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Abstract

Converging cylindrical shock waves have been studied experimentally. Numeri-
cal calculations based on the Euler equations and analytical comparisons based
on the approximate theory of geometrical shock dynamics have been made to
complement the study.

Shock waves with circular or polygonal shock front shapes have been cre-
ated and focused in a shock tube. With initial Mach numbers ranging from 2 to
4, the shock fronts accelerate as they converge. The shocked gas at the centre
of convergence attains temperatures high enough to emit radiation which is
visible to the human eye. The strength and duration of the light pulse due to
shock implosion depends on the medium. In this study, shock waves converg-
ing in air and argon have been studied. In the latter case, the implosion light
pulse has a duration of roughly 10 µs. This enables non-intrusive spectrometric
measurements on the gas conditions.

Circular shock waves are very sensitive to disturbances which deform the
shock front, decreasing repeatability. Shocks consisting of plane sides mak-
ing up a symmetrical polygon have a more stable behaviour during focusing,
which provides less run-to-run variance in light strength. The radiation from
the gas at the implosion centre has been studied photometrically and spectro-
metrically. Polygonal shocks were used to provide better repeatability. The
full visible spectrum of the light pulse created by a shock wave in argon has
been recorded, showing the gas behaving as a blackbody radiator with apparent
temperatures up to 6000 K. This value is interpreted as a modest estimation of
the temperatures actually achieved at the centre as the light has been collected
from an area larger than the bright gas core.

As apparent from experimental data real gas effects must be taken into
consideration for calculations at the implosion focal point. Ideal gas numerical
and analytical solutions show temperatures and pressures approaching infin-
ity, which is clearly not physical. Real gas effects due to ionisation of the
argon atoms have been considered in the numerical work and its effect on the
temperature has been calculated.

The propagation of circular and polygonal have also been experimentally
studied and compared to the self-similar theory and geometrical shock dynam-
ics, showing good agreement.

Descriptors: Converging shock waves, polygonal shock waves, temperature
measurement, argon, plasma creation, ionisation, spectrometry.
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Preface

This licentiate thesis in fluid mechanics deals with converging shock waves.
Primarily the acceleration of the shock fronts and the radiation from the
shocked gas have been studied. The work is mainly experimental and is

complemented by numerical calculations and analytical approximations. Part
I of the thesis gives an introduction to the field and the experimental

equipment as well as a summary of results. Part II consists of 3 papers. In
chapter 7 of Part I the respondent’s contributions to the individual papers is

stated.

March 2010, Stockholm

Malte Kjellander
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Part I

Overview and summary





CHAPTER 1

Introduction

This work is an experimental and numerical study on converging cylindrical
shock waves. Whereas diverging shock waves, such as those created from deto-
nations, are loosing strength as they propagate, focusing shock waves accelerate
towards the centre of convergence, where large pressures and temperatures can
be achieved.

The first work on converging shock was an analytical treatment by Guder-
ley (1942), while the first experimentally produced converging shock waves were
presented by Perry & Kantrowitz (1951). Since then, the ability of converging
shock waves to concentrate high amounts of energy at the shock implosion fo-
cus has guaranteed continued interest in the field. The most common practical
use of shock wave focusing is currently in medicine: extra-corporeal shock wave
lithotripsy, which is a method where infinitely weak shock waves are focused on
kidney stones inside a patient. The pressure concentration breaks the stones,
which can exit the patient the natural way. Stronger shocks can be used for
harder matters: creation of high speed jets which in turn can be used for ma-
terial applications, such as cutting of solids or surface cleaning, or synthesis of
diamonds from graphite (Glass & Sharma (1976)).

During the first experiments by Perry and Kantrowitz it was found that the
amplification of the converging shocks of initially moderate strength (M=1.5-2)
created conditions at the implosion focus such that the gas became radiating.
The light emission allows determination of temperature and other gas variables
through non-intrusive spectrometric measurements. The present work aims to
study the nature of the light emission from converging cylindrical shock waves in
argon and to estimate the temperature achieved at the focus. The shock waves
are produced in a shock tube designed along similar principles as the tube
of Perry and Kantrowitz, with a plane shock wave which is first transformed
to an annular shape and subsequently to a cylindrical converging shock. The
propagation of the shock is studied and the light pulse created by the shock
implosion at the centre of the test chamber is investigated by photometry and
spectrometry.

A converging cylindrical shock wave will produce high energy concentra-
tions under the condition that its symmetry is preserved during the convergence
process. However, converging circular shocks have been found to be unstable.

1



2 1. INTRODUCTION

Small deviations from a circular shape tend to increase and eventually produce
plane portions on the shock front. This leads to a loss of symmetry and a
substantial decrease in the focusing effect since various parts of the shock front
arrive at different instants and locations in the focal region. Shock waves of
polygonal forms have been shown to produce more repeatable results. The
spectrometric measurements presented in this work are made on octagonal
shock waves for this reason.



CHAPTER 2

Basic equations

This chapter provides a physical and mathematical description of the gas and
shock wave jump relations, an introduction to shock wave reflections and shock
tube flow, as well as a summary of the research on converging shock waves.

2.1. Theoretical considerations

The gas considered in this chapter is a monatomic gas which, due to the high
temperatures and pressure near the centre of convergence, is subject to ionisa-
tion. The governing equations of the fluid are the compressible Euler equations
but since the gas contains charged ions and electrons, its state equation will
differ from that of a fluid-mechanically perfect gas. Consider an inviscid gas
with volumetric mass density ρ, temperature T , internal energy e per unit mass
and velocity u = (u, v, w). The basic equations for inviscid compressible flow:
conservation of mass, momentum and energy, neglecting body forces and heat
addition:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

The momentum equations, one for each component i:

∂(ρui)

∂t
+ ∇ · (ρuiu) = −∇p (2.2)

The energy equation:

∂

∂t

[

ρ

(

e +
u2

2

)]

+ ∇ ·

[

ρ

(

e +
u2

2

)

u

]

= −∇ · (pu) (2.3)

The equations, here written in conservative form, need to be closed with an
equation of state. At low pressures and temperatures, most real gases behave
as thermodynamically perfect gases and fulfil:

p = ρRT = nkT (2.4)

where R is the specific gas constant, n the number of atoms per unit volume
and k the Boltzmann constant. Departures from the perfect state will occur
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4 2. BASIC EQUATIONS

when the gas is exposed to energetic radiation or attains very high pressures
or temperatures1. The simple definition of a real gas is one that does not fulfil
the perfect gas law. A general equation of state does not exist, which means
that different models for different regimes must be used.

2.1.1. Equation of state of an ionised gas

Consider a volume V of monatomic gas subjected to high temperatures. As the
translational energy of the gas increases, collisions between particles become
more frequent and violent. Electrons are excited to higher levels or broken away
from their orbits around the nuclei, forming ions and free electrons. During
the collisions translational energy is transferred to potential energy in form
of excited atoms or ions. The gas now consists of several species: neutral
atoms, ions of different charge states and electrons. New variables are needed
to describe the gas. The electron number density is denoted as ne (dimension
m−3) and the number density of heavy particles ni, i = 0, 1, ..., $ where i is the
charge state of the ion and $ the atomic number. For the neutral atoms, i = 0.
The total number density of all heavy particles is denoted nH =

∑

ni, which
is equivalent to the original number density n. The degree or number fraction
of ionisation is then defined as αe = ne/nH . The variable αe may also be seen
as the average number of electrons released by the original atoms. The number
fractions of heavy particles in ionisation stage i is defined as αi = ni/nH . From
the definitions:

N
∑

i=0

αi = 1 (2.5)

Assuming charge conservation, a relation between electron and ion fractions
can be found. An ion in stage i has released i free electrons:

ne =
!

∑

i=1

ini = nH

!
∑

i=1

iαi = nHαe (2.6)

αe =
!

∑

i=1

iαi (2.7)

The gas consists of a mix of electron and ion gases. Assuming that they
individually fulfil perfect gas conditions, the partial pressures from each species
are:

1Two other cases when Eg. 2.4 is invalid is at extremely low densities, where the gas formu-
lation itself is inapplicable, and at extremely high velocities where relativistic effects come
into play.



2.2. STRONG SHOCK WAVE JUMP RELATIONS 5

pe = nekTe (2.8)

pi = nikTi, i = 0, 1...$ (2.9)

If the gases are in local thermodynamic equilibrium, which is reasonable for
the regimes considered here, they all may be described by a single temperature,
Te = Ti = T (this is however not valid within a shock wave). Using the particle
fractions as defined above, the total pressure can then be written as follows,
yielding an equation of state for a partially ionised gas:

p = pe +
!

∑

i=0

pi = kT (ne +
!

∑

i=0

ni) = nHkT (αe + 1) (2.10)

The specific gas constant of the neutral nHmH This can be reformulated
using k = RAmA, where RA and mA is the specific gas constant and molecular
mass for the atomic gas considered. The weight differences between the ions of
different stages are negligible, leading to ρ ≈ mAnH and:

p = ρRT (1 + αe) (2.11)

2.2. Strong shock wave jump relations

Figure 2.1 illustrates a standing normal shock wave where the pre-shock condi-
tions are known. The pre-shock flow has a Mach number M1 and the unknown
post-shock conditions are sought. For a calorically perfect gas, the post-shock
conditions may be solved as functions of M1 from the conservation equations
2.1-2.3 by considering the shock as a discontinuity. This is a good approxima-
tion as long as M1 <∼ 5. For higher Mach numbers the temperature behind
the shock starts causing vibrational excitation or chemical reactions. It is no
longer possible to find such a simple solution closed-form solution and an iter-
ative method must be used.

Shock jump relations accounting for various combinations of dissociation,
radiation or ionisation have been studied extensively, see for example Resler
et al. (1952), Nieuwenhuijzen et al. (1992) or Michaut et al. (2004). Here is
a short description of the solution procedure for the case when ionisation is
considered: for further details, see Zel’dovich & Raizer (2002). A strong shock
wave is moving into a gas with known conditions p1, T1 etc. The gas in region
1 is in a state such that the ionisation αi1 = [α1, α2, ..., α!]1 can be considered
equal to zero. Considering the system in an inertial frame attached to the
shock (Figure 2.1), the flow is steady and the conservation equations can be
formulated as following, neglecting internal forces and heat additions:

ρ1u1 = ρ2u2 (2.12)
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Figure 2.1. Normal shock wave. The state (1) before the
shock is known.

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (2.13)

h1 +
u2

1

2
= h2 +

u2
2

2
(2.14)

Here the energy is replaced with the enthalpy h = e + pV . As described
earlier, the ionised gas consists of several species and each particle has a trans-
lational energy 3

2kT . As the gas is ionised, translational energy is transferred
to potential energy in the ions. The ionisation potential, denoted Ii, is the
energy required to remove an electron from an atom or ion: I1 is the required
energy to remove and electron from a neutral atom, I2 the energy to remove
a second electron from a singly ionised atom, and so on. The total energy
required to remove N electrons is therefore Itot = I1 + I2 + ... + IN . There
also exist electrons excited to higher levels within the ions, whose excitation
energy is designated Wi. Summarising, the enthalpy of the ionised gas may be
expressed as:

h =
5

2
(1 + αe)RT + R

!
∑

i=1

αi

i
∑

j=1

Ij

k
+ R

!
∑

i=0

αiWi (2.15)

To calculate α, local thermodynamic equilibrium is assumed to be estab-
lished instantaneously and the species distribution is found from the Saha equa-
tion, here rewritten using the particle fractions:

αi+1

αi
=

1 + αe

αe

(

2πme

h2

)3/2 (kT )5/2

p

2Qel
i+1

Qel
i

exp

(

−
Ii+1

kT

)

(2.16)

where me is the electron mass, h the Planck constant, and Qel
i+1and Qel

i

the internal partition functions of respective species. For a given p and T
equation 2.16 can be solved, e.g. by the iterative method of Trayner & Glowacki
(1995). More details on the enthalpy and Saha equations may be found in
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Appendix B. The system of equations 2.11 and 2.12-2.16 is closed with respect
to the unknowns, but an iterative method is necessary to find the post-shock
conditions:

1. An initial value of ρ1/ρ2 is estimated, based on e.g. the standard
Rankine-Hugoniot equations.

2. New values of p2, u2 and h2 are calculated using Eq:s 2.12-2.14.
3. With the new values, a temperature which simultaneously fulfils the

enthalpy according to Eq. 2.15 and the equilibrium conditions according
to Eq. 2.16 is sought using a bi-secant method.

4. A new ρ1/ρ2 can now be found from the equation of state 2.11, which
is used as a new guess in step 1, until the error between the resulting
and initial value is as small as acceptable or machine allows.

Figure 2.2 shows the equilibrium conditions behind a normal shock wave in
argon with initial temperature T = 293 K and three different initial pressures
p1 = 0.1, 0.01 and 0.001 atm. The dashed lines are the Rankine-Hugoniot
relations for a perfect gas without ionisation depending only on Mach number.
The ionisation has a strongly limiting effect on the temperature as energy is
transferred from translational to potential energy. Whereas the compression
approaches an asymptotic value (ρ2/ρ1 = 4 for γ = 5/3) for the constant-
composition gas this is not the case for the ionising shock. The peak corre-
sponds to the maximum of the first ionisation stage, whereafter the transla-
tional energy increases relative to the potential energy, resulting in a decrease
of density.

