(x,y)
differs slightly from the well-known Blasius similarity solution.

2.1. The linearised Navier—Stokes equations

We are investigating the growth of small amplitude three-dimensional distur-
bances on a two-dimensional base flow. The stability characteristics of the base
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flow U to small perturbations u = (u(x,t),v(x,t), w(x,t))? are determined by
the linearized Navier—Stokes equations

du+U-Vu+u-VU = —Vr+Re 'Au+g, (1)
V-u = 0, (2)

subject to initial condition u(x,t = 0) = ug(x). The boundary conditions
for the perturbations are periodicity in z and z and homogeneous Dirichlet
conditions in y. Note that we have included a divergence-free forcing term
g = g(x,t) to enable us to also study the response to forcing as well as to
initial condition. In the expression above, the fringe forcing term is omitted
for simplicity.

When performing systematic analysis of the linearized Navier—Stokes equa-
tions we are interested in the initial condition u(0) and in the features of the
flow states u(t) that are reached at times ¢ > 0. We will also consider the spa-
tial structure of the time-periodic forcing g that creates the largest response at
large times, that is when all transients effects have died out. Our analysis will
therefore consider flow states induced by forcing or initial conditions, where a
flow state is defined by the three-dimensional velocity vector field throughout
the computational domain 2 at time ¢. To this end, it is preferable to re-write
the equations in a more compact form. In order to do so we define the velocities
as our state variable, i.e. u = (u,v,w)T, discarding the pressure 7. An impor-
tant observation can be made from equations (1) and (2); for incompressible
flows the pressure only acts as a Lagrange multiplier to maintain divergence
free velocity fields. We follow the notation of Kreiss et al. (1994) and let the
forced linearized Navier—Stokes equations be written as

du=—(U-V)u— (VU)u+ Re 'Au+ Vr +g, (3)

where the pressure is a known function of the divergence free velocity field u
and base flow U

Ar =V - (—=(U-V)u— (VU)u). (4)
Inversion of the Laplacian requires boundary conditions, and formally we may
obtain these by projecting (3) on the outwards pointing normal of the domain
n. If we let the solution of (4) be denoted as m = Ku we end up with with the
following expression for the system operator

A=—(U-V)—(VU) + Re 'A + VK. (5)
The resulting state space formulation of equation (3) can then be written
(at - A)Ll —g8= 07 u(O) = Uo, (6)

with solution

u(t) =  exp(At)ug +/ exp(AT)g(x,t — 7)dT. (7)
—— 0

initial value problem

forced problem



184 A. Monokrousos, E. Akervik, L. Brandt, and D. S. Henningson

The operator exp(At) is referred to as the evolution operator (or propagator)
and maps a solution from time ¢y to time ty + t. In what follows we will
utilise the above evolution expression to study both the response to initial
condition, excluding the forcing terms, and the response to forcing by excluding
the initial value part, i.e. we set the initial condition to zero. If we were to
explicitly discretized the operator A it becomes a matrix of size n x n, with
n = 3ngnyn, for general three-dimensional disturbances. When considering
spanwise periodic disturbances focusing on one wave number at the time, the
dimension of the system matrix becomes n = 3n,n,. Even in this case the
evaluation of the discretized evolution operator exp(.At) is not computationally
feasible. However the complete stability analysis, including the optimisation,
can be performed only by considering solutions to (7), which is readily obtained
by time marching using a linearised DNS. This so called time stepper technique
has indeed become increasingly popular in stability analysis (Tuckerman &
Barkley 2000; Blackburn et al. 2008).

