
Statistical characteristics of two-dimensional

and quasigeostrophic turbulence

by

Andreas Vallgren

June 2010
Technical Reports

Royal Institute of Technology
Department of Mechanics

SE-100 44 Stockholm, Sweden



Akademisk avhandling som med tillst̊and av Kungliga Tekniska Högskolan i
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Abstract
Two codes have been developed and implemented for use on massively parallel
super computers to simulate two-dimensional and quasigeostrophic turbulence.
The codes have been found to scale well with increasing resolution and width of
the simulations. This has allowed for the highest resolution simulations of two-
dimensional and quasigeostrophic turbulence so far reported in the literature.
The direct numerical simulations have focused on the statistical characteristics
of turbulent cascades of energy and enstrophy, the role of coherent vortices
and departures from universal scaling laws, theoretized more than 40 years
ago. In particular, the investigations have concerned the enstrophy and energy
cascade in forced and decaying two-dimensional turbulence. Furthermore, the
applicability of Charney’s hypotheses on quasigeostrophic turbulence has been
tested. The results have shed light on the flow evolution at very large Reynolds
numbers. The most important results are the robustness of the enstrophy
cascade in forced and decaying two-dimensional turbulence, the unexpected
dependency on an infrared Reynolds number in the spectral scaling of the
energy spectrum in the inverse energy cascade, and the validation of Charney’s
predictions on the dynamics of quasigeostrophic turbulence. It has also been
shown that the scaling of the energy spectrum in the enstrophy cascade is
insensitive to intermittency in higher order statistics, but that corrections might
apply to the ”universal” Batchelor-Kraichnan constant.

Descriptors: two-dimensional turbulence, decaying turbulence, quasigeostrophic
turbulence, direct numerical simulation (DNS), coherent vortices, energy cas-
cade, enstrophy cascade, intermittency, massively parallel simulations
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Preface

This thesis investigates the statistical characteristics of two-dimensional and
quasigeostrophic turbulence, by high resolution direct numerical simulations.
The first part introduces some fundamental concepts in the understanding of
the two turbulent regimes and links these to current research activities. The
second part is a collection of the following articles:

Paper 1. A. Vallgren & E. Lindborg,
The enstrophy cascade in forced two-dimensional turbulence.
Under consideration for publication in the Journal of Fluid Mechanics.

Paper 2. E. Lindborg, A. Vallgren & P. Davidson,
Testing Batchelor’s similarity hypotheses for decaying two-dimensional
turbulence. Submitted to Physical Review Letters.

Paper 3. A. Vallgren,
Infrared Reynolds number dependency of the two-dimensional inverse energy
cascade. Submitted to the Journal of Fluid Mechanics.

Paper 4. A. Vallgren & E. Lindborg,
Charney isotropy and equipartition in quasigeostrophic turbulence
Accepted for publication in the Journal of Fluid Mechanics.

Paper 5. A. Vallgren,
Simulations of two-dimensional and quasigeostrophic turbulence
Technical Report.
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Introduction





CHAPTER 1

Introduction

Welcome to the amazing Flatlands! A very conservative place where only vis-
cosity makes a difference and where new ideas are often abandoned in favour
of the original predictions. The statistical properties of two-dimensional tur-
bulence are still, 40 years from when it was more profoundly theoretized, an
active research field. Despite the apparent simplicity in dealing with two rather
than three spatial dimensions, 2D turbulence is possibly richer in its dynamics
than 3D turbulence. The reason is found in its conservational properties. Both
energy and a multitude of vorticity quantities, called Casimirs, are inviscidly
conserved, the latter on a parcel. One such Casimir, enstrophy, defined as
Ω = ω2/2 where ω = ez · ∇× u is the vorticity and u is the two-dimensional
velocity field, has profound importance in two-dimensional turbulence, as we
will see. The conserved quantities impose restrictions on the flow evolution
and is thus of both mathematical and physical interest. Perhaps of most phys-
ical relevance, is the observation that there is no forward energy cascade as in
three-dimensional turbulence. Richardson’s (1922) view of 3D turbulence was
summarized as

Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity.

In two-dimensional turbulence, this picture is reversed, with energy cascading
towards larger scales, while enstrophy cascades towards smaller scales. One
might then ask why we care about two-dimensional turbulence, seemingly just
an academic topic very far from the real world? A few moments thought re-
veals that it might not be just of academic interest. We may find quasi-two-
dimensional flows in a wide variety of situations. One such example is the flow
in a fluid film on top of a surface of another fluid or a rigid object. Another ex-
ample is a rapidly rotating fluid. A third example, which is the main motivation
of this thesis, is the approximate 2D nature of tropospheric and oceanic flows
(see figure 1.1, illustrating typical flow structures). This can be understood
as a consequence of the small aspect ratio D/L of large scale flow structures,
where D ∼ 10 km is the approximate scale height of the troposphere and
L ∼ 1000 km is the typical length scale of cyclones and anticyclones, advected
by a practically horizontal flow. In fact, the motion of tropical cyclones have
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2 1. INTRODUCTION

Figure 1.1. Examples of quasi-2D flow regimes. Left: In-
frared satellite image from March 10, 2008, showing a mature
cyclone west of the British Isles. Right: RGB satellite image
showing an algal bloom event in the Baltic Sea, acting as a
passive tracer showing the flow field near the sea surface. From
SMHI.

been successfully predicted by 2D vortex models (Tabeling, 2002). The ques-
tion is whether the atmospheric (kinetic) energy spectrum can be explained by
two-dimensional turbulence. Nastrom and Gage (1985) and Gage and Nastrom
(1986) presented observational data on the energy spectrum, showing a k−3 ki-
netic energy spectrum at large scales and a k−5/3-spectrum at scales smaller
than about 500 km (see figure 1.2). There have been numerous attempts to
explain these observations in terms of 2D turbulence over the years, e.g., Lilly
(1983), Smith and Yakhot (1994) and Tung and Orlando (2003). Lindborg
(1999; 2006) argued that the k−3-range can be explained in terms of a 2D
enstrophy inertial range whereas the k−5/3-range should most likely not be in-
terpreted as a result of 2D turbulent interactions. Thus, although there is much
evidence for a 2D enstrophy cascade range at large scales, the dynamical origin
of the k−5/3-range at high wave numbers is still debated. There are namely two
possible candidates for such a range; a forward cascade of 3D turbulent energy
(e.g., Lindborg, 2006 and Tung and Orlando, 2003) or an inverse cascade of 2D
energy (e.g., Lilly, 1983; Smith, 2004). The former depends on energy being
fed from large-scale baroclinic motions and the latter from convective sources
such as thunderstorms. To settle this question, one needs to increase the com-
plexity in the modeling by allowing for rotation and stratification, which are
two important features of tropospheric flow. Charney (1971) derived a theory
of what is called quasigeostrophic turbulence. This turbulent regime takes into
account the effect of background rotation and a stable stratification, and de-
scribes the flow dynamics at relatively large, synoptic, scales. A key point in
Charney’s theory was the introduction of a stretched coordinate in the vertical,
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Figure 1.2. Observed kinetic energy spectrum divided into
zonal and meridional components and potential energy spec-
trum in terms of the potential temperature, clearly indicating
the existence of two spectral ranges. From Nastrom and Gage
(1985).

ζ = (N/f)z, where N is the Brunt-Väisälä frequency which is a measure of the
stratification and f is the Coriolis parameter which is a measure of the rotation
rate. By doing this, Charney predicted a clear analogy with two-dimensional
turbulence, in terms of cascade directions and approximately isotropic and ho-
mogeneous energy spectra. This thesis explores the statistical characteristics
of pure two-dimensional and quasigeostrophic turbulence in order to approach
the subtle question about the origins of the atmospheric energy spectrum. This
has been accomplished by developing two codes by which a number of direct
numerical simulations have been carried out for these two flow regimes. Not
only is the nature of large-scale atmospheric turbulence interesting in its own
right, but the outcomes of these studies are also of interest for the development
of operational forecast and climate models. The next sections will describe the
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statistical characteristics of two-dimensional and quasigeostrophic turbulence
in more detail. For a more thorough review of two-dimensional turbulence, the
reader is referred to Tabeling (2002) and Danilov and Gurarie (2000). The
latter authors also cover quasi-2D turbulence including quasigeostrophic tur-
bulence.



CHAPTER 2

Strictly two-dimensional turbulence

2.1. Introduction

Richardson’s view of the turbulent cascade cannot be valid in two-dimensional
turbulence. The physical constraints imposed on a two-dimensional flow, pre-
vent a dominant forward energy cascade. The constraints follow from inviscid
conservation of both energy and enstrophy, which can be realized by deriving
the energy and enstrophy equation resulting from multiplying the 2D Navier-
Stokes equation by u and the vorticity equation by ω, respectively. The incom-
pressible Navier-Stokes equation in its vorticity formulation is given by

∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (2.1)

where ν is the kinematic viscosity. One way to picture the role of the invis-
cid (ν = 0) conservation properties is to consider the temporal evolution of
the energy and enstrophy centroid wave numbers, respectively, following Vallis
(2006). Noting that the mean energy and enstrophy can be written as

Ē =
1

2

∫ (
u2 + v2

)
dA =

1

2

∫ [(
∂ψ

∂y

)2

+

(
∂ψ

∂x

)2
]

dA, (2.2)

Ω̄ =
1

2

∫
ω2dA =

1

2

∫ (
∇2ψ

)2
dA, (2.3)

where ω = ez · ∇ × u is the vorticity and the stream function ψ is defined so
that u = −∂ψ/∂y, v = −∂ψ/∂x and ω = ∇2ψ, and transforming into spectral
space, we obtain

Ē =

∫
E(k)dk =

1

2

∫
(ûû∗ + v̂v̂∗)dk = −

1

2

∫
k2ψ̂ψ̂∗dk, (2.4)

Ω̄ =

∫
Ω(k)dk =

1

2

∫
ω̂ω̂∗dk = −

1

2

∫
k4ψ̂ψ̂∗dk =

∫
k2E(k)dk. (2.5)

We now define the energy centroid wave number as

kE =

∫
kE(k)dk∫
E(k)dk

, (2.6)

and introduce

I =

∫
(k − kE)2E(k)dk =

∫
k2E(k)dk − k2

E

∫
E(k)dk, (2.7)
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6 2. STRICTLY TWO-DIMENSIONAL TURBULENCE

which upon temporal differentiation gives a measure of the spreading of the
energy distribution. To obtain (2.7), the definition of kE (2.6) has been used.
If all energy is initially centred at kE , dI/dt should be larger than zero. Since
both energy and enstrophy are inviscidly conserved, it follows that

dkE

dt
= −

1

2kEĒ

dI

dt
< 0, (2.8)

(2.9)

which is consistent with an inverse energy cascade, i.e., a transfer of energy
towards larger scales. Similarly, if we introduce an enstrophy wave number
centroid kΩ and let

kΩ =

∫
Ω(k)dk∫

k−1Ω(k)dk
, (2.10)

and introduce

J =

∫
(k−1 − k−1

Ω )2Ω(k)dk =

∫
E(k)dk − k−2

Ω

∫
Ω(k)dk, (2.11)

a little manipulation yields

dkΩ

dt
=

k3
Ω

2Ω̄

dJ

dt
> 0. (2.12)

Thus, the enstrophy wave number centroid (in which all enstrophy is initially
located) moves towards higher wave numbers (smaller scales) with time, which
can be interpreted as a forward cascade of enstrophy. These are heuristic argu-
ments but nevertheless show the general tendency for the cascade directions.
Note that this argument does not forbid energy to be transferred to smaller
scales, it just tells that more of the energy propagates towards larger scales.
The same argument holds for the enstrophy cascade.

