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doktorsexamen fredagen den 13 juni 2008 kl 10.30 i sal D3, Kungliga Tekniska
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Modelling of subgrid-scale stress and passive scalar flux in large eddy
simulations of wall bounded turbulent flows

Linus Marstorp
Linné flow centre, KTH Mechanics, SE-100 44 Stockholm, Sweden

Abstract

The aim of the thesis is to develop and validate subgrid-scale models that are
relevant for large eddy simulations of complex flows including scalar mixing.
A stochastic Smagorinsky model with adjustable variance and time scale is de-
veloped by adding a stochastic component to the Smagorinsky constant. The
stochastic model is shown to provide for backscatter of both kinetic energy
and scalar variance without causing numerical instabilities. In addition, new
models for the subgrid-scale stress and passive scalar flux are derived from mod-
elled subgrid scale transport equations. These models properly account for the
anisotropy of the subgrid scales and have potentials wall bounded flows. The
proposed models are validated in wall bounded flows with and without rotation
and show potential or significantly improve predictions for such cases.

Descriptors: Turbulence, large-eddy simulation, subgrid-scale model.
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CHAPTER 1

Introduction

The nature of turbulent flows is chaotic and three-dimensional with a wide
range of the scales of motion. Predictions of (Newtonian) turbulent flows re-
quire numerical solution of the Navier-Stokes equations. Unfortunately, direct
numerical simulations, DNS, whereby the Navier-Stokes equations are directly
solved without resorting to models demand very high resolution because all
scales of motion, even the smallest turbulent eddies, have to be resolved in
order to capture the correct physics of the flow. DNS of flows of engineering
interest is not feasible because the range of the scales of motion is usually very
wide. A less computationally expensive approach is to solve the Navier-Stokes
equations in the mean sense. This is usually referred to as a Reynolds aver-
aged Navier-Stokes, RANS, approach. The RANS approach provides for mean
statistics, such as the mean velocity profile and the mean turbulence kinetic
energy, but all turbulent motions have to be modelled. Thus, RANS cannot
capture the dynamics of a flow. The subject for this study is a third approach;
Large Eddy Simulation, LES, which captures the dynamics of the largest turbu-
lence length scales and only requires modelling of the smallest scales of motion.
LES is more computationally demanding than RANS but is less expensive than
DNS, because only the largest scales of motion have to be resolved. Today, LES
is used in the industry as a tool for numerical simulation of turbulent flows.
As an example, figure 1.1 shows the flow over an airfoil. We can see that the
LES is able to capture the large scale motions of the flow.

Figure 1.1. LES of the flow around an airfoil showing the
isosurfaces of worticity. Liu (2006).
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LES is a promising tool to predict mixing of scalars in turbulent flows. A
passive scalar can represent, for example, small temperature fluctuations or a
pollutant carried by the flow. One interesting application is the prediction of
mixing of pollutants in urban areas. Figure 1.2 shows results from a LES of
the spread of a pollutant in an urban area. The turbulent eddies transport
the pollutant to the surroundings. Knowledge of passive scalar mixing is also
a first step towards the understanding of reactive flows, where the mixing of
species plays an important role.

The aim of this thesis is to apply new approaches to develop subgrid mod-
els for the stress and passive scalar flux. These models are relevant for LES of
complex flows including scalar mixing.

Figure 1.2. LES of mixing of a pollutant in an urban area.
Tseng et al. (2006).
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CHAPTER 2