2.2. Choice of norm and the adjoint equations

In order to measure the departure from the base flow we introduce the norm
based on the kinetic energy of the flow

la(®)[1? = (u(t),u(t)) = /Q u'u dQ, (8)
where the superscript  denotes the complex conjugate transpose that reduces
to the ordinary transpose ” for real valued quantities. The above norm will be
used extensively throughout this paper to in order to systematically determine
the optimal initial condition and optimal forcing. Associated with the inner
product (8) we may define the adjoint evolution operator. The adjoint evolu-
tion operator associated with the adjoint linearized Navier—Stokes equations is
central to the optimisation framework when investigating the flow non-modal
stability. Using the above inner product we may define the action of adjoint
evolution operator as

(p, exp(At)u) = (exp(ATt)p, u), 9)
where A' is defined by the initial value problem
—op=A'p=(U-V)p— (VU 'p+Re 'Ap+VK'p, p(T)=pr, (10)

for the adjoint pressure K'p. The adjoint system (10) is derived using the inner
product in time space domain ¥ = [0,7] x € as shown in Appendix A. This
initial value problem has stable integration direction backwards in time so we
may define the adjoint solution at time 7' —t for the forward running time ¢ as

p(T —t) = exp(ATt)pr, te0,T). (11)

It is important to note that the addition of the forcing term g in (3) has no
effect on the derivation of the adjoint equations.



Global optimal disturbances 185

3. Optimal initial condition

In this section, the derivation of the optimality system to be solved in order to
find the initial conditions that optimally excites flow disturbances is reported.
When seeking the optimal initial condition we assume that the forcing term g
in (6) is zero, so that only the initial value part of (7) is of interest. We wish
to determine the unit norm initial condition uy yielding the maximum possible
energy (u(T),u(T')) at a prescribed time T'. A common way of obtaining the
optimal initial condition is to recognise that the condition

2 2
G(t) = max lu(@I” _ max [[exp(AT)uo

luol#0 [[uol[2  fwoli#0  [luo|? (12)
B (ug, exp(ATT) exp(AT)up)
[uol|£0 (19, u0)

defines the Rayleigh quotient of the composite operator exp(AfT)exp(AT).
The optimization problem to be solved is hence the eigenvalue problem

yug = exp(A'T) exp(AT)uo. (13)

In the case of large system matrices, as is inherent to fluid-flow systems in more
than one space dimension, this eigenvalue problem can not be solved by directly
manipulating the matrices. Instead the eigenvalue problem is solved efficiently
by matrix-free methods such as power-iterations or the more advanced Arnoldi
method; both methods only need a random initial guess for uy and a numerical
solver to determine the action of exp(AT) and exp(A'T). An alternative ap-
proach to our optimization problem relies on the use of the Lagrange multiplier
technique. As we will show below, this yields the same results for the problem
considered here. However, within this framework, it is more straightforward
to implement modifications in e.g. the function to maximize. When defining
the problem, we need to define the objective function, in our case the kinetic
energy of the perturbations at time T

J = (u(T),u(T)). (14)

Formally, the task is to maximize the above quadratic measure subject to two
constraints: the flow needs to satisfy the governing linearized Navier—Stokes
equations (6) ( without forcing) and initial condition must have unit norm
(ug,up) = 1. Note that the second normalization condition selects a unique
solution of the eigenvalue problem (13) and thus enable the numerical procedure
to converge. By introducing Lagrange multipliers (or costate variables) we may
formulate an unconstrained optimization problem for the functional

L(u,ug,ur,p,7y) = (ur,ur) _/0 (p, (0 — A)u) dT — v ((ug,up) — 1). (15)

We thus need to determine u, ug,up, p and  such that £ is stationary, nec-
essary condition for first order optimality. This can be achieved by requiring
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that the variation of L is zero,

oL oL oL oL oL

This is only fulfilled when all terms are zero simultaneously. The variation
with respect to the costate variable (or adjoint state variable) yields directly
the state equation

<g§> = (@~ Au =0, (17)

and similarly the variation with respect to the multiplier v yields a normalisa-

tion criterion
oL
— | = (ug,ug) = 1. 18
(55) = (o) (19)
In order to take the variations with respect to the other variables we perform
integration by parts on the second term of £ in (15) to obtain

T
L = (ur, uT)*/O (u, (=0, — A") p) d7—(pr, ur)+(Po, uo)— ((wg, ug) — 1).
(19)
Note that the inner product between the direct and adjoint variables p at the
initial and end time is obtained in the integration, see derivation in Appendix
A. The variation of this expression with respect to the state variable u yields
an equation for the adjoint variable

oL
9, — ANy — 2
(au>=>(8t ANp =0. (20)
The variations with respect to ug and up give

() = o=
a. :>u0:’)/ Po,

3u0

oL
(2£) g
ur

(21)

The optimality system to be solved is hence composed of equations (17),(18),(20)

and (21). From (18) and the first relation in (21), it can readily be seen that

v = (Po, Po). The remaining equations are solved iteratively as follows.