Our next step is to elaborate on the existence of a double cascade scenario
and inertial ranges in two-dimensional turbulence. Let us consider a case in
which we feed a turbulent system with energy at a scale kf . Given that the
general picture of the cascade directions holds, as reflected by the time evolution
of wave number centroids, we would expect energy to propagate upscale and
enstrophy to propagate downscale. If there is no large-scale drag imposed
and we consider an infinitely large domain, we would expect an undisturbed
energy cascade towards larger scales. Simultaneously, we would expect an
enstrophy cascade towards smaller scales, ultimately removed by small-scale
viscous dissipation. Given a large enough Reynolds number so that kf <<
kmax, it is reasonable to expect that there would be a region, kf < k < kmax,
practically undisturbed by viscous dissipation. Assume that we feed the system
with energy at a rate ε and enstrophy at a rate η (the two are related by
ε = η/k2

f ). In the energy cascade range, the only parameters of practical
importance would be the energy density E(k), the energy injection rate ε and
wave number k. Accordingly, we let E(k) ∼ εakb. Dimensional reasoning gives
that a = 2/3 and b = −5/3 so that E(k) ∼ ε2/3k−5/3. Similar argumentation
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Figure 2.1. Qualitative picture of the double cascade of
forced two-dimensional turbulence. From Vallis (2006).

gives that E(k) ∼ η2/3k−3 in the forward enstrophy cascade range. These
predictions were introduced by Kraichnan (1967) and Leith (1968) and are
illustrated in figure 2.1. Thus, for the inverse energy cascade range,

E(k) = Kε2/3k−5/3, (2.13)

and for the enstrophy cascade range;

E(k) = Cη2/3k−3, (2.14)

where we refer to C as the Kraichnan constant in forced two-dimensional turbu-
lence and the Batchelor-Kraichnan constant in decaying two-dimensional tur-
bulence (Batchelor, 1969). One major assumption that these predictions rely
on is the locality of the cascades, meaning that it is assumed that there is no
interaction with scales outside the inertial ranges. Already in 1967, Kraichnan
hypothesized that a logarithmic correction should manifest in the k−3 enstro-
phy cascade range, although he did not provide any exact details on its form.
In a follow-up paper, Kraichnan (1971), provided a complimentary theoretical
prediction, namely

E(k) = C′η2/3
ω k−3

[

ln

(
k

k1

)]−1/3

, (2.15)

where C′ is a constant of order unity, which Kraichnan estimated to 2.626 based
on a turbulence test-field model and k1 marks the lowest wavenumber of the
inertial range. The reason for this correction to the clean k−3-spectrum, is that
the enstrophy flux would otherwise grow with k as a consequence of a diverging
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rate of shear integral at low k ∼ k1. This correction allows for a k-independent
C′ and a constant enstrophy flux range.

2.2. The enstrophy cascade

In this section we review the enstrophy cascade in forced two-dimensional tur-
bulence. The cascade theory of Kraichnan (1967) has been tested numerically
in a large number of studies, not the least because it is more tractable in terms
of computational resources than simulations of the inverse energy cascade. At
the time of the early theoretical advances, the computational resources were
very limited, but attempts were made to simulate the two-dimensional Navier-
Stokes equation. However, the limited resolution available at this time was
only enough to indicate a qualitative statistical picture of low Reynolds num-
ber 2D turbulence. During the 1980’s and 1990’s, the computational resources
allowed for more resolved and more accurate numerical simulations. The results
from these experiments indicated that the k−3 or possibly the logarithmically
corrected spectrum, was not as robust as anticipated, with reports on steeper
energy spectrum (e.g., Legras et al., 1988; Gilbert, 1988; Maltrud and Val-
lis, 1991, and Kaneda and Ishihara, 2001). The presence of vortices was now
believed to distort the spectral shape of the inertial energy spectrum by in-
troducing intermittency. With ever-increasing computational performance, the
results once again started to point toward the early theoretical predictions by
Kraichnan-Leith (e.g., Lindborg and Alvelius, 2000; Boffetta, 2007 and Bracco
and McWilliams, 2010). The logarithmically corrected enstrophy spectrum
has been numerically obtained by, e.g., Pasquero and Falkovich, 2002. Most
of these studies have included a large-scale friction (also referred to as drag or
hypodiffusion) to prevent energy from growing and drive the turbulence into a
stationary state where energy is dissipated at large scales at the same rate at
which it is injected. If the turbulence is forced at a very small wave number,
corresponding to the scale of the computational domain, and no large scale
drag is introduced, energy will pile up in the smallest wave numbers and there
is a clear risk that a state soon develops which is very different from the dou-
ble cascade scenario. If the turbulence is forced at a considerably larger wave
number, it will become extremely demanding to resolve a sufficiently large span
of scales to obtain a broad enstrophy cascade range. Thus, no serious attempt
was made to test the perhaps strongest prediction of Kraichnan’s theory –
the existence of a stationary enstrophy cascade in the absence of large scale
drag and in the presence of a constant energy growth. However, we now have
performed such simulations. With a series of extremely high resolution simula-
tions, as presented in Paper 1, our results suggest that the enstrophy cascade
may indeed be more robust than recently believed. In the absence of a large
scale drag, we have obtained results that confirm Kraichnan’s original predic-
tion (1967) with a clean k−3 energy spectrum in the enstrophy cascade range,
without a logarithmic correction, as Kraichnan proposed in his follow-up paper
(1971). Figure 2.2 illustrates the real vorticity field in a simulation forced at
large scales. Note in particular the dominance of vorticity filaments, indicative
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Figure 2.2. Vorticity field and zoom in from a simulation
forced at large scales, showing the dominance of vorticity fila-
ments, resulting from a forward enstrophy cascade.
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Figure 2.3. Compensated energy spectra, k3E(k)ε−2/3
ω , from

a set of very high resolution simulations of forced two-
dimensional turbulence.

of the forward enstrophy cascade. This cascade dominates the dynamics at
several wave number decades, as shown in figure 2.3. However, the universality
might fail with the constant C, which has been found to vary in our simulations.
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2.3. The energy cascade

A stationary inverse energy cascade range can only be obtained in the presence
of a large scale drag, since energy would otherwise cascade indefinitely towards
larger scales. In reality, there is a physical limit on how far the cascade can
reach, namely the domain size. As energy reaches the smallest wave number, it
will continuously pile up at this wave number, forming what is referred to as an
Einstein-Bose condensate. Such a condensate can clearly bring the system away
from the double cascade scenario by Kraichnan-Leith (e.g., Smith and Yakhot,
1994). In order to generate a double cascade with two wide inertial ranges,
very high resolution simulations are required. Boffetta (2007) performed such
simulations, showing a nearly perfect k−5/3 inverse cascade range in presence
of a linear Ekman drag, while obtaining an enstrophy inertial range a little
steeper than k−3, mainly for the highest resolution simulations. A linear drag
is often introduced as a large-scale energy dissipation mechanism, found in real
systems such as the atmosphere and in physical experiments. By investigating
the fluxes of energy and enstrophy in physical space, Boffetta (2007) found
that there is a very small correlation between the fluxes of these. This suggests
that it should be possible to generate a single cascade of energy. This was also
proposed by Tran and Bowman (2004). Therefore, it seems possible to force the
fluid at scales near the small-scale dissipation range and obtain the classical
k−5/3-spectra, despite dissipating nearly all enstrophy at the forcing scales.
However, this suggestion has been cast in doubt. Starting with Borue (1994),
it was found that the implementation of a large-scale hypodiffusion steepens
the energy spectrum considerably to almost a k−3-spectrum. The possible
reason was found in the presence of vortices over all scales, whereas Boffetta et
al. (2000) explained it in terms of a bottleneck effect as in three-dimensional
turbulence (Falkovich, 1994). However, Smith and Yakhot (1994) found that
the k−5/3-spectrum steepened to an exponent ! −2 when resolving both of
the cascades, as a consequence of vortex generation in the enstrophy cascade
range. This result was later confirmed by Scott (2007), who provided estimates
on when this steepening occurs by comparing the forcing wave number with the
highest resolved wavenumber, based on high resolution simulations. A closer
look at the results by Boffetta indicates that there is a small range located near
the forcing scale in the inverse cascade, exhibiting a steeper slope than −5/3.
To summarize, the issue seems rather involved, and there is no clear evidence
for a universal and local energy inertial range, as also highlighted by Danilov
and Gurarie (2001a, 2001b). As a response to these differing results, we have
performed a set of high resolution simulations with and without a large scale
linear drag of varying strength and with a variable forcing wave number. It has
been found that the form of the energy spectrum is sensitive to the strength
of the large scale drag. With the introduction of an infrared Reynolds number
Reα = kf/kα, where kf is the forcing wave number and kα is a frictional wave
number, we demonstrate in paper 3 that the k−5/3 energy spectrum steepens
to k−2 or steeper at high Reα.
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2.4. Decaying turbulence

Decaying turbulence describes the evolution of a flow field in the absence of
forcing and without any large scale dissipation, principally conserving energy at
high Reynolds number. In that sense, decaying turbulence might be considered
the purest case of two-dimensional turbulence. However, the initial conditions
may differ considerably, although this should not cause any different results
if the evolution is to be universal as predicted by Kraichnan-Batchelor-Leith.
Therefore, it would seem natural that this case should be subject to less dispute.
This is not the case. In fact, decaying 2D turbulence has been subject to
renewed interest. As an initial flow field is released to decay freely, we could
expect energy to cascade toward larger scales, where it is unaffected by small-
scale viscosity, and so conserving energy, whereas the enstrophy would cascade
toward smaller scales where it is dissipated. The question is how the energy
spectrum evolves under these circumstances? According to Batchelor (1969),
we could anticipate the survival of an enstrophy cascade, with an enstrophy

spectrum scaling as Ω(k) ∼ ε2/3
ω k−1, where εω is the enstrophy dissipation

rate. This is the classical scenario. However, Dritschel et al. (2007) questioned
this theoretical prediction. According to Dritschel et al. (2007), the enstrophy
dissipation vanishes in the limit ν → 0 and this suggests that the enstrophy
spectrum should instead scale as Ω(k) ∼ Ωk−1(lnRe)−1. However, we have
performed a number of very high resolution simulations (as presented in paper
2) in which we find that Dritschel’s argument that the inertial range should
contain an increasing portion of the total enstrophy with time should be called
into question. Thus, the relative enstrophy content has been found to increase
at the lower wave number end, where a number of coherent vortices reside.
Our simulations also show that the Batchelor-Kraichnan constant C is of order
unity, but varies, possibly as a consequence of extreme intermittency in the
enstrophy dissipation, thus following the argument by Landau and Lifshitz
(1987). In essence, we reproduced Batchelor’s result, with a k−1 enstrophy
spectrum in all our simulations, despite very different initial conditions, which
are visible also at later times (see figure 2.4). Our results are illustrated in
figure 2.5, which shows the compensated enstrophy spectra kΦ(k)χ−2/3, where
Φ(k) is the enstrophy spectrum and χ is the enstrophy dissipation rate, from
three simulations with different initial conditions, taken at three instances in
time. It is noteworthy that the steeper spectra obtained by earlier investigators
(e.g., McWilliams, 1984 and Bartello and Warn, 1996), might be an artefact
of a low Reynolds number, since the width of the enstrophy inertial range

decreases slowly with time as the dissipation wave number kd ∼ ε1/6
ω ν−1/2

ω , and
εω decreases with time. We have also found that power law exponents of decay
rates of quantities such as the enstrophy and hence enstrophy dissipation are
dependent on the initial conditions. This has been shown also by van Bokhoven
et al. (2007).
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Figure 2.4. Snapshots of the ”final” states from three sim-
ulations of decaying two-dimensional turbulence with various
initial conditions. Red colour corresponds to positive vorticity
and blue colour to negative vorticity.
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Figure 2.5. Compensated enstrophy spectra from three sim-
ulations (red, blue and green) of decaying two-dimensional
turbulence, taken at three instances (solid, dashed and dot-
ted) during each simulation. The abscissa is a nondimensional
wavenumber, where ηω = ν1/2χ−1/6 is a characteristic scale of
enstrophy dissipation.

