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Optimisation and control of boundary layer flows

Antonios Monokrousos
Linné Flow Centre, Department of Mechanics, Royal Institute of Technology
(KTH)
SE-100 44 Stockholm, Sweden

Abstract
Both optimal disturbances and optimal control are studied by means of nu-
merical simulations for the case of the flat-plate boundary-layer flow. The
optimisation method is the Lagrange multiplier technique where the objective
function is the kinetic energy of the flow perturbations and the constraints in-
volve the linearised Navier–Stokes equations. We consider both the optimal
initial condition leading to the largest growth at finite times and the optimal
time-periodic forcing leading to the largest asymptotic response. The opti-
mal disturbances for spanwise wavelengths of the order of the boundary layer
thickness are streamwise vortices exploiting the lift-up mechanism to create
streaks. For long spanwise wavelengths it is the Orr mechanism combined with
the amplification of oblique wave packets that is responsible for the distur-
bance growth. Control is applied to the bypass-transition scenario with high
levels of free-stream turbulence. In this scenario low frequency perturbations
enter the boundary layer and streamwise elongated disturbances emerge due to
the non-modal growth. These so-called streaks are growing in amplitude until
they reach high enough energy levels and breakdown into turbulent spots via
their secondary instability. When control is applied in the form of wall blowing
and suction, within the region that it is active, the growth of the streaks is
delayed, which implies a delay of the whole transition process. Additionally,
a comparison with experimental work is performed demonstrating a remark-
able agreement in the disturbance attenuation once the differences between the
numerical and experimental setup are reduced.

Descriptors: boundary layer, control, estimation, optimal disturbances, La-
grange method
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Preface

This thesis deals with optimal control and optimal disturbances in flows over
flat-plate boundary layers. A brief overview of the basic concepts and methods
is presented in the first part. The second part is a collection of the following
articles:

Paper 1. A. Monokrousos, L. Brandt, P. Schlatter & D. S. Hen-
ningson, 2008
DNS and LES of estimation and control of transition in boundary layers subject
to free-stream turbulence. Int. J. Heat and Fluid Flow, 29, Issue 3 841-855

Paper 2. F. Lundell, A. Monokrousos & L. Brandt, 2009
Feedback Control of Boundary Layer Bypass Transition: Experimental and
Numerical Progress. 47th AIAA Aerospace Sciences Meeting, Orlando, FL

Paper 3. A. Monokrousos, E. Åkervik, L. Brandt & D. S. Henning-
son, 2009
Global optimal disturbances in the Blasius boundary-layer flow using time-
steppers. Submitted to the Journal of Fluid Mechanics.
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Part I

Introduction



CHAPTER 1

Introduction

Fluids are all around us. We experience them in all kind of manners and ways.
We feel the water opposing us when we swim but also keeping us on the surface,
we sense the air around us when we run or bike, finally we just take a sip from
a glass of good red wine. However, we hardly realise and even less understand
the complicated phenomena taking place within them.

It is impressive how we are able to conceive and describe immense processes,
light years away from us, for instance how a star is born or how it dies and
also immensely small phenomena like how few sub-atomic particles interact
and combine to give us the huge variety of elements found in nature; yet again
something so familiar and commonplace like what happens to the flow of water
out of an open tap elude us: suddenly and for no apparent reason the simple
smooth laminar flow turns into a chaotic and turbulent motion.

This thesis deals with problems of the kind and also attempts to shed
some light on how one would try to prevent a catastrophic event like the one
described above by applying control. The shift of a flow from the laminar to
turbulent state is called transition to turbulence and it has been the subject
of study for more than a century. However, the more complicated the flow
configuration becomes i.e. the geometrical and physical characteristics of the
solid objects that the fluid interacts with, the less intuitive or apparent the
transition mechanisms are.

In real flows often (but not always) the transition is initiated by small
in amplitude perturbations and we can assume that their dynamics can be
described, at least at an initial stage, by linear theory. However, whether tran-
sition will occur or not does not depend solely on the perturbation amplitude
but also on its shape in space. Thus there must be some perturbations that
are more efficient at initiating transition than others. These are called optimal
disturbances and since they represent the path which the flow is taking in or-
der to go from the laminar state to the turbulent they can help understand the
transition process.
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CHAPTER 2

Theoretical background

2.1. Base flow, Governing equations

This study is concerned with the stability and control of the classical spatially-
evolving two-dimensional flat-plate boundary-layer flow subject to three-
dimensional disturbances. The system of partial differential equations (PDE)
used as a model for the flow are the Navier-Stokes equations. It is, however,
enough to assume perturbations of small amplitude and linearise around a base
flow enabling the use of optimisation theory that requires a linear system of
governing equations. The model describing the dynamics of the small pertur-
bations are therefore the linearised Navier-Stokes equations,

∂tu + (U ·∇)u + (u ·∇)U = −∇π + Re−1∆u + g, (2.1)

∇ · u = 0, (2.2)

where U = (U(x, y), V (x, y), 0)T is the two-dimensional base flow and u =
(u(x, t), v(x, t), w(x, t))T is the small perturbation representing the departure
from the base flow. u′ = U+u would be the total velocity vector. x = (x, y, z)T

is the spatial position vector where x corresponds to the streamwise, y to the
wall-normal and z to the spanwise direction. Our domain of interest is defined
by a rectangular box

Ω = [0, Lx]× [0, Ly]× [−
Lz

2
,
Lz

2
]

where Lx,Ly and Lz are the corresponding lengths in the three directions. The
term g is a forcing function that can assume different roles depending on if
for instance we apply control or seek optimal forcing functions and π is the
perturbation pressure. All the quantities in equations (2.1) and (2.2) are non-
dimensional. In particular velocities are scaled with the free-stream velocity
U∞, lengths with the inflow displacement thickness δ∗0 and time with δ∗0/U∞.

The flow is considered to be incompressible and viscous. Two different
Reynolds numbers are used throughout this thesis. For the most part the
Reynolds number based on the displacement thickness δ∗,

Reδ∗ =
U∞δ∗

ν
, (2.3)

but also the Reynolds number based on the distance from the leading edge x′,

Rex =
U∞x′

ν
, (2.4)
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4 2. THEORETICAL BACKGROUND

Figure 2.1. The boundary layer flow. The dashed lines indi-
cate the computational box. The arrow shows the direction of
the flow.

are used. ν is the kinematic viscosity.

For this work both Direct Numerical Simulations (DNS) as well as Large
Eddy Simulations (LES) were used by employing a fully-spectral numerical
code (Chevalier et al. 2007b).

2.1.1. State-Space formulation

As it can also be seen from equations (2.1) and (2.2) for incompressible flows the
pressure only acts as a Lagrange multiplier to maintain divergence-free velocity
fields. The pressure itself can be formally expressed as a function of the velocity
vector u = (u, v, w)T enabling the use of u as the state variable and to re-write
the equations in a compact form (Kreiss et al. 1994). The momentum part of
the forced linearized Navier–Stokes equations can be written as

∂tu = −(U ·∇)u− (u ·∇)U + Re−1∆u +∇π + g, (2.5)

where the pressure is a known function of the divergence-free velocity field u
and base flow U

∆π = −∇ · ((U ·∇)u + (u ·∇)U). (2.6)

Inversion of the Laplacian requires boundary conditions and formally we
may obtain these by projecting (2.5) on the outwards pointing normal of the
domain n. The solution of (2.6) is denoted as π = Ku so we have with the
following expression for the system operator

A = −(U ·∇)− (∇U) + Re−1∆ +∇K. (2.7)

The resulting state space formulation of equation (2.5) reads

(∂t −A)u− g = 0, u(0) = u0 , (2.8)
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with solution

u(t) = exp(At)u0
︸ ︷︷ ︸

initial value problem

+

∫ t

0
exp(Aτ)g(x, t − τ) dτ

︸ ︷︷ ︸

forced problem

. (2.9)

Alternatively A may also be defined using semi-group theory, where it is
referred to as an infinitesimal generator. First, the evolution operator T (t) is
defined as the operator that maps a solution at time t0 to time t0 + t.

u(t + t0) = T (t)u(t0) . (2.10)

The infinitesimal generator of T (t), A, is defined through the action of T for
an infinitesimal amount of time δt

Au = lim
δt→0

T (δt)u− u

δt
. (2.11)

See also Trefethen et al. (1993) and Bagheri et al. (2009).

2.2. Objective function and the Lagrangian approach

The optimisation method employed here is called the Lagrange approach. The
idea originates from classical mechanics where the Lagrangian is an alternative
way to write the energy of a dynamical system. Using calculus of variations one
seeks minima of the Lagrangian which often correspond to preferred (by the
system) states. The method is generalised so that new states (still solutions
to the original PDE) are recovered that correspond to extrema of a chosen
quantity/functional of the system. Additional constraints, apart from the gov-
erning equations themselves, can be added according to the needs of a specific
problem. Once the Lagrangian is set-up it is a calculus problem to rebuild
a new set of PDEs whose solution not only satisfies the original PDE but is
additionally an extremum with respect to the chosen objective. The chosen
functional is known as objective function and the method is referred to as the
Lagrange multiplier technique.

The objective function we choose is the kinetic energy of the perturbation
field while the constraints can be either physical, for instance the need to have
a divergence-free velocity field (part of the governing equations) or imposed like
the demand to have an initial condition of unit amplitude. Thus we introduce
the norm based on the kinetic energy of the perturbations

‖u(t)‖2 = (u(t),u(t)) =

∫

Ω
uHu dΩ. (2.12)

The general form of the Lagrangian used throughout this thesis is

L = (Objective function)− (p, (Gov. Eqs))− (σ, (Additional constraints))

The quantities p and σ are called Lagrange multipliers and they are part of
the final system of PDEs. The Lagrange multiplier p, attached to the govern-
ing equations, will be computed as solution to a PDE similar to the original
governing equations and is called the adjoint variable or the co-state variable.
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Here we apply this method to two types of problems. One is finding optimal
disturbances, that is structures in the flow that lead to final states with high
energy while the other is designing controllers that when applied to a flow
minimise the perturbation kinetic energy of the system.



CHAPTER 3

Optimal disturbances

As mentioned above the first task is finding optimal disturbances. We are inter-
ested in two different types of disturbances. First we seek the initial condition
u(0) that will have the maximum energy amplification at fixed time. Second
we consider the spatial structure of the time-periodic forcing g that creates
the largest response at large times, that is when all transients effects have died
out. Our analysis will therefore consider flow states induced by forcing or ini-
tial conditions, where a flow state is defined by the three-dimensional velocity
vector field throughout the computational domain Ω at time t.

3.1. Initial condition

First we report the derivation relevant to the optimal initial condition. In this
case we assume the forcing term g in (2.8) to be zero, so that only the first
term on the right end side of the formal solution (2.9) is of interest. We wish to
determine the unit norm initial condition u(0) yielding the maximum possible
energy (u(T ),u(T )) at a prescribed time T . We define the objective function,
as the the kinetic energy of the perturbations at time T ,

J = (u(T ),u(T )). (3.1)

Formally, the task is to maximise the above quadratic measure subject to two
constraints: the flow needs to satisfy the governing equations (2.8) (the lin-
earised Navier-Stokes) (without forcing) and the initial condition must have
unit norm (u(0),u(0)) = 1. By introducing Lagrange multipliers we may for-
mulate an unconstrained optimisation problem for the functional

L(u,p, γ) = (u(T ),u(T ))−
∫ T

0
(p, (∂t −A)u) dτ−γ ((u(0),u(0)) − 1) . (3.2)

Therefore we need to determine u,u(0),u(T ),p and γ such that L is stationary,
necessary condition for first order optimality. Finding the stationary points of
L is equivalent to solving the eigenvalue problem

γ u(0) = exp(A†T ) exp(AT )u(0) , (3.3)

where exp(A†T ) exp(AT ) is the forward and adjoint composite propagator
whose leading eigenfunction is the optimal initial condition for time T . The
iteration scheme above can be seen as a power iteration scheme finding the
largest eigenvalue of the problem (3.3). The equations are solved iteratively as

7
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DNS
In

u(0) u(T)
Out In

p(0)
Out

DNS
Adj

p(T)

u(0) is the answer!

Set
u(0)=p(0)/

Check Convergence

|u(0)−p(0)/    |<     ?

Yes

No

p(T)=u(T)
Set

Pick random IC
u(0)

γ ε
γ

Figure 3.1. Power iterations scheme.

described in the block-diagram in figure (3.1). The method is applied in Paper
3.

Additionally the localised initial condition case is studied where a specific
region in space is chosen and the optimal shape contained within the region
is sought. A sample result is shown in figure (3.2). It is a three-dimensional
localised optimal disturbance with target time T = 1820 along with the cor-
responding response. A disturbance similar to a TS-wave is apparent while
the characteristic upstream-tilted structure is present in the initial condition.
The wave-packet acquires a large initial growth while aligning itself with the
wall-normal shear and continues to amplify as it travels downstream exploiting
the convective instability of the blasius boundary layer. Finally, it experiences
an energy growth of the order of 1700.

3.2. Forcing

This section will focus on the regime response of the system to time-periodic
forcing. Since the formulation of the optimal forcing problem in this framework
is novel we present the derivation of the new system more extensively. We
assume zero initial conditions, u(0) = 0, and periodic behaviour of the forcing
function, i.e.

g = & (f(x) exp(iωt)) , f ∈ C, ω ∈ R, (3.4)

where f is the spatial structure of the forcing, ω is its circular frequency and &
denotes the real part. With these assumptions, the governing equations become

(∂t −A)u−& (f exp(iωt)) = 0, u(0) = 0. (3.5)

We wish to determine the spatial structure of the forcing f with frequency ω
in the limit of large times, that maximises the regime response of the flow.
The measure of the optimum is again based on the energy norm. In order to
formulate the optimisation problem we transform the problem in the frequency
domain, thereby removing the time dependence. By assuming time periodic
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Figure 3.2. Optimal initial condition and response for 3d
optimals for time T = 1820. For the corresponding amplitudes
of each structure look at table 1 in Paper 3. Note that we plot
both the disturbance and the response in the same figure since
they are well separated in space. a) streamwise, b) wall-normal
and c) spanwise component.

behaviour, u is replaced by the complex field ũ so that

u = & (ũ exp(iωt)) . (3.6)

The resulting governing equations can then be written

(iωI −A)ũ− f = 0. (3.7)

Note that the spatial operator A remains unchanged. The objective function is
the disturbance kinetic energy of the regime response and the Lagrange function
is formulated as follows.

L(ũ, p̃, γ, f) = (ũ, ũ)− (p̃, (iωI −A)ũ− f)− γ ((f , f)− 1) . (3.8)

The time behaviour of the co-state or adjoint variable is also assumed to be
periodic

p = & (p̃ exp(iωt)) . (3.9)

Taking variations of L with respect to ũ, p̃, f and γ gives

δL =

(
∂L
∂ũ

, δũ

)

+

(
∂L
∂p̃

, δp̃

)

+

(
∂L
∂f

, δf

)

+

(
∂L
∂γ

)

δγ. (3.10)
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Finally we set δL = 0 and obtain a system of equations
(
∂L
∂p̃

)

= 0 → −(iωI −A)ũ + f = 0 , (3.11)

(
∂L
∂ũ

)

= 0→ ũ− (−iωI −A†)p̃ = 0 , (3.12)

(
∂L
∂γ

)

= 0→ (f , f) − 1 = 0 , (3.13)

(
∂L
∂f

)

= 0→ f = γ−1p̃ . (3.14)

Equations (3.11) and (3.12) provide the two equations we have to solve, while
equation (3.13) gives the normalisation condition and (3.14) provides the op-
timality condition. It can be shown that the Lagrange multiplier technique
corresponds to the standard matrix method when the resolvent norm is con-
sidered

f =
1

γ
(−iωI −A†)−1(iωI −A)−1f . (3.15)

The above formulation leads to matrix-free method for computing the pseu-
dospectra of the given system. This is a new eigenvalue problem defining the
spatial structure of the optimal forcing at frequency ω that is solved iteratively;
the largest eigenvalue corresponds to the square of the resolvent norm

γ = ‖(iωI −A)−1‖2. (3.16)

The regime response for the direct and adjoint system is extracted from
the numerical simulations by performing a Fourier transform of the velocity
field during one period of the forcing.
The steps of the optimisation algorithm therefore are (similar to figure 3.1):
(i) Integrate (3.5) forward in time and obtain the Fourier transform response
ũ at the frequency of the forcing.
(ii) ũ is used as a forcing for the adjoint system which in time domain is written

(−∂t −A†)p−& (ũ exp(iωt)) = 0 . (3.17)

(iii) A new forcing function is determined by normalising fn+1 = p̃/γ.
(iv) If |fn+1 − fn| is larger than a given tolerance, the procedure is repeated.

A sample result is shown in figure (3.3) relevant to the optimal forcing struc-
ture at spanwise wavenumber β = 0.6 and zero frequency. The wall-normal and
spanwise components of the forcing are displayed in figure (3.3a) and b) while
the streamwise component is very weak. In contrast the streamwise velocity
component of the response is dominant while the other two components negligi-
ble (3.3c). In this case lift-up effect is the prevailing mechanism where counter-
rotation vortices parallel to streamwise planes create streamwise streaks. This
mechanism is characterised by strong component-wise energy transfer.
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Figure 3.3. Isosurfaces of optimal forcing and response for
the spanwise wavenumber β = 0.6 subject to steady forcing.
a) Wall-normal component of optimal forcing structure. b)
Spanwise component of optimal forcing. c) Streamwise veloc-
ity component of the flow response. Both the forcing structures
and the response are elongated in the streamwise direction.

a)

b)

c)

As for the initial condition, localised optimal forcing was also computed but
in this case we were restricted to the spanwise periodic case due to the high
computational cost. A specific region in the streamwise direction is chosen and
the optimal shape contained within the region is sought.



CHAPTER 4

Optimal Control

In this chapter we show how the Lagrange multiplier technique can be applied to
solve the optimal control problem. The objective is disturbance attenuation and
transition delay. The problem is divided into two distinct and self-contained
problems. This is called the separation principle (Skogestad & Postlethwaite
2005). The first problem is full-information control where assuming full state
knowledge of the flow a feedback control signal is computed. Full-state knowl-
edge is a strong requirement and in order to relax it an estimator based on
wall measurements is built. The combination of an estimator and a full infor-
mation controller is called compensator, where the control law is based on the
estimated flow.

4.1. Full-information Control

In this section the design process of the full information controller is presented.
Therefore it is assumed that the exact state of the system is known. The
state-space formulation is adopted,

∂tq = Aq + B1w1 + B2φ , (4.1)

where q = [v η χ]T is the new state variable. In relation to the previous section
q can also be written as q = [u χ]T including χ, the velocity at the wall. B1w1

is the forcing due to external excitations w1 of stochastic nature and B2φ is
the forcing from the control signal φ. The operator A governs the dynamics of
the augmented system (Chevalier et al. 2007a). The control is applied through
non-homogeneous boundary conditions as a model for localised blowing and
suction at the wall and a lifting procedure is adopted so that the formulation
becomes compatible with the classical control theory where the control signal is
expressed in the equations as a volume forcing (Högberg & Henningson 2002).
In the case of full state-feedback control the signal is calculated directly from
the state q so B2φ = B2Kq where K is the control gain.

The aim is to compute the optimal control gain K so that the kinetic energy
of the mean-flow disturbances is minimised while at the same time the control
effort is kept at low levels. To this end the following objective function is
defined,

F =
1

2

∫ T

0

(

qHQq + φ∗Rφ
)

dt . (4.2)

12
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where (·)∗ denotes the complex conjugate and (·)H is the Hermitian transpose.
The term q∗Qq corresponds to the kinetic energy of the perturbations where
Q is the energy norm operator. The second term in equation (4.2) represents
the control effort where R is the actuation penalty.

We apply the Lagrange multiplier technique to find the optimal solution
to our problem. The Lagrangian is written as

L(q, p,φ) =

∫ T

0

[
1

2

(

qHQq + φHRφ
)

− p (∂tq −Aq − B2φ)

]

dt , (4.3)

where p is the Lagrange multiplier. The stochastic term B1w1 is dropped
since the deterministic approach is used for the full information control. The
variation of the Lagrangian functional can be written as

δL =

(
∂L
∂q

)

δq +

(
∂L
∂p

)

δp +

(
∂L
∂φ

)

δφ . (4.4)

Combining equations (4.3) and (4.4) and assuming δL = 0 leads to the set
of equations

∂tp + AHp + Qq = 0 (4.5a)

−∂tq + Aq + B2φ = 0 (4.5b)

Rφ + BH
2 p = 0 . (4.5c)

A linear time dependent relation is assumed between the forward solution
q and the Lagrange multiplier p = Xq. Inserting this assumption into equation
4.5a and adding equations 4.5a and 4.5c we arrive at the differential Riccati
equation

∂X
∂t

+ AHX + XA− XB2R−1BH
2 X + Q = 0 . (4.6)

The optimal K is then given through the non-negative Hermitian solution X
of equation 4.6. A full derivation of the above equation is given by Lewis &
Syrmos (1995). A simplified version arises if an infinite time horizon is assumed,
yielding the steady-state Riccati equation

AHX + XA− XB2R−1BH
2 X + Q = 0 . (4.7)

with the control gain computed from

K = −R−1BHQX . (4.8)

4.2. Estimation

The estimator is designed to approximate the full three-dimensional velocity
field from wall measurements in real time. Measurements are taken from the
wall and the signal includes noise from the sensors. The estimator can be seen
as a filter operator, also termed Kalman filter, where the equations governing
the flow are used for the filtering process. Input is the measurements from the
real flow and output the estimated flow.
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In the estimation problem two flow fields are considered: The ’real’ flow
and the estimated flow. All the quantities that correspond to the estimated
flow are marked with a hat (̂·). The estimated field is assumed to fulfill the
following equation

∂q̂

∂t
= Aq̂ − L(r − r̂) + B2φ , (4.9)

where L is the measurement gain and r indicates the measurements. The latter
are extracted through the measurement operator C and since the measurements
process introduces noise, we write r = Cq + g and r̂ = Cq̂, where g is the
measurement noise. The following derivation provides with an operator L which
optimally minimises the difference between the real and the estimated flow,
namely the estimation error q̃ = q − q̂. The governing equation for q̃ reads

∂q̃

∂t
= (A + LC)q̃ + B1w1 + Lg = Aeq̃ + B1w1 + Lg . (4.10)

We employ the stochastic approach instead of the deterministic used in
the full-information control problem, since the equation is forced by stochastic
inputs. We assume that the external disturbances w1 and g are zero-mean
stationary white noise Gaussian processes (Chevalier et al. 2007a). Since the
system is forced by these stochastic processes, expected values of the relevant
flow quantities are examined. In particular for the estimation problem the
covariance of the estimation error P (Kailath & Hassibi 2000) is considered and,
as for the full information control, a steady state is assumed. The covariance
of the error satisfies the algebraic Lyapunov equation

AeP + PAH
e + B1WBH

1 + LGLH = 0 , (4.11)

where W and G are the covariances of w1 and g respectively. This equation
along with the objective function, F = r̃H r̃ (amplitude of the measurement dif-
ference) form a new Lagrangian M where the traces of the covariance matrices
are involved. The trace of covariance matrices correspond to rms (root-mean-
square) values of the quantity under consideration (Hoepffner et al. 2005).

M = trace(PQ) + trace[Λ(AeP + PAH
e + LGLH + B1WBH

1 )] (4.12)

where Λ is the Lagrange multiplier. The first term in equation (4.12) is the
objective function to be minimised and the second is the constraint coming
from the Lyapunov equation satisfied by the covariance error. The Riccati
equation that arises from optimising P reads

AP + PAH − PCHG−1CP + B1WBH
1 = 0 , (4.13)

with the estimation feedback gain given by L = −PCHG−1. For a similar
derivation see also Bagheri et al. (2007). In this project the theory above
is applied in a highly nonlinear case, where one may use the full (nonlinear)
equations when solving the estimation problem (4.9) while the L is computed
with the linear theory. This is the extended Kalman filter and it is expected to
be more accurate than the standard Kalman filter.
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4.3. Compensator

The compensator is the combination of full information control and state esti-
mation. The measurements taken from the real flow are communicated to the
estimator where they are used to compute the forcing needed to reproduce the
perturbations present in the real flow. The actuation signal is computed from
the estimated flow and it is applied to both the estimated and the real flow.
Although both the control and estimation gains were computed for linear sys-
tems, the control and estimation is applied to the full nonlinear Navier-Stokes
equations (Högberg et al. 2003c).

