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Abstract

This thesis deals with fibre orientation in wall-bounded shear flows. The pri-
mary application in mind is papermaking. The study is mainly experimental,
but is complemented with theoretical considerations.

The main part of the thesis concerns the orientation of slowly settling
fibres in a wall-bounded viscous shear flow. This is a flow case not dealt with
previously even at small Reynolds numbers. Experiments were conducted using
dilute suspensions with fibres having aspect ratios of r, ~ 7 and 30. It is found
that the wall effect on the orientation is small for distances from the wall where
the fibre centre is located farther than half a fibre length from the wall. Far
from the wall most fibres were oriented close to the flow direction. Closer to
the wall than half a fibre length the orientation distribution first shifted to be
more isotropic and in the very proximity of the wall the fibres were oriented
close to perpendicular to the flow direction, nearly aligned with the vorticity
axis. This was most evident for the shorter fibres with r, ~ 7.

Due to the density difference between the fibres and the fluid there is an
increased concentration near the wall. Still, a physical mechanism is required
in order for a fibre initially oriented close to the flow direction at about half a
fibre length from the wall to change its orientation to aligned with the vorticity
axis once it has settled down to the wall. A slender body approach is used
in order to estimate the effect of wall reflection and repeated wall contacts on
the fibre rotation. It is found that the both a wall reflection, due to settling
towards the wall, and contact between the fibre end and the wall are expected
to rotate the fibre closer to the vorticity axis. A qualitative agreement with
the experimental results is found in a numerical study based on the theoretical
estimation.

In addition an experimental study on fibre orientation in the boundary
layers of a headbox is reported. The orientation distribution in planes parallel
to the wall is studied. The distribution is found to be more anisotropic closer
to the wall, i.e. the fibres tend to be oriented closer to the flow direction near
the wall. This trend is observed sufficiently far upstream in the headbox.
Farther downstream no significant change in the orientation distribution could
be detected for different distances from the wall.

Descriptors: fluid mechanics, fibre orientation, shear flow, wall effect, fibre
suspension, papermaking
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Preface

This doctoral thesis in mechanics deals with near wall fibre orientation in flow-
ing suspensions. The primary application in mind is manufacturing of paper,
where a fibre suspension flows along solid surfaces in the early stage of the pro-
cess. The thesis is divided into two parts. Part I provides a brief introduction
to papermaking as well as an overview of relevant work performed in the area
of fibre orientation. Part II consists of five papers that, for consistency, have
been adjusted to the format of the thesis.

February 2009, Stockholm
Allan Carlsson
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CHAPTER 1

Introduction

This thesis focuses on near wall orientation of fibres in flowing suspensions.
Flowing fibre suspensions are present in various applications. The primary
application in mind for this work is paper production. The study is mainly
experimental in nature, but is also complemented with theoretical considera-
tions. Below a brief background is given to the process of papermaking and the
relevance of fibre orientation. The primary sources for the text in this chapter
is Fellers & Norman (1998) and Gavelin (1990).

1.1. Paper manufacturing

The ability to produce paper has its origin in China, where paper was man-
ufactured roughly 2000 years ago. Originally all paper sheets were made by
hand in a slow process, whereas today there are machines that produce more
than 600,000 tons/year. Although paper as a product has been around for sev-
eral centuries, many of the physical mechanisms present in the manufacturing
process are not well understood. Thus, the prospects of improving the process
are still promising.

Paper consists of a network of fibres, where the most commonly used fibres
in manufacturing are cellulose fibres from wood. To produce paper the first
step is to extract fibres from wood to produce pulp. This is done in a pulping
process and can be done in several ways. How the pulp is prepared depends
on the desired properties of the final paper. The fibre suspension, that enters
the initial part of the paper machine called a headbox, consists of a mixture of
water and cellulose fibres. The mass fraction of fibres are usually less than 1%
and the suspension can also contain some fine material, so called fillers such as
clay or chalk and chemical additives.

The main assignment of the headbox is to transform a pipe flow, with a
diameter of about 800 mm, to a uniform free jet around 10 mm thick and up
to 10 m wide. The jet leaving the headbox impinges on one or two permeable
bands called wires. The headbox, jet and initial drainage of water through
the wires are often referred to as the forming section of the paper machine. A
schematic of the forming section is shown in figure 1.1. The forming section is
followed by large machinery consisting of a press section and a drying section.
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2 1. INTRODUCTION

The primary aim of the press and drying section is to remove the remainder of
water from the suspension to generate the thin network of fibres called paper.

FIGURE 1.1. Schematic of a forming section of a paper machine.

1.2. Fibre orientation

A parameter of relevance for the final properties of a paper sheet is the fibre
orientation. The fibres in the final product are to a large extent oriented in
the machine direction. This leads to a stronger tensile strength in the machine
direction, than in the cross direction. However, the desired orientation distri-
bution varies with the type of paper produced. Generally it is not desired that
the orientation distribution changes over the plane of the paper sheet or over
the thickness of the paper. When a fibre dries it changes its dimension and
shrinks more radially than axially. This leads to internal stresses in the paper
that result in deformations and undesired properties of the paper. For instance,
if there is a variation in orientation distribution over the thickness of the paper
this can make the paper curl or twist which can lead to problems such as paper
jams in copy machines and printers. There are also other issues where the fibre
orientation is of significance. In a recent overview Odell & Pakarinen (2001)
made a more thorough overview on fibre orientation related defects on different
scales and their effect on the paper sheet.

The orientation distribution of the final paper sheet is determined in the
forming section of the paper. Shortly after the free jet impinges on the wire,
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water is drained and the fibre concentration of the suspension is rapidly in-
creased. Quickly, the fibres form a network and as a result they cannot alter
their orientation in relation to each other. In order to be able to control the
fibre orientation in the final paper sheet it is therefore essential to understand
how the fibres interact with the fluid and surroundings in this early part of the
paper machine.

As stated earlier the study of near wall fibre orientation in shear flows is
the main theme of this thesis. In a headbox nozzle, which may be described as
a planar convergent channel, there are often a set of thin flexible flow dividers
implemented. The flow dividers will here be referred to as lamellas. A reason for
implementing lamellas is that such devices can reduce large scale fluctuations
in the flow, which could lead to an uneven mass distribution of fibres in the final
paper sheet, i.e. a poor formation. At the interface between the suspension and
the solid surfaces of the lamellas the velocity of the fluid is zero. This leads
to a formation of thin layers of shear along the surfaces of the lamellas, where
the velocity rapidly increases with the distance to the solid surface. The fluid
mechanical term for these layers of shear is boundary layers. The boundary
layer thickness, i.e. the thickness of the sheared region of fluid, in the headbox
is of the order of 1 mm. Recall that the thickness of the jet leaving the headbox
is about 10 mm and due to the lamellas there can be several boundary layers
in the headbox. Therefore, the lamellas may have a significant impact on the
orientation distribution of fibres leaving the headbox in the outgoing jet and
also on the orientation distribution in the final paper.

This work mainly deals with a different parameter regime than that op-
erated at in a paper machine. Experiments have been performed in a viscous
wall-bounded shear flow, where the inertial effects are expected to be consider-
ably smaller than in the boundary layers of a headbox. This has been done in
order to develop an experimental methodology to measure the orientation and
velocity of fibres in flowing suspensions. Also, this is a flow case which is still
not fully understood even when inertial effects are absent.
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CHAPTER 2
Fibre orientation in flowing suspensions

In this chapter an introduction is given to the field of fibre suspension flows.
Extensive work has been performed in this and related areas. Particular em-
phasis is given to the motion of fibres in shear flows.

2.1. Fluid motion

The motion of an incompressible Newtonian fluid is described by Navier-Stokes
equations

1
thl—i—(u-V)u:—pr—H/VQuﬁ—f (2.1)

V-u=0, (2.2)

where u is the fluid velocity, ¢ is the time, p is the pressure and f is a body force
term. The fluid properties, density and kinematic viscosity, is denoted by p and
v, respectively. In order to get an indication of the characteristics of a flow a
non-dimensional number, referred to as the Reynolds number Re = UL/v,
is often introduced. The parameters U and L correspond to a characteristic
velocity and length scale, respectively, for the particular flow. For steady flows
where the inertial effects are negligible as compared to effects of viscosity, i.e.
Re << 1, equation (2.1) is reduced to

1
~Vp=vV?u+f. (2.3)
p

Flows that are described by equation (2.3) are generally called Stokes flows or
creeping flows. It is worth noticing that equation (2.3) is linear. This implies
that Stokes flows have a couple of specific features worth mentioning:

e Stokes flows are reversible. If p, u form a solution to equation (2.3) then
—p, —u is a also solution, provided that the motion of all boundaries
and the body force term are reversed.

e [t is possible to apply the principle of linear superposition and superim-
pose flows that satisfy equation (2.3).

These features are not shared with Navier-Stokes equations since the non-linear
term (u - V)u in equation (2.1) does not change sign with u.

5



6 2. FIBRE ORIENTATION IN FLOWING SUSPENSIONS

2.2. Fibre suspension flows

We will now consider flows where fibres, i.e. rod-like particles, are suspended in
a fluid. Although extensive work have been done in the field of fibre suspension
flows there are still issues that remain to be solved. This is the case even
for fundamental flows such as sedimentation of fibre suspensions, e.g. Koch &
Shagfeh (1989), Mackaplow & Shaqfeh (1998) and Herzhaft & Guazzelli (1999).
The origin to the difficulties is partly that the motion of a fibre is orientation
dependent. A sedimenting fibre, which is oriented obliquely to gravity, will for
instance have a non-zero velocity component in the direction perpendicular to
gravity. Another factor contributing to the complexity of fibre suspensions,
is that the velocity disturbance of the fluid due to the presence of a fibre
decays slowly. Unless the suspension is very dilute, this results in long-range
hydrodynamical interactions between multiple fibres.

The main interest here is the fibre motion and orientation in wall-bounded
shear flows. It was mentioned in the preceding chapter that the properties of a
manufactured paper depends on the fibre orientation. Knowledge about fibre
orientation in flowing suspensions is also crucial in order to understand the
bulk flow of the suspension. The Navier-Stokes equations mentioned above are
only valid for Newtonian fluids where the shear stress of the fluid is linearly
proportional to the rate-of-strain. When fibres or other particles are suspended
in a fluid this relation is in general not true, for the mixture as a whole, even
though the fluid phase is Newtonian. The study of non-Newtonian fluids is
termed rheology. The coupling between the fibre orientation and the rheological
properties of the suspension will not be considered in this study. There are a
number of reviews on the rheology of fibre suspensions, e.g. Powell (1991),
Zirnsak, Hur & Boger (1994) and Petrie (1999).

Another restriction in this work is that the effect of Brownian diffusion is
considered to be negligible. Brownian motion is particularly significant for sus-
pensions with very small particles. It is convenient to introduce a rotary Péclet
number Pe = G/D, to to determine whether Brownian motion is significant
or not, see for instance Brenner (1974). In the expression G is a characteristic
rate-of-strain or shear rate of the fluid and D, is a rotary diffusivity coefficient
dependent on the temperature, viscosity and particle parameters. For the flow
conditions in a headbox Pe >> 1 and Brownian diffusion is negligible.

2.2.1. Unbounded shear flows

Jeffery (1922) derived the governing equations of motion for an isolated ellip-
soid, with a surface defined by z'?/a® + y"?/b? + 2’2 /c* = 1, suspended in a
linear flow field. It was assumed that all inertial effects are negligible, that the
particle is non-sedimenting and that the fluid is Newtonian. The situation for
a shear flow given by u = 4yey, where  is the shear rate is illustrated in figure
2.1. For the case when b = ¢, i.e. a spheroid, the equations for the rotation
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rate are
b =— R (r2 sin? ¢ + cos? ¢) (2.4)
2 _ 1\ A
- (:g - 1)%sin2¢sin20, (2.5)

where r. = a/b is the ellipsoidal aspect ratio, € is the polar angle between the
vorticity axis z and the major axis of the spheroid 2’ and ¢ is the dihedral angle
between the xz-plane and the z’2-plane. In the remainder of this text, when re-
ferring to the orientation of a spheroid or another elongated particle, the major
axis is implied. Equations (2.4) and (2.5) are valid for both prolate spheroids
(re > 1) and oblate spheroids (r. < 1), but since the main focus of this study
concerns fibres only the motion of prolate spheroids will be considered.

Ficure 2.1. Coordinate system for elongated particle sus-
pended in a shear flow.

From the equations it is clear that d) and 6 are both linearly dependent on
4. The rotation is periodic with a period given by

T

721(r§+1)

: (2.6)

Te
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Equations (2.4) and (2.5) can be integrated with respect to time, which gives
that

2t
cot ¢ = —re cot (T + ¢0) (2.7)
Cr,
tan § = , 2.8
an (r2sin? ¢ + cos? ¢)1/2 (28)

where C' is the orbit constant and ¢q is the phase angle, both determined by
the initial conditions. It is worth noticing that ¢ is independent of C'. During
rotation the end points of the spheroid form closed orbits in space. These are
usually referred to as Jeffery orbits. A number of possible orbits, illustrated in
the zy-plane, are shown in figure 2.2, for r. = 40. The position of the fibre end
point is normalized with the fibre length [.

0.5

y/

3

x/|

F1GURE 2.2. Different Jeffery orbits formed by the end points
of a rotating spheroid with r, = 40.

The fibre will spend most of its time nearly aligned with the xz-plane.
With regular intervals of 7/2 the spheroid rapidly flips around the vorticity
axis. As C' — oo the spheroid will be oriented in the zy-plane as it undergoes
this flipping motion. For C' = O(1/r.) the spheroid still flips, although the
angle to the xy-plane is never large during any phase of the orbit. For C' = 0
the spheroid spins around its own major axis aligned with the vorticity axis,
with a constant angular velocity /2.

Bretherton (1962) extended Jeffery’s analysis to be valid for almost any
body of revolution, with a fore-aft symmetry. As a result equations (2.4
2.8) are valid also for fibres of cylindrical shape, provided that an equivalent
ellipsoidal axis ratio is found.
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A fibre rotating according to Jeffery’s equations will stay in the same orbit,
defined by C, for an infinite time. In his study Jeffery also computed the aver-
age rate of dissipation of energy during the periodic motion. It was suggested
that after a sufficiently long time a spheroid should tend to adopt the value
of C that results in the minimum average dissipation of energy. For prolate
spheroids this value was found to be C' = 0.

In an attempt to verify Jeffery’s minimum energy hypothesis Taylor (1923)
was the first to conduct an experimental study on spheroids, in a flow between
two concentric cylinders. The spheroids were observed to exhibit the flipping
motion found by Jeffery, but no quantitative measurements were done to ana-
lyze the orbits. Nevertheless, prolate spheroids with r, < 3 finally aligned with
the axis of vorticity as suggested by Jeffery.

In a similar study on a similar experimental setup, Binder (1939) studied
the rotation of cylindrical particles with varying aspect ratios r, = /d, where
[ is the length of the particle and d is the diamater. For particles with an
aspect ratio less than r, ~ 15 the particles reached a final state corresponding
to C' = 0. However, for longer particles steady orbits of large C' were observed,
thus clearly not consistent with Jeffery’s minimum energy hypothesis. Binder
suggested that inertial effects in the experiments could be one reason for the
discrepancy.

Trevelyan & Mason (1951) were first to experimentally verify Jeffery’s solu-
tion quantitatively. Their experiments were performed in a Couette apparatus
using cylindrical particles with r, ranging from 20 to 120. An equivalent aspect
ratio was determined by measuring the period of rotation and extract r. from
(2.6).

Later the equations of Jeffery have been verified experimentally in several
studies, e.g. Goldsmith & Mason (1962), Anczurowski & Mason (1968), Stover
& Cohen (1990). In the study by Goldsmith & Mason the experiments were
conducted in a circular Poiseuille flow, i.e. with a velocity governed by

2
u(r) = %(32 —r?), (2.9)
where () is the volume rate of flow, r is the radial distance from the center of
the tube and R is the radius of the tube. The motion of the rods was in good
agreement with Jeffery’s equations, provided that an equivalent aspect ratio
was found from the measured period and equation (2.6), with 4 taken at the
r-position where the centre of the rod was located.

That fibres will rotate in Jeffery orbits also in parabolic flow was also shown
analytically by Chwang (1975). He computed the rotation rate of spheroids in
flows governed by u = K(y? + 2z2)ex, where K is a constant of unit [1/ms].
The final solution for the rotation rate is equivalent to the solution of Jeffery
if the shear rate is evaluated in the particle centre. However, in these flows the
translational velocity of the fibre centre will not be constant during one period
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of rotation. This can also be inferred from the results by Pittman & Kasiri
(1992) who applied slender body theory on a fibre in a general Stokes flow.

As already mentioned work has been conducted in order to find the equiv-
alent ellipsoidal aspect ratio for cylindrical particles, e.g. Trevelyan & Mason
(1951), Goldsmith & Mason (1962), Anczurowski & Mason (1968), Cox (1971)
and Harris & Pittman (1975). Anczurowski & Mason measured the periodic
orbits of spheroids in a Couette flow. The results were in good agreement with
Jeffery’s equations. In the same study experiments were conducted on cylin-
drical particles, primarily in order to determine the point of transition from
discs (r. < 1) to rods (r. > 1), corresponding to orbits of oblate and prolate
spheroids, respectively. The transition was found to take place at a particle
aspect ratio of r, = 0.86. A second result from the study was that r, = r.
when r, = 1.68. Experiments were also carried out on particles of r, up to 100
and the equivalent r. was calculated.

One of the key results in the theoretical study by Cox (1971) was an ex-
pression relating r, of cylindrical bodies to an equivalent 7,

1/2
Te = (2—2) / rp(Inry,) 12, (2.10)
where L is a constant dependent on the shape of the blunt ends of the body.
Cox compared equation (2.10) to the experiments conducted on cylindrical
particles by Anczurowski & Mason and concluded that L = 5.45 resulted in
the best fit. Equation (2.10) is derived for long bodies and is valid only for large
rp. Another expression relating r, of cylindrical particles to an equivalent r
was deduced by Harris & Pittman (1975). Experiments were made in a plane
Couette flow, which resulted in

re = 1.14r) %4, (2.11)

The expression was reported to agree with the measurements of Trevelyan &
Mason, within 5%, down to r, = 1.

There are several analytical studies on elongated particles in Stokes flows,
which are not necessarily restricted to shear flows. For instance Chwang & Wu
(1974, 1975) presented a number of exact solutions to Stokes flow problems,
including flows past prolate spheroids.

A branch of theoretical studies which is of relevance when studying fibre
suspensions is slender body theory. The essence of slender body theory is to
approximate the velocity disturbance of the fluid, due to the presence of the
fibre, with a line distribution of flow singularities along the axis of the fibre.
The singularities are adjusted, in nature and in strength, so that the no-slip
condition is fulfilled at the fibre surface. As the name implies the theory make
use of the slenderness of fibres. In an outer limit, where the distance § from the
fibre centre § >> d, the fibre appears as a line with finite length but with zero
thickness. In an inner limit, where § << [ and § = O(d), the fibre has a finite
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thickness but appears infinitely long. Solutions are found in these two limits
and are matched in a region where d << § << [ in order to form a consistent
solution.

There are several studies using slender body theory in Stokes flows, e.g. Batch-
elor (1970), Cox (1970, 1971), Tillett (1970), Keller & Rubinow (1976), Geer
(1976), Johnson (1980). The studies by Cox and Tillett both considered bod-
ies of circular cross-section, where Cox also allowed a curvature of the body.
Batchelor studied straight bodies with an arbitrary non-circular cross-section.
Keller & Rubinow investigated slender bodies that may twist and dilate and
Johnson introduced a more accurate description and accounted for the flow
near the fibre ends.

2.2.2. Wall-bounded shear flows

The analysis by Jeffery was made under the assumption that Stokes equations
are valid. Apart from this assumption it was also assumed that there were
neither particle interactions nor any wall effects. A few studies have been
made concerning the motion of elongated particles in the presence of solid
boundaries.

Yang & Leal (1984) considered the motion of a slender body near a fluid-
fluid interface. By setting the viscosity of the nearby fluid to infinity a wall is
modeled. Tt is shown that this causes a small disturbance to Jeffery’s solution.
The motion is shown to be periodic both for translation and rotation. As in
unbounded shear flows the fibre end points form closed orbits. The periodicity
of the motion is due to the symmetry of the problem and the reversibility
condition of Stokes flows.

Dabros (1985) calculated numerically the motion of a prolate spheroid, with
an aspect ratio r, = 2, close to a solid boundary. The spheroid was located
in the flow-gradient plane, i.e. far away from the wall the motion would be
described by Jeffery’s equations for C' — oco. At large distances from the wall
the angular velocity ¢ of the spheroid coincided with the solution of Jeffery.
Near the wall, at a distance of y/a = 2.1, where a is the half length of the
spheroid and y is the distance from the wall to the particle centre when ¢ = 0,
the angular velocity of the spheroid was slightly smaller. This was in particular
seen in the phase of the orbit when the spheroid was oriented parallel to the
wall, 7.e when ¢ = 0.

Hsu & Ganatos (1989, 1994) used a boundary integral method to compute
the motion of a prolate spheroid in a shear flow, at distances from the wall down
to y/a = 1.1. As in the study by Dabros the spheroid was fixed in the flow-
gradient plane. The spheroid underwent a periodic tumbling motion similar
to the motion described by Jeffery, but also oscillated periodically in the wall
normal direction. A similar study with similar results was done by Gavze &
Shapiro (1997). Also here a periodic oscillation was found towards and away
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F1GURE 2.3. Projection of the particle centre, of a spheroid
with r. = 4, in the (a) zy-plane and (b) zz-planes for y/a =
1.25. The various lines correspond to an initial angle to the
zy-plane of ®g/m = 0 (dotted line), ®o/m = 0.125 (dashed
line), ®o/m = 0.25 (solid line), ®¢/7m = 0.375 (thick solid line)
and ®g/m = 0.46875 (bold solid line). From Pozrikidis (2005).

from the wall for small distances to the wall. It was also concluded that the
tumbling motion could approximately be described by Jeffery’s equations, but
with a larger period closer to the wall.

Pozrikidis (2005) made a numerical analysis of the motion of a spheroid
near a solid wall. This study, was however not restricted to motions where the
particle was fixed in the flow-gradient plane. The initial inclination angle ®g
of the spheroid, to the flow-gradient plane, was varied in the computations.
The motion of the particle centre is shown in figure 2.3, where Ay and Az
are the displacements in y and z from the initial value at x = 0. Also in this
study the particle centre moved periodically in the wall normal direction, when
located near the wall. A periodical motion parallel to the vorticity axis was also
found when the spheroid was not initially oriented in the flow-gradient plane
nor directed parallel to the vorticity axis. As expected the end points of the
spheroid formed closed orbits during rotation also in the presence of the wall.
For all initial conditions under study a longer period than the Jeffery period
was found near the wall. For a particle with r. = 4 the period increased with
approximately 10%, at a distance from the wall of y/a = 1.25, for any initial
angle to the flow-gradient plane.

The period of the rotation has experimentally been found to agree with
Jeffery’s solution down to distances from the wall of one fibre length, e.g. Stover
& Cohen (1990) and Moses, Advani & Reinhardt (2001). Stover & Cohen
made measurements on fibres with r, = 12 in a pressure-driven flow between
two solid walls. Closer to the wall than one fibre length the motion was still
periodic, but with a longer period than predicted by the shear rate and Jeffery’s
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solution. This trend was seen independent of the value of C. Furthermore, a
non-hydrodynamic fibre-wall interaction was observed for fibres with a large
value of C' located at a distance from the wall smaller than half a fibre length.
During the flipping phase of the rotation the leading end was observed to make
contact with the wall and the fibre was pushed away from the wall so that its
centre ended up close to half a fibre length from the wall. This was referred
to as a “pole vaulting” motion. A requirement for Stokes flow reversibility and
symmetry of the problem is that the average distance from the wall of the fibre,
averaged over a complete period of rotation, should be maintained. The fact
that this was not observed shows that the “pole vaulting” interaction with the
wall is not a pure Stokes flow interaction.

Holm & Séderberg (2007) made another interesting experimental observa-
tion. The fibre orientation was studied in planes parallel to a wall in a fibre
suspension flowing down an inclined wall. Experiments were conducted on fi-
bres with aspect ratios in the range between 10 and 40. The fibres had a slightly
higher density than the fluid making the fibres sediment slowly. For small as-
pect ratios a significant amount of the fibres were oriented perpendicular to the
flow direction in the near wall region.

Carlsson et al. (2007) made measurements on essentially the same experi-
mental setup on fibres with r, ~ 7. It was found that most fibres were close to
aligned with the flow direction down to distances from the wall of y/I = 0.5.
Closer to the wall the fibres adopted orientations within the reduced set of pos-
sible orientation for fibres rotating in Jeffery orbits without hitting the wall.
In the very proximity of the wall basically all fibres were oriented close to
perpendicular to the flow direction.

The slender body theory, mentioned in the preceding section, can be a
useful tool also in wall-bounded flows. The image system of a slender body
near a solid wall was studied by Blake (1974). The no-slip condition at the
wall was obtained by introducing a distribution of flow singularities along the
axis of a mirrored image fibre in addition to a point force distribution along
the physical fibre.

The image system of Blake was used by Russel et al. (1977) in order to
calculate the motion of a rod falling due to sedimentation near a vertical wall.
Two types of interactions with the wall were found. There was one so called
glancing interaction for a fibre approaching the wall with a small angle to the
wall. In this case the fibre turned its orientation to parallel to the wall and
drifted away from the wall with the same fibre end leading. The other type of
interaction was called reversing. This was found for fibres with larger angles
to the wall. The leading end of the fibre encountered a near wall interaction
and turned its orientation so that the opposite end was leading as it drifted
away from the wall. These interactions were also observed experimentally in
qualitative agreement with the theoretical results.
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2.2.3. Fibre-fibre interactions

In fibre suspension flows and other multiphase flows, the particles in general
interact through fluid stresses or direct mechanical contact. The velocity dis-
turbance due to a fibre barely decays until the separation from the fibre is about
one fibre length. This implies that the volume set into motion by a moving
fibre is O(I®). Therefore it is natural to introduce ni®, where n is the number
density per unit volume, to denote the concentration of a suspension.

A common procedure to get an indication of the significance of fibre-fibre
interactions is to consider different regimes of concentration. Appropriate
regimes in linear flow according to Sundararajakumar & Koch (1997) are di-
lute (nl® << 1) where interactions are rare, semi-dilute (ni® >> 1,nl%d << 1)
where far-field hydrodynamic interactions are dominating and semi-concentrated
(ni?d = O(1)) where near-field interactions as well as mechanical contacts be-
come frequent. In the headbox of a paper machine nl® is typically between 5
and 50 and would usually be considered to be in the semi-dilute regime.

It was shown by Harlen, Sundararajakumar & Koch (1999) that mechanical
contact between fibres could be of significance also at lower concentrations if
the flow is non-linear, i.e. if the velocity gradient is not constant over the length
of the fibre. Another interesting finding of this work is that lubrication forces
will not prevent fibres from contact unless the fibres are nearly aligned.

It is well known that fibre tend to flocculate, i.e. that fibres form aggregates
or bundles. This results in strong local variations of the fibre concentration.
Mason (1954) conducted experiments in a cylindrical Couette apparatus to
study fibre interactions in a shear flow. Experiments were done with spheres,
cylindrical particles and pulp fibres. Mason concluded that the main mecha-
nism for flocculation of fibres was mechanical interactions between fibres. In
a later study by Kerekes & Schell (1992) the crowding factor N was found to
be useful to characterize the regimes of fibre flocculation. N is defined as the
average number of fibres located in a volume of a sphere with diameter [. It is
worth noticing that N only differs from ni® by a numerical factor, N = wnl3/6.

Some attention has been given to understand how fibre-fibre interactions
are expected to affect the fibre dynamics in shear flows. In the dilute regime
Jeffery’s analysis has been verified numerically and experimentally. However,
it turns out that the analysis provides a good approximation also for higher
concentrations. Koch & Shagfeh (1990) derived a correction to the rate of
rotation, due to hydrodynamic interaction in a semi-dilute fibre suspension.
For a Jeffery rotation rate of O(%) in a dilute suspension the correction due to
hydrodynamic interactions was shown to be O(%/1In(1/¢,)) in the semi-dilute
regime, where ¢, is the volume fraction of fibres.

