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Abstract

Two codes have been developed and implemented for use on massively parallel
super computers to simulate two-dimensional and quasi-geostrophic turbulence.
The codes have been found to scale well with increasing resolution and width of
the simulations. This has allowed for the highest resolution simulations of two-
dimensional and quasi-geostrophic turbulence so far reported in the literature.
The direct numerical simulations have focused on the statistical characteristics
of turbulent cascades of energy and enstrophy, the role of coherent vortices
and departures from universal scaling laws, theoretized more than 40 years
ago. In particular, the investigations have concerned the enstrophy and energy
cascades in forced and decaying two-dimensional turbulence. Furthermore, the
applicability of Charney’s hypotheses on quasi-geostrophic turbulence has been
tested. The results have shed light on the flow evolution at very large Reynolds
numbers. The most important results are the robustness of the enstrophy
cascade in forced and decaying two-dimensional turbulence, the sensitivity to
an infrared Reynolds number in the spectral scaling of the energy spectrum
in the inverse energy cascade range, and the validation of Charney’s predic-
tions on the dynamics of quasi-geostrophic turbulence. It has also been shown
that the scaling of the energy spectrum in the enstrophy cascade is insensitive
to intermittency in higher order statistics, but that corrections apply to the
“universal” Batchelor-Kraichnan constant, as a consequence of large-scale dis-
sipation anomalies following a classical remark by Landau (Landau & Lifshitz
1987). Another finding is that the inverse energy cascade is maintained by
nonlocal triad interactions, which is in contradiction with the classical locality
assumption.

Descriptors: two-dimensional turbulence, decaying turbulence, quasi-geostrophic
turbulence, direct numerical simulation (DNS), coherent vortices, energy cas-
cade, enstrophy cascade, intermittency, massively parallel simulations, locality



Preface

This thesis investigates the statistical properties of two-dimensional and quasi-
geostrophic turbulence, by high resolution direct numerical simulations. The
first part introduces some fundamental concepts in the understanding of the
two turbulent regimes and links these to current research activities. The second
part is a collection of the following articles:

Paper 1. A. VALLGREN & E. LINDBORG, 2010
The enstrophy cascade in forced two-dimensional turbulence.
J. Fluid Mech., Article in press.

Paper 2. E. LINDBORG & A. VALLGREN, 2010

Testing Batchelor’s similarity hypotheses for decaying two-dimensional
turbulence. Phys. Fluids 22, 091704.

Paper 3. A. VALLGREN, 2010
Infrared Reynolds number dependency of the two-dimensional inverse energy
cascade. J. Fluid Mech., Accepted.

Paper 4. A. VALLGREN & E. LINDBORG, 2010

Charney isotropy and equipartition in quasi-geostrophic turbulence.
J. Fluid Mech. 656, 448.

Paper 5. A. VALLGREN, 2010
Simulations of two-dimensional and quasi-geostrophic turbulence.
Internal Report.
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Le seul véritable voyage,

le seul bain de Jouvence,

ce ne serait pas d’aller vers de nouveaur paysages,
mais d’avoir d’autres yeux,

de voir l'univers avec les yeux d’un autre,

de cent autres,

de voir les cent univers que chacun d’eux voit,
que chacun d’euz est.

The only true voyage of discovery,

the only fountain of eternal youth,

would be not to visit strange lands but to possess other eyes,
to behold the universe through the eyes of another,

of a hundred others,

to behold the hundred universes that each of them beholds,
that each of them is

Marcel Proust (1871-1922)
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Part 1

Introduction






CHAPTER 1

Introduction

Welcome to the amazing Flatlands! A very conservative place where only vis-
cosity makes a difference and where new ideas are often abandoned in favour
of the original predictions. Two-dimensional turbulence is still, 40 years from
when it was more profoundly theoretized, an active research field. Despite the
apparent simplicity in dealing with two, rather than three, spatial dimensions,
2D turbulence is possibly richer in its dynamics than 3D turbulence. The reason
is found in its conservational properties. Both energy and a multitude of vortic-
ity quantities, called Casimirs, are inviscidly conserved, the latters on a parcel.
One such Casimir, enstrophy, defined as 2 = w?/2 where w = e, - Vx u is the
vorticity and u is the two-dimensional velocity field, has profound importance
in two-dimensional turbulence, as we will see. The conservation properties im-
pose restrictions on the flow evolution and are thus of both mathematical and
physical interest. Of most physical relevance, is perhaps the fact that there
is no forward energy cascade as in three-dimensional turbulence. Richardson’s
(1922) view of 3D turbulence was summarized as

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.

In two-dimensional turbulence, this picture is reversed, with energy cascading
towards larger scales, while enstrophy cascades towards smaller scales. One
might then ask why we care about two-dimensional turbulence, seemingly just
an academic topic very far from the real world? A few moments thought re-
veal that it might not be just of academic interest. We may find quasi-two-
dimensional flows in a wide variety of situations. One such example is the
flow in a fluid film on top of a surface of another fluid or a rigid object. An-
other example is a rapidly rotating fluid. A third example, which is the main
motivation of this thesis, is the approximate 2D nature of tropospheric and
oceanic flows (see figure 1.1, illustrating some typical flow structures). This
can be understood as a consequence of the small aspect ratio D/L of large
scale flow structures, where D ~ 10 km is the approximate scale height of
the troposphere and L ~ 1000 km is the typical length scale of cyclones and
anticyclones, advected by a practically horizontal flow. In fact, the motion of

1



2 1. INTRODUCTION

FicUrRe 1.1. Examples of quasi-2D flow regimes. Left: In-
frared satellite image from March 10, 2008, showing a mature
cyclone west of the British Isles. Right: RGB satellite image
showing an algal bloom event in the Baltic Sea, acting as a
passive tracer in the flow field near the sea surface. From
SMHI.

tropical cyclones have been successfully predicted by 2D vortex models (Tabel-
ing 2002). The question is whether the atmospheric (kinetic) energy spectrum
can be explained by two-dimensional turbulence. Nastrom & Gage (1985) and
Gage & Nastrom (1986) presented observational data on the wave number en-
ergy spectrum, showing a k=3 kinetic energy spectrum at large scales and a
k=5/3-spectrum at scales smaller than about 500 km (see figure 1.2), where
k is the wave number. There have been numerous attempts to explain these
observations in terms of 2D turbulence over the years, e.g., Lilly (1983), Smith
& Yakhot (1994) and Tung & Orlando (2003). Lindborg (1999; 2006) argued
that the k~3-range can be explained in terms of a 2D enstrophy inertial range
whereas the k~%/3-range should most likely not be interpreted as a result of 2D
turbulent interactions. Thus, although there is much evidence for a 2D enstro-
phy cascade range at large scales, the dynamic origin of the k—%/3-range at high
wave numbers is still debated. There are namely two possible candidates for
such a range; a forward cascade of stratified 3D turbulent energy (e.g., Lind-
borg 2006) or an inverse cascade of 2D energy (e.g., Lilly 1983; Smith 2004).
The former depends on energy being fed from large-scale baroclinic motions
and the latter from convective sources such as thunderstorms. Another sugges-
tion for the observed k~%/3-range is surface-quasigeostrophy (Tulloch & Smith
2009). To settle this question, one needs to increase the complexity in the
modeling by allowing for rotation and stratification, which are two important
features of tropospheric flow. Charney (1971) derived a theory of what is called
quasi-geostrophic turbulence. This turbulent regime takes into account the ef-
fect of background rotation and a stable stratification, and describes the flow
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FIGURE 1.2. Observed kinetic energy spectrum divided into
zonal and meridional components and potential energy spec-
trum in terms of the potential temperature, clearly indicating
the existence of two spectral ranges. From Nastrom & Gage
(1985).