2.5. Coherent structures

We have performed a number of simulations revealing the existence of strong
and long-lived vortices which we refer to as coherent structures. They are easy
to distinguish by the human eye as they stand out as ordered structures in
a chaotic sea of filamentary vorticity debris (see figure 2.4). They are also
belived to cause departures from universal scaling laws in two-dimensional tur-
bulence. McWilliams (1984, 1990) found early evidence of stuctures containing
a substantial fraction of vorticity of two-dimensional flows, with lifetimes far
exceeding the characteristic time for nonlinear interactions. He found that vor-
tices spontaneously develop if the forcing and friction is relatively weak and the
Reynolds number sufficiently high. They are approximately axisymmetric and
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are stable to perturbations from the quiescent surroundings but not to encoun-
ters by other strong vortices, which could result in like-sign vortex mergers.
McWilliams (1990) noted that the lock-up of vorticity inside coherent vortices
effectively reduces cascade rates of both enstrophy and energy. By introducing
a vortex-census algorithm, he enabled detailed studies of their properties and
found a general trend of the ”survival of the fittest”. Dritschel (1995) con-
tributed with a detailed study of vortex interactions and showed that these
are relatively short inelastic interactions resulting in two or three new coherent
vortices, thus questioning the picture of the inverse energy cascade as a se-
ries of merging events resulting in ever-growing vortices, as suggested by, e.g.,
Borue (1994), in forced two-dimensional turbulence. In decaying turbulence, it
is more evident that large-scale structures form as a result of vortex mergers,
finally resulting in two opposite-sign vortices (Tabeling, 2002). An interest-
ing question is whether any universal theory can account for coherent vortices.
Carnevale et al. (1991) suggested such a theory for vortex circulation, radius,
mean enstrophy and kurtosis, but there are ample examples of deviations from
such a governing theory (Tabeling, 2002).

2.6. β-plane turbulence

To accomodate for a background rotation, a β-plane approximation has been
introduced to the 2D Navier-Stokes equation;

∂ω

∂t
+ (u · ∇)ω = −ν∇2ω − βv. (2.16)

The β-term arises from the following argument. We consider a rotating sphere
such as illustrated in figure 2.6. and note that the Coriolis force 2Ω × u can
be rewritten by defining

f ≡ 2Ω sinφez, (2.17)

where ez is the normal unit vector to a locally Cartesian tangent plane on the
sphere. For small variations in the meridional direction

f = 2Ω sinφ ( 2Ω sinφ0 + 2Ω(φ− φ0) cosφ0, (2.18)

and we approximate the Coriolis parameter to vary linearly on the tangent
plane as

f = f0 + βy, (2.19)

where
f0 = 2Ω sinφ0. (2.20)

Thus

β =
df

dy
=

2Ω cosφ0

R⊕

, (2.21)

where R⊕ is the radius of the Earth, and equation (2.16) approximately de-
scribes the motions on a rotating sphere, provided that the flow is spatially
limited so that the geometric effects of sphericity are negligible, and is known
as the β-plane approximation. It allows for the use of a local Cartesian rep-
resentation of the Navier-Stokes equation, while still capturing the important
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dynamical effects stemming from sphericity and is dynamically equivalent to a
differentially rotating system.

We thus see the existence of an additional term βv on the right hand side.
We may now ask what dynamical consequences the inclusion of this term might
have. Rhines (1975) investigated this matter and showed that turbulent energy
is dispersed into waves at scales larger than approximately

kβ =

√
β

2
√

E
, (2.22)

where E is the r.m.s. energy of the flow. This scale is approximate and there
exists a number of definitions of this arrest scale, which do not differ too much.
Thus, the inverse energy cascade continues up to a scale kβ , from which no
upscale energy cascade is possible. Instead, the transition to wave propaga-
tion (Rossby waves) is overtaken by a flow characterized by steady alternating
zonal jets. This picture is helpful in explaining the characteristic size of eddies
in the Earth’s atmosphere, and the prevalence of zonal flows. The waves are
referred to as Rossby waves, and its dispersion relation can be obtained by
linearizing (2.16) upon a basic state with a perturbation. Rossby waves are
an important ingredient in atmospheric dynamics, with large effects on both
daily weather and regional climate. Many numerical experiments over the years
have to a large degree verified Rhines’ prediction. Maltrud and Vallis (1991)
found that the β-effect tend to destroy coherent vortices at large scales but that
the resulting anisotropy at scales larger than kβ does not influence the inertial
range characteristics at smaller scales. Later studies have concerned the statis-
tical characteristics of the resulting zonal jets (e.g., Vallis and Maltrud, 1993;
Manfroi and Young, 1998; Danilov and Gurarie, 2004). It is noteworthy that
attempts have been made to explain the atmospheric flow structure on Jupiter,
with its zonal jets and superstationary vortices, in terms of two-dimensional or
quasigeostrophic turbulence with a β-effect (e.g., Kukharkin and Orszag, 1996;
Smith, 2004). An example of a simulation with a β-effect is shown in figure 2.7
(left), where the anisotropy at large scales is clearly visible. Figure 2.7 (right)
also shows a satellite image of Jupiter, with the characteristic zonal flow and
the famous red spot visible as a coherent vortex in the southern hemisphere.
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Figure 2.6. Tangent plane approximation to the quasi-
spherical Earth. The rotation vector components in the plane
are shown as well as the direction of the unit vectors.

Figure 2.7. Left: vorticity snapshot from a simulation with
moderate β. Right: satellite image of Jupiter’s atmosphere
(from NOAA).



CHAPTER 3

Quasigeostrophic turbulence

So far, we have considered two-dimensional turbulence. In many natural sys-
tems, such as the atmosphere, there is a vertical stratification. Horizontal
variations of the density introduces potential energy into the system, which
can be released by the excitation of baroclinic motions. These motions are
manifested in the atmosphere by the development of cyclones and anticyclones
in the midlatitudes, largely responsible for the day-to-day weather we experi-
ence. These systems are generally fully developed at scales ∼ 1000 km and can
in part be studied within the framework of QG turbulence. The dynamics is
described by the QG potential vorticity equation, which is given by

∂q

∂t
+ (uh · ∇h) q + βv = (−1)n+1νq∇2nq + f + (−1)p+1νu∇−2pq, (3.1)

where

q = ∇2ψ (3.2)

is the QG potential vorticity, ∆ is the three-dimensional Laplace operator in
scaled coordinates, ψ is the stream function, uh = uex+vey = −∂yψex+∂xψey

is the horizontal velocity and ∇h is the horizontal gradient operator, νq is the
hyperviscosity coefficient and νu is an optional hypofriction (p > 0) or Ek-
man drag (p = 0) coefficent. For a complete derivation of this equation, see
appendix A. The most important property of this equation is the inviscid con-
servation of potential vorticity. Note also that the quasigeostrophic motion is
in the horizontal plane but that these motions generally vary in the vertical.
This turbulent regime was theoretized by Charney (1971). By scaling the ver-
tical coordinate by N/f , he argued that the flow field should obey a special
type of isotropy, which has been given the name Charney isotropy, after Char-
ney (1971). Charney isotropy means that the energy spectrum, in the scaled
variables, is invariant in the different directions (e.g., horizontal and vertical).
Charney also predicted approximate equipartition between kinetic and poten-
tial energy in the three-dimensional energy spectra. The prediction of Charney
isotropy has been supported by numerical experiments such as Hua and Haid-
vogel (1986) and McWilliams (1989).

Just as in two-dimensional turbulence, there is rich dynamics in the flow
(see figure 3.1), with the development of coherent structures under favourable
conditions. The presence of a vertical dimension introduces new features of
these vortices, which can be barotropic or baroclinic to various degrees, and

16
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Figure 3.1. Potential vorticity snapshot from a freely de-
caying quasigeostrophic simulation. Red (blue) colour corre-
sponds to positive (negative) potential vorticity.

for a thorough review of their statistical properties, it is recommended to con-
sult, e.g., McWilliams (1990), McWilliams et al. (1999), von Hardenberg et al.
(2000) and Reinaud et al. (2003). In paper 4, we present results on a series
of high resolution simulations that essentially confirm Charney’s predictions
under a wide range of conditions and the similarities with 2D turbulence. Fur-
thermore, it is shown that the prediction might even be stronger than Charney
anticipated, since the general picture holds qualitatively also in presence of a
planetary vorticity gradient. It is also suggested in appendix A, that there is
the potential of extending the quasigeostrophic regime to scales approximately
equal to the deformation radius.



CHAPTER 4

Numerical method and the codes

Two pseudospectral codes, PNSE2D and QGE3D have been developed to solve the
two-dimensional Navier-Stokes and Charney QG potential vorticity equation,
respectively. The codes have been written in Fortran90. Pseudospectral means
that the time-stepping is performed in spectral space whereas the nonlinear
products are calculated in real space. Fourier transforms are calculated with the
aid of an efficient FFT-package called FFTW. Time-stepping is performed with a
Runge-Kutta fourth order scheme and the time step is determined using a CFL-
condition. Viscosity, being it small scale Navier-Stokes viscosity, hyperviscosity
or large scale hypodiffusion or linear Ekman drag, is calculated with the use
of an integrating factor technique. The codes are essentially free from aliasing
errors by the use of an 8/9-dealiasing technique, which allows for a wider range
of Fourier modes to be captured compared to the traditional 2/3-dealiasing. For
a more thourough review of the details of the codes, see paper 5, which also
discusses some statistical measures and parallelisation approaches. It should
be noted that the codes have been customized to run on massively parallel
super computers, to allow for very high resolution simulations. A survey of the
speedup of the codes is also presented in paper 5.

