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Abstract

This thesis presents models and simulations of dielectrophoretic separation
of micro and nano particles. The fluid dynamics involved and the dielectric
properties of water inside single-walled carbon nanotube are studied as well.

Based on the effective dipole moment method, the particle dynamic model
focuses on the translational motions of micro particles. The hydrodynamic
force between the particles and the particle-particle electrostatic interactions
are considered as well. By comparing the dimensionless parameters, the dom-
inating force can be determined. Based on a simplified version of the particle
dynamic model, two numerical simulations are carried out to predict the effi-
ciency of dielectrophoretic separation of micro size particles. The first calcula-
tion suggests a strategy to improve the trapping efficiency of E.coli. bacteria by
applying superimposed AC electric fields. The second calculation discusses the
concept of mobility and improves the separation rate of particles by a multi-step
trapping-releasing dielectrophoresis strategy.

The model is extended down scale to calculate the separation of metallic
and semiconducting single-walled carbon nanotubes by the modified effective
dipole moment method for prolate ellipsoids. The steeply changed gradient of
electric field results in the local joule heating therefore creates gradient of di-
electric properties in the solution. As a result, certain pattern of fluid flow with
a considerable strength is created and affects the motion of carbon nanotubes
especially close to the electrode gap, which indicates that the so-called elec-
trothermal flow should be considered in designing the experiment to separate
single-walled carbon nanotubes.

When the length scale of particles is comparable to that of the electrodes,
the calculation of dielectrophoretic force by the effective dipole moment is con-
sidered not to be accurate since only the electric field in the center point is
taken into account. Hence in the thesis a new method based on distributed
induced charge is suggested. By approximating a straight slender body as a
prolate ellipsoid, the electric field of multiple points along the centerline are
all considered in the calculation and the interaction between particles could be
concurrently taken care. This method is expected to be an improved method
to calculate the dielectrophoretic force of rod-like virus, DNA, nanowires and
carbon nanotubes.

The dielectric property of water confined in carbon nanotubes is expected
to be dramatically different from that of bulk water. The thesis also contains
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a molecular dynamics study to reveal the difference also a dependence on the
diameter of carbon nanotubes. The results show that along the axial direction,
both the static permittivity and the relaxation time are larger than the isotropic
bulk water, and in the cross-section plane it is opposite. When the radius of
the carbon nanotubes increases, the properties of water inside become closer
to the bulk water.

Descriptors:
Dielectrophoresis,micro particle, molecular dynamics, single-walled carbon nan-
otubes, hydrodynamics, particle-particle interaction, superimposed, multi-step,
electrothermal flow, SPC/E, water, Brenner
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CHAPTER 1

Introduction

In 1958, scientists developed the first trial silicon chip [Helvajian (1999)]. By
arranging a huge number of microscopic transistors onto a single silicon chip,
microelectronic circuits could be built and remarkable improvements in all as-
pects are achieved. This led to the Information Revolution. Later on, re-
searchers found that mechanical devices can also be miniaturized and batch-
fabricated, promising the same benefits to the mechanical world, which results
in the strong trend towards miniaturizing equipment for chemical analysis and
synthesis until today [Karniadakis & Beskok (2001)]. The obvious advantages
are lower cost consumption, shorter response time, less pollution, better process
control etc. This trend is strengthen by the development of lithography based
microtechnology, which fabricates laboratory functions on a single chip of only
few millimeters to centimeter in size. This is the Lab-on-a-chip (LOC) con-
cept, and is often indicated as Micro Total analysis system as well. Recently,
as nanotechnology progresses, research in LOC systems is extended towards
fluid handling of nanoparticles as single-walled carbon nanotubes (SWNTs),
proteins, DNA and virus [Krupke et al. (2003a); Kadaksham et al. (2005);
Dimaki & Bøggild (2004); Morgan & Green (1997)]

Essentially being a field dedicated to the miniaturization of pumping and
fluidic manipulation, microfluidics offers the possibility of solving these issues
in biology and chemistry fields. The fundamental fluid physics of fluid sys-
tems change rapidly when the length scale decreases. For example, the most
well-known phenomenon is that gravity becomes negligible but surface tension
plays an important role. Also the momentum transport in microfluidic devices
is dominated by viscous dissipation and the inertial effect is generally negli-
gible, which diminishes the instabilities caused by the nonlinearity of inertia.
However, on the other hand, many other phenomena of physics and chemistry
become prominent such as electrostatics, thermodynamics, elasticity etc., which
greatly enriches the field of microfluidics [Morgan & Green (2003); Karniadakis
& Beskok (2001); Asbury & Engh (1998); Morgan & Green (1997)].

As one of the earliest applications of microfluidic devices, separation and
deposition of cells and particles with small size differences, constantly at-
tract great research interest in analytical chemistry. Various strategies based
on different principles are employed, i.g., mechanical (filters, micropipettes,
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2 1. INTRODUCTION

etc), magnetical, optical and electrical (electro-osmosis, electrophoresis, dielec-
trophoresis) separation methods. Each method has its own advantages and
disadvantages and is therefore suitable for certain application field. This the-
sis studies the issues related to dielectrophoresis (DEP) approach since the
particles we have interest to separate (bio-cells, carbon nanotubes) have close
sizes and different frequency dependent electric properties which makes them
difficult to separate by other methods.

A neutral polarizable particle suspended in a fluid with different polariz-
abilitiy experiences a DEP force in a non-uniform field (it can be a DC or an
AC field) due to the induced charges. Particles are attracted to the regions of
stronger electric field when their permittivity εp exceeds that of the suspending
medium εm, i.e., when εp > εm, and the DEP force in this case is called positive
DEP. On the other hand, particles are repelled from regions of stronger electric
field when εp < εm and the DEP force is called negative DEP. Figure 1.1 shows
a dielectric sphere experiencing a positive DEP in a DC field. The direction of
the DEP force is independent of the direction of electric field, therefore it does
not matter the electric field is DC or AC.

+

-

DEP Force

Figure 1.1. A schematic of a particle suspended within a
point-plane electrode system. When the particle polarizes, the
interaction between the dipolar charges with the local electric
field produces a force.

An increasingly important application of DEP is the selective separation
of bio-particles in LOC systems, and the feasibility has been demonstrated for
a variety of cells. For example, Pohl (1975) carried out the separation of viable
and non-viable yeast cells, and later he extended the experiments to separate
other biological particles including canine thrombocytes, red blood cells, bac-
teria etc. Becker and colleagues [Becker et al. (1995)] performed a separation
of human breast cancerous cells from normal blood cells by a microelectrode
array due to the large difference in dielectrophoretic properties of those cells.
Moreover, Gascoyne and associates [Gascoyne et al. (1997)] managed to sepa-
rate various cancerous cells from blood cells and normal murine erythrocytes
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from erythroleukemia cells and measured their dielectric properties by chang-
ing the frequency of the applied electric field. Markxa and colleagues [Markx
et al. (1996)] separated a mixture of bacteria Bacillus subtilis, E. coli bacteria
and Micrococcus luteus.

There are several commonly used strategies for the DEP separation in LOC
systems. One is the flow separation. That is, a flow is used to carry two types
of different particles in a microchannel. One type of particles is trapped on
the electrode arrays located at the bottom of the channel, and the other type
would be brought out of channel by the flow. It has been demonstrated to be
effective for separation of cancer cells [Becker et al. (1995)]. The disadvantage
of this strategy is that the cells attracted to electrodes need to be collected after
the separation. Therefore, strategies combining the separating and collecting
processes are of interest recently.

Dielectrophoretic-field flow fractionation (DEF-FFF) is another strategy in
which a carrier flow is introduced with different speeds at different heights from
the bottom surface. Particles are repelled from the electrodes under a negative
DEP force. The particles with different dielectric properties would be found
at different heights and therefore travel at different speeds with the flow. For
example, Markxb and colleagues [Markx et al. (1997)] employed this method in
the separation of latex particles with different sizes, and Yang and associates
[Yang et al. (1999)] performed the separation of human breast cells mixture
with blood cells. DEP-FFF makes use of the velocity gradient in the flow
profile to achieve a high selective separation. However, the particles probably
enter the channel with a Gaussian-shaped distribution which may cause overlap
between the sub-populations of particles after separation.

Traveling wave DEP (TW-DEP) is another recent and popular strategy in
which electric fields rather than flow is used to give the particles a mean lon-
gitudinal velocity. Several applied electric fields are applied with continuous
phase shift to give particles DEP forces in both vertical and horizontal direc-
tions. TW-DEP has been demonstrated to separate erythrocyte and leukocyte
cells [Morgan et al. (1997); Green et al. (2002)].