2.3. Shock tube flow

Shock tubes are devices used primarily to study high temperature gases. A
simple shock tube is a long tube, usually with a rectangular or circular cross
section, consisting of two sections separated by a thin membrane. The first is
called the driver section and is filled with a gas at high pressure. The other, low
pressure section is called the driven section. A shock tube at initial conditions
is sketched in Figure 2.3.
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Figure 2.2. Effect of ionisation on shock jump conditions
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0.001 atm. Dashed lines represent the non-reacting Rankine-
Hugoniot solution. The ionisation is presented in (d).
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and 1 is the initial gas states.
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When the separating membrane bursts, pressure waves start propagating
into the low pressure gas. The speed of sound behind the successive waves
increases, resulting in a compression of the waves into a shock wave moving
downstream at a velocity us. Figure 2.4 shows the flow and gas conditions in
a shock tube at a time t = t1 and an x-t propagation diagram. The instant
t1 corresponding to the graphs is shown as a horizontal dashed line in the x-t
diagram. The shock wave pulls the gas it passes through with it, inducing a
hot flow with a velocity u2. This is the flow (region 2) which is often used for
studying high temperature gases or used for hypersonic aerodynamic testing
in a shock or expansion tunnel. The gas in region 3 is the gas originally in
the high pressure section propagates at the same velocity u2 as the induced
flow. The surface between the gases is called the contact discontinuity, which
in reality is a turbulent region filled with a mixture of both gases developed
during the diaphragm burst and not as sharp as the name or the presentation
in Figure 2.4 would suggest. The entropy and temperature changes over the
surface, but the pressure and velocity are constant.

Simultaneously with the compression wave, an expansion wave starts mov-
ing upstream (left in the figures) at the diaphragm burst. The expansion tail is
moving upstream at the local speed of sound, but since the gas at that point is
moving downstream at velocity u2, the tail may be moving either left or right in
the laboratory frame, depending on whether u2 is sub- or supersonic. In Figure
2.4 the tail is depicted moving right/downstream, indicating a supersonic u2.
In region 5, the shock wave has reflected on the farther wall and travelled back
into the shock-induced flow, further increasing the pressure and temperature.

The flow field presented in the x-t diagram can be completely determined
from the initial conditions in regions 1 and 4 with the ideal assumptions of
inviscid flow and discontinuous shock and contact surface. The resulting Mach
number of the shock wave Ms = us/a1 depends on the initial ratios of the
pressures p1 and p4 and the speeds of sound a1 and a4 in the high and low
pressure gas. A one-dimensional treatment is presented in Resler et al. (1952);
the result is reproduced in equation 2.17 and 2.18. The first equation gives
the relation between the initial pressures, speeds of sound and shock Mach
number while the second equation shows the maximum theoretically achievable
shock Mach number Mmax. Apparently, even though higher pressure ratios
strengthens the shock wave, the speed of sound ratio sets a limit on the shock
wave strength. The equations are derived on the assumption of constant heat
capacity and neglecting viscosity. More information on the theory of shock
tube flow may be found in Anderson (2003) or, concerning deviations from the
ideal assumptions, Emrich & Wheeler (1958).

p4

p1
=

[

2γ1M2
1 − (γ1 − 1)

γ1 + 1

] [

a4

a4 −
1
2 (γ4 − 1)u2

]

2γ4

γ4−1

(2.17)
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Mmax =
γ1 + 1

γ4 − 1

a4

a1
(2.18)

2.4. Pseudo-steady shock reflections

The interactions between several shock waves or between shocks and solid
boundaries are important in this work, so a brief introduction will be given
here. The reflection pattern appearing when a shock wave collides with an
inclined solid surface is dependent on the inclination θ and Mach number Ms

of the wave. The different patterns are categorised in two main groups, regular
and irregular reflections. Irregular reflection includes von Neumann reflection
and different forms of Mach reflections. The categorisation and transition cri-
teria are still discussed and studied. This introduction is primarily based on
Ben-Dor (2007).

Figure 2.5 illustrates some of the possible shock reflection patterns. A plane
shock wave i is moving perpendicularly along a surface from left to right, with
velocity us and Mach number Ms. The shock propagates into a gas at rest.
At a certain point it strikes an inclination with angle θ. If θ is large enough,
regular reflection occurs, Fig. 2.5 (a), where the reflected shock r is connected
to the incident shock at the surface (point P). Although the shock waves are
not stationary in the laboratory frame, the flow is steady in a reference frame
attached to point P and the systems are referred to as pseudo-steady.

Irregular reflections occur when the angle θ is so small that a physical
flow can not be established by the regular reflection pattern (a). Two different
Mach reflections are shown in (b) and (c). A shock wave m normal to the
surface appears - called a Mach stem after its first observer - inducing a parallel
flow close to the surface. The incident and reflected shock wave instead meet
together with the stem at a point away from the wall, called the triple point (T).
A slip line divides the gas that has passed the incident and reflected shock from
the gas affected by the stem. If the flow immediately behind the triple point
between r and s is supersonic relative to T, the near part of the reflected wave
becomes straight. This pattern is designated as a transitional Mach reflection
(c). A von Neumann reflection is a weaker form of irregular reflection, where
the reflected shock r is a compression wave. Other types exist, but this text is
limited to stating their existence: stationary and inverse Mach reflections and
double and triple Mach reflections.

For small angles θ, no reflection is possible and the shock segment closest to
the surface curves and becomes normal to the wall. Except in the already cited
source, further reading may be found in Hornung (1986), Ben-Dor & Takayama
(1992).
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2.5. Previous work on converging shock waves

This section gives a short summary of the study of converging shock waves,
starting in the 1940s. The theoretical approach consists mainly of self-similarity
studies and approximate methods, such as geometrical shock dynamics. The
focus in this chapter is however on experimental work.
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2.5.1. Theoretical studies

The first analytical treatment of converging shock waves was made by Guderley
(1942), who derived a self-similar solution for shock waves of cylindrical or
spherical form. He found the following expression for the time t and radius r
of an initially strong shock wave converging in an inviscid, perfect gas:

r

r0
=

(

1 −
t

t0

)a

(2.19)

where r0 and t0 is the initial radius and time of focusing. The self-similar
exponent a depends on geometry and the medium through which the shock is
propagating. Analyses of the self-similar problem and derivations of self-similar
exponents with an ever increasing number of significant digits have since been
made in a number of studies, e.g. Butler (1954), Stanyukovich (1960) , Fujimoto
& Mishkin (1978) and Ponchaut et al. (2006). Table 2.5.1 shows the history of
the exponent for cylindrical and spherical shock waves for γ = 1.4 and γ = 5/3.
The assumption of an initially strong shock was removed by Ponchaut et al.
(2006), who showed that solutions also exist for infinitesimally weak shocks.

The deviating value of Fujimoto & Mishkin (1978) comes from their claim
that the problem might be solved in closed form, although other authors
(Lazarus (1980),Van Dyke & Guttman (1982)) have challenged this. A nu-
merical integration of the shock wave was carried out by de Neef & Hechtman
(1978), which agreed well with the previous analytical work. Chisnell (1998)
made an approximate analytical determination of the exponent agreeing very
well with those acquired from the exact form. His solution also gave a descrip-
tion of the flow field at all points behind the converging shock front.

Nakamura (1983) used the method of characteristics to solve the problem
and acquired exponents agreeing well with the self-similar solution.

Approximate methods neglecting the influence of the flow behind the shock
wave were developed independently by Chester (1954), Chisnell (1955) and
Whitham (1958). It is a geometrical approach based on tracking the shock
fronts along rays perpendicular to the fronts, analogous to acoustic wave theory.
The approach, by some authors called CCW-methods after the listed authors,
by other geometrical or Whitham shock dynamics (GSD), has proved to be a
good approximation and agrees well with the Guderley similarity solution. The
theory has been expanded by Whitham to allow uniform flow in front of the
shock and by Apazidis et al. (2002) to also account for shocks propagating into
non-uniform flows.

A comparison of the solutions of self-similar theory, geometric shock dy-
namics as well that of a numerical Euler solver was presented by Hornung et al.
(2008), showing good agreement.
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Cylindrical Cylindrical Spherical Spherical
γ = 7/5 γ = 5/3 γ = 7/5 γ = 5/3

Guderley (1942) 0.834 - 0.717 -
Butler (1954) 0.835217 - 0.717173 0.688377
Stanyukovich (1960) 0.834 - 0.717 -
Welsh (1967) 0.835323 0.815625 0.717174 0.688377
Lazarus & Richtmyer (1977) 0.83532320 0.81562490 0.71717450 0.68837682
Fujimoto & Mishkin (1978) - - 0.707 0.687
Mishkin & Fujimoto (1978) 0.828 0.814 - -
de Neef & Hechtman (1978) 0.835 ± 0.003 - - -
Van Dyke & Guttman (1982) 0.835324 - 0.7171745 0.6883768
Nakamura (1983) 0.8342/0.8345 - 0.7173 -
Hafner (1988) 0.835323191952911 0.815624901431225 0.717174501488999 0.688376822922543
Chisnell (1998) 0.83532 0.81562 0.71716 0.68837
Ponchaut et al. (2006) 0.835323191953 0.8156229691667 0.717174501488 0.6883740859496

Experiments:
Kleine (1985) 0.832(+0.028, −0.043) Ms = 1.3 − 2.1
Takayama et al.(1987) 0.831 ± 0.002 Ms = 1.1 − 2.1
Hosseini & Takayama (2005) 0.738
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2.5.2. Experiments

The first experiments on converging shock waves were carried out by Perry
& Kantrowitz (1951). Using a shock tube with an inner body shaped as a
teardrop, they produced circular cylindrical shock waves which were studied
with schlieren optics. They found that the shock waves managed to concentrate
enough energy to make the gas at the centre of implosion emit light - even more
so when argon was used as a test medium. The production of light was believed
to be caused by ionised gas and taken as an indicator of high pressures and
temperatures. Two different initial Mach numbers were studied, 1.4 and 1.8.
They concluded that creating symmetric cylindrical shocks was more difficult
with the higher Mach number, due to instability of stronger shocks. Since then
several experimental studies have been conducted, in modified shock tubes or
other specifically designed devices.

2.5.2a. Spectroscopic measurements. Knystautas et al. (1969) made experi-
ments with converging detonation waves in a cylindrical chamber filled with
an acetylene-oxygen gas at an initial pressure of 120 Torr. They measured
the intensity of the luminescent centre at two wavelengths and compared to a
blackbody radiator, estimating a maximum temperature of 189,000 K.

Roberts & Glass (1971) measured the emission from converging shock
waves in a hemispherical chamber filled with a oxygen-hydrogen gas at high
pressures (6.8-27.2 atm). The shock waves were generated with an exploding
wire in the center of the chamber. The radiation was continuos with a black-
body temperature of ∼5000 K. They also stated that the temperature reported
by Knystautas et al was estimated too high due to erroneous use of Wien’s law.
The work was continued by Roig & Glass (1977), who presented time resolved
blackbody temperatures from measurements on six wavelength regions, with
similar peak temperatures (4500-6000 K).

Saito & Glass (1982) made spectrometric temperature measurements on
shock waves in a hydrogen-oxygen mixture. Shock waves were initiated by
exploding wire at the centre of a hemispherical implosion chamber and allowed
to reflect and converge. They also used explosives attached directly at the
walls. Time-resolved recordings on the radiation intensity was made at eight
wavelengths in the visible region. The emission was found to be continuos and
comparisons with the blackbody function yielded temperatures in the range
10,000-13,000 K for gas runs and 15,000-17,000 K for the explosive runs.

Matsuo et al. (1985) conducted spectrometric measurements on converging
shock waves in air. Strong shock waves were created by detonation at the centre
of a test circular chamber, which reflected at the walls and focused. The light
emission at the focus was measured and compared to the blackbody function.
Time-resolved intensity was measured with photomultiplier tubes at a number
of separate wavelengths between 400 and 500 nm and temperatures in the range
of 13,000-34,000 K.
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2.5.2b. Measurements on stability and flow propagation. Neemeh & Ahmad
(1986) studied the stability of cylindrical shock waves, experimentally and the-
oretically. Perturbations were introduced externally, by placing cylindrical rods
in the path of the shocks. They made a number of conclusions: the region of
collapse was shifted due to the disturbance and depending on whether the shock
was strong or weak, the shift was either on the disturbed side of the centre or
beyond. Perturbations were found to grow exponentially, in good agreement
with Butler’s (already cited) theoretical work, indicating that cylindrical shocks
are unstable.