Large eddy simulations

A Large Eddy Simulation (LES) is a numerical simulation of the Navier-Stokes
equations in which only the large length and time scales are resolved, and in
which the influence of the non-resolved scales has to be modelled. LES was
originally a tool for numerical simulation of the large scale dynamics of meteo-
rological flows in two dimensions. Smagorinsky (1962) was among the pioneers.
He studied the dynamics of the atmospheric circulation using a subgrid model
based on the local strain rate to account for the action of the scales smaller
than the grid spacing. The model accounted for a large portion of the eddy
transfer. Today the Smagorinsky model is still the most widely used subgrid
scale, SGS, model in LES. Deardorff (1970) applied what he called the meteoro-
logical approach to three dimensional turbulence in plane Poiseuille flow using
6720 grid points. The simulation did not have the proper no-slip conditions
at the solid walls, but nevertheless the LES was able to capture some of the
large scale structures in turbulent channel flow. Moin and Kim (1982) were
the first to perform a well resolved LES of turbulent channel flow with proper
boundary conditions using 0.5 million grid points. As an SGS model they used
a Smagorinsky type of eddy viscosity model with wall damping of the model
constant. The LES results were in good agreement with turbulence statistics
obtained from experiments.

Efforts were made to improve the SGS modelling over existing eddy viscos-
ity models. Mixed models, where the Smagorinsky model is combined with a
second model term, were proposed. Clark et al. (1979) proposed a mixed non-
linear model where the second term is a tensor eddy diffusivity type of term.
Bardina et al. (1983) proposed the mixed scale similarity model where the sec-
ond term is an estimate of the SGS stress computed from the resolved velocity
field and an explicit test filter. The dynamic Smagorinsky model due to Ger-
mano et al. (1991) was a major step towards improved SGS modelling. With
the dynamic determination of the model constant there was no need for ad hoc
wall damping functions, and it enabled LES of flows involving both laminar
and turbulent regions. Variations of the dynamic approach have been applied
to a wide range of SGS models. It is also well known that the performance of
an SGS model can be improved by removing large scale information from the
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model. The SGS model used by Schumann (1975) might be considered as the
first high pass filtered model. He proposed a version of the Smagorinsky model
where the mean velocity gradient is removed before the rate of strain tensor
is computed. More recent examples of such high pass filtered SGS models are
the filtered structure function model proposed by Ducros et al. (1996) and the
high pass filtered Smagorinsky model proposed by Stolz et al. (2005). These
types of models have particular potential for LES of transitional flows.

2.1. Governing equations

The incompressible Navier-Stokes equations and the passive scalar equation
considered here read

∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ

∂p

∂xi
+ ν∇2ui

∂ui

∂xi
= 0

∂θ

∂t
+ uj

∂θ

∂xj
=

ν

Pr
∇2θ

(2.1)

where ui and θ denote the velocity and passive scalar respectively, p is the
pressure, ν is the viscosity, and Pr is the Prandtl number. To remove the
scales smaller than a prescribed filter scale ∆, a low pass filtering operation
is applied to the Navier-Stokes equation. The filter can be represented by a
convolution

ũ(x, t) =

∫
G(x − y)u(y, t)dy. (2.2)

The filter kernel G(x − y) is homogeneous, which implies that the filter com-
mutes with the differential operator. Applying the filter operation to the in-
compressible Navier-Stokes equations and the passive scalar equation leads to

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −

1

ρ

∂p̃

∂xi
+ ν∇2ũi −

∂τij

∂xj

∂ũi

∂xi
= 0

∂θ̃

∂t
+ ũj

∂θ̃

∂xj
=

ν

Pr
∇2θ̃ −

∂qj

∂xj

(2.3)

In the filtered equations τij is the subgrid scale, SGS, stress which is given by

τij = ũiuj − ũiũj (2.4)

The SGS scalar flux qi in the filtered passive scalar flux equation is given by

qi = ũiθ − ũiθ̃ (2.5)

The SGS stress τij and the SGS flux qi represent the effect of the small un-
resolved scales on the large resolved scales, see Pope (2000). Both τij and qi
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have to be modelled in order to close the system of equations.