In recent years, a lot of research has been done in DEP manipulation
of a variety of nanoparticles [Green & Morgan (1999)], nanorods, nanofibers,
deoxyribonucleic acid [Washizu & Kurosawa (1990)], viruses [Morgan & Green
(1997)], proteins [Washizu et al. (1994)] and DNA [ Asbury & Engh (1998)].
More recently, DEP was used to separate metallic and semiconducting SWNTs
[Krupke et al. (2003a); Krupke et al. (2003b); Krupke et al. (2004)] and depose
metallic SWNTs to form thin film [Krupke et al. (2006)] and use semiconducting
SWNTs to fabricate electric transistors as well [Zhang et al. (2005); Zhang et al.
(2006)].

However, when the scale extends to nanosystems, other effects become sig-
nificant in DEP system besides Brownian motion of the particles. For example
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the usage of high electric field strengths produces fluid flow and heating of the
suspending electrolyte. The electric field can interact with the fluid to produce
frequency dependent forces such as electro-osmosis and electrothermal force
[Green et al. (2002); Ramos et al. (1998); Lin et al. (2007)]. The resulting
flow exerts a drag force on the particles and produces an observable motion.
Recently, a new type of force has been observed on microelectrodes due to the
electric double layer (EDL) of the surface of electrodes in an AC electric field
[Ramos et al. (1998); Morgan & Green (2003)]. The EDL around particle is
also believed to enhance the DEP effects on submicron particles and a simple
model which combines EDL effect into the effective dipole moment is described
in Morgan & Green (2003). A thorough investigation of models related to EDL
around a particles was done by Lyklema (1995).

Since the manufacture of microsystems is costly and the measuring is time-
consuming, numerical modeling and simulation is essential and efficient to pre-
dict the motion of the particle under DEP forces therefore to optimize the
design of experiments. Most of the previous simulations utilize the effective
dipole moment based models suggested by Jones (1995). Combined with the
distributed Lagrange multiplier method suggested by Glowinski and colleges to
solve Navier Stokes equations, DEP motion of microparticles and nanoparticles
were simulated [Glowinski et al. (2001); Kadaksham et al. (2004); Kadaksham
et al. (2005)]. A numerical study using DEP forces combined with uniform
channel flow to separate metallic and semiconducting SWNTs was carried done
by Dimaki & Bøggild (2004), where the effective dipole moment method for
prolate ellipsoids are used.

However, the assumption of an effective dipole moment is, the size of parti-
cle should be far below the characteristic length of the electric field. If it is not
true, two methods are suggested which provide solution with higher accuracy
than the effective dipole moment method. One is the Maxwell stress tensor
(MST) method [Wang et al. (1997); Singh & Aubry (2007)], and the other
is the multipole moment method [Washizu (1992); Washizu & Jones (1994);
Jones & Washizu (1996); Jones (1995); Washizu (2004); Liang et al. (2004)].
The equivalence of this two methods has been demonstrated analytically [Wang
et al. (1997)] and numerically [Rosales & Lim (2005)]. However, the compu-
tational cost of both methods is high since by the MST method, numerical
integration around the particle surface needs to be done and by the multi-
pole moment method, high order derivatives of the electric field needs to be
calculated. This makes them impractical to simulate several interacting parti-
cles, which is a typical situation in real separation systems. Besides, multipole
moment method is not available for particles rather than spherical shape.

In any case, numerically calculating the electric field is essential and which
can be typically done by finite element method or boundary element method.
Rosales & Lim (2005) performed a DEP calculation for sphere and ellipsoid
by MST method based on boundary element method. By boundary element
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method, there is a full matrix need to solve, therefore the memory requirement
is demanding. Singh & Aubry (2007) reported a study of transport and defor-
mation of droplets using DEP by finite element and levelset methods. FemLego
[Amberg et al. (1999)] and Comsol Multiphysics are finite element toolboxes
for user-defined partial differential equations, and DEP-solver developed by
Rosales & Lim (2005) provides a choice based on boundary element method.

In this thesis, the accepted effective dipole method has been used to model
and simulate manipulation and separation of E. Coli bacteria, micro-size latex
beads, and SWNTs. A study of the electric field-driven electrothermal fluid flow
in DEP separation of SWNTs is also reported. Considering manipulating rod-
shaped nano-wires, DNA fragment, virus and carbon nanotubes by DEP force,
the effective dipole moment method is not so accurate for calculation since
the length of particles is comparable to that of the electrodes. A model based
on induced charge density is suggested in this thesis to numerically calculated
the DEP force and torque of a highly elongated straight slender body. This
method is expected to provide higher accuracy than the effective dipole moment
method and its computation is still rather simple. The basic idea is to assume
that the induced charges concentrated on the centerline of the slender body,
therefore, by enforcing the boundary conditions, a one-dimensional integral
equation system is obtained with induced charge densities as unknowns.

A molecular dynamics (MD) study of water molecules confined in carbon
nanotubes is also presented in this thesis, since water-filled carbon nanotubes
are expected to play a central role in future nanoscale devices, for proton stor-
age and transport applications [Mann & Halls (2003)]. Water in a confined
SWNTs dramatically changes its dynamic and dielectric properties, which at-
tracts a huge amount of research interests. When the scale extends down to
nanoscale, it is reasonable to use MD methods instead of continuum methods to
study the fluid [Allen & Tildeslley (1987); Sadus (1999)]. Many free MD pack-
ages are currently available, for example AMBER (Assisted Model Building
and Energy Refinement) is popular particularly for proteins, nucleic acids and
carbohydrates [Pearlmana et al. (1995)], and DL POLY is a general purpose
serial and parallel MD simulation package [Todorov & Smith (2006)].

Although the principle of MD is simple, the most challenging task of MD is
to model the potentials. For example, water is an apparently simple molecule
(H2O) but with a highly complex character. Although it is usually regarded
as a typical liquid, actually it is a unique liquid which has many abnormal
properties to fill the requirements of life. Many models have bee developed
to discover the structure and properties of water. In a recent review paper of
Guillot (2002), 46 models of water are listed. This indirectly indicates their lack
of success in a general sense. However, simple models may provide some useful
insights. For example, the extended single point charge (SPC/E) model we
employed is known for reproducing accurate dielectric constant and potential
energy [Watanabe & Klein (1989)].
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The dielectric properties of bulk water have been extensively studied [An-
derson et al. (1987); English & Macelroy (2002); Marti et al. (1994)]. MD
studies of water confined in graphite channels, on surface of SWNT bundles
and inside SWNTs were studied by Marti and colleagues [Marti et al. (2006),
Gordillo & Marti (2003); Marti & Gordillo (2002); Marti & Gordillo (2001)],
where the carbon nanotubes were modeled as a rigid tubes. In this thesis, the
MD study is performed to investigate the anisotropic dielectric properties of
water inside both rigid SWNTs and flexible SWNTs and the dependence on
diameter, length and density are discussed as well.



CHAPTER 2

Theoretical preliminaries

This chapter outlines some basic principles of micro fluid mechanics, electro-
statics and molecular dynamics concerned.

2.1. Governing equations of incompressible fluids
For an incompressible fluid, the governing equation is the Navier-Stokes equa-
tion which takes the non-dimensional form as [kundu],

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u + f , (2.1)

where Re =
UL

ν
, and u, p and f denote velocity, pressure and the external force

respectively. In micro and nano systems where the Reynolds number is much
less than 1, the nonlinear terms can be neglected and the governing equation
is the Stokes equation which takes the form as [Morgan & Green (2003)]

∂u
∂t

= −∇p +
1

Re
∇2u + f . (2.2)

Due to the linearity in u of the Stokes equation, it is analytically easier to handle
than the Navier-Stokes equation and new solutions of the Stokes equations can
be found by superposition of known solutions.

2.2. Basic concepts in electrostatics
Developed by Carl Friedric Guass, Gauss’s law gives an equivalence relation
between the flux of electric field flowing out of any closed surface and the result
of electric charges enclosed within the surface. In a free space, its integral form
is [Popović (1971); Stratton (1941)],

∮

s
E · dS =

1
ε0

∫

V
ρdV =

∫
∇ · EdV, (2.3)

where ρ is the density of charges, and ε0 is the free space permittivity, and E
denotes the electric field.