The model for the flow employed here is somewhat simplified in relation
to the optimal disturbance case. A parallel base flow is assumed and thus
the streamwise wavenumbers are decoupled. Hence we are able to apply a
Fourier transform along both the wall-parallel directions. We can treat each
wavenumber pair individually and instead of solving one problem with a large
number of degrees of freedom, we solve many smaller systems. This necessity
arises from the fact that we employ a matrix-based method to solve the Riccati
equation which would be intractable for the global problem. This assumption
stands as a good approximation due to the slow viscous growth of the boundary
layer.

The compensator problem assumes that measurements are taken and actu-
ation is applied continuously over the whole domain. This theory is applied to
a spatial boundary layer and both measurements and actuation are available
only on a part of the domain (see figure 2 in Paper 1). Two regions need to be
specified, one for the control and one for the estimator. For both regions, the
local laminar velocity profile is the base flow in the operator used to solve the
problems introduced in the previous section. Once the control and estimation
gains are calculated, the actuation forcing is limited to the actuation region by
a smooth transfer function in physical space with two smooth step functions
around the chosen locations (Chevalier et al. 2007a).

In figure 4.1 some sample results are shown. Figure 4.1a shows the wall-
normal maximum of the rms-value of the streamwise velocity perturbation for
the uncontrolled case and for both full information control and compensation.
As observed, the growth of the the streaks is reduced within the control region.
However, downstream of the control region, velocity fluctuations continue to
grow. This can be explained by the presence of the free-stream turbulence
above the boundary layer that is able to induce new perturbations inside the
boundary layer.

4.4. Approaching the experiment

In this section we describe how we designed a numerical simulation that re-
sembles the experiment done by Lundell (2007) in terms of flow case. Instead
of the opposition control strategy used in the experiment we use the optimal
control theory described above.
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Figure 4.1. (a): Wall normal maximum urms; (b): skin fric-
tion coefficient cf . No control, ; Full information con-
trol, ; Compensator, . The shaded areas indicate
the measurement and actuation region.

First we recall the differences between the actuator in the experiment and
in the simulations. These pertains the way the control signal is calculated and
the area over which control is applied. In the experiment opposition control
is adopted where the amplitude of the suction velocity and the time delay be-
tween the sensor an the actuator are varied. In the simulation an optimisation
of the distributed control is performed and no further tuning is required. Note
however that the control signal is computed assuming linearly evolving distur-
bances and parallel base flow. Secondly, it should be mentioned that the control
is active over a large area of the plate where relatively weak blowing/suction is
applied in the case of the numerical simulations. Conversely, small holes with
strong suction velocity are used in the experiment. Further, in the simulation
we apply control over the full spanwise width of the domain while in the exper-
iment control sets are only stationed near the middle of the plate on an area
about 20 mm wide.

These differences are reduced and further simulations were performed in
order to study how much and if the two cases converge. The control strategy
in terms of the way the control signal is calculated is not changed but the
focus is put on the geometrical/functioning aspects of the actuator itself. In
that context we first remove the blowing and keep only the suction. Then,
we restrict the area of actuation to spanwise stripes and limit the streamwise
extension of the area where suction is applied. Finally we employ a ‘cheaper’
control in order to obtain stronger suction to better mimic the experiment.

In figure 4.2 we show the streak growth and the efficiency of the control
Ω from the simulation where all the previous restriction on the actuator have
been applied. Ω is the relative decrease of the disturbance level in the boundary
layer due to the control,

Ω = 1−
urms,max,on

urms,max,off
. (4.14)
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In this case the control effect is almost the same for both the experiment and
the simulation near the actuation region but downstream there is a delay of
transition only for the numerical control. This can be explained by the fact
that in the experiment, control is applied near the middle of the plate and when
transition occurs, fully developed turbulence ‘invades’ the controlled area from
the uncontrolled sides.



CHAPTER 5

Summary of papers

Paper 1

DNS and LES of estimation and control of transition in boundary layers subject
to free-stream turbulence.
In this paper optimal control is considered where transition to turbulence oc-
curs in a flat-plate boundary-layer flow subjected to high levels of free-stream
turbulence. This scenario is denoted bypass transition and is characterised
by the non-modal growth of streamwise elongated disturbances called streaks.
Linear feedback control is applied in order to reduce the perturbation energy
and consequently delay transition. Control is applied by blowing and suction
at the wall and it is both based on the full knowledge of the instantaneous
velocity field (i.e. full information control) and on the velocity field estimated
from wall measurements.

The control is able to delay the growth of the streaks in the region where it
is active, which implies a delay of the whole transition process. The flow field
can be estimated from wall measurements alone: The structures occurring in
the ‘real’ flow are reproduced correctly in the region where the measurements
are taken. Downstream of this region the estimated field gradually diverges
from the ‘real’ flow, revealing the importance of the continuous excitation of
the boundary layer by the external free-stream turbulence. Control based on
estimation, termed compensator, is therefore less effective than full information
control.

Paper 2

Feedback Control of Boundary Layer Bypass Transition: Experimental and Nu-
merical Progress.
In this paper simulations of optimal feedback control have been performed for
a flow configuration similar to that used by Lundell (2007) and disturbance
attenuation as well as transition delay have been obtained. First, an effort is
made to match the disturbance behaviour in the experimental flow case and
in the simulation. Secondly control is applied in simulations of the matched
system aiming at approaching the type of actuation used in the experiments
(localised suction). Optimal feedback of the linear system is still the basis for
computing the control signal. Remarkable agreement is obtained in terms of
disturbance attenuation while the discrepancy in the transition delay can be

18
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explained by the fact that in the experiment the controlled region was very
narrow in the spanwise direction. Consequently, the controlled region is con-
taminated by turbulence from the sides.

Paper 3

Global optimal disturbances in the Blasius boundary-layer flow using time-
steppers.
In this paper optimal disturbances are computed for the case of the flat-plate
boundary-layer flow. Both the optimal initial condition leading to the largest
growth at finite times and the optimal time-periodic forcing leading to the
largest asymptotic response (pseudospectra) are considered. The Lagrange
multiplier technique is employed with objective function the kinetic energy of
the flow perturbations and constraints the linearised Navier–Stokes equations.
Additionally optimal disturbances are computed within a localised framework
which for some cases are more relevant to physical situations. In general two dif-
ferent type of disturbances are recovered; the first is relevant to the modal mech-
anism of a TS-wavepacket ignited by Orr-like structures and convectively ampli-
fying due to the streamwise non-normality; the second is relevant to streamwise
elongated disturbances, called streaks, generated by counter-rotating stream-
wise vortices associated with the strong component-wise transfer of energy due
to the lift-up effect. It was found that the first mechanism(s) is more pro-
nounced because of both the long computational domain and the relatively
high Reynolds number considered here.



CHAPTER 6

Conclusions and Outlook

Numerical simulations of flat-plate boundary-layer flows are performed. Linear
optimal disturbances are computed and optimal control is applied at the case of
the bypass transition. The Lagrange multiplier method is used with a quadratic
objective function.

The optimal initial conditions leading to the largest possible energy am-
plification at time T and the optimal spatial structure of time-periodic forcing
are considered. It is found that two mechanisms dominate the dynamics of this
configuration. One corresponding to a combination of the Orr mechanism and
the streamwise non-normality of the TS-wave and one to the lift-up inherent to
spanwise wavelengths of the order of the boundary layer thickness. It is found
that due to the the long computational box and the relatively high inflow Rey-
nolds number as well as due to the exponential-type of growth of the TS-wave
the former has more potential for growth. However the later grows much faster
and reaches its maximum sooner.

A linear-based feedback control is applied in order to delay transition, in a
flow with highly nonlinear behaviour. The estimator and controller are designed
within the Linear Quadratic Regulator (LQR) framework where a parallel base
flow is assumed simplifying the computation of the gains. The results show that
the control is able to reduce the energy of the streaks, responsible through their
secondary instabilities for the considered bypass-transition scenario and thus
delay the whole process. Both full-information and estimation-based control are
tested. Control based on estimation is less effective than the full information
control. The delay achieved is of order of the streamwise extent of the area
where control is applied. Additionally numerical simulations are performed for
a flow case analogous to the experiment performed by Lundell (2007). The
control strategy differs but the rest of the features are kept as close as possible.
Remarkable agreement is achieved in terms of disturbance attenuation.

Both of the studies presented in this work concern the relative restrictive
geometry of the flat-plate boundary layer. This simplified flow case was chosen
due to the importance of understudying processes acting on a fundamental level.
Additionally a restriction was imposed by the specific code used (Chevalier et al.
2007b) allowing only for simple shear flows. At a next stage we are interested in
exploring the optimisation tools developed so far in more complex geometries.
Therefore another code is employed e.i. the Nek5000 (Patera 1984; Tufo &
Fischer 1999). This code is built based on the spectral element method, so

20
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while retaining spectral accuracy it is more flexible allowing for the modelling
of curved geometries. The aim is to apply the method to still rather generic
geometries, simple enough to be able to accurately perform direct numerical
simulations. For example two of the cases we intend to investigate in the near
future are flow around a parabolic leading edge and through a diffuser.
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Transition to turbulence occurring in a flat-plate boundary-layer flow sub-
jected to high levels of free-stream turbulence is considered. This scenario,
denoted bypass transition, is characterised by the non-modal growth of stream-
wise elongated disturbances. These so-called streaks are regions of positive and
negative streamwise velocity alternating in the spanwise direction inside the
boundary layer. When they reach large enough amplitudes, breakdown into
turbulent spots occurs via their secondary instability. In this work the bypass-
transition process is simulated using direct numerical simulations (DNS) and
large-eddy simulations (LES). The ADM-RT subgrid-scale model turned out
to be particularly suited for transitional flows after a thorough validation.

Linear feedback control is applied in order to reduce the perturbation en-
ergy and consequently delay transition. This case represents therefore an ex-
tension of the linear approach (Chevalier et al. 2007a) to flows characterised
by strong nonlinearities. Control is applied by blowing and suction at the
wall and it is both based on the full knowledge of the instantaneous velocity
field (i.e. full information control) and on the velocity field estimated from wall
measurements.

The results show that the control is able to delay the growth of the streaks
in the region where it is active, which implies a delay of the whole transition
process. The flow field can be estimated from wall measurements alone: The
structures occurring in the “real” flow are reproduced correctly in the region
where the measurements are taken. Downstream of this region the estimated
field gradually diverges from the “real” flow, revealing the importance of the
continuous excitation of the boundary layer by the external free-stream tur-
bulence. Control based on estimation, termed compensator, is therefore less
effective than full information control.
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1. Introduction

The aim of this study is to perform numerical simulations to apply linear feed-
back control to transitional boundary-layer flows in the presence of free-stream
turbulence where bypass transition occurs. An efficient pseudo-spectral numeri-
cal discretization is used and tools from modern control theory are incorporated
into the controller design. Both large-eddy and direct numerical simulations
are performed for evaluating the control efficiency in a highly nonlinear config-
uration.

1.1. Flow Control

Control of wall-bounded transitional and turbulent flows is the object of the
present investigation owing to the high potential benefits. Any reduction of
the skin friction, for example, implies relevant savings of the operational cost
of commercial aircrafts and cargo ships. In particular the bypass transition
scenario considered here is relevant in turbomachinery where high levels of
free-stream turbulence are present.

Direct numerical simulations (DNS) have provided physical insight into the
phenomena of transitional and turbulent flows, despite the fact that they are
limited to simple and moderate Reynolds-number flows (Moin & Mahesh 1998).
The same tools are now adopted to investigate the feasibility and performance
of feedback control algorithms on a complex transitional flow case.

A linear model-based feedback control approach, that minimises an objec-
tive function which measures the perturbation energy, is formulated where the
Orr-Sommerfeld and Squire equations model the flow dynamics. The latter
equations describe the linear evolution of perturbations evolving in a parallel
base flow. The requirement implicit in this formulation is the need of complete
state information. However, the control problem can be combined with a state
estimator to relax this requirement. The information problem is a limiting
factor in the success of a control scheme, since, as a first step, it affects the
whole procedure. The so-called Kalman and extended Kalman filter have been
implemented in order to reconstruct the flow in an optimal manner by only
considering wall measurements (Kailath & Hassibi 2000).

Flow control has been the object of comprehensive investigation the past
years and recently, much effort has been put in the combination of computa-
tional fluid dynamics and control theory. While early attempts of flow control
were based on physical intuition or on a trial-and-error basis, more systematic
approaches are now followed. General reviews on flow control can be found in
Moin & Bewley (1994), Joslin et al. (1996), Bewley (2001) and Kim & Bewley
(2007) to mention a few.

Different control strategies have been attempted over the years for transi-
tional flows, for example, wave cancellation where Tollmien-Schlichting waves
are damped by applying anti-phase signals. Early reviews on the subject can
be found in Thomas (1990) and Metcalfe (1994). Wave-cancellation methods
for control were applied already in the 80es both experimentally (Thomas 1983)
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and numerically, see e.g. Laurien & Kleiser (1989). A more ’drastic’ control
strategy, also known as laminar flow control, consists in stabilising the flow by
applying strong suction on the boundary layer thus modifying the mean flow
profile. A review on this method can be found in Joslin (1998). Nonlinear
control methods have been studied as well and an overview of these methods is
given by Joslin et al. (1997). In many cases nonlinear control is applicable only
within the conditions and parameter range that it is designed for. An example
of a robust controller that addresses that problem is described by Bewley et al.
(2000). Other examples of application of nonlinear controllers are Berggren
(1998), Bewley et al. (2001) and Collis et al. (2000).

The use of linear feedback controllers has been investigated more recently.
This was motivated by the understanding on how the energy growth of fluc-
tuations in a turbulent flow is related to linear mechanisms. In particular,
Farrell & Ioannou (1996), Henningson (1996) and Kim & Lim (2000) showed
that linear mechanisms are important to sustain turbulence and thus linear
controllers can be applied for turbulence control. One early work on linear
feedback control schemes is Joshi et al. (1995). Results from the application of
linear optimal control theory also confirm the importance of linear mechanisms
in the nonlinear flows under consideration (Högberg & Henningson 2002). Re-
laminarisation of turbulent channel flow was achieved by Högberg et al. (2003a)
with this method and the controller and estimator were combined by Högberg
et al. (2003b). The combined control and estimation problem is also known as
a “compensator”.

Recent studies from our group on the application of model-based linear
feedback control have shown the importance of physically relevant stochastic
models for the estimation problem which turns out to be crucial for fast con-
vergence (Hoepffner et al. 2005; Chevalier et al. 2006). Such stochastic noise
needs to describe accurately enough the unmodelled dynamics, like uncertain-
ties and nonlinearities. Based on these models the estimator is shown to work
for both infinitesimal as well as finite amplitude perturbations in numerical
simulations. The compensator has been applied to spatially developing bound-
ary layers and shown to reduce the perturbation energy of both modal and
non-modal disturbances (Chevalier et al. 2007a).

1.2. Bypass transition

Laminar-turbulent transition in a zero-pressure-gradient boundary layer sub-
ject to high levels of free-stream turbulence is considered. Such a scenario is
usually referred to as bypass since the transition occurs bypassing the expo-
nential growth of the Tollmien-Schlichting waves. It has indeed been shown
both experimentally and theoretically that the asymptotic solutions given by
the classical stability analysis are not always adequate to predict transition
in wall-bounded shear flows. In some cases significant energy growth can be
observed even when the flow is stable (Schmid & Henningson 2001). This can
be explained by the non-normality of the the linearised operator describing the
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Figure 1. Visualisation of the streamwise disturbance veloc-
ity component (dark colour is low velocity, light high velocity)
in a plane close to the wall showing the flow development un-
der the influence of free-stream turbulence. Streamwise extent
Rex = [32000, 570000], true aspect ratio. The streamwise ex-
tent corresponds to almost the full length of a typical turbine
blade.

flow dynamics and the associated non-orthogonal set of eigenmodes (Reddy &
Henningson 1993). If the state of the system has a strong projection on some of
these highly non-orthogonal eigenmodes the energy of the flow can experience
a significant transient growth. In the case of boundary layers, the upstream
perturbations which undergo the largest possible growth consist of streamwise
counter-rotating vortex pairs, see Andersson et al. (1999). These vortices lift
low-momentum fluid from the wall and push high-momentum fluid from the
outer parts towards the plate, thus creating elongated regions of alternating
accelerated and decelerated fluid, called streaks. This process of vortex tilting
is also known as lift-up effect (Landahl 1980).

After the primary energy growth due to the lift-up effect, the flow is in
a more complicated laminar state where strong nonlinear interactions can
come into play, leading to transition to turbulence. As the streaks grow in
strength, they become susceptible to high-frequency secondary instabilities due
to the presence of both wall-normal and spanwise inflectional velocity profiles
(Brandt & Henningson 2002; Brandt 2007). These secondary instabilities man-
ifest themselves in symmetric and antisymmetric streak oscillations, which are
precursors to the formation of localised regions of chaotic swirly motion, the so-
called turbulent spots (Brandt et al. 2004; Mans et al. 2007). The leading edge
of a spot travels at about the free-stream velocity U∞ while the trailing edge
at half this speed. The spots become therefore more elongated and eventually
merge: a fully-developed turbulent boundary layer is observed. A visualisation
of the transition under free-stream turbulence from the simulations presented
here is provided in figure 1. Streamwise streaks can be seen to form close to
the computational inlet, followed by streaks oscillations and turbulent spots.
The flow is turbulent in the second half of the domain.

The bypass transition scenario is observed when the boundary layer is
subject to free-stream turbulence levels higher than 0.5-1% (Matsubara & Al-
fredsson 2001). As described above, the flow reproduces, though on a larger
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scale, the near-wall dynamics of wall-bounded turbulence, see e.g. Robinson
(1991), and it is therefore and ideal test configuration in view of possible con-
trol of turbulent flows. This work represents therefore a natural extensions
of the flow control studies mentioned above (Hoepffner et al. 2005; Chevalier
et al. 2007a) to flows characterised by strong nonlinear interactions. An ex-
perimental demonstration of reactive control of the same scenario was recently
presented by Lundell (2007). In this study, an ad-hoc threshold-and-delay con-
trol algorithm is evaluated and shown to inhibit the growth of the streamwise
velocity fluctuations for a distance downstream of the actuator position.

The paper is organised as follows. In section 2 the control approach is
presented while the numerical method, the large-eddy simulation and the free-
stream turbulence generation are introduced in section 3. The results are pre-
sented in section 4. First, the focus will be on the validation of the LES while in
the second part of section 4, linear feedback control applied to bypass transition
is considered. The paper ends with a summary of the main conclusions.

2. Feedback control

Linear analysis is commonly used to understand the energy growth mechanisms
of perturbations in shear flows (Schmid & Henningson 2001). However, it can
also be used as a tool to design controllers that actively reduce the pertur-
bation level and prevent or delay transition. The procedure adopted here is
linear feedback control based on noisy measurements within the Linear Qua-
dratic Gaussian (LQG) framework where a Linear Quadratic Regulator (LQR)
is combined with a Kalman filter (Friedland 1986).

Within this framework a set of linear equations is used as a model for the
physical process to be controlled along with a quadratic objective function. The
system is assumed to be subject to Gaussian random excitations which repre-
sent unmodelled dynamics, e.g. nonlinearities. The control requires knowledge
of the full state of the system. Therefore a state estimator, also called Kalman
filter, is used to reconstruct the flow field from noisy measurements taken at
the wall. To model uncertainties in the measurements, noise is assumed to
contaminate the output signals. The control and estimation problem can be
considered and solved separately and when combined it can be proven that
this is the optimal solution (Skogestad & Postlethwaite 2005). This is known
as the separation principle. Control can be applied both in the real and in
the estimated flow. The combination of an estimator and a full information
controller is called compensator.

The design of a controller aims at finding the optimal mapping between the
various inputs and outputs of the system in such a way that a certain objective
is obtained. In this case the system is the boundary layer flow, inputs are the
external disturbances from the free stream (unknown) and the blowing/suction
at the wall (known) while output is the wall measurements (known). The
objective here is to reduce the kinetic energy of the perturbations in the flow.
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2.1. Control

In this section the design process of the full information controller is presented.
Therefore it is assumed that the exact state of the system is known.

To model the flow, the linearised Navier-Stokes equations are employed

∂u

∂t
+ U∇u + u∇U = −∇π + Re−1∇2u (1a)

∇u = 0 , (1b)

where u = [u v w]T . The streamwise, wall-normal and spanwise directions are
denoted x, y and z respectively, with the corresponding velocity components
u, v and w and wavenumbers kx, ky and kz.

In equations 1 we consider small perturbations around the base flow
U = [U V W ]T . To reduce the order of the system a parallel base flow is
assumed U = [U(y) 0 0]T and under this assumption Fourier transform can be
applied along the wall-parallel directions. Thus we can treat each wavenumber
pair individually and instead of solving one problem with a large number of
degrees of freedom, we solve many smaller systems. For the channel flow this
assumption is exact, whereas for boundary layers, it is a good approximation
due to their slow viscous growth.

To eliminate the pressure the wall-normal velocity v and wall-normal vortic-
ity η formulation is adopted where the state is (v η)T . The equations that de-
scribe the dynamics are the Orr-Sommerfeld/Squire (OSS) system (see Schmid
& Henningson (2001))

∂

∂t

(

v
η

)

=

(

LOS 0
LC LSQ

) (

v
η

)

(2)

where
LOS = [∆]−1[−ikxU∆ + ikxD2U + 1

Re∆]
LC = −ikzDU
LSQ = −ikxU + 1

Re∆ .
(3)

U is the mean-flow profile, the similarity Blasius solution, ∆ is the Laplacian
operator ∆ = D2 − k2 with k2 = k2

x + k2
z and D the wall-normal derivative.

The Reynolds number Re is defined using the free-stream velocity U∞ and the
local boundary-layer displacement thickness δ∗,

Re =
U∞δ∗

ν
. (4)

The control is applied through non-homogeneous boundary conditions as
a model for localised blowing and suction at the wall. To adopt the same
formulation as in classical control theory, the control signal is expressed in the
equations as a volume forcing by a lifting procedure (Högberg & Henningson
2002). To account for non-modelled dynamics, such as non-parallel effects and
nonlinearities, external excitation is added such that two extra forcing terms
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appear in the equations

∂q

∂t
= A q + B1w1 + B2ψ , (5)

where q = [v η χ]T , B1w1 is the forcing due to external excitations w1 of
stochastic nature and B2ψ is the forcing from the control signal ψ and χ is
the velocity at the wall. We thus have ∂χ/∂t = ψ. The operator A governs
the dynamics of the augmented system (Chevalier et al. 2007a). Note that the
control signal is the time derivative of the blowing and suction at the wall. In
the case of full state-feedback control the signal is calculated directly from the
state q so B2ψ = B2K q where K is the control gain.

The aim is to calculate the control gain K so that the kinetic energy of the
mean-flow disturbances is minimised while at the same time the control effort
is kept at low levels. To this end the following objective function is defined,

F =

∫ T

0
(q∗Qq + ψ∗

Rψ) dt . (6)

where (·)∗ denotes the complex conjugate. The term q∗Qq corresponds to the
kinetic energy of the perturbations for the specific wavenumber pair under con-
sideration where Q is the energy norm operator. The second term in equation
6 represents the control effort, R = l2 where l is the actuation penalty.

As a next step we discretise the problem so that it can be solved numeri-
cally. The control problem is now redefined as a set of one-dimensional partial
differential equations, one for each wavenumber pair. Along the wall-normal
direction y, Chebyshev polynomials are used. In the case of unbounded do-
mains the corresponding wall-parallel wavenumbers are a continuous set but
in a bounded domain this set becomes discrete and the corresponding Fourier
representation transforms from integrals into series. The series will be trun-
cated to a wavenumber that corresponds to the resolution of the numerical
simulation.