2.2. Some important SGS stress models

2.2.1. The Smagorinsky model

The widely known Smagorinsky (1962) model is an eddy viscosity model which
reads

τij = −2νT S̃ij (2.6)

where S̃ij is the resolved rate of strain. The eddy viscosity, νT , is constructed
from the filter length scale ∆ and a velocity scale ∆|S̃ij |, according to

νT = (Cs∆)2|S̃ij | (2.7)

where |S̃ij | = (2S̃ijS̃ij)1/2 and Cs > 0 is a model constant. The model is stable
and computationally inexpensive. Moreover, a constant Smagorinsky constant,
Cs, is consistent with the Kolmogorov theory for the energy cascade in isotropic
turbulent flows Pope (2000). However, the Smagorinsky model has several
known deficiencies. One example is that with Cs > 0 the SGS-dissipation is
strictly positive, i.e. there is no backscatter of SGS kinetic energy. Another
example is that the model constant has to be damped in near wall regions. The
latter problem is also associated with eddy viscosity models for RANS.

The corresponding SGS model for the passive scalar is the eddy diffusion model

qi = −
νT

PrT

∂θ̃

∂xi
. (2.8)

Like the Smagorinsky model, the eddy diffusion model does not provide for
backscatter. Another deficiency is its inability to predict the anisotropy of the
scalar variance SGS dissipation, as pointed out by Kang and Meneveau (2001).

2.2.2. Dynamic Smagorinsky model

In the dynamic Smagorinsky model developed by Germano et al. (1991), infor-
mation about the resolved scales is used to estimate the Smagorinsky constant.
According to the Germano identity the difference between the SGS stress eval-
uated at two different filter scales is

τ ∆̂
ij − τ̂∆

ij = ̂̃uiũj − ˆ̃ui
ˆ̃uj (2.9)

where the hat operator denotes an explicit test filter at larger filter width,
∆̂ > ∆. By replacing the real SGS stress by the modelled stress and by
assuming scale invariance of the Smagorinsky constant the following relation is
obtained

−2C2
s

(
∆̂2| ˆ̃S| ˆ̃Sij −∆2 |̂S̃|S̃ij

)
= ̂̃uiũj − ˆ̃ui

ˆ̃uj (2.10)
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Germano originally proposed to compute the model constant as

C2
s =

〈LijS̃ij〉

〈MijS̃ij〉

Lij = ̂̃uiũj − ˆ̃ui
ˆ̃uj

Mij = −2(∆̂2| ˆ̃S| ˆ̃Sij −∆2 |̂S̃|S̃ij)

(2.11)

where the brackets 〈〉 denote averaging in homogeneous directions. Lilly (1992)
proposed the more widely used procedure, C2

s = 〈LijMij〉/〈MijMij〉, which is
a least-square solution to (2.10) minimising the error 〈Lij − C2

s Mij〉.

Averaging in homogeneous directions according to (2.10) is not possible in
complex geometries that lack such directions. In that case, time averaging is
an option, but it is not consistent with Galilean invariance unless it is imple-
mented in a Lagrangian frame of reference. Meneveau et al. (1996) developed
such a Lagrangian dynamic model with averaging along path lines. With-
out the averaging the dynamic model provides for backscatter but the model
constant yields excessively large fluctuations and it can easily become unstable.

With the dynamic approach, the Smagorinsky constant is adjusted to the local
flow conditions. The model provides for a correct near wall scaling, and it can
be applied to flows containing both laminar and turbulent regions. Variations
of the dynamic approach have been applied to a wide range of SGS models. A
recent example is the three coefficient nonlinear dynamic model developed by
Wang and Bergstrom (2005).

2.2.3. Scale similarity model

In the scale similarity model developed by Bardina et al. (1983), the SGS stress
is assumed to be similar to the one constructed by the resolved velocity field
and an explicit test filter with equal or larger filter scale

τij = ̂̃uiũj − ˆ̃ui
ˆ̃uj . (2.12)

In (2.12) the hat-operator denotes the test filter with, ∆̂ ≥ ∆. The correla-
tion coefficient with the real SGS stress is higher for the scale similarity model
than for the Smagorinsky model (Liu et al. (1994)), and the model provides for
physical backscatter of turbulent energy. However, the scale similarity model
does not provide for enough dissipation. Therefore, it is usually used in an
ad hoc combination with a Smagorinsky term, which provides for additional
dissipation and stabilises the simulations. An example of such a mixed model
is the dynamic mixed model proposed by Zang et al. (1993).