dynamics at relatively large, synoptic, scales. A key point in Charney’s theory
was the introduction of a stretched coordinate in the vertical, ( = (N/f)z,
where N is the Brunt-Vaiséla frequency which is a measure of the stratifica-
tion and f is the Coriolis parameter which is a measure of the rotation rate.
By performing this transformation, Charney predicted a clear analogy with
two-dimensional turbulence, in terms of cascade directions and approximately
isotropic energy spectra. This thesis explores the statistical characteristics of
pure two-dimensional and quasi-geostrophic turbulence in order to approach the
subtle question about the origins of the atmospheric energy spectrum. This is
accomplished by the development of two codes by which a number of direct
numerical simulations have been carried out for these two flow regimes. Not
only is the nature of large-scale atmospheric turbulence interesting in its own
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FIGURE 1.3. An artist’s view of two-dimensional turbulence?
The physics behind two-dimensional turbulence may result in
aesthetically appealing features meanwhile important dynami-
cal mechanisms are revealed. There is also a deeper connection
to the nature of large-scale atmospheric and oceanic flows.

right, but the outcomes of these studies are also of interest for the development
of operational forecast and climate models. The next sections will describe the
statistical characteristics of two-dimensional and quasi-geostrophic turbulence
in more detail, while figure 1.3 gives a visual interpretation of the phenomena
to be explored. For a more thorough review of two-dimensional turbulence, the
reader is referred to Tabeling (2002) and Danilov & Gurarie (2000). The latter
authors also cover quasi-2D turbulence including quasi-geostrophic turbulence.
A more recent review on two-dimensional turbulence subject to bounded do-
mains is provided by Clercx & van Heijst (2009).



CHAPTER 2
Strictly two-dimensional turbulence

2.1. Introduction

Richardson’s view of the turbulent cascade of energy cannot be valid in two
dimensions. The physical constraints imposed on a two-dimensional flow pre-
vent a dominant forward energy cascade. The constraints follow from inviscid
conservation of both energy and enstrophy, which can be realized by deriving
the energy and enstrophy equations resulting from multiplying the 2D Navier-
Stokes equation by u and the vorticity equation by w, respectively. The incom-
pressible Navier-Stokes equation in its vorticity formulation is given by

o + (u- V)w = vV, (2.1)
ot

where v is the kinematic viscosity. One way to picture the role of the invis-

cid (v = 0) conservation properties is to consider the temporal evolution of

the energy and enstrophy centroid wave numbers, respectively, following Vallis

(2006). Noting that the mean energy and enstrophy can be written as

gy [|G) ()

0= %/deA - %/ (v2¢)2 dA, (2.3)

s
I

dA, (2.2)

where w = e, - V X u is the vorticity and the stream function v is defined so
that w = —0¢ /0y, v = O/Ox and w = V29, and transforming into spectral
space, we obtain

E= /E(k)dk: = %/(m +00%)dk = %/k%@*dk, (2.4)
_ 1 N 1 o~
Q- / Qk)k = / o0"dk = ¢ / KA 0" dk = / RE(R)dk,  (2.5)

where F (k) and Q(k) are the energy and enstrophy wave number spectra. We
now define the energy centroid wave number as

[ kE(k)dk
-~ [E(k)dk’

5

ke (2.6)
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and introduce the quantity

= / (k — k) 2E(k)dk = / K2E(k)dk — K2, / E(dk,  (27)

which upon temporal differentiation gives a measure of the spreading of the
energy distribution. To obtain the last equality in (2.7), the definition of kg
(2.6) has been used. If all energy is initially centred at kg, dI/dt should be
larger than zero. Since both energy and enstrophy are inviscidly conserved, it
follows that

dkg 1 dl

—_— = _— <0
dt ZkEEdt< ’

(2.8)
(2.9)

which is consistent with an inverse energy cascade, i.e., a transfer of energy
towards larger scales. Similarly, if we define an enstrophy centroid wave number
kQ as

[ Q(k)dk

ko = [ k=1Q(k)dk’

(2.10)
and introduce
J= /(k—1 — kg )?Q(k)dk = /E(k)dk — kgz/ﬂ(k)dk, (2.11)

a little manipulation yields
tho _ Ky 4

o = a0 >0 (2.12)
Thus, the enstrophy centroid wave number (in which all enstrophy is initially
located) moves towards higher wave numbers (smaller scales) with time, which
can be interpreted as a forward cascade of enstrophy. These are heuristic ar-
guments but nevertheless show the general tendency of the cascade directions.
Note that these arguments do not forbid energy/enstrophy to be transferred
to smaller/larger scales, they just tell us that more energy/enstrophy propa-
gates towards larger /smaller scales than in the opposite direction. As could be
understood from the preceeding discussion, the fluxes of energy and enstrophy
are an integral part in the description of flow characteristics. We thus start by
noting that

OE(k)

S = T(k) + D(k) + F(F), (2.13)
where
T(k) = %ki /0 Im [, (k)@ (k)] oy (2.14)

is the (nonlinear) transfer of energy associated with the scalar wave number £,
following an integration in wave number space of k = k[cos(0y)e, + sin(6y)e,]
over an azimuthal angle 6y, and * denotes the complex conjugate. D(k) is the
dissipation, which in the case of Navier-Stokes viscosity is given by

D(k) = —2vk*E(k) + Dy (k), (2.15)
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where D, (k) is a large-scale sink such as Ekman drag or hypodiffusion. The
term F(k) corresponds to any particular forcing of wave mode k. The energy
flux is thence given by

k
M (k) = — / Tk, (2.16)
0
and the enstrophy flux follows accordingly (cf eq. 2.5) as
k
Mo (k) = — / 2T ()i (2.17)
0