Starting with an initial guess ug

(i) we integrate (17) forward in time and obtain urp

(ii) pr = ur is used as an initial condition at ¢ = T for the adjoint system

(20), which integrated backward in time gives pg

(iii) determine a new initial guess by normalizing ug ™ = pg/y

(iv) if [ug ™ — ug| is larger than a given tolerance, the procedure is repeated.
Before convergence is obtained ug and pg are not aligned. At convergence

however, ug is an eigenvalue of (13). This can be seen from the initial and end
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time conditions in equation (19) that according to the above conditions and
the definitions of the evolution operators satisfy

(pr,ur) = (ur,uy) = (exp(AT)u(0), exp(AT)u(0)) =
(u(0), exp(ATT) exp(AT)u(0)) = (u(0), u(0)).

The iteration scheme above might, in other words, be seen as a power iteration
scheme for finding the largest eigenvalue of (13). Since the composite operator
is symmetric its eigenvalue are real and its eigenvectors form an orthogonal
basis. The eigenvalues of the system rank the set of optimal initial conditions
according to the output energy at time 7. If several optimals are sought, e.g.
to build a reduced order model of the flow, the sequence of ufj produced in
the iteration can be used to build a Krylov subspace suitable for the Arnoldi
method.

(22)

4. Optimal forcing

Whereas in the previous section the initial value problem defined in (7) was
considered, this section will focus on the regime response of the system to time-
periodic forcing. Thus we assume zero initial conditions, uy = 0, and periodic
behavior of the forcing function, i.e.

g =R(f(x)exp(ivt)), feC, weR, (23)

where f is the spatial structure of the forcing, w is its circular frequency and
R denotes extracting the real part. With these assumptions, the governing
equations become

(0r — A)u — RN (fexp(iwt)) =0, u(0)=0. (24)

In this case, we wish to determine the spatial structure of the forcing f that
maximise the response of the flow at the frequency w in the limit of large times,
i.e. the regime response of the flow. The measure of the optimum is also here
based on the energy norm.

In order to formulate the optimization problem we go to the frequency
domain, thereby removing the time dependence. By assuming time periodic
behaviour for the quantities involved, u and p are replaced by the complex
fields u and p

u = R (vexp(iwt)), (25a)

p = R(pexp(iwt)). (25Db)
The resulting governing equations can then be written

(iwI —A)u—f=0. (26)

The objective function is the disturbance kinetic energy of the regime response,

J = (,10) = /QﬁHﬁ dQ, (27a)
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where the complex variable u requires the use of the Hermitian transpose. The
Lagrange function for the present optimisation problem is similar in structure
to that used to determine the optimal initial condition and is formulated as
follows

L(u,p,7,f) = (u,1) - (p, (Wl — Aju—f) —~ ((f,f) - 1). (28)

Notice that in the definition of the costate there is no time integral involved.
In this case, we need to take variations with respect to u, p, f and ~y

oL\ .. oL\ .. oL oL
0L = <8ﬁ> ou+ (8[3) op + (8f> of + (87) 0. (29)

The first order optimality condition requires all of the terms to be simultane-
ously zero. By taking variations with respect to the costate variable (or adjoint
variable) we again obtain the state equation

(gg) = —(iwl — A +f =0, (30)

and similarly the variation with respect to the multiplier 7 yields a normalisa-

tion criterion
oL
— | = (f.f)—-1=0. 31
(5) = @0 (31)
In order to take the variations with respect to the other variables we perform
integration by parts on the second term of £ in (28) to obtain

L(@,p,7,f) = (@, @) — (&, (iw — A)p) + (£,p) — 7 (£.£) =1).  (32)

No initial-final condition terms appear during this integration by parts since
here the inner product is only in space (in contrast to the optimal initial con-
dition). The spatial boundary terms cancel owing to the chosen boundary
conditions as seen in Appendix A. Variations with respect to the state variable
u and to the forcing function f yield

(gg) ~ G- (iwI - AP =0, (33)
(Z?) = f=~"1p. (34)

Equations (30) and (33) provide the two equations we have to solve, equation
(31) gives the normalisation condition and (34) provides the optimality condi-
tion that is used to calculate the new forcing field after each iteration of the
optmisation loop.