If q is the discrete state vector the energy norm operator Q is defined in
such a way that the quantity qHQq approaches the kinetic energy of the system
as the resolution increases. qH is the Hermitian transpose of q.

The discretised system has a similar form as the continuous one

∂q

∂t
= Aq + B1w1 + B2φ , (7)

where the quantities q, A, B1, w1, B2 and φ are the equivalent discrete coun-
terparts of q, A , B1, w1, B2 and ψ.

We use the Lagrange multipliers to find the optimal solution to our prob-
lem. We define the Lagrangian

L =

∫ T

0

[
1

2

(

qHQq + φHRφ
)

− p

(
∂q

∂t
−Aq −B2φ

)]

dt , (8)
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where p is the Lagrange multiplier and R is the discrete versions of R. Here we
have dropped the stochastic term B1w1 since we will use the deterministic ap-
proach in deriving the full information control. The variation of the Lagrangian
functional can be written as

δL =

(
∂L
∂q

)

δq +

(
∂L
∂p

)

δp +

(
∂L
∂φ

)

δφ . (9)

Combining equations 8 and 9 and assuming δL = 0 leads to the set of
equations

∂L
∂q

=
∂p

∂t
+ AHp + Qq = 0 (10a)

∂L
∂p

= −
∂q

∂t
+ Aq + B2φ = 0 (10b)

∂L
∂φ

= Rφ + BH
2 p = 0 . (10c)

A linear time dependent relation is assumed between the forward solution
q and the Lagrange multiplier p = Xq. Inserting this assumption into equation
10a and adding equations 10a and 10c we arrive at the differential Riccati
equation

∂X

∂t
+ AHX + XA−XB2R

−1BH
2 X + Q = 0 . (11)

The optimal K is then given through the non-negative Hermitian solution
X of equation 11. A full derivation of the above equation is given by Lewis &
Syrmos (1995). A simplified version arises if an infinite time horizon is assumed,
yielding the steady-state Riccati equation

AHX + XA−XB2R
−1BH

2 X + Q = 0 . (12)

with the control gain computed from

K = −R−1BHQX . (13)

The Riccati equation is solved for each streamwise and spanwise wavenumber
pair (kx, kz) separately and an inverse Fourier transform can be applied to visu-
alise the control gains in physical space. It is shown by Högberg & Henningson
(2002) that the control gains, relating the velocity perturbations to the con-
trol signal, are spatially localised: The control is thus dependent only on the
perturbations in a limited region located upstream of the actuator.

2.2. Estimation

The duty of the estimator is to approximate the full three-dimensional velocity
field from wall measurements in real time. Measurements are taken from the
wall and the sensors responsible for the measurements include noise. The esti-
mator can be seen as a filter operator where the equations governing the flow
are used for the filtering process. Input is the measurements from the real flow
and output the estimated flow. This is often called Kalman filter.
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In the estimation problem two flow fields are considered: The ’real’ flow
and the estimated flow (see figure 2). All the quantities that correspond to the

estimated flow are marked with a hat (̂·).
The estimated field is assumed to fulfill the following equation

∂q̂

∂t
= Aq̂ − L(r − r̂) + B2φ , (14)

where L is the measurement gain and r indicates the measurements. The latter
are extracted through the measurement operator C and since the measurements
process introduces noise, we write r = Cq + g and r̂ = Cq̂, where g is the
measurement noise. The governing equation for the estimation error can be
written as

∂q̃

∂t
= (A + LC)q̃ + B1w1 + Lg = Aeq̃ + B1w1 + Lg . (15)

The aim of the estimation problem is to minimise the difference between
the real and the estimated flow, namely the estimation error q̃ = q−q̂. From the
equations above the mathematical similarity between the feedback control and
the estimation problem is evident. We are looking for the optimal L for which
the objective function F = r̃H r̃ is minimised. However in this case we have to
use the stochastic approach instead of the deterministic, since the equation is
forced by stochastic inputs.

We assume that the external disturbances w1 and g are zero-mean station-
ary white noise Gaussian processes (Chevalier et al. 2007a). Since the system is
forced by these stochastic processes, expected values of the relevant flow quan-
tities are examined. In particular for the estimation problem the covariance of
the estimation error P is considered and, as for the full information control,
a steady state is assumed. The covariance of the error satisfies the algebraic
Lyapunov equation

AeP + PAH
e + B1WBH

1 + LGLH = 0 , (16)

where W and G are the covariances of w1 and g respectively. This along with
the objective function F form a new Lagrangian M where the traces of the co-
variance matrices are involved. The trace of covariance matrices correspond to
rms (root-mean-square) values of the quantity under consideration (Hoepffner
et al. 2005).

M = trace(PQ) + trace[Λ(AeP + PAH
e + LGLH + B1WBH

1 )] (17)

where Λ is the Lagrange multiplier. The first term in equation 17 is the objec-
tive function to be minimised and the second is the constraint coming from the
Lyapunov equation satisfied by the covariance error. At the stationary point
of M

∂M
∂P

= Q + (A + LC)HΛ + ΛH(A + LC) = 0 (18a)

∂M
∂Λ

= (A + LC)P + P (A + LC)H + B1WBH
1 + LGLH = 0 (18b)
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∂M
∂L

= 2Λ(PCH + LG) = 0 . (18c)

The solution to this optimisation problem is given by the numerical solution
P of a Riccati equation similar to that arising in the feedback control problem

AP + PAH − PCHG−1CP + B1WBH
1 = 0 , (19)

with the estimation feedback gain given by L = −PCHG−1. For a similar
derivation see also Bagheri et al. (2007).

In the computations presented, three quantities are measured at the wall,
namely the streamwise and spanwise skin friction and the pressure

τx = τxy|wall =
1

Re

∂u

∂y

∣
∣
∣
∣
wall

(20a)

τz = τzy|wall =
1

Re

∂w

∂y

∣
∣
∣
∣
wall

(20b)

pwall = ∆−1
xz

(
1

Re

∂3v

∂y3

) ∣
∣
∣
∣
wall

(20c)

where ∆−1
xz denotes the formal inverse of the wall-parallel Laplacian.

The Kalman filter presented here is the optimal estimation in a linear
setting. To apply the above theory in a highly nonlinear case, one may use the
full (nonlinear) equations when solving the estimation problem 14 while the
gains used are computed with the linear theory. This is the extended Kalman
filter and it is expected to be more accurate than the standard Kalman filter.

2.3. Compensator

The compensator is the combination of full information control and state esti-
mation. The measurements taken from the real flow are communicated to the
estimator where they are used to compute the forcing needed to reproduce the
perturbations present in the real flow. The actuation signal is computed from
the estimated flow and it is applied to both the estimated and the real flow.
Although computed for linear systems, the control and estimation are applied
to the full nonlinear Navier-Stokes equations (Högberg et al. 2003c).

The compensator problem as it was stated here accounts only for paral-
lel flows as there is no explicit streamwise dependence in the OSS operator.
Further, it assumes that measurements are taken and actuation is applied con-
tinuously over the whole domain. This theory is applied to a spatial boundary
layer and both measurements and actuation are available only on a part of the
domain (see figure 2). Two regions need to be specified, one for the control and
one for the estimator. For both regions, the local laminar velocity profile is used
as a base flow in the OSS operator. The flow is assumed to be locally parallel
around these locations in order to solve the control and estimation problems.
Once the control and estimation gains are calculated, the actuation forcing is
limited to the actuation region by a smooth transfer function in physical space
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Estimated Flow

Control

signal

Measurement
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Figure 2. A schematic drawing of the compensator. Wall
measurements are taken in the real flow and compared to those
from the estimator. The control signal is computed based on
the reconstructed velocity field and applied in the real flow.

with two smooth step functions around the chosen locations (Chevalier et al.
2007a).

3. Simulation approach

3.1. Numerical method

For the present computations, the three-dimensional, time dependent, incom-
pressible Navier-Stokes equations are solved using a spectral method (Chevalier
et al. 2007b). The algorithm uses Fourier representation in the streamwise and
spanwise directions and Chebyshev polynomials in the wall-normal direction,
together with a pseudo-spectral treatment of the nonlinear terms. Dealiasing
using the 3/2-rule is employed in the wall-parallel (Fourier) directions, whereas
a slightly increased resolution is used in the wall-normal direction to reduce
aliasing errors. The time is advanced with a four-step low-storage third-order
Runge-Kutta method for the nonlinear terms and all the forcing contributions,
and a second-order Crank-Nicolson scheme for the linear terms and boundary
conditions. To correctly account for the downstream boundary-layer growth
the spatial simulation approach is necessary. This requirement is combined
with the periodic streamwise boundary condition by the implementation of a
fringe region (Nordström et al. 1999; Lundbladh et al. 1999). In this region,
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positioned at the downstream end of the computational box occupying approx-
imately 10% of the flow domain, a volume forcing is smoothly raised from zero
to force the flow from the outflow to the desired inflow condition. The inflow
consists of the laminar Blasius boundary layer with superimposed spatially and
temporally varying disturbances, i.e. the free-stream turbulence in the present
case.

3.1.1. MPI implementation and performance

The numerical code described above is parallelised to run on distributed-
memory architectures (i.e. clusters) using the Message Passing Interface (MPI).
As detailed in section 2.3, the simulation of the estimator and compensator ac-
tually requires the time-advancement of two flow fields, i.e. the “real” flow field
and the estimated field. These two fields are coupled by the measurements
and the control actuation (in case of compensator), and feature different inflow
conditions and may have different spatial resolution and domain size. In the
present implementation this is achieved by having two simulations running si-
multaneously on a subset of the available processors; the two simulations have
two different executables, compiled with different options but running within
the same MPI environment. Information exchange is then accomplished using
distinct messages sent between the two codes. Details on the implementation
can be found in Seyed (2007).

To give an estimate of the computational cost, the details of a typical sim-
ulation are now outlined. The “real” flow is simulated via direct numerical
simulation (DNS) discretised on a domain with approximately 20 · 106 grid
points. The corresponding estimator simulation can be run as a large-eddy
simulation (LES) (see section 3.2 below) with a lower resolution of approxi-
mately 2.5 · 106 grid points. In this example, the DNS is run on 24 processors,
and the estimator LES on 6 processors, i.e. employing a total of 30 processors.
The necessary runtime in order to obtain fully converged statistics (simulated
time ∆t = 4000) is about 300 hours on 30 processors corresponding to 9000
CPU hours.

3.2. Sub-grid scale modelling

The fine grids (and the corresponding small time steps) necessary in the DNS
of turbulent flows at moderate to high Reynolds numbers give rise to very
high computational costs. Therefore, other approaches based on large-eddy
simulations (LES) have been developed to be able to simulate transitional and
turbulent flows in large-enough domains and at high Re. In LES the mesh size
is chosen considerably larger than for DNS. This implies that the structures
present in the flow are only resolved above a certain size corresponding to the
cutoff wavenumber ωc,grid. This length scale is chosen to be small enough to
capture well the structures that are involved in the physical phenomena under
investigation. On the other hand, the scales below the cutoff scale are not
resolved on the numerical grid, but their influence due to nonlinearity onto
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the resolved scales must be modelled by a subgrid-scale (SGS) model. For
flows with solid walls, the thin boundary layers adjacent to the walls need to
be resolved in both DNS and LES for accurate results. Therefore, even LES
requires a substantial computational effort, albeit lower than DNS: A typical
resolution for an LES is approximately 1-20% of a corresponding fully-resolved
DNS.

Formally, the solution in an LES calculation is obtained by applying a
generic low-pass filter GP with a certain filter width ∆ suitable for the problem
under consideration,

ūi(x) := GP ∗ ui :=

∫

V
GP (x, x′,∆)ui(x

′)dx′ , (21)

where ūi(x) denotes the filtered quantity and V the computational domain. GP

is referred to as the primary LES filter. The governing momentum equations
for the filtered quantities become

∂ūi

∂t
+

∂ūiūj

∂xj
= −

∂p̄

∂xi
−

∂τij

∂xj
+

1

Re

∂2ūi

∂xj∂xj
(22)

together with filtered incompressibility constraint

∂ūi

∂xi
= 0 . (23)

The interaction between the resolved and unresolved scales is given by the SGS
stresses,

τij = uiuj − ui uj , (24)

which is an unclosed term and thus has to be modelled based on the filtered
velocity field ui. In most LES approaches the primary filter is not applied
explicitly, but rather given by the implicit filter due to the lower grid resolution.

The ADM-RT model used here acts on the velocity components directly.
The model employs the relaxation term proposed in the context of the approx-
imate deconvolution model (ADM) (Stolz & Adams 1999). It has been shown
in e.g. Schlatter et al. (2006a,b) that for spectral simulations the deconvolution
operation applied in the ADM approach is not necessary. Therefore, the SGS
force due to the ADM-RT model is given by (Schlatter et al. 2004)

∂τij

∂xj
= χHN ∗ ūi , (25)

with χ being the model coefficient. HN denotes a high-order three-dimensional
high-pass filter (Stolz et al. 2001), and the symbol ∗ stands for convolution in
physical space, i.e. a multiplication with the respective transfer function ĤN

in Fourier space.

The high-pass filter HN used in the present work is obtained by the re-
peated application of a low-pass filter G according to

HN = (I −G)N+1 , N > 0 . (26)
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Typically, G is chosen as the low-order low-pass filter suggested by Stolz et al.
(2001). The cutoff frequency is defined as Ĝ(ωc) = 1/2 and can be adjusted.
For the present results, ωc = 2π/3 and N = 5. HN is at least of order r(N +1)
with r being the order of G. The latter is at least r = 3 on non-equidistant
grids.

χ is the model coefficient which is set to a constant value herein motivated
by previous studies showing little dependency of the results on the actual value
of the coefficient (see e.g. Schlatter et al. (2006b)). If the model coefficient χ
is chosen inversely proportional to the time-step size the relaxation term has a
similar effect as a filtering of the velocities after every time step, as mentioned
in Stolz & Adams (1999).

The relaxation term χHN ∗ ūi is proportional to the small-scale velocity
fluctuations in the flow field. Therefore, it will damp out these oscillations
leading to a drain of kinetic energy from the smallest resolved scales.

The ADM-RT model proved to be accurate and robust in predicting tran-
sitional and turbulent incompressible flows with spectral methods (Schlatter
et al. 2004, 2006b). Note that the relaxation-term model is related to the spec-
tral vanishing viscosity approach (Karamanos & Karniadakis 2000). Due to the
high-order filter HN with a cutoff frequency of ωc ≈ 0.86π only the smallest
represented eddies are affected, whereas the larger, energy-carrying scales are
not directly influenced by the model contributions.

3.3. Free-stream turbulence generation

The boundary layer considered here is subject to external disturbances, in
particular free-stream turbulence. To generate this inflow a superposition of
eigenmodes from the continuous spectrum of the OSS operator is used (Jacobs
& Durbin 2001; Brandt et al. 2004). In the present implementation disturbances
can be introduced in the flow in three different ways: forcing them in the fringe
region, with a body force as in the estimation problem, or via blowing and
suction at the wall by a non-homogeneous boundary condition as done in the
control problem. The free-stream turbulence is forced at the inflow by adding
the modes to the laminar base-flow profile in the fringe region.

Detailed description of the procedure adopted can be found in Brandt
et al. (2004). Here the free-stream generation is shortly outlined. A three-
dimensional wave vector k = (kx, ky, kz) is associated to each eigenfunction of
the continuous spectrum where, kx and kz are defined by the normal-mode ex-
pansion along the wall-parallel directions of the underlying linear problem while
the wall-normal wavelength is determined by the eigenvalue along the continu-
ous spectrum. If Taylor’s hypothesis is applied the streamwise wavenumber kx

can be replaced by a frequency ω = kxU∞ and the disturbance signal is written
as

udist =
∑

AN ûN (y)eikzz+ikxx−iωt , (27)

where the wall-normal wavenumber ky is implicit in the shape of the eigenfunc-
tion ûN (y) (Grosch & Salwen 1978). The complex wavenumber kx is determined
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by the dispersion relation once the real wall-normal wavenumber ky and the
real wavenumbers kz and ω are selected according to the procedure described
below. The wavenumbers pertaining to the modes used in the expansion are
selected by defining a number of spherical shells of radius |k| in the wavenumber
space (ω, ky, kz). 40 points are then placed at equal intervals on the surface of
these spheres. The coordinates of these points define the wavenumbers of the
modes used in the expansion above. The complex coefficients AN provides ran-
dom phase but a given amplitude. The amplitude |AN | is in fact the same for
all modes on each shell and is chosen to reproduce the Von Kármán spectrum

E(k) =
2

3

a(kLI)4

(b + (kL)2)17/6
LI Tu. (28)

This spectrum is for large scales asymptotically proportional to k4, whereas
it matches the Kolmogorov-(5/3)-law for small scales. In the expression above,
Tu is the turbulence intensity, LI is a characteristic integral length scale such
that kmax = 1.8/LI where kmax is the wavenumber of maximum energy and a,
b two normalisation constants.

3.3.1. Free-stream turbulence generation in the LES

Due to the lower resolution employed for the LES runs, the imposed turbulence
spectrum at the inlet has to be adapted. To obtain results that are as close to
the DNS as possible, it was decided to use exactly the same set of modes and the
same random phases on all the various grids, without any modification of the
turbulence intensity level at the inlet. Modes with wavenumbers too large to be
resolved on a given coarser LES grid were discarded and consequently not forced
at the inlet. All the other parameters specifying the inlet spectrum, i.e. length
scale, choice of modes and the individual scaling of the modes, are the same on
all grids. This leads to the observation that the measured turbulence intensity
at the inlet is smaller for coarser grids, because less modes are actually forced.
To obtain the true Tu one had to also include the unresolved fluctuations, which
are however not available during an LES. The results show that the transition
process is not crucially influenced by that difference in inlet Tu. If, on the
other hand, the resolved Tu at the inlet is adapted to exactly match the level
on the finest (i.e. DNS) grid, premature transition corresponding to the higher
turbulence levels is observed. The explanation for this behaviour is that the
receptivity of the boundary layer is mainly dominated by low-frequency modes
of the free stream. The amplitudes of these modes, which are resolved on both
the DNS and LES grids, should therefore not be modified.

3.4. Simulation parameters

The parameters defining the problem are the Reynolds number, the intensity
and the integral length scale of the free-stream turbulence and the size of the
computational box. The inflow Reynolds number Reδ∗

0
, defined using the dis-

placement thickness of the boundary layer at the inflow of the computational
domain, was chosen to be 300 for all cases under consideration.
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Table 1. Different computational boxes used. Resolution for
each box dimensions and type of simulation. The box dimen-
sions include the fringe region and are non-dimensionalised
with respect to the displacement thickness δ∗0 at the inflow
(Reδ∗

0
= 300)

Box Method Lx × Ly × Lz Nx ×Ny ×Nz

δ∗0 (resolution)
Small DNS 1000× 60× 50 1024× 121× 72
Small LES 1000× 60× 50 256× 121× 36
Medium LES 2000× 60× 90 512× 121× 64
Large LES 2000× 60× 180 512× 121× 128
X-Large LES 4000× 60× 180 1024× 121× 128

The different computational boxes used are reported in table 1. Direct
numerical simulations were only performed in the small box, while the largest
boxes were used to allow the transition to turbulence to occur within the com-
putational domain. The latter computational domains are thus used for the
parametric study of bypass transition and its control. The medium-size box
was used when investigating the influence of limiting the control signal (see
section 4.2.1).

The code was run in four different modes, corresponding to four different
physical problems: no control (used as reference case), full information control,
estimation without control and compensator, i.e. control based on estimation.

4. Results

Based on the theory and numerical methods presented in the previous sections,
simulations of transition in a flat-plate boundary layer subject to free-stream
turbulence are performed. Linear feedback control is then applied to the flow
in order to delay transition. Both LES and DNS are presented here and all
the statistics presented are obtained by averaging in time and in the spanwise
direction.

In the following results the streamwise coordinate is indicated by the Rey-
nolds number based on the the distance from the leading edge

Rex =
U∞x

ν
=

Re2
δ∗

1.7208
, (29)

where the value of δ∗ for the laminar Blasius solution is used. All the quanti-
ties presented are non-dimensionalised with the free-stream velocity, U∞, the
viscosity, ν and the displacement thickness at the inflow of the computational
domain δ∗0 .
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Figure 3. Integral quantities during bypass transition (Tu =
4.7%) for different SGS models. (a): skin-friction coefficient
cf , (b): shape factor H12. ADM-RT, ; no-model LES,

; DNS, • (Brandt et al. 2004). The thin dashed lines
correspond to analytical correlations for both laminar and tur-
bulent boundary-layer flow.

4.1. LES validation

In a first step, the possibility to reduce the numerical resolution and conse-
quently replacing the effect of the non-resolved scales by a subgrid-scale model
(see section 3.2) is explored. In particular, additional to fully-resolved DNS,
two different modelling approaches are considered: under-resolved DNS without
model where the interaction between the resolved and unresolved scales is es-
sentially neglected and the ADM-RT model. This SGS model has been shown
to perform particularly well with transitional wall-bounded flows (Schlatter
et al. 2006b). All the LES presented in this section are performed with a free-
stream turbulence intensity of Tu = 4.7% on the “Large LES” grid given in
table 1. The reference DNS data is taken from Brandt et al. (2004) using the
same numerical method and inflow turbulence generation algorithm.

Figure 3 shows the evolution of the statistically averaged skin friction co-
efficient cf and the shape factor H12 as a function of the downstream distance
Rex. The skin friction coefficient gives a measure on how well the near-wall
flow structures can be represented, whereas the shape factor, being the ratio
between the boundary-layer displacement thickness and the momentum thick-
ness, describes the flow development and structural reordering of the boundary
layer during laminar-turbulent transition further away from the wall.

The evolution of the skin friction (figure 3a) clearly shows that the no-
model approach without employing a subgrid-scale model leads to inaccurate
results. This behaviour of under-resolved simulations is however well-known
from other studies: The reduced dissipation present in the flow leads to an
increased fluctuation level at the scales close to the numerical cutoff; in case
of flows undergoing transition this increased energy may be causing premature
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Figure 4. Instantaneous streamwise velocity in a plane par-
allel to the wall. (a): DNS. (b): LES using ADM-RT.
Light colour indicates low velocity, dark colour high velocity.
Streamwise extent Rex = [32000, 300000], spanwise extent
enlarged by a factor of 5.

breakdown. Usually, increased values of the wall-normal velocity gradient close
to the wall lead to a dominant overshoot of the skin friction, until the flow has
settled down to a new equilibrium state accounting for the missing dissipation
in the small scales. The ADM-RT model with a constant model coefficient
however is seen to provide an accurate prediction of the skin friction throughout
the laminar initial phase dominated by the streaky structures (Rex < 150000),
the stage dominated by the intermittent appearance and growth of turbulent
spots (Rex < 300000), and the fully-developed turbulent region thereafter.

The shape factor given in figure 3b confirms the previous findings: The
initial phase (Rex < 100000) characterised by only minor disturbances within
the boundary layer is predicted accurately also by the no-model LES. However,
as soon the boundary-layer distortion becomes too large, the under-resolved
DNS will immediately break down to turbulence. It is interesting to note
that the SGS model feature a slight departure from the reference level of H12

between Rex = 100000 and Rex = 170000; however the final stages of transition
seem not to be influenced.

A comparison of an instantaneous visualisation of a wall-parallel plane at
y = 2δ∗0 from both DNS and ADM-RT is presented in figure 4. Note that for
both simulations the same amplitudes and phase shifts in the inlet free-stream
turbulence have been used (see section 3.3.1), consequently the flow structures
can be directly compared between DNS and LES. The most obvious feature
is that the LES data looks slightly blurred, which is a natural consequence of
the lower resolution. Nevertheless, many of the flow structures present in the
DNS flow field can also be detected in the LES field, and vice versa: the shape
and location of the dominant strong streaks, the intermittent breakdown to
localised turbulent spots, and a calm region even more downstream than the
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Table 2. Control penalties, estimation sensor noise,
measurement-strip position, actuation-strip position and lo-
cation of the base flow target profiles for the estimator and
the controller.