Our next step is to elaborate on the existence of a double cascade scenario
and inertial ranges in two-dimensional turbulence. Let us consider a case in
which we feed a turbulent system with energy at a scale ky. Given that the
general picture of the cascade directions holds, as reflected by the time evolution
of the centroid wave numbers, we would expect energy to propagate upscale and
enstrophy to propagate downscale. If there is no large-scale drag imposed and
we consider an infinitely large domain, we would expect an undisturbed energy
cascade towards larger scales. Simultaneously, we would expect an enstrophy
cascade towards smaller scales, where enstrophy is ultimately removed by small-
scale viscous dissipation. Given a large enough Reynolds number so that ky <<
kmaz, it is reasonable to expect that there would be a region, ky < k < ke,
practically undisturbed by viscous dissipation. Assume that we feed the system
with energy at a rate ¢ and enstrophy at a rate n (the two are related by
e =n/ k‘;) In the energy cascade range, the only parameters of practical
importance would be the energy density F(k), the energy injection rate e and
wave number k. Accordingly, we let E(k) ~ €*k’. Dimensional reasoning gives
that = 2/3 and b = —5/3 so that E(k) ~ €2/3k~>/3. A similar argument gives
that E(k) ~ n?/3k=3 in the forward enstrophy cascade range. These predictions
were introduced by Kraichnan (1967) and Leith (1968) and are illustrated in
figure 2.1. Thus, for the inverse energy cascade range,

E(k) = Ke¥/3k5/3, (2.18)
and for the enstrophy cascade range;
E(k) = Cn?/3k3, (2.19)

where we refer to C as the Kraichnan constant in forced two-dimensional turbu-
lence and the Batchelor-Kraichnan constant in decaying two-dimensional tur-
bulence (Batchelor 1969). One major assumption that these predictions rely
on is the locality of the cascades, meaning that it is assumed that there is no
interaction between widely separated scales. In particular, in each of the iner-
tial ranges, there can be no strong influence from scales outside of these (Vallis
2006). It can be noted, however, that Kraichnan (1967 & 1971) was uncer-
tain about the validity of a locality assumption in two-dimensional turbulence
as compared to the three-dimensional analogue. Already in 1967, Kraichnan
hypothesized that a logarithmic correction should manifest in the k=2 enstro-
phy cascade range, although he did not provide any exact details on its form.



8 2. STRICTLY TWO-DIMENSIONAL TURBULENCE
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Wavenumber

FiGURE 2.1. Qualitative picture of the double cascade of
forced two-dimensional turbulence. From Vallis (2006).

In a follow-up paper, Kraichnan (1971), provided a complimentary theoretical
prediction, namely
A ~1/3
E(k) =C'n?/3k~3 [111 (kﬂ , (2.20)
1
where C’ is a constant of order unity, which Kraichnan estimated to 2.626
based on a turbulence test-field model and k7 marks the lowest wavenumber of
the inertial range. The correction allows for a k-independent C’ and a constant
enstrophy flux range.

2.2. The forward enstrophy cascade

In this section we review the enstrophy cascade in forced two-dimensional tur-
bulence. The cascade theory of Kraichnan (1967) has been tested numerically
in a large number of studies. At the time of the early theoretical advances, the
computational resources were very limited, but attempts were made to simulate
the two-dimensional Navier-Stokes equation. However, the limited resolution
available at this time was only enough to indicate a qualitative statistical pic-
ture of low Reynolds number 2D turbulence. During the 1980’s and 1990’s, the
computational resources allowed for more resolved and more accurate numerical
simulations. The results from these experiments indicated that the k=2 or pos-
sibly the logarithmically corrected spectrum, was not as robust as anticipated,
with reports on steeper energy spectrum (e.g., Legras et al. 1988; Gilbert 1988;



2.2. THE FORWARD ENSTROPHY CASCADE 9

Maltrud & Vallis 1991 and Kaneda & Ishihara 2001). The presence of vortices
was believed to distort the spectral shape of the energy spectrum in the en-
strophy inertial range. However, with ever-increasing computational resources,
the results once again started to point towards the early theoretical predictions
by Kraichnan-Leith (e.g., Lindborg & Alvelius 2000; Boffetta 2007 and Bracco
& McWilliams 2010). The logarithmically corrected enstrophy spectrum has
been numerically obtained by, e.g., Pasquero & Falkovich 2002. Most of these
studies have included a large-scale friction (also referred to as drag or hypod-
iffusion) to prevent energy from growing at the largest scales and drive the
turbulence into a stationary state where energy is dissipated at large scales at
the same rate at which it is injected. If the turbulence is forced at a very small
wave number, corresponding to the scale of the computational domain, and no
large scale drag is introduced, energy will pile up in the smallest wave numbers
and there is a clear risk that a state soon develops which is very different from
the double cascade scenario. If the turbulence is forced at a considerably larger
wave number, it will become extremely demanding to resolve a sufficiently large
span of scales to obtain a broad enstrophy cascade range. Thus, no serious at-
tempt was made to test the perhaps strongest prediction of Kraichnan’s theory
— the existence of a stationary enstrophy cascade in the absence of large scale
drag and in the presence of a constant energy growth. However, we have now
performed such simulations. A series of extremely high resolution simulations,
presented in Paper 1, suggests that the enstrophy cascade may indeed be more
robust than currently believed. In the absence of a large scale drag, we have ob-
tained results that confirm Kraichnan’s original prediction (1967) with a clean
k=3 energy spectrum in the enstrophy cascade range, without the logarithmic
correction that Kraichnan proposed in his follow-up paper (1971). Figure 2.2
illustrates the real vorticity field in a simulation forced at large scales. In par-
ticular, note the dominance of vorticity filaments, indicative of the forward
enstrophy cascade. This cascade dominates the dynamics at several wave num-
ber decades, as shown in figure 2.3. However, the universality might fail with
respect to the constant C, which has been found to vary slightly in our simula-
tions, as a consequence of large-scale dissipation anomalies in association with
coherent vortices.
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FIGURE 2.2. Vorticity field and zoom in from a simulation
forced at large scales, showing the dominance of vorticity fila-
ments, resulting from a forward enstrophy cascade.

10"
——— N8192L
— — ~N16384L

H16384L

FIGURE 2.3. Compensated energy spectra, k3E(k)6;2/ % from
a set of very high resolution simulations of forced two-
dimensional turbulence.