Takayama, Kleine & Grönig investigated the stability of converging circular
cylindrical shock waves. The experiments were conducted in two different shock
tubes - one at the Stosswellenlabor, RWTH in Aachen and one at the Institute
of High Speed Mechanics, Tohoku University in Sendai - with similar basic de-
signs as that of Perry and Kantrowitz: a circular tube with a conical inner body.
It was concluded that the shock waves were always unstable in these tubes. The
results showed that the appearance of the instabilities are very sensitive to the
design of the supports of the inner body. One tube had three supporting struts
and the other four. In the tube with three struts the deformations became
triangular, while square deformations appeared in the second tube. The de-
formations were designated as three- and four-mode instabilities. Takayama
and Kleine also achieved experimental values for the self-similarity exponent,
which agreed well with theory (see Table 2.5.1). Watanabe & Takayama (1991)
continued stability experiments in the Sendai tube and concluded that small
perturbations were amplified during convergence resulting in the formation of
triple points.

Further stability analyses were made by Watanabe et al. (1995), who built
a vertical shock tube without supports for the inner body to eliminate such
disturbances. The resulting shocks did keep their circular form better than in
shock tubes with supports. Deformation of the shock shape still occurred how-
ever, and reason for this was believed to be small changes in area between the
inner and outer body of the coaxial channel. Also in this experiment cylindrical
rods were placed in the test section to introduce corresponding disturbances in
a controlled way. One conclusion was that when several modes were combined,
the lowest dominated the others.

Hosseini & Takayama (2005) constructed a hemispherical chamber for fo-
cusing of shock waves created by explosives. The final Mach number of the
converging shock was between 2.5 and 8. They created a transparent chamber
with aspheric outer surface in order to use holographic interferometry. They
made high-speed video recordings of the shock wave propagation and discussed
the effect different methods to initiate the shock had on the stability.
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Although some authors have argued that converging circular cylindrical
shock waves are stable (Lee & Knystautas (1971)) most have claimed the op-
posite, which indicates that loss of symmetry sets the limit for the ability of
energy concentration. Whitham (1973) used his ray-shock theory to show that
circular shocks indeed are unstable. Henshaw et al. (1986) developed a nu-
merical scheme based on Whitham’s theory, which Schwendeman & Whitham
(1987) applied the theory to polygonal shock waves. He found that a symmetric
polygonal shock is dynamically stable in the sense that the shock front will un-
dergo a periodic transformation between n and 2n sided polygonal form while
retaining the symmetry of the shock structure. Apazidis & Lesser (1996) made
a theoretical study using geometrical shock dynamics to design a chamber in
which such shapes could be created.

2.5.3. Previous work at KTH Mechanics

Experiments on converging shock wave were initiated at KTH Fluids Physics
Laboratory in 1996. Based on the calculations by Apazidis & Lesser (1996)
with modified geometrical shock dynamics, polygonal shock waves with sharp
corners were generated in a confined cylindrical chamber with smooth exchange-
able boundaries (Johansson et al. (1999), Apazidis et al. (2002)). A shock wave
was generated in the centre of the chamber by electric discharge or exploding
wire. The shock wave diverged, reflected on the smooth polygonal boundary
and converged. Schlieren photography was used for visualisation. The exper-
imental results agreed well with the modified geometrical shock dynamics for
shocks moving into a non-uniform flow. More information can be found in the
licentiate thesis by Johansson (2000).

However, the method of initiating the shock in the chamber created a dis-
turbance zone in the centre. To avoid these disturbances a horizontal shock
tube was constructed. The tube works on similar principles as that of Perry &
Kantrowitz (1951) and Takayama et al. (1987) and is described in Chapter 3.
The shock tube has exchangeable reflector boundaries akin to those used in the
confined chamber. Polygonal shocks with different number of sides were gener-
ated in the tube and studied with schlieren optics (Eliasson et al. (2006)). The
four-mode instability reported by Takayama et al. (1987) was observed in the
KTH tube as well. Another way of reshaping the shocks was employed: small
cylinders were inserted in the tube to deform the shocks into polygonal shapes
(Eliasson et al. (2007a)). The behaviour of polygonal shocks rearranging them-
selves in periods was observed and showed good qualitative agreement with the
calculations of Schwendeman & Whitham (1987) and Apazidis & Lesser (1996).
The light production was also studied photometrically (Eliasson et al. (2007b)).
The total intensity of the light pulse was measured for polygonal and circular
shock shapes. It was shown that the light intensity between different shock
tube runs were more consistent when the shocks had polygonal shapes, albeit
not as strong. This is an indication that polygonal shocks are more stable.
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The experiments were coupled with numerical calculation based on the Euler
equations, including a numerical determination of the self-similarity exponent
which agreed well with analytical data. For further information, see the doc-
toral thesis by Eliasson (2007).



CHAPTER 3

Experimental methods

The experiments were performed at the shock tube facility of the Fluid Physics
Laboratory at KTH Mechanics. The facility consists of a shock tube with
circular cross section, designed to create converging cylindrical shock waves,
and equipment for detection and measurements of the propagation and light
production of the converging shock waves. This chapter aims to describe the
setup used in the experiments presented here and to work as an introduction
to future users of the facility.

3.1. Experimental apparatus

3.2. Shock tube

The cylindrical shock tube is illustrated in Figure 3.1. The capital letters
designates the different parts of the tube: (A) is the driver section and (B)-(E)
the driven section. The diaphragm is located at the intersection of parts (A)
and (B). The driven section consists of a inlet tube (B), an annular section
(D) and a cylindrical test section (E). The purpose of the inlet tube is to allow
the shock wave to attain a plane shape before entering the annular section.
A transformation section (C) consisting of a coaxially aligned conical inner
body which transforms the shock wave into an annular shape. The geometry
is designed to keep the total area of the shock front constant through the
transformation phase as well as in the annular channel. The height of the
channel is 10 mm. The annular channel ends into an open chamber with a
sharp 90◦ bend. The test section is made up of this open chamber. The shock
wave reflects against the end wall, creating a high pressure and temperature
region building a piston-like compression towards the test section which has a
width (channel height) of 5 mm. The interactions at the bend are complex,
resulting in a shock wave moving with increasing speed towards the centre of
the cylindrical test section. The principal propagation of the shock wave is
sketched in Figure 3.2. The test section consists of the central part of the
chamber which is framed on both sides by glass windows for easy visualisation.
The observation window (W2) is a 15 mm thick borosilicate glass (Borofloat
33) disc with good thermal resistance and full optical transmission down to the
UV range.

19
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Driver gas Test gas

C D
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Figure 3.1. Schematic drawing of the shock tube. The prin-
cipal sections are: A driver section; B inlet tube; C transfor-
mation section; D annular channel and E test section. Shock
sensors S1 and S2, and glass windows framing the test section
W1 and W2. Connections to the tube 1-5, present use: 1, high
pressure sensor; 2, burst indicator; 3, low pressure sensor; 4,
test gas valve; 5 vacuum pump.

Annular shock wave Converging cylindrical 
shock wave

Plane shock wave

Figure 3.2. Schematic drawing of the shock wave propaga-
tion through the tube. The plane shock enters the transforma-
tion section from the inlet tube, becomes annular before going
through the bend into the cylindrical test section. The part
of the shock wave that reflects on the test section wall and
returns down the annular channel is omitted for clarity.

The low pressure section is evacuated by a two-stage vacuum pump con-
nected to the tube at (5). Test gas can be admitted into the tube via the valve
at (4). When argon is used as test gas, the process of filling the tube begins by
evacuating the tube maximally, filling it with gas to the desired test pressure,
whereupon the evacuation and refilling process is repeated once more. The ar-
gon gas used in the present experiments had a purity rate of 99.99%, according
to the manufacturer. After the evacuation the gas is allowed to retain room
temperature, a process which takes about two minutes.

Regular air or commercial helium is used as driver gas. Thin aluminium
diaphragms separates the sections (A) and (B). Located behind the diaphragm
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Figure 3.3. Guide to achievable Mach numbers with mem-
branes thickness of 0.5 mm (+) and 0.7 mm (o) for two gas
combinations. Theoretical values have been added for compar-
ison (0.5 mm: full lines, 0.7 mm: dashed lines). Upper curves
have helium as driver and argon as test gas, while the lower
have air as both gases.

is a cross-shaped knife. The knife has a twofold purpose: to ensure ruptures
at set pressure differences and to ensure consistency in the mechanical opening
process. The pressure difference required to force the diaphragm towards the
knife is determined by the thickness and strength of the membrane, which
assures that rupture occurs at the same pressure difference each run. In this
work membranes of thickness 0.5 mm and 0.7 mm were used. The rupture
pressure difference is 1.65±0.05 MPa for the thin membranes and 2.3±0.1 MPa
for the thick. The pressures and variance of pressures between runs are slightly
dependent on the handling of the filling of the gas and do vary considerably
from the stated values. If care is taken to fill the tube in the same manner each
shock tube run, the variance between shots can be decreased to as low as 10
kPa.

The pressure in both sections is measured with a pressure transducer and
indicator (GE Druck DPI 150), connected to the high pressure section at 1 (see
Figure 3.1) and to the low pressure section at (3). An external module (GE
Druck IDOS) connected to the indicator is used to measure the high pressure.
The highest pressure at the moment of membrane rupture is recorded and used
as the value for the high pressure p4.

The shock speed is measured in the annular tube by two temperature
sensors, called ”shock sensors” in this text. These are inserted flush with the
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Figure 3.4. Circuit diagram of shock sensor amplifier.

outer wall of the channel and separated by 25.0 cm. Each consists of a strip
of platinum film painted on the tip of a glass cylinder with a diameter of 10
mm inserted through the tube wall and aligned flush with the inner surface
of the outer wall of the annular channel. The platinum strip is connected
to a fast amplifier and the circuit diagram is shown in figure 3.4 (Eliasson
(2007)). Figure 3.3 shows measured Mach numbers for membrane thickness
of 0.5 mm and 0.7 mm, compared with the theoretical Mach number after
membrane rupture according to equation 2.17. The figure is intended as a
guide to what shock strengths can be achieved with the membranes at which
low pressures. The Mach numbers are measured in the annular channel. The
shocks have passed the conical transformation section which leads to reflections
and dissipative losses, whereas the theoretical values show the ideal case in a
plane tube.

3.3. Triggering and Synchronisation

Capturing images or spectra of a very rapid phenomenon craves an accurate
triggering system to control the exposure of the cameras. Several trigging
methods have been used: the shock sensors, a trigger system making use of a
laser beam deflected by the shock wave and the photo-multiplier tube. A time
diagram (to scale) of the flow is shown in Figure 3.5.

3.3.1. Shock sensors

The temperature sensors positioned on the outer surface of the annular tube
may be used for triggering. It is a robust system and apt for all trigging
purposes except when rapid events very close to the focal region are studied,
when a more precise system is necessary. Either the first or second sensor
may be used, depending on circumstances. Typically, the signal output is
connected to a time delay unit (DG525, Stanford Research Systems), which in
turn triggers the laser, camera, oscilloscope or spectrometer.
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Figure 3.5. Idealised time diagram of shock propagation in
the annular shock tube. The flow is presented on a single axis
and omits the complex structures created at the 90◦ bend,
where x is the length coordinate in the horisontal part and r
the radius of the test section. The expansion fan and anything
originating upstream of the diaphragm is omitted.

3.3.2. Laser triggering

The signal from the downstream shock sensor may be used for triggering, but
since it is positioned far from the centre of the test section it is not precise
enough for measurements requiring a timing accuracy on the order of 100 ns.
The shock wave needs, depending on strength, a time of the order of 200-300 µs
to propagate from the shock sensor to the focus. The time variation between
shots amounts to several microseconds. A non-intrusive method was therefore
developed to detect the shock closer to the focus. A continuos laser beam is
directed through the test section, about 15 mm from the centre. Deflections
of the laser beam caused by the passing shock wave are detected by a fast
photodiode. The angle of the laser varied between experiments, depending on
the other measurement equipment placed in front of the test section.

Figure (3.6) shows a photograph and a principal sketch of the setup. A
HeNe laser beam is directed through the test section at a small angle, passes
through both glass windows and is reflected back by a mirror inside the inner
body. The beam path is in the horizontal plane lying on the tube centreline.
The beam exits the test section on the opposite side of the centre. A lens
(f=+80 cm) focuses the beam on an optical fibre, which leads the light to a
fast photodiode (Hamamatsu S5973). The circuit that amplifies the photodiode
current is given in figure 3.7. It consists of a primary current amplifier with
very fast response and a secondary amplifier to increase the output voltage to
the trigging levels of the time delay unit. Characteristics were determined with
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Figure 3.6. Photograph and sketch of the laser triggering
setup. Description for both: (a) HeNe laser; (b) mirror (inside
tube); (c) 80 mm lens, focusing the laser beam on (d) opti-
cal fibre mounted in a traverse; (e) photodiode and amplifier.
Path of laser beam sketched on photo. Two fibres collecting
light from the implosion to the photo-multiplier tube and spec-
trometer (lower left corner) can also be seen in the photo. A
damping filter and a knife edge may be used additionally.

a pulse laser: the rise time of the primary amplifier is about 20 ns and the rise
time of the combined circuit including the secondary amplifier is 100 ns.