Sundararajakumar & Koch (1997) made numeric simulations in an attempt
to capture the fibre motion in the semi-concentrated regime. Hydrodynamic
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interactions were neglected and only interactions due to direct mechanical con-
tact were included. It was concluded that collisions between fibres caused them
to flip more frequently.

A number of experimental studies have also been performed in order to
investigate how the orientation distribution is modified in shear flows due to
interactions. Mason & Manley (1956) studied the motion of cylindrical particles
on low concentration suspensions (nl®> < 1) with r, in the range between 20
and 120. A drift towards a preferential orientation in the flow direction was
seen, for all initially isotropic suspensions. The drift was stronger for larger
rp. Similar experiments were performed by Anczurowski & Mason (1967). The
orbit distribution of rods of r, = 18.4 was investigated for concentrations in
the range nl®> = 0.016 to 0.52. For nl® < 0.1 the distribution of orbits was
independent of the concentration. About 50% of the fibres rotated in orbits
with C' < 0.2. Although only low concentrations were investigated a small shift
in the direction of orbits corresponding to higher values of C' was seen when
the concentration was increased.

Stover, Koch & Cohen (1992) carried out experiments on index-of-refraction
matched suspensions in order to visualise suspensions in the semi-dilute regime.
The experiments were done in a cylindrical Couette apparatus. The fibre aspect
ratios were r, = 16.9 and 31.9 and the concentrations varied between nl? =1
and 45. The particles were reported to rotate around the vorticity axis similar
to Jeffery orbits, also for the highest concentration. At small concentrations
lower values of C' was favoured, but with an increase of concentration the C-
distribution was shifted towards higher values, i.e. towards a distribution more
aligned with the flow direction. Thus, the shift towards a more preferential
orientation in the flow direction, with increasing concentration, continues also
in the semi-dilute regime.

Experiments with fibre suspensions with r, > 50 and concentrations be-
tween nl?d = 0.2 and 3, were conducted by Petrich, Koch & Cohen (2000). In
consistency with Sundararajakumar & Koch the period of rotation was shorter
than the period predicted by Jeffery. At ni?d = 0.2 the period was about 20%
shorter than that given by equation (2.6). However, when the concentration
was increased the period returned to values close to the dilute result. The
fibre orientation was also considered. With an increasing concentration the
distribution of orbits shifted slightly towards smaller values of C.

2.2.4. Deformed and flexible fibres

The majority of the mentioned studies so far have only been considering straight
and rigid fibres. In industrial applications fibres are generally deformed and
flexible to some extent. This is very much the case in papermaking. Meth-
ods for measuring the flexibility of wet pulp fibres have been developed by
Samuelsson (1963) and Tam Doo & Kerekes (1981, 1982). The flexibility varies
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significantly with the different kinds of pulp. Tests by Tam Doo & Kerekes
showed that chemical pulps could be up to 30 times more flexible than me-
chanical pulps from the same wood.

It is convenient to introduce a non-dimensional parameter x = 8wu+yl*/EI,
which is a measure of the ratio between hydrodynamic and elastic forces, to
estimate whether a fibre is likely to deform, e.g. Tornberg & Shelley (2004).
Here p is the dynamic viscosity of the fluid and ET is the rigidity of the fibre
including the Young’s modulus E and the area moment of inertia I. From Tam
Doo & Kerekes the value of ET is found in the range (1 — —200) - 10~!2 Nm?
for different kinds of pulp. With fibre lengths between 0.5 and 3 mm and a
typical shear rate of around 1000 s~' near the wall of a headbox this results in
values of x between 0.01 and 1000. Thus, the siginificance of flexibility effects
is likely to vary with different kinds of pulp.

Mason (1954) and Arlov, Forgacs & Mason (1958) studied the motion of
individual pulp fibres in a cylindric Couette apparatus. A rigid but curved
fibre was observed to rotate in a nearly constant orbit, similar to the motion
expected for a straight fibre, in over 80 rotations. For flexible fibres the motion
was more complex although it was found possible to qualitatively classify the
different motions into a limited set of groups. In figure 2.4 the different groups
are illustrated.

Further studies on the flexibility of fibres were conducted by Forgacs &
Mason (1959a,b). The fibres were analyzed in the flow-gradient plane. For
small aspect ratios, i.e. in the rigid regime, the period of rotation was found to
coincide with Jeffery’s theory. At some aspect ratio, where the fibres could no
longer be regarded as rigid, the fibres started to move in a motion referred to
as a “springy rotation”, figure 2.4 (¢). The linear relation between the period
of rotation and the aspect ratio was no longer valid. Note from equation (2.6)
that the period is almost linear for large aspect ratios. As the aspect ratio was
increased even further there was a sudden drop in the period of rotation as
the fibres started to undergo a “snake turn”, figure 2.4 (d). Another finding
by Forgacs & Mason was that the rotation of a curved but rigid fibre in the
xy-plane could be described as a Jeffery orbit with a smaller effective aspect
ratio. This aspect ratio was found to be close to the aspect ratio of a body
formed by revolution about a choord joining the ends of the curved fibre.

The different motions of flexible fibres in shear flows found by Mason and
co-workers have been qualitatively reproduced in several numerical investiga-
tions, e.g. Yamamoto & Matsuoka (1993), Ross & Klingenberg (1997), Skjetne,
Ross & Klingenberg (1997), Stockie & Green (1998), Lindstrom & Uesaka
(2007) and Qi (2007). There has also been a number of studies on the tendency
of a flexible fibre to adopt preferential orbits, e.g. Skjetne, Ross & Klingenberg
(1997), Joung & N. Phan-Thien (2001), Wang, Yu & Zhou (2006). A general
conclusion from these studies is that a flexible fibre will tend to end up in an
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FIGURE 2.4. Typical rotational orbits of flexible fibres. The
black dots denote the same end throughout the same type of
rotation: (a) flexible spin, (b) flexible spin superimposed on a
spherical elliptical orbit, (c) springy rotation, (d) snake turn
and (e) s-turn. From Arlov, Forgacs & Mason (1958).
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orbit corresponding to C' = 0 (flexible spin around the vorticity axis) or C' — oo
(rotation in the zy-plane), depending on its original orientation.

2.2.5. Inertial effects

The Stokes flow model is valid only if all inertial effects can be neglected. A fibre
will generally tend to travel with a velocity close to that of the surrounding fluid.
Therefore the relative velocity between the fibre and fluid is often small and
neglecting inertia is often a meaningful approximation. Nevertheless, if there
is a large velocity gradient in the region around the fibre, inertial effects could
be siginificant. In order to determine whether inertial effects are siginificant or
not it is convenient to introduce an appropriate Reynolds number. The most
frequent Reynolds number encountered in literature is Re; = 41? /v, where 41
is a characteristic relative velocity. If Re; << 1 neglecting the inertial effects
is generally a sensible assumption. However, close to the wall in a headbox
Re; can reach values of about 1000 and inertial effects can certainly not be
expected to be negligible.

A theoretical study concerning fluid inertial effects on long slender bodies
was performed by Khayat & Cox (1989). In the absence of inertia a sedimenting
fibre will maintain its orientation. When inertia is present a sedimenting fibre
rotates to an equilibrium horizontal orientation, perpendicular to the direction
of gravity.

In shear flows it has been shown that a small Re; will tend to drift elongated
particles to finally be rotating in the zy-plane, e.g. Qi & Luo (2002, 2003) and
Subramanian & Koch (2005). It has also been shown that particle inertia will
tend to drift a elongated particles to be rotating in this plane, e.g. Subramanian
& Koch (2006) and Altenbach et al. (2007).

Subramanian & Koch (2005) considered a slender fibre in a simple shear
flow and concluded, apart from the drift in orientation, that at a critical Re,
the fibre stops rotating and obtains a final stationary orientation in the zy-
plane. The case where both shear and sedimentation were accounted for was
also examined. A Reynolds number based on the sedimentation velocity Ugeq
was introduced, Regeq = Useql/v. For a sufficiently large Regeq, as compared
to Rey, the orbit constant C' will instead drift towards zero and finally align
with the vorticity axis.

Aidun, Lu & Ding (1998) and Ding & Aidun (2000) also found that the
period of rotation increases to infinity at some critical Reynolds number for
elliptical cylinders and oblate spheroids in simple shear flows. It was also
found that this critical Reynolds number increased with an increasing solid-
fluid density ratio. According to Qi & Luo (2002, 2003) a neutrally buoyant
prolate spheroid with 7, = 2 increases its period of rotation with Re;, but the
particle never ceases to rotate. For small Re; there was an orbit drift towards
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C — o0, but for larger values of Re; than about 345 the spheroid finally ended
up at C = 0.

It can be worth pointing out that the results of Subramanian & Koch (2005)
and Qi & Luo (2002, 2003), concerning if the particle continues to rotate or not
at larger Re;, are not necessarily contradicting. Recall that the particle shapes
under consideration are very different. Another factor is that the spheroid
considered by Qi & Luo was neutrally buoyant and the particle inertia of the
spheroid will tend to reduce changes in the angular momentum. It is thereby
not inferred that including particle inertia in the study by Subramanian &
Koch would have altered their result. As mentioned before, the volume of fluid
set into motion by a fibre is O(I3). This should be compared to the volume
of the fibre which is O(ld?). This implies that, for a neutrally buoyant fibre,
the momentum of the fibre induced velocity disturbance is much greater than
the momentum of the fibre itself. As a consequence fluid inertia is expected to
be more significant than particle inertia for slender bodies. This relation holds
as long as Re; is sufficiently small and the density ratio between the fibre and
fluid is not too large. For the case of a spheroid with a small aspect ratio the
difference in volumes between the spheroid and the velocity disturbance is not
so large and it is therefore not justified to neglect particle inertia.

2.2.6. Flow at large Reynolds numbers in a headbox

The headbox nozzle is basically a planar converging channel. The free jet that
exits the headbox, with a velocity of up to 30 m/s, is generally about 10 m
wide and 10 mm thick. An estimation of the boundary layer thickness and the
shear rate along the headbox walls can be found from the similarity solution for
laminar flow in a two-dimensional convergent channel, e.g. Schlichting (1979).
The velocity is then given by

U 2( N
2 _ 3tanh (— + 1.146) _o, 2.12
Ue \/5 ( )
where U, is the velocity of the fluid outside the boundary layer and 7 is defined
as

/ Ue

R 249)

n=y
where the coordinates are defined in figure 2.5. The boundary layer thickness
decreases in the streamwise direction and is typically below 1 mm near the end
of the contraction. The shear rate in the boundary layer is typically of the
order 1000 s~!, although this also changes with the streamwise position and
distance from the wall.

Due to the high flow rates in a headbox the flow is to a large extent tur-
bulent. However, if a turbulent boundary layer is accelerated by a strong
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FIGURE 2.5. Two-dimensional convergent channel.

favourable pressure gradient it can return to a laminar-like state, see for in-
stance Moretti & Kays (1965) or Parsheh (2001). This phenomenon is usually
termed relaminarization. Parsheh studied the flow in a 2D convergent channel
experimentally, with application to headboxes. It was found that the initially
turbulent boundary layer approached the laminar self-similar state near the
end of the contraction. A non-dimensional acceleration parameter

~ 2vtany

q

is often introduced to quantify the relaminarization process, where v is half the
contraction angle and ¢ is the flow rate per unit width. If K is above a critical
value relaminarization is initiated. This value of K was found to be about
3.5 - 1075 by Moretti & Kays and about 3.1 -10~% by Parsheh. In a headbox
K is typically between 5-10~7 and 6-10~%. Note that a self-similar mean flow
profile is not sufficient to conclude that the boundary layer is purely laminar.
Furthermore, it has been shown that turbulent structures can remain in a
relaminarized boundary layer, e.g. Warnack & Fernholz (1998) and Talamelli
et al. (2002).

The fibre orientation distribution in a headbox tends to be highly anisotropic
where the majority of the fibres are oriented close to the flow direction near the
end of the contraction. The main mechanism for aligning the fibres is the posi-
tive streamwise rate-of-strain in the contraction, i.e. U, increases downstream.
This orientation is reflected in the orientation distribution in the final paper,
where most fibres are oriented in the machine direction (MD).

K (2.14)

It is emphasized that the final orientation distribution is not solely deter-
mined by the flow in the headbox. Fibres can alter their orientation also in
the jet and during the following dewatering process. For instance a jet to wire
speed difference has been shown by Nordstrom (2003b) to have an impact on
the orientation in the final paper sheet. Both a positive and negative speed
difference has been shown to result in a higher anisotropy, i.e. fibres more
aligned in MD. Setting the speed difference to zero resulted in a more isotropic
distribution. Nordstrom also found that the orientation distribution is more
isotropic at both sheet surfaces than in the core of the paper. A more isotropic
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distribution was also found by Asplund & Norman (2004) near the surface of a
wall-bounded jet exiting a headbox. In the experiments by Asplund & Norman
a lamella was also introduced in the center of the headbox. The orientation
distribution was more isotropic in the wake behind the lamella than in the
surrounding flow.

Aidun & Kovacs (1995) suggested, guided by their computations, that
secondary flows, due to the boundary layers in the headbox, is the main cause
for a non-uniform orientation distribution in the cross direction of the paper
(CD).

A number of studies have been performed in order to estimate the fibre ori-
entation distribution in a headbox. In a theoretical investigation Olson (2002)
neglected all turbulent effects. The main conclusions from this investigation
were that the fibre orientation distribution is independent of the flow rate thr-
ough the headbox and that the fibres were more oriented in the plane of the
paper than in the plane of the contraction. Also, it was concluded that the
only geometrical factor affecting the fibre orientation is the contraction ratio.
According to the derivations the shape of the headbox does not affect the ori-
entation distribution at the end of the headbox.

To account for turbulence, coefficents for translational and angular dis-
persion can be entered into a convection-dispersion equation, which is usually
called the Fokker-Planck equation. Thereby the evolution of the orientation dis-
tribution in time and space can be computed, e.g. Krushkal & Gallily (1988)
and Olson & Kerekes (1998). This procedure has been implemented to study
the orientation in convergent channels, e.g. Olson et al. (2004), Brown (2005),
Parsheh, Brown & Aidun (2005, 2006a,b), Hyensjo et al. (2007) and Hyensjo
& Dahlkild (2008). In order to validate the computations the experimental
results of Ullmar (1998) are frequently used. Ullmar measured the fibre ori-
entation in a laboratory scale headbox and showed that a more anisotropic
distribution was obtained by an increased contraction rate. It was also found
that altering the flow rate for a given contraction rate had a very small effect
on the orientation distribution. This can also be inferred from the study by
Nordstrom (2003a) where the flow rate through the headbox had a small effect
on the orientation distribution in the final paper.
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CHAPTER 3
Slowly settling fibres in a wall-bounded shear flow

This chapter gives a brief presentation of experimental and theoretical results
on slowly settling fibres in a wall-bounded shear flow. For a more thorough
presentation of the results the reader is referred to paper 1, 2 & 3 in part IT of
this thesis.

3.1. Experimental setup and flow situation

The orientation of slowly settling fibres suspended in a shear flow of a New-
tonian fluid over a solid surface has been studied experimentally by Carlsson,
Lundell & Soderberg (2007, 2009b) (Paper 1 & 2) and theoretically by Carls-
son & Koch (2009) (Paper 3). The experiments were conducted on dilute fibre
suspensions with r, ~ 7 and 30. The experimental setup is sketched in figure
3.1. A film of the suspension with a thickness of A ~ 17 mm flowed down
a slightly inclined plane, driven by gravity. The parallel section of the open
channel is 1050 mm long and 100 mm wide. At the inlet there is a 150 mm
long contraction that tend to make the orientation distribution aligned with
the flow direction.

A coordinate system is introduced where x is the downstream position
from the inlet of the open channel, y is the wall-normal position and z is the
spanwise position. A camera is placed underneath the transparent plane, at
x = 750 mm (P in figure 3.1), to capture images parallel to the xz-plane. The
orientation [ is the orientation from the flow direction to the major axis of a
fibre in this plane.

The flow is laminar with a velocity u in the z-direction given by the relation

g .
u= 2Vy(2h y) sin «, (3.1)
where ¢ is the constant acceleration of gravity, v ~ 385 - 1075 m?/s is the
kinematic viscosity of the fluid and a =~ 2.6° is the inclination of the plane
with respect to the horizontal. It was shown by Carlsson et al. (2007) that
equation (3.1) holds quite accurately also for the fibre velocity in the streamwise
direction.

The velocity of individual fibres is determined with a particle tracking ve-
locimetry (PTV) algorithm. Combined with equation (3.1) the fibre velocity

23
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(a)
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FIGURE 3.1. Schematic figure of the flow section, (a) Top
view, (b) Side view. P denotes the camera position for the
fibre orientation measurements.

is used to determine the distance from the wall of individual fibres. The ori-
entation (3, in the xz-plane, of the fibres is determined with a ridge detector
within the class of steerable filters, e.g. Freeman & Adelson (1991). The par-
ticular ridge detector used here was derived by Jacob & Unser (2004) and was
evaluated for the present purpose by Carlsson et al. (2009a) (Paper 5).

3.2. Results & discussion

Holm & Séderberg (2007) observed that fibres with r, ~ 10 close to the wall
were oriented perpendicular to the flow direction. In their experiments, how-
ever, the distance to the wall of the fibres was poorly resolved. With the same
experimental setup Carlsson et al. (2007) investigated the possibility to influ-
ence the results by modifying the surface structure of wall. The smooth surface
was replaced by a surface with ridges. A consequence was that fewer fibres set-
tled all the way down to the wall. In addition the y-position of the fibres was
now better resolved, than in the study by Holm & Soéderberg, and new results
were found for the flow over a smooth surface. It was shown that the orien-
tation distribution only changes at distances from the wall closer than about
half a fibre length. This is illustrated in figure 3.2 (a), where the orientation
distribution, with darkness being proportional to the number density per unit
angle, is shown for 7, ~ 7 and nl® ~ 0.01. In order to compensate for the
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F1GURE 3.2. Orientation distributions and concentration pro-
files for 7, ~ 7 and nl® ~ 0.01 in (a) & (b) and for r, ~ 30
and nl® ~ 0.25 in (c) & (d).

variation with y the distribution is normalized at each distance from the wall.
The solid line in the figure denotes the minimum distance to the wall a fibre
rotating in Jeffery orbits can be located at without touching the wall during
the flipping phase of the rotation. It is clear from the figure that the fibres
tend to adopt orientations above the solid line where motion in closed Jeffery
orbits are possible.

In figure 3.2 (b) the fibre concentration as a function of y is shown for the
same case. There is an increased concentration in the very proximity of the
wall, where the fibres spin around their major axes aligned with the vorticity
axis z. The increased concentration near the wall is due to the density dif-
ference between the fibres and the fluid. The fibres sediment with a velocity
of about 107% m/s in the y-direction. For comparison the velocity in the z-
direction at y/l = 0.5 is about 5 - 1073 m/s. There is another local increase
of the concentration slightly above y/l = 0.5. It was noted in Carlsson et al.
(2009b) that moving the peak to y/l = 0.5 would be within the accuracy of
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the measurements. It is likely that this peak is a result from a “pole vaulting”
motion near the wall, a motion observed earlier by Stover & Cohen (1990).

In figure 3.2 (¢) and (d) the orientation distribution and concentration
profile is shown for r, ~ 30 and nl® ~ 0.25. It is clear from figure 3.2 (d)
that there are fewer fibres at the wall for this aspect ratio. This is to some
extent expected since the distance from the wall is scaled with the fibre length.
This means that the residence time in the channel before reaching a certain
x-position, for the longer fibres with 7, ~ 30, will only be roughly a quarter of
the time it takes for the shorter fibres with r, ~ 7 to reach the same position.

Since the concentration is low near the wall for r, ~ 30 the statistics of
the orientation distribution is probably rather inaccurate in figure 3.2 (¢) and
should therefore be interpreted with care. It was reported in Carlsson et al.
(2009b) that the fibres below the solid line are all curved or mismatched in the
PTV-algorithm.

Concluding, all straight fibres detected tend to adopt orientations above
the solid line in figure 3.2 (a) and (c). The fibres located in the proximity of
the wall are oriented in the region around (3 = 90°. It is possible that the lack
of fibres with r, ~ 30 near the wall could be an inertial effect. Recall that an
effect of fluid inertia at small Re; is to make a fibre migrate across orbits to a
final state where the fibre is rotating in the xy-plane, e.g. Subramanian & Koch
(2005). The wall reflection due to the settling towards the wall is expected to
make the fibre migrate towards lower values of C' to a final orientation aligned
with the vorticity axis, Carlsson & Koch (2009).

In Carlsson et al. (2009b) the inertial effect was estimated based on the
study of Subramanian & Koch and the effect of the fibre settling towards the
wall was estimated based on the study by Carlsson & Koch (2009). The particle
Reynolds number based on the shear rate near the wall is Re; ~ 0.01 and 0.2
for the fibres with 7, ~ 7 and 30, respectively. The inertial drift towards larger
C was estimated to be stronger than the wall reflection induced drift towards
lower values of C' for fibres with 7, ~ 30, for most orientations as long as there
is no contact with the wall. This could possibly explain the indicative result
that there are so few fibres with r, ~ 30 near the wall. For fibres with r, ~ 7
the inertial effects are expected to be small as compared to effects from settling
towards the wall.

A slender body approach was used by Carlsson & Koch (2009) in order
to estimate the effect of settling towards the wall on the fibre translation and
rotation. All inertial effects are neglected and the fluid flow is assumed to be
governed by Stokes equations. The shear induced wall reflection perturbs the
motion given by Jeffery, but the motion maintains periodic and there is no
cumulative orbit drift, e.g. Yang & Leal (1984) and Pozrikidis (2005). There-
fore, only the velocity disturbance reflected at the wall due to the fibre settling
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FiGUure 3.3. Orbit drift due to wall reflected velocity distur-
bance as a fibre settles towards a wall, (a) the evolution of the
2 and y-component of the unit vector p and (b) the evolution
of C' with time.

towards the wall and its effect on the fibre rotation is superimposed on Jeffery’s
equations for the fibre rotation.

The solid body contact is also modeled by introducing a contact force,
applied at the fibre end in contact with the wall. No near wall hydrodynamic
effects are included before this occurs and the wall reflection is neglected during
the phase of the rotation when there is wall contact. This is motivated by
assuming that the fibre rotation due to wall reflection is weak in comparison
to the shear induced rotation given by Jeffery, which ensures that the wall
contact will only take place in a small fraction of the period of rotation. A
non-dimensional number I' = Apgd/uy << 1 is introduced to quantify the
validity of this assumption. In the experiment described above I' &~ 0.007. The
mathematical details are given in Carlsson & Koch (2009).

The wall reflection due to settling towards the wall will tend to drift the
Jeffery orbit towards lower values of C'. This can be explained qualitatively
by the following argument. Consider a fibre in quiescent fluid settling towards
a wall. Independent of the orientation the wall reflection will always tend to
rotate the fibre towards alignment with the wall. Since superposition applies,
the fibre rotation due to wall reflection can be superimposed to the solution of
Jeffery. In all phases of the Jeffery orbit when the fibre is not aligned with the
wall the additional rotation rate due to the wall reflection will tend to rotate it
towards alignment with the wall. As a result the amplitude in y that the fibre
end points form in space during rotation will be smaller and smaller for each
rotation.

An illustration of the orbit drift is shown in figure 3.3 (a) and (b). Note that
here the fibre is positioned sufficiently far from the wall so that no wall contact



28 3. SLOWLY SETTLING FIBRES IN A WALL-BOUNDED SHEAR FLOW
1 1
(a) (b)
0.8f 0.8f P
c - //
kel i k=]
5 0.61 4 506
8 IS h
() B i . E ] 7 F
5047 o o —1<y/<1.25 504 s —1<y/i<1.25
L H F S | 0.5<y/1<0.625 L ¢ ‘ 2 IR 0.5<y/1<0.625
s ~ 0.375<y/I<0.5 ; s 0.375<y/I<0.5
0.2 ; ., 1=1=10.25<y/<0.375 0.2, ! 1-1=10.25<y/1<0.375
: v - ==0.125<y/I<0.25 y S - ==0.125<y/l<0.25
S | —0<y/I<0.125 K ‘ / —0<y/I<0.125
0 30 60 90 0 30 60 90
B B
1 0.75 -
(C) —Experimental
| ---No slip
08 P T T Free slip
5 /’ 0.5
T 0.61 K
o i =
O >
504 /¢ g —1<y/<1.25 0.25/
3 H S 0.5<y/I<0.625
. & ---0.375<y/I<0.5
0.2 N 0.25<y/I<0.375 N
iy = = =0.125<y/I<0.25 E——
o7 / —0<y/l<0.125 0 .
0 30 60 90 0 , 10 15
B c/nl

FIGURE 3.4. Experimental cumulative §-distribution in (a)
and computational cumulative §-distribution with no slip and
free slip wall contact condition in (b) and (c), respectively.
Experimental and computational concentration profiles with
both no slip and free slip condition shown in (d).

occurs. The drift is also stronger than in the experimental case, I' = 0.07, in
order to better illustrate the effect in a limited number of orbits. In 3.3 (a) the
evolution of the z and y-components of the unit vector p directed along the
fibre is shown. It is seen that the amplitude of the orbits in y decreases with
time. This implies that C decreases with time as shown in 3.3 (b).

Also the wall contact was shown to decrease the value of C'. Two different
wall contact conditions were implemented; a no slip condition were the fibre
end point is not allowed to change its (x, z)-position at the wall and a free slip
condition were the tangential components, with respect to the wall, of the wall
contact force is equal to zero.

Since there is little data on the fibre orientation near the wall for the
experiments with r, ~ 30, due to the low concentration there, a comparison of
the model is made only for the case with 7, ~ 7. By choosing a large set of
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fibres at the inlet of the channel the orientation distribution and concentration
can be computed at the z-position downstream corresponding to the position
where the camera was located in the experiments. In the computations the
initial orientation distribution was estimated by using the following relation
for the steady state fibre orientation distribution for dilute and semi-dilute
fibre suspensions

(e p—

SE L — 3.2
7 (4RC? +1)%/? (32)

Equation (3.2) was found by Rahnama et al. (1995) in the limit of large aspect
ratio. R = 0.57 is found to approximately match the experimental § distri-
bution at distances y > [, where the orientation is assumed to be unaffected
by the wall. The concentration at the inlet of the channel is assumed to be
homogenous in space.

In figure 3.4 (a), (b) and (c) the cumulative S-distributions for different
y-positions are shown for the experiments and computations with both wall
contact conditions. The general trend is that more fibres tend to adopt higher
values of 3 as the distance from the wall is decreased, i.e. lower values of C' closer
to the wall. This is seen both in the experiments and computations. However,
there is a local deviation from this trend. The thin solid line corresponds to the
distance farthest away from the wall, 1 < y/l < 1.25. In the computations in
(b) and (c) the orientation distribution barely changes, as the distance to the
wall is decreased, until y/l < 0.5. It is seen that as the distance to the wall is
decreased just below y/l = 0.5 the distribution shifts towards lower values of 3.
This is so because fibres with orientations close to f = 0 will make wall contact
and begin to pole vault, while fibres with larger values of [ continues to settle.
This leads to an accumulation of fibres with small 5 close to y/l = 0.5, which
is also seen in the concentration profile in figure 3.4 (d). This explains why the
distribution can be shifted towards lower values of 3, even when all fibres in
the computations individually drift towards higher values of 3 with time.

A similar shift in the orientation distribution is found also in the experi-
ments in figure 3.4 (a), although here the shift takes place somewhat farther
away from the wall. A likely explanation to this can be deduced by returning
to the concentration profile in (d). For y/l > 0.5 it should not be possible
for the fibres to “pole vault”. Still, the fact that the concentration starts to
increase above y/l = 0.5, suggests that there are fibres present in the region
that have begun to “pole vault”. It is likely that the increase of concentration
for y/l > 0.5 is primarily due to inaccuracies in measuring the y-position of the
fibres. If it is true that some of the fibres in the region just above y/l = 0.5
actually are pole vaulting it is not surprising that there is also shift towards
lower [ as seen in 3.4 (a).
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Closer to the wall there is a qualitative agreement between the experimental
and computational results. At the wall the fibres are nearly aligned with the
vorticity axis, perpendicular to the flow direction.