Dielectrics are substances that do not possess free electric charges, but can
modify an electric field. There are various polarization mechanisms [Morgan
& Green (2003)] among which the long-range interfacial polarization is viewed

7
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as playing an important role and it is often referred to as Maxwell-Wagner
relaxation mechanism [Jones (1995)]. The polarization vector P of the majority
of substances is proportional to the total electric field intensity [Popović (1971)]

P = χeε0E = (ε− ε0)E, (2.4)

where χe is referred to as the electric susceptibility and ε is the dielectric
constant, and ε = ε0(1 + χe). The electric displacement vector D is defined as
[Popović (1971)]

D = ε0E + P = εE. (2.5)

Hence the generalized form of Guass Law in dielectrics is [Popović (1971)]
∮

s
D · dS =

∫

V
ρdV, or

∮

s
E · dS =

1
ε

∫

V
ρdV. (2.6)

When an electric field is applied to a dielectric body, there will be a bulk
force exerted on it. On every volume element of the solid body or incompressible
fluid, the force density takes the form [Stratton (1941); Morgan & Green (2003)]

f = ρE− 1
2
E2∇ε. (2.7)

From (2.7) and (2.6), we obtain the expression of bulk force exerted on a
dielectric fluid [Stratton (1941)]

Ffluid =
∫

V
(ε(∇ · E)E− E2

2
∇ε)dV (2.8)

Considering a rigid solid body immersed in dielectric medium, by using
divergence theorem, the volume integration can be transformed to a surface
integration, and the net force exerted by the field on the solid is [Wang et al.
(1997); Rosales & Lim (2005)]

F =
∮

s
[εE(E · n)− ε

2
E2n]dS (2.9)

where n is the normal vector of the closed surface. This expression is used in
calculating the DEP force numerically and theoretically and referred to as MST.
It is expected to be the most rigorous method due to its standpoint of classical
electrodynamics. However, since no analytic expression for a general electric
field is available and the cost of numerical calculation of integration around
the surface of many particles is rather high, it is not easy to employ MST
to simulate real systems where a large number of particles are manipulated.
Calculation of the DEP force of few still rigid particles by MST were performed
by Rosales & Lim (2005), and the DEP force acting on a deformable droplet
by MST and Level-set methods were calculated by Singh & Aubry (2007).
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2.3. Effective dipole moment
The effective dipole moment method to calculate electromechanical forces and
torques exerted by electric fields on particles is suggested by Jones (1995).
It has been popularly used because its simplicity and providing meaningful
insights in many important situations [Krupke et al. (2003a); Morgan & Green
(2003); Dimaki & Bøggild (2004); Zhang et al. (2005)].

2.3.1. Force on an infinitesimal dipole

The starting point for formulating the force exerted on a dielectric particle is
to estimate the net force upon a small physical dipole [Jones 1995], as we know
a neutral particle far away can be represented by a dipole moment [Stratton
(1941)]. A dipole consists of two charges with opposite sign, −q and +q.

d

r

E(r+d)E(r)

+q -q

x

y

z

(a) Schematic of the dipole moment of a
particle in an nonuniform electric field

r

x

z

y

ε1

ε2

R

θ

 E 0 = E 0 Z

(b) A dielectric sphere in an parallel uni-
form electric field

Figure 2.1. Derivation of the dipole moment method

In figure 2.1(a), a non-uniform electric field is applied to a dipole with a
distance vector d between the two charges. The electric field at the two charges
are not equal, and the sum of electric forces of the particle is [Jones (1995)]

F = −qE(r + d) + qE(r), (2.10)

where r is the position vector of +q. The electric field at the position of −q
can be expressed by Taylor expansion

E(r + d) = E(r) + d · ∇E(r) + ... (2.11)

Substituting (2.11) into (2.10), the force is expressed as [Jones (1995)]

F = qd · ∇E + ... (2.12)
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If higher order derivatives of the electric field are neglected, and since the
dipole moment p = qd, the approximate expression of the force on the dipole
can therefore be expressed as [Jones (1995)]

F = p · ∇E. (2.13)

2.3.2. Derivation of effective dipole moment

Here we briefly review the derivation of the effective dipole moment method
carried out by Jones (1995). Firstly, a homogeneous dielectric sphere of radius
R, permittivity εp, and conductivity σp, is assumed to be immersed in a dielec-
tric medium of permittivity εm and conductivity σm. This system features one
interface and one relaxation frequency [Jones (1995)].

The effective dipole moment peff of the particle is defined as the moment
of an equivalent, free-charge, point dipole that, when immersed in the same
dielectric liquid and positioned at the same location as the center of the original
particle, produces the same dipolar electrostatic potential [Jones (1995)]. The
electrostatic potential φ due to a point dipole of moment in a dielectric medium
with permittivity εm takes the form [Jones (1995)]

φ(r, θ) =
qdP1(cosθ)

4πεmr2
+

qd3P3(cosθ)
16πεmr4

+ ... (2.14)

where P1, P3 are Legendre polynomial terms. If only the first term of the right
hand side of (2.14) is considered, the approximation of electric field based on
the effective dipole moment is written as [Jones (1995)]

φ(r, θ) =
peff cos θ

4πεmr2
, (2.15)

where θ and r are respectively the polar angle and radial position in spherical
coordinates.

The derivation of the effective dipole moment is made under simplifying
conditions. That is, the applied electric field outside the particle is taken to
be a uniform magnitude E0 with frequency ω and parallel to z axes (E(t) =
Re[E0zejωt]), see figure 2.1(b). The electrostatic potential satisfies Laplace
equation everywhere, and the solutions outside, φ1(r, θ), and inside, φ2(r, θ) ,
are [Jones (1995)]

φ1(r, θ) = −Er cos θ +
A cos θ

r2
, r > R (2.16)

φ2(r, θ) = −Br cos θ, r < R. (2.17)

A and B are unknown coefficients to be determined by the boundary conditions.
The first term in the right hand side of (2.16) is the imposed electric field, and
the second term is due to the dipole moment of the particle. There are two
boundary conditions at the surface r = R. One is that the electric potential
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should be continuous, i.e. [Jones (1995); Popović (1971); Stratton (1941)]

φ1(r = R, θ) = φ2(r = R, θ). (2.18)

The other is the conservation law of current flux, which takes the form [Jones
(1995)]

Jr1 − Jr2 +
∂σf

∂t
= 0, r = R,

where Jr1 = σmEr1 and Jr2 = σpEr2 are the normal components of the ohmic
current outside and inside the sphere and σf is the free electric surface charge,
which can be expressed as [Jones (1995)]

σf = εmEr1 − εpEr2. (2.19)

Solving those boundary conditions, A is determined as [Jones (1995)]

A =
ε∗p − ε∗m
ε∗p + 2ε∗m

R3E0, (2.20)

where ε∗ = ε− j σ
ω , and j =

√
−1. From (2.15) we know [Jones (1995)]

peff = 4πεmA. (2.21)

2.3.3. DEP force acting on particles in a nonuniform AC field

The general expression for electric field of an AC field can be written as [Morgan
& Green (2003); Jones (1995)],

E = Re[Ẽ(x)eiωt], (2.22)

where the vector Ẽ is the corresponding complex phasor. Without loss of
generality, assuming that the AC electric field has a constant phase across the
system, then Ẽ is real. A general expression for the complex effective moment
peff for a dielectric sphere with loss in an electric field takes the form [Jones
(1995)]

peff = 4πεmRe[K]R3E, (2.23)

where K is the Clausius-Mossotti factor which is given by [Jones (1995)]

K =
ε∗p(ω)− ε∗m(ω)
ε∗p(ω) + 2ε∗m(ω)

. (2.24)

It can also be expressed by using the Maxwell-Wagner surface polarization
relaxation time τMW [Jones (1995)]

K(ω) = K∞ +
K0 −K∞

jωτMW + 1
, (2.25)
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where τMW = εp+2εm

σp+2σm
. Therefore, the low- and high-frequency limits of K are

[Jones (1995)]

K∞ =
εp − εm

εp + 2εm
(2.26)

K0 =
σp − σm

σp + 2σm
. (2.27)

Therefore, the time-average force acting on the particle is expressed as [Morgan
& Green (2003); Jones (1995)]

< FDEP >= peff · ∇E = 2πR3εmβẼ · ∇Ẽ. (2.28)

Using the vector identity, ∇(A · B) = (A · ∇)B + (B · ∇)A + B× (∇×A) +
A× (∇×B), and ∇×E = 0 (E is an irrational field), (2.28) becomes [Morgan
& Green (2003)]

< FDEP >= πR3εmβ∇(Ẽ · Ẽ) = πR3εmβ∇|Ẽ|2. (2.29)

Considering a homogenous dielectric ellipsoid in a parallel electric field,
with the external applied field E0 oriented arbitrarily with respect to the el-
lipsoid and with the components Ex, Ey and Ez along the semi-axes of the
ellipsoid, the x component can be calculated by [Jones (1995)]

(Peff )x =
4πabc

3
εmRe[

ε∗p − ε∗m
ε∗p + (ε∗m − ε∗p)Lx

]Ex. (2.30)

Here the depolarization factor Lx is defined by [Jones (1995); Rosales &
Lim (2005); Stratton (1941)]

Lx =
abc

2

∫ ∞

0

ds

(s + a2)Rs
, (2.31)

where Rs =
√

(s + a2)(s + b2)(s + c2). The y, z components of effective dipole
moment can be similarly calculated. Particulary, for a highly elongated prolate
ellipsoid (a >> b = c), L‖ ∼= 0 and L⊥ ∼= 1/2 [Jones (1995)].