The response to a passing shock wave consists of four peaks: the first two
correspond to the converging shock wave passing the laser beam going into and
out from the test section respectively, while the second pair corresponds to the
outgoing reflected shock wave. The peaks have a certain slope depending on
the angle of the laser beam. For triggering, the photodiode signal is set to the
trigger input of the delay unit. The system is very sensitive to the position
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Figure 3.7. Circuit diagram of the photodiode amplifier. Vs

may be set to 5 − 15 V.

of the receiving optical fibre. The fibre is placed on a traversing system and
before each shot it is moved to its most sensitive position where it generates
the maximum signal. The triggering level on the DG535 is set to just below
the value of the maximum: when the shock passes the generated signal drops.

3.3.3. Photo-multiplier signal

A simple way to trigger the spectrometer is to use the photomultiplier tube
detecting the light created by the shock wave itself. It is particularly useful for
measuring the light spectrum after shock focusing, during the relaxation phase
of the gas in the centre, but the small rise in emission just prior to the collapse
enables this method to be used to detect the beginning of the implosion pulse
as well. The problem that arises in the latter case is that this initial light
increase is relatively slow, not completely repeatable and, above all, very close
to the implosion peak itself.

3.3.4. Burst indicator

Immediately downstream of the membrane in the driven section, an electric
conductor runs through the tube wall (2) in Figure 3.1. The conductor is
electrically insulated from the metal tube and the conductor terminal is aligned
flush with the inner side of the tube. When the membrane bursts it hits the
conductor tip, connecting it with the tube. The change in potential may be
used as an indicator for the membrane burst event or as a trigger.

3.3.5. Pressure comparator

A circuit used for triggering the Nikon camera was built. It monitors the
pressure in the driver section and triggers an infrared remote control (a modified
Nikon ML-L3) to turn on the camera once a certain pressure is reached. A
pressure transducer (Keller Series 21R ) was connected on a T-joint inserted
on the tube between the Druck pressure indicator and the driver section. The
sensor signal is connected to a comparator circuit (see Figure 3.8), which toggles
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Figure 3.8. Circuit diagram of pressure comparator. Con-
nectors (1) and (2): power supply for comparator, (3) and (4):
power supply for pressure transducer . Output cable to IR
remote (5).

a relay when the pressure signal exceeds 2/3 of the comparator supply voltage.
A potentiometer is used to set the triggering pressure and a LED indicates
when the relay is activated. The circuit short cuts the two conductors in the
output cable to the infrared remote which triggers the camera.

3.4. Flow visualisation: Schlieren optics

Flow visualisation is provided with schlieren optics. A schlieren system makes
use of the density-dependence of the refractive index of light. Here follows a
short introduction and description of the present setup. Three main compo-
nents are necessary: a collimated light source, a light blocker - called a schlieren
stop - and a camera. The principle is simple: the parallel light rays illuminate
the test section of interest and are afterwards focused on the stop, which par-
tially or completely blocks the light. Density gradients in the test section make
the parallel rays deflect. Light that would otherwise have been blocked by the
stop will now pass it (or vice versa - light that would have passed may instead
be blocked). The density changes will thereby appear as darker or brighter
areas on the image plane after the schlieren stop. A camera takes photographs
of the image plane.

Two principal optical setups were used. One that had all optical elements
arranged on the centre line of the shock tube and one that made use of the
Schlieren Optical Unit (SOU) seen in Figure 3.9 and 3.10 where the optical
axis is twice folded. A schematic drawing of the latter system is presented in
figure 3.9. Light is provided with laser. The laser head is mounted outside
of the shock tube, perpendicular to it. The beam enters the inner body of
the annular section through one of the support struts and expands, thereby
illuminating the test section through the glass window. On the receiving side
the collimated light is focused with lens L1 (f=1350 mm) on a schlieren stop.
To be able to detect density gradients in all radial directions a circular stop is
used. Either a small micro-sphere blocking most of the beam - typically a 0.67
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Figure 3.9. Schematic drawing of schlieren setup.

mm ball bearing (Figure 3.11) - or a pinhole is used. The former gives dark
pictures with light shock waves, while the the latter gives a bright background
with darker shock waves.

A second lens L2 creates an image for the camera. Magnification is de-
cided through choices of lenses L1 and L2 and the distances between them
and the object plane (the test section). When the SOU is used, the lens L1 is
unchangeable. The straight system which do not use the SOU is in principle
no different, excepting that the optical axis is not mirrored.

3.4.1. Cameras

Two CCD cameras cameras are used: a PCO SensiCam and a Nikon D80
system camera. The SensiCam (12 bits, 1280x1024 pixels, pixel size: 6.7x6.7
µm) is equipped with a 80 mm Canon lens and can take either singly or multiply
exposed images. It is controlled by a computer which receives an external TTL-
level trigger signal via a PCI-board. For single exposures, an Nd:YAG laser
(New Wave Orion) is used with both cameras. The pulse length of the laser is
about 4 − 5 ns. The timing of the pictures is determined with the laser: the
camera was left open for a longer interval (5 µs for the SensiCam and 30 s for
the Nikon) and the laser fired at the desired instant for photographing.

The Nikon D80 is a regular digital system camera equipped with a Micro
Nikkor 60 mm macro lens. The shutter of the Nikon D80 could not be satisfac-
tory triggered without internal modification of the camera, so the shutter was
simply left open for 30 seconds. It was triggered using the pressure comparator
described above. At a pressure just below membrane burst pressure, the out-
put triggered a commercial infra-red remote (Nikon ML-L3) which opened the
camera shutter. The remote was modified to be triggered by the relay circuit.
The delay between the given IR signal and the shutter opening was very long
- longer than the propagation time of the shock wave from membrane rupture
and focusing, which made it necessary to trigger the camera before the actual
membrane opening. Although the optical setup is shielded from stray light, an
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Figure 3.10. Setup for schlieren photography: (a) laser light
source; (b) 1350 mm lens (inside tube); (c) schlieren stop; (d)
focusing lens; (e) camera.

exposure problem occurs with the Nikon camera with the shutter left open for
long periods. This causes the camera to not only capture the schlieren image
enlightened by the laser beam, but also to be exposed to the implosion light
pulse. The implosion pulse may be very bright and over-expose the photograph.
The unwanted exposure due to the implosion light flash is damped by placing
filters in front of the camera and compensating with increased laser power.

3.4.2. Lasers

The Orion laser Q-switch can be triggered internally or externally. In each
mode, it first receives a TTL signal to start the flash lamp (”Fire lamp”). In
internal QS mode, the laser pulse follows the ”Fire lamp” signal after 328 µs.
In the external mode, the laser is fired after receiving a second triggering signal
(”Fire QS”), typically around 200 µs after the ”Fire lamp” signal. The external
handling of the Q-switch generates much stronger light than in internal mode.
The output laser beam strength is controlled manually. Two energy modes,
called High and Low, are available and is supplemented with an energy scale
ranging from 0-99. Typical used values was Low 4 with the external Q-switch
mode, and Low 15 with internal Q-switch mode. The effective exposure time
for schlieren photographs using the Orion laser becomes the laser pulse length,
which is 4-5 ns.

Multi-exposed images require a continuous light source. An argon-ion
(Spectra-Physics BeamLok 2060) and a HeNe laser were used interchangeably.

3.4.3. Arrangement procedure

To arrange the system the following procedure is followed.
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Figure 3.11. The etched 0.67 mm micro-sphere used as a
schlieren stop.

The first step is to find the optical axis. The axis follows the centre line of
the shock tube and is relatively easy to find if the optics are to be aligned in a
straight line. However, when the SOU is used the optical axis is twice folded
by 90◦ and SOU must first be aligned. Starting in the camera end might
be the simplest course of action. A HeNe laser can be used as an alignment
assistant. First, the laser is placed at the position of the camera and the beam
is aligned straight with the the optical rail on top of the SOU and directed
through the centre of the light hole on the tower. A mirror should be used to
control that the beam is aligned along the optical axis of the system. With
the laser beam coming out of the SOU along its optical axis, the whole unit
can be positioned by moving it until the HeNe beam enters the centre of the
shock tube perpendicularly. When properly aligned, the laser beam should go
through the whole system and hit the schlieren laser orifice.

Alignment of the schlieren laser is simpler. The surface of the orifice where
the beam enters the tube is parallel to the tube centreline, and the laser can
therefore be aligned perpendicular to this surface. The alignment of the mirror
M inside the tube can be made from outside. A remote-controlled electric
motor controls the motion of the mirror around the vertical axis. The motion
around the horizontal axis is handled with a manual screw going through the
hollow strut on the opposite side of the light-entering strut.

With the SOU and schlieren laser aligned, the optical instruments - lenses,
stop and camera - can be placed. Usually the lenses and the camera is placed
first, their positions determined by desired magnification. A clear camera image
is obtained by putting a semitransparent paper grid in the centre of the test



30 3. EXPERIMENTAL METHODS

L1

L2

LLM

Continous 
Laser Delay 

unit

M

M

S

Oscillo-
scope

PM-tube

Test 
section

Camera

Annular 
tube

S1 S2

Signal S1

Camera Trigg IN

1720 mm

Computer

Figure 3.12. Diagram of Setup 090420. Description in the text.

section and focusing the camera on the grid. When all optical elements are
aligned, the schlieren stop is positioned at the focus point of the laser light.

3.4.4. Setup example - Multi-exposure schlieren

Figure 3.12 shows a sketch of a schlieren setup used for multiple-exposure
pictures. The lens L1 has a focal length of 1350 mm and L2 100 mm. The
schlieren stop S was a 0.67 mm ball bearing etched on a thin metal rod. The
continuous argon-ion laser and the PCO camera are described above. A delay
unit (DGP535 Stanford Systems) and a digital oscilloscope (Tektronix) are
used for triggering and monitoring. A signal diagram is shown in figure 3.13,
where manually pre-set times are denoted with tx and measured times with
∆tx. For example, ∆tS1−S2 is the time the shock wave spends propagating
from sensor S1 to S2. The triggering is done by the shock sensor S1. When the
shock passes the sensor, a signal is sent to the delay generator. After a pre-
determined delay ttrig a signal is sent to the computer triggering the camera
software (CamWare) to turn on the camera. Exposures texp and time between
exposures txdelay are set with the camera software. The system is able to handle
up to ten individual exposures, each with individual exposure and delay times.
Here all ten exposures were set to have equal exposure times and delay. A
photo-multiplier tube is used for synchronising the times with the implosion
pulse.
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Figure 3.13. Timing diagram for Setup 090420. Description
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Figure 3.14. (a) Relative CCD wavelength sensitivity and
(b) transmittance of the test section glass window.

3.5. Spectrometry

Since the shock focusing creates a bright light pulse, spectrometry is a good
non-intrusive way of measuring the gas conditions at the focusing event. The
light pulse is about 10 µs long, depending on gas and shock strength, and since
it is a most unstationary phenomenon it is desired to break up the pulse in
short segments to see the variations.
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Figure 3.15. Spectrometric setup. M, mirror for the laser
triggering system.

A schematic drawing of the setup is presented in Fig. 3.15. Light gener-
ated at the shock focus is collected by two optical fibres with their openings
flush to the glass. One fibre feeds a photomultiplier while the other is con-
nected to a spectrometer (Mechelle 7500, Multichannel Systems, Sweden) with
an ICCD camera (Andor Istar). The spectrometer is able to record spectra in
the wavelength interval 180 − 880 nm. The sensitivity of the CCD is depen-
dent on wavelength, which needs to be accounted for when analysing the data.
Figure 3.14(a) shows the ICCD sensitivity. The test section glass window also
limits the light transmission, to between roughly 350 and 880 nm. The trans-
mittance of the 15 mm thick borosilicate glass is presented in Figure 3.14(b).
The spectrometer makes use of an echelle grating, that divides the spectrum
into several vertically separated diffraction orders. The complete spectrum is
reconstructed by software. The separation causes the sensitivity to drop close
to the edges of each order, as can be seen on Fig. 4.12. The spectrometer is
wavelength calibrated before the experiments using a Hg lamp. Deviation from
theoretical positions of around twelve Hg lines are minimised by a least-square
fit method.

The spectrometer unit is triggered by the optical laser triggering method
described above. The output from the photodiode amplifier is sent to a time
delay unit. A delay is set on the delay unit and the output signal opens the
ICCD camera shutter on the spectrometer. Simultaneously the light emission
from the focused shock is registered with the photomultiplier. The signals from
the photomultiplier, the photodiode amplifier and the ICCD camera trigger
pulse are monitored and recorded with a digital oscilloscope. The unknown
time delay of the trigger system is measured with a pulse laser and determined
with good accuracy. The spectrum exposure times is synchronised with the
light flash as measured with the photomultiplier tube with a precision of 10 ns.
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3.6. Shock wave shaping

Two different methods have been employed to shape the shock waves into
primarily polygonal forms: by cylindrical obstacles creating a reflection and
diffraction pattern or by wings dividing the test section into radial channels
where plane sides are created.