CHAPTER 4

Near wall fibre orientation in a headbox

In this chapter experimental results from measurements on the fibre orientation
in a boundary layer of a headbox are presented. A more detailed presentation
is given in paper 4 in part II of this thesis.

4.1. Experimental procedure and flow situation

In Carlsson, Séderberg & Lundell (2009¢) (Paper 4) experiments were con-
ducted in a laboratory scale headbox. The headbox is illustrated in figure 4.1.
It consists of a tube bank and a planar contraction. The width of the contrac-
tion in the y-direction is 100 mm, 4.e. much less than an industrial headbox, and
the other measures of the contraction are provided in the figure. A coordinate
system is defined from the outlet of the contraction, where z runs upstream
along the upper wall of the contraction and z denotes the normal distance to
the upper wall.

A camera was mounted to capture images in planes parallel to the upper
wall, i.e. planes parallel to the zy-plane. A light sheet, slightly thicker than
1 mm at the centre of the channel in the y-direction, was generated parallel
to the upper wall. The light sheet was traversed in order to study the fibre
orientation at different distances from the wall. Measurements were done at
x = 0.09, 0.25 and 0.45 m and at different z-positions.

A suspension of bleached unbeaten birch fibres was used. The mean fibre
length was l,,, = 0.7 mm and the mean width w,, ~ 18 pm. The concentration
was estimated to nl? ~ 0.15, i.e. the suspension is very dilute as compared to
an industrial case. The velocity of the outgoing jet was 8.7 m/s.

The fibre velocity profile close to the wall and the boundary layer thickness
was measured by tracking the velocity of a limited set of fibres for various z-
positions at x = 0.25 and 0.45 m. The results are shown in figure 4.2. The
solid lines are given by the similarity solution for laminar flow in a 2D planar
contraction, see equation (2.12) and (2.13). Each dot shows the measured
velocity of an individual fibre and the stars denote the measured mean velocity
at a particular z-position. The measured fibre velocities are surprisingly close to
the similarity solution. This implies that the boundary layer thickness, defined
as the distance from the wall where the velocity is 99% of the free stream
velocity, is about 0.6, 1.3, 2.3 mm for x = 0.09, 0.25, 0.45 m, respectively. The
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FIGURE 4.1. Schematic of the headbox with a coordinate orig-
inating from the outlet of the contraction. The measures are
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FIGURE 4.2. Velocity profiles at © = 0.25 and 0.45 m. Solid
lines given by similarity solution for 2D planar converging lam-
inar flow.

shear rates at the same x-positions and z = [,;, are estimated to 230, 480 and
350 s—!. Particle Reynolds numbers based on these shear rates and the mean
fibre length are Re; ~ 110, 240 and 170, respectively.

4.2. Fibre orientation in boundary layer

The fibre orientation distributions are shown for different (z,z)-positions in
figure 4.3. It is noted that the distribution is asymmetric for z = 0.45 m in
figure 4.3 (a). This is surprising and is most likely due to an asymmetry in up-
stream flow. Farther downstream this asymmetry is less distinct. Disregarding
the asymmetry a distinct trend is observed for x = 0.45 and 0.25 m in (a) and
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F1GURE 4.3. The orientation distribution of 3 for different
distances from the wall z at (a) x = 0.45 m, (b) 2 = 0.25 m
and (c) z = 0.09 m.

(b). The distribution is more anisotropic near the wall, i.e. the fibres are more
aligned with the flow at small z. A speculative explanation is that effects of
fluid inertia could be more significant near the wall, where the shear rate is
strong. Recall that a small but finite Re; in a shear flow will tend to make a
fibre more aligned with the flow direction, e.g. Subramanian & Koch (2005).
Another possible explanation is that there are stronger fluctuations in the flow
farther from the wall than near the wall in the relaminarizing boundary layer
(as it appears from figure 4.2). Fluctuations are likely to make the fibre orien-
tation distribution less anisotropic. However, here it should be recalled that a
relaminarized boundary layer does not mean that the boundary layer is truly
laminar, e.g. Warnack & Fernholz (1998) and Talamelli et al. (2002).

Farther downstream at x = 0.09 m in figure 4.3 (c) the z-dependency seen
in (a) and (b) is not observed. The orientation distributions for different z more
or less coincide at this z-position. As mentioned in section 2.2.6 concerning
headbox flows, the positive streamwise rate-of-strain in the headbox is the main
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mechanism, far from the walls, for fibre alignment with the flow. The mean
streamwise rate-of-strain increases in the downstream direction. Possibly the
rate-of-strain has grown sufficiently strong in order to become the dominating
mechanism influencing the fibre orientation also near the wall at = 0.09 m.



CHAPTER 5
Concluding remarks

The main part of this study deals with settling fibres in a wall-bounded shear
flow. This is a phenomena not dealt with previously even at small Reynolds
numbers. A methodology has been developed in order to measure the fibre
orientation in planes parallel to the wall and simultaneously measure the ve-
locity of individual fibres. The velocity of a fibre indicates how far from the
wall it is located. Thereby it is possible to obtain and investigate orientation
distributions at different distances from the wall.

In the experiments the fibres enter a contraction far upstream from the
point of measure. The contraction tends to align the fibres with the flow
direction. It is shown that slowly settling fibres in a viscous shear flow finally
end up very close to the wall aligned with the vorticity axis. The wall effect
on the orientation is found to be weak for fibres located farther form the wall
than half a fibre length from the wall.

A likely explanation for why the fibres end up aligned with the vorticity
axis is the wall reflection of the velocity disturbance that is generated by the
settling fibre in combination with repeated wall contacts during rotation. A
fibre sedimenting towards a wall will tend to rotate toward a plane parallel to
the wall. Superimposed on the shear induced rotation given by Jeffery (1922)
this yields a slow migration toward lower values of C. This can be realized
by considering a fibre with a rotation rate close to the equations of Jeffery. In
every phase of the rotation where the fibre is not perfectly aligned with the
flow-vorticity plane the wall reflection, due to settling toward the wall, will
tend to rotate the fibre toward this plane. This leads to a spiraling motion
toward the vorticity axis. The contact between the fibre end and the wall in
each flip of the rotation will enhance the drift toward lower values of C.

In an experimental study in a boundary layer of a headbox the fibre ori-
entation distribution and velocity was investigated. The study was carried out
with pulp fibres with a flow rate smaller, although comparable, to the flow
rates in an industrial headbox.

The velocity profiles in the boundary layers coincided surprisingly well with
the similarity solution for laminar flow in a 2D convergent channel. The orien-
tation distribution in a plane parallel to the wall was found to be more aligned
near the flow direction with a decreasing distance to the wall. This trend was
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observed far upstream in the headbox. Farther down at the measurement sta-
tion closest to the end of the contraction the orientation distribution appears
to be independent of the distance from the wall. At least no difference can be
detected within the accuracy of the measurements.



CHAPTER 6
Papers and authors contributions

The authors’ contributions to the scientific papers and where the results have
been presented are listed.

Paper 1

Fiber orientation control related to papermaking.
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AC, FL and LDS wrote the paper jointly. Parts of the results have been
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of Technology, Stockholm 2006 and (ii¢) ASME Joint U.S.-European Fluids
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Experiments, analysis and writing were performed by AC under supervision of
LDS and FL. Parts of the results have been presented at (¢) Svenska Mekanikda-
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Orbit drift of a slowly settling fibre in a wall-bounded shear flow.
A. Carlsson & D. L. Koch (DLK).
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AC and DLK performed theoretical derivations jointly. Numerical computa-
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A. Carlsson, L. D. Séderberg & F. Lundell.

Experiments, analysis and writing were performed by AC with input from
LDS and FL. Parts of the results have been presented at PaperCon 08 -
TAPPI/PIMA /Coating Conference, Dallas, TX, USA 2008.

Paper 5
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A. Carlsson, F. Lundell & L. D. Séderberg.

AC performed experiments and analysis under supervision of FL. and LDS. AC,
FL and LDS wrote the paper jointly.



APPENDIX A

Formation of fibres in streamwise streaks

Historically “turbulence” has been considered to be useful in fibre suspension
flows in order to break up fibre aggregates and make the fibre concentration
more homogenous, e.g. Norman & Soéderberg (2001). It is well known that
particles in turbulent flows can tend to concentrate in certain regions associated
to the turbulent motion. A review on preferential concentration of particles in
turbulent flows is given by Eaton & Fessler (1994). Here, it will be shown that
a turbulent flow can also make fibres aggregate in streaks.

Measurements on a fibre suspension film flowing down a slightly inclined
glass plate have been made. The setup is illustrated schematically in figure
A.1 and is similar to the one used by Holm & Séderberg (2007) and Carlsson,
Lundell & Séderberg (2007, 2009b). A CCD-camera was mounted below the
glass plate in order to visualize the fibres in a plane parallel to the wall.

The fibre supension considered here consisted of cellulose acetate fibres
with r, ~ 10 suspended into tap water. The Reynolds number, based on the
film thickness h &~ 8 mm and a free surface velocity us =~ 0.5 m/s, was about
4000. The flow was considered to be turbulent. The density of the fibres was
approximately 1300 kg/m?3.

A typical image is shown in figure A.2. Due to the relatively large density
difference between the fibres and the fluid, a large amount of the fibres settled
to the wall. At the wall the fibres moved slowly down the plate, mainly in the
streamwise direction z, with a time-dependent velocity.

An interesting observation from the experiments was that the fibres tended
to aggregate in streamwise streaks on the wall. In an attempt to quantify the
streakiness the fibre density for each spanwise position z in the images was
computed. This was done by a summation of all rows (x) in the image at each
column (z). If the fibre density at a certain z-position exceeded a threshold
value this indicated that there was a streak at this z. This also made it possible
to study the evolution of the streaks as a function of time. In figure A.3 the
white regions show where the fibre density is high and the black regions where
there are few fibres. It is clear that the streaks are not stationary. The streaks
drift in the spanwise direction and are observed to merge with each other and
also to separate into more streaks. Further details can be found in Fjellgren
(2007).
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FIGURE A.3. The evolution of fibre streaks with time ¢. From
Fjellgren (2007).
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The orientation of fibers suspended in a shear flow flowing over a solid wall
has been studied experimentally. The possibility to control this orientation
with physical surface modifications, ridges, has also been studied. The fiber
suspension was driven by gravity down a slightly inclined glass plate and a
CCD-camera was used to capture images of the fibers in the flow. Image
analysis based on the concept of steerable filters extracted the position and
orientation of the fibers in the plane of the image. From these data, the velocity
of the fibers was determined. When viewing the flow from the side, the velocity
of the fibers at different heights was measured and found to agree with the
theoretical solution for Newtonian flow down an inclined plate. Moving the
camera so that the flow was filmed from below, the orientation and velocity
of fibers in the plane parallel to the solid surface was determined. The known
relationship between the velocity and the wall normal position of the fibers
made it possible to determine the height above the plate for each identified
fiber. Far away from the wall, the fibers were aligned with the flow direction
in both cases. In a region close to the smooth plate surface the fibers oriented
themselves perpendicular to the flow direction. This change in orientation did
not occur when the surface structure was modified with ridges.

1. Introduction

The present work is part of a larger undertaking aimed at understanding and
controlling the flow physics involved in papermaking. When paper is produced,
a fiber suspension consisting of cellulose fibers suspended in water is used. The
suspension, with a mass concentration typically below 1%, enters a nozzle,
usually called a headbox, through a pipe with a diameter of approximately
800 mm, Fellers & Norman (1998). The main purpose of the headbox is to
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distribute the suspension evenly across one or between two permeable bands
called wires. To do this the pipe-flow entering the headbox is transformed to
a jet with an approximate height of 10 mm and a width of about 10 m. The
mechanical properties of the produced paper sheet are strongly coupled to the
fiber orientation. Due to the contraction of the headbox, fibers tend to align
in the flow direction. This orientation anisotropy is also reflected in the final
product.

In order to damp out large-scale velocity fluctuations in the headbox, which
can result in a bad formation of the paper, i.e. a variation in local mass dis-
tribution or basis weight, flexible flow dividers are often implemented in the
headbox. These are fixed at the entrance to the nozzle contraction and allowed
to adjust according to the flow field. The width of these flow dividers are the
same as the width of the nozzle. The flow dividers will henceforth be called
lamellas. At the surfaces of the lamellas the no-slip condition is valid, i.e. the
velocity of the fluid relative to the surfaces is zero. As a result thin shear layers
of fluid, i.e. boundary layers, will form along the lamella surfaces, where the ve-
locity goes from zero at the surfaces to the velocity of the main stream further
out. The aim of the present study is to investigate the physics controlling fiber
orientation in a boundary layer close to a solid wall, aiming at understanding
how the lamellas influence the fiber orientation and ultimately the properties
of the final paper product. It is also of interest to investigate the possibility to
use the lamellas as means of controlling the fiber orientation by modifying the
structure of the lamella surfaces.

In order to interpret the results of the present study, the concept of Jeffery
orbits will be used, i.e. the motion of a solitary ellipsoid suspended in a laminar
simple shear flow. The equations of motion for the ellipsoid has been solved
theoretically by Jeffery (1922) and the resulting expressions, frequently referred
to as Jeffery’s equations, are

gﬁ:—r211(r£sin2¢+c032¢) (1)
2 — 1\ A
= (:g " 1)%silr12gbsir1297 (2)

where ¢ is the angle of the particle projection in the flow-gradient plane with
respect to the streamwise direction, figure 1. The angle of the particle with
respect to the vorticity axis is defined as 6. The aspect ratio, i.e. the length
to diameter ratio of the ellipsoid, is denoted 7. and ¥ is the shear rate. The
dots over the two angles ¢ and 6, represent differentiation with respect to time.
The ellipsoid will remain in its initial orbit, which is defined by the initial
conditions. The motion is periodic with a period

7 27r(r§+1)
R .

T (3)
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FiGure 1. Coordinate system.

Integration of equations (1) and (2) with respect to time yields

1
tan ¢ = - tan ( — %rgrj— 1 + tan™! (7, tan (;So)) (4)
Cr,
tan = , 5
(r2sin? ¢ + cos? ¢)1/2 (5)

where C' is the so called orbit constant and ¢ is the initial value of ¢.

Even though the original derivation of Jeffery’s equations relied on the as-
sumption of ellipsoidal particles, it has been shown that it is possible to extend
Jeffery’s equations to be valid for any body with a fore-aft symmetry, provided
that an equivalent aspect ratio is used, Bretherton (1962). In particular, the
equivalent aspect ratio for a cylindrical fiber is

re = 1.24r,(Inr,) "1/2) (6)
where 7, is the aspect ratio of the cylindrical fiber and r. is the equivalent

aspect ratio to be used in Jeffery’s equations, see Cox (1971) .

Some examples of Jeffery orbits are shown in figure 2. The orbits are
calculated for an equivalent aspect ratio r. = 8.17, which corresponds to a
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FIGURE 2. Jeffery orbits for different values of the orbit con-
stant C' and r, = 8.17.

cylindrical fiber with aspect ratio 10 as used in the present study. The flow
is in the x-direction and the shear is in the y-direction. Four different orbits
are shown in figure 2. The orbits are shown as the path of a fiber end-point.
For high values of C the fiber spend most of its time oriented close to the flow
direction. Periodically, with a period of T/2, it flips over 180 degrees around
the vorticity axis. As the value of C is lowered the amplitude of the motion in
the y—direction decreases. For very low values of C' the fiber is almost parallel
to the xz—plane, oriented perpendicular to the flow direction.

Jeffery’s equations have been verified by several researchers, including
Moses, Advani & Reinhardt (2001), Taylor (1923) and Binder (1939), but do
not account for fiber-fiber interactions or wall effects. The wall effect has been
investigated both experimentally by Moses et al. and theoretically by Pozrikidis
(2005). For elongated particles, a good agreement of Jeffery’s equations was
found, in the study by Moses et al., for distances from the wall larger than one
fiber-length, whereas an increased rate of rotation was found closer to the wall.
The spatial orbit was not considerably changed.

At higher concentrations, it has been shown by Koch & Shagfeh (1990)
that the correction to the O(%) rotation rate is O(%/1In(1/¢,)) where ¢, is the
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volume fraction of the fibers. For a concentration of 1% this correction is
0(20%).

Initially in this paper, the experimental setup and evaluation methods are
described followed by a discussion regarding why the present experiments, per-
formed at low velocities in a highly viscous fluid, are relevant for papermaking.
Thereafter the results are presented and discussed followed by conclusions. In
the paper we present measurements of the previously discarded fiber orientation
in the xz-plane, and in particular the effect of a wall including the possibility
to manipulate the orientation by modifying the surface structure of the wall.

2. Experimental setup & analyzing techniques

To create a well-defined shear flow a fiber suspension was allowed to flow down
a slightly inclined glass plate. To visualise the flow a charge-coupled device
(CCD)-camera has been used, and by analyzing the captured images the ve-
locity and orientation of the fibers in the shear flow can be obtained. Below,
the flow loop, liquid and fibers are described. Thereafter the image analysis
methodology is introduced, which is performed in two steps: (i) detection of
the position and orientation of fibers in an image and (ii) determination of the
velocity from a triplet of consecutive images. The flow in the apparatus is ver-
ified by comparing measured velocity profiles of the fibers with the theoretical
profile.

2.1. Experimental setup

The experimental setup, illustrated in figure 3, consists of a (1200 x 400) mm?

glass plate with a thickness of 6 mm. A pivoting acrylic frame with for-aft
reservoirs, not shown in the figure, supports the plate. A membrane pump
(Dominator P30-ANN) is used to transfer the fluid between the reservoirs. By
placing an insert on the glass plate the flow is given an inlet contraction followed
by a parallel section of length 1050 mm and width 100 mm. The contraction
stretches over a length of 150 mm and has a contraction ratio of four. Due
to the acceleration in the contraction the fibers align themselves with the flow
direction.

Experiments have been performed using two different surfaces. The first is
a smooth surface and the second is a structured surface with ridges oriented 30
degrees counter-clockwise to the flow direction. The ridges were machined in
four (100 x 100) mm? acrylic plates of height 6 mm. These plates covered the
region from x = 400 mm to x = 800 mm. The position and structure of the
ridges is illustrated in figure 4, where H = 0.5 mm. In the case of the smooth
surface a (1200 x 100) mm? acrylic plate of height 6 mm is placed in the flow
section on top of the glass plate in order to ensure that the flow situation was
similar to the case with ridges.
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y
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FIGURE 3. Schematic figure of the test section. All lengths
are given in mm.
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FIGURE 4. Schematic figure illustrating the camera positions
for the velocity profile measurements (P1, P2 and P3) and for
the fiber orientation studies P4.

2.2. Flow situation

The theoretical velocity profile for a Newtonian fluid flowing down an inclined
plate is given by

y(2h—y)sina, (7)

where ¢ is the gravitational constant, v is the kinematic viscosity of the fluid,
h is the fluid film thickness and « is the inclination of the plate with respect to

u =
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the horizontal, see for instance Acheson (1990). The distance from the wall, y
in equation (7), stretches from y = 0 at the wall to the surface of the liquid film
y = h. Equation (7) is thus a parabolic expression where the velocity is zero
at the wall to gradually increase with the distance to the wall. The highest
velocity is found at y = h, where u = Us.

In the experiments a tilt angle of & = 2.60 4+ 0.1° caused the suspension
to form a liquid film along the plate with a thickness of 17.0 & 0.2 mm. The
film thickness was measured to be constant throughout the section between
x = 650 mm and z = 850 mm. It can thus be established that there was
no global acceleration in the flow. The Reynolds number, based on the film
thickness and the velocity at the surface of the film, is defined as

_Ush
=
For the highly viscous flow in the experiments Re ~ 8.

Re (8)

2.3. Fiber suspension

The liquid containing the fibers was a mixture of glycerine and polyethylenegly-
col (PEG-400). The temperature of the suspension was 295.5 + 0.5 K through-
out the measurements. For this temperature the kinematic viscosity of the
liquid was measured to v = (383 £ 10) - 107% m?/s and the density to p; =
1210 + 15 kg/m?3.

Cellulose acetate fibers were suspended in the liquid. The length of the
fibers was [ = 0.5 mm and the diameter was approximately d ~ 70 pum. The
density of the fibers was approximately p, = 1300 kg/m3. Since the density
of the fibers is higher than the density of the liquid, the fibers will sediment
slowly when suspended in the liquid. The suspension was dilute with a volume
fraction of fibers ¢, = 0.004. This concentration can be expressed as nl® ~ 0.25,
which is the number of fibers within a volume /3 (n is the number density of
fibers).

The index of refraction (IR) of the liquid was approximately matched to
that of the fibers and the IR of the liquid was measured to n = 1.466 + 0.002.
IR matching is a frequently used tool in multiphase flows and has been used
in several previous studies of fiber suspensions, see Iso, Koch & Cohen (1995),
Petrich, Koch & Cohen (2000), Holm (2005) and Herzhaft & Guazzelli (1999).
In order to visualise the fibers 4% were dyed black.

2.4. Measuring and analyzing method

In order to investigate the behaviour of the suspended fibers, the fibers are
visualized with a CCD-camera, which captures images from underneath the
flow. Image analysis is used to find the orientation and the velocity of the
fibers. Furthermore the velocity profile of the fibers is measured and found to
coincide well with the theoretical velocity profile defined in equation (7), which



62 Allan Carlsson, Fredrik Lundell & L. Daniel Séderberg

makes it possible to determine the distance from the wall of individual fibers
based on their velocity.

2.4a. Visualization. The CCD-camera (SONY DFW-X700, 1024x768 pixels)
visualising the fibers was mounted underneath the flow at = 750 mm (camera
position P4 in figure 5) in order to capture images for orientation studies. To
find the velocity profile of the fibers the camera was also mounted at the side
of the flow, camera position P1-P3 in figure 5. A stroboscope (Drelloscop 200)
was synchronized to the CCD-camera in order to illuminate the field of view.
A typical image captured by the camera is shown in figure 6.

Free surface

Velocity profile Fibres

Inclined plate

Camera position P4 for orientation

Camera position P1-P3 for measurments

velocity profile measurments

F1GURE 5. Schematic figure illustrating the flow situation
with the camera positions P1-P3 and P4.

2.4b. Image analysis. To find the position and orientation of the individual
fibers in the captured images a second order ridge detector is used Jacob &
Unser (2004). The correlation between a captured image and the filter in
figure 7, is calculated. A high value of the correlation at a certain position in
an image indicates that there is a local similarity of the fiber and the filter at
that position. The filter is within the class of steerable filters, which means
that the correlation of the filter, rotated to a certain angle, with the image can
be found through a linear combination of a limited amount of correlations of
filters with the image. Thus, it is not necessary to perform correlations for a
large number of rotated versions of the filter with the image. For the particular
filter used, only three correlations are performed in order to find the angle of
the filter that will result in the highest correlation of the filter for each position
in the image.

2.4c. Particle tracking velocimetry. To find the velocity of the fibers at a cer-
tain time, three consecutive images were captured with a frequency of f =
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/
Al

FIGURE 6. Image captured underneath of the flow for orien-
tation studies (camera position P4).

FIGURE 7. Filter used to find the orientation of the fibers.

5.13 + 0.05 Hz. Between every set of three images a delay of Ty, = 12 s was
implemented. This will give the majority of the fibers an opportunity to pass
the field of view, which means that the following triplet of images will be sta-
tistically independent. This aspect will be returned to below. Each measuring
series lasted for approximately one hour, resulting in 900 images to analyze.
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Based on the position of the fibers in the images the velocity can be found
through a Particle Tracking Velocimetry (PTV) algorithm that locates the
individual fibers in subsequent images. The principal idea of the algorithm is
to start from the position of a fiber in an image and search for fibers in the
flow direction in a narrow region downstream of this position in the following
(second) image. The velocity is calculated for all the candidate fibers found in
the prescribed region of the second image.

Based on the calculated velocities, the positions in the narrow region in the
third image, where the fibers would be located if they continued with the same
velocity, are calculated. If a fiber is located at any of the proposed positions
in the third image it is considered to be the same fiber as the original fiber
in the first image. This method is not flawless since it is possible for three
different fibers, all travelling with different velocities, to result in a match in
the algorithm. Analyzing longer image sequences could reduce this problem.
This would however decrease the maximum velocity that can be detected. De-
creasing the width of the region where the fibers have to be found in the second
image, as well as decreasing the area where the fiber has to be found in the
third image, can also reduce the error. In the studies performed here, only
three images have been used to track the fibers and incorrect matches do ap-
pear occasionally, as will be seen in the velocity profile measurements.

2.4d. Permissible regions for PTV. In order to ensure statistically independent
samples of the orientation and velocity of fibers, it is necessary that each fiber
is sampled only once. This is achieved by limiting the region where the fibers
have to be found in the first image. The permissible region is shown in figure
8 where a typical image is shown in (a) and the region where fibers have to be
found for different velocities is shown in (b). This region is defined so that (i)
detection in two subsequent sets of three images is avoided (for low velocities)
and (ii) the fiber is still located in the field of view when the third image is
captured. In order for a fiber to be detected it has to be located below the
solid line. For fibers travelling at velocities lower than AX/T,, where AX is
the physical length of the image in the flow direction, the slope of the solid line
is defined by the period Ts. Fibers located in this region travel too slow to pass
the field of view in the period Ts. Thus, if a fiber is located above the solid
line, it should have been found in the preceding set of three images. Hence,
fibers with velocities smaller than AX /Ty, located above the solid line, are not
considered.

The second effect that has to be taken into account is that the region where
a fiber can be detected decreases with an increased velocity of the fibers. The
largest detectable velocity of a fiber is AX f/2. For a fiber travelling with this
velocity to be detected it has to be located sufficiently far upstream in the
first image, so that it can be found in the two subsequent images. For fibers
travelling at velocities larger than AX/Ts, the slope of the solid line in figure
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F1GURE 8. Region in image where fibers can be detected.

8(b) is thus defined by the period 2/f. Fibers located above the solid line in
the first image will leave the field of view, before the third image is captured.
This effect is also present at velocities smaller than AX/T, although since
2/ f << Ts, the slope of the solid line does not change substantially.

2.5. Velocity profile of fibers

To verify that there was no acceleration in the flow and that the velocity profile
was fully developed, the camera was mounted at the side of the flow, camera
positions P1-P3 (z = 650, 750 and 850 mm), see figure 4 and 5. The mea-
surements in this configuration were performed on the smooth surface at an
early stage of this work in order to validate the setup and therefore, the fiber
suspension was not identical to the suspension used for the orientation studies.
The length and diameter of the fibers was [ = 2 mm and d ~ 70 pum respec-
tively and the concentration of fibers was ni® ~ 0.15. The liquid mixture was
essentially the same as mentioned earlier. The results from these measurements
are shown in figure 9, where the velocities of individual fibers are marked with
dots. The solid line in the figure is the theoretical velocity profile, defined by
equation (7). The velocity has been normalized with the surface velocity of
the liquid film Us and the distance from the wall is normalized with the film
thickness h. The velocities of most of the fibers found coincide very well with
the theoretical profile. However, a few of the dots deviate substantially from
the theoretical profile, although the amount of these dots is very small com-
pared to the amount of fibers coinciding with the profile. It is believed that
the deviating dots are a result of incorrect matches in the particle-tracking al-
gorithm. If the deviating dots are disregarded it can be concluded that there is
a strong correlation between the velocity and the distance from the wall of the
fibers. This makes it possible to convert the determined velocity of the fibers
to a distance from the wall.
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FIGURE 9. Velocity profiles measured at three different posi-
tion along the x-axis (camera position P1-P3).

3. Relevance for paper manufacturing

In a paper machine, the jet leaving the headbox can reach velocities of more
than 30 m/s. A natural question that arises is whether the fiber dynamics
in the present experiments has any relevance for the fibers flowing over the
lamellas in a headbox. The experiments are performed at a 400 times higher
viscosity and 1/200 of the velocity as compared to the situation in the headbox.
This issue will be discussed in terms of boundary layers and the forces exerted
on a fiber in the headbox flow and turbulent/laminar retransition.