Estimation Control

Sensor noise p
τx

τz

50
0.07
0.07

penalties l
r2

102

0

Rexstart
6.04× 104 Rexstart

1.95× 105

Rexend
1.50× 105 Rexend

2.85× 105

location of tar-
get profile

1.05× 105 location of tar-
get profile

2.40× 105

first turbulent patch. This figure clearly shows that – despite the lower resolu-
tion used in the LES – a good prediction of the dominating flow physics and
the processes leading to turbulent breakdown can be obtained via appropriate
subgrid-scale modelling. It can also be shown that the LES is able to capture
the instantaneous structures just prior to turbulent breakdown.

4.2. Full information control

Results on linear feedback control of a boundary layer subject to free-stream
turbulence are reported next. The design parameters for the compensator
problem are reported in table 2 and will be discussed when presenting the
results for each specific case.

The first step when applying control is to design a reasonably good full-
information controller. This can be used as reference for the compensation,
since the best possible performance is expected when the whole flow field is
known. This case is also used as a benchmark for LES: Since LES is used for
most of the simulations, it is considered important to evaluate the SGS model
against DNS data not only in the general case without control, but also in the
case of full information control. Further, in order to later compare these results
to those from the compensator, the blowing and suction strip are placed further
downstream, so that there will be enough space for the measurement region at
the beginning of the computational domain, see table 2. Note that in the
following figures the gray areas correspond to the regions where measurements
are taken, and blowing and suction is applied, respectively. The simulations
in the remaining part of this section are performed with a turbulence level
Tu = 3.0% except the results in figure 6 where Tu = 4.7%.

In figure 5 the wall-normal maximum of the streamwise velocity pertur-
bation is shown for both DNS and LES of the uncontrolled case as well as
for the two cases with full information control. This quantity is selected since
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Figure 5. Wall-normal maximum urms. no control DNS,
; no control LES, ; control DNS, ; control

LES, .

it indicates the growth of the streaks inside the boundary layer. It can be
clearly seen that the control is able to inhibit the streak growth and that us-
ing LES-(ADM-RT) gives similar decrease of the streak amplitude as in the
fully-resolved DNS. Slight differences between LES and DNS can be noticed at
the inlet of the domain. This can be explained by noting that the wall-normal
maximum of the rms value is a very sensitive quantity, involving both the lo-
cation and the amplitude of the fluctuations. Indeed mean quantities, like the
skin friction, would not show any difference at all in such a plot.

A study to investigate the influence of the length of the control region on
the transition delay was also performed. The free-stream turbulence level was
chosen to be 4.7% to be able to reproduce the full transition process within
the small computational domain (Barri 2006). The initial and final locations
of the control region are reported in table 3, whereas the value of the wall-
normal maximum of the streamwise velocity fluctuations and the skin friction
are displayed in figure 6 for the three cases under consideration together with
the reference uncontrolled case. It can be noticed in figure 6a that with a longer
control domain, it is possible to reduce the streak growth even more. The effect
of the control is more pronounced when looking at the friction coefficient cf

as shown in figure 6b. By comparing the two plots it can be deduced that the
large values of streamwise velocity fluctuations at the end of the computational
domain are not associated to a fully turbulent flow. The results farther show
that for the longest control region the streak growth is indeed quenched for
a larger distance but the downstream recovery is faster and the differences
between the cases “Medium” and “Long” are attenuated further downstream.

In order to understand the physical mechanism behind the control, instan-
taneous features that appear in the controlled field are examined. In figure 7
the streamwise velocity component on a plane parallel to the wall at y = 2δ∗0
(figure 7a) along with the wall-normal velocity component at the wall (figure
7b) indicating the control actuation via wall blowing and suction is displayed.
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Table 3. Study on the influence of the control region length.
The initial and final location of the control region are given in
units of Rex.

Start End
(Rex) (Rex)

No control — —
Short 5.3× 104 1.4× 105

Medium 5.3× 104 1.9× 105

Long 5.3× 104 2.3× 105
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Figure 6. Wall-normal maximum urms (a) and skin friction
coefficient cf (b). no control, ; short, ; medium,

; long, .

From these two instantaneous images of the flow one can see the correlation
between the flow state and the control signal. In the case of a high-speed streak
blowing is induced from the controller. This causes the flow downstream of the
actuation to settle in a more stable state since the fast moving fluid is forced to
move upwards away from the wall. The opposite action is happening for low-
speed streaks i.e. the controller is applying suction to move high-speed fluid
from the free stream to cancel the region of decelerated flow. One other aspect
to note from this figure is that most of the control effort is concentrated at the
beginning of the control region in agreement with the results by Chevalier et al.
(2007a).

4.2.1. Limiting of control signal

When extending the linear control to these highly nonlinear scenarios, prob-
lems may arise and ad hoc tuning may be necessary. For our case, Brandt &
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Figure 7. (a): Instantaneous streamwise velocity at y = 2δ∗0 .
(b): corresponding control signal. The levels of the contours
are u = [0.3U∞, 0.6U∞] for (a) and v = [−2 × 10−2U∞, 5 ×
10−3U∞] for (b). White corresponds to the minimum value
and black to the maximum.
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Figure 8. Wall normal maximum urms. Control with clipping
of the blowing, ; Control without the clipping blowing,

.

Henningson (2004) observed that, if too strong localised blowing is applied,
turbulent spots may be induced by local instabilities due to wall-normal in-
flectional profiles already inside the control region. An improvement of the
transition delay can therefore be expected by limiting the blowing at the wall.
This was implemented in the numerical code by imposing an artificial clipping
to the control signal

v(x, y, z, t)|y=0 = min{v(x, y, z, t)y=0, vmax}| . (30)

The clipping threshold vmax is set to 0.01U∞, for cases where the (unlimited)
maximum of the blowing at the wall occasionally reaches values of the order of
0.02U∞. The value of vmax is chosen by examining the instantaneous values of
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the blowing in cases where transition was triggered by the wall actuation. The
comparison between the optimal linear control and control with limited blowing
is displayed in figure 8, where the evolution of the wall-normal maximum of
the streamwise velocity fluctuations is depicted for cases with and without
clipping. The performance of the control is on average improved by limiting
the blowing; analysis of the instantaneous velocity fields reveals that this is
due to the absence of the localised spots intermittently induced by the strong
control signals and not by an overall decrease of the streak amplitudes, or
increase of the actuation efficiency. The results presented in the following are
all obtained by limiting the blowing at the wall.

4.3. State estimation

The construction of the estimator involved extensive tuning of several parame-
ters associated with the theoretical tools described in section 2.2. In particular,
these parameters are: the covariance matrix as a model for the stochastic dist-
urbances involved in the estimation process, the sensor noise quantifying the
confidence in the measurements taken and the length of the estimation region.

The covariance matrix is essential for the estimator (see equation 19). In
the ideal case, the measurements indicated in equation 20 would uniquely iden-
tify the current state of the system (Bewley & Protas 2004). This is not the
case since there are unknown initial conditions, unknown external disturbances
and noise corrupting the measurements. To improve the estimation in the case
of free-stream turbulence, the variance of the external disturbances needed to
be extended further out in the free stream if compared to that used in Cheva-
lier et al. (2007a). A diagonal matrix was used as covariance matrix for the
external disturbances. For the covariance of the wall measurements a simple
function proportional to the boundary-layer velocity profile was selected.

The parameters that define the strength of the forcing that is applied to
the system are the sensor noise. The tuning of these parameters was also
performed by testing different sets of values; the set of values yielding the best
performance is reported in table 2. Note that a relatively large value of the
pressure sensor is needed to achieve good estimation. This limits the use of this
measurement and can be explained by the fact that the pressure at the wall
appears to be more sensitive to the free-stream turbulence than to the streaks
inside the boundary layer.

One would expect that the longer the measurement strip the better the
estimation since more information from the flow is available. However, since
the gains are computed for a parallel flow, this may not be the case and above a
certain length the quality of the estimation degrades. The optimal length was
found to be 500 approximately δ∗0 units. Further, it was found that at these
high levels of perturbation, estimation works better if the forcing is active only
on the scales that correspond to the streaks. Thus the gains where rescaled
in wavenumber space with a two-dimensional Gaussian function. The param-
eters of this function were determined by applying two-dimensional Fourier
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Figure 9. The Gaussian function scaling the estimation gains
in wavenumber space. The centre of the Gaussian is at kx = 0
and kz = 0.4 in units of δ∗−1

0 .

z

z
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(a)
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Figure 10. Instantaneous streamwise velocity fields. (a):
real flow; (b): estimated flow. The measurement strip is
indicated with two vertical lines. Streamwise extent Rex =
[32000, 570000], spanwise extent enlarged by a factor of 5.

transforms along the wall-parallel directions to the flow fields to be estimated
and extracting the wavenumbers of richest energy content. One example of
this weighting function is shown in figure 9. The gains are focused around
wavenumber kx = 0.0 in the streamwise direction, which corresponds to infin-
itely long structures and around kz = 0.4 which corresponds to the spanwise
width of the most energetic structures, namely the streaks.
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Figure 11. Estimation error according to equation 31.

Two different criteria were used to determine the performance of the esti-
mator. The first was visual inspection of the instantaneous velocity fields: One
example of this comparison can be seen in figure 10, where the streamwise ve-
locity in a plane parallel to the wall is displayed for the real and the estimated
flow. It can be seen in the figure that the main features of the incoming streaks
are well reproduced in the estimated field. A second, more systematic way, is
to calculate the estimation error given by

ε =

∫

Ω(q − q̂)dΩ
∫

Ω(q)dΩ
, (31)

where Ω is the region selected to evaluate the estimation error. In figure 11
the estimation error is plotted as a function of time. In this case the error is
computed in a plane parallel to the wall, y/δ∗0 = 2, over the whole region where
the control will be applied. This is selected as the most relevant area in terms
of compensator performance since the flow in this region is used to compute
the control signal. It can be seen in the figure that the estimation is converging
toward values of ε ≈ 0.3 after an initial transient of about 400 time units.

The wall-normal maximum of the streamwise velocity perturbation is
shown for both the real and the estimated flow in figure 12. The perturba-
tions are weaker in the estimated flow, a strong estimation forcing leading
directly to transition in the estimator simulation. In the real flow, the streaks
are forming and growing also downstream of the estimation region, whereas in
the estimated flow the streaks decay downstream of the measurement region.
This can be explained by the fact that the free-stream turbulence is continu-
ously forcing the streaks all along the plate whereas the estimation forcing is
active only in a limited streamwise region, i.e. the gray area in the plot.

In figure 13 the wall-normal profiles of urms at different streamwise lo-
cations are shown. Again it can be seen that the streaks are weaker in the
estimated flow than in the real flow, and that the difference between the two
fields increases further downstream. Perturbations in the free stream are not
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Figure 12. Wall-normal maximum of urms. Real flow, ;
Estimated flow, . The shaded area indicates the measure-
ment region.
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Figure 13. Wall normal profile of urms at different streamwise
positions Rex = [0.6, 1.2, 2.1, 3.0, 3.9] × 105. The values of
urms are scaled with 9.0 × 105. Real flow, ; Estimated
flow, .

reproduced in the estimator and the estimation is more accurate close to the
wall.

4.4. Compensator

The final stage is combining the full information controller and the estimator
into the compensator. The procedure requires the estimator to run first with-
out the control until the estimated field approaches the real flow; afterwards
the control forcing is turned on. The control region is placed downstream of
the estimated field and an overlap between the two strips is avoided. At the
location where the actuation is active, the amplitude of the streaks is signifi-
cantly increased. The perturbations to be controlled are further downstream
i.e. in the region where non-linear effects are more important.
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A visualisation of the controlled and uncontrolled flow field is displayed in
figure 14 in a wall-parallel plane. The decrease of the streak amplitude in the
control region is clearly visible. A turbulent spot is appearing further down-
stream in the uncontrolled flow while the flow is laminar when blowing/suction
is applied. It can also be noticed that the control often changes an incom-
ing high-speed streak into a low-speed region and vice versa. Further, a rapid
increase in the streak amplitude is occurring after the end of the control region.

z

(a)

z

x

(b)

Figure 14. Instantaneous streamwise velocity fields. (a):
uncontrolled; (b): controlled. Streamwise extent Rex =
[32000, 382000], wall-normal distance 2δ∗0 , true aspect ratio.

In figure 15a the wall-normal maximum of the rms-value of the streamwise
velocity perturbation is shown for the uncontrolled case and for both full in-
formation control and compensation. As observed by the flow visualisation in
figure 15a, the growth of the the streaks is reduced within the control region.
However, downstream of the control region, velocity fluctuations continue to
grow. This can be explained by the presence of the free-stream turbulence
above the boundary layer that is able to induce new perturbations inside the
boundary layer.

The skin friction coefficient is shown in figure 15b. This plot quantifies the
transition delay which can be achieved in the case of boundary-layer transition
induced by free-stream turbulence. The transition delay obtained without es-
timation corresponds approximately to the length of the control region. The
delay is between 120000ν/U∞ and corresponds to approximately 15− 20% of
the full length of a typical turbine blade, resulting in a reduction of the total
friction drag of 5 − 10%. The loss of performance to be expected in the case
of control based on estimation from wall measurements is not severe. Thus,
a longer control region or alternatively a sequence of measurement and blow-
ing/suction strips may lead to further delay or even prevent the transition
process.
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Figure 15. (a): Wall normal maximum urms; (b): skin fric-
tion coefficient cf . No control, ; Full information control,

; Compensator, .

In figure 16, wall-normal profiles of the rms value of the streamwise velocity
perturbation are shown at different streamwise stations along the plate for the
three cases under consideration. The reduction of streak amplitude is evident in
the control region. Note also that where blowing/suction is applied the profiles
feature a double-peak structure: the lowest peak closest to the wall is due to
the local effect of the actuation, while the largest peak, representing the streak,
is moved away from the wall. The changeover from laminar to turbulent streaks
is occurring in the region 5×105 < Rex < 7×105. The typical profiles for urms

of a turbulent boundary layer are observed at the end of the computational
domain.
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Figure 16. Wall normal profiles of urms

at different streamwise positions Rex =
[0.6, 1.2, 2.1, 3.0, 3.9, 4.8, 5.7, 6.6, 7.5, 8.4] × 105. The
values of urms are scaled with 8.5 × 105. No control, ;
Full information control, ; Compensator, .
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The production of turbulent kinetic energy uv∂U/∂y with the Reynolds
shear stress uv, is considered to characterise the effect of the blowing/suction
at the wall. The wall-normal profiles of the turbulent production at two stream-
wise positions are displayed in figure 17. It can be seen that the turbulence
production increases near the wall due to the blowing and suction while it
decreases farther up in the boundary layer, attaining negative values at the
beginning of the control region. In the compensator a reduction over the whole
profile is observed as well as a small peak near the wall.
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Figure 17. Wall normal profiles of turbulent production at
(a) Rex = 2.0 × 105 and (b) Rex = 2.4 × 105. No control,

; Full information control, ; Compensator, .

In order to study the performance of the control for higher streak ampli-
tudes, simulations with turbulence intensity Tu = 4.0% are also performed.
Owing to the larger turbulence intensity the growth of the streaks is faster,
the transition location is moved upstream and the amplitude of the streaks
within the control region are further increased. Overall, the performance of
the estimation is as in the case presented above, while the extension of the
transition delay is reduced. Even though the growth of the streaks is reduced
in the control region, the regeneration downstream is more rapid at this higher
free-stream turbulence levels. As shown by Barri (2006), for the control to be
more effective, maybe the actuation region should be placed further upstream.

From this project it was desiphed that transision delay can

5. Conclusions

Numerical simulations of the transition to turbulence occurring in a flat-plate
boundary-layer flow subjected to high levels of free-stream turbulence are per-
formed. This scenario, denoted bypass transition, is characterised by the non-
modal growth of streamwise elongated disturbances, so-called streaks. When
these streaks reach large enough amplitudes, breakdown into turbulent spots
occurs via their secondary instability. The scenario under consideration is
highly intermittent in nature, i.e. streaks appear randomly in the boundary
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layer, and therefore large computational domains and long integration times
are needed to obtain converged statistical data.

In order to reduce the computational cost, mostly large-eddy simulations
are performed. The ADM-RT subgrid-scale model is shown to be particularly
suited for transitional flows: It is thoroughly validated before examining the
effect on the transition process. The results indicate that the details of the
streak breakdown can and need to be captured by LES. The high-frequency
oscillations of the elongated streaks appearing as spot precursors define the grid
size on which the LES can be performed. The reduction in terms of number
of degrees of freedom compared to a full DNS is of the order of 10, while the
computational cost is reduced about 50 times.

Linear model-based feedback control is applied in order to delay transition,
where the linear parallel Orr-Sommerfeld/Squire system is used to design the
estimation and control laws. The method presented here was previously devel-
oped by Hoepffner et al. (2005); Chevalier et al. (2006, 2007a) and shown to
be successful in damping linear and weakly nonlinear perturbation in a variety
of wall-bounded shear flows. The method is now applied to flows with highly
nonlinear behaviour.

In practical situations, the full flow field is usually not accessible. The
control problem is therefore combined with an estimation procedure based on
wall measurements, the two wall-parallel components of the wall-shear stress
and the pressure at the wall being considered here. It is found that to achieve
an accurate estimation most of the confidence should be put in the shear-
stress data; the pressure measurements are in fact too affected by the high-level
fluctuations in the free stream.

The results presented show that the control is able to reduce the energy
of the streaks, which are responsible, through their secondary instabilities, for
the considered bypass-transition scenario and thus delay the whole process.
The delay achieved is of order of the streamwise extent of the area where
control is applied. For turbomachinery applications, this amounts to about
15 − 20% of the length of a typical turbine blade, resulting in a reduction
of the total friction drag of 5 − 10%. The control performance is limited by
the fast growth of the streaks just downstream of the region where blowing
and suction is applied. This recovery is similar to that observed when control
of turbulent flow is investigated and it can be explained by considering the
action of the control in these highly disturbed flow: When blowing/suction is
applied, the streamwise streaks are quenched close to the wall while the upper
part of the boundary layer is less affected. As a consequence, as soon as the
actuation is turned off, the streaks diffuse into the shear layer near the wall and
can again be amplified. The relatively fast recovery of the streamwise streaks
downstream of the control region was also observed in the recent experimental
work by Lundell (2007). This author considers the same transition scenario
but a different control strategy: reactive control is applied with sensors and
actuators placed in a staggered manner. A more direct comparison between
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the linear optimal control and the experiments appears therefore relevant and
it is the object of new investigations.

The streamwise streaks can be estimated from wall measurements alone;
however the structures occurring in the real flow are reproduced correctly
mainly in the region where the measurements are taken. Downstream of this
region the estimated field gradually diverges from the real field, revealing the
importance of the continuous excitation of the boundary layer by the exter-
nal free-stream turbulence (Westin et al. 1998). Control based on estimation
(termed compensator) is therefore less effective than full information control.
For actual implementations of feedback control the estimation process needs to
be improved, in particular by reducing its cost. With this aim, two directions
may be followed. First, model reduction can be introduced in the estimation
problem. Global modes of the flow can be used for this, as global eigenmodes
(Åkervik et al. 2007) or balanced POD modes (Rowley 2005). The model based
on these two- or three-dimensional modes does not need to be linear, possibly
improving the estimation performance for this type of flows. Alternatively,
the relation between sensors and actuators may be deduced directly from flow
measurements, relaxing the need for a flow model, as suggested e.g. by Lundell
(2007). The latter option will be the object of future work, in the context of a
closer interplay between experiments and simulations.
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Chevalier, M., Hoepffner, J., Åkervik, E. & Henningson, D. S. 2007a Linear
feedback control and estimation applied to instabilities in spatially developing
boundary layers. J. Fluid Mech. 588, 163–187, 167-187.

Chevalier, M., Hoepffner, J., Bewley, T. R. & Henningson, D. S. 2006 State
estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech.
552, 167-187.

Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007b Sim-
son: A pseudo-spectral solver for incompressible boundary layer flows. Technical
Report KTH/MEK/TR–07/07–SE. KTH, Department of Mechanics, Stockholm.

Collis, S., Chang, Y., Kellogg, S. & Prabhu, R. D. 2000 Large eddy simulation
and turbulence control. AIAA paper (2000-2564).

Farrell, B. F. & Ioannou, P. J. 1996 Turbulence suspension by active control.
Phys. Fluids 8 (5), 1257–1268.



Estimation and control of bypass transition in boundary layers 61

Friedland, B. 1986 Control system design: An introduction to state-space methods.
Mineola, New York: Dover.

Grosch, C. E. & Salwen, H. 1978 The continuous spectrum of the Orr-Sommerfeld
equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 87, 33–54.

Henningson, D. S. 1996 Comment on: ”Transition in shear flows. Nonlinear normal-
ity versus non-normal linearity”[Phys. Fluids 7, 3060 (1995)]. Phys. Fluid 8 (8),
2257–2258.

Hoepffner, J., Chevalier, M., Bewley, T. R. & Henningson, D. S. 2005 State
estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J.
Fluid Mech. 534, 263–294.
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Högberg, M., Bewley, M. & Henningson, D. S. 2003c Linear feedback control
and estimation of transition in plane channel flow. J. Fluid Mech. 481, 149–175.
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Experimental and numerical work at the Linné FLOW Centre on active control
of transition induced by free-stream turbulence is reviewed and two extensions
to previous work are reported. Previously, an experimental setup with up-
stream sensors and downstream actuators has been built. It has been demon-
strated that an ad-hoc control algorithm is able to give a considerable attenua-
tion of the disturbance amplitude downstream of the actuators. Furthermore,
large-eddy simulations (LES) of optimal feedback control have been performed
for a similar flow configuration and disturbance attenuation as well as transition
delay have been obtained. Two extensions are made. First, an effort is made to
match the disturbance behaviour in the experimental flow case and in the LES.
Control is applied in simulations of the matched system aiming at approaching
the type of actuation used in the experiments (localised suction). The control
law is still computed as optimal feedback of the linear system. As the actua-
tion ability approaches the experiments (where much simpler controllers were
used), so does the control effect. Second, system identification (SI) is applied
to the experimental data and a more efficient controller is designed. It is made
plausible that controllers designed by SI can give considerable improvements in
the disturbance attenuation. Implications for future work in the area of active
control are discussed.

1. Introduction

The term boundary layer bypass transition denotes transition scenarios where
the dominant instability mechanism is not the exponential growth of two-
dimensional Tollmien-Schlichting waves. The most common example is proba-
bly transition induced by high levels of free-stream turbulence (Matsubara &
Alfredsson 2001) (typically above 0.5-1% of the free-stream velocity). The non-
normality of the linearised operator relevant to the dynamics of perturbations
of the boundary layer flows, evidenced by the associated non-orthogonal set
of eigenmodes, can cause significant transient energy growth. The upstream
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Free-stream turbulence
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speed streaks

Further downstream:

secondary instabilities
and turbulent spots
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boundary layer 
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Figure 1. Visualisations (a,c) and schematic (b) of bound-
ary layer transition induced by free-stream turbulence. Flow
is from right to left. In the experimental visualisation in (a),
the smoke is assembled in low velocity regions. In the numer-
ical visualisation in (c), the flow is from lower right to upper
left. The blue and red isosurfaces correspond to low and high
velocity in a box close to the wall shows the flow and the green
and yellow isosurfaces indicate the λ2 vortex identification cri-
terion. The flow is fully turbulent in the second half of the
domain. (c) is a courtesy of Philipp Schlatter (private comm-
munication).

perturbations which undergo the largest possible growth consist of stream-
wise counter-rotating vortex pairs (Andersson et al. 1999). These vortices lift
low-momentum fluid from the wall and push high-momentum fluid from the
outer part of the shear layer towards the plate, thus creating elongated regions
of alternating accelerated and decelerated fluid, called streaks. The process
of lifting of low-momentum fluid from the region near the plate and pulling
high-momentum fluid from the outer region is known as lift-up effect (Landahl
1980).

After their initial generation owing to the lift-up, the streaks grow in
strength and become susceptible to high-frequency secondary instabilities.