18



CHAPTER 5

Summary of the papers

Paper 1

The enstrophy cascade in forced two-dimensional turbulence. This paper inves-
tigates the enstrophy cascade in forced two-dimensional turbulence by perform-
ing a set of high resolution simulations with different forcing wave numbers.
One of the simulations is larger than any other simulation presented in the
literature so far. In the absence of a large-scale drag, we obtain Kraichnan’s
original prediction (1967) of a clean k−3 energy spectrum in the enstrophy in-
ertial range. However, it is found that the Kraichnan constant varies slightly
between the simulations and is decreasing very slowly with time. When forc-
ing is applied at relatively large wave number, we obtain coherent vortices at
scales larger than the forcing scale, and intermittency measures become very
large at all scales. However, when forcing is applied at small wave number,
intermittency statistics are close to Gaussian. The main conclusion is that the
enstrophy cascade is a robust feature of two-dimensional turbulence.

Paper 2

Testing Batchelor’s similarity hypothesis for decaying two-dimensional turbu-
lence. This paper studies the enstrophy cascade in decaying two-dimensional
turbulence to test Batchelor’s hypothesis of an equilibrium range. By perform-
ing three simulations with very different initial conditions, Batchelor’s hypoth-
esis is corroborated. As in paper 1, it is found that the Batchelor-Kraichnan
constant varies. It is ∼1.4 in two of the simulations and ∼1.1 in one. It is
hypothesized that a higher degree of intermittency of dissipation causes the
constant to be lower in one of the simulations.

Paper 3

Infrared Reynold’s number dependency of the two-dimensional inverse energy
cascade. In this paper, the inverse energy cascade is subject to high resolution
numerical experiments. A surprising result is found, showing that the k−5/3-
scaling in the inertial energy range is likely to be a low frictional Reynolds
number effect, in presence of a large-scale linear friction. When the inertial
energy range is wide enough, the linear friction is too weak at the forcing scales
to prevent the formation of coherent vortices. These act to steepen the energy

19
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spectrum from k−5/3 to k−2 or steeper. The linear friction is shown to impose
a larger effect than the ultraviolet dissipation.

Paper 4

Charney isotropy and equipartition in quasigeostrophic turbulence. This paper
is devoted to studies of quasigeostrophic turbulence, as theoretized by Charney
(1971). We verify Charney’s predictions of isotropy and equipartition by per-
forming high resolution three-dimensional simulations. It is also demonstrated
that Charney’s predictions also holds in the presence of a β-effect and in freely
decaying quasigeostrophic turbulence. The analogy with two-dimensional tur-
bulence is investigated and confirmed.

Paper 5

Simulations of two-dimensional and quasigeostrophic turbulence: Technical Re-
port. Paper 5 is a technical report that describes the two codes in greater
detail. The code structures are explored and underlying assumptions, statisti-
cal measures and code performance are presented for each code, respectively.
The codes are found to scale well in massively parallel systems and they allow
for cutting edge numerical experiments.



CHAPTER 6

Outlook

It has become clear that Kraichnan’s and Batchelor’s predictions on the form
of the energy spectrum in the enstrophy inertial range are robust at high Rey-
nolds number. Earlier investigations found steeper energy spectrum and it was
believed to be an effect of intermittency. Our results suggest that intermit-
tency only affects the Batchelor-Kraichnan constant and not the k−3-scaling.
We now believe we are in a position to interpret this fact as a consequence
of intermittency in the enstrophy dissipation. This was originally addressed
by Landau and Lifshitz (1987), who concluded that the spatial variance of the
dissipation is nonuniversal and could thus not result in a universal averaging
of the dissipation. Kraichnan (1974) elaborated on this argument, and con-
cluded that this is a result of spatial averaging over the domain scale, which
contains patches of enhanced dissipation larger than the inertial scales, which
we aim to describe. Thus, when determining the dissipation rates, it should
be taken as an ensemble average of smaller subdomains making up the whole

flow field, since the average ε̄ω =< ε2/3
ω > is different from ε̄ω2/3. In paper 2,

we suggest that the small variation observed in the constant may be explained
as a consequence of intermittency. In a revision of paper 1, this hypothesis
will be quantitatively investigated. Perhaps of greater physical interest, is to
extend the quasigeostrophic framework to the primitive equations, which are
a set of nonlinear equations used in atmospheric and oceanic modeling (Vallis,
2006). The equation set contains the momentum equations in the horizontal,
the hydrostatic approximation in the vertical and is completed by the thermo-
dynamic and continuity equations. The use of the primitive equations allows
for variations of the Rossby deformation radius by varying the stratification,
which is fixed in the framework of Charney quasigeostropy. By doing this, we
aim to explore the dynamic origins of the atmospheric energy spectrum and
determine the origin of the high wave number k−5/3-range.
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APPENDIX A

Derivation of the QG potential vorticity equation

A.1. Introduction

This appendix gives an introduction to the dynamics of the midlatitude tro-
posphere and more specifically the quasigeostrophic equations. These are a
specific set of equations that describes the synoptic scale motions in a bounded
domain on a rotating sphere such as the Earth. The aim is to derive a relevant
formulation of the quasigeostrophic potential vorticity equation. The starting
point will be the 3D Navier-Stokes equation on a rotating sphere, from which
we will systematically exploit the involved terms on our way to quasigeostrophy
following Pedlosky (1987).

A.2. Scaling the 3D Navier-Stokes equation

We consider motions on a rotating sphere of radius r0, ignoring the slight
departure from sphericity of the Earth. We assume that the vertical scale of
motion is small enough so that the gravitational acceleration can be considered
constant through the depth of the fluid. In addition, we assume that the scales
are large enough so that viscous effects can be ignored. Since we can anticipate
that the geostrophic approximation must fail near the equator, the theory must
apply to a spatial extent that is less than global. Hence, the restriction is that

O
(

L
r0

)
< 1. The spherical coordinate system is defined in such a way that the

radius r defines the surface-normal direction, whereas θ is the latitude and φ is
the longitude. Neglecting viscous effects, friction and forcing, the momentum
and mass continuity equations are given by

Du

Dt
+ 2Ω× u = −

1

ρ
∇p + g, (A.1)

Dρ

Dt
+ ρ∇ · u = 0, (A.2)

D

Dt
≡

∂

∂t
+ u · ∇. (A.3)

In spherical coordinates, the mass continuity equation can be expressed as

Dρ

Dt
+ ρ

[
1

r2

∂(r2w)

∂r
+

1

r cos θ

∂(v cos θ)

∂θ
+

1

r cos θ

∂u

∂φ

]

= 0, (A.4)
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D

Dt
=

∂

∂t
+

u

r cos θ

∂

∂φ
+

v

r

∂

∂θ
+ w

∂

∂r
. (A.5)

Now let

u = uφ̂ + vθ̂ + wr̂, (A.6)

u ≡ r cos θ
Dφ

Dt
, (A.7)

v ≡ r
Dθ

Dt
, (A.8)

w ≡
Dr

Dt
. (A.9)

Hence,

Du

Dt
= φ̂

Du

Dt
+ θ̂

Dv

Dt
+ r̂

Dw

Dt
+ u

Dφ̂

Dt
+ v

Dθ̂

Dt
+ w

Dr̂

Dt
. (A.10)

Similarity consideration shows that

lim
δx→0

|δφ̂|
δx

=
1

r cos θ
, (A.11)

δφ̂

δx
=

1

r cos θ

(
θ̂ sin θ − r̂ cos θ

)
, (A.12)

Dφ̂

Dt
=

u

r cos θ

(
θ̂ sin θ − r̂ cos θ

)
, (A.13)

and equivalently for the θ̂ and r̂ unit vectors it can be shown that

Dθ̂

Dt
= −

u tan θ

r
φ̂ −

v

r
r̂, (A.14)

Dr̂

Dt
=

u

r
φ̂ +

v

r
θ̂. (A.15)

Thus, the acceleration following the relative motion in spherical coordinates is
given by

Du

Dt
= φ̂

(
Du

Dt
−

uv tan θ

r
+

uw

r

)
+θ̂

(
Dv

Dt
+

u2 tan θ

r
+

vw

r

)

+r̂

(
Dw

Dt
−

u2 + v2

r

)

.

(A.16)
Expansion of the Coriolis term in spherical coordinates is now demonstrated
below;

2Ω×u = 2Ω

∣∣∣∣∣∣∣

φ̂ θ̂ r̂
0 cos θ sin θ
u v w

∣∣∣∣∣∣∣
= 2Ω

[
(w cos θ − v sin θ) φ̂ + u sin θθ̂ − u cos θr̂

]
.

(A.17)
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The pressure gradient and gravity are trivially expressed and can easily be
identified in the component form of (A.1), as shown below:

Du

Dt
+

uw

r
−

uv

r
tan θ + 2Ωw cos θ − 2Ωv sin θ = −

1

ρr cos θ

∂p

∂φ
, (A.18)

Dv

Dt
+

vw

r
+

u2

r
tan θ + 2Ωu sin θ = −

1

ρr

∂p

∂θ
, (A.19)

Dw

Dt
−

u2 + v2

r
− 2Ωu cos θ = −

1

ρ

∂p

∂r
− g. (A.20)

The momentum and mass continuity equation need to be complemented by the
thermodynamic equation;

Dθ

Dt
=

θ

cpT

(
k

ρ
∇2T + Q

)
, (A.21)

where k is the thermal conductivity, T the temperature, Q the rate of heat ad-
dition per unit mass by internal heat sources and θ is the potential temperature,
defined as

θ = T

(
p0

p

) R
cp

. (A.22)

Note that p, ρ and T are related by the ideal gas law;

p = ρRT. (A.23)

Now, we consider motions, whose horizontal spatial scale of variation is given
by the length scale L and velocity scale U . Furthermore, we restrict ourselves to
the mid-latitude region centred at around some latitude θ0. In addition, we re-
strict ourselves to Cartesian coordinates by replacing the spherical coordinates
as follows {

x = φr0 cos θ0,
y = r0(θ − θ0),

(A.24)

and hence {
∂
∂φ = r0 cos θ0

∂
∂x ,

∂
∂θ = r0

∂
∂y .

(A.25)

In addition, the following substitutions are introduced





z = r − r0 = Dz′,
x = Lx′,
y = Ly′,
t = L

U t′,
u = Uu′,
v = Uv′,
w = D

L Uw′.

(A.26)

Note that the time scales advectively. We now turn to the hydrostatic approx-
imation;

∂ps

∂z
= −ρs(z)g, (A.27)
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where the subscript s denotes a standard basic state upon which perturbations
occur such that {

p = ps(z) + p̃(x, y, z, t),
ρ = ρs(z) + ρ̃(x, y, z, t).