3.1. Fibers in the headbox boundary layers

Below, a rough estimation of the force exerted on a fiber in the headbox bound-
ary layer will be compared with the torque in the present experiments. An
estimation of the velocity profiles along the lamellas in the headbox is given
by the similarity solution for flow in a two-dimensional convergent channel, see
Schlichting (1979). The velocity u is given by

u 2 (7
— = 3tanh” ( —= + 1.146) — 2 9
[ =3tan (ﬁ+ ) -2, (9)
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F1GURE 10. Two-dimensional convergent channel.

where U, is the velocity of the fluid outside the boundary layer and 7 is defined
as

/ Ue

—(@ — (10)

n=y

The definitions of the coordinates 2’ and ¥y’ are shown in figure 10.

U, will grow as the fluid travels downstream due to the contraction. The ac-
celeration will also force the boundary layer thickness to decrease in the down-
stream direction. Lamellas implemented in a headbox typically ends about
100 mm upstream from the outlet of the headbox. At this position the bound-
ary layer thickness will be of the order of 1 mm. At a distance from the solid
surface of 0.5 mm, i.e. one fiber length, the shear rate is about 1000 s~!. For
comparison, the shear rate at the same distance from the surface in the exper-
iments is about 20 s~1.

The torque on the fibers is estimated under the assumption that they are
standing still, straight up from the wall. This assumptions is very rough and
the following analysis should only be seen as an order of magnitude analysis. If
one wants to compare the motions of free fibers, careful analysis at the correct
particle Reynolds numbers has to be performed. Attempts in this direction are
reported in the literature, Subramanian & Koch (2005), and show that a fairly
small Reynolds number can have a substantial effect on the fiber motion, but
the complete description is yet to be established.

The force on a fiber standing straight up is estimated as follows. The
velocity of the fluid surrounding the fiber is assumed to be linear with a shear
rate 4 and thus forms a linear velocity field U = (a + 0.5)%l along the fiber.
The coordinate a has its origin in the center of mass of the fiber and is directed
along the fiber with value -0.5 and 0.5 at the fiber center points, respectively.

This velocity field gives rise to a force distribution on the fiber which can
be estimated by integrating the local force per unit length on the fiber from
one end to the other.
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FiGURE 11. Estimated force distribution along fibers standing
straight up from the wall in the experiments (— - —) and in a
headbox (—) .

In the experimental configuration the maximum Rey is 0.001. For Rey =
Ud/v up to approximately 1, the force is given by White (1991)

r_ pU? 8md (11)
2 Req(0.5 —T'+1n(8/Rey))’
where F’ is the force per unit length and I' = 0.57722... is the Euler-Mascheroni

constant. In the headbox the largest Rey is about 25 and the force distribution
is estimated by

_pU?
)

F’ dCy (12)
where Cy is given by Cy = 1 + 10.0/(Rez/3), a correlation valid up to Reyg =~
250000, see White.

The particle Reynolds numbers, 412 /v, are typically 0.01 and 250 in the
present experiments and a paper machine, respectively. Thus, inertial effects
are considerable in the industrial application and the fibers cannot be expected
to perform Jeffery orbits. Nevertheless, it will be shown below that the forces
acting on a fiber during rotation can be expected to be of the same order.

By using equations (11) and (12) and letting Rey and U vary along the
fiber, the force per unit length along the fiber can be calculated. The resulting
force distribution for the present setup and in a paper machine is presented in
figure 11. The lines are based on a velocity of the outgoing jet of 15 m/s, jet
height of 10 mm and a half contraction angle 1) = 7° (see figure 10). In spite of
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the large differences in the shear rate and the viscosity between the performed
experiments and the situation in the headbox, the torque that the fibers will
be subjected to, based on the assumption that the fiber is held fixed in the
gradient direction, will only differ by a factor of 2.

3.2. Turbulence in headbox

The flow in a headbox is normally considered to be turbulent. However, a
turbulent boundary layer can return to laminar-like conditions if it is subjected
to a strong acceleration. The acceleration is usually measured by the non-
dimensional acceleration parameter

K- 2ytan¢7 (13)
q

where ¢ is the total flow rate per unit width in the convergent channel. Exper-
iments performed on a turbulent boundary layer for various rates of the free-
stream acceleration show that an apparent re-transition to a laminar boundary
layer was found by Moretti & Kays (1965) for K > 3.5 - 1075, Another experi-
mental study, by Parsheh (2001), of a flat-plate fully turbulent boundary layer
subjected to an acceleration in a two-dimensional contraction showed that at
K ~ 3.1 - 1075, the velocity profile approached a self-similar laminar state at
the end of the contraction. As seen in equation (13) K will depend on the
flow rate in the headbox as well as the contraction ratio, defined by the angle
. In a papermachine, K is typically between 5 - 10~7 and 6 - 1075. It is
thus possible that the boundary layers will be re-laminarized towards the end
of the nozzle for some configurations. To the authors knowledge, all studies
performed concerning the re-laminarization of boundary layers are performed
on one-phase flows, i.e. no particles have been suspended in the fluid.

4. Results & Discussion

Close to a solid surface it is not possible for fibers to perform all the Jeffery
orbits illustrated in figure 2, since they would hit the wall when doing so if they
are to close to the solid surface. For the case of 5 = 0 (C' — c0), i.e. fibers
aligned with the flow, it has been shown that fibers can interact irreversibly with
the wall and “pole-vault” up to a position where the Jeffery orbit is possible
to perform, Stover & Cohen (1990).

In the following, the restraint given by the Jeffery orbit will be examined
further. This will be followed up with experimental data of the orientation
of fibers in the xz—plane. In addition to the orientation of the fibers, their
velocities are determined. The velocity of the fibers, together with the known
velocity profile, can then be used to determine the distance from the wall to
the fiber. A strong effect on the orientation is found for the smooth surface but
not for the one with ridges. The coordinate system used in the presentation of
the results is defined in figure 3 and 4.
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FIGURE 12. Minimum distance from the wall where fibers per-
forming Jeffery orbits can occur for different orientations and
aspect ratios of the fibers.

4.1. Jeffery orbits close to the wall

For distances more than half a fiber length away from the wall small effects
of the presence of the wall have been seen. In this region most of the fibers
keep their initial orientation, i.e. aligned with the flow. It was observed that
fibers spend most of their time aligned with the flow and occasionally flip
180 degrees around the vorticity axis. Although no measurements have been
carried out in order to determine the periodicity of the motion, it appears
as the fibers perform a motion similar to Jeffery orbits with a high value of
C, as shown in figure 2. When C — oo the amplitude of the orbit, in the
y—direction is [/2. For distances from the wall closer than [/2 it is not possible
for the fibers to perform this orbit without hitting the wall. As the distance
to the wall decreases, the set of possible Jeffery orbits a fiber could perform is
reduced. The only orbit that would be possible at the wall is the orbit given
by C = 0. The possible values of  for fibers performing Jeffery orbits in the
near wall region are shown in figure 12. It is not possible for a fiber to perform
a Jeffery orbit without hitting the wall if its combination of orientation and
distance from the wall lies within the region below the solid line. It should
be emphasized that this is only the case if the fibers are actually performing
Jeffery orbits. As mentioned before, this assumption is reasonable for fibers
close to the wall Pozrikidis (2005) and also at semi-dilute concentrations Koch
& Shagfeh (1990).
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FIGURE 13. Angular distribution of fibers before particle-
tracking analysis (camera position P4).

If a fiber would be located in the region below the line, the motion of the
fiber could not possibly be described by equations (1-5).

4.2. Fiber orientation

4.2a. Angular distribution prior to particle-tracking analysis. In figure 13, the
normalized distributions of orientations found in the images are shown. Data
is shown for fibers flowing over the smooth (solid) and structured (dash-dot)
surface. The distributions are determined based on 99760 fibers detected over
the smooth surface and 100483 over the ridges. Since these values differ less
than one percent, it is reasonable to conclude that the fiber orientation detec-
tion algorithm described above works as it should also in the case with the
structured surface. The two distributions in figure 13 are fairly similar where
the main part of the fibers appear at 5 = 0, i.e. aligned with the flow. There is
however one major difference, over the smooth surface, there is a considerable
amount of fibers aligned across the flow direction, at § = 90°, which can be
seen as a bump in the distribution function.

The data presented in figure 13 is based on images captured with the focus
of the camera set at y = 0, i.e. at the wall. The depth of focus, measured as the
region were almost all fibers are detected by the algorithm, was approximately
1 mm. Thus, the distribution functions in figure 13 are integrated over this
region.

4.2b. Wall-normal concentration distribution. In order to obtain a more de-
tailed knowledge of how the wall influences the fiber orientation, the velocity
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FIGURE 14. Variations in concentration as a function of the
distance from the wall (camera position P4).

of individual fibers, given by the particle tracking algorithm, will be used. For
the smooth surface, the known velocity profile gives a one-to-one relation be-
tween the velocity and distance to the wall of a fiber (assuming that the fibers
follow the flow). Over the structured surface, this relation is less straightfor-
ward due to the complex and three-dimensional flow field that will appear close
to the surface. This is reflected in the number of fibers which fulfils the con-
ditions for having the velocity determined, as described previously. Over the
smooth surface, the velocity of 12164 fibers is determined whereas only 10530
remain after the particle tracking algorithm for the case over the structured
surface. When comparing these numbers with the 100 000 fibers found in total,
it has to be remembered that three consecutive images are used to determine
one velocity value and that some parts of the images are not used in order to
ensure statistically independent samples. Nevertheless, a considerable amount
of fibers seem to be lost over the structured surface. Therefore, the results
below have to be interpreted with care for this case.

Based on the velocities and the known velocity profile (equation (7)), con-
centration profiles can be determined. Such profiles are shown in figure 14 for
the two cases (solid and dash-dot as in previous graph) together with a profile
calculated based on the (very low but still significant) sedimentation velocities
of the fibers (dash). The data will be discussed below, but first the origin of
the theoretical curve has to be explained.

The theoretical line is calculated based on three assumptions:
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e That the fibers are evenly distributed at the inlet of the test section
(z =0);

e That the streamwise velocity of the fibers is given by the local flow
velocity given by equation (7) and the wall-normal velocity by the sed-
imentation speed of a fiber oriented normal to gravity (this assumption
is valid since the inclination of the plate is quite small and the fibers
spend most of the time with this orientation to gravity); and

e That fibers stay very close to the wall once they have fallen down to
this region.

This simplified analysis, which neither includes the wall effect on the sedimen-
tation speed nor other aspects of the situation, is only used in order to get a
qualitative understanding of the phenomena.

The sedimentation velocity is calculated based on the sedimentation veloc-
ity of the fibers, which is given as

(pp — ps)d? -1
v. = W(ln(Qr) +0.193+ O(ln(2r) 1)), (14)

where r is the aspect ratio of the fibers and g is the acceleration due to gravity,
see Herzhaft & Guazzelli (1999) and Batchelor (1970).

The experimental data from the flow over the smooth surface in Fig. 14
(solid) show a high concentration close to the wall (i.e. a lot of slow fibers),
followed by a decrease and then an increase up to nl® ~ 0.5 at y/I ~ 0.6. Above
y/l = 0.6, the number of fibers found in the images decreases.

For the flow over the structured surface, the concentration profile in Fig.
14 looks different and does not have the sharp peak close to the wall. This
difference has to be interpreted in the light of the complex flow field over the
structured surface. For a complete understanding, the flow over the ridges
would have to be studied in detail, but it can be assumed that the ridges
induce wall normal movements and (at least locally over the ditches) higher
velocities close to the wall. These features of the liquid flow could explain the
smaller amount of slow fibers.

As will be seen below, the sharp peak in the concentration profile close to
the wall (or at small velocities) over the smooth surface in figure 14 is related
to the bump in the orientation distribution at 8 = 90° in figure 13.

The fact that a large number of fibers are present very close to the wall
is in conflict with the mechanism of “pole-vaulting” previously proposed by
Stover & Cohen (1990). This discrepancy will be elaborated further on.

4.2c. Orientation at various distances from the wall. Finally, it is possible to
look at the distribution at various distances (i.e. for fibers of different velocities)
from the wall. These results are shown in figure 15 (smooth surface) and 16
(surface with ridges). In these figures, the orientation distributions for each
distance from the wall are normalized in order to compensate for the varying
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F1GURE 15. Fiber fraction as a function of 3 for different dis-
tances from the wall. Measurements performed on smooth
surface (camera position P4).

concentration. The line defining the region in which Jeffery orbits can be
performed (see figure 12) is shown as a solid line.

Starting with the smooth surface, it is seen that almost all of the fibers
that have collected at the wall are oriented normal to the flow direction. Thus,
the bump in the orientation distribution in figure 13 originates from fibers
positioned close to the wall.

This is somewhat surprising, since there are a lot of orientations which are
allowed according to the Jeffery orbit. A possible explanation for this could
be that close to the surface, where the velocity is very low, the fibers have
performed a large number of orbits. Since the period is 2-3 s, the distance
750 mm and the velocity < 3 mm/s, the number of orbits performed are in
the order of 100. It is thus possible that instead of performing the pole vault
previously observed by Stover & Cohen, the fibers are interacting with the
wall through lubrication or direct contact and transfer to orbits with lower and
lower C' values (see figure 2) for each period. Finally, C' would be close to 0
and the orientation is consequently close to § = 90°. The fact that this, or
any other mechanism that leads to § = 90° occurs, implies that the previously
observed mechanism for wall interaction is not the only possible one.

Farther out from the wall, the fibers illustrated in figure 15 seem to be more
evenly distributed over the orientations from y/l = 0.2-0.5 and concentrated
around 3 = 0 further out.
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tances from the wall. Measurements performed on surface with
ridges (camera position P4).

It is now time to take a closer look at the data from the flow over the
structured surface. Before doing so, it is appropriate to remind the reader
that the correlation between fiber velocity and distance from the wall is not
valid in this case. It is therefore more appropriate to talk about fast and slow
fibers. The orientation distribution for different fiber velocities is shown in
figure 16 (the corresponding distance from the wall over the smooth surface is
also shown). For fibers with a velocity down to that corresponding to y > 0.21,
the data is very similar to the smooth surface case. For y/l > 0.5, most of
the fibers are oriented in the flow direction, in the region 0.2 < y/l < 0.5
the distribution is more homogeneous. The (very few, compare figure 14) slow
fibers are oriented in the streamwise direction.

There are two possible reasons why there is only a small amount of fibers
with low velocities detected over the structured surface. The first is that the
detection algorithm (which relies on that the fibers move straight downstream)
fails. The second is that there are fewer slow fibers. These two effects are
probably combined. During the experiments it was observed that fibers were
trapped in the ridges and followed the ridges for a while before continuing
downstream. As mentioned above, the complex flowfield over the surfaces
with ridges, with transversal, wall-normal and streamwise velocity fluctuations
might also allow the fibers to travel faster, even though they are closer to the
surface. Nevertheless, figure 13 clearly shows that there is no large portion
of fibers with  ~ 90° over the structured surface even before the particle
tracking algorithm. It has thus been shown that the smooth surface gives the
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fibers collecting at the wall an orientation 5 = 90° and that this effect is not
present over the surface with ridges.

5. Conclusions

An experimental study has been performed on the subject of how fibers orient
themselves in a shear flow close to a solid wall. A fiber suspension was allowed
to flow down an inclined plate, thus forming a well-defined shear layer. As a
visualization tool a CCD-camera was mounted underneath the flow in order to
find the orientation of the fibers in the plane parallel to the wall. Experiments
were performed with two different surface structures of the plate to explore
the possibility of influencing the orientation of the fibers by modifying the
structure of the wall. The first structure used was a plain smooth surface,
while the other surface used was a surface with ridges oriented -30 degrees to
the direction of the flow. For distances from the wall larger than one fiber
length basically all fibers stayed aligned with the flow, for both surfaces. The
fibers located in this region seemed to perform orbits similar to those described
by Jeffery’s mathematical analysis. For distances from the wall closer than one
fiber length a difference could be seen between the experiments performed on
different surfaces.

For the smooth surface the majority of the fibers no longer oriented them-
selves in the flow direction. Very close to the wall, less than about an eighth
of a fiber length, nearly all of the fibers were oriented close to perpendicular to
the flow direction.

Concerning the experiments performed on the surface with ridges, it is
concluded that the particle-tracking algorithm used to follow the fibers, fails
to do this in a satisfactorily manner. The reason for this is probably the
disordered motion occurring close to the structured surface, where some of the
fibers change direction as they flow down the plate. It is thus not perfectly clear
what happens close to the surface with ridges. Nevertheless, it has been possible
to show that the effect found close to the smooth surface, where many fibers
orient themselves perpendicular to the flow, is not present for the structured
surface with ridges.

The insights of the present study give two main directions for future work,
the first is to study the selection between the “pole-vault” mechanism of fibers
close to the wall identified earlier by Stover & Cohen and other mechanisms,
leading to 8 = 90°. The second direction, which is critical for industrial ap-
plicability, is to study the orientation at higher velocities/lower viscosities in
order to study the effects of inertia and turbulence.
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Orientation of slowly sedimenting fibers in a
flowing suspension near a plane wall

By Allan Carlsson’, Fredrik Lundell’ & L. Daniel
Soderberg

fLinné Flow Centre, KTH Mechanics, SE - 100 44 Stockholm, Sweden
'STFI-Packforsk AB, SE - 114 86 Stockholm, Sweden

The effect of a wall on the orientation of slowly sedimenting fibers suspended
in a shear flow has been studied experimentally. Experiments were performed
at two concentrations with two aspect ratios, 7, ~ 7 and 7, ~ 30, where 7, is
defined as the fiber length divided by the diameter. For all cases the majority
of the fibers were oriented close to parallel to the flow direction for distances
farther away from the wall than half a fiber length. As the distance from the
wall decreased a change in orientation was observed. At distances from the wall
closer than about an eighth of a fiber length a significant amount of the fibers
were oriented close to perpendicular to the flow. This was particularly clear
for the shorter fibers. Due to the density difference between the fibers and the
surrounding fluid the fiber concentration was increased in the near wall region.
An increased concentration was found in a limited region close to half a fiber
length from the wall. For the shorter fibers a large number of fibers was also
detected in the very proximity of the wall.

1. Introduction

Suspensions of fibers are encountered in several engineering applications such
as pharmaceutical applications, food processing, waste water treatment, com-
posite processing and paper manufacturing. The final orientation distribution
in the latter example is highly dependent on the suspension flow at an early
stage of the process. As fibers travel with a suspension they will interact with
the fluid, with each other and with the boundaries of the flow. This experi-
mental study focuses on how fibers are oriented when they flow close to a solid
wall.

A single fiber suspended in a linear shear flow will rotate due to the fluid
motion. The flow situation is illustrated in figure 1. In this figure, the coordi-
nates (z,vy, z), the angles ¢ and 0 defining the orientation of the fiber and the
linear shear flow u = 4ye, are defined. The angle 3 from the flow direction
to the projection of the major axis of the fiber in the xz-plane is also shown.

83
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z

FiGUrE 1. Coordinate system, velocity field and definitions
of § and ¢ used in Jeffery’s analysis and [ used for evaluation
of the present data. The major axis of the fiber or spheroid is
indicated with a thick line.

Jeffery (1922) derived the equations of motion for a spheroid suspended in a
simple shear flow, assuming that inertia, both of the liquid and the spheroid,
can be neglected. Under these assumptions, the rotation of the spheroid is
described by

b= T (rg sin? ¢ + cos? ¢) (1)
. r2—1\75 . .
0= (r§+1>4s1n2¢sm29, (2)

where 7. is the spheroidal aspect ratio of the particle, i.e. the ratio between
the major and minor axes. The period of the rotation is given by

7, =" (M) (3)

v Te
Integration of equations (1) and (2) with respect to time ¢ yields
2mt
cot ¢ = —r¢ cot (F + qbo) (4)
Ty
Cr
tand = = , 5
(r2sin? ¢ + cos? ¢)1/2 5)

where the orbit constant C' and the phase shift ¢y are constants determined
by the initial conditions. It has been shown experimentally that Jeffery’s anal-
ysis form a good approximation for the motion of fibers suspended in viscous
shear flows, e.g. Taylor (1923); Binder (1939); Trevelyan & Mason (1951); An-
czurowski & Mason (1968). Thus, equations (1-5) are valid also for cylindrical
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F1GURE 2. The path of a fiber end point for r, = 8 and dif-
ferent C-values in Jeffery’s equation.

fibers. This has also been shown analytically by Bretherton (1962). Further-
more, the equations are also valid in a paraboloidal flow if the shear rate is
evaluated at the center of the particle, see Chwang (1975).

In order to use Jeffery’s equations for cylindrical particles an equivalent
spheroidal aspect ratio has to be used. The equivalent aspect ratio can be
computed using the relation by Harris & Pittman (1975)

Te = 1.147‘2'844. (6)

The geometrical aspect ratio is here denoted by r, = I/d, where [ and d are
the full length and diameter of the fiber, respectively.

In figure 2 Jeffery orbits are shown for various values of C' and r, = 8. The
curves show the orbit of a fiber end point for the indicated values of C'. At the
limit of zero inertia, a fiber will rotate in closed orbits around its center of mass
and will stay in the same orbit for an indefinite time, i.e. dC/dt = 0. For C =0
the major axis of the fiber is aligned with the vorticity axis, i.e. 3 = 90. The
fiber spins around this axis, with the angular velocity %/2. For large values of
C the fiber is oriented close to the flow direction most of the time, i.e. 3 = 0.
Every half period there is a rapid increase in (;.5, which results in a quick 180
degrees flip around the vorticity axis.

Jeffery’s orbits are often used as a starting point for phenomenological
explanations of the motion of fibers in a suspension. However, fiber-fiber and
fiber-wall interactions are not taken into account. The wall effect has been
studied both experimentally by e.g. Stover & Cohen (1990); Moses, Advani &
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Reinhardt (2001); Holm & Soderberg (2007); Carlsson, Lundell & Séderberg
(2007) and numerically by e.g. Dabros (1985); Hsu & Ganatos (1989, 1994);
Gavze & Shapiro (1997, 1998); Pozrikidis (2005). A general conclusion is that
Jeffery’s equations still form a good approximation, although with an increasing
period of rotation closer to the wall.

Fibers with values of 3 close to 0, located closer to the wall than half a
fiber length, have been observed by Stover & Cohen (1990) to interact with
the wall in what is referred to as a pole vaulting motion. When performing
this motion, a fiber end point hits the wall due to its rotation. This results in
a movement away from the wall, to a point where the fiber center is located
approximately half a fiber length from the wall. The orientation of the fiber is
kept close to 5 = 0.

Holm & Soderberg (2007) and Carlsson et al. (2007) have studied the fiber
orientation (3 close to a solid surface, where it has been observed that a consid-
erable portion of the fibers tend to orient themselves perpendicular to the flow
direction. For fibers rotating in Jeffery orbits the amplitude in the y-direction
increases with increasing values of C| see figure 2. As a consequence the domain
of possible Jeffery orbits, in the region y < 1/2, is reduced. It was proposed
by Carlsson et al. (2007) that the fibers move in Jeffery-like orbits also in the
region near the wall and tend to adopt an orbit within the reduced domain. In
the study it was also shown to be possible to influence the fiber motion near
the wall by modifying the wall surface structure.

In the present study experimental measurements on flowing fiber suspen-
sions with varying aspect ratios and concentrations will be presented. The
fiber orientation 3 and concentration in planes parallel to a solid surface are
analyzed. Compared to the earlier study by Holm & Séderberg the method
for determining the wall normal position has been refined. Consequently, the
orientation distribution near the wall is now better resolved. In addition, the
concentration variation near the wall is now measured. The experimental appa-
ratus and measurement techniques are described in section 2. This is followed
by results and discussion in section 3. Finally the conclusions are given in
section 4.

2. Experimental apparatus & technique

A CCD camera was used in order to visualize flowing fibers, in the proximity
of a solid surface. Image analysis made it possible to find the velocity and
orientation of the fibers in planes parallel to the solid surface. The velocity
of the fibers and the wall normal velocity profile are used to determine their
distance from the wall.
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rp=1/d T K] v [m?/s] ps [kg/m?]
7 295.5+ 0.5 (3834+10)-107% 1210+ 15
30 205.5+0.5 (387+10)-1075 1209 + 15

TABLE 1. Temperature, kinematic viscosity and density of the
liquid mixture in which the fibers were suspended.

2.1. Fiber suspension

The fiber suspension consisted of cellulose acetate fibers suspended in a viscous
liquid. The density of the cellulose acetate fibers was p, &~ 1300 kg/m?. Exper-
iments were conducted using two different aspect ratios, r, ~ 7 and r, ~ 30,
where the diameter of the fibers was d ~ 70 pm and the length [ of the fibers
was cut to 0.5 and 2 mm, respectively. For each aspect ratio of the fibers two
different concentrations were used. Expressed as the number of fibers to be
found in a volume of [* these were nl® ~ 0.01 and 0.25 for 7, ~ 7 (cases A &
B) and ni® ~ 0.25 and 2 for r, ~ 30 (cases C & D).

The index of refraction of the fibers was approximately matched to that
of the liquid. In order to visualize the fibers 100% of the fibers were dyed
black for the low concentration cases (cases A & C). For the cases of higher
concentration (cases B & D) only about 4% and 16% respectively of the fibers
were dyed black.

The fibers do not deform in the present flow, but are to some extent per-
manently deformed. An analysis was made finding the tangents of the fiber
end points on a set of fibers for both fiber lengths. From this analysis it is
found that the curvature is smaller than 10 degrees for about 85% and 55% of
the shorter and longer fibers, respectively.

The liquid phase was a mixture of polyethylene-glycol (PEG-400) and glyc-
erine. The properties of the mixture for the two different aspect ratios are
summarized in table 1. Note that the density of the liquid is lower than that of
the fibers. The fibers will thus sediment slowly when suspended in the liquid.

2.2. Flow apparatus

In the experiments a film of the fiber suspension was flowing down an inclined
glass plate. The thickness of the film was h = 17.0+£0.2 mm for the cases when
rp ~ 7 and h = 17.5 £ 0.2 mm when 7, =~ 30. A schematic figure of the test
section is shown in figure 3. It is the same flow apparatus as the one used by
Carlsson et al. (2007). The length of the channel was 1200 mm and the width
was defined by an insert (the large gray area in figure 3), placed on the glass
plate. From x = 0 mm to z = 150 mm there was a gradual change in the
width, from 400 mm to 100 mm. For x > 150 mm the width was constant and
equal to 100 mm. The coordinates are defined in figure 3.
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FIGURE 3. Schematic figure of the flow section, (a) Top view,
(b) Side view. The camera position for orientation measure-
ments is denoted by P.

The velocity in the z-direction of a Newtonian fluid film flowing down an
inclined plane is given by
g .
—y(2h — , 7
T y(2h —y)sina (7
where ¢ is the constant acceleration of gravity, v is the kinematic viscosity of
the fluid and y is the wall normal position, where y = 0 at the wall and y = h
at the free surface of the film. Furthermore « is the angle of inclination of the
plane with respect to horizontal. In the present experiments a = 2.60 £ 0.1
degrees. Equation (7) can for instance be found in Acheson (1990).

u =

It was shown previously by Carlsson et al. (2007) that the flow is fully
developed and that there is no acceleration present in the flow. Typical velocity
profiles are shown in figure 4. The velocity u and wall normal position y
is normalized with the free surface velocity Us and liquid sheet thickness h,
respectively. The measurements were conducted on fibers with r, ~ 30 at
nl? ~ 0.15 and each dot represents the velocity and position of one fiber tracked
through three consecutive images. The solid line is given by equation (7).
The dashed lines denotes the minimum and maximum velocity based on the
accuracies in measuring h, a and v.

It is noted that there is some scatter in the data. A small fraction of the
detected fibers have unphysical velocities which are due to mismatches in the
particle tracking velocimetry algorithm, which will be explained briefly in the
following section. For z = 650 mm in figure 4 (a) the fraction of erroneous
velocities is as high as 14%, whereas for = 750 and 850 mm in (b) and (c)
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FI1GURE 4. Velocity profile in the flow apparatus at « = 650,
750 and 850 mm in (a), (b) and (c), respectively.

the fraction is about 6%. Similar errors will be present also in the orientation
measurements although less frequently. The reason for this is that the image
quality is poorer in the velocity profile measurements, since the plane of focus
of the camera is located about 5 cm into the suspension in comparison to only
a couple of millimeters for the orientation measurements.