Feedback Control of Bypass Transition: Exper. and Numer. Progress 69

These appear as symmetric and antisymmetric oscillations of the streaks, form-
ing localized regions of chaotic swirly motion, called turbulent spots (Matsubara
& Alfredsson 2001; Brandt et al. 2004; Mans et al. 2007). Subsequently the
spots grow, eventually merge and a fully-developed turbulent boundary layer
is formed. Visualisations and a schematic of the transition process under free-
stream turbulence from experiments and numerical simulations are provided in
figure 1. Streamwise streaks can be seen to form upstream inlet, followed by
streak oscillations and turbulent spots.

There are several reason for choosing this flow case as a flow-control test-
bed. The dynamics governing the disturbance dynamics is well known and
fairly complex. As a consequence, the dynamics is known to have similarities
with sub-layer streaks in wall-bounded turbulent shear flow. However, the time
and length scales in bypass transition are larger and slower, which simplify the
experimental realization of the control.

2. Review of experimental demonstration of feedback control

An experimental demonstration of feedback control of bypass transition has
been reported earlier (Lundell 2007). This experiment will now be reviewed
in some detail. The data from this experiment will be used in two ways in this
paper. One is as the experimental part in a combined numerical/experimental
study and the second is as starting point for an analysis in which system iden-
tification (SI) is used to predict and indicate possible improvements.

2.1. Setup
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Figure 2. (a) Setup and (b) close up of a control unit. Mea-
sures are in mm.

A schematic of the setup is shown in figure 2 (a). The experiments were
performed on a flat plate in the MTL wind tunnel at Royal Institute of Tech-
nology, Stockholm. Free-stream turbulence was generated by a grid upstream
of the plate and the velocity was measured by a hot wire traversed in the flow.
The disturbances in the boundary layer over the plate was controlled by one or
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two control units and one control unit is depicted in figure 2 (b). Two turbu-
lent generating grids are used, one giving a free-stream turbulence level at the
leading edge (Tu) of 1.4% and one giving 2.5%. In the first case one control
unit is used and in the latter both one and two are used. In the case with more
intensive free-stream turbulence, transition occurs within the measured area.

2.1.1. Uncontrolled flow
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Figure 3. (a) Mean flow, (b) disturbance profiles, (c) distur-
bance growth and (d) disturbance attenuation in the exper-
iments of Lundell (2007) (Lundell 2007). Without control
(rings, red) and with control (stars, blue), Tu = 1.4%. The
line in (a) is the laminar Blasius solution.

The mean velocity and disturbance profiles and streamwise disturbance
growth of the uncontrolled flow (Tu = 1.4%) is illustrated with the circles in
figure 3 (a–c). The mean velocity profiles at different streamwise positions in
(a) (marked with the circles) are seen to agree well with the Blasius solution
for a laminar zero-pressure-gradient boundary layer (shown with the solid line).
The disturbance profiles in (b) show the typical disturbance structure in bypass
transition: a maximum in the centre of the boundary layer. The disturbances
are seen to grow in the streamwise direction in (c).

2.1.2. Control system

The control units consisted of sensors and actuators. The sensors were wall
wires (0.5 mm long) giving a signal indicating the instantaneous local stream-
wise shear-stress. The actuators were holes (0.5 mm diameter) through which
suction was turned on and off by fast solenoid valves. The sensors and actuators
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were connected in pairs so that the suction through an actuator hole was con-
trolled by the sensor straight upstream of it. The control logic (controller) was
such that the suction was turned on and off with a delay whenever the stream-
wise shear (as sensed by the sensor) crossed a threshold. The suction was
turned on at instants of low shear stress (indicating the passage of a low speed
streak). Each control unit consisted of four neighbouring sensor-actuator-pairs
and the two units were positioned at x = 214–450 mm and x = 483–763 mm.
The lower value is the position of the sensor and the higher the position of the
actuator.

The control system depends on the three variables threshold, delay and
suction strength. These parameters were varied during the experiments to
obtain a good control effect. Detailed descriptions of the setup and parameter
variations are found in the previous publication (Lundell 2007).

2.2. Disturbance attenuation

The effect of the control is measured by studying the attenuation of the maxi-
mum of urms at different positions. The disturbance attenuation is quantified
as

Ωrms = 1−
urms,max,on

urms,max,off
, (1)

so that Ωrms is the relative decrease of the disturbance level in the boundary
layer due to the control.

2.2.1. Case low, Tu=1.4%

In this case, the control unit at x = 214–450 mm was used. The results of the
control at the low turbulence level are shown in figure 3 (without control with
circles and with control with stars). The mean velocity profiles at different
streamwise positions in (a) show that there are only minute differences due to
the control. Larger effects are seen in the disturbance level (b,c,d). First, in
(b), the disturbance level at the center of the boundary layer is seen to decrease
with control applied. Over the control hole (x = 450 mm) there is an increase
close to the wall due to the control suction. Further downstream, there is a
consistent attenuation of the rms-level thanks to the control. This is further
demonstrated in (c) where the maximum of urms is shown as a function of
x. In (d), the maximum disturbance attenuation as measured by Ω is seen
to be 20%. Further downstream the attenuation decreases. This is due to
new disturbances generated by the free-stream turbulence and disturbances
migrating in the spanwise direction.

2.2.2. Case high, Tu=2.5%

The disturbance attenuation in the case with high turbulence level are shown in
figure 4. In this case, the turbulence level is high enough to trigger transition
within the measured area. Thus, the amplitude development in the stream-
wise direction (shown in (a)) show three distinct regions: first a linear growth
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Figure 4. (a,b) Disturbance growth and (c) disturbance at-
tenuation in the experiments of Lundell (2007) (Lundell 2007).
Without control (rings, red), one control unit (stars, blue) and
two control units (triangles, green), Tu = 2.5%.

with low amplification (this is the growth of the streaks) followed by a more
rapid growth to a maximum (attributed to secondary instabilitites and inter-
mittency) and finally a decrease towards the fully developed turbulent case.
Both a single (the upstream) and both control units are applied. The control is
seen to attenuate the disturbances and the maximum decrease is around 15%.
The second control unit does not give a further increase of the disturbance at-
tenuation. Nevertheless, it keeps the downstream attenuation at a higher value
than with only the upstream unit.

No transition delay was obtained in these experiment. This was attributed
to the fact that the controlled region was very narrow in the spanwise direction.
Consequently, the controlled region is contaminated by turbulence from the
sides.

3. Review of numerical simulations of feedback control

A short description of the previous work on feedback control of bypass tran-
sition is reported here (Monokrousos et al. 2008). The aim is to introduce
the method and approach pursued. Bypass transition induced by high levels
of free-stream turbulence above a boundary layer was simulated using direct
numerical simulations (DNS) (Brandt et al. 2004) and large-eddy simulations
(LES). A thorough study on different LES models was performed and the ADM-
RT subgrid-scale model turned out to be particularly suited for this transitional
flow (Monokrousos et al. 2008).
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3.1. Method

A linear feedback control scheme was employed in order to reduce the per-
turbation energy and consequently delay transition. The case of bypass tran-
sition represents an extension of the linear approach (Chevalier et al. 2007)
to flows characterised by strong nonlinearities. Control was applied by dis-
tributed blowing and suction at the wall. Initially, the control signal was based
on the full knowledge of the instantaneous velocity field (i.e. full information
control). Afterwards in order to relax this unphysical requirement possible
only in a numerical simulation, an estimator based on wall measurements was
built. This requires the simultaneous simulation of the real flow (plant) and of
the estimated flow that is reconstructed from wall measurements only (the two
components of the wall shear and the pressure in the present case).

Both the full information controller and the estimator are derived within
the Linear Quadratic Gaussian (LQG) framework where a Linear Quadratic
Regulator (LQR) is combined with a Kalman filter (Friedland 1986). Within
this framework a set of linear equations of reduced complexity is used as a
model for the physical process to be controlled; with the help of the Lagrange
multiplier technique a constrained optimisation problem is formulated where a
chosen quadratic objective function is minimised. The boundary layer flow is
modeled by the Orr-Sommerfeld and Squire system governing the evolution of
perturbations in parallel flows.

The control and estimation problem can be considered and solved sepa-
rately. In the full-information control problem the objective function is the
kinetic energy of the perturbation velocity. This quantity is minimised while
the state of the flow satisfies the governing equation. In the estimation problem
a new “state” is considered, the estimated flow, and the objective is to min-
imise the difference between the wall-measurements taken from the “real” and
the estimated flow; still the perturbations are assumed to satisfy the linearized
Navier-Stokes equations. However in the estimation problem a slightly different
approach is used. The stochastic framework is employed where the system is
assumed to be subject to stochastic excitations. Expected values of the esti-
mation error are therefore examined (Hoepffner et al. 2005). The combination
of an estimator and a full information controller is called compensator, where
the control law is based on the estimated flow.

3.2. Summary of results

The results showed that the control was able to delay the growth of the streaks
in the region where it is active, which eventually results in a delay of the whole
transition process. In figure 5, the averaged skin friction coefficient and the
wall-normal maximum of the streamwise velocity fluctuations are reported to
show the transition location and the growth of the streaks inside the boundary
layer, respectively. The flow field can be estimated from wall measurements
alone: The structures occurring in the “real” flow are reproduced correctly in
the region where the measurements are taken. Downstream of this region the
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Figure 5. The skin friction coefficient and the wall-normal
maximum of the streamwise perturbation velocity are shown
for the uncontrolled case and for the simulations with full in-
formation control and estimation-based control.

estimated field gradually diverges from the“real”flow, revealing the importance
of the continuous excitation of the boundary layer by the external stochastic
free-stream turbulence. Control based on estimation, termed compensator, was
therefore less effective than full information control. Additionally it was found
that strong blowing can in fact promote transition due to non-linear effects and
thus should be avoided.

4. Matching of LES and experiments

In the following we will attempt to apply the control strategy described in the
previous section to a numerical simulation that resembles the experimental con-
ditions of the Tu = 2.5% case. Once agreement in the disturbance development
has been achieved, we will limit the actuation in the simulation to approach
the physical characteristics of the control implemented in the experiment.

For the simulation the code employed (Chevalier et al. 2007) uses Fourier
representation in the streamwise and spanwise directions and Chebyshev poly-
nomials in the wall-normal direction. To correctly account for the downstream
boundary-layer growth the spatial simulation approach is necessary. This re-
quirement is combined with the periodic streamwise boundary condition by
the implementation of a fringe region (Nordström et al. 1999). In this region,
positioned at the downstream end of the computational box and occupying ap-
proximately 10% of the flow domain, a volume forcing is smoothly raised from
zero to force the flow from the outflow to the desired inflow condition. The in-
flow consists of the laminar Blasius boundary layer with superimposed spatially
and temporally varying disturbances mimicking the free-stream turbulence in
the present case (Brandt et al. 2004).

4.1. Matching of the disturbance growth without control

The first task is to setup a numerical simulation of the flow that reproduces
as close as possible the actual flow of the experiment. However, there are
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Table 1. Computational box used. Resolution and box di-
mensions are shown. The box dimensions include the fringe
region and are non-dimensionalised with respect to the dis-
placement thickness δ∗0 at the inflow (Reδ∗

0
= 300)

Lx × Ly × Lz Nx ×Ny ×Nz

δ∗0 (resolution)
2250× 60× 96 576× 121× 64

restrictions that make a perfect matching with the experiment virtually im-
possible. The two main differences are that (i) the code we employ can not
include the leading edge and therefore perturbations cannot penetrate directly
the boundary layer furthest upstream and (ii) the size of the computational
domain is smaller than the wind-tunnel test section and therefore free-stream
turbulence of smaller integral length scale can be simulated. The difference in
length scales causes different decay rates of the external turbulence and thus
different effects upon the underlying boundary layer. Note moreover that in a
wider computational domain it would be too expensive to perform all the rel-
evant simulations, especially the extensive parametric study that is performed
to match the experimental results and test different control strategies. To facil-
itate our investigation, it was found that LES can give sufficiently good results.
Thus we are aiming at a simulation that reproduces the main features of the
conditions in the experiment and not an exact match.

A series of large eddy simulations was carried out to match as close as
possible the disturbance growth seen in the experiment. The computational
box parameters are reported in table 1. We vary the turbulence intensity and
the integral length scale of the inlet free-stream turbulence and compare the
growth of the wall-normal maximum of the streamwise velocity urms,max. We
tried seven different length scales l/δ∗0 = 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5 and
three turbulence intensities at the inlet, Tu = 3, 3.5 ,4%.

From figure 6 we see that the case with Tu = 3.5% and l = 4.5δ∗0 is
closer to the experiment. This is evaluated in terms of initial growth and
transition location. The parametric study performed confirms that transition
is enhanced when increasing the turbulence intensity and the integral length
scale of the turbulence, that is when reducing its decay rate downstream, see
also Ref. Monokrousos et al. (2008). The turbulence level in the simulation
matching the experiment is considerable higher than the one in the experiments.
This is due to the fact that there is no leading edge and the integral length scale
is shorter due to the limited width of the computational box in the simulations.
The shorter length scale results in a faster decay. Consequently, a higher initial
turbulence level is needed in the simulations.
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Figure 6. Wall-normal maximum of the streamwise velocity
fluctuations urms. Each plot corresponds to a level of turbu-
lence intensity and each line on the plots to different length
scales of the free-stream turbulence at the inlet. The legend
shows the length scale in δ∗0 units. The dashed black line in-
dicates the experimental data.

4.2. Optimal control applied to the matched flow

In the following we will consider as reference uncontrolled case the simulation
that was found to agree the most with the experiment (blue solid lines in
the coming figures). In this study we are interested on the difference between
distributed and localized actuation and in the effect of suction only; we therefore
neglect the estimation problem and only consider the full-information control.

First we apply full information control as outlined in section 3.1 and
Ref. Monokrousos et al. (2008). This case will provide the control reference
case (green solid line in the figures). It can indeed be seen as the best possible
performance active control can yield for our configuration. The wall-normal
maximum of the urms and the attenuation factor Ωrms are displayed in fig-
ure 7. It should be mentioned here that the control is applied at the stripe
starting at x = 350δ∗0 and ends at x = 550δ∗0. A significant attenuation of the
urms,max as well as delay of the transition process can be seen.
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Figure 7. Wall-normal maximum of urms. Solid lines are
simulations. Blue: reference case, Green line: control reference
case. Dashed lines are experiments; green line: control with
one control set red line: control with two control sets.

At this point it is useful to recall the differences between the actuator in the
experiment and in the simulations. These pertains the way the control signal
is calculated and the area over which control is applied. In the experiment
opposition control is adopted where the amplitude of the suction velocity and
the time delay between the sensor an the actuator are varied. In the LES an
optimization of the distributed control is performed and no further tuning is
required. Note however that the control signal is computed assuming linearly
evolving disturbances and parallel base flow. Secondly, it should be mentioned
that the control is active over a large area of the plate where relatively weak
blowing/suction is applied in the case of the numerical simulations. Conversely,
small holes with strong suction velocity are used in the experiment. Further,
in the LES we apply control over the full spanwise width of the domain while
in the experiment control sets are only stationed near the middle of the plate
at an area about 20 mm wide.

We will now try to wind down these differences. We will not change the
control strategy in terms of the way the control signal is calculated but we
will focus on the geometrical/functioning aspects of the actuator itself. In that
context we will first remove the blowing and keep only the suction. After, we
will restrict the area of actuation to spanwise stripes and finally we will also
limit the streamwise extension of the area where suction is applied. In the
latter last case,we will employ a “cheaper” control in order to result in stronger
suction to better mimic the experiment.

In figure 8 we see three additional cases where the actuation characteristics
are varied. In particular the first case we keep the actuation area the same but
cut away all the blowing and keep the suction unchanged (red line in the figure),
the second case we keep the blowing and suction unchanged but apply it only in
spanwise streaks of width 5δ∗0(light blue line) with a center-to-center distance
of 10δ∗0 and finally combine the two above cases in both appling only suction
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and spanwise cutting of the signal (purple line). We see that the performance
of the control in the LES is gradually degrading, approaching the experimental
results. However the delay in the transition process remains.
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Finally in figure 9 we see the results from the simulation where all the
previous restriction on the actuator have been applied but also the streamwise
extent of the control has been reduced from 200δ∗0 to 20δ∗0 . Additionally we
reduce the penalty put on the control during the design process from l2 = 10
to l2 = 2 (see Ref. Monokrousos et al. (2008)) resulting in stronger suction.
In this last case the control effect is almost the same for both the experiment
and the simulation near the actuation region but downstream there is a delay
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of transition only for the numerical control. This can be explained by the fact
that in the experiment control is applied near the middle of the plate and where
transition occures fully developed turbulence “invades” the controled area from
the uncontrolled sides.

5. System identification applied to experimental data

Linear system identification can be used to model system dynamics for predic-
tion and control purposes (Ljung 1999). Here, linear filters will be identified
from parts of the experimental time series. Independent data will be used to
verify that the filters predict the measured disturbance attenuation. Based
on the verified filters, a more efficient control signal is constructed and the
estimated disturbance attenuation calculated.

5.1. System identification strategy and verification

Three signals are used in this work. They are (i) W (t), the fluctuations from
the wall-wire sensor, (ii) U(x, y, t), the velocity fluctuations at the position
(x, y, z = 0) and (iii) C(t), the digital signal controlling the suction at (x = 450
mm, z = 0).

The estimated systems will be used in two ways. The first is to use W (t)
and C(t) from experiment and estimate the control effect. This is done to verify
the ability of the estimated systems to predict the control result. The second
possibility is to use a measured W (t) and design a C(t) which minimises future
flow disturbances. This is done in order to show that considerable improve-
ments might be possible.

The system connecting W (t) and C(t) to the velocity fluctuations is sup-
posed to be:

U(x, y, t) = BW (x, y)W (t) + BC(x, y)C(t) + e(t) (2)

where e(t) is a sequence of random Gaussian noise and BW and BC are poly-
nomials in the shift operator with a delay. With ∆t as the sampling interval in
time the polynomials have the form:

BW W (t) = b1
W W (t−nkW )+b2

W W (t−∆t−nkW )+· · ·+bnbW

W W (t−nbW∆t−nkW ).
(3)

Given the signals from the measurements, standard tools (Ljung 1999) are used
to determine the orders nbW , nbC , the delays and nkW , nkC and the coefficients
bi
W , bi

C .

Since the purpose of these efforts is to improve the disturbance attenuation
by the control, the estimation process is verified by its ability to predict the
measured disturbance attenuation. The estimated disturbance attenuation is
defined as

Ωest(x, y) = 1− {BW (x, y)W (t) + BC(x, y)C(t)}/BW (x, y)W (t). (4)
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Figure 10. Verification of the ability of the system identifica-
tion to reproduce the disturbance attenuation. Left: Varying
the threshold in the controller, resulting in different C(t) with
different Γ. Note that only one set of filters BW and BC have
been used. Right: Measured and estimated disturbance atten-
uation. For the estimation, one set of W (t) and C(t) (obtained
by the threshold-and-delay controller) is used.

5.2. Verification of SI results

The first verification results are shown with stars and squares in figure 10 (a).
The stars denote experimental data and the squares the estimated attenuation.
The time fraction that the solenoid valves are open is varied. This is done by
varying the threshold that the wall-shear-stress has to be below for the valve
to be open (after a delay). Thus, for each time fraction an individual W (t) and
C(t) are used as input for the estimation. The estimation process is seen to
reproduce the measurements well.

This ability is further demonstrated in figure 10 (b), where the disturbance
attenuation is shown as a function of streamwise position. The reference data
without control applied is shown with stars and a dashed line. The stars with
the full line show the measured fluctuation level with control applied. Also
here, the estimated results are seen to predict the measured data.

5.3. Improved use of control effort

At this point, it has been demonstrated that the estimated system is able to
reproduce the measured disturbance attenuation. The system will now be used
to predict ultimate control performance. A good sequence C(t) is determined
as follows: at each time instant, the disturbance attenuation with and without
control applied (C = 1 and C = 0) is estimated. The value of C at this time
instant is then chosen as the one which gives the lowest disturbance level. This
process is performed using data from the y-position of maximum fluctuations
and x/δ∗0 = 530. This gives a signal C(t) and the Ωest obtained when using it is
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Figure 11. Disturbance attenuation obtained by the optimal C(t).

shown with circles in figure 11. From x/δ∗0 = 530 to x/δ∗0 = 800 the disturbance
reduction is about twice that obtained in the experiments.

The physical explanation behind these improvements can be understood
by studying the step response from actuator to flow. From x/δ∗0 = 530, the
step response is non-monotonic and a controller more sophisticated than only
linear cancellation (as used in the experiments) is necessary.

6. Conclusions

Feedback control of bypass transition has been studied. One experimental
(Lundell 2007) (suction through holes triggered by threshold and delay) and
one numerical (Monokrousos et al. 2008) (LQR with Kalman filter estimation)
study are reviewed. A simulation giving a similar development of the distur-
bance amplitude as the experiment has been obtained and the LQR has been
applied to this simulation. Furthermore, the control effect in one of the exper-
imental cases have been modelled by linear system identification. The main
observations are summarised below.

• The LQR with Kalman filter estimation with time and space varying
blowing/suction gives much larger initial disturbance attenuation than
the experiments (55% as compared to 15%) and a considerable transition
delay.

• The initial disturbance attenuation in the simulations approaches the
one obtained in the experiments if the capability of the actuator coupled
to the LQR is limited towards the ability of the experimental ones (by
(i) using only suction, (ii) limiting the actuation to limited spanwise
positions and (iii) decreasing the streamwise length of the actuation).

• Compared to the case with complete actuation, a smaller, but still dis-
tinct, transition delay is obtained as the actuation ability is decreased.

• The linear system identification (SI) manages to predict the disturbance
attenuation well.
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• There are indications that SI could be used to improve the disturbance
attenuation in future experiments.

Based on these observations, we find it plausibe that an experiment in which
the full span of the wind tunnel was controlled, would produce a transition
delay. Furthermore, we are of the opinion that our result point out durable,
flexible, small and cheap actuators as the most important missing technology
if feedback control is to be applied to transitional flows for drag reduction. If
less advanced actuators have to be used, it might be beneficial to consider their
limitations in the controller design.
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The global linear stability of the flat-plate boundary-layer flow to three-
dimensional disturbances is studied by means of an optimisation technique. We
consider both the optimal initial condition leading to the largest growth at finite
times and the optimal time-periodic forcing leading to the largest asymptotic
response. Both optimisation problems are solved using a Lagrange multiplier
technique, where the objective function is the kinetic energy of the flow per-
turbations and the constraints involve the linearised Navier–Stokes equations.
The approach proposed here is particularly suited to examine convectively un-
stable flows, where single global eigenmodes of the system do not capture the
downstream growth of the disturbances. In addition, the use of matrix-free
methods enables us to extend the present framework to any geometrical con-
figuration. The optimal initial condition for spanwise wavelengths of the order
of the boundary layer thickness are finite-length streamwise vortices exploiting
the lift-up mechanism to create streaks. For long spanwise wavelengths it is the
Orr mechanism combined with the amplification of oblique wave packets that is
responsible for the disturbance growth. It is found that the latter mechanism
is dominant for the long computational domain and thus for the relatively
high Reynolds number considered here. Three-dimensional localised optimal
initial conditions are also computed and the corresponding wave-packets exam-
ined. For short optimisation times, the optimal disturbances consist of streaky
structures propagating and elongating in the downstream direction without
significant spreading in the lateral direction. For long optimisation times, we
find the optimal disturbances with the largest energy amplification. These are
wave-packets of TS-waves with low streamwise propagation speed and faster
spreading in the spanwise direction. The pseudo-spectrum of the system for
real frequencies is also computed with matrix-free methods. The spatial struc-
ture of the optimal forcing is similar to that of the optimal initial condition,
and the largest response to forcing is also associated with the Orr/oblique wave
mechanism, however less so than in the case of the optimal initial condition.
The lift-up mechanism is most efficient at zero frequency and degrades slowly
for increasing frequencies. The response to localised upstream forcing is also
discussed.
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1. Introduction

The flat-plate boundary layer is a classic example of convectively unstable flows;
these behave as broadband amplifiers of incoming disturbances. As a conse-
quence, a global stability analysis based on the asymptotic behaviour of single
eigenmodes of the system will not capture the relevant dynamics. From this
global perspective all the eigenmodes are damped, and one has to resort to an
input/output formulation in order to obtain the initial conditions yielding the
largest possible disturbance growth at any given time and the optimal harmonic
forcing. To do this, an optimisation procedure is adopted. The aim of this work
is to investigate the global stability of the flow over a flat plate subject to ex-
ternal perturbations and forcing and to examine the relative importance of the
different instability mechanisms at work, see discussion below. The approach
adopted here can be extended to any complex flow provided a numerical solver
for the direct and adjoint linearised Navier-Stokes equations is available.