(A.28)

We need to scale the pressure and density pertubations in some sense. It
can be conjectured that for the motions of interest, the horizontal pressure
gradient will be of the same order of magnitude as the Coriolis acceleration,

i.e., O(ρs2Ωu sin θ0) ∼ O
(

p̃
L

)
→ p̃ ∼ O(ρsUf0L), where

f0 = 2Ω sin θ0, (A.29)

is the Coriolis parameter at θ0. Hence,

p = ps(z) + ρs(z)Uf0Lp′. (A.30)

In a similar manner, we may anticipate that the buoyancy force due to ρ̃ will
be of the same order of magnitude as the vertical pressure gradient by recalling

the hydrostatic approximation, upon which ∂p̃
∂z = O

(
p̃
D

)
= O

(
ρsUf0L

D

)
∼

O(ρ̃g) → O(ρ̃) = O
(
ρsU

f0L
gD

)
. Hence, we may write

ρ = ρs(z)
[
1 + Ro Fρ′

]
, (A.31)

where {
Ro ≡ U

f0L ≡ ε,

F = f2

0
L2

gD .
(A.32)

Here, Ro = ε is the Rossby number. We are now at the point where the mo-
mentum equation components can be non-dimensionalized following the substi-
tutions addressed so far. Thus, applying (A.26), (A.27), (A.30) and (A.31) to
the component momentum equations and dividing through by Uf0, we obtain

ε

[
Du′

Dt′
+

L

r∗

(
δu′w′ − u′v′ tan θ

)]
− v′ sin θ

sin θ0
+ δw′ cos θ

sin θ0
=

= −
r0

r∗

cos θ0

cos θ

1

1 + εFρ′
∂p′

∂x′
, (A.33)

ε

[
Dv′

Dt′
+

L

r∗

(
δv′w′ + u′2 tan θ

)]
+ u′ sin θ

sin θ0
= −

r0

r∗

1

1 + εFρ′
∂p′

∂y′
, (A.34)

D(1 + εFρ′)



U2

(
D

L2

Dw′

Dt′
−

u′2 + v′2

r∗

)

− 2ΩUu′ cos θ



 =

= −
1

ρs

∂

∂z′
[
ps + Uf0Lρsp

′
]
− D(1 + εFρ′)g∗, (A.35)

where the subscript ∗ denotes dimensional quantities and

δ ≡
D

L
. (A.36)
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The vertical component (A.35) can be further simplified by expansion of the
right hand side to yield, after division by Uf0L;

(1 + εFρ′)

[
εδ2 Dw′

Dt′
−

εδL

r∗
(u′2 + v′2) − δu′ cos θ

sin θ0

]
= −

1

ρs

∂

∂z′
(ρsp

′) − ρ′.

(A.37)
The nondimenzionalized total derivative takes the following form

D

Dt′
=

∂

∂t′
+ u′ r0

r∗

cos θ0

cos θ

∂

∂x′
+ v′ r0

r∗

∂

∂y′
+ w′ ∂

∂z′
. (A.38)

Note that
r∗
r0

= 1 + δ

(
L

r0

)
z′. (A.39)

Expanding the mass continuity equation (A.4) and applying the substitutions
result in the nondimensional version

εF
Dρ′

Dt′
+ (1 + εFρ′)

[
w′

ρs

∂ρs

∂z′
+

∂w′

∂z′
+ 2

D

r∗
w′ +

r0

r∗

∂v′

∂y′
+

−
L

r∗
v′ tan θ +

r0

r∗

cos θ0

cos θ

∂u′

∂x′

]
= 0. (A.40)

In the following, the superscripts ′ denoting the nondimensional variables will be
dropped and the subscript ∗ will denote dimensional remnants in the equations.
It is important to note that no restrictive approximations have been applied
so far. The equations have just been scaled so that their relative magnitude
can be estimated by the nondimensional parameters multiplying the individual
terms. Before investigating any specific parameter settings, we expand the
trigonometric terms around the θ0-latitude in Taylor expansions, i.e.,

sin θ = sin θ0 +
d(sin θ)

dθ
|θ=θ0(θ − θ0) +

d2(sin θ)

dθ2
|θ=θ0

(θ − θ0)2

2!
+ ... (A.41)

With the use of (A.24) and (A.26) we thus obtain





sin θ = sin θ0 + L
r0

y cos θ0 − 1
2

(
L
r0

)2
y2 sin θ0 + ... ,

cos θ = cos θ0 − L
r0

y sin θ0 − 1
2

(
L
r0

)2
y2 cos θ0 + ... ,

tan θ = tan θ0 + L
r0

y 1
cos2 θ0

+
(

L
r0

)2
y2 tan θ0

cos2 θ0
+ ... ,

(A.42)

Last, but not the least, we now define the β-parameter as

β0 =
d

dy
(2Ω sin θ) |θ=θ0 =

1

r0

d

dθ
(2Ω sin θ) |θ=θ0 =

2Ω

r0
cos θ0 (A.43)

It can be noted here that β0L
f0

= ... = L
r0

cot θ0 ∼ O
(

L
r0

)
and hence β0L

f0
=

β0L2

U ∼ O
(

L
εr0

)
so that the magnitude of the relative vorticity- to the planetary
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vorticity gradient is measured by

1

β
=

U

β0L2
∼ O

(
ε
r0

L

)
, (A.44)

which is evidentally determined by the relative size of the Rossby number and
the inverse ratio between the horizontal length scale and approximately the
Earth’s radius for tropospheric considerations.

A.3. The geostrophic approximation

So far, no specific scale of motion has been chosen. By noting that in the
midlatitude atmosphere,






U ∼ O(10 ms−1),
L ∼ O(1000 km),
D ∼ O(10 km),
f0 ∼ O(10−4 s−1) ,

(A.45)

we first choose to study the case ε ∼ O
(

L
r0

<< 1
)
, i.e., motions that are

less than global. Under these circumstances, U
β0L2 ∼ O

(
10

10−11(106)2

)
∼ O(1).

Thus, the planetary vorticity gradient is expected to play an active role in the
atmospheric dynamics at this horizontal length scale. Making use of (A.45),
we can summarize the key parameters as






ε ∼ O(10−1),
β ∼ O(1),

F = f2

0
L2

gD ∼ O(10−1) ∼ O(ε),
L
r0

∼ O(ε),
δ = D

L ∼ O(10−2) ∼ O(ε2),
r∗

r0
− 1 ∼ O

(
δ L

r0

)
∼ O(ε3),

(A.46)

The limit ε → 0, εr0

L ∼ O(1), is a special case that examines geostrophic dy-
namics when the planetary vorticity gradient contributes equally to the relative
vorticity gradient. We now express all the dynamic variables, i.e., u, v, w, p, ρ,
in series of the key parameter ε such that

u(x, y, z, t) = u0(x, y, z, t) + εu1(x, y, z, t) + ε2u2(x, y, z, t) + ... etc. (A.47)
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Applying (A.42), (A.46) and the first two terms of (A.47) for the dynamic
variables to (A.33), (A.34) and (A.37), we obtain

ε

[
D(u0 + εu1)

Dt
+

L

r∗

(
ε2(u0 + εu1)(w0 + εw1)+

− (u0 + εu1)(v0 + εv1)

(
tan θ0 +

Ly

r0
cos−2 θ0

))

+

− (v0 + εv1)

(
sin θ0 + Ly

r0
cos θ0

)

sin θ0
+ ε(w0 + εw1)

(
cos θ0 − Ly

r0
sin θ0

)

sin θ0
=

= −
r0

r∗

cos θ0(
cos θ0 − Ly

r0
sin θ0

) 1

1 + ε2(ρ0 + ερ1)

∂(p0 + εp1)

∂x
, (A.48)

ε

[
D(v0 + εv1)

Dt
+

L

r∗

(
ε2(v0 + εv1)(w0 + εw1)+

+ (u0 + εu1)
2

(
tan θ0 +

Ly

r0
cos−2 θ0

))

+ (u0 + εu1)

(
sin θ0 + Ly

r0
cos θ0

)

sin θ0
=

= −
r0

r∗

1

1 + ε2(ρ0 + ερ1)

∂(p0 + εp1)

∂y
, (A.49)

(
1 + ε2(ρ0 + ερ1)

)[

ε5
D(w0 + εw1)

Dt
−

ε3L

r∗

(
(u0 + εu1)

2 + (v0 + εv1)
2
)

+

− ε2(u0 + εu1)

(
cos θ0 − Ly

r0
sin θ0

)

sin θ0




 =

= −
1

ρs

∂

∂z

(
ρs(p0 + εp1)

)
− (ρ0 + ερ1), (A.50)

The mass continuity equation (A.40) takes the form

ε2
D(ρ0 + ερ1)

Dt
+
(
1 + ε2(ρ0 + ερ1)

)[w0 + εw1

ρs

∂ρs

∂z
+

∂(w0 + εw1)

∂z
+

+2
D

r∗
(w0 + εw1) +

r0

r∗

∂(v0 + εv1)

∂y
−

L

r∗
(v0 + εv1)

(
tan θ0 +

Ly

r0
cos−2 θ0

)
+

+
r0

r∗

cos θ0

cos θ0 − Ly
r0

sin θ0

∂(u0 + εu1)

∂x



 = 0. (A.51)
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If we note that O
(

D
r∗

)
< O(ε2), and establish that terms of like order in ε

must balance, we obtain, to first order,





v0 = ∂p0

∂x ,
u0 = −∂p0

∂y ,

ρ0 = − 1
ρs

∂
∂z (p0ρs) ,

1
ρs

∂(w0ρs)
∂z + ∂u0

∂x + ∂v0

∂y = 0.

(A.52)

The equation set (A.52) is the geostrophic approximation. The O(1) motion
is thus determined by the horizontal pressure gradient. Furthermore, it can be
established that the O(1) geostrophic velocities are horizontally nondivergent,
since

∂v0

∂y
+

∂u0

∂x
= 0, (A.53)

which implies that
∂

∂z
(ρsw0) = 0. (A.54)

Hence, ρsw0 is independent of z and if w0 = 0 for any z, it will be zero ∀z, e.g.,
if the domain is bounded below or above. Thus, the vertical velocity is given
by

w(x, y, z, t) = εw1(x, y, z, t) + ε2w2(x, y, z, t) + ... (A.55)

which is a direct consequence of the geostrophic approximation. Therefore,
we cannot determine p0 and hence u0 and v0 without considering higher order
dynamics. The O(ε) terms with the use of (A.55) are given below, starting
with the zonal component

Du0

Dt
−

Ly

εr0
v0 cot θ0 − v1 = −

∂p1

∂x
−

Ly

εr0
tan θ0

∂p0

∂x
, (A.56)

where the second term on the right hand side was obtained by a little manip-
ulation;

−
r0

r∗

cos θ0

cos θ0 − Ly
r0

sin θ0

∂p0

∂x
=

= −
r0

r∗

cos θ0

(
cos θ0 + Ly

r0
sin θ0

)

(
cos θ0 − Ly

r0
sin θ0

)(
cos θ0 + Ly

r0
sin θ0

) ∂p0

∂x
=

= −
r0

r∗

cos2 θ0 + Ly
r0

cos θ0 sin θ0

cos2 θ0 −
(

L
r0

)2
y2 sin2 θ0

∂p0

∂x
≈

L

r∗
y tan θ0

∂p0

∂x
Q.E.D. (A.57)

The meridional O(ε) component is given by

Dv0

Dt
+ u0

Ly

εr0
cot θ0 + u1 = −

∂p1

∂y
. (A.58)
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The total derivative is given by

D

Dt
=

∂

∂t
+(u0+εu1)

r0

r∗

cos θ0

cos θ0 − Ly
r0

sin θ0

∂

∂x
+(v0+εv1)

r0

r∗

∂

∂y
+εw1

∂

∂z
, (A.59)

so that (A.56) and (A.58) become
{

∂u0

∂t + u0
∂u0

∂x + v0
∂u0

∂y − v1 − v0
Ly
εr0

cot θ0 = −∂p1

∂x − Ly
εr0

tan θ0
∂p0

∂x ,
∂v0

∂t + u0
∂v0

∂x + v0
∂v0

∂y + u1 + u0
Ly
εr0

cot θ0 = −∂p1

∂y .