Disregarding the scattering, the measured velocities coincide well with the
profile given by equation (7). This fact will be used to determine the distance
to the wall of individual fibers in the orientation measurements.

2.3. Measurement € analysis procedure

2.3a. Image capturing. For the orientation studies the CCD camera was mounted
underneath the glass plate at x = 750 mm (position P in figure 3). Images were
captured, three at a time, with a frequency of f = 5.13 £0.05 Hz when r, = 7
and f = 10.27 £ 0.05 Hz when r, =~ 30. There was a delay of T ~ 12 s be-
tween every set of three images. The delay was implemented in order for the
fibers to pass out of the field of view before the next set of three images was
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captured. Therefore the exact length of T is not crucial. A total of 300 images
per set of three images were captured for each fiber length and concentration.
The field of view of the images was X x Z = 15 x 20 mm? for r, ~ 7 and
X x Z =12 x 17 mm? for r, ~ 30, where X and Z are the sizes of the image
in the z- and z-directions, respectively.

2.3b. Determination of fiber orientation. The angle (8 is defined as the angle
in the xz-plane taken clockwise from the flow direction (when viewed from
above), figure 3. To determine the orientation @ of the fibers a second order
ridge detector within the class of steerable filters derived by Jacob & Unser
(2004) was used. The filter has been evaluated for fiber detection in flowing
suspensions by Carlsson, Lundell & Séderberg (2009).

2.3c. Determination of fiber velocity. In order to find the velocity of the fibers a
particle tracking velocimetry (PTV) algorithm was used. The PTV-algorithm
uses information concerning the location of individual fibers in three subsequent
images. In order to indentify a particular fiber in the second image a rectangular
area is generated with a chosen width and a length starting from the original
fiber position to the end of the image in the streamwise direction. All fibers
inside the rectangular area in the second image are considered as candidates of
being the same as the original fiber. The distance from the original position to
a candidate position is used to compute a position where the fiber should be
in the third image if it is assumed to travel with the same velocity. If a fiber
is detected sufficiently close to the computed position, for the candidate fiber,
in the third and last image it is considered to be the same fiber as the original
fiber.

Threshold values have to be set on the sizes of the areas in which fibers are
searched for in the second and third image of the set. The width of the areas
in the z-direction are 0.4] and 0.2[ for the short and long fibers, respectively.
The length in the streamwise direction x in the third image is of the same order
of magnitude, but also varies with the velocity so that the length is increasing
with the velocity. This is done in an attempt to reduce an under-representation
of faster fibers.

Fibers found in a set of three images, with a velocity higher than X /T,
will leave the field of view before the subsequent set of images are captured,
independently on their location in the images. The velocity X /T corresponds
to a distance from the wall of y ~ d. To ensure statistically independent data
the z-position where the fibers has to be found in the images is set to be a
function of the fiber velocity ugy. If Xo is the x-position farthest upstream in
the images, the fiber has to be found in the region between Xo and Xo+u g 7.
In this manner the possibility of finding a fiber with a velocity lower than X /T,
more than once, is eliminated. For further details, see Carlsson et al. (2007).



Orientation of slowly sedimenting fibers near a plane wall 91

Case rp,=1/d nl®> N
A 7 0.01 5933
B 7 0.25 5427
C 30 0.25 4825
D 30 2.0 6277

TABLE 2. Aspect ratio, concentration and number of detected
fibers N for cases A-D.

2.3d. Determination of fiber concentration. The concentration of fibers at y is
determined by the number of fibers N that is detected inside of the volume
V = AXAYAZ. The concentration at y = y can then be expressed as
() = N(ze[0,AX]y € [y — AY/2.yx + AY/2], 2 € [-AZ/2,AZ)2])
v

(8)
Here AZ = Z and AY can be chosen arbitrarily, with the help of equation
(7), based on the desired resolution in the y-direction. The distance AX =
X —2ug/ f is however a function of the fiber velocity, see Carlsson et al. (2007).
This is due to the fact that the fibers have to be found in three subsequent
images and that the fibers will travel a distance within the period it takes to
capture these images. Hence, it is not possible to detect fibers of ug, > X f/2
since these fibers will have left the field of view, before the third of the three
images is captured, independent on their location in the first image. In practise,
this limits the maximum value of y where a fiber can be detected. It is also
worth mentioning that the absolute value of the computed concentration is

uncertain, mainly since it is strongly coupled to the threshold values set in the
PTV.

3. Results & Discussion

Measurements from four cases (A, B, C & D) will be presented. The aspect
ratios and concentrations of the cases are shown in table 2 together with the
total number of fibers N for which the velocity and orientation have been
determined in the region 0 < y/l < 1.5. In the presented results the computed
angular distribution at different distances from the wall is reported. The wall
normal distribution of fibers is also shown.

3.1. Period of rotation in near wall region

The period of rotation close to the wall is measured manually for a small set of
23 individual fibers. This is done in order to validate that the fibers are rotating
with a period in reasonable agreement with Jeffery’s equations. A separate set
of images were captured with the frequency f = 5.13 £0.05 Hz for r, = 7 and



92 Allan Carlsson, Fredrik Lundell & L. Daniel Séderberg

0.6 3.4
05 .. 129
0.4 .. {23

‘.8, c

03 . 174S

: =
0.2 ) 1.2
0.1 - 10.6
% o5 1 15 2 25°
T

FIGURE 5. Period of rotation of individual fibers with r, ~ 7
as a function of y.

nl =~ 0.01. The images are captured in the zz-plane. In order to measure the
period of rotation it is necessary to detect a change in orientation of the fibers
in the sequence of images. Therefore the period was only measured on fibers
that have a minimum value of § between 30 and 60 degrees during its complete
rotation. There are few longer fibers fulfilling this restriction why the period
was only measured on short fibers. The velocity of the fibers was measured
simultaneously in order to estimate the fiber’s distance from the wall.

The results of the rotation period are shown in figure 5. Each dot in the
figure denotes the measured period of rotation, normalized with the Jeffery
period, of an individual fiber. The maximum error of T/T; for a fiber is
estimated to be about +0.4. The reason for the large error is partly due to the
low frame rate of camera which can cause an error in the measured rotation.
There is also a width distribution of the fibers that affects the Jeffery period
used for normalization. Nevertheless, a trend can be seen. For distances from
the wall about y/I =~ 0.5 the period is around the period given by Jeffery, which
is reasonable. Closer to the wall the period increases to values large enough
so that a fiber could not possibly rotate with the Jeffery period even with
the relatively large error of T'/T; taken into account. An increased period of
rotation near the wall is also consistent with earlier studies, e.g. Dabros (1985);
Stover & Cohen (1990); Gavze & Shapiro (1997) and Pozrikidis (2005).

3.2. Concentration variations in the wall-normal direction

As mentioned previously the concentrations investigated were nl® ~ 0.01 and
0.25 for r, ~ 7 (cases A & B) and nl® ~ 0.25 and 2 for 7, ~ 30 (cases C
& D). These are the initial concentrations that one would expect to find if
the fibers were homogenously distributed across the shear layer. In figure 6
the concentration ¢(y), defined in equation (8), is shown. The concentrations
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FIGURE 6. Variations in concentration as a function of the
distance from the solid surface for fibers with r, ~ 7 in (a)
and 7, ~ 30 in (b).

have been normalized with their respective initial concentration, which is only
approximative. Also, the obtained concentration level is partly coupled to
threshold values set in the PTV-algorithm. Therefore the absolute values in
figure 6 should be interpreted with some care. Nevertheless, the distribution
of the fibers is similar for different threshold values. This is shown in figure 7
where the threshold values has been modified for cases B & C. The solid lines
correspond to the original threshold values in the PTV-algorithm, upon which
the results presented are based. The other two lines, the dot-dashed and the
dashed, correspond to lower and higher threshold values, respectively. The new
threshold values are set so that the areas, in which fibers are searched for in
the PTV-algorithm, is roughly half or twice the areas of the original threshold
values. The result is roughly 10-20% more or less detected fibers as compared
to the original threshold values. The relative distribution of fibers is not highly
dependent of the threshold values. Thus, conclusions can be drawn concerning
the different characteristics of the concentration profiles seen for r, ~ 7 and
rp ~ 30.

Returning to figure 6 it is seen that for all cases there is an increase in
concentration near y/l = 0.5. It is likely that fibers sufficiently close to the wall
will undergo a pole vaulting motion similar to the motion previously observed
by Stover & Cohen. This should result in an increased concentration at about
half a fiber length from the wall. From figure 6 it is clear that there is an
increase in concentration for all cases near v/l = 0.5.

The accuracy of the velocity measurements is based on measurements of
v, a and h. Taking this into account there could be a small offset, constant for
each respective case, in the determination of y. The distance from the peak of
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FIGURE 7. Variations in concentration as a function of y for
different threshold values set in the PTV; (a) case B and (b)
case C.

the increased concentration near half a fiber length from the wall to y/l = 0.5
is smaller than the estimated possible offset for all cases apart from case B.

For r, ~ 7 in figure 6 (a) there are also a large number of fibers accumulated
very close to the wall. The origin of this accumulation is clearly the density
difference between the fibers and fluid. Still, the accumulation at the wall is
only seen for the shorter fibers. There is a small trace of a local increase near
the wall also for the longer fibers in (b) at the wall, but this increase is very
small if compared with the peak for the shorter fibers.

3.3. Angular distribution in near wall region

The orientation distribution for all cases, at = 750 mm, is shown in figure 8 for
different distances from the wall, i.e. for different fiber velocities. The distance
from the wall has been scaled with the fiber length /. In order to compensate for
a varying wall normal concentration the orientation distribution is normalized
at each distance from the wall. The darker regions in the graphs indicate where
the fraction of fibers is large. Below the solid line it is not possible for a fiber
to complete any undisturbed Jeffery orbit without hitting the wall.

Due to the positive streamwise rate-of-strain in the upstream contraction,
between x = 0 and = 150 mm, the fibers will initially tend to align with the
flow direction (8 = 0). It is clear for all cases that for distances farther away
from the wall than half a fiber length most of the fibers have stayed close to the
flow direction. As the distance is decreased below y/l = 0.5 the shorter fibers
in (a) and (b) are detected above the solid line, where it is possible to rotate
in Jeffery orbits. In the very proximity of the wall the fibers are oriented close
to perpendicular to the flow direction. Also for the longer fibers a change in
orientation is observed near the wall. When interpreting (c) and (d) near the
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The distribution of fibers is normalized at each y-position.

wall it should be kept in mind that the statistics is weak here due to the low
concentration. Still, some of the longer fibers are detected in the region below
the solid line.

In order to investigate the significance of the fibers detected below the line
in figure 8 (c¢) and (d) a manual inspection was made of the images. Twenty
of the fibers located below the line in 8 (c) were investigated. Fifteen of these
fibers were found to have a curvature of the order 10 to 20 degrees. Two of
the fibers were mismatches in the PTV where the velocity is based on different
fibers in the set of three subsequent images. Two other fibers were located so
close to the line so that they might as well be interpreted to be on the line or
slightly above. The remaining fiber was a fiber with r, ~ 7 which had remained
in the system after the previous measurements. The curved fibers tended to be
detected in the region above y/l = 0.2 where the angular spacing to the solid
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FIGURE 9. Distribution function F'(|5]) at different distances
from the wall; (a) case A, (b) case B, (c) case C and (d) case

D.

line is relatively small. Concluding, no straight fiber was detected in an area
where it could not rotate in a Jeffery orbit without hitting the wall.
Detailed information on the orientation of the fibers is given by the distri-
bution function F(|3]) = P(B < |3]), defined as the probability that a fiber
will be oriented between the flow direction and a given angle |3|. The distri-
bution function is shown in figure 9 for all cases. The figures illustrate how
F(|4]) varies with the distance from the solid surface. In figure 9 (a) and (b),
rp & 7, it is seen that for distances farther away from the wall than half a fiber
length the majority of the fibers are still oriented close to the flow direction,
since F increases rapidly at |3| = 0. However, as soon as the fibers are located
closer to the wall than half a fiber length F(|3]) changes character. A gradual
change towards a more isotropic distribution occurs as the distance from the
wall is decreased to y/l =~ 0.25. When the distance is decreased even more the
fibers tend to orient themselves close to perpendicular to the flow direction in

the region 0 < y/l < 0.125.
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The angular distribution at different y-positions, for fibers with aspect ratio
rp ~ 30, are presented in figure 9 (c¢) and (d). Due to the limited statistics
near the wall the resolution is reduced as compared to the shorter fibers. The
distributions show that the fibers are fairly aligned with the flow direction for
all cases, although the fibers tend to be less aligned when the distance to the
wall is decreased.

The differences and similarities between the cases are highlighted in figure
10. F(|5]) is shown for all cases in two different regions; close to the wall,
0 < y/l < 0.5, in (a) and about one fiber length from the wall, 0.75 < y/l <
1.25, in (b). The longer fibers are clearly more aligned than the short fibers
in both regions. A small effect is also noted for a change in concentration;
for both aspect ratios the fibers tend to adopt slightly higher values of 3 for
an increasing concentration. This could perhaps be attributed to fiber-fiber
interactions.

3.4. Physical mechanisms for drift in fiber orientation

It is seen in figure 8 (a) and (b) that the shorter fibers tend to adopt an
orientation that makes it possible to rotate in Jeffery orbits also near the wall.
It is also clear from figure 6 that the shorter fibers tend to accumulate at the
wall. In order for a fiber, initially at some distance from the wall, to end up at
the wall there has to be a migration in orientation as the wall is approached.
In other words, there has to be a physical mechanism that affects the fiber
orientation so that a fiber, initially oriented close to the flow direction, can end
up oriented close to perpendicular to the flow when it reaches the wall.

In this section the order of magnitude of inertial and sedimentation effects
will be considered leading to the results in figure 12. The experimental results
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indicate that the fibers are rotating in a manner close to the solution of Jeffery
(1922). Tt is therefore assumed that this will be the base motion and that
inertia and sedimentation will only cause a small deviation from the solution.
The drift in orientation in the present experiments will be estimated based on
theoretical predictions on inertial and sedimentation effects by Subramanian &
Koch (2005) and Carlsson & Koch (2009).

3.4a. Drift due to sedimentation towards the wall. Due to the density differ-
ence between the fibers and the fluid, the fibers will sediment slowly. As a
sedimenting fiber approaches a wall the velocity disturbance of the fluid, due
to the presence of the fiber, will be reflected by the wall. This causes the fiber
to rotate towards the xz-plane, i.e. towards an orientation parallel to the wall.
Carlsson & Koch (2009) estimated this rotation for a large aspect ratio fiber
in a wall-bounded shear flow. This was done by introducing a mirrored im-
age fiber in order to ensure that the vertical velocity component at the wall is
equal to zero. The rotation of a fiber nearly aligned with a wall as it sediments
towards the wall in an otherwise quiescent fluid was found to be

: 3pApgV [16y2 o 1/2 [ 8y 1 (1+4y2)' 2 +1
wr = x - 1 4 * *1 *— )

¢ 27T/1,l2 3 ( +4y ) + + ¥« In (1 i 4y£)1/2 -1
9

3 6.

where v, is the distance from the wall of the fiber center normalized with [.
Furthermore, pu, V and Ap is the dynamic viscosity of the fluid, the volume of
the fiber and the density difference between the fiber and fluid, respectively.
The angles ¢ and 6 are defined in figure 1.

Due to the linearity of the problem the principle of superposition applies to
the rotation of the fiber. Therefore, as long as there is no wall contact, equation
(9) estimates the additional rotation rate of a fiber in a shear flow, when it is
oriented close to the zz-plane. A fiber rotating in a Jeffery orbit spends most of
its time nearly aligned with the xz-plane. Therefore it is reasonable to expect
that most of the orbit drift takes place when the fiber is oriented close to this
plane. A more detailed justification of this assumption is given by Carlsson &
Koch. A consequence of the fiber being nearly parallel to the wall is also that
the rate of change of # due to the wall reflection O << (;.SW and it is therefore
not considered.

Carlsson & Koch also introduced a local contact force at one of the fiber
end points to model the situation when contact occurs between the wall and
the fiber. Both a no slip and a free slip condition for the wall contact were
considered. The additional rotation rate from the model was found to be

: 31n(2ry) cos ¢
ns _ ns P A 1
o [ 8mul? sin 0 v (10)
: 31n(2r,) cos O sin ¢
fns = K P A 11
. [ F— pgV |, (11)
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FiGUrg 11. Computational concentration profiles with no slip
and free slip wall contact condition for (a) r, ~ 7 and (b)
rp = 30.

for a no slip condition applied for the fiber end point in contact with the wall
and

b5 — K 34 sin? @ sin? ¢(sin® ¢ — 1)
¢ 2(sin? fsin’ ¢ — 2)

(12)
31n(2r,) v (1 +sin? fsin? ¢)(1 — sin? ¢)
arpl2 =" 06 cos #(2 — sin? fsin? ¢)
Gfs _ s 34 sin® 0 cos fsin® ¢ cos ¢
o 2(2 — sin? fsin? ¢) (13)
13
31n(2ry) cos fsin ¢(1 4 sin? #sin” ¢)
dmpl? P (2 — sin? #sin® ¢)

for a free slip condition. The parameters K™ and K7* are non-zero and equal
to one only when the fiber end point is in contact to the wall.

It was shown that both the rotation due to the wall reflection and due to
the wall contact causes a migration towards lower values of the Jeffery orbit
constant C', i.e. towards higher values of 3. In a comparison of the model with
the present experimental data, for fibers with r, ~ 7, a qualitative agreement
was found in that there was an accumulation of fibers oriented perpendicular
to the flow direction at the wall.

In order to estimate the concentration profile a large number of fibers is
chosen at the inlet of the channel. The concentration is initially assumed to be
¢/nl® = 1 for all y-positions. The initial orientation distribution is found by
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using the relation

©)=—2C (14)

7w (4RC? + 1)

derived by Rahnama, Koch & Shaqfeh (1995) to be a steady state orientation
distribution for dilute and semi-dilute aspect ratios in the limit of large aspect
ratio. In equation (14) R is a fitting parameter. Here R is chosen so that the
single moment (cos? 3) of the S-distribution is the same as for the experiments.
Only fibers detected at y/l > 1 and y/l > 0.5 for r, ~ 7 and 30, respectively,
is used to find R. This results in R ~ 0.57 and 0.97 for the fibers with r, ~ 7
and 30, respectively.

In figure 11 the computational concentration profiles are shown. For the
shorter fibers in (a) the profiles for the no slip and free slip condition are
qualitatively similar to the experimental profiles for cases A and B shown in
figure 6 (a). There is an increased concentration at the wall and also at y/l ~
0.5 due to a pole-vaulting-like motion occurring as a result of the wall contact
conditions. For the longer fibers in 11 (b) there is a peak at y/l ~ 0.5 and
there is also an increase in concentration near the wall. The local increase in
concentration near the wall for case C and D in figure 6 (b) seems a bit small
to be explained when only taking into account the sedimentation according to
Carlsson & Koch.

3.4b. Drift due to fluid inertia. Since fewer fibers are detected at the wall than
expected for fibers with r, ~ 30, when taking sediment effects into account,
this suggests that there may be at least one additional physical mechanism
acting in the experiments. It has been shown in earlier studies (Qi & Luo
2003; Subramanian & Koch 2005, 2006; Altenbach et al. 2007) that both fluid
and particle inertia are expected to drift a fiber, suspended in a simple shear
flow, towards a final orientation in the zy-plane, i.e. towards 8 = 0. In this
plane the fiber will spend most of its time close to the flow direction. Since
inertia will tend to rotate the fibers towards the zy-plane this could potentially
prevent the drift in orientation towards the vorticity axis, due to sedimentation
towards the wall. Near the wall in the experiments, a particle Reynolds number
Reg = #41?/v based on the full length [ of the fiber, is about 0.01 and 0.2 for
fibers with r, ~ 7 and 30, respectively. Although Re; appear small also for
rp ~ 30 it could be large enough to slow down or possibly even prevent a weak
drift towards the vorticity axis.

The magnitude of inertial effects can be estimated based on the work of
Subramanian & Koch (2005). They examined the motion of a fiber suspended
in a simple shear flow, for a small but finite Re;. The fiber is assumed to be
slender and the particle Reynolds number based on the diameter of the fiber
Rey = 4ld/v is considered negligible. As mentioned one result of their study is
that a small Re; will tend to drift the rotating fiber towards the xy-plane and
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0 = 0. From Subramanian & Koch the additional rotation rate of a fiber due
to fluid inertia in a simple shear flow is given by

. YRer . o, . 1 7 9

in=——— fsin2¢| - — — 1

10) 16 m(ry) sin“ 0 sin ¢(3 5 cos” ¢ (15)
. T¥Re; . 4 . 9 9
R S . 1
Oin 120 In(r,) sin” 0 cos 6 sin“ ¢ cos” ¢ (16)

3.4c. FEstimation of drift in orientation. Equations (9-15) estimates the drift
in orientation due to sedimentation towards the wall and fluid inertia. An
approximation of the total rate of rotation is now:

Q.S = Q.Sjef + éwr + Q.Sc + ¢m (17)
9 = éjef + éc + 9in7 (18)

where ¢jeor and 65 is Jeffery’s equations defined in equations (1) and (2). Since
the terms from sedimentation and inertia are small, a fiber is not expected to
deviate far from a Jeffery orbit in one period. Therefore it is convenient to
study how the orbit constant C', introduced in equation (5), changes with time.
This is shown in figure 12 for different initial orbit constants Cy and initial
distances yo from the wall. The results for fibers with r, ~ 7 is shown in (a)
and (b) for the no slip and free slip wall contact condition, respectively. In (c)
and (d) the results for r, ~ 30 is shown for both wall contact conditions. On
the horizontal axis Bpmin is the minimum absolute value of § over a complete
period that a fiber with the initial orbit constant Cy obtains.

The solid lines in the figure show where dC/dt = 0, or more accurately
where the change of C' over half a period of rotation is zero. Below the solid
line dC'/dt < 0, since the estimated effect due to wall reflection and wall contact
is larger than the effect of fluid inertia, resulting in a total drift towards larger
values of 3. Above the solid line dC/dt > 0 resulting in gradually smaller values
of 3. The dashed lines shows the minimum value of 3 for a fiber rotating in
Jeffery orbits without hitting the wall. If a fiber is located below the dashed line
the fiber will make contact with the wall during the flip and the wall contact
is included in the computations. It is emphasized that the figure indicates the
sign of dC/dt over half a period of rotation at various initial conditions. As
time evolves a fiber will change both its orientation and wall normal position.
Above the dashed line a fiber will always sediment towards lower values of .
However, it will never be allowed to sediment far below the dashed line since
it will continuously be pushed up to the dashed line in each flip around the
vorticity axis due to the wall contact.

It is seen in figure 12 (a) and (b) that the results with no slip and free slip
are identical for the short fibers. Recall that only the sign of dC/dt is shown
in the figure. The values of dC/dt will differ in the region on and below the
dashed line where the wall contact is included in the computations. The fact
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FIGURE 12. The sign of the orbit drift for different inital ori-
entations and distances from the wall. The solid line indicates
where dC'/dt = 0 and below the dashed line a fiber will make
wall contact during its flip around the vorticity axis. Fibers
with r, ~ 7 with (a) no slip condition and (b) free slip condi-
tion during wall contact. Fibers with r, ~ 30 with (c) no slip
condition and (d) free slip condition.

that (a) and (b) are the same just shows that the wall contact, for both the
no slip and free slip condition, causes an orbit drift strong enough to make the
total change of C' over half a period of rotation to be negative. This is the case
for all orientations of a fiber, i.e. as soon as a fiber has sedimented down to a
distance from the wall where wall contact occurs the fiber will take on lower
values of C'. After a sufficient amount of time the fiber will be located at the
wall oriented along the direction of vorticity. This could explain the increased
number of fibers at the wall oriented close to perpendicular to the flow direction
for case A and B in the experiments.

Looking at figure 12 (c) for r, ~ 30, with the no slip condition implemented
in the contact, the results are quite different as compared to (a) and (b). For
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a longer fiber Re; is larger and the inertial term is larger in the computations.
Therefore dC'/dt is positive in a larger fraction of the space shown in the figure.
A feature worth noticing is that the thick line crosses the dashed line in 12 (c).
This indicates that even after a fiber with small values of (3,,,;, has sedimented
down to a y-position where wall contact occurs it will not tend to adopt lower
values of C'. Consequently, the fiber would not be expected to settle all the
way down to the wall since it will stay close to the dashed line and 3 will not
tend to increase but rather decrease.

Possibly this could explain the absence of fibers with r, ~ 30 near the wall
in figure 6. However, when implementing the free slip condition, which causes
a stronger drift towards lower C than the no slip condition, the situation is
changed. This is shown in figure 12 (d) where it is seen that for this case a
fiber takes on lower values of C' as soon as the wall contact is included in the
computations, similar to the situation in (a) and (b).

The nature of the fiber-wall contact and how well the two implemented
models capture the fiber dynamics is presently not clear. A slender body ap-
proach was used by Carlsson & Koch to estimate the rotation and translation
of the fiber near the wall. In order to obtain a more accurate description, it
may be necessary to take into consideration that the fiber has a finite thickness
when one of the fiber end points is positioned very close to the wall.

4. Conclusions

In a slowly sedimenting fiber suspension flowing down an inclined wall, the
fiber orientation has been analyzed in planes parallel to the wall. Due to an
upstream contraction of the flow the fibers were initially oriented close to the
flow direction. Farther downstream this orientation was still found to be the
most probable for distances larger than half a fiber length from the wall. For
fibers with r, ~ 7 a clear change in the orientation distribution is found closer
to the wall. At distances farther from the wall than y/l ~ 0.5 most of the fibers
are close to aligned with the flow and at distances closer to the wall than about
an eighth of a fiber length most of the fibers are oriented perpendicular to the
flow direction.

An increased concentration of fibers was also found near the wall due to
the sedimentation. A large fraction of the shorter fibers with r, ~ 7 were
found at the wall. This was not the case for fibers with r, ~ 30 where most
of the fibers were detected at distances farther from the wall than about half a
fiber length. The fiber orientation results are in qualitative agreement with the
studies by Holm & Séderberg (2007) and Carlsson et al. (2007). Also in these
studies fibers were detected at orientations close to perpendicular to the flow
direction in the near wall region. Carlsson et al. only performed measurements
on one fiber suspension with r, ~ 7 and nl? ~ 0.25 and in comparison to Holm
& Soéderberg more statistics have been added and a more accurate method to
determine the fiber distance from the wall has been used.
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Sedimentation towards the wall and fluid inertia have been presented as
two physical mechanisms that could influence the orientation of fibers in the
presence of a wall. An estimation of the drift in orientation of a fiber was
performed based on theoretical predictions by Subramanian & Koch (2005)
and Carlsson & Koch (2009). A likely reason for the accumulation of fibers
oriented perpendicular to the flow direction for r, =~ 7 is the density difference
between the fibers and the fluid. When a fiber sediments towards the wall
the reflection of the fluid velocity disturbance and the wall contact during the
flip causes the fiber to migrate towards lower values of C (larger values of 3).
On the other hand fluid inertia will tend to drift the orientation so that C'
increases with time. This is presented as a possible reason to why few fibers in
the experiments with 7, ~ 30 are found at the wall.

It should also be recalled that the wall normal distance of the fibers have
been normalized with the fiber length. Therefore, the residence time of a fiber
at y/l, will be about four times longer for fibers with r, ~ 7 as compared to
fibers with r, ~ 30. Another difference is that the number of completed periods
of rotation will be about 16 times as many for a fiber with r, ~ 7 at y/I than
for a fiber with r, ~ 30, since Ty is almost linearly proportional to r, from
equation (3). Since the residence time is shorter and the number of rotation
periods is less, for fibers with r, ~ 30, it is also reasonable to expect that less
fibers have time to settle to the wall.