The DEP force acting on an ellipsoid can therefore be calculated by [Mor-
gan & Green (2003)]

FDEP = peff · ∇E = 4πabcεmRe[Ki]Ei · ∇E, i = x, y, z, (2.32)

where Ki = Re[
ε∗p − ε∗m

3(ε∗p + (ε∗m − ε∗p)Li)
] i = x, y, z.

2.3.4. Model of DEP of concentrically layered ellipsoids

Some non-spheral bio-particles can be modeled as concentrically layered dielec-
tric ellipsoids. Asami & Koizumi (1980) presented a model of E.coli bacteria
as an ellipsoid covered with two confocal shells corresponding to the membrane
and cell wall as shown in Figure 2.2.
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Figure 2.2. Cross section of an electrical cell model repre-
sented by three confocal ellipsoids in the x-y

This model gives a corresponding Clausius-Mossotti factor such that the
expression for the DEP force can be employed. The details of the derivation
are ignored here, and the result is [Asami & Koizumi (1980)]

Kn =
1
3

ε∗1,n − ε∗m
ε∗m + (ε∗1,n − ε∗m)An

, n = x, y, z, (2.33)

ε∗1,n = ε∗w
ε∗w + (ε∗2,n − ε∗w)An + λ1(ε∗2,n − ε∗w)(1−An)

ε∗w + (ε∗2,n − ε∗w)An − λ1(ε∗2,n − ε∗w)An
, (2.34)

ε∗2,n = ε∗m
εm ∗+(ε∗p,n − ε∗m)An + λ2(ε∗1,k − ε∗w)(1−An)

ε∗m + (ε∗p,k − ε∗m)An − λ2(ε∗p,k − ε∗m)An
, (2.35)

where

λ1 =
(a0 − dw)(b0 − dw)2

a0b2
0

, (2.36)

λ2 =
(a0 − dw − dm)(b0 − dw − dm)2

(a0 − dw)(b0 − dw)2
, (2.37)

and

Ax = − 1
q2 − 1

+
q

(q2 − 1)3/2ln(q + (q2 − 1)1/2)
, (2.38)

Ay = Az =
1
2
(1−Ax), (2.39)

q =
a0

b0
. (2.40)

Here dw and dm are supposed to be the thickness of the cell wall and
membrane respectively, other parameters used are indicated in Figure2.2. Sub-
stituting (2.33) into (2.32), the DEP force can be calculated.
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2.4. Basic molecular dynamics simulation
Molecular dynamics (MD) simulation is based on the ergodic hypothesis, a
fundamental axiom of statistical mechanics, which states that the time average
equals the ensemble average [Allen & Tildeslley (1987); Sadus (1999)]

< A >ensemble=< A >time . (2.41)

The essence of MD simulation is to numerically solve step-by-step the clas-
sical equations of motion

mir̈ = fi, fi = −∂U

∂ri

where mi is the mass of i particle, fi is the force acting on it and r is its
coordinator. A general form of empirical potential function in chemistry takes
the form as [Refson (2001)]

U(r) =
∑

bonds

kb
i (ri − r0)2 +

∑

angles

ka
i (θi − θ0)2 +

∑

dihe

kd
i [1 + cos(niθi + δi)]

+
∑

i

∑

j %=i

4εij [(
σij

rij
)12 − (

σij

rij
)6] +

∑

i

∑

j %=i

qiqj

4πε0rij
. (2.42)

In the right hand side of (2.42), the first three terms are so-called bond
potentials, and the last two terms are non-bond potentials [Allen (2004)]. The
term Ubond models the oscillations about the equilibrium bond, Uangles models
the oscillations of three atoms about an equilibrium angle, and Udihe models
the torsional rotation of 4 atoms about a central bond. The non-bond poten-
tials are Lennard-Jones potential modeling van del Waals force and Coulomb
potential related to electrostatic force. With a rigid O-H bond length and
fixed angle between two H-O bonds, the commonly used extended simple point
charge (SPC/E) model of water molecule therefore contains only non-bond po-
tentials [Berendsen et al. (1987); Todorov & Smith (2006)]. To investigate the
oscillations and vibrations inside molecules, flexible models have to be used,
i.e., bond potential should be included [Marti & Gordillo (2002); Gordillo &
Marti (2002)].

Chemistry force fields commonly are unable to model the process of chemi-
cal bond breaking and reactions explicitly because they employ preset bonding
arrangement. On the other hand, many of the potentials used in physics can
describe several different coordination systems and bond breaking. For exam-
ple, Brenner potential for hydrocarbon and carbon nanotube is one of the bond
order potentials, which take the form [Brenner (1990); Albe et al. (2002)]

Vij(rij) = Vrepulsive(rij) + bijkVattractive(rij). (2.43)

We can see that Brenner potential consists of simple pair potentials de-
pending on the distance between two atoms rij , and the strength of attractive
potentials is modified by the environment of the atoms i and j (number of bonds
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(a) Schematic of a water mole-
cule model.

(b) Schematic of of a single-
walled carbon nanotube.

Figure 2.3. Schematics of water molecule and SWNT

and possibly also angles between bonds and distances from other atoms) via the
bijk term. Carbon nanotubes are important materials in many applications of
nanotechnology [Saito et al. (1998)], electronics, optics and other fields and are
categorized as single-walled nanotubes (SWNTs) and multi-walled nanotubes
(MWNTs). Due to their unique electric properties, SWNTs are the most likely
candidates for miniaturizing electronics beyond the micro electromechanical
scale, which is currently the basis of modern electronics. A SWNT can be
viewed as a seamless cylinder which is obtained by wrapping a one-atom-thick
graphite sheet. The way it is wrapped can be represented as a pair of in-
dices (n,m), which is called the chiral vector. SWNTs with different (n,m) can
possess dramatically different physical properties, and a thorough description
can be found in the book of Saito et al. (1998). Briefly speaking, SWNTs are
classified as metallic SWNTs and semiconducting SWNTs due to their entire
different electric properties. Figure 2.3(b) shows an armchair SWNT (when
n = m).

The thermodynamic state of a system is usually defined by a small set
of parameters (i.e., number of particle N, the temperature T, the pressure P
and the volume V). Other thermodynamic properties (e.g., density ρ, chemical
potential µ, heat capacity Cv etc.) can be derived from the results of MD
simulations [Allen & Tildeslley (1987); Sadus (1999)].

There are four common classes of statistical ensembles in MD simulation:
microcanonical, canonial, grand canonial and isothermal-isobaric due to which
set of parameters is chosen [Allen & Tildeslley (1987)]. In equilibrium states,
all ensembles are equivalent. The choice is entirely a matter of convenience
[Sadus (1999)].
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The ensemble we employ is the canonial ensemble, in which the constraints
are V, N and T. To initialize a canonial ensemble, temperature control needs to
be taken for some time steps in the beginning to equilibrate the system. The
reason is that the preset position of molecules usually possesses high potential
energy which need to be taken away after it is transformed to kinetic energy
by applying Newtons second law. The simplest method is velocity scaling as
described here [Sadus (1999)].

The kinetic energy per particle for the ensemble can be calculated from

< K >=
1

2N
<

N∑

i

mivi · vi >, and from the kinetic theory of gases, we know

< K >=
3
2
kT . Equating the right hand side of these two formulas, we obtain

the following expression to calculate temperature

TA =
1

3Nk
<

N∑

i

mivi · vi > . (2.44)

Expression (2.44) enables us to determine the actual temperature (TA) for
the ensemble at any time. Consequently, the velocities can be scaled with
respect to the actual and desired temperatures (TD) as [Sadus (1999)]

vnew = v
√

TD

TA
. (2.45)

The time integration method employed is the velocity Verlet algorithm,
which gives a global error as O(∆t2) and offer greater stability than the much
simpler Euler Forward method whose error is O(∆t). The algorithm takes the
forms as [Allen & Tildeslley (1987)],

r(t + δt) = r(t) + δtv(t) +
1
2
δt2a(t),

v(t + δt) = v(t) +
1
2
δt[a(t) + a(t + δt)]. (2.46)

The orientation of a rigid molecule can be specified by three independent
Euler angles which determining the rotation transform matrix. However a
serious drawback of this method is that a singular equation of motion may cause
awkward numerical properties. An elegant and effective solution which has
been popularly employed is the use of the generalized coordinates – quaternions.
The detailed description of quaternion can be found in many sources [Shoemake
(1985); Allen & Tildeslley (1987)].