It is a straightforward process to extend the scale similarity model to the SGS
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passive scalar flux

qi = ̂̃uiθ̃ − ˆ̃ui
ˆ̃θ. (2.13)

For instance, Calmet and Magnaudet (1997) applied the dynamic mixed model
proposed by Zang et al. (1993) to LES of mass transfer in a turbulent channel.

2.2.4. Approximate deconvolution model

The approximate deconvolution model, ADM, by Stolz and Adams (1999) be-
longs to the group of velocity estimation models. In the ADM, the full unfiltered
velocity is estimated by an approximate defiltering operation

ui ≈ u∗

i = QN & ũi

QN =
N∑

ν=0

(I − G)ν ≈ G−1
(2.14)

where the star operator denotes a convolution and QN is an N-order approxi-
mation of the inverse filter kernel G−1. The SGS stress is then computed from
the approximation τij = ũ∗

i u
∗

j − ũ∗
iũ∗

j . With N = 0, the ADM corresponds to
the scale-similarity model.

Like the scale similarity model, the ADM does not dissipate an adequate
amount of energy. In order to model the energy transfer from resolved scales
to the SGS an additional relaxation term −χ(I − QN & G) & ũ is added to the
right hand side of equation (2.3). This is equivalent to an explicit filtering of
the resolved velocity field at each time step. The model coefficient, χ, can be
determined by a dynamic approach. LES of turbulent channel flow has shown
a significant improvement over results obtained with the dynamic Smagorinsky
model.

2.2.5. Removing the largest scales from SGS modelling

It is well known that the performance of an SGS model can be improved by
removing some of the low wave number contents from the SGS model. Ducros
et al. (1996) showed that the structure function model is able to predict tran-
sition phenomena if a high pass filter is applied before calculating the second
order structure function. The high pass filtering approach was extended to the
Smagorinsky model by Sagaut et al. (2000).

A method similar to high-pass filtering is the variational multiscale method
due to Hughes et al. (2001a). In the multiscale method the resolved scales
are separated into different ranges. In the simplest version modelling is only
applied to the equation governing the smallest resolved scales. Hughes et al.
applied their approach on the Smagorinsky model and found that the method
outperformed the standard Smagorinsky model in LES of isotropic turbulence.
Good results were also obtained in turbulent channel flow, see Hughes et al.
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(2001b).

Recently, Stolz et al. (2005) developed high pass filtered eddy viscosity models
for LES based on the high pass filtered strain rate

S̃ij(H ∗ ũ) =
1

2
(
∂H ∗ ũi

∂xj
+
∂H ∗ ũj

∂xi
), (2.15)

where H is a suitable high-pass filter and ∗ denotes a convolution in physical
space. These Smagorinsky type of models have been successfully applied to
LES of transitional and turbulent flows. The high pass filtered Smagorinsky
model provides for backscatter even if Cs > 0.

2.2.6. Stochastic models

The SGS models described so far depend on the resolved quantities in a de-
terministic way. However, the nature of the smallest turbulent scales appears
as partly random to the resolved scales. The real sub-grid scale stress tensor
contains stochastic noise that cannot be modelled by any deterministic sub-
grid-scale model.

Stochastic sub-grid modelling has been treated by several authors. Leith
(1990) supplemented the Smagorinsky model by random SGS stresses calcu-
lated as the rotation of a stochastic potential. Schumann (1995) also modelled
the stochastic behaviour of the SGS scales by adding random SGS stresses to
the Smagorinsky model. Alvelius and Johansson (1999) proposed a stochastic
model consisting of a modified Smagorinsky constant

C ′2
s = C2

s (1 + X) (2.16)

where X is a stochastic process with prescribed variance and timescale. Sto-
chastic modelling enables control of the magnitude and the time scale of the
backscatter that could otherwise lead to numerical instabilities.