2.3. The inverse energy cascade

A stationary inverse energy cascade range can only be obtained in the pres-
ence of a large scale drag, since energy would otherwise cascade indefinitely
towards larger scales. In reality, there is always a physical limit on how far
the cascade can reach, namely the domain size. As energy reaches the small-
est wave number, it will continuously pile up at this wave number, forming a
condensate. Such a condensate will bring the system away from the double
cascade scenario by Kraichnan-Leith (e.g., Smith & Yakhot 1994). In order to
generate a double cascade with two wide inertial ranges, very high resolution
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simulations are required. Boffetta (2007) and Boffetta & Musacchio (2010) per-
formed such simulations, showing a nearly perfect k~>/3 inverse cascade range
in the presence of a linear drag, while obtaining an enstrophy inertial range a
little steeper than k3. A linear drag is often introduced as a large-scale energy
dissipation mechanism, found in real systems such as the atmosphere (Ekman
friction) and in physical experiments. Boffetta (2007) investigated the fluxes
of energy and enstrophy in physical space and found that there is a very small
correlation between these fluxes. This suggests that it should be possible to
generate an energy cascade range without the presence of an enstrophy cas-
cade range, which was also proposed by Tran & Bowman (2004). Therefore,
it seems plausible that simulations with forcing at scales near the small-scale
dissipation range will give the classical k~°/3-spectrum. However, this sug-
gestion can be questioned. Starting with Borue (1994), it was found that the
implementation of a large-scale hypodiffusion steepens the energy spectrum
considerably to almost a k£ 3-spectrum. The possible reason was found in the
existence of vortices over all scales, whereas Boffetta et al. (2000) explained
it in terms of a bottleneck effect as in three-dimensional turbulence (Falkovich
1994; Bos & Bertoglio 2009). However, Smith & Yakhot (1994) found that the
k~°/3_spectrum steepened to an exponent < —2 when both of the cascades are
resolved, as a consequence of vortex generation in the enstrophy cascade range.
This result was later confirmed by Scott (2007), who used high resolution sim-
ulation to provide estimates on when this steepening occurs. To summarize,
the issue seems rather involved, and there is no clear evidence for a universal
energy inertial range controlled by local interactions, as highlighted by Maltrud
& Vallis (1993) and Danilov & Gurarie (2001a, 2001b). As a response to these
differing results, we have performed a set of high resolution simulations with
and without a large scale linear drag of varying strength and with a variable
forcing wave number. It has been found that the form of the energy spectrum
is sensitive to the strength of the large scale drag. In paper 3 we introduce an
infrared Reynolds number Re, = kj/kq, where k; is the forcing wave number
and k, is a frictional wave number, and demonstrate that the k=%/3 energy
spectrum steepens to k2 or steeper at high Re, as a consequence of vortex
formation in the inverse cascade range. It is also found that the inverse cascade
is dominated by nonlocal interactions, as described in more detail in section
2.7. To close this section, it can be noted that the physical mechanisms be-
hind the inverse energy cascade are still debated. The explanations range from
vortex merging, as in decaying turbulence, (e.g. McWilliams 1990), like-sign
vortex clustering (e.g. Boffetta et al. 2000) and skew-Newtonian stress (see
Chen et al. 2006, who address the question about physical mechanisms but
lack the locality discussion). A tentative reason behind the formation of vor-
tices is perhaps associated with the observations by Elhmaidi et al. (2005).
They suggested that the presence of a linear drag induces filament instabilities
that may lead to the formation of coherent vortices.
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2.4. Decaying two-dimensional turbulence

Decaying two-dimensional turbulence describes the evolution of a flow field in
the absence of forcing and without any large scale dissipation, principally con-
serving energy at high Reynolds number. In that sense, decaying 2D turbulence
might be considered as the purest kind of turbulence we can study. However,
the initial conditions may differ considerably, although this should not cause
any different results at small scales, if the evolution is to be universal, as pre-
dicted by Kraichnan, Batchelor and Leith. Therefore, it would seem natural
that this case should be subject to less dispute. However, this is not the case.
In fact, decaying 2D turbulence has been subject to renewed interest. As an
initial flow field is released to decay freely, we could expect energy to cascade
towards larger scales, where it is unaffected by small-scale viscosity, and so
conserving energy, whereas the enstrophy would cascade towards smaller scales
where it is dissipated. The question is how the energy spectrum evolves under
these circumstances. According to Batchelor (1969), the enstrophy dissipation
rate x should stay finite in the limit ¥ — 0 and the inertial range enstrophy
spectrum should be given by

Q(k) = Cx*Bk1, (2.21)

where C is a universal constant. However, this theoretical prediction has been
questioned. According to Tran & Dritschel (2006), the enstrophy dissipation
vanishes in the limit » — 0 and in a follow-up paper, Dritschel et al. (2007)
suggested that the enstrophy spectrum should instead scale according to

Q(k) = Qk~'(In Re) ™1, (2.22)

where Re = Q/vk3. They also argued that the inertial range should contain
an increasing portion of the total enstrophy with increasing Reynolds number.
Batchelor (1969) was, however, aware of the potential inconsistency in the
assumption of a strictly finite y in the inviscid limit. He noted that, with an
enstrophy spectrum given by (2.21), the total mean square vorticity diverges as
x*/3In (Re) as v — 0, which would allow the total enstrophy to be larger than
the initial enstrophy, which is impossible. He remedied this by conjecturing
that x becomes so small at high Re that X2/3ln(Re) < Q. Thus, it seems
that he gave up the assumption of a strictly finite x in the inviscid limit. Thus,
even if y — 0 as Re — oo, Batchelor assumed that y decreases in such a way
that the prediction (2.21) still holds. This has in fact been corroborated by
our simulations in paper 2, which were performed in order to test Batchelor’s
hypotheses, with the largest resolutions presented so far in the literature.
Although there is an implicit Reynolds number dependency, the effect of
this is so small that it is not visible in our results (see figure 2.5, top). The
figure demonstrates the compensated (following the prediction by Batchelor
and Dritschel et al.) enstrophy spectra ®(k) from three simulations with
different initial conditions, taken at three instances in time. The Dritschel
et al. prediction gives rather large departures from a universal collapse in
the equilibrium range, as seen in figure 2.5, bottom. This despite the fact
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that x*/3 << Q/In Re in our simulations, which is consistent with xy — 0
as Re — oo. In addition, the prediction of Dritschel et al. that the inertial
range should contain an increasing portion of the total enstrophy with Re did
not find any support in our simulations. As a matter of fact, as t >> 0, an
ever-increasing portion of the total enstrophy was contained at scales larger
than the inertial range scales meaning that the enstrophy content in the
inertial range was even more reduced than could be anticipated. This was due
to the presence of strong and relatively stable coherent vortices.

Our simulations also show that the Batchelor-Kraichnan constant C is of order
unity, but varies slightly, as a consequence of a high degree of intermittency
in the enstrophy dissipation. The slight variation of the constant can be
explained following an argument by Landau (Landau & Lifshitz 1987). In
essence, we reproduced Batchelor’s result, with a k~! enstrophy spectrum in
all our simulations, despite very different initial conditions, which are visible
also at later times (see figure 2.4). It is noteworthy that the steeper spectra
obtained by earlier investigators (e.g., McWilliams 1984 and Bartello & Warn
1996), might be an artefact of a low Reynolds number, since the width of
the enstrophy inertial range decreases slowly with time as the dissipation
wave number kg ~ xS, 1 2, and x decreases with time. We have also
found that power law exponents of decay rates of quantities such as the
enstrophy and hence enstrophy dissipation are dependent on the initial con-
ditions. This is consistent with the observations by van Bokhoven et al. (2007).