The static dielectric constant of isotropic bulk water can be calculated by
[Marti et al. (1994)]

ε0 = 1 +
4π

3V kBT
φc(0), (2.47)
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where kB is the Boltzman constant and φc is the collective time correlation
function of dipole moments, which is calculated by

φc(t) =< M(t) · M(0) >, (2.48)

where M(t) =
N∑

i=1

µi(t), and µi(t) =
ns∑

j=1

qj · dj is the dipole moment of the i-

molecule. Dipole moments are usually measured in units named debye (debye
unit D: 1D = 3.336 × 1030C/m) in the honor of Dutch physicist Peter Debye.
Although the dipole moment of an isolated water monomer is around 1.85
Debye, in the liquid phase it increases to the value from 2.4 to 2.6 D due to the
polarization by the environment [Gregory et al. (1997)]. Simulations of liquid
water by pair potential generally require the dipole moment of water molecules
located in 2.3 to 2.4 to reproduce experimental data [Laasonen et al. (1993)].
The SPC/E model therefore gives a permanent dipole moment value of water
molecules as 2.35 D [Berendsen et al. (1987); English & Macelroy (2002)].



CHAPTER 3

Modeling and numerical treatment

This chapter describes numerical models for calculating the force of particles
experience in DEP separation, and numerical treatment implemented in molec-
ular dynamics (MD) study of dielectric property of water inside SWNT.

3.1. Particle dynamics method
In this section, particle dynamics model provides a way of solving the equations
of the motion of each particle by replacing them with a set of finite difference
equations which are solved on a step-by-step basis.

We view the particles as spheres with size much smaller than the length
scale of the electrodes. Under such assumption, we do not consider the rota-
tional motion of particles. On the micro level, we consider the flow to be Stokes
flow. There will be no need to solve the Navier-Stokes equations either. The
reason is that according to the specified micro-scale condition, the analytical
expression for the hydrodynamic forces between suspended particles in Stokes
flows has been well established. Those functions could be directly adopted
to account for the hydrodynamic interaction between particles. Besides, since
we assume the particles to be spherical and without deformation, it is reason-
able to simply add repelling forces which become significant when two particles
come to touch each other. The net DEP forces acting on the particles by the
field and the interactive electrostatic forces from other particles are added on
the centers of mass of the particle. Therefore, we are able to include all the
important forces into a set of coupled equations of motion (ordinary differential
equations) for many-body systems.

3.1.1. Terminal speed of particle in micro and nano fluid

For simplification, we consider a sphere in a fluid flow with speed v experiencing
an external force F. According to the Newton Second Law

m
du
dt

= F− 6πµa(u− v). (3.1)

The second term of (3.1) is the Stokes drag force acting on the particle from
the fluid [Morgan & Green (2003)]. u, m, µ and a are the speed of particle,
the mass of the sphere , the viscosity of fluid and the radius of the sphere
respectively.

18
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The solution of (3.1) is easy to obtain. When the initial particle velocity
is zero, it can take the form [Morgan & Green (2003)]

u = (
F

6πµa
+ v)(1− e

6πµa
m t). (3.2)

It is natural to take the characteristic time as τ =
m

6πµa
=

2ρa2

9µ
. If the

density of the particle, ρ, is taken as the same as water, the radius of the
particle a ≈ 10−6 m and the fluid viscosity is taken as water, then τ ≈ 10−6

s. Since the limit of time for observation is about 1/30 s, which is much longer
than τ [Morgan & Green (2003)], therefore the particle that is observed moves
at the terminal speed. For particles of nanoscale, the characteristic time τ is
even smaller. This means that in microsystems, the inertial effect is negligible
and the terminal speed of the particle takes the form

ut =
F

6πµa
+ v (3.3)

3.1.2. Hydrodynamic interaction

In this model, the hydrodynamic force is considered by the following way. In
micro and nano flows where the Reynolds number Re) 1 and in a steady state,
the nonlinear terms and time derivatives can be neglected from the equation
(2.2). By further assuming that external forces are absent, the governing equa-
tions become

∇2U = ∇p, (3.4)
∇ · U = 0, (3.5)

which are known as the Stokes or Creeping flow equations. The motion of a
given particle induces a flow field in the solvent, which will be felt by every
other particle. Consequently, these particles experience a force resulting from
the hydrodynamic interaction with the original particle. By solving the Stokes
equation for a two-particle case, the first order expression for the mobility
tensor is, as given by Oseen [Elimelech et al. (1995)]

µij = δij
1

6πµa
+ (1− δij)

1
8πµri,j

(1 +
rijrij

r2
ij

), (3.6)

where 1 is the unit tensor, rij = ri − rj , rij = |ri − rj |, a is the radius of the
particle, and δij is the Kronecker delta. At last, we get the velocity expression
as

Ui = −
N∑

j=1

µij · Fj (3.7)

Corrections resulting from more than three-body interactions (n ≥ 3) are
not taken into account. The concept of three-body interaction is, particle A
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can affect particle C directly and affect C indirectly by directly affect particle
B. The indirect influences are expressed by correction functions of the order
( a

rij
)2 or higher. The two-body hydrodynamic force acting on particle i can be

expressed as [Elimelech et al. (1995)]

Fdrag,i = −
N∑

j=1

ζij · Uj , (3.8)

where tensor ζij is defined as [Elimelech et al. (1995)]

ζij = δij(6πµa) + (1− δij)6πµa
3a

4rij
(1 +

rijrij

r2
ij

). (3.9)

3.1.3. Electrostatic interaction

For an isolated spherical particle suspended in an electric field E, the effective
dipole moment is given by [Morgan & Green (2003); Kadaksham et al. (2004)]

p = 4πεmβa3E, (3.10)

where β is the real part of Causius-Mossotti factor and a is the radius of the
particle. The interaction forces between particle i and j are based on the dipole
moment of these particles, which take the forms

pi = 4πεmβa3Ei, pj = 4πεmβa3Ej , (3.11)

where Ei and Ej are electric field vector at the positions of centers of particle
i and j respectively. Written in the vector form, the expression of electrostatic
interactions FD,ij is expressed as [Kadaksham et al. (2004)]

FD,ij =
1

4πεm

3
r5

(rij(pi · pj) + (rij · pi)pj

+(rij · pj)pi −
5
r2

rij(pi · rij)(pj · rij)). (3.12)

As we already discussed, the inertial effect is negligible in micro systems.
Therefore, for particle i, the total force is zero, i.e.,

Fdep,i + Fdip,i + Fwall,i + Fp,i+Fdrag,i = 0, (3.13)

where Fdep,i is the DEP force, Fdip,i =
N∑

j=1,j %=i

FD,ij is the sum of the inter

particle electrostatic forces acting on i particle, and Fwall,i is the repulsive
force from the wall, and Fp,i is the sum of repulsive forces from other particles.
Substituting (3.8) into (3.13), we obtain the final system of equations to solve.
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After non-dimensionalization, the system of equations takes the form

dxi

dt
= P1

N∑

j=1,j %=i

FGi,j · dxj

dt
+ P2FDi + P3

N∑

j=1,j %=i

FDIPij

+FW,i + FP,i (3.14)

with the following definitions:

• Characteristic variables:

L: Length V0: Potential T : Time
• Dimensionless parameters:

P1 =
3r

4L
, P2 =

2βr2εmV 2
0 T

3L4µ
, P3 =

2εmβ2r5V 2
0 T

µL7
= 3β(

r

L
)3P2

• Dimensionless functions

FDi = ∇|E∗|2,

FGij =
1

R∗
ij

(1 + R̂∗
ijR̂

∗
ij),

FDIPij =
1

(R∗
ij)5

(R∗
ij(p

∗
i · p∗j ) +

(R∗
ij · p∗i )p∗j + (R∗

ij · p∗j )p∗i − 5
(R∗

ij)2
R∗

ij(p
∗
i · R∗

ij)(p
∗
j · R∗

ij)), (3.15)

where FGi is the dimensionless form of hydrodynamic force (see expression 3.8),
FDi is the dimensionless form of DEP force (see expression 2.29), and FDIPij

is the dimensionless form of FD,ij . Here FW,i and FP,i denote dimensionless
repulsive force from wall and other particles respectively. All the variables with
star symbol as upper index are the nondimensionless forms of those variables
without index, and R̂ij =

rij

rij
. By comparing the dimensionless parameters

P1,P2, P3, the relative magnitudes between those forces can be determined.