2.2.7. Transport equation models

Models based on transport equations of the Reynolds stress are frequently used
in RANS. They account for history effects and are able to accurately predict
complex flows of interest in engineering applications. The same approach can
be adopted to LES. In analogy with Reynolds decomposition, the full unfiltered
velocity can be decomposed as

ui = ũi + u
′

i (2.17)
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where u
′

i is the fluctuating SGS velocity. If (2.17) is inserted into the definition
of the SGS stress we have

τij = Lij + Cij + Rij

Lij = ˜̃uiũj − ũiũj

Cij = ˜̃uiu
′

j + ˜̃uju
′

i

Rij = ũ
′

iu
′

j

(2.18)

where Lij is the Leonard stress, Cij is the cross stress, and Rij is the SGS
Reynolds stress. Transport equations can be derived for either the complete
SGS stress, or for some of the component parts. Germano (1992) derived the
transport equation for τij using a homogeneous filter

∂τij

∂t
+ ũk

τij

∂xk
= −τik

∂ũj

∂xk
− τjk

∂ũi

∂xk
+

2

ρ

(
p̃Sij − p̃S̃ij

)

− 2ν

(
˜∂ui

∂xk

∂uj

∂xk
−

∂ũi

∂xk

∂ũj

∂xk

)
−
∂Dijk

∂xk
.

(2.19)

Here Dijk is a diffusion term including both turbulent and molecular diffusion
and S̃ij is the resolved strain rate tensor. Equation (2.19) has strong similar-
ities with the Reynolds stress transport equation. The first two terms on the
right hand side are production terms, the third term is the pressure strain ’cor-
relation’ and the fourth term is the viscous dissipation. The transport equation
for the Reynolds stress tensor is easily obtained by replacing the filter operator
˜ by an ensemble average, and by using the Reynolds decomposition u = ũ+u

′

and the rule ˜̃uu′ = 0. The latter rule is not valid in LES, i.e. ˜̃uu′ )= 0. The
similarities between the SGS stress and Reynolds stress transport equations
make it possible to adapt some of the concepts of Reynolds stress modelling
to SGS stress modelling for LES. For example, Chaouat and Schiestel (2005)
developed a three-equation SGS model based on the transport equations of the
SGS Reynolds stress, the SGS kinetic energy, and the dissipation rate of the
SGS Reynolds stress. Their model accurately describes the anisotropy of the
turbulence field and it captures transition phenomena.
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CHAPTER 3

Subgrid scale modelling for large eddy simulations

The subgrid scale models proposed in this thesis are developed by applying two
different approaches. The first approach is stochastic subgrid modelling. The
idea behind stochastic subgrid modelling is to model the random interactions
between the resolved scales and the subgrid scales in terms of stochastic pro-
cesses with the aim to improve the description of the smallest resolved scales in
LES. The second approach is explicit algebraic subgrid scale modelling based
on modelled transport equations for the SGS stress and the SGS flux. The
main ideas in explicit algebraic subgrid modelling are to obtain a realistic de-
scription of the individual SGS stresses and scalar fluxes and to account for
system rotation in a proper way.

3.1. Stochastic SGS modelling

The subgrid scales appear as partly random to the resolved scales and there is
a random interaction between the resolved scales and the subgrid scales. This
random interaction cannot be described by models that depend on the resolved
field in a deterministic way. The stochastic model considered here (Marstorp et
al. 2007) was originally proposed by Alvelius and Johansson (1999). It is based
on the Smagorinsky model in which the eddy viscosity is constructed from the
filter scale ∆ and a velocity scale ∆|S̃ij |. We let X(x, t) represent a random
fluctuation in the velocity scale ∆(1+X)|S̃ij | induced by the interactions with
the subgrid scales. As a result we obtain a partly stochastic eddy viscosity

νT = C2
s (1 + X(x, t))∆2|S̃ij | (3.20)

where Cs is the Smagorinsky constant, ∆ is the filter scale, and X is a sto-
chastic process with zero mean 〈X〉 and a controllable variance. The part
corresponding to the Smagorinsky model can generate the right amount of
mean dissipation whereas the stochastic part provides for backscatter and cre-
ates realistic SGS fluctuations.