Still, the difference in the amount of detected fibers at the wall appears
surprisingly large. An experiment where the longer fibers have time to complete
more periods of rotation is needed in order to verify the presented hypothesis
of competition between (i) sedimentation towards the wall, wall contact and
(4i) fluid inertia. The results suggest that the combined effect of sedimentation
towards the wall and fluid inertia could be a focus area of future studies.
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Orbit drift of a slowly settling fibre in a
wall-bounded shear flow

By Allan Carlsson’ & Donald. L. Koch?

tLinné Flow Centre, KTH Mechanics, SE - 100 44 Stockholm, Sweden
School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA

The orbit drift of a slowly settling fibre in a wall-bounded shear flow is estimated
using a slender body approach. A local contact force is also introduced at
the fibre end point to prevent the fibre end from penetrating the wall during
rotation. It is shown that this will tend to make a fibre drift across orbits and
finally end up close to the wall aligned with the vorticity axis. The results are in
qualitative agreement with previously reported experimental results by Holm
& Soderberg 2007 Rheol. Acta 46, 721-729 and Carlsson, Lundell & Séderberg
2007 J. Fluids Eng. 129 (4), 457-465.

1. Introduction

This work is a first attempt of understanding the underlying physical mecha-
nisms for the near wall dynamics of slowly settling fibres in shear flows. Con-
siderable attention has been given to understand the dynamics of elongated
particles suspended in flowing suspensions. A study which is frequently used
as a starting point is the article by Jeffery (1922). Jeffery derived governing
equations of motion for an isolated ellipsoid suspended in an unbounded simple
shear flow. The particle was assumed to be neutrally bouyant in a Newtonian
fluid and all inertial effects were assumed negligible. The equations, frequently
referred to as Jeffery’s equations, have later been extended by Bretherton (1962)
to be valid for almost any axi-symmetric particle with a for-aft symmetry if
an effective aspect ratio is introduced. This includes fibres with a cylindri-
cal shape. The equations have been validated in several experimental studies,
e.g. Trevelyan & Mason (1951), Goldsmith & Mason (1962) and Anczurowski
& Mason (1968).

Some attention has also been given to wall-bounded shear flows. An inter-
esting experimental observation is that slowly sedimenting fibres will tend to
orient themselves aligned with the vorticity axis close to the wall, e.g. Holm &
Soderberg (2007) and Carlsson, Lundell & Soderberg (2007, 2009). Carlsson et
al. studied fibre orientation in planes parallel to the wall and showed that the
fibres kept an orientation close to the flow direction down to distances of half a
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fibre length from the wall. Closer to the wall the set of possible Jeffery orbits
without hitting the wall is reduced. It was shown that the fibres adopted possi-
ble orientations within this reduced set of Jeffery orbits. In the very proximity
of the wall the fibres were nearly parallel to the vorticity axis. An increased
fibre concentration was also found at the wall. In order for fibres to be able
to settle at the wall there has to be a physical mechanism that makes a fibre,
initially close to the flow direction, migrate across orbits and end up close to
the wall aligned with the vorticity axis.

Yang & Leal (1984) studied the motion of a slender body near a fluid-fluid
interface. By letting the viscosity of one of the fluids tend to infinity the motion
of a fibre in a wall-bounded shear flow could be computed. It was found that the
shear induced wall reflection leads to a small perturbation to the orbit found by
Jeffery and also gives periodic translational motions. However, these effects are
small and do not lead to a cumulative drift in orientation over successive orbits
and can therefore not explain the observation by Carlsson et al. (2007). This
can also be inferred from the study by Pozrikidis (2005) who studied the motion
of a neutrally buoyant prolate spheroid near a plane wall. A result from this
study was that the period of rotation was also slightly longer as compared to
the period in an unbounded shear flow. Additional numerical studies have also
been performed on prolate spheroids where the major axis has been restricted
to be oriented in the flow-gradient plane, e.g. Dabros (1985), Hsu & Ganatos
(1994) and Gavze & Shapiro (1997, 1998).

There are also some additional experimental studies on fibre dynamics near
solid walls. Stover & Cohen (1990) and Moses, Advani & Reinhardt (2001) both
verified that the analysis of Jeffery is a good approximation for distances from
the wall greater than one fibre length. Closer to the wall Stover & Cohen
noted that Jeffery’s equations still formed a good base although the period
of rotation was found to be longer. Fibres closer to the wall than half a fibre
length and oriented in the flow direction were found to interact with the wall in
what was referred to as a “pole vaulting” motion, where the fibre moves away
from the wall to a point where the fibre centre is located at half a fibre length
from the wall. This motion is irreversible and cannot be explained only taking
into account a Stokes flow interaction with the wall. This imply that the fibre
interacts with the wall by direct mechanical contact. That lubrication forces
are not expected to prevent the fibre from making contact with the wall can
also be deduced from Harlen, Sundararajakumar & Koch (1999). A discussion
on short-range interactions between fibres is provided and it is concluded that
lubrication forces become significant only when fibres are nearly aligned.

Slender body theory is a useful tool to model the motion of fibres and has
been applied near solid walls. Blake (1974) derived the image system for a
slender body near a wall by introducing a mirrored image fibre to cancel the
flow disturbance generated by the fibre at the wall and thereby satisfy the no-
slip condition at the wall. The image system by Blake has been used by for



Orbit drift of a slowly settling fibre in a wall-bounded shear flow 111

instance Russel et al. (1977) to predict the translation and rotation of fibres
sedimenting near a vertical wall, .e. with the gravity vector parallel to the
wall. Two types of motions were found. A fibre approaching the wall at small
angles turned to a vertical orientation and moved away from the wall as the
fibre continued to turn. This was referred to as a “glancing” turn. For larger
approaching angles there was a close interaction of the leading fibre end with
the wall, causing the fibre to pivot and later move away from the wall with
the opposite fibre end leading. The two types of motions were also observed
experimentally in a qualitative agreement with the theory.

However, no non-hydrodynamic interaction with the wall is considered in
these studies. Since the fibres under study by Carlsson et al. (2007, 2009) did
not appear to alter their orientation until they were at a distance from the wall
where solid body contact is possible during rotation it is motivated to study
this further. Here a slender body analysis is presented that estimates the orbit
drift of a slowly sedimenting fibre in a shear flow near a solid boundary. A
mirrored image fibre is introduced that cancels the vertical velocity component
at the wall.

Furthermore, the fibre motion due to wall contact is estimated by adding
a local contact force at the instant in time when a fibre end hits the wall. No
near range hydrodynamic effects will be considered before the contact occurs.
This is motivated by assuming that the fibre rotation due to the wall reflection
is weak in comparison to the shear induced rotation. The effect of gravity to
shear on the fibre rotation can be estimated by I' = Apgd/p¥, where Ap is the
density difference between the fibre and the fluid, g is the constant acceleration
of gravity and d is the fibre diameter. Furthermore, p is the dynamic viscosity
of the fluid and 4 is the shear rate of the fluid.

2. Fibre rotation and translation

The present situation is illustrated in figure 1. A straight rigid fibre of length 21,
with its centre located at @, is suspended in a shear flow U® = 4ye,., where 7 is
the shear rate of the fluid and y is the normal distance from the wall located at
y = 0. The density difference Ap between the fibre and the surrounding fluid,
in combination with the constant acceleration of gravity g = —ge,, will make
the fibre settle toward the wall. There will also be a velocity disturbance of
the fluid reflected at the wall as the fibre moves in the fluid. This disturbance
is denoted by U™.

When a fibre is suspended in a viscous flow, the motion of the fluid will be
disturbed by the presence of the fibre. The forces exerted on a fibre in a flow
where fluid inertia can be neglected have been derived by for instance Batchelor
(1970) and Cox (1970). We consider fibres whose length 21 is large compared
to the fibre diameter d. The force per unit length of the fibre on the fluid can
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FIGURE 1. Schematic of sedimenting fibre in a shear flow near
a wall.

be expressed as

4 1
len(zfp) (I2pp>'(u+pr8Uoo)’ o

where g is the dynamic viscosity of the fluid, r, = 2l/d is the aspect ratio
of the fibre, I is the unit matrix, p is a unit vector in the direction of the
fibre and s is the position along the fibre, taking on values between —[ and
[. Furthermore, u and w is the translational velocity of and the fibre rotation
rate around the fibre centre, respectively, and U° is the undisturbed velocity
field, i.e. the velocity of the fluid with the velocity disturbance due to the fibre
itself excluded. Equation (1) is the leading order term in an expansion in terms
of 1/1n(2r,). Hence, it is assumed that In(2r,) >> 1.

Due to the linearity of Stokes equations the principle of linear superposition
applies. As long as there is no contact between the fibre and the wall, linear
superposition also applies to the motion of the fibre. This is based on that
the rotation rate of the fibre is linear with respect to the fluid velocity. The
superposition principle makes it possible to separate the problem into different
parts. The shear induced rotation is given by Jeffery (1922) and will be repeated
briefly below. The wall reflected velocity disturbance will also cause the fibre to
rotate. There will be a velocity disturbance of the fluid introduced by the shear
flow and also a disturbance because the fibre simultaneously settles toward the
wall. Recall, that the wall reflection due to the shear flow will not cause a fibre
to leave its orbit, i.e. the fibre end points will still form closed orbits, e.g. Yang
& Leal (1984) and Pozrikidis (2005). Since, the shear induced reflection only
leads to a small disturbance of the rotation rate given by Jeffery and does not
lead to any orientation drift over successive orbits it is neglected in this study.
Therefore, only the wall reflection due to the fibre settling is considered below.

2.1. Rotation and translation of fibre in shear flow

We begin by discussing the motion of a fibre in an unbounded simple shear flow
given by U?®, i.e. there is no settling and no wall effects taken into account.
Setting the net force and torque on the fibre to be zero equation (1) can be
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used to derive solutions for the translation and rotation rate of the fibre

;= (E+Q) -z (2)
p,=Q-p+r(l-pp) (E-p). (3)
Q2 and E are the vorticity and rate-of-strain tensors given by
_ 1 s\T'" s
9—5((VU) VU) (4)
_ 1 s\T' s
E_§((VU) +VU), (5)

where VU? is the velocity gradient tensor. Index s is here used to denote that
equations (2) and (3) is the translation and rotation of the fibre due to the
shear flow. The parameter xk = (rg - 1) / (rg + 1) makes the equations valid
also for small aspect ratios. With the assumptions we have already restricted
ourselves to k would naturally be equal to 1, but in order for the fibre to rotate
through the zz-plane the correction term, which comes from Jeffery’s analysis,
is required and will therefore be used.

Equation (3) is the solution of Jeffery (1922) for the motion of a spheroidal
particle with aspect ratio r.. Bretherton (1962) showed that Jeffery’s equations
are valid for a large set of axisymmetric particles with a for-aft symmetry
provided that an effective ellipsoidal aspect ratio that gives a relation between
rp and r. is found. Some attention has been given in order to determine this
relation for cylindrical particles, e.g. Trevelyan & Mason (1951), Anczurowski
& Mason (1968), Cox (1971) and Harris & Pittman (1975). In this study the
empirical relation of Harris & Pittman is used

Te = 1.147‘2'844. (6)

Equation (6) was found to agree, by Harris & Pittman, with experimental data
for 7, in the range between 1 and 120.

It is customary to introduce the polar angle 6 between the fibre axis p and
the vorticity direction e, and the dihedral angle ¢ between the flow-vorticity
and fibre-vorticity planes. With these angles p = (sin € cos ¢, sin 6 sin ¢, cos )
and equation (3) becomes

by = Ty (rZsin® ¢ + cos® ¢) (7)
b, = ’zl sin 26 sin 2. (8)

When a fibre rotates according to equations (7) and (8) the fibre end points
will form closed orbits in space. The orbits are often quantified by the Jeffery
orbit constant

o tan 0 (r2 sin® ¢ + cos? ¢)1/2

Te

(9)
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Test fibre

Image fibre

FIGURE 2. Hydrodynamic image of a fibre sedimenting toward wall.

A value of C' = 0 indicates that the fibre will spin around its own major axis
aligned with the vorticity axis. As C' — oo the fibre will undergo a tumbling
motion in the flow-gradient plane and form a circular orbit i this plane. The
period of rotation for a fibre rotating in Jeffery orbits is not dependent on C'

and is given by
2 241
T:T(Tﬁ ) (10)

Y Te

2.2. Rotation and translation of sedimenting fibre due to wall reflection

In this section it is taken into account that there is a density difference Ap
between the fibre and fluid. As the fibre settles toward the wall the velocity
disturbance of the fluid will be reflected by the wall. The reflected velocity
disturbance will affect the rotation and translation of the fibre. As mentioned
previously the effect of settling will be considered to be weak in comparison to
the effect of shear, i.e. I' << 1. From equations (7) and (8) we know that a
fibre will spend most of its time nearly aligned with the flow-vorticity plane.
It is therefore reasonable to assume that most of the orbit drift, i.e. change of
C, will take place when the fibre is oriented close to the flow-vorticity plane.
Therefore p, << 1 in the following analysis, where p, = sinfsin¢ is the y-
component of the unit vector p along the fibre defined above. This assumption
will be returned to.

Since the fibre is nearly aligned with the zz-plane v ~ uye, and p =~
pyey. Therefore only the y-components will be considered in the analysis.
With the last assumption it is also convenient to introduce a coordinate system
(s,y,t), where s is parallel to the projection of the fibre in the xz-plane and ¢
is orthogonal to both s and y.

Blake & Chwang (1974) studied the image system of flow singularities in
the presence of a no slip wall. It was shown by Blake (1974) that the essential
features for a slender body in a Stokes flow near a wall can be obtained by
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a point force distribution along the centreline of the fibre combined with a
distribution of flow singularities along a mirrored image fibre in order to satisfy
the no slip at the wall.

The physical fibre will be referred to as the test fibre and the hydrodynamic
image will be referred to as the image fibre. The vertical velocity component
at the wall will be zero by introducing a line distribution of point forces along
the image fibre. The point forces on the image fibre must then be of equal
magnitude but with opposite sign as compared to the point forces along the
test fibre.

In order to satisfy the no-slip at the wall a line distribution of force dipoles
also have to be included on the image fibre. However, at this initial stage we
only include a point force distribution to cancel the normal velocity component
at the wall to see if a qualitative agreement with experiments can be obtained.
The velocity field due to the force dipoles is of the same order of magnitude as
the velocity field due to the point forces in the region of interest. Therefore,
including force dipoles may also have an impact on the fibre motion. The effect
of adding force dipoles will be addressed in a future study.

A line distribution of point forces is implemented on a mirrored image fibre
in order to cancel the normal velocity component at the wall. The fluid velocity
at a point in space r due to the image fibre can then be expressed as

l
U (r) = / P (e g+ o'p,) — o) ds' (11)

where s’ denotes the position along the image fibre and J is the Oseen tensor

defined by
1 rT
) =g (1+55). (12)

The force on the fluid per unit length by the image fibre ™ is equal to f, only
differing by an opposite sign of the y-component. Assuming that the density of
the fibre is uniform the net force and torque on the test fibre can be expressed

1
/ fds = ApgV (13)
-1

l
/ sp x fds =0. (14)
]

where V' = md?1/2 is the volume of the fibre. With f from equation (1) it is
possible to compute the motion of a fibre, nearly aligned with the wall, as it
settles toward the wall. It should be mentioned that the velocity disturbance,
due to the wall reflection, is considered to be a far-field hydrodynamic effect.
Consequently the analysis is only valid when the distance of the fibre centre to
the wall y; >> d. The effect of a finite thickness of the fibre could possibly
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be of significance when the fibre rotates and one end nearly touches the wall.
However, this effect will not be captured in the following analysis.

2.2a. Effect on fibre translation due to wall reflection. Equation (1) and (13)
with p, = 0 gives the translational velocity of the test fibre

w ~In (2rp)
Yo 8l

ApgV + T2, (15)

where (_];” is the average velocity disturbance, along the test fibre, due to the
wall reflection given by

_ 1 [
Uy (o) = 37 [ U ). (16)

The wall reflection velocity U, is given by equation (11). At this point yy, s
and s’ are non- dlmensmnahzed with [, which gives

ApgV [17° 1 4y?
Uy (s.up) = =22 + ;i ds”, (17)
Y 16mul J_ 1/2 3/2
(14s) (5112 + 4yj2c> (51/2 + 4?]?)
where s” = s’ —s. Note that ys, s and s’ are the only non-dimensional

quantities in equation (17). Solving the integrals in equations (16) and (17)
finally yields the translational velocity of the test fibre

Uy = ApgV 1ln
Y 8mul \ 2

(L+y7)' 2 +1
L+y)7 -1

— ln(2rp)> . (18)

2.2b. Fibre rotation due to wall reflection. The fibre will not rotate if p, = 0.
Therefore a fibre that is close to aligned with the xz-plane, but not perfectly
aligned will be considered in this section. Setting the net torque to be zero, see
equation (14), with p, << 1 the rotation of the test fibre is found to be

b _ 3ApgV
Py = / /<1+s> 20 Py 0) 57, ()

where s = s’ — s and s = s+ s'. J,, is expanded in a Taylor series around
y = 2y which results in

1 8Jyy (3//7 2yy, 0)

Jyy ( ny + S///py, ) ~ Jyy (S//, nya O) +s Py ay + O(p2)7

(20)

where only the second term on the right-hand side will contribute to the ro-
tation. Using equation (12) 0J,,/0y is solved and the solution is put into
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equation (19) which gives

2 2
3p, ApgV yf(S”—Sy)
Py = gé ,5192 / / (s" +2s) —5f/2 dsds”.  (21)
0 (1+e 2
(51/2 +4yf)

Solving the integrals gives a final expression
. p, LG
Py = —~"—, (22)

Tp

where once again I' = Apgd/p”y and

3 [16y2 2 (16y; 4 (1+yH2+1
Glyr) = —o [f - (1+y7) / (f +> 2 |

32| 3 3 3y (1+y]2c)1/271
(23)
Since ¢ is small p, ~ ¢sinf and p, ~ (bsin 0. Consequently
; PG
O~ — . (24)
Tp

There will also be a change in 0 from equation (22). Since the fibre is oriented
close to the flow-vorticity plane and @ is the polar angle from the fibre axis to
vorticity, 6 will be comparable to qS only when the fibre is close to the vorticity
axis. It will be shown below that the fibre will tend to migrate toward a final
orientation aligned with the vorticity axis. Therefore, the inclusion of 6 should
not have a significant contribution to the solution until the fibre is already close
to its final destination.

The function G will always have a positive sign implicating that the wall
reflection will always tend to rotate the fibre toward ¢ = 0. Since gb is propor-
tional to ¢ it can be worthwhile to return to the assumption of only computing
the drift for ¢ << 1.

A fibre rotating in a Jeffery orbit is characterized by the orbit constant
C' defined in equation (9). The angular variation required to cross a given
amount of C-space is smaller when the fibre is nearly aligned with the zz-
plane. Consider a fibre rotating with C' = O (1). To change C' by an O (1)
amount, when ¢ = O(1/r,) and near the xz-plane, ¢ has to change by an order
of 1/r,. During the flip, when ¢ = O(1), ¢ has to change by an order of 1 to
change C by the same amount. This implies that the orbit drift dC'/dt due to
the wall reflection will be of the same order both when the fibre is nearly aligned
with the zz-plane and during the flip. In a Jeffery orbit a fibre spends a time of
order 1/% rotating with ¢ = O(1) and a time of order r,/¥ with ¢ = O(1/rp).
Since the flip only occurs for a small fraction of the overall period and dC'/dt
is of the same order throughout the whole period most of the orbit drift will
take place when the fibre is nearly aligned with the xz-plane.
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FIGURE 3. Schematic of wall contact due to rotation of fibre.

Now again consider that the fibre is also suspended in a shear flow. Super-
imposing ¢ from equation (22) to Jeffery’s equations results in the total rate
of rotation

b=— il 7 (rZsin® ¢ + cos® ¢) — alis) (25)

r2 4 T
6 = " sin 2¢ sin 26. 26
4

This solution will be used to compute the orbit drift of the fibre when there
is no contact with the wall. An order of magnitude analysis of equation (25),
when ¢ = O(1/rp), yields that the first term is O(¥/rp,) and the second term
is O(4T'G/rp). The value of G ranges from about 0.1 to 1 for distances from
the wall yy ~ 1 and 0.1, respectively. Thus, I' estimates the significance of the
wall reflection in relation to the shear flow on the rotation of the fibre.

2.3. Rotation and translation of fibre due to wall contact

We will now address the situation when the fibre interacts with the wall by
direct contact. The situation is illustrated schematically in figure 3. The wall
contact is modeled by a local contact force F'.. The net force and torque on
the fibre is now given by

!
/ fds = ApgV + F, (27)
-1

1
/ sp X fds=Ip x F, (28)
—1

Again using equation (1) the fibre translation and rotation when the fibre end
is in contact with the wall and x =1 is

. In(2r,)

T =5+ Sl (I+pp) - (ApgV + F.) (29)
. . 31In(2r
p:szrM(I*pp%Fc. (30)

8mul?
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A boundary condition is required in order to compute F'.. The exact
nature of the fibre-wall contact is not clear. Petrich & Koch (1998) used a
Coulombic friction model to compute the interaction of contacting fibres and
managed to get a good agreement with experimental data for the contact of
a sedimenting synthetic fibre on a fixed strand of the same material. With
Coulombic friction the contact will slip in the tangent direction if the tangent
force exceeds a friction coefficient times the normal force. Below two cases will
be studied corresponding to the limits of zero and infinite friction coefficient. It
will thereby bracket the behaviour one might expect with Coulombic friction.
These two cases will be referred to as a free slip and a no slip contact with the
wall, respectively.

2.3a. No slip condition between wall and fibre end. It is here assumed that the
fibre end will stick to the wall when there is contact, i.e. the velocity of the
fibre end in contact with the wall & 4+ [p = 0. Implementing this condition
gives

3In(2ry)

P =4 E- I— A 1
@ =, tipp-B-pt =y (I—pp) ApgV (31)
. 31n(2ry)
=p,———— (I- - ApgV. 32
P=P= 5o (I-pp)-Apg (32)
In terms of ¢ and 0 equations (31) and (32) are
1 sin® 0 cos? ¢ sin ¢
=9y | 0 | +4 sin® 0 sin? ¢ cos ¢
0 sin? 0 cos 0 sin ¢ cos ¢
204 (33)
31n(2r,) 81-112 51-112(;5005@5
+ ﬁAng sin” fsin” ¢ — 1
™ sin @ cos 6 sin ¢
. . 31n(2r,) cos ¢
— 2 p A 4
¢ ysin® g+ 32 pul? sin O Pgv (34)
g . 31In(2r,) cos O sin ¢
0= 5o 20sin2¢ + 32l ApgV. (35)

It is once again emphasized that equations (33-35) is an estimation of the
fibre translation and rotation when one of the fibre ends is in contact with the
wall. This solution is applied at the moment in time when the y-position of
the fibre end is first equal to zero, i.e. when e, - (x + Ip) = 0 or alternatively
y¢+Isinfsin¢ = 0. At the moment when the y-component of the wall contact
force is zero, i.e. when e, - F'. = 0, the contact is released. This condition can
also be expressed F'. # 0 as long as

ApgV
4

po _ Amyul?
Y In(2r,)

(sin® Osin® ¢ cos @) +

(1+3sin®#sin®¢) >0.  (36)
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It is noted, looking at equations (34) and (35) that if Ap = 0 the equations
reduces to Jeffery’s solution for r, >> 1. That is without the settling toward
the wall the fibre rotation would be given by Jeffery also during the wall contact.
Although the net force on a fibre in an unbounded shear flow without gravity
is zero, there is a tension inside the fibre preventing it from compressing and
extending during rotation. The force per unit area on the fibre is parallel to
the fibre orientation p. Thus, when there is no slip in the wall contact the
contact force on the fibre will also be parallel to p. Therefore the contact force
does not cause a torque and consequently it causes no rotation. When gravity
is included in the force balance the contact force will not be parallel to p.

For the translation of the fibre given by equation (34) an additional term
proportional to 4l appears. This term will translate the fibre to a distance from
the wall where it is just possible for the fibre to move in Jeffery orbits without
hitting the wall. This motion is qualitatively similar to the pole vaulting motion
observed experimentally by Stover & Cohen (1990).

2.3b. Free slip condition between wall and fibre end. Here the extreme case
where the fibre end is allowed to move freely in both the xz and z-direction
is considered, i.e. the tangential force is set to zero. The applied boundary
condition is that the only non-zero component of the contact force is the y-
component, i.e. F. = (0, Fy, 0), and the fibre end velocity in the wall normal
direction ¢ + Ip, = 0. Applying these restrictions to equations (29) and (30)
give the following expressions for the translation and rotation of the fibre

.2 .
Al sin® 0 sin? ¢ cos ¢ sin” f'sin ¢ cos ¢

r=9y| O ——— 1 +sin?#sin? ¢
0 4—2sin"0sin” ¢ sin @ cos 0 sin ¢ 47
31n(2r,) (sin? @sin® ¢ — 1) sin® 0'sin ¢ cos ¢ 0
0 i Apg —— 1 + sin? fsin® ¢
T (2 — sin”dsin” ¢) sin 0 cos O sin ¢
b= —sin?+ 3y sin2'9 sin%d)gsing o—1)
2(sin” O sin” ¢ — 2) (38)
31n(2rp) AV (1 + sin? @ sin? $)(sin?® ¢ — 1)
167 pl? P9 0 cos H(sin? Osin” ¢ — 2)
. C i3 .3
g7 sin 20 sin 26 — 3751n.92cos.921n ¢ cos ¢
4 2(sin” fsin” ¢ — 2) (39)
~ 3In(2ry) ApgV cos 0 sin ¢(1 + sin? § sin? ¢) .

167 pl? (sin? @sin? ¢ — 2)
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As for the no slip condition the contact force is applied when ys+I/sinfsing = 0
and is released when F' = 0 where

Fe _ Ay pl? (sin3 0 sin® ¢ cos (b) ApgV (1 + sin?  sin? gb)
Y In(2r,) \ 2 —sin?6sin?¢ 2 \2-—sin’fsin’¢/

(40)

3. Numerical results

In this section the general features of the model derived in the previous section
is investigated. This is followed up with a comparison with experimental results
by Carlsson et al. (2009).

3.1. General features of theoretical model

As already mentioned a fibre suspended in an unbounded simple shear flow
will not experience any orbit drift. For this case the parameter C' will remain
constant for an infinite time. All the additional terms found in the previous
section, including the rotation due to hydrodynamic wall reflection and wall
contact, will tend to lower values of C.

To start with we will consider the rotation of a fibre where only the wall
reflection is taken into account. The fibre rotation is given by equations (25)
and (26). The fibre is given an initial orientation given by Cy = 0.05 and
¢o = 0 and is placed at yyo = 0.75. The particle aspect ratio is set to r, = 100
and I' = 0.07. The fibre will eventually sediment down to a y-position where it
will make wall contact. Here the computation is stopped before this occurs. In
figure 4 (a) and (b) the evolution of ¢ and 6 is shown, respectively. The time is
normalized with the Jeffery orbit period for large aspect ratios Tjef = 277 /5.
The graphs qualitatively agree with Jeffery’s solution for unbounded shear flow,
where the fibre spend most of its time oriented near the xz-plane, i.e. ¢ << 1.
With regular intervals of T}y /2 qb is rapidly increased as the fibre flips around
the vorticity axis.

In figure 4 (c) the evolution of p, and p,, is shown. Clearly the fibre ends do
not form closed orbits in this case. The amplitude of both p, and p, decreases
for every period of rotation. Since the distance to the wall  is decreasing with
time the orbit drift also becomes stronger with time. The fibre would finally
end up aligned with the vorticity axis after a sufficiently long time. This is
also indicated in figure 4 (d) where C' is shown as a function of time. C will
continue to decrease until C'=0 and 6 = 0.

It is seen that dC/dt = 0 when ¢ = 0. This is natural since ¢ = 0 is
the equilibrium orientation for a fibre settling toward the wall and ¢ = 0 due
to the reflection at this orientation. The change in C' based on this model is
largest during the flip where ¢ = O(1). However, returning to figure 4 (a) it is
clear that the flip only takes place over a small fraction of the overall period
and therefore most of the orbit drift still takes place when ¢ is small although
separated from zero.
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FIGURE 4. Orbit drift due to wall reflection. In (a) and (b)
the evolution of ¢ and 6 is shown, respectively and in (c) the
evolution of the x and y-component of the unit vector p is
shown and in (d) the evolution of C.

Now the wall contact will also be considered. As before r, = 100, the initial
distance from the wall yro = 0.5 and I' = 0.14. The initial fibre orientation
in this plane is so that it would not, but barely, touch the wall during its
rotation if it were neutrally buoyant. This is determined by the highest possible
C a fibre near the wall can have, without touching the wall, given by C' =
tan (sin™" (y/1)).