Recently, the global stability of the spatially-evolving Blasius flow subject
to two-dimensional disturbances has been studied within an optimisation frame-
work by projecting the system onto a low-dimensional subspace consisting of
damped Tollmien-Schlichting (TS) eigenmodes (Ehrenstein & Gallaire 2005).
These results were extended by Åkervik et al. (2008), who found that by not
restricting the spanned space to include only TS modes, the optimally growing
structures could exploit both the Orr and TS wave packet mechanism and yield
a substantially higher energy growth. The Orr mechanism was studied in the
context of parallel shear flows using the Orr–Sommerfeld/Squire equationsby
Butler & Farrell (1992), who termed it the Reynolds stress mechanism. This
instability extracts energy from the mean shear by transporting momentum
down the mean momentum gradient through the action of the perturbation
Reynolds stress. In other words disturbances that are tilted against the shear
can borrow momentum from the mean flow while rotating with the shear until
they are aligned with it. This mechanism is also referred to as wall-normal
non-normality.

From the local point of view the TS waves appear as unstable eigenval-
ues of the Orr–Sommerfeld equation. In the global framework however the
global eigenmodes belonging to the TS branch are damped (Ehrenstein & Gal-
laire 2005), and the evolution of TS waves consist of cooperating global modes
that produce wave packets. Considering the model problem provided by the
Ginzburg-Landau equation with spatially varying coefficients, Cossu & Chomaz
(1997) demonstrated that the non-normality of the streamwise eigenmodes com-
bined with local convective instabilities leads to substantial transient growth.
This non-normality is revealed by the streamwise separation of the direct and
adjoint global modes induced by the basic flow advection; it is therefore also
termed streamwise non-normality (Chomaz 2005).
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It is now well established that when incoming disturbances exceed a certain
amplitude threshold the flat-plate boundary layer is likely to undergo transition
due to three-dimensional instabilities arising via the lift-up effect (Ellingsen &
Palm 1975; Landahl 1980). This transient growth scenario, where streamwise
vortices induce streamwise streaks by the transport of the streamwise momen-
tum of the mean flow, was studied for a variety of shear flows in the locally
parallel assumption (c.f. Butler & Farrell 1992; Reddy & Henningson 1993;
Trefethen et al. 1993). The extension to the non-parallel flat plate boundary
layer was performed at the same time by Andersson et al. (1999) and Luchini
(2000) by considering the steady linear boundary-layer equations parabolic in
the streamwise direction. In these investigations the optimal upstream dist-
urbances are located at the plate leading edge and a Reynolds number inde-
pendent growth was found for the evolution of streaks at large downstream
distances. Levin & Henningson (2003) examined variations of the position at
which disturbances are introduced and found the optimal location to be down-
stream of the leading edge. In this study, also low-frequency perturbations were
considered, still within the boundary layer approximation. In the global frame-
work an interpretation of the lift-up mechanism is presented e.g. in Marquet
et al. (2008): Whereas the TS mechanism is governed by a transport of the
disturbances by the base flow, the lift-up mechanism is governed by a trans-
port of the base flow by the disturbances. Inherent to the lift up mechanism
is the component-wise transfer of momentum from the two cross-stream to the
streamwise velocity component (component-wise non-normality).

The standard way of solving the optimisation problems involved in the
determination of optimal initial condition (or forcing) is to directly calculate
the matrix norm of the discretized evolution operator (or the pseudo-spectrum
of the resolvent) of the system. In the local approach, where the evolution
is governed by the Orr–Sommerfeld/Squire equationsit is clearly feasible to
directly evaluate the matrix exponential or to invert the relevant matrix. In
the global approach it is in general difficult and in some cases impossible to
build the discretized system matrix. One possible remedy is to compute a set of
global eigenmodes with iterative methods and project the flow system onto the
subspace spanned by these eigenvectors. The optimisation is then performed in
a low dimensional model of the flow (Schmid & Henningson 2001; Ehrenstein
& Gallaire 2005; Åkervik et al. 2007, 2008). However, the direct matrix-free
approach followed here is preferable if not indispensable for more complicated
flows. This amounts to introducing the adjoint evolution operator and solving
the eigenvalue problem of the composite operator only using Direct Numerical
Simulations. This approach is commonly referred to as a time-stepper technique
(Tuckerman & Barkley 2000), and has been applied to several generic flow cases
such as spherical Couette flow (Mamun & Tuckerman 1995), backward facing
step flow (Blackburn et al. 2008), separation bubbles (Marquet et al. 2008)
and the flat-plate boundary-layer flow subject to two-dimensional disturbances
(Bagheri et al. 2009a).
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Thus, in this paper we study the stability of the flat-plate boundary-layer
flow subject to three-dimensional disturbances from a global perspective us-
ing a time-stepper technique. The base flow has two inhomogeneous direc-
tions, namely the wall-normal and streamwise, thereby allowing a decoupling
of Fourier modes in the spanwise direction only. Both optimal initial condition
and optimal forcing are therefore first considered for a range of spanwise wave-
numbers, seeking to find the spanwise scale of the most amplified disturbances.
In the case of optimal initial conditions, we optimise over a range of final times,
while time-periodic optimal forcing are computed for a range of frequencies. In
addition, we compute for the first time optimal initial conditions localised in
space. The evolution of the resulting wave-packet is analysed in terms of flow
structures and propagation speed.

Whereas the computation of optimal initial condition is known in the global
time-stepper context (see references above), the formulation of the optimal forc-
ing problem in this framework is novel. This enables us to compute the pseudo-
spectrum of the non-normal governing operator with a matrix-free method. The
latter type of analysis can have direct implications for flow control as well: The
optimisation procedure allows us to determine the location and frequency of
the forcing to which the flow under consideration is most sensitive.

The paper is organised as follows. Section 2 is devoted to the description of
the base flow and the governing linearised equations. Section 3 and 4 describe
the Lagrange approach to solving the optimisation problems defined by the op-
timal initial conditions and optimal forcing, respectively. The main results are
presented in section 5; the paper ends with a summary of the main conclusions.

2. Basic steady flow, governing equations and adjoint system

We investigate the stability of the classical spatially-evolving two-dimensional
flat-plate boundary-layer flow subject to three-dimensional disturbances. The
computational domain starts at a distance x from the leading edge defined by
the Reynolds number Rex = U∞x/ν = 3.38 · 105 or Reδ∗ = 1.72

√
Rex =

U∞δ∗0/ν = 103. Here U∞ is the uniform free stream velocity, δ∗ is the
local displacement thickness and ν is the kinematic viscosity. We denote
the displacement thickness at the inflow position δ∗0 . All variables are non-
dimensionalised by U∞ and δ∗0 . The corresponding non-dimensional inflow
position is x0 = 337.7. We solve the linearised Navier–Stokes equations us-
ing a spectral DNS code described in Chevalier et al. (2007) on a domain
Ω = [0, Lx] × [0, Ly] × [0, Lz]. The non-dimensional height of the computa-
tional box is Ly = 30 and the length is Lx = 1000, while the spanwise width is
Lz = 502.6 is for the case of localised initial conditions or defined in each simu-
lation by the Fourier mode under investigation. In the wall-normal y direction
a Chebyshev-tau technique with ny = 101 polynomials is used. In the stream-
wise and spanwise directions we assume periodic behaviour, hence allowing for
a Fourier transformation of all variables. For the simulations presented here,
the continuous variables are approximated by nx = 768 and nz = 128 Fourier
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modes in the streamwise and spanwise direction respectively, whereas we solve
for each wave-number separately in the spanwise direction when considering
spanwise periodic disturbances, a decoupling justified by the spanwise homo-
geneity of the base flow. Since the boundary layer flow is spatially evolving
a fringe region technique is used to ensure that the flow is forced back to the
laminar inflow profile at x = 0 (Nordström et al. 1999). The fringe forcing
is quenching the incoming perturbations and is active at the downstream end
of the computational domain, x ∈ [800, 1000], so that x = 800 can be consid-
ered as the effective outflow location, corresponding to Rex = 1.138 · 106. The
steady state used in the linearisation is obtained by marching the nonlinear
Navier–Stokes equations in time until the norm of the time derivative of the
solution is numerically zero. Thus the two-dimensional steady state with ve-
locities U = (U(x, y), V (x, y), 0)T and pressure Π(x, y) differs slightly from the
well-known Blasius similarity solution.

2.1. The linearised Navier–Stokes equations

We are investigating the growth of small amplitude three-dimensional distur-
bances on a two-dimensional base flow. The stability characteristics of the base
flow U to small perturbations u = (u(x, t), v(x, t), w(x, t))T are determined by
the linearized Navier–Stokes equations

∂tu + (U ·∇)u + (u ·∇)U = −∇π + Re−1∆u + g, (1)

∇ · u = 0, (2)

subject to initial condition u(x, t = 0) = u0(x). The boundary conditions
for the perturbations are periodicity in x and z and homogeneous Dirichlet
conditions in y. Note that we have included a divergence-free forcing term
g = g(x, t) to enable us to also study the response to forcing as well as to
initial condition. In the expression above, the fringe forcing term is omitted for
simplicity (see Bagheri et al. 2009b).

When performing systematic analysis of the linearized Navier–Stokes equa-
tions we are interested in the initial condition u(0) and in the features of the
flow states u(t) at times t > 0. We will also consider the spatial structure
of the time-periodic forcing g that creates the largest response at large times,
that is when all transients effects have died out. Our analysis will therefore
consider flow states induced by forcing or initial conditions, where a flow state
is defined by the three-dimensional velocity vector field throughout the com-
putational domain Ω at time t. To this end, it is preferable to re-write the
equations in a more compact form. In order to do so we define the velocities as
our state variable, i.e. u = (u, v, w)T , discarding the pressure π. An important
observation can be made from equations (1) and (2); for incompressible flows
the pressure only acts as a Lagrange multiplier to maintain divergence free ve-
locity fields. We follow the notation of Kreiss et al. (1994) and let the forced
linearized Navier–Stokes equations be written as

∂tu = −(U ·∇)u− (u ·∇)U + Re−1∆u +∇π + g, (3)
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where the pressure is a known function of the divergence free velocity field u
and base flow U

∆π = −∇ · ((U ·∇)u + (u ·∇)U). (4)

Inversion of the Laplacian requires boundary conditions, and formally we may
obtain these by projecting (3) on the outwards pointing normal of the domain
n. If we let the solution of (4) be denoted as π = Ku we end up with with the
following expression for the system operator

A = −(U ·∇)− (∇U) + Re−1∆ +∇K. (5)

The resulting state space formulation of equation (3) reads

(∂t −A)u− g = 0, u(0) = u0 , (6)

with solution

u(t) = exp(At)u0
︸ ︷︷ ︸

initial value problem

+

∫ t

0
exp(Aτ)g(x, t − τ) dτ

︸ ︷︷ ︸

forced problem

. (7)

Alternatively A may also be defined using semi-group theory, where it is
referred to as an infinitesimal generator. First, the evolution operator T (t) is
defined as the operator that maps a solution at time t0 to time t0 + t.

u(t + t0) = T (t)u(t0) . (8)

The infinitesimal generator of T (t), A, is defined through the action of T for
an infinitesimal amount of time δt

Au = lim
δt→0

T (δt)u− u

δt
. (9)

For further explanation we refer to Trefethen & Embree (2005) or Bagheri
et al. (2009b). In what follows we will utilise equation (7) to study both the
response to initial condition, excluding the forcing terms, and the response to
forcing excluding the initial value part, i.e. we look at the regime response. For
practical numerical calculations the variables are often discretized, so that the
operator A becomes a matrix of size n×n, with n = 3nxnynz for general three-
dimensional disturbances. When considering spanwise periodic disturbances we
can focus on one wave number at the time and the dimension of the system
matrix is reduced to n = 3nxny. However, even in this case the evaluation
of the discretized evolution operator exp(At) is computationally not feasible.
The complete stability analysis, including the optimisation, can be performed
only by considering solutions to (7), which is readily obtained by marching
in time the linearised Navier–Stokes equations using a numerical code. This
so called time stepper technique has indeed become increasingly popular in
stability analysis (Tuckerman & Barkley 2000).
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2.2. Choice of norm and the adjoint equations

In order to measure the departure from the base flow we introduce the norm
based on the kinetic energy of the perturbations

‖u(t)‖2 = (u(t),u(t)) =

∫

Ω
uHu dΩ. (10)

This norm will be used extensively throughout this paper in order to system-
atically determine the optimal initial condition and optimal forcing. Having
defined the inner product (10) we may derive the adjoint evolution operator.
The adjoint evolution operator associated with the adjoint linearized Navier–
Stokes equations is central to the optimisation framework when investigating
the flow non-modal stability. Using the above inner product we may define the
action of adjoint evolution operator as

(p, exp(At)u) = (exp(A†t)p,u), (11)

where A† is defined by the initial value problem

−∂tp = A†p = (U ·∇)p− (∇U)T p + Re−1∆p +∇Zp, p(T ) = pT . (12)

The adjoint system (12) is derived using the inner product in time space domain
Σ = [0, T ] × Ω. The operator Z is the counterpart of the operator K for the
adjoint pressure: σ = Zp. For more details see Appendix Appendix A. This
initial value problem has stable integration direction backwards in time so we
may define the adjoint solution at time T − t for the forward running time t as

p(T − t) = exp(A†t)pT , t ∈ [0, T ]. (13)

It is important to note that the addition of the forcing term g in (3) has no
effect on the derivation of the adjoint equations.

3. Optimal initial condition

In this section, the derivation of the system to be solved in order to find the
initial conditions that optimally excites flow disturbances is reported. When
seeking the optimal initial condition we assume that the forcing term g in (6)
is zero, so that only the first term on the right end side of (7) is of interest.
We wish to determine the unit norm initial condition u(0) yielding the maxi-
mum possible energy (u(T ),u(T )) at a prescribed time T . A common way of
obtaining the optimal initial condition is to recognise that the condition

G(t) = max
‖u(0)‖'=0

‖u(T )‖2

‖u(0)‖2
= max

‖u(0)‖'=0

‖ exp(AT )u(0)‖2

‖u(0)‖2
=

max
‖u(0)‖'=0

(u(0), exp(A†T ) exp(AT )u(0))

(u(0),u(0))
(14)

defines the Rayleigh quotient of the composite operator exp(A†T ) exp(AT ).
The optimisation problem to be solved is hence the eigenvalue problem

γ u(0) = exp(A†T ) exp(AT )u(0). (15)
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In the case of large system matrix, as in fluid-flow systems, this eigenvalue
problem can be efficiently solved by matrix-free methods using a time-stepper
(DNS) and perform power-iterations or the more advanced Arnoldi method
(c.f. Nayar & Ortega 1993; Lehoucq et al. 1997); both methods only need a
random initial guess for u(0) and a numerical solver to determine the action of
exp(AT ) and exp(A†T ). An alternative approach to our optimisation problem
relies on the use of the Lagrange multiplier technique. As show below, this
will yield the same results for the problem considered here. However, within
this framework, it is more straightforward to implement modifications in e.g.
the function to maximise. When defining the problem, we need to define the
objective function, in our case the kinetic energy of the perturbations at time
T

J = (u(T ),u(T )). (16)

Formally, the task is to maximise the above quadratic measure subject to two
constraints: the flow needs to satisfy the governing linearized Navier–Stokes
equations (6) ( without forcing) and the initial condition must have unit norm
(u(0),u(0)) = 1. Note that the second normalisation condition selects a unique
solution of the eigenvalue problem (15) and thus enable the numerical procedure
to converge. By introducing Lagrange multipliers (or costate variables) we may
formulate an unconstrained optimisation problem for the functional

L(u,p, γ) = (u(T ),u(T ))−
∫ T

0
(p, (∂t −A)u) dτ−γ ((u(0),u(0)) − 1) . (17)

We thus need to determine u,u(0),u(T ),p and γ such that L is stationary,
necessary condition for first order optimality. This can be achieved by requiring
that the variation of L is zero,

δL =

(
∂L
∂u

, δu

)

+

(
∂L
∂p

, δp

)

+

(
∂L
∂γ

)

δγ = 0 . (18)

This is only fulfilled when all terms are zero simultaneously. The variation
with respect to the costate variable (or adjoint state variable) yields directly
the state equation

(
∂L
∂p

, δp

)

⇒ (∂t −A)u = 0, (19)

and similarly the variation with respect to the multiplier γ yields a normalisa-
tion criterion

(
∂L
∂γ

, δγ

)

⇒ (u(0),u(0)) = 1. (20)

In order to take the variations with respect to the other variables we perform
integration by parts on the second term of L in (17) to obtain

L = (u(T ),u(T ))−
∫ T

0

(

u, (−∂t −A†
)

p) dτ

− (p(T ),u(T )) + (p(0),u(0))− γ ((u(0),u(0))− 1) . (21)
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Note that the inner product between the direct and adjoint variables p at the
initial and end time is obtained in the integration, see derivation in Appendix
Appendix A. The variation of this expression with respect to the state variable
u yields an equation for the adjoint variable as well as two optimality conditions
(
∂L
∂u

, δu

)

⇒ −
∫ T

0
(δu, (−∂t−A†)p)+(δu,p−γu)|t=0+(δu,u−p)|t=T = 0 .

The simplest choice to satisfy this condition is each of this terms being sepa-
rately zero so finally we get

(−∂t −A†)p = 0 , (22)

and

u(0) = γ−1p(0) ,

p(T ) = u(T ) . (23)

The optimality system to be solved is hence composed of equations
(19),(20),(22) and (23). From (20) and the first relation in (23), it can
readily be seen that γ = (p(0),p(0)). The remaining equations are solved
iteratively as follows.
Starting with an initial guess u(0)n:
(i) we integrate (19) forward in time and obtain u(T );
(ii) p(T ) = u(T ) is used as an initial condition at t = T for the adjoint system
(22), which integrated backward in time gives p(0);
(iii) we determine a new initial guess by normalising, u(0)n+1 = p(0)/γ;
(iv) if |u(0)n+1 − u(0)n| is larger than a given tolerance, the procedure is
repeated.

Before convergence is obtained u(0) and p(0) are not aligned. At conver-
gence, u(0) is an eigenfunction of (15). The iteration scheme above can be
seen as a power iteration scheme finding the largest eigenvalue of the problem
(15). Since the composite operator is symmetric its eigenvalues are real and
its eigenvectors form an orthogonal basis. The eigenvalues of the system rank
the set of optimal initial conditions according to the output energy at time T .
If several optimals are sought, e.g. to build a reduced order model of the flow,
the sequence of u(0)n produced in the iteration can be used to build a Krylov
subspace suitable for the Arnoldi method.

The formulation presented is extended to determine an optimal localised
initial condition. In this case, the initial perturbation is forced to exist only in-
side a certain region Λ in space. The optimal shape contained within this region
is determined by the optimisation procedure. The changes in the derivation of
the optimality condition necessary for this case are detailed in Appendix Ap-
pendix B. The gradient of the objective function is defined only inside Λ and
an additional multiplier is necessary to enforce the initial condition to be di-
vergence free.
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4. Optimal forcing

This section will focus on the regime response of the system to time-periodic
forcing. Thus we assume zero initial conditions, u(0) = 0, and periodic be-
haviour of the forcing function, i.e.

g = & (f(x) exp(iωt)) , f ∈ C, ω ∈ R, (24)

where f defines the spatial structure of the forcing, ω is its circular frequency
and & denotes the real part. With these assumptions, the governing equations
become

(∂t −A)u−& (f exp(iωt)) = 0, u(0) = 0. (25)

In this case, we wish to determine the spatial structure and relative strength
of the components of the forcing f that maximise the response of the flow at
the frequency ω in the limit of large times, i.e. the regime response of the flow.
The measure of the optimum is also here based on the energy norm. Note that
for this method to converge and for the regime response to be observed, the
operator A must be globally stable. In the spatial framework this requirement
is always satisfied.

In order to formulate the optimisation problem it is convenient to work in
the frequency domain, thereby removing the time dependence. By assuming
time periodic behaviour, u is replaced by the complex field ũ so that

u = & (ũ exp(iωt)) . (26)

The resulting governing equations can then be written

(iωI −A)ũ− f = 0. (27)

Note that the operator A, containing only spatial derivatives, remains un-
changed. The objective function is the disturbance kinetic energy of the regime
response,

J = (ũ, ũ) =

∫

Ω
ũH ũ dΩ, (28a)

where the complex variable ũ requires the use of the Hermitian transpose. The
Lagrange function for the present optimisation problem is similar in structure
to that used to determine the optimal initial condition and is formulated as
follows.

L(ũ, p̃, γ, f) = (ũ, ũ)− (p̃, (iωI −A)ũ− f)− γ ((f , f)− 1) . (29)

The additional constrains require the flow to be solution of the linearised
Navier–Stokes equations and introduce a normalisation condition for the forc-
ing amplitude. Since the state variable ũ is a solution of the time independent
system (27), the inner product used in the definition of the adjoint involves
only spatial integrals. The time behaviour of the costate or adjoint variable is
indeed assumed to be also periodic

p = & (p̃ exp(iωt)) . (30)
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Thus, the derivation will proceed as reported in Appendix Appendix A, only
without the time integral: the time derivative is replaced by the term iωũ, with
adjoint −iωp̃.

As for the computation of the optimal initial condition, we take variations
with respect to ũ, p̃, f and γ

δL =

(
∂L
∂ũ

, δũ

)

+

(
∂L
∂p̃

, δp̃

)

+

(
∂L
∂f

, δf

)

+

(
∂L
∂γ

)

δγ. (31)

The first order optimality condition requires all of the terms to be simultane-
ously zero. By taking variations with respect to the costate variable (or adjoint
variable) we again obtain the state equation

(
∂L
∂p̃

)

⇒ −(iωI −A)ũ + f = 0, (32)

and similarly the variation with respect to the multiplier γ yields a normalisa-
tion criterion

(
∂L
∂γ

)

⇒ (f , f) − 1 = 0. (33)

In order to take the variations with respect to the other variables we perform
integration by parts on the second term of L in (29) to obtain

L(ũ, p̃, γ, f) = (ũ, ũ)− (ũ, (−iωI −A†)p̃) + (f , p̃)− γ ((f , f)− 1) . (34)

No initial-final condition terms appear during this integration by parts since
here the inner product is only in space (in contrast to the optimal initial con-
dition). The spatial boundary terms cancel owing to the chosen boundary
conditions as seen in Appendix Appendix A. Variations with respect to the
state variable ũ and to the forcing function f yield

(
∂L
∂ũ

)

⇒ ũ− (−iωI −A†)p̃ = 0, (35)

(
∂L
∂f

)

⇒ f = γ−1p̃. (36)

Equations (32) and (35) provide the two equations we have to solve, equation
(33) gives the normalisation condition and (36) provides the optimality condi-
tion that is used to calculate the new forcing field after each iteration of the
optimisation loop.

Next, we show the equivalence between the Lagrange multiplier technique
and the corresponding standard matrix method when the resolvent norm is
considered. The formal solution of equation (25) can be written as.

ũ = (iωI −A)−1f . (37)

The corresponding solution for the adjoint system

p̃ = (−iωI −A†)−1ũ . (38)
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Figure 1. Comparison of results from the adjoint iteration
scheme (shown as circles) and direct solution in terms of SVD
of the OSS resolvent (shown as solid lines) for optimal forcing
to the parallel Blasius flow at Re = 1000. a) Zero spanwise
wave-number β for different frequencies ω and for streamwise
wave-number α = 0.1. b) Streamwise wave-number α = 0.1
for different spanwise wave-numbers β subject to forcing with
frequency ω = 0.05. Both plots shows excellent agreement be-
tween the two methods. Note that in order to obtain a regime
response in the parallel case the wave-numbers are chosen so
that the system operator is stable.