3.1.4. Superposition of DEP forces

A simplified particle dynamical model (ignoring the interactive forces between
particles) is applied in the calculation for enhancing the trapping efficiency of
E.coli bacteria. In this problem, the Clausius-Mossotti factor is a frequency-
dependent complex number with the real part value between -0.5 and 1. We
expect that if proper superimposed electric fields (with different frequencies)
are used in the calculation, the trapping efficiency can be enhanced greatly.
Below is the simple mathematical proof of the validity of the superposition of
DEP forces.
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Since E = ∇φ̃ (φ̃ is the potential of electric field which can be written as
φ̃ = φ sin ωt with φ only depending on space), after nondimensionlization, we
get the relationship between Fdep and potential φ as:

Fdep = ∇(∇φ sin(ωt))2. (3.16)

The time average force is then

< F > =
1
T
∇(∇φ)2

∫ T

0
sin2(ωt) (3.17)

=
1
2
∇(∇φ)2. (3.18)

Assuming two harmonic potentials with different frequencies are introduced
at the same time to a system, we have the superimposed electric potential as

φ̃total = φ1 sin(ω1t) + φ2 sin(ω2t). (3.19)

Thus, we get

(∇φ̃total)2 = (∇φ1 sin(ω1t) +∇φ2(ω2t))2, (3.20)
= ∇φ2

1 sin2(ω1t) +∇φ2
2 sin2(ω2t) + 2∇(φ1 sin(ω1t)∇φ2 sin(ω2t).

The time-average force is

< F >total =
1
T

∫ T

0
Fdepdt,

=
1
T
∇(∇φ1)2

∫ T

0
sin2(ω1t)dt +

1
T
∇(∇φ2)2

∫ T

0
sin2(ω2t)dt

+ 2
1
T
∇(∇φ1∇φ2)

∫ T

0
sin(ω1t) sin(ω2t)dt. (3.21)

When T tends to infinity, it is easy to verify that the last term of (3.21)
tends to zero, and (3.21) becomes:

< F >total=
1
2
∇(∇φ1)2 +

1
2
∇(∇φ2)2 =< F >1 + < F >2 . (3.22)

Therefore, it is correct to superimpose the DEP forces corresponding to
superimposed AC fields of different frequencies.

3.2. Fluid dynamics in micro and nano systems
Experimental results [Müller et al. (1996); Ramos et al. (1998); Green et al.
(2002); Morgan & Green (2003)] have shown that in DEP systems with mi-
croelectrodes, AC electric fields can generate local fluid motion. Two types of
electric field-driven fluid motion occurs when the fields are large and the scale
of the system is small.

The first type of fluid flow is caused by the bulk force acting on the dielectric
fluid under an applied electric field [refer to expression (2.7)]. The gradient of
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electric permittivity ε is caused by temperature gradient due to the extremely
high gradient of electric field. In an AC electric field, it takes the form [Ramos
et al. (1998); Morgan & Green (2003); Castellanos et al. (2003); Feldman et al.
(2007)]

< fE >= −1
2

[(
∇σ

σ
− ∇ε

ε

)
· E0

εE0

1 + (ωτ)2
+

1
2
|E0|2∇ε

]
, (3.23)

where

∇σ =
dσ

dT
(∇T ), ∇ε =

dε

dT
(∇T ), ∇2T = σ|E|2. (3.24)

Essentially caused by joule heating, this flow is therefore often referred to
as the electrothermal flow. Although there is no analytic solution for general
systems with arbitrary geometries, numerical calculation of flow can be easily
obtained. For example, by using finite element method, we are able to solve
the Navier Stokes equations coupled with the external electrothermal force.

+-

Figure 3.1. Schematic of electrothermal flow. The dash lines
are isolines of electric potential.

Figure 3.1 shows the electric potential lines and the resulting fluid motion
in a DC electric field. The electrothermal flow therefore is corresponded to
the equation (3.23) when frequency is zero. We should keep in mind that the
electrothermal flow pattern can be entirely different in high frequency. This
geometry has been extensively used [Morgan & Green (2003); Krupke et al.
(2003a)] where a pair of long electrodes is placed in parallel with infinity length,
and these systems can therefore be regarded as 2D problems.

The other kind of fluid flow is often referred to as AC electroosmosis, which
is related to the charging of the double layer on the surface of microelectrodes.
Detailed illustration can be found in the works of Ramos et al. (1998), Morgan
& Green (2003) and Castellanos et al. (2003). Here we present the final form
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of the time-averaged fluid velocity along the surface of electrode

< ux >=
1
8

εκφ0

µx(1 + Ω2)2
, (3.25)

where φ0 is the applied voltage, and Ω = (12)πκx(ε/σ)ω, κ−1 is the Debye
width of the electric double layer. Since the typical κ−1 for the EDL is several
nm [Morgan & Green (2003)], taking κ−1 = 1 nm, an estimation of AC elec-
troosmosis corresponding to a system of separating SWNT is calculated and
plotted in Figure 3.2
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Figure 3.2. AC electroosmotic fluid flow at the surface of an
electrode. The solution is 1% SDBS, and the data is calculated
as a function of frequency of the applied electric field, and the
distance from the edge of the electrode. The potential voltage
applied is 20 Volt, and the gap between electrode is 20 µm.

Understanding the electrokinetic motion of fluid is of great importance
in particle separation and manipulation in micro and nano systems. Since
both fluid flows are frequency-dependent, Morgan & Green (2003) summarized
the frequency ranges where each of the two electric field-driven fluid flows
dominates. In brief, at low frequency (f < 100 kHz), the dominant fluid
flow is AC electroosmosis, and at higher frequency, electrothermal fluid flow
dominates.

3.3. Modeling of DEP based on distributed charge density
DEP is used to manipulate highly elongated particles, i.g., SWNTs [Krupke
et al. (2003a); Zhang et al. (2005)], rod-shape virus [Green et al. (1997)], and
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rod-like DNA [Tuukkanen et al. (2007)] which are natural to be regarded as
rigid fibers. Despite the fact that the effective dipole moment method is gen-
erally used to calculate the DEP force of those particles [Krupke et al. (2004);
Zhang et al. (2006)], it is not so accurate since the length of the particles is
comparable to the characteristic length of the system (the width of the gap
between electrodes).

Considering a rigid fiber, slender body theory is often used in fluid mechan-
ics and electrostatics. Its essential idea is to take advantage of the slenderness
of a body to obtain an approximation to a field surrounding it and the net
effect of the field on the body. The slender body theory in Stokes flow fluid
was first developed by Batchelor (1970). While in electrostatics, Geer (1976)
derived the asymptotic expression for the induced charge density of slender di-
electric body embedded in a specified but arbitrary electrostatic potential field
φ. More studies about electric field around slender bodies can be found in the
papers of Barshinger & Geer (1987) and Sellier (2001). In those works, electric
fields were solved by asymptotic expansions with high order accuracy however
demanding expensive calculate cost. Therefore, the current model is suggested
aiming to provide a practical solution to calculate the disturbed electric fields
and furthermore the DEP force acting on a slender body (which is approxi-
mated by a prolate ellipsoid). The accuracy is expected to be higher than the
effective dipole moment method since it concerns arbitrary number of points
along the centerline of the particle while effective dipole moment only utilizes
the electric field in the center point.

Figure 3.3 shows a modeled ellipsoid. The shape parameter, slenderness
δ = max(x2 + y2)/%L should be much less than 1.

Z

X

Y

-1
1

n(M)

M(ξ)

P(z)

Figure 3.3. The schematic of the modeled ellipsoid. The ra-
dius R satisfies, R =

√
x2 + y2 = δS(z) with S(z) =

√
1− z2,

which leads to R(−1) = R(1) = 0.
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The starting point of this model is that when considering an ellipsoid im-
mersed in a dielectric medium, we assume that the induced charges are dis-
tributed along the centerline of the particle only depending on the z coordi-
nator. By enforcing the boundary conditions on the interfaces between two
dielectrics, we obtain the expression of the induced charge as

σ(z) = (1− 1
ε
)[−

∫ 1

−1

−−→
PM · 2n
|PM |3 σ(ξ)δS(ξ)1/2dξ + ε0

∂φ0(z)
∂2n

],

where σ(z) is the unknown induced charge density and φ0(z) is the original
electric field, and 2n is the normal vector of the surface of ellipsoid and ε is the
ratio between the dielectric permittivity of the ellipsoid and medium.

Based on the calculated electric charge densities, the resulting electric field
can be obtained and also the DEP force of each particle can be calculated. By
this means, the interaction between particles due to the induced charge are
naturally concerned. For AC electric field, similar expressions can be derived
and the only difference is that the dielectric permittivities in expressions are
substituted by complex permittivities.