2.5. Coherent structures

We have performed a number of simulations revealing the existence of strong
and long-lived vortices which we refer to as coherent structures. They are easy
to distinguish by the human eye as they stand out as ordered structures in
a chaotic sea of filamentary vorticity debris (see figure 2.4 and close-up of an
individual vortex in 2.6). They are also belived to cause departures from uni-
versal scaling laws in two-dimensional turbulence. McWilliams (1984, 1990)
found early evidence of stuctures containing a substantial fraction of vorticity
of two-dimensional flows, with lifetimes far exceeding the characteristic time
for nonlinear interactions. He found that vortices spontaneously develop if the
forcing and friction is relatively weak and the Reynolds number is sufficiently
large. These vortices are approximately axisymmetric and are stable to pertur-
bations from the quiescent surroundings but not to encounters by other strong
vortices. Such encounters can result in like-sign vortex mergers. McWilliams
(1990) noted that the lock-up of vorticity inside coherent vortices effectively
reduces cascade rates of both enstrophy and energy. By introducing a vortex-
census algorithm, he enabled detailed studies of their properties and found a
general trend of the "survival of the fittest”. It has also been found that vortic-
ity extremum is quasi-conserved (Carnevale et al. 1991, Maltrud & Vallis 1993
and Scott 2007), resulting in a small inverse enstrophy flux. Dritschel (1995)
contributed with a detailed study of vortex interactions and showed that these
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FIGURE 2.4. Snapshots of the "final” states from three sim-
ulations of decaying two-dimensional turbulence with various
initial conditions. Red colour corresponds to positive vorticity
and blue colour to negative vorticity.
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FIGURE 2.5. Compensated enstrophy spectra (as predicted by
Batchelor (top) and Dritschel et al.; bottom) from three sim-
ulations (red, blue and green) of decaying two-dimensional
turbulence, taken at three instances in time (solid, dashed
and dotted). The abscissas are nondimensional wavenumbers,
where 7, = v1/2y~1/6,

are relatively short inelastic interactions resulting in two or three new coherent
vortices, thus questioning the picture of the inverse energy cascade as a se-
ries of merging events resulting in ever-growing vortices, as suggested by, e.g.,
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FiGURE 2.6. Close-up of a single vortex revealing its finescale structure.

Borue (1994), in forced two-dimensional turbulence. In decaying turbulence, it
is more evident that large-scale structures form as a result of vortex mergers,
finally resulting in two opposite-sign vortices (Tabeling, 2002). An interest-
ing question is whether any universal theory can account for coherent vortices.
Carnevale et al. (1991) suggested such a theory for vortex circulation, radius,
mean enstrophy and kurtosis, but there are ample examples of deviations from
such a governing theory (Tabeling, 2002).

2.6. (-plane turbulence

To accomodate for a differential rotation system, a S-term can be added to the
2D Navier-Stokes equation,

0

a—ut) + (u-V)w = —vViw — Bu. (2.23)
The presence of the S-term can be motivated by the following argument. We
consider a rotating sphere such as illustrated in figure 2.7, and note that the

Coriolis force 22 x u can be rewritten by defining
f =2Qsin ¢e,, (2.24)

where e, is the normal unit vector to a locally Cartesian tangent plane on the
sphere. For small variations in the meridional direction

f=2Qsin¢ ~ 2Qsin ¢o + 2Q(p — ¢g) cos o, (2.25)

and we approximate the Coriolis parameter to vary linearly on the tangent
plane as
= fo+ By, (2.26)
where
fo = 2Qsin d)o7 (227)
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and y is the meridional coordinate on the tangent plane. Thus,
df  2Qcos ¢g

6:dy a

(2.28)
where a is the radius of the Earth. Equation (2.23), known as the -plane ap-
proximation, describes the motions on a tangent plane of a rotating sphere, pro-
vided that the flow is spatially limited so that the geometric effects of sphericity
are negligible. It allows for the use of a local Cartesian representation of the
Navier-Stokes equation, while still capturing the important dynamical effects
stemming from differential rotation.

FiGure 2.7. Tangent plane approximation to the quasi-
spherical Earth. The rotation vector components in the plane
are shown as well as the direction of the unit vectors.

We may now ask what the dynamical consequences are of the [-term.
Rhines (1975) investigated this matter and showed that turbulent energy is
dispersed into waves at length scales larger than approximately

lg = ,/2\;5, (2.29)

where E is the r.m.s. energy of the flow. There exists a number of definitions
of this arrest scale, which do not differ too much. Thus, the inverse energy
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cascade continues up to a scale [g, from which no upscale energy cascade is
possible. Instead, the transition to wave propagation (Rossby waves) is over-
taken by a flow characterized by steady alternating zonal jets. This picture is
helpful in explaining the characteristic size of eddies in the Earth’s atmosphere,
and the prevalence of zonal flows. The waves are referred to as Rossby waves,
and their dispersion relation can be obtained by linearizing (2.23) upon a ba-
sic state. Rossby waves are an important ingredient in atmospheric dynamics,
with large effects on both daily weather and regional climate. Many numerical
experiments over the years have to a large degree verified Rhines’ prediction.
Maltrud & Vallis (1991) found that the S-effect tend to destroy coherent vor-
tices at large scales but that the resulting anisotropy at scales larger than iz
does not influence the inertial range characteristics at smaller scales. Later
studies have concerned the statistical characteristics of the resulting zonal jets
(e.g., Vallis & Maltrud 1993; Manfroi & Young 1998; Danilov & Gurarie 2004).
It is noteworthy that attempts have been made to explain the atmospheric
flow structure on Jupiter, with its zonal jets and superstationary vortices, in
terms of two-dimensional or quasi-geostrophic turbulence with a S-effect (e.g.,
Kukharkin & Orszag 1996; Smith 2004). An example of a simulation with a (-
effect is shown in figure 2.8 (left), where the anisotropy at large scales is clearly
visible. Figure 2.8 (right) also shows a satellite image of Jupiter, with the char-
acteristic zonal flow and the famous red spot visible as a coherent vortex in the
southern hemisphere.

FIGURE 2.8. Left: vorticity snapshot from a simulation with
moderate §. Right: satellite image of Jupiter’s atmosphere
(from NOAA).
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2.7. Nonuniversal features of the inertial ranges

Numerous high-resolution numerical simulations have revealed the existence
of departures from the classical theory of the two-dimensional inertial ranges.
Vortices are not covered by the classical theory, but have been shown to be
abundant in our simulations. Traditionally, these have been suggested to be the
origin of the steepening of the energy spectrum in the enstrophy cascade range,
as observed in many early numerical experiments. However, a different view
point will be advanced here, where the scaling of the energy spectrum in the
enstrophy cascade range is more or less unaffacted by the presence of vortices.
Instead, it is the universality of the Kraichnan-Batchelor constant that is ques-
tioned. As found in simulations of both forced and decaying two-dimensional
turbulence, the Batchelor-Kraichnan constant is not a perfect constant, but
varies slightly between different realisations of numerical experiments. The ori-
gin of these variations is most probably a consequence of intermittency in the
enstrophy dissipation, being it temporal or spatial. This observation, originally
concerning temporal variations, has been known as Landau’s objection to the
Kolmogorov 1941 theory for three-dimensional turbulence, and was raised al-
ready in 1942 (Frisch 1995). Landau (Landau & Lifshitz 1987) concluded that
there is a temporal (and spatial, see Kraichnan 1974, Frisch 1991) variance of
the dissipation. This variance will differ between different flows. The spatial
analogue suggests that the dissipation is intermittent at scales larger than in-
ertial range scales and can therefore not result in a universal averaging of the
dissipation. Kraichnan (1974) concluded that the nonuniversality is a result of
spatial averaging over the domain scale, which contains patches of enhanced
dissipation larger than the inertial scales. Thus, when determining the dissipa-
tion rates, it should be taken as an ensemble average over subdomains. In this
thesis, it is shown that the Landau argument is perhaps even more important
in two-dimensional turbulence than in three-dimensional turbulence, due to the
presence of very strong coherent vortices and filamentation in the former. Fig-
ure 2.9 shows the probability distribution (left) of x;/x for a set of simulations
of freely decaying two-dimensional turbulence, of which one was found to give
a different value of C. Using the notation of Batchelor (1969), x is here the
enstrophy dissipation averaged over the whole flow field (previously denoted by
€,) and Y; is the enstrophy dissipation averaged over a subdomain whose size
is equal to the largest inertial range scale. The simulation with an anomalously
low value of C is characterised by a much broader probability distribution of x;,
as compared to the other two. As can be understood from figure 2.9 (right),
the dissipation rate is enhanced in conjunction with vortices, which consists of
spiralling vorticity filaments with steep vorticity gradients.