Next, we show the equivalence between this method and the corresponding
standard matrix method. The formal solution of equation (24) can be written
as.

o= (iwl — A)"'f. (35)
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F1cUrE 1. Comparison of adjoint iteration scheme for optimal
forcing (shown as circles) and direct solution in terms of SVD
of the OSS resolvent (shown as solid lines). a) Wavenumber
(o, B) = (0.1,0) for different frequencies w at Reynolds num-
ber Re = 1000. b) Zero streamwise wavenumber (o = 0.1) for
different spanwise wavenumbers [ subject to zero frequency
forcing at Reynolds number Re = 500. Both plots shows ex-
cellent agreement between the two methods.

The corresponding solution for the adjoint system

p = (iwl — AN ta. (36)
Combining the two equations above with (34)
1
f = —(iwl — A7 (iwl — A)7'f. (37)
v

This is a new eigenvalue problem defining the spatial structure of the optimal
forcing at frequency w that is solved iteratively; the largest eigenvalue corre-
sponds to the square of the resolvant norm.

v = lwl — A) 72, (38)

Note that the actual implementation is using a slightly different formu-
lation, since the available time-stepper does not solve directly (30) and (33).
In practice, the governing equations are integrated in time long enough that
the transient behaviour of the system operator A has died out. The regime
response for the direct and adjoint system is extracted by performing a Fourier
transform of the velocity field during one period of the forcing.

The iteration steps are:

(i) Integrate (24) forward in time and obtain the Fourier transform response a
at the frequency of the forcing.

(ii) @ is used as a forcing for the adjoint system which in time domain is written

(=9, — ANp — R (exp(iwt)) = 0. (39)
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(iii) A new forcing function is determined by normalizing f**! = p/~.
(iv) If [f*+1 — £7| is larger than a given tolerance, the procedure is repeated.

A validation of the method is presented in figure 1, where the present ad-
joint iteration scheme is compared to the standard method of performing a sin-
gular value decomposition (SVD) on the resolvent of the Orr—Sommerfeld /Squire
equations (c.f. Schmid & Henningson 2001). In figure la) the response to forc-
ing for different frequencies at the wavenumber pair (o, 5) = (0.1,0) is shown
at Re = 1000. Figure 1b) shows the response to steady forcing and streamwise
wavenumber « = 0 for different spanwise wavenumbers 3 at Re = 500. Both
cases shows excellent agreement between the two methods.

5. Results

The flat plate boundary layer flow is globally stable, i.e. there are no eigenval-
ues of A located in the unstable half plane. Hence we do not expect to observe
the evolution of single eigenmodes. In Akervik et al. (2008) the non-modal
stability of this flow subject to two-dimensional disturbances was studied by
considering optimal superposition of eigenmodes. These authors found that the
optimal initial condition exploits the well known Orr mechanism to efficiently
trigger the propagating Tollmien-Schlichting wave packet. In Bagheri et al.
(2008), the stability of the same flow was studied using forward and adjoint it-
eration scheme together with the Arnoldi method to reproduce the same mech-
anism. By allowing for three-dimensional disturbances, it is expected that in
addition to the instability mechanisms mentioned above (convective Tollmien-
Schlichting instability and the Reynolds stress mechanism of Orr) the lift-up
mechanism will be relevant in the system. This has been well understood both
using the Orr—Sommerfeld/Squire equations (Butler & Farrell 1992) and in the
Parabolized Stability framework (Andersson et al. 1999; Luchini 2000; Levin &
Henningson 2003). In the former formulation, the base flow is assumed to be
parallel. At the Reynolds number Re = 1000, the inflow Reynolds number of
the present investigation, it is found that for spanwise wavenumbers (§ larger
than = 0.3 there is no exponential instability of TS/oblique waves. The largest
non-modal growth due to the lift-up mechanism is observed at the wavenumber
pair («, 3) = (0,0.7). In the present work we do not restrict ourselves to zero
streamwise wavenumber a = 0, but instead we take into account the develop-
ing base flow. Indeed the spatially developing base flow allows for transfer of
energy between different wavenumbers through the convective terms.