Combining the two equations above and using (36)

f =
1

γ
(−iωI −A†)−1(iωI −A)−1f . (39)

This is a new eigenvalue problem defining the spatial structure of the optimal
forcing at frequency ω that is solved iteratively; the largest eigenvalue corre-
sponds to the square of the resolvent norm

γ = ‖(iωI −A)−1‖2. (40)

Note that the actual implementation is using a slightly different formula-
tion, since the available time-stepper does not solve directly (32) and (35). In
practice, the governing equations are integrated in time long enough that the
transient behaviour related to the system operator A has died out. The regime
response for the direct and adjoint system is extracted by performing a Fourier
transform of the velocity field during one period of the forcing.
The steps of the optimisation algorithm therefore are:
(i) Integrate (25) forward in time and obtain the Fourier transform response ũ
at the frequency of the forcing.
(ii) ũ is used as a forcing for the adjoint system which in time domain is written

(−∂t −A†)p−& (ũ exp(iωt)) = 0 . (41)
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(iii) A new forcing function is determined by normalising fn+1 = p̃/γ.
(iv) If |fn+1 − fn| is larger than a given tolerance, the procedure is repeated.

A validation of the method is presented in figure 1, where the results from
the present adjoint-based iteration procedure are compared to those obtained
by the standard method of performing a singular value decomposition (SVD)
of the resolvent of the Orr–Sommerfeld and Squire equations for the parallel
Blasius flow (c.f. Schmid & Henningson 2001). In figure 1a) the response to
forcing with spanwise wave-number β = 0 is shown for different frequencies,
whereas the response to steady forcing with streamwise wave-number α is shown
in figure 1b). In the latter case, variations of the spanwise wave-numbers are
considered. In both cases, excellent agreement between the two methods is
observed.

5. Results

The flat plate boundary layer flow is globally stable, i.e. there are no eigenval-
ues of A located in the unstable half plane. Hence we do not expect to observe
the evolution of single eigenmodes. In Åkervik et al. (2008) the non-modal
stability of this flow subject to two-dimensional disturbances was studied by
considering optimal superposition of eigenmodes. These authors found that the
optimal initial condition exploits the well known Orr mechanism to efficiently
trigger the propagating Tollmien-Schlichting wave packet. In Bagheri et al.
(2009a), the stability of the same flow was studied using forward and adjoint
iteration scheme together with the Arnoldi method to reproduce the same mech-
anism. By allowing for three-dimensional disturbances, it is expected that in
addition to the instability mechanisms mentioned above (convective Tollmien-
Schlichting instability and the Reynolds stress mechanism of Orr) the lift-up
mechanism will be relevant in the system.

This has been well understood both using the Orr–Sommerfeld/Squire
equations (Butler & Farrell 1992; Reddy & Henningson 1993) in the paral-
lel temporal framework and using the Parabolized Stability Equations in the
spatial non-parallel framework (Andersson et al. 1999; Luchini 2000; Levin &
Henningson 2003). In the former formulation, the base flow is assumed to be
parallel. At the Reynolds number Re = 1000, the inflow Reynolds number of
the present investigation, it is found that for spanwise wave-numbers β larger
than ≈ 0.3 there is no exponential instability of TS/oblique waves. The largest
non-modal growth due to the lift-up mechanism is observed at the wave-number
pair (α,β) = (0, 0.7). In the present work we do not restrict ourselves to zero
streamwise wave-number α = 0, but instead we take into account the develop-
ing base flow. Indeed the spatially developing base flow allows for transfer of
energy between different wave-numbers through the convective terms.
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Figure 2. a) Energy evolution of the optimal initial condi-
tions for different times T at the wave-number β = 0.55, where
the optimal streak growth is obtained. The largest growth is
obtained at time T = 720. The maximum at each time in
this figure defines the envelope growth. b) Component-wise
rms-values when optimising for time T = 720. A transfer
of energy from the wall-normal and spanwise component to
the streamwise velocity is observed during the time evolution,
clearly showing that the lift-up mechanism is active.

5.1. Optimal initial condition

5.1.1. Spanwise periodic flows

We investigate the potential for growth of initial conditions with different span-
wise wave-numbers β by solving the eigenvalue problem (15) for a range of
instances of time T . This amounts to performing a series of direct and adjoint
numerical simulations until convergence towards the largest eigenvalues of (15)
at time T is obtained. If only the largest eigenvalue of (15) is desired it suffices
to use a power iteration scheme, whereas if several of the leading eigenvalues
are needed, one has to resort to a Krylov/Arnoldi procedure (c.f. Nayar & Or-
tega 1993; Lehoucq et al. 1997). Both of these approaches are matrix-free and
rely on the repeated action of exp(A†T ) exp(AT ) on an initial velocity field
u(0). In other words, it is not necessary to store matrices in order to obtain
the eigenvalues but to time-integrate the governing equations.

Figure 2a) shows the energy evolution when optimising for different times
and for spanwise wave-number β = 0.55. It is at this wave number that the
maximum growth due to the lift-up mechanism is found for the configuration
under consideration. From figure 2b) it is evident that the disturbance leading
to the maximum streak growth at time T = 720 exploits the component-wise
transfer between velocity components, inherent to the lift-up mechanism. The
initial condition is in fact characterised by strong wall-normal v and spanwise w
perturbation velocity while the flow at later times is perturbed in its streamwise
velocity component.
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An important feature of this high Reynolds number flat-plate boundary-
layer flow with length Lx = 800 is that the combined Orr/Tollmien-Schlichting
mechanism is very strong with a growth potential of γ1 = 2.35 · 104 (see also
Bagheri et al. 2009a) for time T = 1800. If, however, the streaks induced by
the lift-up mechanism have reached sufficiently large amplitudes to trigger sig-
nificant non-linear effects, the TS wave transition scenario will be by-passed. In
figure 3 a contour map of the maximum growth versus optimisation time and
spanwise wave-numbers β is shown. Note that local maxima are obtained in two
regions; (I) a low spanwise wave-number regime dominated by the TS/oblique
waves where the growth is the largest but slow. (II) For high spanwise wave-
number it is the fast lift-up mechanism that is dominating. The TS/oblique
mechanism can be seen to yield one order of magnitude larger growth than
the lift-up instability. The global maximum growth is obtained at the wave-
number β = 0.05 and not for β = 0. This somewhat surprising result can be
explained by the larger initial transient growth of spanwise-dependent pertur-
bations which initiates the TS-waves. The growth rate of the latter is almost
independent of β for the low values under consideration (see e.g. figure 3.10 in
Schmid & Henningson 2001).

The competition between the exponential and algebraic growth was also
studied using local theory by Corbett & Bottaro (2000). These authors have
shown that as the Reynolds number increases, the growth due to modal in-
stability becomes more pronounced. The results presented in that work for
Reθ = 386 (equivalent to Reδ∗ = 1000 in our scaling) indicate that TS in-
stability becomes dominant for final times T > 2000. Our results show that
in a spatially evolving boundary layer with local Reynolds number Reδ∗ rang-
ing between 1000 and 1800 the exponential growth dominates at times larger
than about 1250. In the following we study in more detail the disturbances
corresponding to the two local maxima mentioned above.

The evolution of the most dangerous initial condition is shown in figure 4.
The streamwise velocity component of the optimal initial condition leading to
the maximum growth at time T = 1820 is depicted together with the flow
response at various times. The initial disturbance is as in the two-dimensional
case leaning against the shear of the base flow (see figure 4a). The resulting
instability exploits the Orr-mechanism to efficiently initialise the wave packet
propagation, eventually giving the disturbance shown in figures 4 b), c) and d).

Figure 5 shows the space-time diagram for the evolution of the three veloc-
ity components of the disturbance. Isocontours of the integrated– in spanwise
and wall-normal direction– energy associated to each component are plotted
versus the streamwise direction and time. Since this is a modal instability
there is no significant component-wise transfer of energy and thus the different
components of the disturbance evolve (grow) in a similar manner. Additionally,
the propagation velocity of the disturbance is estimated from the space-time
diagrams. The leading edge of the wave-packet travels at cle = 0.51 while the
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Figure 3. Contour map of optimal growth due to initial con-
dition in the time spanwise wave-number domain. The contour
levels span four orders of magnitude and thus we use a loga-
rithmic scale. The blue lines are of order 10− 102, the light
blue 102− 103, the green 103− 104 and the red 104− 105. For
each level we define 10 contour lines but only levels present
in the actual data are visible. The maximum streak growth
is obtained for β = 0.55 at time T = 720 and the amplifi-
cation factor is G = 2.63 · 103. The global maximum is ob-
tained for β = 0.05 at time T = 1820, with the streamwise
exponential amplification of oblique waves combined with the
Orr-mechanism. The amplification factor is G = 2.71 · 104.

trailing edge has a velocity cte = 0.33. These values shows remarkable agree-
ment with the classic results on the propagation of wave-packets by Gaster
(1975) and Gaster & Grant (1975).

The optimal initial condition leading to the maximum growth at time T =
720 for spanwise wave-number β = 0.55 and the corresponding flow response
at various times are shown figure 6. The initial disturbance is an eloganted
perturbation with most of its energy (99.94%) in the wall-normal and spanwise
velocity components (figure 6a). The resulting instability exploits the lift-up
eventually giving the disturbance shown in figures 6 b), c) and d). This is a
non-modal instability characterised by the strong transfer of energy from the
wall-normal and spanwise towards the streamwise velocity component. Already
at time t = 100 more than 99% of the kinetic energy of the perturbation is
in the streamwise component. As it can be seen the disturbance evolves into
alternating slow and fast moving streaks that are tilted so that the leading edge
is higher than the trailing edge as observed in the experimental investigation
by Lundell & Alfredsson (2004).

It is also interesting to note that while the optimal initial condition is
streamwise independent for parallel flows, it is localised in the streamwise di-
rection for a spatially growing boundary layer. This indicates that it is most
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a)

b)
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Figure 4. Isosurfaces of streamwise component of disturban-
ces at the spanwise wave-number β = 0.05. Red/blue colour
signifies isosurfaces corresponding to positive/negative veloc-
ities at 10 percent of the maximum. a) Streamwise compo-
nent of optimal initial condition leading to the global optimal
growth at time T = 1820. b), c) and d) Corresponding flow
responses at times T = 400, 1000 and 1600

efficient to extract energy from the mean flow further upstream where nonpar-
allel effects are stronger. For optimisation times longer than that pertaining
the peak value, still with β = 0.55, the initial perturbation is located further
upstream and is shorter. This is to compensate for the downstream propagation
of perturbations out of the control domain. Conversely, for optimisation times
lower than T = 720, the initial conditions assumes more and more the form of
a packet of vortices aligned in the streamwise direction and tilted upstream.
The growth is then due to a combined Orr and lift-up mechanism.

The space-time diagram for each velocity component of the streaky optimal
perturbation is presented in figure 7. The non-modal nature of the instability
and the component wise transfer of energy are seen in the plots. The streamwise
component is for large times several orders of magnitude larger that the other
two. The propagation velocity of the disturbance is calculated: the leading
edge velocity of the “streak-packet” is cle = 0.87 while the trailing edge travels
at velocity cte = 0.44. Note that these values are based on the streamwise
velocity component. The propagation velocities of the non-modal streaks are
larger than those pertaining modal disturbances. This can be explained by
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Figure 5. Space-Time diagram of the three velocity compo-
nents of the perturbation for the TS-wave case ((a) streamwise,
(b) wall-normal and (c) spanwise). The propagation velocity
of the leading edge of the disturbance is cle = 0.51 while of the
trailing edge is cte = 0.33.
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Figure 6. Evolution of streamwise velocity when initialising
the system with the optimal initial condition at β = 0.55. a)
The wall-normal velocity of the optimal initial condition. b)
The streamwise velocity at t = 200 with surface levels at ten
percent of its maximum value, c) at time t = 400 and d) at
time t = 600.

the fact that the disturbances are located in the upper part of the boundary
layer, especially the downstream part of it, as deduced also from the three-
dimensional visualisation in figure 6. Note finally in the plot for the spanwise
velocity component a kink around t = 400 and x = 400. In this region, the main
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Figure 7. Space-Time diagram of the three velocity compo-
nents of the perturbation for the streak case ((a) streamwise,
(b) wall-normal and (c) spanwise). The propagation velocity
of the leading edge of the disturbance is cle = 0.87 while of
the trailing edge is cte = 0.44. The two speeds are measured
in the second half of the time domain after the initial transient
phase.
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Figure 8. Energy spectra along the streamwise direction for
the optimal initial condition at for that case T = 1820, β =
0.05 (TS-wave) and T = 720, β = 0.55 (Streak).

contribution to the trailing edge of the disturbance changes from streamwise
vortices to streamwise streaks. The propagation velocity of the former is thus
larger than that of the streaks as confirmed by a comparison between figure 7(a)
and (b).

To further interpret the present results, we perform the Fourier transform
along the streamwise direction of the two disturbances investigated above and
compute the energy distribution in the various streamwise wave-numbers α (the
energy density is first integrated in wall-normal and spanwise direction). The
result shown in figure 8 demonstrates that the TS-wave disturbance has a peak
at a relatively higher α ≈ 0.17, a value in agreement with predictions from
local parallel stability calculations. The streak mode, conversely, has most of
its energy at the lowest wave-numbers.
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a)

b)

c)

d)

e)

f)

g)

i)

Figure 9. Wall-normal component of the leading four eigen-
vectors for the optimisation problem at β = 0.55, t = 720 and
the corresponding responses. The structures are plotted over
one wavelength in the spanwise direction. Red/blue colour in-
dicate isosurfaces corresponding to positive/negative velocities
at 10 percent of the maximum. a) The initial condition with
largest growth. b) Flow structures corresponding to the second
eigenvalue. This is similar to the first eigenvector, only shifted
in the spanwise direction. The corresponding eigenvalue is the
same. c) Third eigenvector associated to the same eigenvalue
as the fourth eigenvector (not shown). d) Fifth eigenvector.
In e), f), g) and i) the corresponding responses are shown, in
particular the streamwise component. Note that the axes are
not at the actual aspect ratio, the structures are elongated.

Four different optimal initial conditions for β = 0.55 and T = 720 are shown
in figure (9). The wall-normal velocity component of the eigenvector leading
to the maximum growth is reported in (9a). Since the base flow is uniform
in the spanwise direction, the second eigenvector has the exact same shape as
the first, only shifted half a wavelength in z as shown in figure (9b). These
eigenvectors correspond to the same eigenvalue γ1,2 = 2.6 · 103, and they may
be combined linearly to obtain a disturbance located at any spanwise position.
In figure 9c)-d) the third eigenvector associated with γ3 = 2.2 ·103 and the fifth
associated with γ5 = 1.6 · 103 are shown respectively. Also these eigenvectors
come in pairs with matching eigenvalues. It is thus possible with the Arnoldi
method to obtain several optimals for a single parameter combination. This
has not been done previously for the Blasius flow, while Blackburn et al. (2008)
computed several optimals for the flow past a backward-facing step.
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Figure 10. The evolution of the energy of the perturbation
in time for each of the initial conditions in figure 9. The
even-numbered sub-optimals give exactly the same evolution
as their corresponding odd-numbered.

The responses to each of these initial conditions are shown in figures (9e-
i). One can see that the sub-optimal initial conditions reproduce structures
of shorter extension and with low- and high-speed streaks alternating in the
streamwise direction. Figure (10) shows the energy evolution versus time for
each of the sub-optimals. The energy growth is similar in the beginning, how-
ever later on, faster decay is observed with decreasing order of optimality.
Optimal perturbations form an orthogonal basis; this fact may be exploited to
project incoming disturbances and predict their evolution.

5.1.2. Localised optimal initial condition

In this section, we look into the general case of three-dimensional initial dist-
urbances. Using the method described in section 3, along with the necessary
modifications explained in appendix Appendix B, spatially localised optimal
initial conditions are sought. A large domain is chosen to allow for a fully three-
dimensional disturbance to propagate and expand in all directions without in-
teracting with the boundaries. The spanwise width is chosen to be Lz = 502.6
(corresponding to the fundamental wave-number β = 0.0125) for the cases with
longest optimisation time and Lz = 251.3 (β = 0.025) for the shorter optimi-
sation times. Furthermore nz = 128 Fourier modes were used in the spanwise
direction, instead of 4 for the spanwise periodic cases. This increases the total
number of degrees of freedom in our optimisation problem from approximately
1 to 30 millions.

The initial condition is placed near the inflow of the computational domain
and power iterations are used to compute the optimal shape of the disturbance
inside a fixed region. The area to which the initial condition is limited is
30δ∗0 long and 40δ∗0 wide and it is centered around the location x = 25δ∗0
and z = 0. Along the wall-normal direction the optimisation process restricts
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Figure 11. Optimal localised initial condition and corre-
sponding response at time T = 1820, the optimal TS wave-
packet. The amplitudes of each velocity component are re-
ported in table 1.

the perturbation near the wall, inside the boundary layer, hence no additional
localisation is adopted. The cases presented here correspond to the two physical
mechanisms found to be relevant in the previous section, the Orr/TS-wave
scenario and the lift-up process. To excite the two separately, the corresponding
optimisation times are chosen to be T = 1820 and T = 720. In addition, one
intermediate case, T = 900, where both these two mechanisms are active, is
presented.

For the longest optimisation time considered, see figure 11, the TS-wave
scenario is completely dominating the dynamics. The characteristic upstream
tilted structures are present in the initial condition and all the velocity com-
ponents achieve a significant growth. The wave-packet grows while travel-
ling downstream and it consists of structures almost aligned in the spanwise
direction, forming symmetric arches. The three-dimensional nature of this
wave-packet is noticeable in the spanwise velocity component of the response,
accounting for the spreading of the disturbance normal to the propagation di-
rection and to the presence of unstable oblique waves. As in the case of the
spanwise periodic disturbances, the total energy growth due to the streamwise
normality (TS-waves for T = 1820) is about one of order magnitude larger than
the amplification triggered by the lift-up effect at T = 720 (component-wise
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Figure 12. Optimal localised initial condition and corre-
sponding response at time T = 720, the optimal streaky wave-
packet. The amplitudes of each velocity component are re-
ported in table 1.

Time Comp. Initial condition Response Total growth
u 0.00398 275.42913

720 v 0.36452 0.02334 275.76202
w 0.63149 0.30954
u 0.74441 1012.39550

1820 v 0.00314 278.58122 1763.75695
w 0.25244 472.78022

Table 1. Energy pertaining each component of the tree-
dimensional optimal initial condition and the corresponding
response. The total energy amplification is reported in the
last column. All the values are normalised with the total en-
ergy of the initial condition.

non-normality). Table 1 compiles the energy amplifications for the cases un-
der investigation and reports the value of the energy content in each velocity
component for the initial and final conditions.

The flow structures shown in figure 12, with corresponding amplitudes in
table 1, document the optimal initial conditions for T = 720. The lift-up effect
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Figure 13. Space-time diagram of the energy of three veloc-
ity components of the perturbation for the optimal TS wave-
packet (optimisation time T = 1820). Top line shows the
spreading of the disturbance in the streamwise direction where
the disturbance velocity is integrated in the spanwise and wall-
normal direction: (a) streamwise, (b) wall-normal and (c)
spanwise velocity component, respectively. (d), (e) and (f)
show the evolution in the spanwise direction of the perturba-
tions integrated in the streamwise and wall-normal direction.
The propagation velocity of the leading edge of the disturbance
is cle = 0.47 while the trailing edge travels at cte = 0.32. The
spanwise spreading speed is cz = 0.084.

with the formation of streamwise elongated streaks is evident in this case. The
initial condition is characterised by strong streamwise vorticity, wall-normal
and spanwise velocity components, while the response is predominantly in the
streamwise velocity component. Interestingly, we note weak TS-waves prop-
agating behind the streaks (visible in the wall-normal and spanwise velocity
components). Since the optimisation time is short, TS-waves will not have the
opportunity to grow and their contribution to the initial condition is there-
fore limited. However, this cannot be zero for a localised initial perturbation.
Note further that the spanwise component is found to be weak and hence the
spreading of the disturbance in this direction is limited.

The characteristics of the optimal wave-packets are analysed by the space-
time diagrams in figure 13 and 14. Here, the propagation of the disturbance
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in the streamwise direction is determined by considering the integral of the en-
ergy associated with each velocity component in the wall-normal and spanwise
direction. Similarly, the lateral spreading is computed by integrating the per-
turbation velocities in the streamwise and wall-normal direction. Comparing
the two cases we see that the TS wave-packet expands faster in the spanwise
direction while travelling downstream more slowly than the optimal streaky
wave-packet. The propagation velocity of the leading edge of the TS-like dis-
turbance is cle = 0.47 while the trailing edge travels at cte = 0.32. The spanwise
spreading speed is cz = 0.084, corresponding to an angle of θ = 11.46o. These
values can be compared to those observed experimentally by Gaster (1975);
Gaster & Grant (1975) and to the theoretical analysis in Koch (2002). The lat-
ter author determined the propagation speed of the leading edge of a localised
wave-packet to be 0.5 and the trailing edge velocity to be 0.36 by computing
the group velocity of three-dimensdional neutral waves. The largest spanwise
group velocity was found to be approximately 0.085, a value very close to those
reported here. The agreement is remarkable even though the results in Koch
(2002) are obtained at a lower Reynolds number, i.e. Re = 580.

The difference between leading and trailing edge of the optimal streaky
wave-packet, cle = 0.90 and cte = 0.36, explains the larger extension of the
latter; while the front travels at the speeds typical of the upper part of the
boundary layer where the streaks are located, the trailing edge velocity is that
of the unstable waves seen on the rear. The spanwise spreading speed is cz =
0.0098, corresponding to an angle of θ = 0.89o. It should be mentioned that
this spreading rate pertains the energetically dominant velocity component, i.e.
the streamwise component. The slow lateral diffusion is most likely only due to
the effect of viscosity; the growing streaky structures are therefore characterised
by zero spanwise propagation velocity.

Figure 14b) and c) clearly demonstrates the short and slower packet of
waves following the main streaky structures. As mentioned above, the spanwise
propagation of the streamwise vortices and streaks is limited; conversely, the
sequence of waves on the rear part of the wave-packet has a spanwise spreading
rate comparable to that of the TS wave packet, in particular the value cz =
0.073 is obtained by considering the energy of the spanwise velocity component.

Finally, we computed optimal disturbances for intermidiate optimisation
times and the amplifications were generally lower than in the two previous
cases. However it was intresting to notice that for times around 800 to 900
pertubations containing both streaky and wavy structures emerge. The spec-
trum of the initial conditions is composed by a broad range of disturbances.
Interestingly, the flow response is again characterised by short-wavelength in-
stability waves following elongated streaks, apparent only in the streamwise
velocity component. The TS wave-packet becomes more and more relevant as
the optimisation time increases.
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Figure 14. Space-time diagram of the energy of three veloc-
ity components of the perturbation for the optimal streaky
wave-packet (optimisation time T = 720). Top line shows
the propagation of the disturbance in the streamwise direction
where the disturbance velocity is integrated in the spanwise
and wall-normal direction: (a) streamwise, (b) wall-normal
and (c) spanwise velocity component, respectively. (d), (e)
and (f) show the evolution in the spanwise direction of the
perturbations integrated in the streamwise and wall-normal
direction. The propagation velocity of the leading edge of
the disturbance is cle = 0.90 while the trailing edge travels
at cte = 0.36. The spanwise spreading speed is cz = 0.0098
(based on the u-component).