(A.60)
We complete with the mass continuity equation:

1

ρs

∂

∂z
(ρsw1) +

∂u1

∂x
+

∂v1

∂y
− v0

L

εr0
tan θ0 +

Ly

εr0
tan θ0

∂u0

∂x
= 0. (A.61)

Pedlosky (1987) discusses the presence of terms that are ∼ L
εr0

in the momen-
tum equation (A.60), and notes that these terms on the left hand side are due
to the variation of the Coriolis parameter on a β-plane whereas on the right
hand side, these terms reflect the variation of the metric term cos θ. If tan θ0

would be small, this term would be negligible. Then (A.60) would reduce to
the O(ε) momentum equation for a flat Earth with a linearly varying Coriolios
parameter in the meridional direction. However, this would push the domain
to latitudes near the equator, where the theory fails. Thus, a model of a flat
Earth with sphericity accounted for only by a varying f is not valid for the
O(ε) momentum balance. Pedlosky (1987) states however, that the β-plane
approximation only requires that the vorticity equation satisfies the β-plane
approximation. By taking − ∂

∂y (A.60 a) + ∂
∂x (A.60 b), and noting that the

relative vorticity is given by

ζ0 =
∂v0

∂x
−

∂u0

∂y
, (A.62)

we yield after some simplification that

∂ζ0
∂t

+ u0
∂ζ0
∂x

+ v0
∂ζ0
∂y

+

(
∂u1

∂x
+

∂v1

∂y

)
+ v0

L

εr0
cot θ0 =

=
L

εr0
tan θ0

∂p0

∂x
+

Ly

εr0
tan θ0

∂2p0

∂x∂y
, (A.63)

where use have been made of the nondivergence of the O(1)-momentum. We
can simplify this further by taking advantage of the fact that

1

β
=

U

β0L2
=

U
f0

r0
L2 cot θ0

=

[
L

r0
∼ ε

]
=

U

εf0L cot θ0
=

[
U

f0L
∼ ε

]
=

1

cot θ0
,

(A.64)
upon which we obtain

∂ζ0
∂t

+u0
∂ζ0
∂x

+v0
∂ζ0
∂y

+βv0 =
L

εr0

[

tan θ0
∂p0

∂x
+ y tan θ0

∂2p0

∂x∂y

]

−
(
∂u1

∂x
+

∂v1

∂y

)
.

(A.65)
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From the geostrophic approximation (A.52), the mass continuity equation
(A.61) can be rewritten as

1

ρs

∂(ρsw1

∂z
+

(
∂u1

∂x
+

∂v1

∂y

)
−

L

εr0
tan θ0

∂p0

∂x
−

Ly

εr0
tan θ0

∂2p0

∂x∂y
= 0, (A.66)

from which we clearly can rewrite (A.65) as

D0

Dt
[ζ0 + βy] =

1

ρs

∂(ρsw1)

∂z
, (A.67)

where
D0

Dt
≡

∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
. (A.68)

It is now clear that (A.67) is the vorticity equation for a flat Earth model with
a linearly varying Coriolis parameter in the meridional direction. The O(1)
velocity field is determined in terms of p0 by the O(1) momentum equation so
that

ζ0 =
∂2p0

∂x2
+

∂2p0

∂y2
. (A.69)

However, we still need to resolve w1, which requires the use of the thermody-
namic equation.

A.4. Using static stability to resolve the vertical motion

To complete the derivation of the quasigeostrophic motions we need to to rep-
resent εw1 in terms of the O(1) geostrophic fields. This will be possible by
making use of the thermodynamic equation. By considering adiabatic motions,
the potential temperature θ (see (A.22)), is conserved. By making use of the
ideal gas law (A.23), θ can be rewritten as

θ =
p

ρR

(
p0

p

) R
cp

⇐⇒ ρ =
p

Rθ

(
p0

p

) R
cp

=
p

Rθ

(
p

p0

) 1

γ

, (A.70)

where
γ ≡

cp

cv
. (A.71)

If we consider vertical displacement of an air parcel between a lower level z (A)
to an upper level z + dz (B), the density of parcel A will have changed by an
amount

∆ρA =
1

γ

p0

Rθ

(
p

p0

) 1

γ ∂p

∂z

dz

p
. (A.72)

Hence, the new density at z + dz is thus

ρA + ∆ρA = ρA(z) +
1

γ

ρ

p

∂p

∂z
dz. (A.73)

However, the density of parcel B at z + dz in terms of the undisturbed density
A had at z, is given by

ρB = ρA(z) +
∂ρ

∂z
dz. (A.74)
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The excess density of A at z + dz is

(ρA + ∆ρA) − ρB =

(
1

γ

ρ

p

∂p

∂z
−

∂ρ

∂z

)
dz, (A.75)

which causes a restoring force

g

ρ
(ρA + ∆ρA − ρB) = g

(
1

γ

ρ

p

∂p

∂z
−

∂ρ

∂z

)
dz =

= g






1

γp

∂p

∂z
−

Rθ

p0

(
p

p0

)− 1

γ ∂

∂z



 p0

Rθ

(
p

p0

) 1

γ








 dz =

= g






1

γp

∂p

∂z
−

Rθ

p0

(
p

p0

)− 1

γ



−
1

θ2

∂θ

∂z

(
p

p0

) 1

γ p0

R
+

p0

γθpR

(
p

p0

) 1

γ ∂p

∂z








 dz =

= g

(
1

θ

∂θ

∂z

)
dz (A.76)

Thus, if ∂θ
∂z > 0, the buoyancy force is restoring and the static state is stable

with respect to small adiabatic displacements. The static stability is defined as

σ =
1

θ

∂θ

∂z
, (A.77)

and the fluid parcel oscillation frequency is defined by

N ≡
(

g

θ

∂θ

∂z

) 1

2

, (A.78)

which is commonly referred to as the Brunt-Väisälä frequency. From the defi-
nition of θ, it can be found that

1

θ

∂θ

∂z
=

1

T

[
∂T

∂z
+

g

cp

]

, (A.79)

if the hydrostatic approximation
(

∂p
∂z = −ρg

)
is used. Hence, if ∂T

∂z < 0, the

atmosphere will be statically stable as long as the lapse rate, −∂T
∂z < g

cp
. Finally

we note that for the atmosphere, N ∼ O(10−2s−1).
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A.5. The quasigeostrophic potential vorticity equation

Recalling (A.70), we note that (in dimensional form)

ln ρ = ln



 p0

Rθ

(
p

p0

) 1

γ



 ⇐⇒

ln ρ = ln

(
p0

Rθ

)
+

1

γ
ln

(
p

p0

)
⇐⇒

ln ρ = ln p0 − lnR − ln θ +
1

γ
ln p −

1

γ
ln p0 ⇐⇒

ln θ =
1

γ
ln p − ln ρ +

(
1 −

1

γ

)
ln p0 − lnR ⇐⇒

[
γ =

cp

cv
; cp = cv + R

]
⇐⇒

ln θ =
1

γ
ln p − ln ρ + C, (A.80)

where

C =
R

cp
ln p0 − lnR. (A.81)

Nondimensionalizing (A.80), by the use of (A.30) and (A.31), we obtain

ln θ∗ =
1

γ
ln (ps + ρsUf0Lp) − ln

[
ρs (1 + εFρ)

]
+ C =

=
1

γ
ln

[

ps

(
1 +

ρsUf0Lp

ps/rhos

)]

− ln ρs − ln (1 + εFρ) + C =

=
1

γ
ln ps +

1

γ
ln

[
1 +

Uf0Lp

ps/ρs

]
− ln ρs − ln (1 + εFρ) + C =

=
1

γ
ln ps − ln ρs +

1

γ
ln

[

1 + ε
f2
0 L2

ps/ρs
p

]

− ln (1 + εFρ) + C ≈

[Taylor series expansion] ≈
1

γ
ln ps − ln ρs + ε

1

γ

f2
0 L2

ps/ρs
p− εFρ+ O(ε2) + C.

(A.82)

By setting

ln θ∗ = θs

[
1 + εFθ(x, y, z, t)

]
, (A.83)

where

lnθs =
1

γ
ln ps − ln ρs + C, (A.84)

and expanding θ in an ε-series

θ = θ0 + εθ1 + ε2θ2 + ... (A.85)
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(A.82) becomes

ln
[
θs(1 + εF (θ0 + εθ1))

]
=

1

γ
ln ps−ln ρs+ε

1

γ

f2
0 L2

ps/ρs
(p0+εp1)−εF (ρ0+ερ1) ⇐⇒

ln θs − εF (θ0 + εθ1) ≈
1

γ
ln ps − ln ρs + ε

1

γ

f2
0 L2

ps/ρs
(p0 + εp1) − εF (ρ0 + ερ1) ⇒

Fθ0 =
1

γ

f2
0 L2

ps/ρs
p0 − Fρ0. (A.86)

Since

F =
f2
0 L2

gD
, (A.87)

we yield

θ0 =
1

γ

(
ρsgD

ps

)
p0 − ρ0. (A.88)

From the hydrostatic and geostrophic approximation, we can rewrite θ0 as

θ0 = −
p0

γps

∂ps

∂z
+

1

ρs

∂

∂z
(ρsp0) =

∂p0

∂z
+

p0

ρs

∂ρs

∂z
−

p0

γps

∂ps

∂z
. (A.89)

By noting that (A.84) is equivalent to

θs =
p

1

γ
s

ρs
+ C ⇒

∂θs

∂z
=

∂

∂z



p
1

γ
s

ρs



 ⇒ ... ⇒
1

θs

∂θs

∂z
=

1

γps

∂ps

∂z
−

1

ρs

∂ρs

∂z
,

(A.90)
we can rewrite θ0 as

θ0 =
∂p0

∂z
− p0

1

θs

∂θs

∂z
. (A.91)

However, if we make use of the observation that

1

θs

∂θs

∂z
∼ O(ε), (A.92)

we obtain

θ0 =
∂p0

∂z
. (A.93)
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Now, let us invoke (A.83) into the thermodynamic equation (A.21), i.e.,

Dθ∗
Dt∗

=
θ

cpT∗

(
k

ρ∗
∇2T∗ + Q∗

)
⇐⇒

Dθs(1 + εF (θ0 + εθ1))

D
(

L
U t
) =

θs(1 + εF (θ0 + εθ1))

cpT

(
k

ρ∗
∇2T∗ + Q∗

)
⇐⇒

U

L

[
Dθs

Dt
(1 + εF (θ0 + εθ1)) + θsεF

D(θ0 + εθ1)

dt

]
=

=
θs(1 + εF (θ0 + εθ1))

cpT

(
k

ρ∗
∇2T∗ + Q∗

)
⇐⇒

Dθ

Dt
+

w(1 + εFθ)