3.6.0a. Cylindrical obstacles. By placing small cylindrical objects in the test
section, the diffraction of the converging cylindrical shock wave around the
obstacles reshape the overall form. If the size and position of the obstacles
are arranged in certain way, symmetrical polygonal forms may be achieved.
The diameters of the cylindrical objects ranges from 7.5 to 15 mm. They are
positioned between the glass windows using guides. During mounting they are
temporarily kept in position with a small amount of glue: equipped with o-
rings they are afterwards kept in place mechanically by the pressure from the
glass windows.

3.6.0b. Biconvex wing profiles. Another method is to place biconvex wings in
the test section with their chords aligned radially. The incoming shock wave
reflects on the wings and if arranged properly, the shock wave attains polygonal
structure with almost plane sides when leaving the channels. Since the wings
have sharp leading and trailing edges, less pressure is lost compared to the case
when circular objects are used, in which case reflected waves travel upstream.
Figure 3.16(a) shows the test section with the wing dividers. The leading edges
are aligned flush with the inner surface of the annular channel and the trailing
edges end 20 mm from the centre of the test section. Calculations were made
to find the appropriate lengths and widths to ensure plane shock wave exiting
the channels into the open center of the chamber. One purpose of the wings is
to improve the control of shock shaping and to allow the same blockage ratio
no matter the number of wings - and consequently the number of sides of the
polygonal shock wave - by altering the thickness and length of the wings from
case to case. The measurements in the present study however, only feature a
configuration with eight such dividers, creating a cylindrical octagonal shock
wave.
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(a) (b)

Figure 3.16. Wing matrix mounted in the test section (a)
and before assembly (b).



CHAPTER 4

Results and discussion

4.1. Shock propagation

The shock propagation of cylindrical and octagonal shock waves have been
studied using non-intrusive schlieren optics. Multi-exposure images allow de-
termination of the velocity and acceleration of the shock waves, while single
exposures give sharper images. The reason for this is the light sources: The
continuos HeNe laser was much weaker than the pulsed Nd:Yag laser used for
single exposures. Also - maybe more importantly - the background lighting was
exposed tenfold, which worsened the contrast with the shock schlieren images
which were only exposed once.

4.1.1. Circular shocks

Fig. 4.1 shows one converging (a) and one diverging (b) circular shock wave in
air at different instants. The initial Mach number in the annular section was
Ms = 2.2 for the converging and Ms = 2.4 for the diverging shock wave. Each
photo features ten individual exposures of the same shock wave to show the
propagation in time. Each of the ten exposures in each picture was 0.3 µs and
followed each other by 2.2 µs. The diverging shock wave in 4.1(b) is visibly
slower (despite the higher initial Mach number) and distinctly more circular
than the focusing shock. In the centre the complex reflections have created a
very inhomogenous region as evident from the gradients seen in the image. The
reflected shock wave seems to have a constant velocity. In general, a diverging
shock wave in an undisturbed medium is decelerating, but since the shock is
propagating through a moving gas which is rushing towards the centre with a
velocity decreasing with radius, the shock appears to keep constant velocity in
the laboratory frame.

As reported in Eliasson (2007), circular shocks in this tube suffer from the
four-mode instability caused by the supporting struts of the inner body that was
reported by Takayama et al. (1987). The collapse of the circular shock shape
was further observed. Figure 4.1(a) shows the gradual deformation of the shock
front. The sides become increasingly less circular, form straight segments and
eventually form corners. Reflections occur in the corners, which can be seen at
the last exposure (where r≈0.4 mm). Figure 4.2 shows magnified views of the

35
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Figure 4.1. Multiply exposed schlieren images of circular
cylindrical shock wave: (a) converging shock; (b) diverging
shock after focus. The gradual collapse of the circular shape
that culminates in the appearance of reflections may be seen
in (a). Each exposure is 0.3 µs and the delays between them
are 2.2 µs.

circular shock wave collapse. Image Figure 4.2(d) shows the diverging shock
wave having re-attained the circular shape.

The relative radius deviation ∆r/r is a measure of the ability of the shock
to preserve its form and a way to quantify stability. Experimental values for
circular and octagonal shocks are shown in Figure 4.3. The radius and devia-
tion of the circular shocks have been calculated over the full circle, while the
octagonal radius and deviation were calculated from the 8 or 16 midpoints of
the plane sides of the shock, thereby being a measure on the ability to keep
the polygonal shape. It is worth noting that the deviation of the circular shape
in the KTH tube is quantitatively similar to that of the Sendai shock tube as
reported by Takayama et al. (1987).

4.1.2. Polygonal shocks

As reported in Paper 1, the wing matrix dividing the test section in radial
channels proved able to create the desired polygonal shock waves. Figure 4.4
shows a series of converging shocks with initial Ms = 2.4. Figure 4.4(a) shows
the shock wave entering the central, open part of the test section after passing
through the channels, where each segment reflects from those emerging from
the adjacent channels. Mach stems appear at the intersection. As the incident
shocks and Mach stems are almost plane, they propagate at almost constant
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Figure 4.2. Schlieren photographs of collapse of cylindrical
shock wave. The scale applies for all images. Photos from
separate runs.

velocities. Initially short, the stems have higher speeds than the adjacent waves
4.4(a through d). Eventually the Mach stems form a new octagon, rotated by
22.5◦, which is accomplished in Fig. 4.4(c). Thereafter the process repeats
itself. Much of the acceleration of the polygonal shock wave is therefore due
to the Mach reflections. Figures 4.4(e) and (f) show the outgoing, diverging
shock which is stable and circular. The diverging shock is influenced by the
flow ahead, created by the preceding converging shock.

Schlieren photographs with larger magnification of the polygonal shocks
close to focus are shown in Figure 4.5. The shock wave attains a more quad-
rangular than octagonal shape close to the focus. The front shape of 4.5(b)
resembles the collapsed circular front in Figure 4.2(c). Watanabe et al. (1995)
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Figure 4.3. Deviation from average shock radius for circular
and octagonal shock waves.

(a) ∆t = −11 µs (b) ∆t = −6.6 µs (c) ∆t = −3.9 µs

(d) ∆t = −2.56 µs (e) ∆t = +3.12 µs (f) ∆t = +17.4 µs

Figure 4.4. Schlieren photographs of converging shock waves
in air in the 8-wing configuration. Initial Mach number was
Ms = 2.4. Times at start of exposure ∆t are relative to the
implosion event. Each image is from a separate run. The
distance between opposite wing tips is 40 mm.
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concluded that if there are several perturbation modes in the flow, the lowest
would overtake the rest. In other words, the four-mode instability introduced
by the struts remains in the flow and becomes more significant closer to the
centre. The deformation may also be related to imperfections with the wing
or tube alignment. Whatever the cause, it is clear that the information of the
eight-configuration is still in the flow behind the shock: the picture of the di-
verging shock in 4.5(c) shows strong density variations shaped like a gear wheel
with eight cogs.

(a) ∆t = −1.92 µs

0 5 10
(mm)

(b) ∆t = −0.50 µs (c) ∆t = +3.5 − 3.6 µs

Figure 4.5. Schlieren photographs of converging shock waves
in air in the 8-wing configuration: (a) and (b) converging shock
waves; (c) reflected and diverging shock. Images from different
shock tube runs.

Figure 4.6 shows stronger shock waves converging in argon (Ms = 3.8,
figures (a)-(c)) and air (Ms = 3.3, figures (d)-(f)). The shock wave in argon
enters the open central test section in very straight segments, but attains an
overall square shape in (b). The Mach stems at the axial wings appear to
have higher velocities than those emerging from the rotated set of wings. The
curvatures of the shocks in 4.6(d-e) compared to those in Figure 4.6(a) and
4.4(a) are noteworthy, showing that the ability of the wings to shape the shock
is dependent on gas and shock Mach number. The curved shocks do tend to
straighten during the focusing process. The colour has been kept to show the
blue-fringed implosion light pulse that was captured by the camera in 4.6(a)
through (c).

4.1.2a. Wing reflections. The new shocks appearing at the trailing edges of
the wings are due to Mach reflections. When the shock waves on each side
of the wing arrive at different time instants complex reflections that destroy
the symmetry of the overall shape occur. Figure 4.7 shows a series of schlieren
images describing such interactions. In (a) the shocks are seen arriving from
right to left from the channels. The shocks are a result from the interactions in
the channel: an incident shock, a Mach stem and a reflected shock originating in
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(a) ∆t = −10.6 µs (b) ∆t = −5.8 µs (c) ∆t = −0.4 µs

(d) ∆t = −9.3 µs (e) ∆t = −7.8 µs (f) ∆t = −5.2µs

Figure 4.6. Schlieren photographs of shock waves with initial
Ms = 3.7 converging in argon (a-c) and air (d-f). Each image
is from a separate run. Times indicate instants of exposure
relative to implosion. Images (a-c) also captured the implosion
light pulse, which is also seen faintly in (f).

Mach reflections over the leading edge. The reflected shock is travelling towards
the wing: it started propagating away from it, reflected on its counterpart from
the neighbouring wing and turned back. As the first, lower shock wave arrives
at the edge 4.7(b), it curves around it, creating a vortex before striking the
upper incoming shock wave. The curved tips of the shocks nevertheless become
straight and a pattern resembling transitional Mach reflection occurs 4.7(d).
A Mach stem is formed despite the asymmetrical arrival at the tip, but the
pattern is shifted upwards and this has an impact on the focusing process.

4.1.3. Inner body alignment

The eccentricity of the inner body inside the shock tube has major impact on
the symmetry of the shock waves. Referring to Figure 3.1, the inner body is
supported by two sets of struts. The downstream set is located close to the test
section and may be aligned with the help of a mechanical guide. The upstream
set is situated too far upstream for this method to be useful. It was found that
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Figure 4.7. Reflection of two shock waves arriving at wing
edge at slightly different times. Each image is from a separate
run.

the wings provided a good tool for tuning the position of the body. The wing
matrix divided the test section in eight radial channels and the velocity of each
segment of the otherwise connected circular shock wave could be seen in detail.
Figure 4.8 shows schlieren photographs of shock waves exiting the channels.
The shocks have clearly different velocities as they arrive at different instants.
This suggests that the inner body is eccentric with the annular channel being
slightly narrower at the part of the channel corresponding to the position of
the faster shocks and vice versa. To ensure that asymmetric construction of
the matrix did not give rise to the irregularities, the matrix was gradually
rotated between several runs. The shock pattern was unchanged with rotation
and it was concluded that the matrix construction was good. The struts were
adjusted accordingly to the schlieren photographs. By trial and error the arrival
of the shock fronts at the end of the matrix could be improved. Figure 4.8 (a)
shows the shock pattern before alignment: the whole lower half of the shock
seems faster than the upper. This corresponds well with the shock focus being
found slightly below the geometrical centre, as reported below. Figure 4.7
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shows reflections around the right-most encircled wing-tip in Figure 4.8(a).
Figure 4.8(b) shows the pattern after alignment: the general shape is much
improved, but one segment could not be made to arrive simultaneously with
the others (arrow). It is speculated that this is due to other affects, such as
off-axis alignment of the wing-shaped profiles the struts are made of. The
photomultiplier signal measuring the implosion pulse showed an increase in
strength after the alignment. This work was made in December 2009 and it is
suggested that new schlieren images are taken at a later date to determine if
the inner body settles or moves over time.

(a) (b)

Figure 4.8. Schlieren images of shocks arriving at the open
center of the test section to illustrate the effect of non-aligned
inner body: (a) before and (b) after alignment.

4.2. Comparison of theory and experiments

Comparisons with Guderley’s self-similarity solution have been made of the
form (rewritten from chapter 2):

r

Rc
=

(

1 −
t

tc

)a

(4.1)

where tc is the time it takes for the shock to travel from Rc to implo-
sion centre. Fits were made from experimental data from multiple-exposure
schlieren photographs. The power law fits are extremely sensitive to the values
of tc. Special care was therefore taken to determine the moment of implosion.
The values for Rc had less influence on the calculated values of a. The expo-
nent was calculated for eight shots in air at different Mach numbers (2.2-3.4).
The acquired mean value was a = 0.836, and varied between 0.824 and 0.846.
No dependence on Mach number was seen: the variance was largely due to
the determination of tc. This is in good agreement with analytical data. (see
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Table 2.5.1). Figure 4.9 shows a propagation diagram of circular shocks (a)
and a log-plot showing the average self-similarity exponent. Lack of sufficient
data prohibited good determination of an exponent for shock waves in argon:
only one image was available, with few data points, from which an exponent
a = 0.82 ± 0.05 was found.
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Figure 4.9. Comparison of measured propagation of circular
shock wave in air with the Guderley power-law solution: (a)
experimental data from two converging (O,&) shocks com-
pared with power-law fit with a = 0.836 (full line) and two
diverging (+,×) shocks; (b) log-log plot of converging shock
waves in air at different initial Ms.

The polygonal shock wave follows approximately a power-law solution like
Eq. 4.1, but with slower convergence than circular shocks. Results are pre-
sented in paper 1.