The controllable variance and time scale of X enables significant backscatter
without leading to numerical instabilities, because the backscatter has a short
correlation time scale and it is very local in space. Figure 3.1 shows the PDF
of the SGS dissipation of kinetic energy and scalar variance from LES of homo-
geneous shear flow. About 40% of the transfer is backscatter. The stochastic
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Figure 3.1. PDF of the energy SGS dissipation and the scalar
variance SGS dissipation according to the stochastic Smagorin-
sky model. Energy SGS dissipation, dashed line; scalar vari-
ance SGS dissipation, solid line.
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Figure 3.2. Resolved spanwise Reynolds stress component
in turbulent channel flow. Stochastic model, dashed line;
Smagorinsky model, dotted line; dynamic Smagorinsky model,
dash-dotted line; filtered DNS, thick solid line.

contribution to the eddy viscosity improves the resolved velocity statistics in
LES of turbulent channel flow. As an example figure 3.2 shows the spanwise
velocity fluctuations. The stochastic model increases the spanwise fluctuations
near the wall resulting in a significantly better description of 〈w̃w̃〉 compared
to the standard Smagorinsky model. The stochastic interaction between the
resolved and subgrid scales seems to be an important part of the dynamics in
LES of wall bounded flows.
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3.2. Explicit algebraic subgrid scale models

3.2.1. Explicit algebraic SGS stress models

The main ideas in explicit algebraic subgrid stress models is to obtain a realistic
description of the individual SGS stresses and to account for system rotation.
The subgrid scale stress model presented in Marstorp et al. (2008a) is derived
using the same methodology as the explicit algebraic Reynolds stress model,
EARSM, by Wallin and Johansson (2000). It is based on a modelled transport
equation and consists of three terms

τij = KSGS

(
2

3
δij + β1τSGSS̃ij + β4τ

2
SGS(S̃ikΩ̃kj − Ω̃ikS̃kj)

)
(3.21)

where Ω̃ij and S̃ij are the resolved strain rate and rotation rate tensors respec-
tively and τSGS is the time scale of the SGS velocity field. The first term on
the right hand side is the isotropic part, the second term is an eddy viscosity
part, and the third term is a nonlinear tensor that creates a realistic anisotropy
of the SGS stress. β1 and β4 are coefficients that depend on the resolved ve-
locity gradients and the model parameters. The SGS kinetic energy, KSGS , is
modelled using the Smagorinsky velocity scale, i.e

KSGS = c∆2|S̃ij |
2 ,

where the model parameter c can be either determined dynamically or ex-
pressed (non-dynamically) in terms of β1. The SGS timescale is modelled
using the inverse shear. The system rotation enters explicitly in the transport
equation for τij and is accounted for by simply replacing Ω̃ij by Ω̃R

ij where

Ω̃R
ij = Ω̃ij +

13

4
εikjΩk . (3.22)

The new explicit algebraic model for the SGS stress benefits from the abil-
ity to account for rotation. Figure 3.3 shows the mean bulk velocity in rotating
turbulent channel flow. The mean bulk velocity is defined as

U+
b =

1

2δuτ

∫ δ

−δ
〈u〉dy (3.23)

and depends strongly on the rotation number, Rob = 2Ωδ/Ub. Here Ω is the
spanwise rotation rate and δ is half the channel width. The explicit model
using the non-dynamic determination of KSGS captures the behaviour of U+

b
fairly well because it can handle the laminarisation imposed by the system
rotation, whereas the standard Smagorinsky model with wall damping of Cs

fails. Especially, at high rotation rates the explicit model benefits from the
asymptotic behaviour β1, β4 → 0 as Rob → ∞.
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Figure 3.3. Mean bulk velocity at various rotation num-
bers. DNS, solid line; explicit model, dashed line; Smagorinsky
model, dotted line.