The inverse energy cascade range has been found to be subject to another, per-
haps more fundamental and severe, violation to the basic assumptions, namely,
the assumption of spectral locality of the inverse energy cascade. As discussed
in section 2.3, numerical experiments have revealed that vortices may develop
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log, (/)
FIGURE 2.9. Left) Probability distribution of x;/x for subdo-
mains compared to the mean dissipation of the whole domain
for three simulations of freely decaying two-dimensional tur-
bulence. Right) Snapshot of instantaneous dissipation in one
vortex.

also in the inverse cascade range, resulting in a steeper energy spectrum. Start-
ing with Maltrud & Vallis (1993), it was found that nonlocal effects are present
to some degree in the inverse cascade range, despite the fact that they obtain
energy spectra close to k~5/3. Nonlocal effects have subsequently been traced
in studies such as Verma et al (2005) and Danilov & Gurarie (2001). By per-
forming the highest resolution simulations of the inverse energy cascade range
so far reported, we found that the inverse energy cascade is completely main-
tained by nonlocal triad interactions, while the local triad interactions give rise
to a forward energy cascade. This is a remarkable result since it questions the
validity of the basic locality assumption. To investigate the triad interactions,
the transfer function

Tipq = kjIm [i;(q)i; (p)@; " (k)] , (2.30)

is studied. Here, q = k — p, the hat represents the Fourier transform and
* represents the complex conjugate. After integration over an azimuthal an-
gle in k-space, Tkpq can be written as a function 7},q, of the scalar wave
numbers k,p and ¢. In turn, T}j,, can be written as a function, T},, of k
and p, after integration over q. The resulting wave number shell energy flux,
k) = — Zlg >p Tkp, of one of the simulations with k; = 1000 is presented
in figure 2.10. It shows the energy flux partitioned into a local and nonlocal
part, respectively, as well as the sum of these two for a range of locality thresh-
olds (p A q €,[1/2k, 2k],[1/4k, 4Kk],[1/5k,5k] and [1/8k,8k] defining locality).
It is clear that the nonlocal part gives rise to a dominating inverse energy flux
for (p Vv q)/k 3 [(1/a),a] for a up to 5, whereas the local part gives rise to a
weak forward cascade. Thus, there is new evidence for a highly nonlocal en-
ergy transfer, consistent with the findings by Maltrud & Vallis (1993). This
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FIGURE 2.10. Energy flux decomposed into nonlocal (top),
local (middle) and total (bottom) part for a set of locality
thresholds as defined in the text.

nonlocal transfer becomes increasingly important as Re — oco. Our results may
thus be interpreted as a stronger version of Kraichnan’s prediction regarding
the importance of nonlocal interactions. Already in 1971, Kraichnan found
that approximately 60% of the energy transfer comes from wave number triads
where the smallest wave number is one fifth of the middle wave number. It
can also be noted that a weak coupling between the enstrophy inertial range
and the energy-containing scales has been found, giving some support for the
observation by Scott (2007). The question regarding the physical mechanisms
behind these highly nonlinear interactions in Fourier space is even less settled
than the overall mechanisms behind the inverse energy cascade as such.



CHAPTER 3
Quasi-geostrophic turbulence

So far, we have considered two-dimensional turbulence. In many natural sys-
tems, such as the atmosphere, there is vertical stratification. Horizontal vari-
ations of the density introduces potential energy into the system, which can
be released into kinetic energy by the excitation of baroclinic motions. These
motions are manifested in the atmosphere by the development of cyclones and
anticyclones in the midlatitudes, largely responsible for the day-to-day weather
we experience. These systems are generally fully developed at scales ~ 1000 km
and can in part be studied within the framework of QG turbulence. This tur-
bulent regime was theoretized by Charney (1971). The dynamics is described
by the QG potential vorticity equation, which is given by
9q

5 Vi) g+ fo = ()" Vg4 f 4 ()P e VT, (3)

where

q= V> (3.2)
is the QG potential vorticity, A is the three-dimensional Laplace operator in
scaled coordinates, 1) is the stream function, uy = uex+vey, = -0 vex+0,ve,
is the horizontal velocity and V, is the horizontal gradient operator, v, is the
kinematic viscosity coefficient and v, is an optional hypofriction (p > 0) or
linear drag (p = 0) coefficent. For a complete derivation of this equation,
see appendix A. The most important property of this equation is the inviscid
conservation of potential vorticity. Note also that the quasi-geostrophic motions
are in the horizontal plane but that these motions generally vary in the vertical.
In the absence of large-scale friction, total energy is also conserved. Thus, there
is a very strong link to two-dimensional turbulent characteristics, particularly
concerning the directions of the energy and potential enstrophy cascades. The
total energy can be divided into kinetic (KE) and potential (PE) energy, which

are defined as
1 AN A
KEz/V[(ax) ()

re-3 (5

respectively, where z denotes the vertical coordinate subject to Charney scal-
ing, i.e, z = N/f Z, where Z is the ordinary Cartesian vertical coordinate.

av, (3.3)

v, (3.4)

21
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Following this scaling, Charney argued that the flow field should obey a special
type of isotropy, which has been given the name Charney isotropy, after Char-
ney (1971). Charney isotropy means that the energy spectrum, in the scaled
variables, is invariant in the different directions (i.e., horizontal and vertical).
Thus, we can define a Charney isotropy estimate R(k) as
_ E.(k)

- En(k)’

which should be close to unity, and where E. (k) and Fj (k) denote the vertical
and horizontal energy spectrum, respectively. In analogy with two-dimensional
turbulence characteristics, we expect the energy spectrum to scale as k2 in the
potential enstrophy inertial range and as k~%/3 in the inverse energy cascade

range. Charney also predicted approximate equipartition between kinetic and
potential energy in the three-dimensional energy spectra. Hence, if we let
o(k) = Ey (k)

Ep(k)
denote the degree of equipartition between the three-dimensional kinetic,
Ey(k), and potential, E,(k), energy spectrum, ¢(k) should be close to two,
since we have two horizontal velocity components. The prediction of Charney
isotropy has been supported by numerical experiments such as Hua & Haidvo-
gel (1986) and McWilliams (1989).