εFθs

∂θs

∂z
=

[

ε =
U

f0L
; F =

f2
0 L2

gD

]

=
θ∗
θs

(
κ∗

cpT∗

)
gD

U2f0
,

(A.94)

where

κ∗ ≡
k

ρ∗
∇2T∗ + Q∗. (A.95)

Pedlosky (1987) notes that for the atmosphere, cpT∗ ∼ O(gD) ⇒ κ∗ ≤
O(U2f0) and so we nondimensionalize κ∗ as

κ = κ ∗
gD

cpT∗f0U2
. (A.96)

Since the vertical velocity can be expressed as w = εw1 + ε2w2 + ..., we rewrite
(A.94) as

∂(θ0 + εθ1)

∂t
+ (u0 + εu1)

∂(θ0 + εθ1)

∂x
+ (v0 + εv1)

∂(θ0 + εθ1)

∂y
+

+
(w1 + εw2)

Fθs

∂θs

∂z
(1 + εF (θ0 + εθ1)) = (1 + εF (θ0 + εθ1))κ. (A.97)

Thus, to lowest order we have

Dθ0

Dt
+ w1

1

Fθs

∂θs

∂z
= κ. (A.98)

We now define the stratification parameter, S(z), as

S(z) =
1

Fθs

∂θs

∂z
=

N2
s D2

f2
0 L2

∼ O(1), (A.99)

and

N2
s =

g

Dθs

∂θs

∂z
. (A.100)

The heating rate κ can be considered small over the advective time scale, but
in general, the O(ε) vertical motion is obtained from

w1 =

[
κ−

D0θ0

Dt

]
1

S(z)
. (A.101)
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Hence, the vertical velocity is now described by the O(1) dynamical θ0-field
and can be substituted into the right hand side of (A.67) to yield

1

ρs

∂(ρsw1)

∂z
=

1

ρs

∂

∂z

[
ρs

S(z)

(
κ−

D0θ0

Dt

)]

=

=
1

ρs

∂

∂z

[
ρsκ

S(z)

]
−

1

ρs

D0

Dt

[
∂

∂z

(
ρs

S(z)
θ0

)]

+
1

S(z)

(
∂u0

∂z

∂θ0

∂x
+

∂v0

∂z

∂θ0

∂y

)
.

(A.102)

From the geostrophic approximation (A.52) and the hydrostatic approximation
(A.93) the thermal wind relation can be established;

{
∂v0

∂z = ∂θ0
∂x ,

∂u0

∂z = −∂θ0
∂y .

(A.103)

upon which the last term in (A.102) identically vanish. Thus, the vorticity
equation (A.67) reduces to

D0

Dt

[

ζ0 + βy +
1

ρs

∂

∂z

(
ρs(z)

S(z)
θ0

)]

=
1

ρs

∂

∂z

[
ρs(z)κ

S(z)

]
. (A.104)

In the absence of a heating source, we can neglect the right hand side and thus
obtain a conservation statement

D0

Dt

[

ζ0 + βy +
1

ρs

∂

∂z

(
ρs(z)

S(z)
θ0

)]

= 0, (A.105)

or, equivalently,

D0q

Dt
= 0, (A.106)

where

q = ζ0 + βy +
1

ρs

∂

∂z

(
ρs(z)

S(z)
θ0

)
. (A.107)

The geostrophic and hydrostatic approximations allow us to express each de-
pendent variable as p0 = ψ, whereupon

[
∂

∂t
−

∂ψ

∂y

∂

∂x
+

∂ψ

∂x

∂

∂y

] [
∂2ψ

∂x2
+

∂2ψ

∂y2
+

1

ρs

∂

∂z

(
ρs(z)

S(z)

∂ψ

∂z

)
+ βy

]

= 0.

(A.108)
This is the governing equation of motion for a stratified fluid, the so-called
quasi-geostrophic potential vorticity equation for a homogeneous layer of fluid.
It is completely written in terms of the O(1) pressure field or stream function.
Once it has been determined, u0, v0, ρ0, θ0 and w1 follow directly.
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A.6. Connecting the QGPV equation to Charney’s theory

Charney (1971) derived an original theory on geostrophic turbulence following
the conservation of the quantity he denoted pseudo-potential vorticity. The
aim is to link (A.108) to Charney’s theory. We start by noting that (A.108)
can be written as

D0

Dt

[

∇2
Hψ + βy +

1

ρs

∂

∂z

(
ρs(z)

S(z)

∂ψ

∂z

)]

= 0, (A.109)

and that

S(z) =
1

Fθs

∂θs

∂z
=

N2
s D2

f2
0 L2

, (A.110)

which hence leads to

D0

Dt



∇2
Hψ + βy +

1

ρs

∂

∂z

(
f2
0 L2

N2
s D2

ρs
∂ψ

∂z

)

 = 0. (A.111)

Expansion of the third term in (A.111) yields

1

ρs

∂

∂z

(
f2
0 L2

N2
s D2

ρs
∂ψ

∂z

)

=
f2
0 L2

N2
s D2

(
∂2ψ

∂z2
+

1

ρs

∂ρs

∂z

∂ψ

∂z
−

2

Ns

∂Ns

∂z

∂ψ

∂z

)

,

(A.112)
so that

D0

Dt



∇2
Hψ +

f2
0 L2

N2
s D2

(
∂2ψ

∂z2
+

1

ρs

∂ρs

∂z

∂ψ

∂z
−

2

Ns

∂Ns

∂z

∂ψ

∂z

)

+ β
∂ψ

∂x
= 0.

(A.113)
Introducing the Charney substitution

ψ =

(
ρ0

ρs

)n

χ, (A.114)

which is inserted into (A.113) to yield, after a little simplification,

D0

Dt





(
ρ0

ρs

)n

∇2
Hχ + ρn

0
f2
0 L2

N2
s D2



∂ρs

∂z
χ

(

ρ−n−1
s

2n

Ns

∂Ns

∂z
+ ρ−n−2

s n2

(
∂ρs

∂z

)2
)

+

−nρ−n−1
s

∂2ρs

∂z2
χ− ρ−n

s
2

Ns

∂Ns

∂z

∂χ

∂z
+ ρ−n−1

s (1 − 2n)
∂ρs

∂z

∂χ

∂z
+ ρ−n

s
∂2χ

∂z2

]

+

+ β

(
ρ0

ρs

)n ∂χ

∂x
= 0. (A.115)
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Choosing n = 1
2 , we yield a convenient cancellation of the second term involving

∂χ
∂z . Rescaling the vertical coordinate as






∂
∂z → NsD

f0L
∂
∂Z ,

∂2

∂z2 → N2

s D2

f2
0

L2

∂2

∂Z2 + N2

s D2

f2
0

L2

1
Ns

∂Ns

∂Z
∂
∂Z ,

(A.116)

we obtain, after multiplication by
(

ρs

ρ0

) 1

2

and using n = 1
2 ,

D0

Dt

[

∇2
Hχ +

1

4ρ2
s

(
∂ρs

∂Z

)2

χ−
1

2ρs

∂2ρs

∂Z2
χ +

1

2ρs

∂ lnNs

∂Z

∂ρs

∂Z
χ

−
∂ lnNs

∂Z

∂χ

∂Z
+

∂2χ

∂Z2

]

+ β
∂χ

∂x
= 0. (A.117)

Assuming that the atmospheric density profile can be approximated as (for
example, this choice is arbitrary and does not influence the validity of the
theory);

ρs = ρ0e
−

f0L

DNs
Z , (A.118)

we obtain

D0

Dt

[

∇2
3χ−

∂ lnNs

∂z

(
∂χ

∂Z
+

1

2

f0L

NsD
χ

)
−

1

4

f2
0 L2

N2
s D2

χ

]

+ β
∂χ

∂x
= 0. (A.119)

Introducing the internal Rossby deformation radius

λ =
NsD

f0
, (A.120)

this can be simplified to

D0

Dt

[

∇2
3χ−

∂ lnNs

∂z

(
∂χ

∂Z
+

L

2λ
χ

)
−

L2

4λ2
χ

]

+ β
∂χ

∂x
= 0. (A.121)

A comparison with Charney (1971) shows that the governing equations are ex-
actly the same except from the presence of the potential temperature θ instead
of Ns. It is likely that this is just a typo in Charney (1971), which is supported
by the subsequent assumption that the scale of variation of Ns is larger than the
vertical scale of the turbulence, upon which terms involving the vertical gradi-
ent of Ns are neglected. Note however, that the assumption that the vertical
scale of variation of lnNs is smaller than the vertical scale of the turbulence,
is a weaker assumption. In addition, Charney neglected the β-term by noting
that advection of relative vorticity dominates over the advection of the Earth’s
vorticity. Charney also made the assumption that O(L) < O(2λ) and hence
neglected the potential term. However, we will keep both the potential and the
β-term in the following. Thus,

D0

Dt

[

∇2
3χ−

L2χ

4λ2

]

+ β
∂χ

∂x
≈ 0. (A.122)
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where the total derivative is given by

D0

Dt
=

∂

∂t
+ e

L
2λ Z

(
∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)
(A.123)

where use have been made of (A.114) and (A.118). Since Charney assumed
that O(L) < O(2λ), the exponential term multiplying the advective operator
vanishes. However, it might be interesting to note that the case O(L) " O(2λ)
can be accomodated for by scaling the time as

t → e−
L
2λ Zτ, (A.124)

so to yield
D0

Dτ
=

∂

∂τ
+

(
∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)
. (A.125)

It is noteworthy that this implies that the non-dimensional time now scale with
height, which is a scenario that has not been explored to the best of the author’s
knowledge.
We now wish to examine the time evolution of energy and enstrophy. By
multiplying (A.122) by ρsχ we obtain

ρsχ

[
∂

∂τ
+

(
∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)][

∇2
3χ−

L2χ

4λ2

]

= 0. (A.126)

The first term can be rewritten as

ρsχ
∂

∂τ

[

∇2
3χ−

L2χ

4λ2

]

= ρsχ∇2
3
∂χ

∂τ
− ρs

L2

4λ2
χ
∂χ

∂τ
. (A.127)

Omitting the subscript 3 for the three-dimensional Laplacian and noting that




∇ ·

[
χ∇∂χ

∂τ

]
= χ∇2 ∂χ

∂τ + ∇χ · ∇∂χ
∂τ ,

∂
∂τ

(∇χ)2

2 = ∇χ · ∇∂χ
∂τ ,

(A.128)

the first term (A.127) can be rewritten as

ρs

(

∇ ·
[
χ∇

∂χ

∂τ

]
−

∂

∂τ

(∇χ)2

2
−

L2

8λ2

∂χ2

∂τ

)

. (A.129)

The second term in (A.126) can be rewritten as

ρsχ

(
∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)(

∇2
3χ−

L2χ

4λ2

)

=

= ρsχ

(
∂χ

∂x

∂

∂y
∇2χ−

∂χ

∂y

∂

∂x
∇2χ

)
. (A.130)

This can be reformulated by the use of the following observation;

∇ ·
(
uχ∇2χ

)
=

∂

∂x

(
−

∂χ

∂y
χ∇2χ

)
+

∂

∂y

(
∂χ

∂x
χ∇2χ

)
= ... = χ (u · ∇)∇2χ,

(A.131)



A.6. CONNECTING THE QGPV EQUATION TO CHARNEY’S THEORY 41

upon which (A.126) can be written as

ρs
∂

∂τ

[
(∇χ)2

2
+

L2

8λ2
χ2

]

− ρs∇ ·
[
uχ∇2χ + χ∇

∂χ

∂τ

]
= 0. (A.132)

Integration of (A.132) over a normalized cubic volume L3 yields

1

L3

∫ ∫ ∫


ρs
∂

∂τ

[
(∇χ)2

2
+

L2

8λ2
χ2

]

−

−ρs∇ ·
[
uχ∇2χ + χ∇

∂χ

∂τ

]]

Ldx Ldy
f0L

NsD
dZ = const. ⇐⇒

∂

∂τ

∫ ∫ ∫
ρs

2λ

[

(∇χ)2 +
L2

4λ2
χ2

]

dx dy dZ+

−
∫ ∫ ∫

ρs

λ
∇ ·

[
uχ∇2χ + χ∇

∂χ

∂τ

]
dx dy dZ = const. ⇐⇒

∂

∂τ

∫ ∫ ∫
ρs

2λ

[

(∇χ)2 +
L2

4λ2
χ2

]

dx dy dZ−
∫ ∫ ∫

ρs

λ
∇·J dx dy dZ = const.