3.2.2. An explicit algebraic model for the SGS scalar flux

The anisotropy of a passive scalar field is known to persist down to very small
scales. Therefore, it can be justified to develop SGS scalar flux models that
can account for the passive scalar anisotropy persisting at the SGS level. The
idea behind the explicit algebraic SGS scalar flux model presented in Marstorp
et al. (2008b) is to obtain a model with a realistic description of the individual
SGS fluxes. The explicit model is based on a modelled transport equation for
qi and is derived in the same manner as the EASFM of Wikström et al. (2000).
The solution to the modelled transport equation can be expressed explicitly as

qi = −τSGScampA
−1
ij τjk

∂θ̃

∂xk
, (3.24)

where A−1
ij is a function of the resolved velocity gradients and the model pa-

rameters, τSGS is the time scale of the SGS velocity field, and camp is a model
constant. The model provides for a more complete description of the SGS
scalar flux compared to the eddy diffusivity model. It can be rewritten as a
mixed model

qi = −τ sgscamp

A−1
kj τjk

3

∂θ̃

∂xi
− τ sgscamp

(
A−1

ij τjk − δik

A−1
lj τjl

3

)
∂θ̃

∂xk
(3.25)

The first term is an eddy diffusion term that provides for scalar SGS dissipation
and the second part is a tensor eddy diffusivity type of term that improves the
description of the individual SGS scalar fluxes. The model depends explicitly
on the SGS stresses and for that reason it is appropriate to use the explicit SGS
flux model together with the the explicit algebraic SGS stress model described
above. System rotation can be accounted for because it explicitly enters the
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Figure 3.4. (a): Resolved scalar fluctuations from LES of
in non-rotating channel flow. (b): Near wall behaviour of α
in rotating channel flow. DNS data, solid line; new explicit
model, dashed line; eddy diffusivity model, dotted line.

transport equation for qi.

Figure 3.4a shows the root-mean-square of the scalar fluctuations in LES of
turbulent channel flow using the explicit algebraic SGS flux model. The ex-
plicit model provides for a good description of the scalar fluctuations showing
that the eddy diffusivity part of the model produces a realistic amount of mean
SGS scalar dissipation. The explicit model has potential for rotation flows.
Figure 3.4b shows the direction of the scalar fluxes, α = atan(〈vθ〉/〈uθ〉) where
〈uθ〉 and are 〈vθ〉 the streamwise and wall normal scalar fluxes, at the desta-
bilised side of spanwise rotating channel flow. We have added the SGS scalar
fluxes to the resolved turbulence fluxes to enable comparison between LES
and DNS. The figure shows that the explicit model provides for a slightly bet-
ter description of α compared to the eddy diffusivity model with a constant
PrT = 0.4.

3.2.3. Validation in Reτ = 950 turbulent channel flow

One advantage of a realistic description of the individual stresses is that the sum
of the resolved stresses and the modelled SGS stresses can be compared with
non-filtered DNS data. The grid-scale dependence of the predictions using the
dynamic version of the explicit algebraic model and the dynamic Smagorin-
sky model is investigated in LES of turbulent channel flow at Reτ = 950.
Three different resolutions were tested. In wall units these correspond to
∆x+ = 187, 124, 93, ∆z+ = 93, 62, 47 and on average 〈∆y+〉 = 20, 20, 14
respectively, i.e. the resolution is rather coarse. Figure 3.5 shows the stream-
wise Reynolds stress component. The explicit algebraic model using dynamic
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determination of KSGS provides for a fairly good and filter scale independent
description of 〈ũũ〉 + 〈τ11〉, indicating that the improved description of τ11 re-
sults in a realistic description of the resolved streamwise fluctuation, 〈ũũ〉. The
dynamic Smagorinsky model predicts a too large near wall peak in 〈ũũ〉 and
shows a quite strong sensitivity to the grid resolution.
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Figure 3.5. The sum of the resolved and SGS stress in the
streamwise direction (a) and spanwise direction (b) in turbu-
lent channel flow at Reτ = 950. DNS, solid line; explicit al-
gebraic model, dashed lines; resolved data using the dynamic
Smagorinsky model, dotted lines. The arrow points in the
direction of increased filter width.