In figure 5 (a) the change of C' with time is shown for both the no slip
condition and the free slip condition, implemented when a fibre end is in contact
with the wall. The thick and thin lines correspond to results from the no slip
condition and free slip condition, respectively. The drift in C during the wall
contact is larger with the free slip than the no slip condition. There is an
additional drift during contact also due to the no slip condition although for
this particular case the main orbit drift occurs due to the wall reflection.



Orbit drift of a slowly settling fibre in a wall-bounded shear flow 123

0.6f (a) :Er?s:"splip 1r (b) :’;‘r%:"spliJ
0.5
0041
0.3t
0.2}
0 05 15 2 0 05 15 2

1 1
t/Tjef t/TjEf
FiGURE 5. Orbit drift with wall reflection and wall contact
for I' = 0.14. Results with the no slip condition is shown with
a thick lines and results with the free slip condition are shown
with thin lines. In (a) the evolution of C' is shown and in (b)
the y-position of one fibre end (solid) and the y-position of the
fibre centre (dashed) is shown.

In figure 5 (b) the distance from the wall of the fibre centre (dashed lines)
and one of the fibre ends (solid lines) are shown for both conditions. It is seen
that the decrease in C' during the contact is coupled to how much the fibre
centre lifts during the contact. For the no slip condition this lift is larger,
indicating that a fibre would take a longer time in order to settle down to the
wall.

Just after the contact is released the fibre will rotate with a C' close to the
largest possible value without hitting the wall, i.e. C' = tan(sin~*(y;)). This
is the case for both contact conditions. It seems like the contact with the wall
will never drift the fibre to a value lower than this C.

3.2. Comparison with experimental results

Carlsson et al. (2009) performed experimental measurements on slowly sedi-
menting fibres in a shear flow. A viscous liquid film with a thickness of about
17 mm was flowing down a slightly inclined plane, thereby generating a shear
layer above the solid plane. The suspended fibres were about 0.5 mm long with
an aspect ratio of r, ~ 7. The suspension was dilute with ni* ~ 0.001, where
n is the number density of fibres. The non-dimensional parameter I' = 0.007.
The fibre orientation was measured at different distances from the wall
in planes parallel to the wall. In this context it is convenient to introduce
the orientation B which is defined as the angle from the flow direction to the
projection of the fibre in the zz-plane, i.e. § = 0 and n/2 when the fibre is
aligned and perpendicular with the flow direction in this plane, respectively.
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At the inlet a contraction was located to give the fibres an orientation closer
to the flow direction.

Before applying the theoretical model to the experimental flow case it is
once again emphasized that the theory is derived for slender bodies where
In(2r,) >> 1, which could be considered a weak assumption for r, ~ 7. The
validity of neglecting near range hydrodynamic effects, i.e. yy/d >> 1, could
also be discussed. This assumption is more reasonable for large aspect ratios
since y¢/d can be large even when y/[ is very small. It is also recalled that only
the normal velocity component is zero at the wall. Still, the computation is
carried out to see if some of the trends found experimentally can be qualitatively
reproduced.

In order to compute the evolution of the C' distribution as a function of y
and how the concentration evolves it is necessary to define some inlet condition
for these quantities. It will be assumed that the fibres are initially homoge-
nously distributed across the shear layer at x = 0, 4.e. the concentration is
initially constant with respect to y. In order to estimate the initial C' distribu-
tion the study of Rahnama, Koch & Shagfeh (1995) will be used. Rahnama et
al. computed a steady state fibre orientation distribution for dilute and semi-
dilute fibre suspensions in the limit of large aspect ratio

)= R—CW’

7w (4RC? + 1)
where R is a fitting parameter. Assuming that the fibres are rotating in Jeffery
orbits and that all phase angles are equally likely it is possible to determine
R to get an approximative fit with the experimental 3 distribution. There are
only measurements of 5 at = 0.75 m and none at the inlet upstream. For
distances from the wall farther away than half a fibre length the 3 distribution
does not change significantly in the experiments. To compute R only fibres
that are located at y > 2[ is considered. The parameter R is chosen so that the
single moment (cos? 3) of the B-distribution is the same for the experiments
and computations. This yields R =~ 0.57.

(41)

A comparison of the experimental § distribution with the theoretical for
R = 0.57 is shown in figure 6 (a). In figure 6 (b) the corresponding C' distri-
bution given by equation (41) for R & 0.57 is shown. Initially this distribution
is assumed to be independent of y.

A large set of fibres is chosen at the inlet (x = 0) of the experiments and
the evolution of y and C' is computed for each fibre until the corresponding
x-position of the camera is reached. This is done for both the no slip and the
free slip condition. The number of fibres entering the domain at each y position
is proportional to 4y to represent the expected fibre flux for a homogeneous
initial concentration.

In figure 7 the concentration ¢, normalized with the initial concentration
of the suspension nl?, is shown. It is seen that both computations result in a
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FIGURE 6. (a) @ distribution with R = 0.57 in equation (41)
(solid) compared with experimental data (dashed) by Carlsson
et al. (2009) and (b) f(C) for R = 0.57.
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FIGURE 7. The fibre concentration as a function of the vertical
distance to the wall y.

concentration very close to one for distances farther from the wall than y/I = 1.
Below this y position there is an increase of fibres due to the wall contact
which pushes fibres with larger values of C' from the wall during the flip in the
rotations. As the distance to the wall is decreased farther the concentration
drops until the very proximity of the wall, where there is a sharp increase in
the concentration.

Looking at the experimental profile it seen that it is qualitatively similar to
the computations. There are some thresholds set in the image analysis which
make the absolute levels uncertain. A scaling has been introduced so that the
average concentration in the region 1.5 < y/l < 2 is equal to 1. Also here
there is an increase in ¢ close to y/l = 1. In Carlsson et al. (2009) this peak is
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slightly above y/l = 1, but moving the peak to y/l = 1 is within the reported
accuracy of the measurements. It is likely that this peak has its origin in a
pole vaulting motion from the wall. The transition from values of ¢ = 1 to
the maximum value of ¢ at y/l ~ 1 is gradual in the experiments. This could
partly be due to inaccuracies in the measurements and the fibres also have a
small length variation, which would make the peak in ¢ less distinct. As in
the computations there is also an increased concentration of fibres found in the
proximity of the wall.

In figure 8 (a—f) the § distribution is shown for different distances from the
wall. This is shown in terms of the cumulative distribution function F(8) =
P(B < ) showing the probability that a fibre will be oriented between 3 = 0
and (. It is noted that the computed orientation distributions are not highly
dependent on which wall contact condition that has been applied. For fibres in
the region 2.0 < y/l < 2.5 in (a) the computed F is close to the experimental
F'. There is a small deviation between the two. Here it should be recalled that
the value of R did not result in a perfect agreement with the (-distribution
from the experiments.

In figure 8 (b), showing the region just above half a fibre length from the
wall, the experimental distribution becomes more aligned with the flow direc-
tion. Note that the computational distributions coincide and do not change
significantly as compared to the distribution farther from the wall in (a). This
is since the fibres have not yet started to make wall contact.

Looking at 8 (c) just below half a fibre length from the wall it is seen that
a similar shift toward lower values of (3 is seen, although now for the computa-
tional distributions. This may be somewhat surprising at first, considering that
all fibres individually will tend to adopt lower values of C' and consequently
larger values of 3. The reason for why this occurs in the model is coupled to
the concentration profile in figure 7. The source of the increase in ¢ just below
y/l = 1is that fibres with relatively large values of C' will do a pole vaulting like
motion during the flip of their rotations. Due to the wall contact, the average
settling speed toward the wall over the period of one rotation is also smaller
for fibres rotating with larger values of C. Since fibres with larger C' travel
slower toward the wall there will be an increase in concentration of fibres with
large C', whereas the concentration of fibres with small C' will not be affected.
A result of this is that the fraction of fibres with larger C' will increase relative
to fibres with smaller C', which also implies more fibres close to 3 = 0 seen in
the region below y/l = 1.

Returning to 8 (b) a similar shift was seen for the experimental orientation
distribution. It is likely that this shift is also due to a pole vaulting type of
motion. It is seen in figure 7 that the concentration is high also above y/l = 1.
An increase in concentration indicates that there are fibres in the region that
have started to pole vault. This may be a surprising statement considering
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that a fibre at y/l > 1 can not make contact with the wall during rotation.
Here it should be recalled that the measured y-position is not exact and that
there is also a small length variation of the fibres. Thereby it is possible that
some of the fibres in the region are actually slightly closer to the wall than the
measured value, where wall contact is possible.

As the distance to the wall is decreased further in figure 8 (d—e) the com-
putations continue to underestimate the drift, toward larger values of (3, as
compared to the experiments. In (f) showing the region closest to the wall
most of the fibres have adopted large values of 3. In the very proximity of
the wall basically all fibres have 8 &~ /2 in the experiments as well as in the
computations, i.e. orientations close to the vorticity axis.

4. Concluding remarks

A slender body approach was used in order to estimate the motion of a sedi-
menting fibre in a wall-bounded shear flow. It has been assumed that inertia
of the fluid is negligible and that the fluid motion is governed by Stokes flow
equations. The velocity disturbance of the fluid as the fibre settles toward the
wall is estimated by introducing an image fibre to cancel the vertical velocity
component at the wall. In order to satisfy the no-slip on the wall a line distri-
bution of force dipoles would also have to be placed on the image fibre. This
will be returned to in a future study.

Due to the linearity of the problem the superposition principle is applied in
order to estimate how the wall reflected velocity disturbance influences the fibre
translation and rotation. Furthermore, a local contact force is implemented to
account for the fibre-wall interaction that occurs when one fibre end point
hits the wall. In the wall reflection analysis it is assumed that In(2r,) >> 1
and yy >> d. The effects of a fibre having a finite thickness are not taken
into consideration. This could be of particular significance when a fibre end is
located very close to the wall.

It has been shown that the wall reflection will tend to make a fibre migrate
across orbits to lower values of C. The implemented wall contact model tends
to enhance this drift in C'. This leads to a final state where the fibre is aligned
with the vorticity axis and spins around its main axis.

A numerical study based on the theoretical derivations was done for com-
parison with the experimental results by Carlsson et al. (2009). The aspect
ratio of the fibres in the experiments are r, ~ 7 and strictly speaking the
present model is not valid for such small aspect ratios. Consequently, it is not
expected to get a good quantitative agreement with the experiments. Still,
some qualitative trends are reproduced. There is an increased concentration at
roughly half a fibre length from the wall due to a pole vaulting like interaction
with the wall. There is also an agreement in that the fibres closest to the wall
are nearly aligned with the vorticity axis.
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Fibre orientation near a wall of a headbox

By Allan Carlsson’, L. Daniel Séderberg',! & Fredrik
Lundell

"Linné Flow Centre, KTH Mechanics, SE - 100 44 Stockholm, Sweden
fSTFI-Packforsk AB, SE - 114 86 Stockholm, Sweden

Experimental results on the fibre orientation in a laboratory scale headbox are
reported. A steerable filter was used to determine the orientation of bleached
unbeaten birch fibres at different distances from one of the inclined walls of
the headbox contraction. Due to optical limitations only dilute suspensions
were studied. It is shown that the fibre orientation distribution varies with
the distance from the wall. Sufficiently far upstream in the headbox a more
anisotropic distribution is found closer to the wall as compared to farther away
from the wall.

1. Introduction

The mechanical properties of a paper sheet are highly dependent on the orien-
tation distribution of fibres. The fibre orientation in the network structure is
determined by the headbox and initial dewatering process, i.e. in the forming
section of the paper machine. The main function of the headbox is to transform
a pipe flow, with a diameter of about 0.8 m, into a free jet with a width of
about 10 m and a thickness of 0.01 m. Due to the contraction in the nozzle of
the headbox the suspension is accelerated and the positive rate-of-strain in the
machine direction (MD) will tend to align the fibres with the flow direction.
This orientation is often reflected in the final paper sheet, where most fibres
are oriented in MD. It should be mentioned that the orientation is also affected
by the dewatering process after the headbox. The free jet leaving the headbox
impinges on one or between two permeable bands called wires. The water is
drained through the wires resulting in a rapid increase of the suspensions fibre
concentration. In an experimental study by Nordstrom (2003b) it was shown
that the velocity difference between the jet and the moving wires have an effect
on the fibre orientation. A larger velocity difference, both positive and nega-
tive, results in a more anisotropic paper sheet, i.e. more fibres oriented in MD.
A smaller velocity difference, on the other hand, results in a more isotropic
orientation distribution.

Some recent attention has been given to the fibre dynamics inside a head-
box. The orientation distribution has been measured experimentally at the
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outlet of a headbox nozzle, Ullmar (1998). It was shown that increasing the
headbox contraction rate resulted in higher anisotropy values. Furthermore, it
was concluded that the flow rate through the headbox had a very small effect on
the orientation distribution. Nordstrom (2003a) also reported that the effect
of the flow rate on the fibre orientation in the final paper sheet was small.

A qualitative agreement with experimental data, concerning the orientation
state of fibres in a headbox, was found analytically, Olson (1998), by neglecting
effects of turbulence. The change of the orientation distribution in turbulent
flows can be modeled with a Fokker-Planck type of equation, e.g. Krushkal &
Gallily (1988) and Olson & Kerekes (1998). This has been done with applica-
tion to headboxes by e.g. Olson et al. (2004), Brown (2005), Parsheh, Brown &
Aidun (2005, 2006a,b) and Hyensjo et al. (2007). An accurate reproduction of
experimental results has been obtained in these studies. In order to attain good
results in these computations knowledge of turbulence quantities, in particular
the turbulence intensity level at the inlet, is a prerequisite.

Nordstrom (2003b) showed that the orientation distribution is non-uniform
over the thickness (Z) of the paper sheet. The sheet is generally more anisotropic
in the core than on both sheet surfaces. This is also indicated in experimental
measurements on the fibre orientation in a headbox jet by Asplund & Norman
(2004). Along the centreline of the headbox a solid vane was inserted and in
a region behind the vane the anisotropy was reduced. Aidun & Kovacs (1995)
made a computational investigation and suggested that the main cause of a
non-uniform fibre orientation in the cross dircetion (CD) is the secondary flows
generated in the headbox due to the boundary layer formation along the side
walls of the nozzle.

The present study aims at further investigating the wall influence on the
fibre orientation. In many industrial headboxes a set of vanes are implemented
as solid flow dividers in the headbox, mainly for the reason of damping out
large scale motions that can lead to a bad paper formation. Boundary layers
will form along all these vanes. The thickness of these boundary layers is of the
order of 0.001 m. Considering that the thickness of the jet leaving the headbox
is of the order 0.01 m a large fraction of the suspension is influenced by the
boundary layers in the headbox. The vanes could therefore potentially have a
large impact on the orientation distribution of fibres leaving the headbox and
consequently also on the distribution in the final paper sheet.

Some attention has been given to the wall effect on the motion of fibres.
For instance numerical studies have been performed by Hsu & Ganatos (1989,
1994), Gavze & Shapiro (1997) and Pozrikidis (2005). Experimental studies
have also been done by Stover & Cohen (1990), Moses, Advani & Reinhardt
(2001), Holm & Soderberg (2007) and Carlsson, Lundell & Soderberg (2007).
These studies all have in common that they have been focusing on laminar
viscous flow. There is still a lack of experimental data on near wall fibre
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FIGURE 1. Schematic of the headbox with a coordinate system
origininating at contraction outlet. Measures are in m.

orientation in flows where intertial effects can not be neglected. In this study
the fibre orientation is measured along one of the walls of a laboratory scale
headbox. Some preliminary results on practically the same experimental setup
have been reported earlier in Carlsson, Soderberg & Lundell (2008).

2. Experimental section
2.1. Apparatus

A schematic of the headbox used is shown in figure 1. The same headbox was
used in earlier studies by e.g. Ullmar (1998), Asplund & Norman (2004) and
Carlsson et al. (2008), and consists of a tube bank and a contraction. In order
to get optical access to the flow the walls are made of acrylic. The tube bank is
divided in three sections; two circular and one square section. The contraction
ratio R, defined as the ratio between the height at the contraction inlet divided
with the height of the channel, is R ~ 17 at the outlet. A coordinate system is
defined in the figure, where x runs upstream along the direction of the upper
wall of the contraction and = 0 where the parallel section begins. The wall
normal distance to the upper wall is denoted by z.

To visualize the flow a CCD camera (Prosilica GE680) with a lens of focal
length 50 mm (Fujinon HF50HA-1B) was mounted above the wall at fixed -
positions. An extension tube was used in order to limit the field of view to
approximately 1 cm?. The camera was placed to capture images parallel to the
wall in the centre of the channel in the spanwise direction (y), i.e. about 5 cm
from both side walls.

To illuminate the field of view a light sheet was generated. The setup
is sketched in figure 2. A monochromatic light beam (A = 532 nm), with
an output power of the order 340 mW, is generated by a laser (Laserglow
Technologies/Hercules - 325). The beam diameter is less than 1.5 mm and the
full angle beam divergence is about 1 mrad which results in a diameter of about
2 mm at the position of the headbox. The beam is traversed to the desired z-
position by an adjustable inclination of a 6 mm thick glass plate. A cylindrical
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FIGURE 2. Schematic of the light sheet generation and camera positions.

lens of focal length 10 mm transforms the beam into a sheet parallel to the
headbox wall. In order to reduce the thickness of the sheet it passes a slit with
a thickness of 0.5 mm before entering the headbox. The slit can be traversed
in the vertical direction with an accuracy of 0.01 mm. On the other side of the
headbox a second camera is mounted in order to determine the centre position
of the sheet in relation to the wall. This is done with an accuracy of about
0.1 mm. The thickness of the sheet as it exits the headbox is estimated to be
around 2 mm. A linear interpolation gives a thickness of about 1.3 mm in the
centre of the channel where the fibre orientation is studied. It should also be
mentioned that the light intensity is not constant across the light sheet. The
intensity is higher towards the centre of the sheet and as a consequence fibres
are more easily detected near the centre of the sheet.

2.2. Suspension

A bleached unbeaten birch suspension was used in the study. A sample of
the suspension was analyzed with L&W Fiber Tester. The probability density
function (PDF) of the length of fibres is shown in figure 3. The arithmetic mean
of the fibre length is [,, = 0.7 mm and the mean fibre width is w,, ~ 18 pm.
The mass concentration of fibres was ¢,, ~ 3 - 107°.

Another way to denote the concentration of a suspension is to use nl?,
where n is the number density of fibres and [ is a typical fibre length. The
main reason for using this expression is that it is a better indicator of how
frequent fibre-fibre interactions are than the mass concentration. Sometimes
a crowding factor N is introduced for the same reason, see Kerekes & Schell
(1992), where N only differs from nl3 by a numerical factor, N = 7nl3/6. When
nl? << 1 the suspension is generally considered dilute, e.g. Sundararajakumar
& Koch (1997), and fibre-fibre interactions can usually be neglected. When
nl® = O(1) hydrodynamic fibre-fibre interactions occurs more frequently and
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generally cannot be neglected. Eventually, if the concentration is increased even
further, mechanical interactions between fibres also have to be considered.

In order to compute nl3 the approximate relation ni® ~ 1000¢,,[?/k is used,
where the density of the suspended fibres is estimated to be about 1000 kg/m3.
With a fibre coarseness of k = 100 pug/m the concentration in the experiments
is estimated to be nl® ~ 0.15. In industrial headboxes the concentration is
typically between c¢,, = 1073 and 1072 or nl® ~ 5 and 50, for suspensions
with similar fibres as used in the present experiments. Consequently fibre-fibre
interactions could have an effect on the fibre dynamics in the headbox of a
paper machine, but are not expected to significantly influence the results in
the present experiments.

2.3. Measuring and analyzing procedure

The fibre orientation and velocity were studied in planes parallel to the upper
solid wall of the headbox at three different z-positions (x = 0.09, 0.25 and
0.45 m). These x-positions correspond to contraction ratios of R = 4.9, 2.1
and 1.3. At each x-position the centre of the laser sheet was traversed to five
z-positions (z = 0.5, 1.0, 1.5, 2.0 and 5.0 mm). Analyzing the images from
camera 2, showing the light sheet as it exits the headbox, has revealed an
unintended offset of 0.25 mm in z for x = 0.45 m. This mistake results in that
the z-positions, for £ = 0.45 m, have to be corrected to z = 0.25, 0.75, 1.25,
1.75 and 4.75 mm. The value of z denotes the centre of the sheet where the
light intensity is at its maximum. Recall that the light sheet is slightly thicker
than 1 mm. This means that for the z-position closest to the wall a part of the
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sheet is cut off by the wall. Consequently, the centre of the remaining light,
illuminating only the fluid, will be slightly farther away from the wall than the
reported z, where the light intensity is at its maximum. Therefore, the most
appropriate value of z to report closest to the wall is not perfectly clear. In
this context it should also be kept in mind that since the light intensity is not
constant across the sheet it is more likely to detect a fibre close to the actual
centre of the sheet, than anywhere else in the sheet, with the image analysis
process.

To detect the orientation of the fibres in the images, a ridge detector within
the class of steerable filters was used, Freeman & Adelson (1991). The partic-
ular detector used in this study was derived by Jacob & Unser (2004). The
algorithm has been applied to fibre suspension flows and is described and evalu-
ated in Carlsson et al. (2007, 2009). In this study the orientation [ is analyzed
and is defined as the angle from the x-direction in the plane parallel to the
solid wall (zy-plane).

For the orientation measurements a total of 3000 images were captured at
each (x, z)-position with a frame rate of the camera set low enough in order to
get statistically independent images, i.e. low enough so that all of the fibres,
which are captured in one image, will leave the field of view before the next
image is captured. The frame rate ranges from 6 Hz (far upstream, close to wall)
to 50 Hz (far downstream, far from wall). For the velocity measurements the
frame rate is set to 200 Hz for all (z, z)-positions. Due to the increased velocity
downstream it was not possible to obtain the velocity profile at = 0.09 m.

3. Results and discussion
3.1. Velocity

The volume flow rate during the experiments was Q ~ 12.5- 1073 m3/s, re-
sulting in a jet velocity of 8.7 m/s (520 m/min). In order to get an estimation
of the velocity profile near the wall individual fibres were tracked manually.
Initially the intention was to use a particle image velocimetry algorithm (PIV)
on seeding particles to measure the velocity field in the sheet. However, it was
found difficult to attain a series of images good enough in order to use PIV.
This could partly be due to that the concentration of seeding particles was
slightly too large, but it is believed that the main source for the troubles using
PIV is the large range of velocities within the light sheet. This is due to the
high shear rate in the near wall region.

To be able to get some information about the velocity some individual fibres
where tracked manually. The procedure to do this was to choose and mark a
number of fibres in an image and search for these in the subsequent image.
This turns out to be a time consuming method and therefore only 20 fibres
per (z,z)-position were tracked. Measurements were conducted at z = 0.25
and 0.45 m. Admittedly more fibres would have to be tracked in order to
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FIGURE 4. Theoretical velocity profiles for z = 0.24 m (solid)
and x = 0.45 m (dashed). The dots and the stars denotes the
velocities of individual fibres and the mean of all fibres in each
particular serie, respectively.

reach statistical convergence. Still, the velocity measurements are reported to
provide an estimation of the velocity gradient and boundary layer thickness
near the wall.

The velocity profiles are shown in figure 4. The velocity of each individual
fibre is shown as a dot in the figure and the mean value for each (z, z)-position is
shown as a star. The solid and dashed lines, denoting the velocity at x = 0.25
and 0.45 m, are given by the similarity solution for laminar flow in a two-
dimensional convergent channel and can be found in Schlichting (1979). There
is a significant scatter in the experimental data. This is in particular seen
closest to the wall. It is believed that the scattering mainly reflects the wide
range of velocities inside the sheet near the wall. The maximum error in velocity
of a tracked fibre is estimated to be £0.1 m/s. There are no deviations from
the mean value larger than this error for the position farthest away from the
wall (z & 5 mm). Consequently, no conclusions can be drawn directly from the
data concerning any velocity fluctuations that may be present in the flow.

The measured mean velocity profile coincides surprisingly well with the
similarity solution for laminar flow. A turbulent boundary layer subjected to
strong acceleration can return to laminar-like conditions. The acceleration is
often quantified by a non-dimensional parameter

2v tan i

K= SR M)
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where v is the kinematic viscosity of the fluid, 1 is half the contraction angle
and ¢ is the flow rate per unit width in the channel. Some studies have been
made to find the critical value of K where the onset to relaminarization begins.
Among these are Moretti & Kays (1965) who found an apparent re-transition
to a laminar boundary layer for K > 3.5-107% and Parsheh (2001) who found
the critical K to be about 3.1-107°. In the present study K ~ 3.4-107% so
a relaminarization process is likely to be present. Since, the boundary layer
already seems to have reached a profile close to the similarity solution for
laminar flow at x = 0.45 and 0.25 m it is natural to assume that it will stay
close to this solution also farther downstream at x = 0.09. From the similarity
solution the boundary layer thickness, defined as the distance from the wall
where the mean velocity is 0.99 times the velocity far from the wall, is computed
to be 0.6, 1.3 and 2.3 mm for x = 0.09, 0.25 and 0.45 m, respectively.

3.2. Fibre orientation distribution

The number of detected fibres at all (z, z)-positions is shown in table 1. For
most positions between 20000 and 40000 fibres are detected, i.e. roughly 10
fibres per image. The measurements at different z-positions have been con-
ducted at different times. The suspension has been partly replaced in between
the measurements. Although the concentration should be about the same for
all measurements it is very approximative, so the absolute numbers should not
be compared between different x-positions.

There is a trend for x = 0.25 and 0.45 m that more fibres are detected
as the distance to the wall is increased. This could possibly reflect an effect
of migration towards areas with lower velocity gradients. However, the result
should be interpreted with some care. Notable from the number of detected
fibres at x = 0.09 m is that here there is no clear trend and the numbers
differ significantly between the z-positions. For x = 0.09 m the boundary layer
thickness is about 0.6 mm so the mean flow velocity gradient should be about
the same for the four z-positions farthest from the wall. It is also noted that
the number of detected fibres at z = 0.45 m, z = 0.25 mm, in comparison to the
other positions, is small. Here it should be recalled that part of the light sheet
is cut off by the wall and therefore less fibres are expected to be detected. Still,
the number is surprisingly small even if the apparent trend of fewer detected
fibres at high velocity gradients is taken into account.

A possible explanation for why so few fibres are detected at = 0.45 m
and z = 0.25 mm is that fibres close to the wall will undergo a pole vaulting
like motion as the sheared fluid will tend to make a fibre rotate. In the rotation
of a nearly flow aligned fibre one of the fibre ends hit the wall and the centre
of the fibre is pushed away to a position of about half a fibre length from the
wall. This kind of motion has been observed in viscous flows by for instance
Stover & Cohen (1990). We will see later that most of the fibres are oriented
close to the flow direction so the presence of a pole vaulting motion would not
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Position z=009m z=02m x=045m
z* =0.5 mm 34196 24673 9584
z*=1.0 mm 43142 26542 22354
z* =1.5 mm 33246 27761 25656
z* = 2.0 mm 35911 38249 25756
z* =5.0 mm 42340 39568 28033

TABLE 1. The number of detected fibres at all (x, z)-positions.
The values of z is given by z* apart from when x = 0.45 m for
which z = z* — 0.25 mm.

be surprising. This would for fibres with a length of about 0.7 mm generate a
void close to the wall between z = 0 and 0.35 mm, where there are few fibres
present. Since the centre of the sheet, where the light intensity is highest, is
located inside this void when z = 0.25 mm this could result in a significant
drop in the number of detected fibres.

We will now focus on the fibre orientation near the wall. The distribution
of B is shown, for all positions, in figure 5. The distributions at x = 0.45, 0.25
and 0.09 m are shown in (a), (b) and (c), respectively. The various lines denote
different z-positions. The distributions are a bit coarse and more detected
fibres would be desired to get a better convergence. Still, some trends, which
will be addressed below, can be deduced from the data.