5.1. Optimal initial condition

We investigate the potential for growth of initial conditions with different span-
wise wavenumbers [ by solving the eigenvalue problem (13) for a range of in-
stances of time 7. This amounts to performing a series of direct and adjoint
numerical simulations until convergence towards the largest eigenvalues of (13)
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FIGURE 2. a) Energy when optimising for different time T at
the wavenumber g = 0.55, where the optimal streak growth
is obtained. Each curve is obtained from an adjoint iteration
scheme. The maximum growth is obtained at time 7' = 720.
b) Component-wise rms-values when optimising for time 7' =
720. There is a transfer of energy from the wall normal and
spanwise component to the streamwise velocity in time, clearly
showing that the lift-up mechanism is present. The maximum
at each time in this figure defines the envelope of growth.

at time T is obtained. If only the largest eigenvalue of (13) is desired it suffices
to use a power iteration scheme, whereas if several of the leading eigenvalues
are needed, one has to resort to a Krylov/Arnoldi procedure (c.f. Nayar & Or-
tega 1993; Lehoucq et al. 1997). Both of these approaches rely on the repeated
action of exp(ATT)exp(AT) on an initial velocity field u(0). In other words,
it is not necessary to store matrices in order to obtain the eigenvalues.

Figure 2a) shows the energy evolution when optimising for different times
at the spanwise wavenumber 5 = 0.55. It is at this wave number that the max-
imum growth due to the lift-up mechanism is found for the computational box
under consideration. From figure 2b) it is evident that the disturbance leading
to the maximum streak growth at time 7' = 720 exploits the component-wise
transfer between velocity components, inherent to the lift-up mechanism. The
initial condition is in fact characterized by strong wall-normal v and spanwise w
perturbation velocity while the flow at later times is perturbed in its streamwise
velocity component.

Four different optimal initial conditions for 8 = 0.55 and 7' = 720 are shown
in figure 3. The wall-normal velocity component of the eigenvector leading to
the maximum growth is reported in 3a). Since the base flow is uniform in
the spanwise direction, the second eigenvector has the exact same shape as
the first, only shifted half a wavelength in z as shown in figure 3b). These
eigenvectors correspond to the same eigenvalue v o = 2.6 - 103, and they may
be combined linearly to obtain a disturbance located at any spanwise position.
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F1cUure 3. Wall-normal component of the leading four eigen-
vectors for the optimisation problem at 5 = 0.55, t = 720, plot-
ted over one wavelength in the spanwise direction. Red/blue
colour signifies isosurfaces corresponding to positive/negative
veloicities at 10 percent of the maximum. a) The first eigen-
vector. b) The second eigenvector which is similar to the first
eigenvector, only shifted in the spanwise direction. c¢) The
third eigenvector, which is similar to the fourth eigenvector
(thus not shown), only shifted in the spanwise direction. d)
The fifth eigenvector. Note that the axes are not at the actual
aspect ratio, the structures are elongated.

In figure 3c)-d) the third eigenvector associated with y3 = 2.2-10% and the fifth
associated with v5 = 1.7 - 10% are shown respectively. Also these eigenvectors
come in pairs with matching eigenvalues. It is thus possible with the Arnoldi
method to obtain several optimals for a single parameter combination. This
has not been done previously for the Blasius flow, while Blackburn et al. (2008)
computed several optimals for the flow past a backward-facing step.