4.2.1. Light emission

Measurements of the light emission from shock waves converging in argon was
made. The diaphragms had thickness of 0.5 mm and helium was used as driver
gas, yielding an initial Mach number Ms = 3.8.

The light flash has a total duration of roughly 10 µs for the 8-wing config-
uration. Photomultiplier records from more than a hundred runs using various
combinations of gases show a fairly reproducible strength of light intensity for
each set of gas combinations. The set presented in Fig. 4.10 shows the signals
from twenty runs. The negative peak signal strength varies little, with a mean
value of -0.49 V and standard deviation 0.02 V. The spread increases after the
collapse. The actual fall time is short, about 12 ns, but is preceded by a small
decrease in output voltage prior to the peak. This indicates that the gas be-
hind the shock starts to emit light at least 100 ns before the actual focusing



44 4. RESULTS AND DISCUSSION

instant. The variation of the signal strength may be compared to the circular
case, where a series of twenty runs showed a mean of -0.52 V and a standard
deviation 0.17 V. The absolute intensity can unfortunately not be compared
directly, as the photomultiplier tube had slightly different positions.
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Figure 4.10. Photomultiplier records of light emissions from
converging polygonal shock waves in argon: mean value and
standard deviation (dashed lines) from twenty runs.

Various photographs of the emitting gas core at the instant of shock im-
plosion in the 8-wing configuration are shown in Fig. 4.11. The camera was
a Nikon D80 equipped with a Macro Nikkor 60 mm lens. The images were
taken by leaving the shutter open for a long time (bulb mode or 30 s). In
image 4.11(a) the lights in the laboratory were simply turned off and a large
aperture was used in order to demonstrate how the light looks to the naked eye.
Photographs 4.11(b)-(d) were taken from a light-sealed compartment around
the end section of the tube and the only light source was the radiating gas.
The aperture was set at minimum to show the bright core, but parts were till
over-exposed. The images 4.11(b) and (c) are taken from an oblique angle to
show the extent of the radiating core: the emitting volume at the focus is seen
to have the form of a thin cylinder, stretching the full 5 mm span between the
framing windows of the test section. This indicates that the polygonal shock
convergence in the test chamber preserves the two-dimensional structure of the
shock to the end of the focusing process.

The position of the radiating core - and the variation thereof - was deter-
mined in a simple fashion. The camera was placed in front of the test section,
zooming in on a 33x23 mm area around the centre. A number of shots were
taken and the position of the core determined by overlay of a photograph of a
graded paper. One example photo is shown Figure 4.11 (d). The focal point of
the converging shocks was found shifted from the geometrical centre by 2 mm
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downwards. This determination of focus position was made before the center-
ing of the inner cone, which prior to the tuning did have an eccentricity in the
vertical direction. New measurements should be made to see the effect of the
alignment. No quantitative measurements on the spacial intensity distribution
were made.

The colour temperature is believed to be well reproduced in the pho-
tographs. The colour of the emitting core shifts between the white and blue,
presumably depending on focal symmetry. A blue shift is generally connected
with higher blackbody temperatures.

(a) (b)

(c) (d)

Figure 4.11. Photographs of implosion light pulse.
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4.2.1a. Spectrometry. The light emission from shocks converging in argon with
the 8-wing configuration have been measured spectrometrically and the results
are presented in Paper 1. Here is a short summary and some complementary
results. The emission has been measured both in its entirety and divided into
a sequence of 60 ns long exposures. Fig. 4.12(a) shows a time-integrated
spectrum, taken with the shutter open during the whole emission interval.
The data shows continuum radiation, on which a series of emission lines is
superimposed. The emission lines originate from electron transitions between
excited states in neutral argon atoms. The effects of the echelle prism in the
spectrometer can be seen in the bumpy appearance of the continuum. Each
parabola corresponds to one order, and shows the sensitivity drops at the edges
of each order. These drops are due to the equipment construction, and are not
related to the light emission. Fig. 4.12(b) shows an overview of the 60 ns
spectra. The continuum appears at the implosion, while the line Ar I emission
becomes distinct about 1 µs after the peak.
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Figure 4.12. Uncorrected time-integrated spectrum of im-
plosion light pulse in argon (a) and time-resolved spectra over
the complete pulse (b).

The continuum radiation measured in the 60 ns spectra was compared to
the blackbody function,

I(λ, T ) =
2hc2

λ5

1

exp (hc/λkT ) − 1
(4.2)

where h is the Planck constant and c the speed of light. A least squares
method was used and corrections made for the quantum efficiency of the camera
and the transmission losses in the glass window. Results showed a highest
blackbody temperature in the beginning of the light pulse, 5800±200 K. Figure
4.13 displays the evolution of the gas temperature from these fits.

A number of emission lines originating from electron transitions in neutral
argon were detected. The identified transitions are between either the 3p54p or



4.2. COMPARISON OF THEORY AND EXPERIMENTS 47

0 500 1000 1500 2000
4500

5000

5500

6000

Time at start of exposure (ns)

T
em

p
er

at
u
re

 (
K

)

Figure 4.13. Blackbody temperatures acquired from 60 ns spectra.

3p55p manifolds, and the first level of excited states in argon, 3p54s. Transi-
tions from the 3p55p level were only observed in the time-integrated spectrum;
the significantly lower intensities drowned in the noise in the 60 ns window
spectra. These states corresponds to energy levels around 14.7 eV, which may
be compared with the ionisation level of 15.8 eV. Possible transitions from these
states to the ground state have wavelengths below the detection range. Table
4.2.1a lists the most prominent lines, which are shown in Figure 4.14.

A common method to determine the temperature of the excited gas is the
Boltzmann plot. Based on the assumptions of local thermodynamic equilib-
rium and that the intensity of an atomic line emission from a certain state
to another is directly proportional to the number density of the atoms in the
states, a relatively simple linear relation between the temperature and intensity
is acquired :

ln

(

λijIij

giAij

)

= −
Ei

kT
+ const (4.3)

Where Iij is the intensity of the emission line λij , gi is the degeneracy of
the upper level Ei. Plots of Ei versus the left hand side of Equation 4.3 for
lines terminating in the same lower state j should yield a line from which the
temperature may be determined. Plots based on the 60 ns spectra were made,
but the result was not linear. Generally this is an indication that the radiating
gas not being in LTE. In this case the energy levels were all very close, meaning
that accurate fits are difficult to make. Further, the light was collected from
a large radiating volume with likely in-homogenous gas conditions. Therefore
we draw no conclusions yet. Future measurements should be spatially resolved
to deal with this problem.
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λij (nm) Transition Ei (cm−1) gi Aij (s−1)
415.9 5p − 4s 117184 5 1.40×106

420.1 5p − 4s 116943 7 9.67×105

430.0 5p − 4s 116999 5 3.77×105

696.5 4p − 4s 107496 3 6.39×106

706.7 4p − 4s 107290 5 3.80×106

714.7 4p − 4s 107132 3 6.25×105

727.3 4p − 4s 107496 3 1.83×106

738.4 4p − 4s 107290 5 8.47×106

750.4 4p − 4s 108723 1 4.45×107

751.5 4p − 4s 107054 1 4.02×107

763.5 4p − 4s 106238 5 2.45×107

794.8 4p − 4s 107132 3 1.86×107

800.6 4p − 4s 106238 5 4.90×106

801.5 4p − 4s 105617 5 9.28×106

810.4 4p − 4s 106087 3 2.5×107

811.5 4p − 4s 105463 7 3.31×107

840.8 4p − 4s 107290 5 2.23×107

842.5 4p − 4s 105617 5 2.15×107

Table 3. Detected lines from electron transitions in neutral
argon. Data from NIST (2008).



4.2. COMPARISON OF THEORY AND EXPERIMENTS 49

700 750 800 850
0

1

2

3

4

5
x 10

4

Wavelength (nm)

In
te

n
si

ty
 (

ar
b
. 
u
n
it

s)

Figure 4.14. Corrected emission lines from transitions be-
tween the low-lying electronic shells in atomic argon.



CHAPTER 5

Numerics

This chapter is an introduction to the analytical or numerical methods used
to solve the problem with converging shock waves. The problem formulation
consists of a cylindrical or spherical shock wave of an initial Mach number M0

and radius r0 converging in a monatomic gas. The shock position has a radius
r with an area A(r). The Mach number M and the thermodynamic equilibrium
conditions behind the shock are to be determined for all shock positions.

5.1. Shock dynamics

Whitham’s solution to the converging shock problem using geometrical shock
dynamics is based upon the assumption that the shock wave propagates along
rays being C+ characteristics.This approximation has been shown to provide
accurate results Whitham (1973),Apazidis et al. (2002),Hornung et al. (2008)
especially for continuously accelerating shocks. Consider a shock propagating
down a tube with a cross-section A(x). The problem can be approximated as
a quasi one-dimensional if the area change is not too rapid. The characteristic
equation along the C+ characteristic states that (Whitham (1973)):

dp

dx
+ ρa

du

dx
+

ρa2u

u + a

1

A

dA

dx
= 0 (5.1)

Where p is the pressure, u the velocity and a the speed of sound behind the
shock wave. Using the Rankine-Hugoniot relations without consideration for
ionisation this can be reformulated into an area-Mach-number relation, from
where the propagation can be determined.

This non-reacting perfect gas approach has shown good agreement with
experimental data concerning shock front propagation. However, as the shock
falls in on the focus, it predicts the temperature and pressure to increase expo-
nentially towards infinity. In order to allow for reactions, a solution is instead
sought by directly integrating Eq. 5.1 without making any simplifications. The
spatial coordinate x is changed to r for clarification since only radially symmet-
ric geometries are considered here. For a cylinder or sphere the surface area is
A(r) = 2π(ν − 1)rν−1, where ν = 2 or ν = 3 for the respective case. Inserting
the derivative of A and differentiating, Eq. 5.1 is rewritten as:
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dp + ρadu = −
ρa2u

u + a

(ν − 1)

r
dr (5.2)

Integrating between two conditions 1 and 2, corresponding to two Mach
numbers M = M1 and M = M2 we get:

∫ 2

1

u + a

ρa2u
dp +

∫ 2

1

u + a

au
du = −(ν − 1) ln

r2

r1
(5.3)

The radius of the shock wave at two consecutive time instants can be
expressed as:

r2 = Q1−2r1 (5.4)

Q1−2 = exp

(

−
1

(ν − 1)

[
∫ 2

1

u + a

ρa2u
dp +

∫ 2

1

u + a

au
du

])

(5.5)

Starting from an initial mach number M1 and radius r1, the shock front
propagation can now be calculated. The change in radius as the shock wave
accelerates to a new Mach number M2 = M1 + dM is acquired by calculating
the post-shock conditions for M1 and M2, accounting for ionisation as described
in Chapter 2, inserting into Eq. 5.4 and evaluating the integral numerically.
The speed of sound, a, is now taken as the equilibrium speed of sound in a
partially or completely ionised gas.

5.2. Euler solver

Numerical calculations were made with a two-dimensional Euler solver on an
unstructured triangular grid with adaptive mesh refinement. The scheme is the
artificially upstream flux vector splitting (AUFS) scheme introduced by Sun &
Takayama (2003). The fundamental idea is to overcome the disadvantages of
up-winding schemes by introducing artificial wave speeds into the flow which
simplifies the discretisation. The implemented scheme used for the calculations
is presented here; the detailed derivation can be found in the cited article. In
Cartesian coordinates, the Euler equations on conservative form is formulated:

Ut + Fx + Gy = 0 (5.6)

where U and F and G are the conserved primitive variables and fluxes:

U =









ρ
ρu
ρv
ρE









, F =









ρu
ρu2 + p

ρvu
ρEu + pu









, G =









ρv
ρuv

ρv2 + p
ρEv + pv









(5.7)
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where the total energy E = e + u2/2 is the sum of the internal energy e and
the kinetic energy per unit mass. On a Cartesian grid, a conservative 1st order
scheme to solve Equation 5.6 is:

Un+1
i,j = Un

i,j −
∆t

∆xi,j
(Fi+1/2,j −Fi−1/2,j)−

∆t

∆yi,j
(Gi,j+1/2 −Gi,j−1/2) (5.8)

where i and j refer to the grid centres and i + 1/2, etc, to the interfaces
between them. In our calculations, unstructured triangular meshes have been
used. Referring to the grid cell illustrated in Figure 5.1, Equation 5.8 may
be formulated and calculated over the normal interfaces between the cells.
Variables denoted L refers to the states inside the cell and R to those in the
neighbouring cells.
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Figure 5.1. Typical grid cell i. UL
i is the state in the cell

while UR
j , j = 1, 2, 3, are the states in neighbouring cells.