Just as in two-dimensional turbulence, there is rich dynamics in the flow
(see figure 3.1), with the development of coherent structures under favourable
conditions. The presence of a vertical dimension introduces new features of
these vortices, which can be barotropic or baroclinic to various degrees. For
a thorough review of their statistical properties, it is recommended to con-
sult, e.g., McWilliams (1990), McWilliams et al. (1999), von Hardenberg et al.
(2000) and Reinaud et al. (2003). In paper 4, we present results on a series
of high resolution simulations that essentially confirm Charney’s predictions
under a wide range of conditions and the similarities with 2D turbulence. Fur-
thermore, it is shown that the prediction might even be stronger than Charney
anticipated, since the general picture holds qualitatively also in the presence of
a planetary vorticity gradient.

R(k) (3.5)

(3.6)



3. QUASI-GEOSTROPHIC TURBULENCE 23

FIGURE 3.1. Potential vorticity snapshot from a freely de-
caying quasi-geostrophic simulation. Red (blue) colour cor-
responds to positive (negative) potential vorticity.



CHAPTER 4

Numerical method and the codes

Two pseudospectral codes, PNSE2D and QGE3D, have been developed to solve
the two-dimensional Navier-Stokes and the Charney QG potential vorticity
equation, respectively. The codes have been written in Fortran 90. Pseu-
dospectral means that the time-stepping is performed in spectral space whereas
the nonlinear products are calculated in real space. Fourier transforms are cal-
culated with the aid of an efficient FFT-package called FFTW. Time-stepping is
performed with a Runge-Kutta fourth order scheme and the time step is de-
termined using a CFL-condition. Viscosity, being it small scale Navier-Stokes
viscosity, hyperviscosity or large scale hypodiffusion or linear friction, is calcu-
lated with the use of an integrating factor technique. The codes are essentially
free from aliasing errors by the use of an 8/9-dealiasing technique, which allows
for a wider range of Fourier modes to be captured compared to the traditional
2/3-dealiasing. For a more thourough review of the details of the codes, see
paper 5, which also discusses some statistical measures and parallelisation ap-
proaches as well as code performance. It should be noted that the codes have
been customized to run on massively parallel super computers, to allow for
very high resolution simulations. Figure 4.1 indicates the performance on the
Ekman super computer on up to 4096 cpu cores.
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FIGURE 4.1. Speed-up as a function of number of processes
(np) for a set of problem sizes on Ekman.
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CHAPTER 5
Summary of the papers

Paper 1

The enstrophy cascade in forced two-dimensional turbulence. This paper inves-
tigates the enstrophy cascade in forced two-dimensional turbulence through a
set of high resolution simulations with different forcing wave numbers. One of
the simulations is among the largest simulations presented in the literature so
far. In the absence of a large-scale drag, we obtain Kraichnan’s original pre-
diction (1967) of a clean k=2 energy spectrum in the enstrophy inertial range.
However, it is found that the Kraichnan constant varies slightly between the
simulations as a consequence of large scale dissipation intermittency. When
forcing is applied at relatively large wave number, we obtain coherent vortices
at scales larger than the forcing scale, and intermittency measures become very
large at all scales. However, when forcing is applied at small wave number, in-
termittency statistics are close to Gaussian. The main conclusion is that the
enstrophy cascade is a robust feature of two-dimensional turbulence but that
higher order statistics of vorticity increments lack universality.

Paper 2

Testing Batchelor’s similarity hypothesis for decaying two-dimensional turbu-
lence. This paper studies the enstrophy cascade in decaying two-dimensional
turbulence to test Batchelor’s hypotheses of an equilibrium range and an in-
ertial subrange. Batchelor’s hypotheses are corroborated by a set of three
simulations with very different initial conditions. As in paper 1, it is found
that the Batchelor-Kraichnan constant varies slightly. It is ~1.4 in two of the
simulations and ~1.1 in the other. It is hypothesized that a higher degree
of intermittency of dissipation causes the constant to be lower in one of the
simulations.

Paper 3

Infrared Reynold’s number dependency of the two-dimensional inverse energy
cascade. In this paper, the inverse energy cascade is subject to high resolution
numerical experiments. A surprising result is obtained, namely that the k—5/3-
scaling in the inertial energy range is likely to be a low frictional Reynolds
number effect. When the inertial energy range is wide enough, the linear friction
is too weak to prevent the formation of coherent vortices. These act to steepen
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the energy spectrum from k~°/3 to k=2 or steeper. The result is strengthened
by the somewhat surprising finding that the inverse energy cascade range is
maintained by nonlocal triad interactions.

Paper 4

Charney isotropy and equipartition in quasi-geostrophic turbulence. This paper
is devoted to studies of quasi-geostrophic turbulence, as theoretized by Char-
ney (1971). We verify Charney’s predictions of isotropy and equipartition by
performing high resolution three-dimensional simulations. It is demonstrated
that Charney’s predictions also holds in the presence of a g-effect and in freely
decaying quasi-geostrophic turbulence. The analogy with two-dimensional tur-
bulence is investigated and confirmed.

Paper 5

Stmulations of two-dimensional and quasi-geostrophic turbulence: Internal Re-
port. This paper is an internal report that describes the two codes in greater
detail. The code structures are explored and underlying assumptions, statisti-
cal measures and code performance are presented for each code, respectively.
The codes are found to scale well in massively parallel systems and they allow
for cutting edge numerical experiments.



CHAPTER 6

Outlook

It has become clear that Kraichnan’s and Batchelor’s predictions on the form
of the energy spectrum in the enstrophy inertial range are robust at high Rey-
nolds number. Earlier investigations found a steeper energy spectrum and it
was believed to be an effect of intermittency. Our results suggest that inter-
mittency corrections only apply to the Batchelor-Kraichnan constant and not
to the k~3-scaling. We now believe we are in a position to interpret this fact as
a consequence of the spatial variance of the enstrophy dissipation, as originally
addressed by Landau (Landau & Lifshitz 1987). Perhaps of more profound im-
portance is the new evidence of the nonlocality of the inverse energy cascade,
which violates the basic assumption of spectral locality of the energy inertial
range. It is intriguing to speculate about the consequences of this. Given the
two-dimensional nature of quasi-geostrophic turbulence, and the nonlocality of
the two-dimensional inverse energy cascade, we may have some disturbing news
for the predictability of quasi-geostrophic flows. If the small scales are able to
directly communicate with the large scales, by whatever mechanism, we can
conjecture that a dynamical analogue to Lorenz butterfly effect is at work in
the atmosphere. However, we need to confirm such a conjecture by a careful
analysis of the triad interactions in QG flows, which is somewhat more intricate
as we also have an interplay between kinetic and potential energy. In addition,
the ageostrophic contribution to the potential and kinetic energy spectra along
with fluxes of energy and potential enstrophy will be further investigated.