3.4. Ewald summation
To calculate the dielectric property of water by MD simulation, proper periodic
boundary treatment should be taken. This is the motivation of the implemen-
tation of Ewald summation. Because the electric potential is a long range force

(
1
r
), compared to Lennard-Jones potential (

1
r6

), a large domain needs to be
taken into account. Ewald summation is a technique for efficiently summing
the interaction between an ion and all its periodic images [Allen & Tildeslley
(1987)] inside a large sphere whose radius is determined by the maximum value
of n. If in the unit cell there are M charges, the total electric energy (potential)
of the system may be written as

V =
1
2

′∑

n




M∑

i=1

M∑

j=1

qiqj |rij + n|−1



 , (3.26)

where qi is the charge of i ion. The prime indicates that we omit i=j for n = 0.
The charge neutrality condition is

M∑

i=1

qi = 0. (3.27)

For simplicity of notation, all factors of 4πε0 are omitted. The sum over n is
the sum over all cubic lattice cells, n = (nxL, nuL, nzL). However, this sum is
only conditionally convergent. Ewald summation decomposes the interaction
potential into a short-range component summed in real space and a long-range
component summed in Fourier space. Its advantage is the rapid convergence of
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the Fourier-space summation compared to its real-space equivalent when the
real-space interactions are long-range. The final form for a sphere surrounded
by a good conductor (εs =∞) is [Allen & Tildeslley (1987); Leeuw et al. (1980);
Heyes (1984)].

V (εs =∞) =
1
2

M∑

i=1

M∑

j=1

(
Nmax′∑

|n|=0

qiqj
erfc(κ|rij + n|)

rij + n

+ (
1

πL3
)

KSQmax∑

k%=0

qiqj(4π2/k2)exp(−k2/4κ2) cos(k · rij))

− (κ/π1/2)
N∑

i=1

q2
i , (3.28)

where L is the length of the cubic cell. The first term is so-called real space
term (the prime means when n = 0, j -= i) denoted by Vr, the second term is
K-space term denoted by Vk, the third term is so called self-energy term. κ is
the parameter to control the decomposition between sum of the real-space and
K-space. Here erfc(x) is the complementary error function [Allen & Tildeslley
(1987)]

erfc(x) =
2√
π

∫ ∞

x
exp(−t2)dt. (3.29)

By taking derivative of the potential (f = −∇V ), we obtain the expressions
to calculate the forces, which take the forms

Fr(i) = qi

M∑

j=1

Nmax′∑

|n|=0

qj
rij,n

r3
ij,n

[erfc(κrij,n) +
2κ√
π

rij,n exp(−(κrij,n)2)],

Fk(i) =
4π

L3
qi

M∑

j=1

KSQmax∑

k %=0

qjk
1
k2

exp(−(
k2

4κ2
)) sin(k · rij), (3.30)

where rij,n = rij + n, and rij,n = |rij + n|. The term Fr denotes the force in
real space, and Fk means the force in K-space.

For the dipole systems, there is similar expression as (3.26), except the
charges are substituted by dipole moments. However we adopted another
method, i.e., expression (3.26) can be employed directly by subtracting the
intramolecular energy from it. The intramolecular energy takes the form

V self =
W∑

i=1

(
ns∑

a=1

κq2
i,a/π

1
2 +

1
2

ns∑

a=1

ns∑

b %=a

qi,aqi,b
1

dab
), (3.31)

where ns is the number of atoms in one molecule, dab is the distance between
atom a and b and W is the number of molecules in the system.
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In the actual MD code, three parameters are often used to control the
convergence of the sums.

• Nmax, an integer defining the range of the real-space sum and controls
its maximum number of vectors

• KSQmax, an integer restricting the summation range in the reciprocal-
space and its number of vectors

• κ, the Ewald convergence parameter, determining the relative rate of
convergence between the real and reciprocal sums

Note that a large κ makes the real-space sum converge fast. Because as
κ → ∞, erfc(κx) → 0. This means that a small number of n vectors (Nmax)
is sufficient for a rapid convergence. On the other hand, a small κ causes the
reciprocal-space sum to converge fast since as κ→ 0, the exp(−x/κ)→ 0, that
is, a small number of vectors in K-space (KSQmax) will be enough.

Within the accurate calculation range, the potential energy is invariant to
the choice of κ. This can be used as a testing principle to verify the Ewald
summation code.

κ
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Figure 3.4. Potential energy of bulk water calculated as the
function of κ. The temperature is 300 K; the number of wa-
ter molecules is 256; Nmax=7; KSQmax=50, more than 600
vectors in K-space are used.

Figure 3.4 shows the potential of energy of a bulk water system containing
256 water molecules. The relationship of these potentials is,

Vtotal = VLJ + VR + VK , (3.32)
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where Vtotal is the total potential energy, and VLJ is the Lennard-Jones poten-
tial [see expression (2.42)], and VR is the real space potential and VK is the
K-space potential [see expression (3.28)]. From Figure 3.4, we observe that
when κ in the value interval of 4 ∼ 8, the total potential calculated is invariant.
The total potential is round 46 KJ/mol, which is consistent with the work of
English & Macelroy (2002). In our calculations, κ always takes the value of 5.



CHAPTER 4

Simulation results

Currently DEP is generally used for separation and manipulation micro and
nanoparticles in biochemistry and mechanical engineering due to its demon-
strated simplicity and high selectivity [Morgan & Green (2003); Krupke et al.
(2003a)]. Here we present some of our numerical simulations for manipulating
E.coli bacteria, micro particles and SWNTs by DEP force, a model to numer-
ically calculate the DEP force acting on rod-like particles, and a MD study of
dielectric properties of water confined in SWNTs.

4.1. Superimposition of dielectrophoretic forces
In one of our previous studies [Aldaeus et al. (2005)], superimposed DEP forces
are used to improve the efficiency of trapping E.coli bacteria.

Figure 4.1 shows the traces of E.coli bacteria under DEP forces in a rect-
angular channel. Three different electrode configurations are considered (see
Figure 4.1). A Poiseuille flow enters the channel from the left. Particles are
released from different heights through the channel cross section. In configura-
tion A shown in Figure 4.1(a), only the electrodes at the bottom of the channel
are used. The frequency of the AC field is chosen to give a positive DEP, i.e.,
particles are attracted to regions of high field gradients. In configuration B
shown in figure 4.1(b), both the electrodes at the bottom and the top were
turned on at a voltage frequency where the particles only obtain a positive
DEP motion. In configuration C shown in figure 4.1(c), both the electrodes are
turned on, but different frequencies are utilized. The bottom electrodes have
a frequency inducing positive DEP, and the top electrodes have a frequency
inducing negative DEP. The trapping rate of configuration B is 100%, which
proves that configuration B is the best one in this condition.

4.2. Multi-step dielectrophoresis
The idea of multi-step DEP is, by repeating the trapping-release pocess, parti-
cles with small difference in size and/or dielectric properties can be separated
[Aldaeus et al. (2006)].

Figure 4.2(a) is the schematic diagram of this strategy, where two groups
of particles, X and Y are observed to be completely separated after a number
of repeating trapping-release steps.

30



4.2. MULTI-STEP DIELECTROPHORESIS 31
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L 0
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0

(a) performed in the pDEP mode at the bottom.
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L
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0

(b) with pDEP both at the bottom and at the top.

0 4L 0pDEP electrodes

nDEP electrodes
L 0

C

0

(c) with pDEP at the bottom and nDEP at the top.

Figure 4.1. Particle trajectories in a high conductivity solution.

To quantify the degree of fractionation, a concept as the dielectrophoretic
resolution (RDEP ) is defined as

RDEP =
3d

wA + wB
(4.1)

where d is the distance between the two centers of each particle population, and
w is the band width of the particle population. It is easy to understand that
when RDEP > 1.5, the two particle populations will be completely separated,
because it is equivalent to

d >
wa + wb

2
. (4.2)
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(a) The schematic of the experiment principle. Two groups of parti-
cles with small difference are separated after multi-step trapping and
releasing.
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(b) Calculated resolution as a function of number of steps for a
relative difference in size of 5%, 2% and 1%.

Figure 4.2. Multi-step dielectrophoresis analysis.

For example, Figure 4.2(b) shows that a complete separation can be achieved
after two steps if the difference in size is 5%. If the size difference is 2%, four
steps are required.

4.3. Inter-particle dielectrophoretic forces
To simulate the motion particles in detail, it is essential to include all the
other important forces acting on the particle besides DEP, i.e. the repulsive
force from the wall, the repulsive force from the interface of other particles,
the hydrodynamic forces and the inter-particle electrostatic force due to the
induced charges. Based on the model, we simulated the motion of the E.
coli bacteria under DEP force and the result is comparable to the experiment
observation.

Figure 4.3(a) shows an experimental result of E. coli bacteria under positive
DEP force. The electrodes are seen as the v-shaped structures at top and
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bottom. The bacteria accumulate near the electrode tips, as expected, since
these are the points with the largest field gradients. Furthermore they organize
into long chains, extending along the electric field lines. This is due to the fact
that, under the present conditions, with an AC frequency giving positive DEP,
the particles polarize in such a way that they will be negatively charged at
the end near the positive electrode, and vice versa. This will create attractive
inter-particle forces between these induced dipoles. Finally the particles form
the long chains along the electric field lines. Figure 4.3(b) shows the simulation
and which is in good agreement with the experimental result.