Ut + Fn = 0 ↔ Ut + AUn = 0 (5.9)

where A is the Jacobian matrix Aij = ∂Fi/∂Uj and n refers to the normal
direction. The matrix A has four real eigenvalues corresponding to the four
wave speeds of the system, (un − a, un, un, un + a), where un = unx + vny is
the normal velocity across the interface. Provided that un < c somewhere, the
system therefore contains waves going both upstream and downstream which
makes up-winding difficult. However, observed from some frame of reference
all waves propagate in the same directions. By introducing the artificial wave
speeds s1 and s2 corresponding to such a moving frame of reference the flux
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can be rewritten to simplify the discretisation. The flux becomes, after some
manipulation:

F = (1 − S)F1 + SF2 = (1 − S)

[

1

2
(PL + PR) + δU

]

+ S
[

Ud(ud
n − s2) + Pd

]

(5.10)

where S = s1/(s1 − s2), δU artificial viscosity, P = (0, pnx, pny, pun)
and d is either L (if s1 > 0) or R (if s1 ≤ 0) , depending on whether the
corresponding wave go into or out of the cell. The pressure is acquired from
the internal energy: e = p/(γ − 1) = E − u2/2 (the temperature is attained
from the perfect gas law). The artificial viscosity term is:

δU =
1

2ā









pL − pR

(pu)L − (pu)R

(pv)L − (pv)R

ā2

γ−1(pL − pR) + 1
2 ((pU2)L − (pU2)R)









(5.11)

where U2 = u2 + v2 and ā = (aL + aR)/2 is the average speed of sound of
domains L and R. The artificial wave speeds were chosen as

s1 =
uR

n + uL
n

2
(5.12)

s2 =

{

min(0, uL
n − aL, u∗

n − c∗) s1 > 0
max(0, u∗

n + c∗, uR + vR) s1 ≤ 0
(5.13)

u∗ =
1

2
(uL

n + uR
n ) +

aL − aR

γ − 1
(5.14)

c∗ =
1

2
(aL + aR) +

1

4
(γ − 1)(uL

n − uR
n ) (5.15)

Again, for details of the derivation the reader is to directed to Sun &
Takayama (2003). The solution update for the grid i between timesteps n and
n + 1 is then calculated by a first-order method, where the timestep ∆t is
determined from the CFL condition:

Un+1
i = Un

i −

3
∑

k=1

∆t

hk
Fk (5.16)

5.2.0b. Ionising shocks. Ionisation effects may be introduced by modifying the
energy and state equations accordingly. In the calculations only one level of
ionisation was included since it was apparent that the number of ions with
charge state i = 2 or more were negligible for cylindrical shock waves with the
initial parameters of the experiments. However, we present here the general
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equations for any number of stages of ionisation. Local thermodynamic equi-
librium is assumed to be established everywhere in the flow and the additional
variables are the ionisation fractions αi.

The primitive variables are the same, as is the up-winding scheme with
modifications to the speed of sound which is presented further below. In the
non-ionising case, the pressure is acquired directly from the energy and the
temperature from the equation of state. A similar approach is taken in this
case. The equation of state and internal energy, neglecting Coulomb forces and
excitation energy, are now:

p = (1 + αe)ρRT (5.17)

and

e =
3

2
(1 + αe)RT + R

!
∑

i=1



αi

i
∑

j=1

Ij

k



 (5.18)

where αe is the average ionisation fraction and Ij are the ionisation poten-
tials as defined in chapter 2. With the additional variables αi the system is
closed with the Saha equations which can be expressed as functions of T and
ρ and solved in the same manner as presented by Trayner & Glowacki (1995):

αi+1

αi
=

1

αe

(

2πme

h2

)3/2 mH(kT )3/2

ρ

2Qel
i+1

Qel
i

exp

(

−
Ii+1

kT

)

(5.19)

where mH is the mass of the neutral atom. Solving the equation in terms
of a given primitive variable ρ instead of p is preferred, since the latter is
a derived variable.The temperature and ionisation fractions for each grid are
carefully balanced and calculated from the given primitive variables during each
time-step. An iterative method is used to find the ionisation and temperature
that fulfils the energy requirement 5.18 as well as the set of Saha equations 5.19.
This implies finding the root of the transcendental equation T−f(αe(T, ρ)) = 0,
where the numerically evaluated function f is determined from the known
energy 5.18. Explicitly written out this becomes:

T −



e − R
!

∑

i=1



αi(T, ρ)
i

∑

j=1

Ij

k









[

3

2
(1 + αe(T, ρ))R

]

−1

= 0 (5.20)

Equation 5.20 may be solved by a bi-section method with initial lower
bound T = T0 and upper bound set to the ideal non-ionising temperature. Once
the temperature and ionisation fractions are found, the pressure is extracted
from the equation of state 5.17.
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The artificial wave speeds s1 and s2 are chosen in the same manner as
previously, but the speed of sound now becomes the equilibrium speed of sound,
ae = (∂p/∂ρ)s, which can be calculated from derivatives of α (see Appendix
A).

5.2.0c. Single ionisation. When only one stage of ionisation is likely to be
present, Eq:s 5.19-5.20 can be simplified to significantly reduce calculation time.
Such a scheme has been presented in Aslan & Mond (2005). Only one Saha
equation remains, for i = 1 where α0 = 1 − α1, which does not need itera-
tion. In this temperature range, the partition function ratio can be adequately
approximated by a constant (2Q1/Q0 ≈ g0 ≈ 11) and Eq 5.19 reduces to:

α2
1

1 − α1
= g0

(

2πme

h2

)
3

2 mH(kT )3/2

ρ
exp

(

−
I1

kT

)

= g0C
T 3/2

ρ
exp

(

−
I1

kT

)

(5.21)

where the constant C ≈ 1.603 × 10−4 kg·m−3·K−3/2 for argon.

The approximation of the partition function ratio as a constant carry a cer-
tain error, which is exemplified in Fig. 5.2 and 5.3. The post-shock conditions
resulting from the approximation are compared to those where the partition
functions included a summation over the first few terms. As evident, the error
is reasonably small until M ≈ 30, around where the second stage ionisation
becomes significant (compare with Fig. 2.2). At high T full ionisation occurs
in both cases and the thermodynamic variables approach the same values.The
calculations are made with initial pressure 0.1 atm and T = 300 K.
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Figure 5.2. Error caused on shock relations by the assump-
tion Q1/Q0 = 11 (dashed line) compared to Q1/Q0 = f(T ).



56 5. NUMERICS

10 20 30 40
2

4

6

8

10

12

M

"
2
/"

0

(a)

10 20 30 40
0

1

2

3
x 10

7

M

P
re

s
s
u

re
, 

P
a

(b)

Figure 5.3. Error caused on shock relations by the assump-
tion Q1/Q0 = 11 (dashed line) compared to Q1/Q0 = f(T ).

5.2.1. Test cases

Calculations were made to compare with the experimental data. The AUFS
scheme without ionisation was implemented on unstructured triangular meshes.
Two geometries were used, one completely circular and one with eight wing
profiles. The meshes were circular with a radius of 80 mm, corresponding to
the test section and the annular tube which measure 70+10 mm. The number
of cells of the circular mesh was approximately 7×105, with the density of grid
cells increasing sharply closer to the focal point. The mesh was refined along
boundaries and sharp edges.

Two basic cases for each geometry computed corresponding to the exper-
imental cases: one shock wave in argon with initial Mach number Ms = 3.8
and one in air with Ms = 2.4. The initial conditions was set as two regions:
and undisturbed field for r < 70 mm with initial pressure 10 kPa and temper-
ature 300 K. Outside the undisturbed region the initial conditions was set to a
shocked state corresponding to the respective Mach numbers.

A detail from the eight-wing mesh is presented in Fig. 5.4, which shows a
comparison of experimental (white on black) and numerical (black on white)
schlieren images. A blow up of a detail in Fig. 4.4(c) is compared to corre-
sponding calculated shock structure at the same time instant ∆t = −3.9 µs
before implosion. The computational cell size is given for reference. As seen
experimental and calculated shock structures are well correlated.

The shock propagation acquired from the calculations is presented and
compared to the experimental data. Very good agreement was found for the
converging shock wave, while the numerical solution overestimated the velocity
of the reflected wave in the outer test section. This is an indication that flow
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Figure 5.4. Comparison of a detail of a schlieren photograph
Fig. 4.4(c), computational mesh and numerical schlieren image
computed at the same instant ∆t = −3.9 µs prior to implosion.
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Figure 5.5. Propagation of circular (a) and octagonal (b)
shocks, comparison between Euler solver and experiments for
shock waves in argon (Ms = 3.8, o,dashed lines) and air (Ms =
2.4, +,full lines).

model initial conditions does not capture the complex three-dimensional effects
in the bend in the real tube. However, the numerical solution captures well the
dynamics of the reflected wave right after implosion and the discrepancy is not
seen until later. The numerical scheme thus solves the converging shock and
the conditions behind it well until and right after implosion, but the method
to initiate the flow cannot resolve the later stages of the reflected shock.



CHAPTER 6

Summary and outlook

The work focuses on studying the concentration of energy through shock wave
convergence.

A major issue with achieving high energy concentrations is that of sta-
bility. Most studies show that strong circular cylindrical shock waves are un-
stable, loosing symmetry and focussing unevenly. Polygonal shock waves are
dynamically more stable, and even though they in practice do not achieve as
high energy concentrations as perfectly circular shocks the added repeatability
make them suitable for study.

Large parts of the experimental work were to find an appropriate spec-
trometric set-up in order to measure the light emission. Several devices were
tested and found insufficient due to various reasons. Eventually a compact
echelle-type spectrometer able to resolve the full visible spectrum and parts
of the infrared and ultraviolet regions. The spectrum of the 10 µs long light
emission was measured, time-integrated and resolved into 60 ns windows. The
spectrum was found to resemble a blackbody radiator with added single emis-
sion lines from excited states in argon. No ion lines have yet been found, but
the excited states of the found lines are not far from the ionisation level and
real gas effects must be considered when calculating. Blackbody temperatures
of up to ∼6000 K were detected, which is considered a lower limit of the actual
conditions in the gas. The radiation was collected from a comparatively large
area (circular area with r ∼ 9 mm).

Theoretical and numerical work was performed to complement the experi-
ments and provide a ground for analysis of the experimental data. The method
of characteristics to solve the shock convergence was extended to allow ionisa-
tion and departure from a perfect gas due to Coulomb forces between charged
particles in the resulting plasma core. The strong effect of ionisation on the
temperature close to the centre was demonstrated. The stability of the shock
waves compromises a limit to how close symmetry is conserved and if the cir-
cular shock always collapses before this region is reached, real gas effects would
be of academic interest only. However, experiments show that these kind of
conditions are indeed reached at the focus and it is therefore necessary to make
these modifications in order to predict or analyse the shock focusing process.
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The dynamics of circular and polygonal shocks were experimentally studied
using primarily schlieren optics. Values for the self-similarity exponent for
circular and polygonal shock waves in air were determined and found to agree
well with established theory. Rough values for shock waves in argon were also
acquired: these may be determined more accurately by further experiments.
The propagation of polygonal shock waves was quantitatively compared with
geometrical shock dynamics and reasonable agreement was found also here.

6.0.2. Future work

6.0.2a. Experiments. Renewed studies of the light emissions should be made,
focusing more on the spectrometric measurements and analysis. Spatially re-
solved spectra should preferably be taken, if the shock focus position can be
kept reasonably stable. Spatial and temporal resolution of the light pulse would
allow better determination of the gas conditions. Determination of the excited
gas temperature and equilibrium conditions through Boltzmann plots should
be made. Introduction of other gases than argon is also interesting, from the
points of view of both gas dynamics and spectrometry.

A number of different interesting studies could be made on the shock dy-
namics, e.g.:

• Experimental determination of the power-law for gases of different γ in
order to compare with theory.

• Variation of the number of sides in the polygonal shocks, to make further
quantitative comparisons with the calculations made by Schwendeman
& Whitham (1987).

• Convergence in a new conical end section to study 3D effects.

6.0.2b. Numerical work. The Euler solver can be used for calculations on the
effect of ionisation on temperature and compared with experiments and the
solutions acquired by shock dynamics. Especially, the temperature field ac-
quired by the solver might be used for spectrum simulations to compare with
the measured spectra. Since the temperature field is resolved in time and space
by the Euler code, the error caused by capturing spectra which are time- or
space-integrated can be studied in detail.



CHAPTER 7

Papers and authors contributions

Paper 1
Thermal radiation from a converging shock implosion.
M. Kjellander (MK), N. Tillmark (NT) & N. Apazidis (NA). Accepted for pub-
lication in Phys. Fluids.

This paper is a spectrometric and photometric study of the light emission pro-
duced by converging shock waves in argon. For repeatability purposes, polyg-
onal shape shocks were created. The experiment was set up by MK and NT
with assistance from Olli Launila and Lars-Erik Berg, KTH Applied Physics
and performed by MK. Numerical calculations complemented the study, per-
formed by NA and MK. The paper was written by MK and NA, with feedback
from NT.

Paper 2
Shock dynamics of imploding spherical and cylindrical shock waves with real gas
effects.
M. Kjellander, N. Tillmark & N. Apazidis.