An important feature of this high Reynolds number flat plate bound-
ary layer flow with length L, = 800 is that the combined Orr/Tollmien-
Schlichting mechanism is very strong with a growth potential of ; = 2.35-10%
(Bagheri et al. 2008) obtained at time T' = 1800. Indeed, also using the Orr—
Sommerfeld /Squire equations one may confirm that the slow exponential down-
stream growth of TS waves will dominate the long time behaviour of the linear
system. If however the streaks formed by the lift-up mechansim have reached
sufficiently large amplitudes to trigger non-linear effects, the TS wave transi-
tion scenario will be by-passed. In figure 4 a contour map of the maximum
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F1GURE 4. Contour map of optimal growth due to initial con-
dition in the time spanwise wavenumber domain. The maxi-
mum streak growth is obtained for g = 0.55 at time 7" = 720.
The global maximum is obtained for 8 = 0.05, with the
streamwise exponential amplification of oblique waves com-
bined with the Orr mechanism.

growth and time of maximum for different spanwise wavenumbers (3 is shown.
Note that the growth is divided into two regimes; a low spanwise wavenumber
regime dominated by the TS/oblique waves, where the growth is slow. For
high spanwise wavenumber it is the fast lift-up mechanism that is dominat-
ing. The contour levels are different in the two regimes, and the TS/oblique
mechanism can be seen to yield one order of magnitude larger growth than the
lift-up instability. The global maximum growth is obtained at the wavenumber
8 = 0.05. Figure 5 shows the streamwise velocity component of the optimal ini-
tial condition leading to the maximum growth at time 7" = 1820 and the flow
structure at that time. The initial disturbance is as in the two-dimensional
case leaning against the shear (see figure 5a). The resulting instability exploits
the Orr-mechanism to efficiently initialize the wave packet propagation finally
giving the disturbance shown in figure 5b).

5.2. Optimal forcing

Since boundary layers are convectively unstable, thereby acting as noise am-
plifiers, a prominent role is played by the response to forcing, rather than
by the detailed time-evolution of the initial condition; The optimal forcing is
therefore a relevant measure of the maximum possible growth that may be ob-
served in the computational domain. Analysis of the frequency response can
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FIGURE 5. Isosurfaces of streamwise component of disturban-
ces at the spanwise wavenumber 3 = 0.05. Red/blue colour
signifies isosurfaces corresponding to positive/negative veloic-
ities at 10 percent of the maximum. a) Streamwise compo-
nent of optimal initial condition leading to the global optimal
growth at time 7" = 1820. b) Corresponding flow response at
time 7" = 1820

also have implications for control revealing the forcing location and frequen-
cies the flow is most sensitive to. While the evolution of the optimal initial
condition consists of the propagation and amplification of a wave packet, even-
tually leaving the computational box (or measurement section), the response
of the flow to periodic forcing will consist of structures with a fixed amplitude
at each streamwise station, oscillating around the mean flow. We investigate
the structure of the optimal forcing and the corresponding response for a range
of spanwise wavenumbers and frequencies. Thus, for each wave number we
examine a number of temporal frequencies. Ideally we would like to solve the
linearized Navier—Stokes equations for very large times, ensuring that we are
only considering the regime (long-time) response at the specific frequency un-
der investigation. In practice however we are restricted to a finite final time
by the computational cost of solving the direct and adjoint equations involved
in the iteration scheme. Using power iterations to find the largest eigenpair
typically requires approximately 15 iterations, or in other words integrating
the equations 30 times. As can be seen from the results in the previous section
transiently growing perturbations of small spanwise scale leave our domain at
time ¢ ~ 2000, while locally unstable TS-waves propagates at a speed of about
0.3 Us. This observation along with several convergence tests using different
final times to extract the flow regime response lead to the conclusion that the
integration 7" = 5000 is long enough to observe the pure frequency response.
Figure 6 shows the square of the resolvent norm, i.e. the response to forc-
ing for the two limiting cases § = 0 and w = 0. In figure 6a) the response to
two-dimensional forcing, inducing perturbations with g = 0, is displayed. The
maximum response is observed for the frequency w = 0.055. This maximum is
obtained at the frequency where the least stable TS eigenvalue is located (see
Bagheri et al. 2008). Indeed it is known that by projecting the dynamics of the
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FIGURE 6. a) Frequency response for zero spanwise wavenum-
ber i.e. two-dimensional disturbances. The optimal response
is obtained for the frequency w = 0.055. b) Response to zero
frequency forcing w = 0 for different spanwise wavenumbers.
The maximum response is obtained at 5 = 0.6

flow onto the basis of eigenmodes, the response to forcing is given by the combi-
nation of resonant effects (distance in the complex plane from forcing frequency
to eigenvalue) and non-modal effects, i.e. the cooperating non-orthogonal eigen-
vectors (Schmid & Henningson 2001). In Akervik et al. (2008) it was shown
for a similar flow that non-normal eigenvectors could induce a response about
a factor twenty larger than that induced only by resonant effects.