(a) Experimental observation of
E.coli bacteria under DEP force.

(b) Simulation results of micro particles under
DEP force.

Figure 4.3. Comparison of numerical simulation and exper-
imental observation. Under positive DEP forces, the particles
are attracted to the tip of triangular electrodes. The pearl
chains are formed due to the interaction between the particles
caused by the induced charges.

4.4. Electrothermal flow in DEP separation of SWNTs
Separating metallic and semiconducting carbon nanotube by DEP was sug-
gested by Krupke et al. (2003a) and attracted extensive research and appli-
cation interests [Krupke et al. (2004); Zhang et al. (2006); Dimaki & Bøggild
(2004)]. In many experiments of DEP separation of SWNTs, both metallic
and semi conducting SWNTs are observed to be attracted to the electrodes
although they process remarkably different electric properties [Krupke et al.
(2004); Zhang et al. (2005)]. A likely explanation is that the motion of SWNTs
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are affected by electric field-driven fluid flows, for instance, the electrothermal
flow due to the joule heating by the gradient of electric field [Lin et al. (2007)],
which was observed in micro system experiments [Ramos et al. (1998); Green
et al. (2002)].
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(d) Traces of semiconducting
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Figure 4.4. Streamlines and corresponding traces of semi-
conducting SWNTs in 0.1% SDBS solutions, low (300 kHz)
and high (1 GHz) frequency regimes with φ=20 V.
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In one of our works (see Figure 4.4), the electrothermal fluid flow is calcu-
lated by solving the incompressible Navier-Stokes equation with the external
electrothermal force. The velocities of semiconducting SWNTs are calculated
as the result of the sum of the DEP force, Brownian motion and the electrother-
mal forces. The simulation show that within a certain electric potential range,
in the domain closed to the electrodes, DEP force is the dominating force, and
far from the electrodes, Brownian motion is dominating. In the intermediate
rather large domain, the traces of SWNTs agree with the electrothermal flow
streamlines well. Since the electrothermal flow is frequency-dependent, the pat-
tern of streaming lines of the flow are rather different in low and high frequency
ranges.

4.5. Calculation of DEP force on a slender body
The assumption of the widely employed effective dipole moment is that the
length scale of the particle should be much less than that of the geometry and
this is not true for a rod-like particle (carbon nanotubes, virus, DNA etc).
Therefore, a new model is formulated to numerically calculate the DEP force
of a dielectric straight slender body immersed in a dielectric medium. The
idea is to approximate the slender body by a prolate ellipsoid, and assume
that the induced charges are concentrated along the centerline. This model
is applicable when the shape parameter, slenderness δ (the max rate of the
radius of the ellipsoid to the length of the ellipsoid) is much less than one. The
unknown induced charge densities are calculated by enforcing the boundary
conditions.

We consider an ellipsoid immersed into a medium, with the relative per-
mittivity ratio between particle and the medium to be 20. The calculations by
effective dipole moment and by the presented method are both carried out for
comparison shown in Figure 4.5. The length and the slenderness of ellipsoid
are varied to obtain the effects on the differences. It is apparently observed
that when the length of tube increases, the difference between the results of the
two methods increases, and when the slenderness was reduced, the differences
increased.

4.6. Dielectric properties of water inside SWNTs
The dynamic properties of water confined in nanoscale geometries are expected
to dramatically differ from those of bulk water. It is essential for biochemistry
to understand those properties since such water actually exists in the sur-
roundings and within our bodies. Besides, water-filled carbon nanotubes are
expected to play a central role in future nanoscale devices, for proton storage
and transport applications [Mann & Halls (2003)]. MD simulations are carried
out to study the dielectric properties of water inside single-walled carbon nan-
otubes. The interaction between water molecules is modeled by the extended
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Figure 4.5. Relative difference in magnitude of DEP forces
calculated by the effective dipole moment method and the
distributed charge method. Solid line: δ = 0.001, dash-dot
line(which is almost on top of the solid line): δ = 0.01, dash
line: δ = 0.1. The gap between electrode is 0.4 L, and the
permittivity ratio ε = 20.

single point charge (SPC/E), and the interactions between carbon atoms are
modeled by Brenner potentials.

The static and dynamic dielectric properties of water are calculated within
carbon nanotubes with various radii. The results show that along axial di-
rection, the static dielectric permittivity and relaxation time are larger than
those of isotropic bulk water, and in the cross-section plane, it is the oppo-
site. Therefore, concerning the full dynamic permittivity, the water confined
has two dielectric relaxation frequencies differing from the one relaxation fre-
quency which bulk water has (see Figure 4.6). The smaller the radius, the
larger the difference is.
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CHAPTER 5

Conclusions and outlooks

The work presented in this thesis concerns several aspects in the modeling of
DEP in micro and nano systems: modeling of the DEP force acting on micro
and nano particles; fluid dynamics in DEP systems; dielectric properties of wa-
ter confined in an armchair SWNT. The numerical aspects concerned are mainly
the finite element method and MD method. Finite element method toolboxes,
FemLego and Comsol Multiphysics are used to numerically solve the Navier
Stokes equations with the electrothermal force and the DEP force respectively.
The MD code written in Fortran90 is original developed by Maruyama Lab of
Department of Mechanical Engineering, University of Tokyo.

Based on the effective dipole moment to calculate DEP force, the parti-
cle dynamics model solves the equations of motions of particles step-by-step.
The interaction between particles due to the induced dipoles and the hydrody-
namic forces can be included into the calculation as well. This method with
the interactions neglected is used to calculate DEP motions of particles in a
micro channel with a carrier Poiseuille flow. The first application shows that
superimposed external electric fields can greatly enhanced the trapping rate of
E. Coli bacteria. The second application reveals that by using this multi-step
trapping-releasing mechanism, particles with much smaller difference in size
and dielectric properties can be separated, than in traditional ways. Concern-
ing the Brownian motion and electrothermal flow, this model is modified to
calculate the motion of semiconducting SWNTs, and the results show that the
Brownian motion, DEP force and electrothermal flow have their voltage and
frequency dependent dominating domain.

When the length of rod-shaped particles is comparable to the length scale
of the geometry, the assumption of effective dipole moment method for DEP
force is not true. Therefore, a new model based on one-dimensional induced
charge density is suggested to numerically calculate the DEP force instead
of the effective dipole moment method, and it is expected to provide results
with higher accuracy. Compared to Maxwell stress tensor, its computation
work is much cheaper and electrostatic interactions between particles is easy
to implement.

The dielectric properties of water confined in SWNTs are studied by MD
simulations. Strong anisotropy is observed due to the orientational alignment
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of water molecules, and the anisotropy is also radius-dependent. Density and
length effects to the dielectric properties of confined water are also studied.

In future work, the molecular dynamics code can be directly employed to
calculate other systems, for example, the dynamic properties of water on the
surface of carbon nanotube bundles. If the flexible simple point charge model
for water molecule is used instead of SPC/E, the vibration spectrum can be
calculated too, and the dielectric constant in higher frequency range can also
be obtained.

Combining the method of calculating hydrodynamic forces of many inter-
acting rigid fibers by slender body theory suggested by Tornberg & Gustavsson
(2006) with our current distributed charge method which numerically calcu-
lates DEP force acting on rod-shaped particles, electric interactions can also
be added.

The finite element method can be used to simulate the DEP motion of
finite size particles. For example, rigid particles in a fluid can be described by
independent solid meshes moving in fixed background meshes, and the fluid flow
containing rigid particles can be solved by the distributed Lagrange multipliers
method suggested by Glowinski et al. (2001). As for deformable particles, i.g.,
bio-cells or droplets, phase field or level set method can be used to simulate
the dynamic interfaces.

We have discussed the important role that the electrokinetic transport
plays in terms of the electrothermal flow in the DEP separation of SWNTs.
In paper 4, we show that the electrothermal flow can dominate the motion of
SWNTs in certain conditions. Electrothermal flow has not been studied to the
same extent as some other electrokinetically driven flows. It would be interest-
ing to explore other situations where electrothermal flow maybe important. As
pointed out by Morgan & Green (2003), AC electroosmosis dominates the flow
motion in low frequency range. Therefore, when the frequency of the applied
AC electric field of DEP systems is within this range, it is interesting and nec-
essary to study the motion of the AC electroosmosis flow and investigate how
the AC electroosmosis flow affects the motion of particles.

Electro kinetically driven micro flows have been generally observed in ex-
periments and act as important micro flow control mechanisms as well as pres-
sure [Karniadakis & Beskok (2001)]. Correctly simulating the electrokinetic
flows would be very useful to demonstrate the electric field-driven flow con-
trol in complex micro geometries. By including the calculation of presented
electrokinetic flow, the DEP systems can also be more accurately simulated.
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