In the same manner, the realistic description of the individual SGS fluxes pro-
vided by the explicit SGS scalar flux model enables meaningful comparison
with non-filtered DNS data. The sum of the resolved streamwise scalar flux
and the SGS streamwise flux are shown in figure 3.6 at the three different res-
olutions in channel flow at Reτ = 950. The new explicit model provides for a
less filter scale dependent description of the near wall peak in the streamwise
turbulence scalar flux than the eddy diffusivity model, at the three different
resolutions tested here. It seems as the improved description of the individual
SGS fluxes provided by the new explicit model also improves the description
of the mean turbulence scalar fluxes.
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Figure 3.6. Streamwise scalar flux at various resolutions in
channel flow at Reτ = 950 . Non-filtered DNS data, solid line;
new explicit model, dashed lines; eddy diffusivity model,dotted
lines. The arrow points in the direction of increased filter
width.

3.3. Validation of of the explicit algebraic SGS stress model
in zero pressure gradient boundary layer

Zero pressure gradient boundary layer flow is an interesting test case for vali-
dation of SGS models because it involves the complexity of two inhomogeneous
directions. It is a more demanding than turbulent channel flow which is the
most frequently used test case for LES.

In Marstorp et al. (2008c) we compare LES with the new explicit algebraic
model (3.21), the dynamic Smagorinsky model (Germano 1991), and the high
pass filtered dynamic Smagorinsky model proposed by Schlatter et al. (2006)
to the DNS data by Li (2007). Figure 3.7a shows the mean velocity profile
normalised with the wall friction velocity, uτ , at Reθ = 780. The dynamic
Smagorinsky model and the explicit model overpredict the mean velocity pro-
file in the outer region whereas the high pass filtered dynamic Smagorinsky
model underpredict the mean velocity profile. A distinguishing characteristic
for the high pass filtered model is the increased level of the wall normal and
spanwise fluctuations near the wall, whereas the dynamic Smagorinsky model
and the explicit model predict significantly lower level of fluctuations (figure
3.7 b). Again, the sum of the mean resolved stresses and the mean SGS stresses
predicted by the explicit algebraic model is in good agreement with the non-
filtered DNS data.
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Figure 3.7. Turbulence statistics at Reθ = 780. (a): Mean
velocity profile in wall units. (b): 〈ww〉 in wall units. Non-
filtered DNS data, thick solid line; new explicit model, dashed
lines; dynamic smagorinsky model, dotted line; sum of 〈τ33〉
and 〈w̃w̃〉 using the explicit model, thin solid line.
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CHAPTER 4

Outlook

The proposed stochastic SGS model provides for an improved description of
the smallest resolved scales in LES with scalar mixing. In the future we wish
to investigate the implications for reacting flows where the small scale scalar
statistics are important, see Pitsch (2006). The stochastic model may here offer
interesting possibilities to this challenging area for LES-computations, because
it offers an approach to properly incorporate small-scale effects of scalar mixing
and dissipation.

The proposed explicit algebraic SGS stress and flux models have strong simi-
larities with the corresponding RANS models (EARSM Wallin and Johansson
(2000) and EASFM Wikström et al. (2000)). Therefore, it might be interesting
to use explicit SGS modelling in hybrid RANS-LES methods, where it might
be convenient to use the same type of model in the inner and outer domains.
It is also of interest to combine stochastic and explicit algebraic SGS modelling
because they complement each other. A combination would provide for an im-
proved small scale dynamics as well as a realistic anisotropy of the SGS stress
and scalar flux. Such a combination might be appropriate in LES of combus-
tion near solid walls.

Further validation of the proposed explicit algebraic SGS stress and flux models
will be performed in zero pressure gradient boundary layer. The future aim is
to further increase the Reynolds number in order to investigate if these mod-
els are able to reproduce high Reynolds number effects of in LES of turbulent
boundary layer flow.
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