(A.133)

Making use of the divergence theorem and multiplying by λ, this can be rewrit-
ten as

∂

∂t

∫ ∫ ∫
ρs

2

[

(∇χ)2 +
L2

4λ2
χ2

]

dx dy dZ −
∫
!
"

#
$

∫
ρsJ · n̂ dA = const. (A.134)

The closed integral vanishes and we obtain

∫ ∫ ∫
ρs

2

[

(∇χ)2 +
L2

4λ2
χ2

]

dx dy dZ = const. ⇐⇒

∫ ∫ ∫
ρs

2




[(

∂χ

∂x

)2

+

(
∂χ

∂y

)2
]

+

[(
∂χ

∂Z

)2

+ ξ2χ2

]

 dx dy dZ = const.,

(A.135)

where

ξ ≡
L

2λ
. (A.136)

The first bracketed term in (A.135) corresponds to the kinetic energy whereas
the second bracketed term contains the available potential energy, APE. The
major point here is that energy is conserved.

Now, let us examine the temporal evolution of enstrophy. We begin by
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multiplying (A.122) by
(
∇2χ− ξ2χ

)
, thus obtaining

(
∇2χ− ξ2χ

)[ ∂

∂τ
+

(
∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)][

∇2χ−
L2χ

4λ2

]

= 0 ⇐⇒

1

2

∂

∂τ

(
∇2χ− ξ2χ

)2
+
(
∇2χ− ξ2χ

)(∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)(
∇2χ− ξ2χ

)
= 0.

(A.137)

The second term can be rewritten as

(
∇2χ− ξ2χ

)(∂χ

∂x

∂

∂y
−

∂χ

∂y

∂

∂x

)(
∇2χ− ξ2χ

)
=

=
(
∇2χ− ξ2χ

)
(u · ∇)

(
∇2χ− ξ2χ

)
=
[
Φ ≡ ∇2χ− ξ2χ

]
=

= Φ (u · ∇) Φ = (u · ∇)
Φ2

2
= ... = ∇ · u

[
1

2
Φ2

]
(A.138)

Thus, (A.137) can be reformulated as

1

2

∂

∂τ
Φ2 + ∇ · u

[
1

2
Φ2

]
= 0. (A.139)

Defining the potential enstrophy as

Q ≡
1

2
Φ2 =

1

2

(
∇2χ− ξ2χ

)2
, (A.140)

we obtain
∂Q

∂t
+ ∇ · (uQ) = 0. (A.141)

Normalized triple integration yields

1

L3

∫ ∫ ∫ (
∂Q

∂τ
+ ∇ · (uQ)

)
Ldx Ldy

L

λ
Z = const. ⇐⇒

∂

∂τ

∫ ∫ ∫
1

λ
Q dx dy dZ +

∫
!
"

#
$

∫
1

λ
Qu · n̂ dA = const. ⇒

∫ ∫ ∫
Q dx dy dZ = const. (A.142)

Thus, both energy and enstrophy are conserved within the quasigeostrophic
framework when Charney assumptions have been implemented.

A.7. The role of the β-term

Up to now, we have not considered the possible role of the β-term in terms
of quasigeostrophic dynamics. One way to gain further insight is to study
a simplified model such as the two-layer model. It is the most basic model
in which baroclinic effects are present. Following Holton (2004), we start by
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looking at the quasigeostrophic potential vorticity equation, where we have
restored the z-coordinate from Charney scaling.

∂q

∂t
+ (uh · ∇)q = 0, (A.143)

where

q = ∇2
hψ + λ−2

d

∂2

∂z2
ψ + f, (A.144)

and
f = f0 + βy (A.145)

is the Coriolis parameter on a β-plane and

λd =
ND

f0
(A.146)

is the Rossby radius of deformation corresponding to a vertical scale D. We
now separate the equation into two vertically separated layers so that

q1 = f0 + βy + ∇2
hψ1 + λ−2

d (ψ2 − ψ1), (A.147)

and
q2 = f0 + βy + ∇2

hψ2 + λ−2
d (ψ1 − ψ2), (A.148)

where 1 and 2 denotes the upper and lower layer, respectively. The barotropic
(denoted m) and baroclinic (denoted t) components can be defined as

{
ψm ≡ ψ1+ψ2

2 ,
ψt ≡ ψ1−ψ2

2 ,

and equivalently {
qm ≡ q1+q2

2 ,
qt ≡ q1−q2

2 .

Thus, the potential vorticity equations in each layer can be rewritten as

q1 = βy + ∇2 (2ψm − ψ2) − 2λ−2
d ψt, (A.149)

and
q2 = βy + ∇2ψ2 + 2λ−2

d ψt, (A.150)

and hence
qm = βy + ∇2ψm, (A.151)

qt = ∇2ψt − 2λ−2
d ψt. (A.152)

At this point we note that in the midlatitude atmosphere, there is climatolog-
ically a mean zonal flow. So it is convenient to linearise the equations about a
uniform mean zonal wind state so that{

ψm = −umy + ψ′
m,

ψt = −uty + ψ′
t,

where um is the mean zonal wind and ut is the mean thermal wind;
{

um ≡ u1+u2

2 ,
ut ≡ u1−u2

2 .
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Substitutions into the vorticity equations and linearisation (neglecting products
of perturbation quantities) for each layer yield

[
∂

∂t
+ u1

∂

∂x

]
(q1 + q′1) + u′

1
∂q1

∂x
+ v′

1
∂q1

∂y
= 0, (A.153)

[
∂

∂t
+ u2

∂

∂x

]
(q2 + q′2) + u′

2
∂q2

∂x
+ v′

2
∂q2

∂y
= 0, (A.154)

where q1 and q2 are given by (A.149) and (A.150) and

u1 = um + ut, (A.155)

u2 = um − ut. (A.156)

Furthermore, it could be noted that

qm = βy, (A.157)

q′m = ∇2ψ′
m, (A.158)

qt = 2λ−2
d uty, (A.159)

q′t = ∇2ψ′
t − 2λ−2

d ψ′
t. (A.160)

Summation, rearrangement and dropping the primes for the stream functions
give eventually the evolution of the barotropic perturbation vorticity;

[
∂

∂t
+ um

∂

∂x

]
∇2ψm + β

∂ψm

∂x
+ ut

∂

∂x
∇2ψt = 0, (A.161)

whereas subtraction gives the baroclinic evolution
[
∂

∂t
+ um

∂

∂x

](
∇2ψt − 2λ−2

d ψt

)
+ β

∂ψt

∂x
+ ut

∂

∂x

(
∇2ψm + 2λ−2

d ψm

)
= 0.

(A.162)
In the simplest case, we study wave-like solutions of the form

ψm = Aeik(x−ct), (A.163)

ψt = Beik(x−ct), (A.164)

which we substitute into (A.161) and (A.162) upon which we obtain (after
dividing through by the exponential factors) a set of linear equations for the
coefficients:

ik
[
(c − um)k2 + β

]
A − ik3utB = 0, (A.165)

ik
[
(c − um)(k2 + 2λ−2

d ) + β
]
B − ikut(k

2 − 2λ−2
d )A = 0, (A.166)

which gives us nontrivial solutions only if the determinant is zero and hence we
obtain a dispersion relation for c:

(c − um)2k2(k2 + 2λ−2
d ) + 2(c − um)β(k2 + λ−2

d ) + β2 + u2
t k

2(2λ−2
d − k2) = 0,

(A.167)
from which the phase speed can be obtained as (see Holton, 2004):

c = um −
β(k2 + λ−2

d )

k2(k2 + 2λ−2
d )

± δ
1

2 , (A.168)
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where

δ =
β2λ−4

d

k4(k2 + 2λ−2
d )2

−
u2

t (2λ
−2
d − k2)

k2 + 2λ−2
d

. (A.169)

It is immediately apparent that if δ < 0, we will obtain solutions that grow in
time. If we consider the case when β = 0, we find that δ < 0 if k2 < 2λ−2

d .
Thus, we can conclude that long waves are sensitive to perturbations and will
tend to grow with time. Furthermore, a greater Rossby radius decreases the
critical wave number (towards larger scales) at which perturbations start to
grow according to this simple model. Recalling what the deformation radius
actually tells us,

λd =
ND

f0
, (A.170)

we can see that an increase in static stability or tropospheric depth act to
constrain the perturbation growth to larger scales, whereas an increase in the
rotation rate decreases the Rossby radius and so acts to excite modes at higher
wavenumbers. The main question of this chapter is the role of the β-effect.
Already in (A.169) it is clear that for β > 0 and everything but the thermal
wind kept constant, the role of the β-effect is to stabilize the flow. Thus, for
perturbations to grow, the vertical wind shear (reflected in ut) must increase
for instabilities to develop. Exploiting (A.169) to analyse this in more detail,
we set up the condition δ < 0 and simplify the equation so to yield

k4 < 2λ−2
d ±

√

4λ−8
d −

β2λ−4
d

u2
t

, (A.171)

which gives rise to complex solutions if ut > βλ2

d

2 . Thus, it is evident that
the β-effect acts to stabilize the flow, since the criticial vertical wind shear
needed increases when β increases. It is also noteworthy that in the absence
of a vertical wind shear we only yield free oscillations upon a barotropic flow
with a phase speed for the barotropic perturbation that corresponds to that
for a barotropic Rossby wave, i.e.,

c = um −
β

k2
. (A.172)

How is the β-effect expected to manifest itself in our simulations? Ac-
cording to Vallis (2006), we could expect an inverse energy transfer that is
deflected into the kx = 0-mode so that the flow becomes more zonal. We could
also, depending on the strength of the β-effect and hence at which length-
scales its presence are felt, expect Rossby waves to develop. Thus, if there is a
wide enough region in k-space between the so-called Rhines scale and the scale
at which the friction dominates, waves would dominate the flow rather than
geostrophic turbulence itself, in this particular region.
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