5.2. Optimal forcing

5.2.1. Global forcing

Since boundary layers are convectively unstable, thereby acting as noise ampli-
fiers, a prominent role is played by the response to forcing, rather than by the
detailed time-evolution of the initial condition; The optimal forcing is therefore
a relevant measure of the maximum possible growth that may be observed in
the computational domain. Analysis of the frequency response can also have
implications for control revealing the forcing location and frequencies the flow is
most sensitive to. While the evolution of the optimal initial condition consists
of the propagation and amplification of a wave packet, eventually leaving the
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Figure 15. a) Frequency response for zero spanwise wave-
number i.e. two-dimensional disturbances. The optimal re-
sponse is obtained for the frequency ω = 0.055. b) Response
to zero frequency forcing ω = 0 for different spanwise wave-
numbers. The maximum response is obtained at β = 0.6

computational box (or measurement section), the response of the flow to peri-
odic forcing will consist of structures with a fixed amplitude at each streamwise
station, oscillating around the mean flow. We investigate the structure of the
optimal forcing and the corresponding response for a range of spanwise wave-
numbers and frequencies. Thus, for each wave number we examine a number
of temporal frequencies. Ideally we would like to solve the linearized Navier–
Stokes equations for very large times, ensuring that we are only considering
the regime (long-time) response at the specific frequency under investigation.
In practice however we are restricted to a finite final time by the computa-
tional cost of solving the direct and adjoint equations involved in the iteration
scheme. Using power iterations to find the largest eigenpair typically requires
from approximately 15 iterations to about 100 for the most stable frequencies;
in other words we need to integrate the governing equations at least 30 times.
As can be deduced from the results in the previous section transiently growing
perturbations of small spanwise scale leave our domain at time t ≈ 2000, while
locally unstable TS-waves propagates at a speed of about 0.3 U∞. This obser-
vation, along with several convergence tests using different integration intervals
to extract the flow regime response lead to the conclusion that integration to
T = 5000 is long enough to observe the pure frequency response.

Figure 15 shows the square of the resolvent norm, i.e. the response to forc-
ing for the two limiting cases β = 0 and ω = 0. In figure 15a) the response to
two-dimensional forcing, inducing perturbations with β = 0, is displayed. The
maximum response is observed for the frequency ω = 0.055. This maximum
is obtained at the frequency where the least stable TS eigenvalue is located
(see Bagheri et al. 2009a). Indeed it is known that by projecting the dynam-
ics of the flow onto the basis of eigenmodes, the response to forcing is given
by the combination of resonant effects (distance in the complex plane from
forcing frequency to eigenvalue) and non-modal effects, i.e. the cooperating



114 A. Monokrousos, E. Åkervik, L. Brandt & D. S. Henningson

non-orthogonal eigenvectors (Schmid & Henningson 2001). In Åkervik et al.
(2008) it was shown for a similar flow that non-normal eigenvectors could in-
duce a response about twenty times larger than that induced only by resonant
effects.

The response to zero temporal frequency for different spanwise wave-
numbers β is shown in figure 15b), where according to local theory the max-
imum response is expected for spanwise periodic excitations. The maximum
growth may be observed for the wave-number β = 0.6, a slightly larger value
than for the optimal initial condition case. Notice that in the case of opti-
mal forcing there is a smaller difference in the maximum gain between the two
different dominating mechanisms (TS-waves vs. streaks).

A full parameter study has been carried out in the frequency–spanwise
wave-number (ω,β) plane. A contour map showing the regime response to
optimal forcing is displayed in figure 16. As in the case of the optimal initial
condition, the global maximum response to forcing is observed for β = 0.05. It
reaches this maximum for the frequency ω = 0.055. A second region of strong
amplification is found for low frequencies and high spanwise wave-numbers.
Here the most amplified structures consist of streamwise elongated streaks in-
duced by cross-stream forcing. At the largest spanwise wave-numbers, we also
observe that the decay of the amplification when increasing the forcing fre-
quencies is rather slow. Conversely, the peak corresponding to excitation of
the TS-waves is more pronounced.

A visualisation of the overall maximum amplification, found for the span-
wise wave-number of β = 0.05 and for the same frequency ω = 0.55 yielding
the optimal two-dimensional forcing, is presented next. The optimal forcing in
the streamwise momentum equation and the streamwise velocity component of
the optimal response are shown in figure 17. The optimal forcing structures
are leaning against the shear (see 17a) to optimally trigger the Orr mechanism;
the regime long-time response of the flow, shown in figure 17b), reveals the ap-
pearance of amplified TS-waves at the downstream end of the computational
domain.

The optimal forcing structure at β = 0.6 and the zero frequency has almost
all its energy in the spanwise and wall normal components, that is the flow is
forced optimally in the wall-normal and spanwise direction as shown among
others by Jovanovic & Bamieh (2005) for channel flows. The wall-normal and
spanwise components of the forcing are displayed in figure 18a) and b). The
rms values of the streamwise component of the forcing is only two percent of
that pertaining to its spanwise and wall-normal counterparts. The lift-up ef-
fect transfers momentum into the streamwise component (shown in figure 18c),
which contains 99.99 percent of the energy of the flow response. The streak
amplitude increases in the streamwise direction until the fringe region is en-
countered.

The Fourier transform along the streamwise direction of the two disturban-
ces investigated above is shown in figure 19. As in the case of the optimal initial
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Figure 16. Contour map of response to forcing with fre-
quency ω versus spanwise wave-number β. The contour levels
span three orders of magnitude and thus we use a logarithmic
scale. The blue lines are of order 103−104, the green 104−105

and the red 105−106. For each level we define 10 contour lines
but only levels present in the actual data are visible. The max-
imum response to forcing is observed for β = 0.05 and for the
frequency ω = 0.055. The amplification factor is G = 1.01·105.
The maximum growth due to the streak mechanism is found
for the spanwise wave-number β = 0.6 at ω = 0 where the
amplification factor is G = 3.45 · 104.

Figure 17. Isosurfaces of optimal forcing and response for
the streamwise wave-number β = 0.05 subject to forcing at
the frequency ω = 0.055. Red/blue colour signifies isosurfaces
corresponding to positive/negative velocities at 10 percent of
the maximum. a) Streamwise component of optimal forcing
structure. b) Streamwise velocity component of the response.

a)

b)

conditions in figure 8, the energy density is first integrated in wall-normal and
spanwise direction. The results indicate that the TS-wave disturbance has a
peak at a relatively high α ≈ 0.17 while the zero-frequency forcing is concen-
trated at the lowest wave-numbers. The peak at the wave-number of the most
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Figure 18. Isosurfaces of optimal forcing and response for
the streamwise wave-number β = 0.6 subject to steady forc-
ing. Red/blue colour indicates isosurfaces corresponding to
positive/negative velocities at 10 percent of the maximum. a)
Wall-normal component of optimal forcing structure. b) Span-
wise component of optimal forcing. c) Streamwise velocity
component of the flow response. Both the forcing structures
and the response are elongated in the streamwise direction.
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b)

c)

0 0.1 0.2 0.3 0.410−2

10−1

100
TS wave

α

E

0 0.1 0.2 0.3 0.410−4

10−2

100
Streak

α

E

Figure 19. Energy spectra along the streamwise direction for
the optimal forcing at for that case ω = 0.055, β = 0.05 (TS-
wave) and ω = 0, β = 0.6 (Streak).

unstable TS-waves is more evident in the case of forcing than in the case of the
optimal initial condition (cf. figure 8).

5.2.2. Localised forcing

In this section we present results obtained by restricting the forcing to a small
region near the inflow of the computational domain. The formulation presented
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Figure 20. Downstream evolution of the kinetic energy of
the flow integrated over cross-stream planes. In a) blue and
green lines are used to indicate the response to steady forcing
active everywhere in the domain (“Full forcing”) and in a short
region near the inflow (“Localised forcing”) respectively. The
data are scaled with the magnitude of the forcing computed as
integral over the whole domain. In b) the blue line corresponds
to the case of localised forcing in a) while green (“Parab. Eq.
Final Point”) indicates the evolution of the optimal initial con-
dition yielding the largest possible kinetic energy at the down-
stream location 662δ∗0 (Levin & Henningson 2003), and the
red line (”Parab. Eq. Integral”) the evolution of optimal ini-
tial condition yielding the largest integral over the streamwise
domain. In order to make a physically relevant comparison
we have scaled the data pertaining to the “Localised Forcing”
with the value of the response just downstream of the forcing
region. The centre of the forcing is at the location x = 32.3δ∗0
corresponding to the optimal upstream location in Levin &
Henningson (2003).

in section 4 is altered by multiplying the forcing f with a function λ(x) which is
non zero only in a short streamwise region. The edges of this region are defined
by two smooth step functions rising from zero to one over a distance of about
1δ∗0 . The centre of the forcing is chosen to be at x = 23δ∗0 with width of 4δ∗0 if
not otherwise stated.

This problem is physically closer to the case when disturbances are gener-
ated upstream, closer to the leading edge, and their evolution is monitored as
they are convected downstream. Initially a comparison with optimal upstream
disturbances calculated by means of the parabolized equations is thus presented
(see results in Levin & Henningson 2003).

To this aim, we compute the optimal localised steady forcing for spanwise
wave-number β = 0.53 at x = 32.3δ∗0 . These were found to be optimal location
and spanwise scale of the overall optimal in Levin & Henningson (2003); in their
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scalings they correspond to X = 0.37 and β = 0.53 for an initial perturbation
downstream of the leading edge with Reynolds-number independent evolution,
here assumed to be Rex = 106.

In figure 20 the streamwise growth of the energy of the perturbation ob-
tained with four different approaches is shown. In figure 20a we compare the
flow regime response to steady forcing active everywhere in the domain with the
response to forcing localised upstream. Further, the latter is compared in fig-
ure 20b with the evolution of the optimal initial conditions yielding the largest
possible kinetic energy at the downstream location 662δ∗0 and with the evolu-
tion of the optimal upstream velocity profile yielding the largest integral of the
perturbation energy over the whole streamwise domain (see also Cathalifaud
& Luchini 2000). The two latter are computed with the parabolic stability
equations (David Tempelmann, private communication); the case having as
objective function the integral of the perturbation energy is indeed more rel-
evant to comparing with the present results. It can be seen that the growth
is faster when the forcing is active everywhere in our control domain since the
component-wise transfer of energy is at work at every streamwise position. The
two curves obtained with the parabolic equations (fig. 20a) are similar: faster
growth is observed when the control is optimising over the whole domain, while
a larger final level is reached when the objective is limited to the last down-
stream station. The comparison between the response to“localised forcing”and
the “parabolic equations” cases reveals good agreement. The main differences
between the two methods are the different set of equations and the way the
disturbance is introduced. In Levin & Henningson (2003) and Cathalifaud &
Luchini (2000) the linearised boundary-layer equations are used, whereas we
optimise solving the linearised Navier–Stokes equations. In addition, an opti-
mal upstream boundary condition is computed in Levin & Henningson (2003),
whereas an optimal forcing is sought here.

Figure 21a) displays the structure of the optimal forcing function for the
case of localised excitation. The wall-normal profiles shown in the plot are
obtained by integrating the forcing in the streamwise direction. Figure 21b)
and c) depict instead the optimal initial condition obtained with the para-
bolic boundary-layer equations, i.e. a streamwise vortex pair. The structure
of the disturbances are remarkably similar; in the case of the optimal forcing
(figure 21a), the action is located closer to the wall with a relatively weaker
wall-normal component. When comparing the cases in b) and c) one can note
that the vortices leading to the largest possible energy downstream are located
further up into the free-stream. Conversely, when the perturbations is required
to grow over the whole domain, the disturbance needs to be located in the shear
layer so that its effect can be readily felt (cf. figure 21a and c). The results
in the figure indicate that forcing the momentum equation is less effective in
the free stream: optimal forcing thus induces streaks which grow for a shorter
downstream distance.
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Figure 21. Wall-normal profiles of the streamwise, spanwise
and wall-normal components of a) the optimal localised forcing
(integrated in the streamwise direction), b) the initial condi-
tion yielding the largest possible kinetic energy at the down-
stream location 662δ∗0 ; c) the initial condition yielding the
largest integral of the disturbance energy over the streamwise
domain.

G

x

Responce to steady localised 
forcing for various β  

0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

3.5 x 104

G
m

ax

β

Maximum growth

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5 x 104

a) b)

Figure 22. a) Streamwise evolution of the response to steady
localised forcing for different spanwise wave-numbers β. The
arrow indicates increasing β. b) Maximum response versus
spanwise wave-numbers.

A parameter study is conducted to examine the effect of frequency and
spanwise scale of the localised forcing. First, figure 22, the results obtained
when varying the spanwise wave-number are shown. The downstream evo-
lution originating from optimal localised disturbances of zero frequency are
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Figure 23. Streamwise evolution of the response to localised
forcing for different spanwise wave-numbers β where the
streamwise position x is scaled with β. The distance from
the leading edge is considered to re-scale the data.

displayed for the spanwise wave-numbers investigated. A slower energy growth
is observed for the lower wave-numbers owing to the lower forcing to the streaks
(proportional to β); the wave-number giving the largest peak response for the
present configuration is β = 0.8. Forcing of smaller scale induce streaks rapidly,
but viscous dissipation causes earlier decay.

As shown among others by Andersson et al. (2001), in the limit of validity
of the boundary layer equations there is a coupling between the streamwise
and spanwise length scale of the disturbance. It is in fact possible to show
that a streak family u(x, y, z), defined by the spanwise wave-number β0, is in-
dependent of the Reynolds number. This results in a scaling property that
couples the streamwise and spanwise scales, implying that the same solution
is valid for every combination of the streamwise location x + x0(distance from
the leading edge) and of β such that their product stays constant. In other
words, this amounts to moving along the plate and varying the spanwise wave-
number so that the local spanwise wave-number β0δ∗/δ∗0 remains constant (see
also Brandt et al. 2003). To further examine this scaling property, the stream-
wise coordinate in figure 22a) is multiplied by the spanwise wave-number of
the disturbance and the result shown in figure 23. Despite the fact that the
streamwise extent of each curve is different, the curves indicating the evolution
of the streaky disturbance collapse notably, thus confirming the similarity of
the boundary-layer streaks.

Finally we investigate the case of zero spanwise number (pure two-
dimensional disturbances) and vary the temporal frequency. The results are
shown in figure 24. The growth observed here is due to the combined Orr and
TS-wave mechanism and thus the value of the optimal frequency is close to that
obtained when forcing over the whole domain, ω = 0.055. The structure of the
optimal forcing for the frequency with largest amplification is displayed in fig-
ure 25. The excitation is localised closer to the wall, well inside the boundary
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Figure 24. a) Streamwise evolution of the response to lo-
calised forcing for different temporal frequencies ω. The arrow
indicates increasing ω. b) Maximum growth with respect to
ω.
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Figure 25. Localised forcing with frequency. We plot the
streamwise and wall-normal components of the forcing func-
tion. The quantities are integrated in the streamwise direction.
Note that this is a 2D structure thus the spanwise component
is zero.

layer, when compared to the forcing forming streamwise streaks, see figure 21.
Forcing the streamwise momentum equation is significantly more efficient at
triggering the Orr mechanism and the following wave packet of two-dimensional
TS waves.

6. Conclusions

We have used a Lagrange multiplier technique in conjunction with direct and
adjoint linearized Navier–Stokes equations in order to quantify the growth po-
tential in the spatially developing flat-plate boundary-layer flow at moderately
high Reynolds. Spanwise periodic and fully three-dimensional disturbances are
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investigated. We consider both the initial conditions leading to the largest
possible energy amplification at time T and the optimal spatial structure of
time-periodic forcing. To the best of our knowledge, the pseudo-spectrum of
the governing operator along real frequencies is computed here for the first
time with matrix-free methods. The optimisation framework adopted does not
restrict us to assume slow variation of the base flow in the streamwise direc-
tion, common to both the first order approximation of the OSS formulation
and the more advanced PSE approximation. Specifically we do not, as in the
PSE framework, need different equations to describe the lift-up instability and
the wave packet propagation.

For the optimal initial condition we find that the largest potential for
growth is found at small spanwise wave-numbers and consists of upstream tilted
structures, enabling the subsequent disturbances to exploit the Orr mechanism
and the local convective instability of the oblique wave packet of Tollmien-
Schlichting waves. The length and position of the initial disturbance is re-
lated to the final time of the optimisation: short time evolution requires the
wave-packet to be initiated further downstream in the region of largest local
instability and vice-versa for longer optimisation times. The lift-up instability
mechanism inherent to spanwise wavelengths of the order of the boundary layer
thickness is faster than the Orr/oblique instability; we show that for the present
configuration the latter instability needs approximately 300 time units more to
extract as much energy as the lift-up instability. The results indicate that
streamwise vortices of finite length become optimal once a spatially-evolving
boundary layer with inflow/outflow conditions is considered . As concerns the
optimal response to periodic forcing, the difference in the two instabilities is
less pronounced. In this case, the Orr/oblique wave instability only manages
to gain a factor of two in energy more than the streak mechanism. The largest
amplification of the local convective instability over the non-modal streak gen-
eration can be explained by the long computational box examined and the
relatively high inflow Reynolds number. Starting closer to the leading edge,
one can expect streaks to dominate the transition scenario.

Three-dimensional localised optimal initial conditions are also computed
and the corresponding wave-packets examined. For short optimisation times,
the optimal disturbances consist of streaky structures propagating and elongat-
ing in the downstream without any significant spreading in the lateral direction.
For long optmisation times, conversely, the optimal disturbances are charac-
terised by wave-packets of TS-waves. These travel at lower streamwise speed
and with faster spreading in the spanwise direction. The latter can achieve
the largest possible energy amplification. Intermediate optimisation times are
also considered where both the TS- and streak-mechanism are relevant. The
wave-packet has therefore features from both scenarios previously considered:
It consists of elongated streaks in the streamwise velocity component, followed
by short-wavelength instability waves, mainly evident in the cross-stream ve-
locities.
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Finally, we examine the effect of inflow upstream disturbances on the the
boundary layer flow. Thus we introduce a localised forcing near the inflow of
the computational box and compute the forcing structure that provides the
largest response over our control domain. First, we compare with results based
on the solution of the parabolized Navier-Stokes equations: good agreement is
obtained, despite the differences of the two methods. Secondly, we investigate
zero-frequency upstream forcing and show a maximum for perturbations with
spanwise wave-number larger than that obtained when the forcing location is
not constrained. Thirdly, analysis of time-periodic two-dimensional forcing is
considered: the findings agree with those obtained with distributed forcing
since the flow response corresponds in both cases to exponentially growing
Tollmien-Schlichting waves at the forcing frequency.

Three different destabilising mechanisms are considered in this study, all at
work in the boundary layer flow. Although these could be explained using the
OSS equations, they are analysed without any simplifying assumptions. The
present work is of a more general character. By choosing an objective function
and using the full linearized Navier–Stokes equations as constraints we are not
limiting ourselves to simple geometries. Whenever a DNS code is available to
accurately describe a flow, all that is needed in order to investigate the stability
characteristics is a linearised version of the code and the implementation of the
corresponding adjoint equations along with a wrapper built around these two
simulations ensuring the correct optimisation scheme. The method used here
is therefore applicable to any geometrical configuration.
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Appendix A. Derivation of the adjoint equations

In this section we report the derivation of the adjoint linearised Navier–Stokes
equations, needed to perform directional derivatives on the augmented cost
functions (17) and (29). The definition of the adjoint evolution operator is
associated with the inner product (u,u) =

∫

Ω uT u dΩ,

(p, exp(At)u) = (exp(A†t)p,u). (42)

The inner product in time-space domain Σ = [0, T ]×Ω is used in the derivation
of A†,

(u,u)Σ =

∫ T

0
(u,u) dt =

∫ T

0

∫

Ω
uT u dΩ dt. (43)
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By noting that the linearised Navier–Stokes equations can be written as (∂t −
A)u = 0 we recognise that the adjoint should satisfy the following property

(p, (∂t −A)u)Σ = ((−∂t −A†)p,u)Σ = 0. (44)

In order to derive the exact structure of the operator A† we adopt the formu-
lation including the pressure

∂tu + (U ·∇)u + (u∇)U −Re−1∆u +∇π = 0 (45)

along with continuity,
∇u = 0. (46)

In this form, the Lagrange function consists of two governing equations with
multipliers p and σ

∫

Ω

[

(p)T
(

∂tu + (U ·∇)u + (∇U)u −Re−1∆u +∇π
)

+ (σ,∇u)
]

dΩ dt

(47)
Integration by parts of the above expression yields
∫ T

0

∫

Ω

[

(p)T
(

∂tu + (U ·∇)u + (∇U)u −Re−1∆u +∇π
)

+ (σ,∇u)
]

dΩ dt

=

∫ T

0

∫

Ω
uT

(

−∂tp− (U ·∇)p + (∇U)T p−Re−1∆p−∇σ
)

dΩ dt

+

∫ T

0
B.C. dt +

∫

Ω
(p(T ))T u(T ) dΩ−

∫

Ω
(p(0))T u(0) dΩ

= ((−∂t −A†)p,u)Σ +

∫ T

0
B.C. dt + (p(T ),u(T ))− (p(0),u(0)).

(48)

This equality defines the adjoint linearized Navier–Stokes equations

−∂tp = A†p = (U ·∇)p− (∇U)T p + Re−1∆p +∇σ, p(T ) = pT , (49)

where σ is the adjoint pressure. It can also be expressed as solution to a Poisson
equation

∆σ = −∇
(

(U ·∇)p− (∇U)T p
)

, (50)

with solution σ = Zp. The boundary conditions of the adjoint system are
determined so that the integral containing boundary terms vanish. The adjoint
field has periodic boundary conditions along the two wall parallel directions and
homogeneous Dirichlet conditions at the wall and the free stream. The initial
and end time inner products equals, i.e.

(p(T ),u(T )) = (p(T ), exp(AT )u(0)) = (exp(A†T )p(T ),u(0)) = (p(0),u(0)).
(51)

Hence the adjoint evolution operator becomes

p(0) = exp(A†T )p(T ), (52)

solves the adjoint linearized Navier–Stokes equations backwards in time to fulfil
the relation (44).



Optimal disturbances with iterative methods 125

Appendix B. Localised initial condition

In this section we consider a localised initial condition and show how the La-
grangian approach is modified. Assuming the initial condition to be non-zero
within a fixed region in space, e.g. u(0) .= 0 in Λ ⊂ Ω, the relevant integral
becomes

(u(0),u(0))Λ =

∫

Λ
u(0)T u(0) dΛ . (53)

After the localisation is applied, the state variable might not satisfy the
divergence-free condition, thus we need to re-enforce it by adding one more
constraint in the Lagrange function. Therefore we rewrite equation (17) as

L(u,p, γ) = (u(T ),u(T ))−
∫ T

0
(p, (∂t −A)u) dτ

−γ ((u(0),u(0))Λ − 1)− (ψ,∇ · u(0))Λ (54)

where ψ is a new Lagrange multiplier. Compared to the derivation in sec-
tion (3), the difference occurs when the variation with respect to the state
variable is taken. Integration by parts of equation (54) yields

L = (u(T ),u(T ))−
∫ T

0

(

u, (−∂t −A†
)

p) dτ

− (p(T ),u(T )) + (p(0),u(0))− γ ((u(0),u(0))Λ − 1)− (ψ,∇ · u(0))Λ (55)

The adjoint governing equation as well as the final-time condition are the same,
(−∂t−A†)p = 0 and p(T ) = u(T ), whereas variations with respect to the initial
velocity field give the following condition

(δu(0),p(0))− γ(δu(0),u(0))Λ − (δu(0),∇ψ)Λ = 0 . (56)

The expression above can be re-written in integral form
∫

Ω
(δu(0)T p(0))− γ

∫

Λ
(δu(0)T u(0))−

∫

Λ
(δu(0)T∇ψ) = 0 , (57)

or ∫

Ω−Λ
(δu(0)T p(0)) +

∫

Λ
δu(0)T (p(0)− γu(0)−∇ψ) = 0 . (58)

The first integral is zero for δu(0) = 0, which implies that the initial condition
is not updated outside Λ. Therefore the new guess for the localised initial
condition u(0) is

u(0) = γ−1(p(0)−∇ψ)|Λ. (59)

In the above, the scalar field ψ is obtained by combining (59) with

∂L
∂ψ

= ∇ · u(0) = 0. (60)

This gives a projection to a divergence free space where the pressure-like scalar
field is solution of a Poisson equation.

It can be proven that this is a unique projection. In our numerical imple-
mentation the projection is actually performed by transforming in the velocity-
vorticity formulation adopted for the computations (Chevalier et al. 2007).
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Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal
growth, model reduction and control in a separated boundary-layer flow using
global eigenmodes. J. Fluid Mech. 579, 305–314.

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances
and bypass transition in boundary layers. Phys. Fluids 11, 134–150.

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the
breakdown of boundary layers streaks. J. Fluid Mech. 428, 29–60.
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