The response to zero temporal frequency for different spanwise wavenum-
bers [ is shown in figure 6b), where according to local theory the maximum
response is expected for spanwise periodic excitations. The maximum growth
may be observed for the wavenumber § = 0.6, a slightly larger value than for
the optimal initial condition case. Notice that in the case of optimal forcing,
there is a smaller difference in the maximum gain due to the two different
dominating mechanisms (TS-waves vs. streaks).

A full parameter study has been carried on in the frequency w versus span-
wise wavenumber ( plane. A contour map showing the regime response to
optimal forcing is displayed in figure 7. As in the case of the optimal initial
condition, the global maximum response to forcing is observed for 5 = 0.05.
It reaches this maximum for the frequency w = 0.055. A second region of
strong amplification is found for low frequencies and high spanwise wavenum-
bers. Here the most amplified structures consist of streamwise vortices that
form streamwise elongated streaks. At the largest spanwise wavenumbers, we
also observe that the decay of the amplification when increasing the forcing
frequencies is rather slow. Conversely, the peak corresponding to excitation of
the TS-waves is more narrow.
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F1cUre 7. Contour map of response to forcing with frequency
w versus spanwise wavenumber 3. The maximum response to
forcing is observed for # = 0.05. It reaches this maximum
for the frequency w = 0.055. The maximum growth due to
the streak mechanism is found for the spanwise wavenumber

f=06atw=0

The overall maximum amplification, found for the spanwise wavenumber
of 8 =0.05 and at the same frequency as the optimal two-dimensional forcing,
is presented next. The forcing term in the streamwise momentum equation
and the streamwise velocity component of the optimal response are shown in
figure 8. The optimal forcing structures are leaning against the shear (see 8a)
to optimally trigger the Orr mechanism; the regime long-time response of the
flow, shown in figure 8b), reveals the appearance of amplified T'S-waves at the
downstream end of the computational domain.

The optimal forcing structure at 8 = 0.6 and the zero frequency has almost
all its energy in the spanwise and wall normal components, that is the flow is
forced optimally in the wall-normal and spanwise direction as shown among
other by Jovanovic & Bamieh (2005) for channel flows. The wall-normal and
spanwise velocity of the forcing structures are displayed in figure 9a) and b).
The rms values of the streamwise component of the forcing is only two percent
of that pertaining to its spanwise and wall-normal counterparts. The lift-up
effect transfers momentum into the streamwise component (shown in figure
9c), which contains 99.99 percent of the energy of the flow response. The
streak amplitude increases in the streamwise direction untill the fringe region
is encountered.
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FI1GURE 8. Isosurfaces of optimal forcing and response for the
streamwise wavenumber 5 = 0.05 subject to forcing at the
frequency w = 0.055. Red/blue colour signifies isosurfaces
corresponding to positive/negative veloicities at 10 percent of
the maximum. a) Streamwise component of optimal forcing
structure. b) Streamwise velocity component of response.

Conclusions

We have used a Lagrange multiplier technique in conjunction with direct and
adjoint linearized Navier—Stokes equations in order to quantify the growth po-
tential in the spatially developing flat-plate boundary-layer flow at moderately
high Reynolds subject to three-dimensional spanwise periodic disturbances. We
consider both the initial conditions leading to the largest possible energy am-
plification at time 7" and the optimal spatial structure of time-periodic forcing.
To the best of our knowledge, the latter is computed for the first time for this
type of spatially inhomogeneous flows. The optimisation framework adopted
does not restrict us to assume slow variation of the base flow in the streamwise
direction, common to both the first order approximation of the OSS formula-
tion and the more advanced PSE approximation. Specifically we do not, as in
the PSE framework, need different equations to describe the lift-up instability
and the wavepacket propagation.