This paper is a theoretical study on the high temperature gas processes close to
the centre of convergence of cylindrical and spherical shock waves in monatomic
gases. The method of characteristics was used, with a gas model accounting
for ionization and Coulomb effects. The initial idea was proposed by NA and
the calculations were performed mostly by MK. Theoretical derivations were
made by MK and NT. The paper was written by MK with feedback from the
co-authors.

Paper 3
Regular versus Mach reflection for converging polygonal shocks.
V. Eliasson (VE), M. Kjellander & N. Apazidis. Shock Waves 17, 43–50.

Different reflection patters in polygonal shock waves were investigated. Square
and triangular shocks were created by cylindrical rods placed in the path of the
shocks. The experimental setup and work was mainly done by VE, but also
by MK: MK performed the experiments with the cylinders placed at 61.5 mm
from the centre. The paper was written by VE with feedback from NA.
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APPENDIX A

Specific heat and speed of sound from derivatives of α

In the case of no Coulomb interactions the specific heats and equilibrium speed
of sound can be rewritten in terms of derivatives of αi, which simplifies the
numerical work in some cases where these are practically already calculated.

The equilibrium spped of sound ae,

a2
e =

(

∂p

∂ρ

)

s

= γ

(

∂p

∂ρ

)

T

(A.1)

where γ = cp/cv. Using the enthalpy and energy, we aim to express ae in
terms of known quantities and derivatives:

h =
5

2
(1 + αe)RT + R

!
∑

i=1

αi

i
∑

j=1

Ij

k
(A.2)

e =
3

2
(1 + αe)RT + R

!
∑

i=1

αi

i
∑

j=1

Ij

k
(A.3)
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p
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TR
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∂T
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p
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!
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(
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Ij

k
(A.4)
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TR
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!
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(
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k
(A.5)

where

(

∂αe

∂T

)

F

=
!

∑

i=1

(

∂αi

∂T

)

F

(A.6)

Using the equation of state, Eq. 2.11,

a2
e = γ

(

∂p

∂ρ

)

T

=
cp

cv

(

∂p

∂ρ

)

T

=
cp

cv

∂

∂ρ

(

ρ(1+αe)RT
)

T
=

cp

cv

[

(1 + αe)RT + ρRT

(

∂αe

∂ρ

)

T

]

(A.7)
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The above expression together with A.4 and A.5 is used to calculate ae.
All thermodynamic variables are known but the derivatives of αi has to be
evaluated numerically around the current state of the gas p, ρ, T, αi. A simple
evaluation is employed,

(

∂αi

∂F

)

G

=
αi(F + dF1, G) − αi(F − dF2, G)

dF1 + dF2
(A.8)



APPENDIX B

Coulomb effects on thermodynamic variables

In a partly ionised gas Coulomb forces between the charged particles lead to
departures from the ideal state. When the effect is weak, consideration to
the Coulomb interactions may be taken in form of correction terms to the
thermodynamic variables. Different models exist for different gas conditions:
here is a derivation using the Debye-Hückel model for the ion charges for weak
Coulomb interactions. To derive the corrections due to the Coulomb forces on
the thermodynamic state and the species distribution, the electrostatic energy
contribution to the free energy is found, which in turn gives the desired correc-
tions. The electrostatic potential around a point charge is found by considering
the other particles not as individual charges but as a uniform charge cloud and
solving the Poisson equation. The derivation of the potential may be found
in e.g. Griem (1962), Ebeling (1976) or Salzmann (1998). The electrostatic
energy of a gas in a volume V resulting from this first approximation is given
as:

Ec = −
kTV

8πr3
D

(B.1)

The parameter rD is the Debye radius which is a characteristic of the
surrounding charge cloud and determines the sphere of influence of the ion
charge, which for a single-temperature plasma may be written:

rD =

[

q2

ε0kT
(ne +

!
∑

i

niz
2
i )

]−1/2

=

[

q2

ε0kTV
(Ne +

!
∑

i

Niz
2
i )

]−1/2

(B.2)

where q is the elementary charge, ε0 is the vacuum permittivity, zi=i is the
charge state of the ion i. Note that several of the cited authors have used other
unit systems, while SI units are used here. The number particles of different
species Nj in the volume V and number densities nj = Nj/V are defined as
usual. Outside the Debye sphere, which is the sphere around the ion with
a radius rD, the ion is effectively screened by the cloud. A typical validity
requirement for the statistical Debye-Hückel model is that several ions must be
present within a Debye sphere.
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The influence of the Coulomb forces on the free energy is expressed as a
correction term to the ideal gas energy, F = Fig + FC , which derives from the
electrostatic energy. Using E = −T 2∂/∂T (F/T ), the correction to the free
energy becomes:

FC = −
kTV

12πr3
D

(B.3)

B.0.3. Equation of state

The pressure follows from the free energy as p = (∂F/∂V )Ni,T . The ideal
translational contribution to the pressure is given in Eq. 2.11. The correction
term is then found from Eq. B.3 as:

δpC = −

(

∂FC

∂V

)

Ni,T

=
kT

12πr3
D

−
kTV

12πr3
D

3

2V
= −

kT

24πr3
D

(B.4)

For completeness, the total pressure including the Coulomb correction is
then written:

p = pig + pC = ρ(1 + αe)RT + δpC (B.5)

B.0.4. Saha equation

The Saha equation may be derived from minimising the free energy considering
the ionisation reaction where the (i+1)th electron is removed from the atomic
species A:

Ai ! Ai+1 + ē , i = 0, 1, 2, ... $−1 (B.6)

where $ denotes the atomic number of A. The free energy of the ideal gas
Fig is given by statistical mechanics. With the Coulombic correction the free
energy of a partially ionised gas in local thermodynamic equilibrium becomes:

F = Fig + FC = −

!
∑

i=1

NikT ln
Zie

Ni
− NekT ln

Zee

Ne
+ FC (B.7)

where Zi and Ze are the partition functions of the ions and free electrons.
Differentiating and setting (δF )V,T = 0:

δF =
∑

j

∂(Fig + Fc)

∂Nj
δNj =

∑

j

(

∂Fig

∂Nj
+ µj,C

)

δNj = 0 (B.8)

where µC,j = ∂FC/∂Nj and the summation j is for j = i, j = i + 1 and
j = e. According to the reaction in Eq. B.6 δNi = −δNi+1 = −δNe and Eq.
B.8 becomes:
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(

∂Fig

∂Ni
−

∂Fig

∂Ni+1
−

∂Fig

∂Ne
+ µC,i − µC,i+i − µC,e

)

δNi = 0 →

−kT ln
Zie

Ni
+ NikT

1

Ni
+ µC,i +

−(−kT ln
Zi+1e

Ni+1
+ Ni+1kT

1

Ni+1
+ µC,i+i) +

−(−kT ln
Zee

Ne
+ NekT

1

Ne
+ µC,e) = 0 →

ln

(

Zi+1ZeeNi

Ni+1NeZi

)

− 1 = −
µC,i − µC,i+i − µC,e

kT
(B.9)

Defining the reduction in ionisation potential due to the Coulomb interactions
as:

∆Ii+1 ≡ µC,i − µC,i+i − µC,e (B.10)

Eq. B.9 becomes:

Ni+1Ne

Ni
=

Zi+1Ze

Zi
exp

(

∆Ii+1

kT

)

(B.11)

This can be written in terms of the particles densities nj by dividing with
the volume V and using that Nj = njV :

ni+1ne

ni
=

1

V

Zi+1Ze

Zi
exp

(

∆Ii+1

kT

)

(B.12)

The partition functions for a monatomic ion consist of one translational and
one internal part, Zi = Ztr

i Zel
i , the latter accounting for the excited electrons

within the ion. The translational contributions is:

Ztr
i = V

(

2πmikT

h2

)3/2

(B.13)

where mi is the molecular weight of the i:th ion, k the Boltzmann constant and
h the Planck constant. Since the weight difference of the successive ions are
negligible, the translational part of the partition functions cancel in Eq. B.11
and B.11. The electronic contribution can be rewritten (Zel’dovich & Raizer
(2002)):

Zel
i =

∑

l

e−εl,i/kT = e−ε0,i/kT
∑

l

e−(εl,i−ε0,i)/kT = e−ε0,i/kT Qel
i (B.14)

where ε0 is the ground state of ion i and the summation is taken over all
energy states. In other words, the transformed partition function Qel relates the
energy of each electronic level to the ground state of the individual ions instead
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of to the ground state of the atom. The energy differences of the succesive ionic
ground states are equal to the ionisation potentials, ε0,i+1 − ε0,i = Ii+1.

The partition function of the free electrons has one temperature-dependent
contribution from the translational energy and one constant contribution re-
lated to the spin, Zspin = 2. The total electron partition function is then:

Ze = 2V

(

2πmekT

h2

)3/2

(B.15)

where me is the electron weight. Inserting Eq:s B.13, B.14 and B.15 into
Eq. B.12 yields the Saha equation:

ni+1ne

ni
= 2

(

2πmekT

h2

)3/2 Qel
i+1

Qel
i

exp

(

−
Ii+1 − ∆Ii+1

kT

)

(B.16)

Using the particle fractions αi = ni/nH and αe = ne/nH this is rewritten
as:

αi+1αe

αi
=

2

nH

(

2πmekT

h2

)3/2 Qel
i+1

Qel
i

exp

(

−
Ii+1 − ∆Ii+1

kT

)

(B.17)

Noting that ρ ≈ nHmH , Eq. B.17 has the same form as Eq. 5.19. The
equation of state B.5 can be used to rewrite the equation as a function of
temperature and pressure:

αi+1

αi
=

1 + αe

αe

(

2πme

h2

)3/2 (kT )5/2

p − δpC

2Qel
i+1

Qel
i

exp

(

−
Ii+1 − ∆Ii+1

kT

)

(B.18)

The potential reduction according to the Debye-Hückel method is received
by taking the derivative of Eq. B.3:

∆Ii+1 =
∂FC

∂Ni
−

∂FC

∂Ni+1
−

∂FC

∂Ne
=

(i + 1)q2

4πε0rD
(B.19)

B.0.5. Energy equation

The expression for the energy may be calculated from E = −T 2∂/∂T (F/T )
using the partition functions. Again F = Fig + FC , with Fig for a partially
ionised monatomic gas in local thermodynamic equilibrium given in Eq. B.7.
The Coulombic correction from the elecrostatic potential is given in Eq. B.1.
Dividing the partition functions in their translational and electronic parts, Z =
ZtrZel yields:
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(

∂

∂T

Fig

T

)

V,N

= −k
!

∑

i=0

[

Ni

(

∂ lnZtr
i

∂T

)

V,N

+ Ni

(

∂ lnZel
i

∂T

)

V,N

]

− kNe

(

∂ lnZtr
e

∂T

)

V,N

= −k
!

∑

i=0

[

Ni
3

2

1

T
+ Ni

(

∂ lnZel
i

∂T

)

V,N

]

− kNe
3

2

1

T
(B.20)

The total number of heavy particles, N0 =
∑!

i=0 Ni:

Eig = −T 2

(

∂

∂T

Fig

T

)

V,N

=
3

2
(N0 + Ne)kT + kT 2

!
∑

i=0

Ni

(

∂ lnZel
i

∂T

)

V,N

=

=
3

2
(1 + αe)N0kT + kT 2N0

!
∑

i=0

αi

(

∂ ln Zel
i

∂T

)

V,N

(B.21)

The last term is rewitten using Eq. B.14:

!
∑

i=0

αi

(

∂ lnZel
i

∂T

)

V,N

=
!

∑

i=0

αi

(

∂ lnQel
i

∂T

)

V,N

+
!

∑

i=0

αi

(

∂ ln e−ε0,i/kT

∂T

)

V,N

=

=
!

∑

i=0

αi

(

∂ lnQel
i

∂T

)

V,N

+
!

∑

i=1

αi

i
∑

j=1

Ij

kT 2
(B.22)

Using that the masses of the ionic species is approximately equal to the
atomic mass Mi ≈ MA → N0k ≈ mRA and the energy is rewritten:

Eig =
3

2
(1 + αe)mRAT + mRA

!
∑

i=1

αi

i
∑

j=1

Ij

k
+ mRAT 2

!
∑

i=0

αi

(

∂ lnQel
i

∂T

)

V,N

(B.23)

The enthalpy per unit mass h = e + p/ρ is similarily divided into an ideal
and Coulombic part: h = eig +eC +(pig+pC)/ρ. The ideal enthalpy is acquired
directly from Eq. B.5 and Eq. B.23:

hig =
5

2
(1 + αe)RAT + RA

!
∑

i=1

αi

i
∑

j=1

Ij

k
+ RA

!
∑

i=0

αiWi (B.24)

where the energy of the electronic excitation is:

Wi = T 2

(

∂ lnQel
i

∂T

)

V,N

(B.25)
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The enthalpy have two Coulomb corrections, which are acquired from Eq:s
B.1 and B.4:

hC = eC + pC/ρ =
1

ρV
EC + pC/ρ = −

kT

8πρr3
D

−
kT

24πρr3
D

= −
kT

6πρr3
D

(B.26)
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