The perhaps most surprising feature is the asymmetric appearance of the
distributions at = 0.45 m in (a). There is at present no clear explanation
for this. Similar distributions have been observed in all pre-studies on the
setup and was also reported in Carlsson et al. (2008). Measurements have also
been made in the spanwise direction at = 0.45 m, but no clear difference
has been seen as a function of y in these results. The distributions have not
appeared to change appreciably in the region of —0.04 m < y < 0.04 m at
x = 0.45 m, where y = 0 in the centre of the channel. It is believed that
the asymmetric distributions arises due to an asymmetry of the incoming flow.
The tube package ends at about 0.25 m upstream from the measurements at
x = 0.45 m. Farther downstream at x = 0.25 m the orientations distributions
have developed a more symmetric appearance.

Disregarding the asymmetric feature of the distributions, a clear trend is
seen for both = 0.45 and 0.25 m. A more anisotropic distribution is found
closer to the wall, i.e. the fibres tend to adopt orientations closer to the flow
direction (8 = 0) for lower values of z. Possibly velocity fluctuations of the fluid
could be of significance here. Fluctuations are most likely to result in a more
isotropic fibre orientation distribution, at least if the velocity fluctuations are
fairly isotropic in nature. If there are less fluctuations closer to the wall, in the
relaminarizing boundary layer, this could result in a more isotropic distribution



142 Allan Carlsson, L. Daniel Soderberg € Fredrik Lundell

farther from the wall. However, it is emphasized that even though the mean
velocity profile is close to the laminar profile, it is still likely that turbulent
structures remain in the flow, e.g. Warnack & Fernholz (1998) and Talamelli
et al. (2002). Therefore this explanation is not perfectly convincing.

Another possibility that will briefly be presented here is related to the
dynamics of fibres in shear flows. As mentioned above a fibre will rotate when
the surrounding fluid is sheared. In a viscous flow a fibre is expected to spend
most time oriented nearly aligned with the xy-plane during its rotation. It is
also likely that most fibres will be relatively close to the flow direction when
oriented in this plane. This is what one would expect for fibres rotating in
Jeffery orbits, see Jeffery (1922). A fibre will rotate in Jeffery orbits when
suspended in a viscous simple shear flow, when all inertial forces are negligible.
Clearly it is not straightforward at all to neglect inertial forces in the present
study.

Some recent studies have been made on the effect of fluid inertia on the
rotation of elongated particles in shear flows, e.g. Ding & Aidun (2000), Qi
& Luo (2003) and Subramanian & Koch (2005). Two conclusions from these
studies is that a weak, but non-negligible fluid inertia, will tend to increase
the period of rotation as compared to fibres rotating in Jeffery orbits and fluid
inertia will also introduce an orientation drift towards the flow direction. In the
present experiments inertial effects are expected to be larger as the distance to
the wall is decreased, since the differences in velocity of the fluid over the fibre
surface will be greater when the velocity gradient is large. Both conclusions
mentioned from the studies on inertial effects should lead to a more aligned
distribution near the wall. It is easily realized that a drift in orientation towards
the flow direction would lead to a more aligned orientation distribution. Also
an increased period due to inertia should lead to a higher anisotropy, since
the increased period appears as an increased fraction of time oriented near the
xy-plane, where a fibre is likely to be close to the flow direction even when
rotating in a Jeffery-like orbit.

Farther downstream at « = 0.09 m, shown in figure 5 (c), no clear difference
can be seen for different z. The velocity gradient at the wall is increasing
downstream so if the reasoning on inertial effects above is significant one might
imagine there should be an even larger effect on the fibre orientation at x =
0.09 m. Clearly this is not the case.

It should also be recalled that simultaneously, as the velocity gradient at
the wall is increased, the boundary layer thickness is decreased in the down-
stream direction. According to the similarity solution of a planar converging
channel the boundary layer thickness should be close to 0.6 mm at z = 0.09 m.
Consequently large velocity gradients, in the wall normal direction, are only
expected to be present for the z-position closest to the wall. It is also worth
noticing that at this z-position the boundary layer is thinner than the mean
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F1GURE 5. The orientation distribution of 3 for different wall
normal positions z at (a) x = 0.45 m, (b) = 0.25 m and (c)
z = 0.09 m.

fibre length and the thickness of the light sheet. Still, also the orientation
distribution at z = 0.5 mm coincide with the other z-positions. It is possible
that the pole vaulting mechanism close to the wall could play a role also here.
If the fibres tend to pole vault near the wall few fibres will be located in the
region where the shear rate is strongest, but there should still be a small region
of high shear in the light sheet where fibres should be present. Therefore this
explanation is not completely satisfactorily.

So far attention has only been paid to the shear rate close to the wall and
possible intertial effects on the fibre orientation. It was briefly mentioned in
the introduction that the main mechanism for the alignment of fibres in a con-
traction is the streamwise rate-of-strain. The mean streamwise rate-of-strain
is not constant in the headbox, but increases downstream. The rate-of-strain
in the headbox is the reason for why the orientation distributions turn more
anisotropic downstream, which is clearly seen in figure 5. Based on the mean
flow velocity, given by the flow rate and geometry of the headbox, the mean
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streamwise rate-of-strain is computed to about 1, 4 and 20 s~! for z = 0.45,
0.25 and 0.09 m, respectively. Since the strain rate increases downstream this
means that the strength of the mechanism for fibre alignment with flow will
also grow downstream. This could possibly be the reason to why no differ-
ence can be seen in the orientation, even for z = 0.5 mm, in figure 5 (c¢). A
speculative explanation would be that the rate-of-strain is now the dominant
term influencing the fibre orientation and that other effects, whether it being
velocity fluctations, fluid inertia or something else, are small in comparison.

4. Concluding remarks

The fibre orientation has been studied experimentally close to one of the walls
of a laboratory scale headbox. The flow rates in the experiments result in
jet velocities which are comparable to velocities in industrial paper machines.
Only low concentrations were studied due to optical issues and fibre-fibre in-
teractions are therefore likely to have a small effect on the present results.
It is concluded, for these low concentrations, that the orientation distribution
changes with the distance from the wall for positions in the headbox sufficiently
far upstream. The trend is that a more anisotropic distribution is found closer
to the wall. This trend was not observed farther downstream at x = 0.09 m,
where the distribution was seemingly unaffected by presence of the wall. Due
to the complexity of the flow only a speculative discussion have been made on
possible reasons to why the orientation distribution varies with the wall nor-
mal distance. Fluid velocity fluctuations and their dependence on z have been
discussed briefly. Also, the fibre dynamics in shear flows and the effect of fluid
inertia have been addressed.
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Evaluation of a steerable filter for detection of
fibres in flowing suspensions
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Soderberg
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tSTFI-Packforsk AB, SE - 114 86 Stockholm, Sweden

Steerable filters are concluded to be useful in order to determine the orientation
of fibres captured in digital images. The fibre orientation is a key variable in
the study of flowing fibre suspensions. Here digital image analysis based on a
filter within the class of steerable filters is evaluated for suitability of finding
the position and orientation of fibres suspended in flowing suspensions. In
sharp images with small noise levels the steerable filter succeeds in determining
the orientation of artificially generated fibres with well-defined angles. The
influence of reduced image quality on the orientation has been quantified. The
effect of unsharpness and noise is studied and the results show that the error
in orientation is less than 1° for moderate levels. A set of images with fibres
suspended in a shear flow is also analyzed. The fibre orientation distribution
is determined in the flow-vorticity plane. In this analysis a comparison is
also made to a robust, but computationally more expensive, method involving
convolutions with an oriented elliptic filter. A good agreement is found when
comparing the resulting fibre orientation distributions obtained with the two
methods.

1. Introduction

Flowing fibre suspensions are found in a variety of applications such as fibre-
reinforced composites processing and paper manufacturing. The final proper-
ties of the products of these applications are often strongly correlated to the
fibre orientation. An example image from a flowing fibre suspension is shown in
figure 1. In this specific image fibres are suspended in a shear flow over a solid
wall and the image plane is parallel to the wall. From images like figure 1 quan-
tities such as local fibre concentration and fibre velocities, both translational
and rotational, could be of interest. To obtain these measures it is essential
to be able to determine the position and orientation of individual fibres. It is
usually preferred to extract this information by digital image analysis.
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FI1GURE 1. Fibres in a suspension flowing over a solid surface.

A reliable approach of finding the position and orientation of fibres cap-
tured in images is to use oriented filters (a short introduction to image filtering
is given in section 2). A typical approach is to construct a filter with a shape
that resembles the shape of the fibres and compute the convolution of the filter
with the images containing fibres. A high value of the convolution at a certain
position indicates that the image has a local resemblance with the filter at that
position. To find the orientation of the fibres the filter is rotated to different
orientations and a convolution is computed for each orientation. This course
of action was for instance used by Holm & Sdderberg (2007) to find the ori-
entation of fibres in a shear flow. Although the method is reliable it can be
expensive from a computational perspective since the angular resolution will be
proportional to the number of convolutions performed. From a computational
point of view Freeman & Adelson (1991) introduced a more efficient approach,
for general feature detection, i.e. not restricted to fibres. The term steerable
filter was introduced in order to describe a class of filters in which a filter of
arbitrary orientation can be obtained from a linear combination of a limited
amount of basis filters. This implies that, instead of computing several convo-
lutions of a filter rotated to different orientations with an image, it is sufficient
to compute the convolutions of the basis filters with the image. In this manner
the orientation dependency is eliminated from the convolutions and thereby it
is possible to cut down on the computational load and still have a good angular
resolution.

A method for designing filters, within the class of steerable filters, for
2D feature detection, was proposed by Jacob & Unser (2004). Among others
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a filter for ridge detection was designed. This filter was used by Carlsson,
Lundell & Séderberg (2007) to find the orientation distribution of fibres in a
shear flow. In the present study this ridge detector is evaluated. The ability to
find the orientation of fibres as well as the sensitivity to noise and unsharpness is
studied. This is done by capturing images of a picture containing printed fibres
with well-defined orientations. The paper is finally concluded by a comparison
of the method with a more traditional approach, using an elliptic filter, on a
case where fibres have been suspended in a shear flow.

2. Image filtering for analysis of fibre images

The image filtering considered in this study will be based on the 2D convolution
operator. The discrete convolution of an image f(m,n) with a filter matrix
h(z,y) is given by

I(m,n) = f(m,n) *h(z,y) = Z Z fm—z,n—y)h(z,y). (1)

LT=—00 y=—00

As seen in equation (1) the convolution is given by a sum of products. The
convolution I will also be referred to as the intensity throughout this text. The
filter matrix can be regarded as a function that transforms the original image
by giving some weight to the neighboring pixels for each pixel in the image.
Note that the convolution is written as sums over infinite intervals. This can
be done since the elements of h(x,y) are essentially zero apart from in a region
in the centre of the matrix. However, in practice the sums are computed over
finite intervals.

Image filtering can be used for various applications. There are for instance
filters to make an image appear more sharp or blurry. There are also filters
that emphasize specific features of an image, like for instance rod-like objects
such as fibres. These are the kind of filters that are of interest for this study.

2.1. Elliptic Mezican hat for detection of fibres

The perhaps most obvious way to detect fibres in an image is to let h(z,y) in
equation (1) resemble a fibre. This can be obtained by an elliptic “Mexican
hat” here defined as

o= (1](Z)" + ()] -2) G @)

where a and b are constants defining the shape of the filter. Putting h = 0
defines the ellipse (x/a)? + (y/b)? = 1. Thus, by letting 2a and 2b be equal to
the fibre width and length, respectively, a filter suitable for detection of such
fibres is generated. In figure 2 (a) the filter is shown for b/a = 10.
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FIGURE 2. (a) The elliptic Mexican hat defined by equation
(2) with b/a = 10 and (b) the steerable ridge detector defined
by equation (7).

In order to rotate the filter to different orientations 6 the rotation matrix

Ry is used
R, — ( cosf  siné > 3)

—sinf cos@

The convolution of the image with the rotated version of the filter is then given
by

I(m,n,0) = f(m,n) = h(Rex), (4)

where the vector x = (z, y)T. An elliptic Mexican hat was successfully used by
Holm & Séderberg (2007) to determine the position and orientation of fibres.
However, a limiting factor is that all the orientations, to be included in the
analysis, have to be predefined and a convolution has to be computed for each
orientation. This leads to that the method becomes computationally expensive
if a good angular resolution is desired.

2.2. Steerable filter for detection of fibres

A way to avoid using predefined orientations of the filter and cut down on the
computational load is to use a steerable filter. The class of steerable filters
considered in this work can be expressed as

M w 9= 9N
h(z,y) =D alk ) Wa_g/\g(x’y)’ (5)
r=1A=0
where ¢ is an arbitrary isotropic window function, i.e. a function independent
of direction and approximately zero-valued outside some chosen interval. The
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derivatives of g with respect to = and y, which are henceforth called g, », are
called basis filters and « (k, \) are constants defining the shape of the steerable
filter. Since g is isotropic a rotated version of a steerable filter can be obtained
from a linear combination of a limited set of basis filters. For a general My
order detector M (M + 3)/2 basis filters g, », together with their constants
a (K, \), are required to define a steerable filter.

The orientations at which the highest intensities will be found, from the
convolution of a steerable filter with an image, at all positions in the image,
can be obtained through the convolutions of the basis filters with the image.
Choosing the window function to be a Gaussian, Jacob & Unser (2004) derived
an optimal ridge detector for M = 2, using the Dirac delta function to model
the ridge. The Gaussian is defined as

g(,y) = ™. (6)
The resulting steerable filter is shown in figure 2 (b) and is defined by

[3 (0% 10%
h(x,y) = in (83:2 - 36y2>' (7)

It can be shown that the convolution of any rotated version of the steerable
filter h(x,y), in equation (7), with the image f(m,n) can be written

I(m,n,0) = f(m,n)x*h(Rex)

3 1 16 .
= \/; (f2,0 - 3f2,2) cos® 0 + \/ gle cos f/sin 6
3 1 . 9
+1/ = <f2,2 - 3f2,0) sin” 0, (8)

where 0 is the angle by which the filter is rotated and f,; » are the convolutions
of the image with the basis filters given by

3”7)‘ 3/\ )

Framm) = flomn) (5 5catonn) )

For each pixel (m, n) there is an orientation maximizing the intensity I(m,n,0).
This orientation can be found by solving 9I/90 = 0 with I given by equation
(8). The orientation 6 that corresponds to the highest intensity is determined
by putting both solutions into equation (8). As indicated by equation (8) only 3
convolutions (f2 0, f2,1 and fa2) have to be performed, for this specific steerable
filter, in order to attain the intensity for all orientations of the filter. Conse-
quently, as compared to the Mexican hat, where the number of convolutions is
equal to the number of orientations, the computational load is reduced.
When used for fibre detection the size of the steerable filter is scaled by
finding the two a-positions satisfying h(z,y = 0) = 0 and set the difference of
the two z-positions to be equal to the fibre width. Note that, in contrast to
the Mexican hat, the steerable filter is only scaled with the width and not the
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length of the fibres. As a result of only scaling with the width of the fibres
the convolution of the filter with the image results in high intensities at several
positions along the fibres. To determine the orientation of an individual fibre
an averaging procedure has been imposed over all high intensity values that
correspond to the fibre. A threshold value is introduced, defining how high the
intensity has to be in order to belong to a fibre. Based on the orientation of
the fibre at the position with the highest intensity a search algorithm is used
to find other positions of high intensity which belong to the same fibre. The
determined orientation 6, of the fibre is given by the average of all the angles at
the positions, belonging to the fibre, where the intensity exceeds the threshold.
Also the intensity I, of the fibre is given by the average of intensities belonging
to these positions.

3. Measurement & analysis procedure

To evaluate if the steerable filter h(z,y) defined in equation (7), is capable
to determine the orientation of fibres, two different experiments have been
carried out. In the first experiment the filter is used in order to detect fibres,
with predefined orientations, in an artificially generated image. In the other
experiment fibres suspended in a viscous shear flow is studied. The data is
analysed with the steerable filter and for comparison also with the Mexican
hat, defined in equation (2).

3.1. Artificial fibres with predefined angles

A picture containing 91 artificial fibres was generated and printed on a top
quality printer. The orientations of the artificial fibres are well defined and one
degree apart. The orientations are 0, = 0,1,2,...,90°, where 6, is the angle
taken clockwise from the vertical direction, i.e. 8, = 0 and 90° when a fibre is
oriented in the vertical and horizontal direction, respectively.

A test image is acquired by taking photographs of the printout described
above. In figure 3 the test image is shown for various degrees of sharpness and
noise levels. A CCD-camera (Prosilica GE680) with a lens of focal length 50
mm (Fujinon HF50HA-1B) was used. The relative aperture was set as low as
possible to N = 2.3. The camera was placed at a distance from the picture
of about 2.2 m to obtain sharp images with a width of the fibres w close to 2
pixels, similar to the width of the fibres in figure 1. The actual width of the
fibres will depend on the precise distance between the picture and the camera.
The steerable filter is scaled to the actual width of the artificial fibres. To
generate a test image 100 images are captured and the average is calculated in
order to reduce noise. The averaged amplitude of each fibre was also adjusted
so that all fibres had the same amplitude. This was done to reduce effects due
to light variations.
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3.1a. Unsharp images. To investigate how sensitive the method is to unsharp-
ness the test image was gradually traversed out of focus. For each distance,
between the picture and the camera, a new set of 100 images was captured to
perform the same procedure as explained above, for the original sharp test im-
age. Two measurements (series A & B) were carried out. In serie A the picture
was mainly located at distances farther away from the camera lens than the
plane of focus and in serie B the picture was mainly closer than the plane of
focus. Both series include a total of 24 different distances between the camera
and the picture.

To quantify how sharp an image is the term circle of confusion will be
introduced. Consider a point light source that is located at some distance from
the camera. A fraction of the light rays, from the source, will hit the lens of
the camera and ideally, due to the curvature of the lens, the rays will converge
to a single point inside the camera. If the point source is located in the plane
of focus this single point, inside the camera, will be on the sensor plane. If the
point source is located farther away from the camera than the plane of focus
the light will still converge to a single point in the camera, although in front of
the sensor plane. At the sensor plane it will have diverged to a diffuse circle,
generally referred to as the circle of confusion. A similar effect is found for a
point source located closer to the camera than the plane of focus. However, in
this case a circle of confusion is generated since the light has yet to converge
when it reaches the sensor plane.

In this study the diameter d of the circle of confusion is used to characterize
how sharp the test images are. By using trigonometric relations and the thin
lens formula, see for instance Meyer-Arendt (1995), it is possible to derive an
analytical expression for d given by

4 — F? (s — s0)

_NSj(So—F)’ (10)

where F' is the focal length of the lens and N = F/D is the relative aperture
with the entrance pupil diameter given by D. Furthermore, sy and s; is the
distance from the lens to the plane of focus and to the picture, respectively.
The significance of d should be coupled to how large it is in comparison to the
fibre width w. Therefore d is normalized with w in the analysis.

3.1b. Images with noise. The method has also been evaluated for its sensitivity
to noise. This was done by adding noise to the images. If the original test image
is denoted by f’(m,n) the resulting image f(m,n) is given by the relation

f(m, n) = f/(m7n) + n(m7”)7 (11)

where n(m,n) is the noise. A random zero-mean Gaussian distribution has
been used to model the noise, i.e. the probability density function of the added
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FIGURE 3. Test image with different noise levels and degrees
of sharpness: (a) o5 = 0 and d/w = 0, (b) o5 = 1/4 and
d/w =0, (c) o5 =0 and d/w = —0.15 and (d) o5 = 1/4 and
d/w = —0.15.

noise amplitude is given by

Pln) = — o). (12)
oV 2w

The generated noise is uncorrelated over the image. The variable o quantifies
the noise level and is defined as the standard deviation o of the Gaussian
noise, normalized with the difference in amplitude between the fibres and its
surroundings. A total of 500 images were generated for each noise level under
study and analyzed with the steerable filter algorithm.
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3.2. Fibres suspended in a shear flow

A fibre suspension with black-dyed cellulose acetate fibres with a length to
diameter ratio of r, = 10, suspended in a viscous shear layer, has been studied
experimentally, see Carlsson, Lundell & Séderberg (2007) for details. The fibre
suspension, driven by gravity, was flowing down a slightly inclined plane to
generate the shear layer. To visualize the fibres a CCD-camera (SONY DFW-
X700) was mounted to capture images in a plane parallel to the solid wall.
In the present study 100 statistically independent images is analyzed, using
two different feature detection algorithms. The fibre orientation distribution is
calculated with the Mexican hat and the steerable filter, defined in the previous
section.

4. Results & Discussion

The steerable filter described in section 2 is evaluated to find the artificially
generated fibres shown in figure 3 and the sensitivity to unsharpness and noise
is quantified. Furthermore the method is compared to a robust, but more time
consuming, method by analyzing measurements performed on a flowing fibre
suspension.

4.1. Artificial fibres with predefined angles

In figure 4 results from analyzing the test image, with o5 = 0 and d/w = 0, for
series A and B are shown. In (a) the angular deviation 8, = 6, — 6y, is presented.
Again, 6, is the determined angle of a fibre and 6 is the predefined angle in
the test image of the corresponding fibre. In 4 (b) the intensity, normalized
with the maximum value among the fibres, I, is shown as a function of ;. The
solid and dashed line represents the results from series A and B, respectively.
The steerable filter detects all of the fibres with a maximum angular deviation
less than 1 degree. In figure 4 (b) it is seen that the intensity fluctuations
are moderate. The difference between the maximum and minimum intensity
differs with less than 10%. There seem to be a periodicity of I, in 6y of about 10
degrees. This is most likely a remaining effect of light variations due to the fact
that there are 10 fibres in each row of the test image. Since the light settings
are similar in series A and B there is a correlation between the intensities found
in these measurements. Going back to figure 4 (a) it is noted there is no strong
correlation between the results of series A and B indicating that there are no
preferred orientations of the steerable filter.

4.1a. Sensitivity to noise and unsharpness. In figure 5 (a) the probability den-
sity function (PDF) of 04 is shown for various o, with d/w = 0 and in (b) the
corresponding standard deviation X, skewness A and excess kurtosis I' defined
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FIGURE 4. (a) The angular deviation 6, as a function of 6
for o5 = 0 and d/w = 0, (b) The intensity variation I, with
0y for o5 = 0 and d/w = 0. In both (a) and (b) the solid and

dashed line corresponds to results from series A and B, respec-
tively.
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FIGURE 5. The fraction of fibres detected at different angular
deviations 0, for various o in (a) and X, A and T as a function
of o5 in (b). In both (a) and (b) d/w = 0 (sharp images).
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FIGURE 6. (a) The normalized mean intensity I, and (b) the

standard deviation ¥ for different degrees of sharpness d/w.
In both (a) and (b) o5 = 0.

1 X X; .

r= m;; 04(k,i) — 04" — 3 (15)
are shown as a function of os. In equations (13), (14) and (15) the number of
fibres per image is X = 91 and the number of images is X; = 1 and 500 for
os = 0 and oy # 0, respectively. Furthermore, 6,4(k,7) denotes the computed
angular deviation of fibre k in image i and 6y is the angular deviation averaged
over both the X, fibres and the X; images. When o, = 0 the mean angular
deviation 3 = 0.04 and —0.03° for series A and B, respectively. This could be
due to a small angular offset imposed when capturing the test images or due
to that 91 fibres are not sufficient to ensure a convergence to ; = 0. Since
the results from series A and B are similar, the results in figure 5 are based on
data from both series. It is seen, in figure 5, that the PDF of 6, is symmetrical
around 6, = 0, which is also verified by A being close to zero for all ;. For
small o, 3 grows slowly with o, and remains below one degree for o, less than
about 0.2. The growth of ¥ is however increasing with oy and is larger than
one degree for the higher o, under study. For o, < 0.15 the excess kurtosis I'
is close to zero. A more rapid increase of I' is found for higher o4 as the PDF
becomes more flat.

In figure 6 (a) the mean intensity I, is shown for various degrees of sharp-
ness. In these results o, = 0. The intensity has been averaged over all Xy
fibres and normalized to be equal to one at d = 0. The intensity has also been
used to determine the position of the plane of focus, i.e. the curves have been
translated to have a maximum intensity at d = 0. It is noted that the results
are not symmetric around d/w = 0. This is most likely due to the pixelization
of the filter, i.e. when the filter is transformed from a continuous to a discrete
form in order to compute the convolutions numerically. Recall that the fibre



162 Allan Carlsson, Fredrik Lundell & L. Daniel Séderberg

T

[\
0.2L-% >
0.75
0.151 b
»
S
22,
3
0.1r 05 \\;
%
o ]
2 o
S} ) s
(5]
0 / ‘ ‘ \ \/\
0 0

0.05f

-0.1 -0.05 0.05 0.1

d/w
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width is a function of the distance between the image and the camera lens.
For the studied degrees of sharpness the fibre width w ranges from about 1.6
to 2.4 in pixels. It is possible that the number of points to describe the filter
are too few for d/w = —0.15, where w ~ 1.6 pixels, in order to get accurate
results. This could result in the more rapid decrease of I, seen in figure 6 (a),
for negative values of d/w.

In figure 6 (b) the standard deviation of 64, given by equation (13) with
0s =0, i.e. X =91 and X; = 1, is shown. The deviation only exceeds one
degree for d/w less than approximately -0.13.

In figure 7 the standard deviation of the angular deviation ¥ is shown in
a region where noise has been added to images which are out of focus. The
standard deviation is larger than one degree in parts of the studied region,
where the generated image is out of focus and the added noise is large. However,
in a relatively large fraction of the studied region ¥ is less than one degree.

4.2. Fibres suspended in a shear flow

The measurements performed on a sheared fibre suspension were analyzed with
the steerable filter in equation (7) and the Mexican hat in equation (2). The
pixel width and length of sharp fibres, contained in the images, was approx-
imately 2 and 20 pixels, respectively. The noise level of the captured images
was 0g ~ 0.05. The angular resolution of the Mexican hat was chosen to be one
degree, i.e. the filter was rotated to 6, = 0,1,2,...,179° and the convolution
with the images was computed for each angle.
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FIGURE 8. (a) Fibre orientation distribution based on analysis
with a steerable filter (solid line) and with an elliptic Mexican
hat (dashed line), (b) the distribution of the angular difference
0., — 05, where 6, and 6, are the orientations obtained by the
Mexican hat and the steerable filter, respectively.

The fibre orientation 6 is analyzed in a plane parallel to a wall and is
defined to be zero in the flow direction. The number of detected fibres, by
the two different filters, depends on arbitrarily predefined threshold values of
intensity and will generally not be the same. The thresholds are adjusted so
that the same number of fibres is found in each image.

In figure 8 (a) a total of 6644 detected fibres is collected into bins with a
range of 3 degrees and are presented as a function of the fibre orientation 6.
Approximately the same orientation distribution is obtained with both meth-
ods. In figure 8 (b) a distribution of the angular difference of individual fibres
are shown. For most fibres the orientation, determined with the different meth-
ods, is almost the same, but occasionally the angular difference is as much as
5 degrees. The experimental measurements and results are discussed in detail
by Carlsson et al. (2007). For this study it is concluded that there is a good
agreement between the two different algorithms and that steerable filters is an
efficient method to detect and determine the orientation of fibres in flowing
suspensions.

5. Conclusions

A ridge detector within the class of steerable filters has been shown to be
an accurate and computationally efficient method of locating and determining
the orientation of fibres suspended in flowing suspensions. In an image con-
taining 91 artificially generated sharp fibres the orientation of the fibres was
determined, with a standard angular deviation X well below one degree. A
zero-mean Gaussian noise was added to the image. The standard deviation
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remained below one degree for o5 < 0.2, whereas a more rapid increase of
> was seen for larger o;. The method was also evaluated for sensitivity to
unsharpness. Also here ¥ was smaller than one degree for reasonable levels.

The steerable filter was compared to an oriented elliptic Mexican hat on a
set of data from measurements on fibres suspended in a shear flow. Approxi-
mately the same orientation distribution was obtained with both methods and
for the majority of fibres the angular difference was small, also for individual
fibres. It is noted that to obtain these results the number of convolutions per
image were 3 and 180 for the steerable filter and the Mexican hat, respectively.
Thus, compared to the Mexican hat, the steerable filter is a very time efficient
method.

Another feature of the steerable filter, which could be of use, is that it
is only scaled with the width of the fibres. The angle 6 is given for all posi-
tions along the fibres and in principle this makes it possible to determine the
curvature of deformed fibres.
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