For the optimal initial condition we find that the largest potential for
growth is found at small spanwise wavenumbers and consists of upstream tilted
structures, enabling the subsequent disturbances to exploit the Orr mechanism
and convective instability of the oblique wavepacket. The lift-up instability
mechanism inherent to moderately high spanwise wavenumbers is faster than
the Orr/oblique instability; we show that for the present configuration the lat-
ter instability needs approximately 300 time units more to extract as much
energy as the lift-up instability. As concerns the optimal response to periodic
forcing, the difference in the two instabilities is less pronounced. In this case,
the Orr/oblique wave instability only manages to gain a factor of two in en-
ergy more than the streak mechanism. These results, the largest amplification
of the local convective instability over the non-modal streak generation, can
be explained by the long computational box examined and the relatively high
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FI1GURE 9. Isosurfaces of optimal forcing and response for the
streamwise wavenumber § = 0.6 subject to steady forcing.
Red/blue colour indicates isosurfaces corresponding to posi-
tive/negative veloicities at 10 percent of the maximum. a)
Wall-normal component of optimal forcing structure. b) Span-
wise component of optimal forcing. ¢) Streamwise velocity
component of the flow response. Both the forcing structures
and the response are elongated in the streamwise direction.

inflow Reynolds number. Starting closer to the leading edge, one can expect
streaks to dominate the transition scenario.

Three different destabilising mechanisms are considered in this study, all at
work in the boundary layer flow. Although these could be explained using the
OSS equations, they are in this paper analysed without any simplifying assump-
tions, rendering the present work of a more general character. By choosing an
objective function and using the full linearized Navier-Stokes equations as con-
straints we are not limiting ourselves to simple geometries. Whenever a DNS
code is available to accurately describe a flow, all that is needed in order to in-
vestigate the stability characteristics is a linearized version of the code and the
implementation of the corresponding adjoint equations along with a wrapper
built around these two simulations ensuring the correct optimisation scheme.
The method used here is therefore applicable to any geometrical configuration.

Appendix A. Derivation of the adjoint equations

In this section we show the derivation of the adjoint linearized Navier—Stokes
equations, needed to perform directional derivatives on the augmented cost
functions (15) and (28). Associated with the inner product (u,u) = [, u’u dQ
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we may define the adjoint evolution operator. Using the above inner product
we may define the action of adjoint evolution operator as

(p, exp(At)u) = (exp(A't)p, u), (A1)

derived using the inner product in time-space domain X = [0, 7] x

(u,u)y = /OT(u, u) dt = /OT/QuTu dQ dt. (A2)

By noting that the linearized Navier—Stokes equations can be written as (9, —
A)u = 0 we will recognise that the adjoint should satisfy the following property

(P, (8 — Au)s = (=9, — A)p,u)s = 0. (A3)
In order to move the action of the operators d; and A from u to p we will need
to perform integration by parts on the left most part of the above expression

0=(p, (0 — Au)s

/ / (Opu— (U-V)u— (VU)u+ Re” 'Au+ Vr) dQ dt

/ / (~0p+ (U V)p = (VU)Tp+ Re ' Ap+ Vo) d2dt

4 /0 B.C. df + /Q (p(T))Tu(T) A9 — /Q (p(0))"u(0) 2

T
= (-0, — A)p,w)s + / B.C. dt + (p(T), u(T)) - (p(0), u(0)),

where o is the pressure for the adjoint equations which can also be obtained
through a Poisson equation to satisfy o = Kfp. The above expression defines
the adjoint linearized Navier—Stokes equations

~9p=A'p=(U-V)p— (VU)'p+Re 'Ap+VK'p, p(T)=pr (A5)

if the boundary conditions of the adjoint system is set so that the integral
containing boundary conditions vanishes. The chosen boundary conditions are
periodic along the boundaries the two wall parallel directions and Dirichlet on
the wall and the free stream.

The initial and end time inner products equals, i.e.
(p(T),u(T)) = (p(T), exp(AT)u(0)) = (exp(A'T)p(T), u(0)) = (p(0), u(0)).
Hence it is seen that the adjoint evolution operator

p(T —t) = exp(ATt)p(T), (A7)

solves the adjoint linearized Navier—Stokes equations backwards in time to fulfil
the inner product relation (A3).
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