Of physical interest, is also to extend the quasi-geostrophic framework to the
primitive equations, which are a set of nonlinear equations used in atmospheric
and oceanic modeling (Vallis 2006). The set of equations contains the momen-
tum equations in the horizontal, the hydrostatic approximation in the vertical
and is completed by the thermodynamic and continuity equations. The use of
the primitive equations allows for variations of the Rossby number and defor-
mation radius by varying the stratification, which is fixed in the framework of
Charney quasigeostropy. By performing simulations of the primitive equations,
we aim to explore the dynamic origins of the atmospheric energy spectrum and,
perhaps most importantly, determine the origin of the high wave number k—5/3-
range in the atmospheric energy spectrum.
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APPENDIX A
Derivation of the QG potential vorticity equation

A.1. Introduction

This appendix gives an introduction to the dynamics of the midlatitude tropo-
sphere and more specifically to the quasi-geostrophic potential vorticity equa-
tion. This is an equation that describes the synoptic scale motions in a bounded
domain on a rotating sphere such as the Earth. The aim is to derive a relevant
formulation of this equation. The starting point will be the 3D Navier-Stokes
equation on a rotating sphere, from which we will systematically exploit the
involved terms on our way to quasigeostrophy following Pedlosky (1987).

A.2. Scaling the 3D Navier-Stokes equation

We consider motions on a rotating sphere of radius 7y, ignoring the slight
departure from sphericity of the Earth. We assume that the vertical scale of
motion is small enough so that the gravitational acceleration can be considered
constant through the depth of the fluid. In addition, we assume that the scales
are large enough so that kinematic viscosity can be ignored. Since we can
anticipate that the geostrophic approximation must fail near the equator, the
theory must apply to a spatial extent that is less than global. Hence, the

restriction is that O % < 1. The spherical coordinate system is defined in

such a way that the radius r defines the surface-normal direction, whereas 6
is the latitude and ¢ is the longitude. Neglecting viscous effects, friction and
forcing, the momentum and mass continuity equations are given by

Du 1
— +2Q =—= Al
Ty T2 xu pr +g, (A1)
Dp
=-r u=0 A2
oy TPV u=0, (A.2)
D 0
— = — -V. A.
DL o +u-V (A.3)
In spherical coordinates, the mass continuity equation can be expressed as
Dp ) 1 o(r?w) 1 9O(vcosh) 1 Oul _ 0 (A)
Dt r2  or rcosf 00 rcosf O¢
D 0 v 0 v0 0
— == — + = —. A.
Dt 0Ot rcos@8¢+7‘89+w8r (A.5)
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Now let
u = ug + v + wi, (A.6)
D¢
= 30— A
u=rcosf Dt (A7)
Do
=r— A.
v=r2? (A8)
w= & (A.9)
t
Hence,

Du -Du .Dv _Dw D& DO D7
0 P U 0w, Al
F T T T R s s VAR 57 (4.10)

Similarity consideration shows that

) 69c—>0 |f5f| N 7”(:3)507 (A1)
% = r(:(l)sﬂ (ésin@ — Fcos@) , (A.12)
]}?)q; = rczsﬁ (ésin@ - fcos@) , (A.13)
and equivalently for the @ and 7 unit vectors it can be shown that
l;f utan@qﬁ ;A (A.14)
bi-tests =

Thus, the acceleration following the relative motion in spherical coordinates is
given by

Du ~(Du wuvtanf uw Dv  w?tanf ovw Dw u2+v2
— =¢| = — +— )+6 + " +T +7 .

Dt Dt r Dt Dt r
(A.16)
Expansion of the Coriolis term in spherical coordinates is given below;
6 6 7 X X
20xu =20Q| 0 cosf sinf | =20 [(wcos@fvsin9)¢+usin007ucos9f}.
u v w

(A.17)



A.2. SCALING THE 3D NAVIER-STOKES EQUATION 31

The pressure gradient and gravity are trivially expressed and can easily be
identified in the component form of (A.1), as shown below:

Du  uww uv ) 1 Op
ﬁ+7—7tan9+2§2wcos€—29vsm0——pTCOSG%, (A.18)
Dv vw u? i 1 op
D +7+7tan0+2§2usm9——5%, (A.19)
Dw  u? +0? 10p
DT 2Qu cos = o g.  (A.20)

The momentum and mass continuity equation need to be complemented by the
thermodynamic equation;

Do 0 [k
— = =V?T , A.21

Dt T (P ’ Q) ( )
where k is the thermal conductivity, T the temperature, Q the rate of heat ad-
dition per unit mass by internal heat sources and 6 is the potential temperature,

defined as N
0=T (“’) ” (A.22)
p
Note that p, p and T are related by the ideal gas law;

p = pRT. (A.23)

Now, we consider motions, whose horizontal spatial scale of variation is given
by the length scale L and velocity scale U. Furthermore, we restrict ourselves
to the mid-latitude region centred at around some latitude 6y. In addition,
we switch to Cartesian coordinates by replacing the spherical coordinates as

follows
T = ¢rgcosby
’ A.24
{yzmw—eo), (4.24)
and hence
) o)
== =10 cosbp5-,
{ Y _, e (A.25)
Bl 09y-

In addition, the following substitutions are introduced

z2=r—1r9g =D,

= La/,

y =Ly,

t==Lv, (A.26)
u=Uu,

v=Uv,

w = %Uw’

Note that the time scales advectively. We now turn to the hydrostatic approx-
imation;
Ips
0z

= _ps(z)ga (A27)
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where the subscript s denotes a standard basic state upon which perturbations
occur such that
{ p:ps(z)—ké(x,y,z,t), (A28)
p= pS(Z) + p(I,y, Zat)'
We need to scale the pressure and density pertubations in some sense. It
can be conjectured that for the motions of interest, the horizontal pressure
gradient will be of the same order of magnitude as the Coriolis acceleration,

i.e., O(ps2Qusinby) ~ O (%) — p~ O(psU foL), where
fo =2Qsin by, (A.29)
is the Coriolis parameter at 5. Hence,
P =ps(2) + ps(2)U foLp'". (A.30)

In a similar manner, we may anticipate that the buoyancy force due to p will
be of the same order of magnitude as the vertical pressure gradient by recalling

. . . . p _ P\ _ sUfoL
the hydrostatic approximation, upon which 22 = O (%) =0 (pT"> ~
O(pg) — O(p) =0 (psU%). Hence, we may write

p=ps(z) [1+ Ro Fp'], (A.31)
where
{ROZJLE, (A.32)
foL? :
F =1L

Here, Ro = € is the Rossby number. We are now at the point where the mo-
mentum equation components can be non-dimensionalized following the substi-
tutions addressed so far. Thus, applying (A.26), (A.27), (A.30) and (A.31) to
the component momentum equations and dividing through by U fy, we obtain

Du L sin 6 cos 6
- 5 / /_ / It 0 _ / 5 / —
6[Dt’—'_r*( e tan )] vsinﬁo wsinﬂo
70 cos O 1 op’
= %S © 9P (A33
ry cos® 1+ eFp Ox'’ ( )
Dv L sin 6 0 1 op’
2 (50w’ + 't 9) ’ S T
6{Dt’+r*<vw+u an JrusinHO re 1+ eFp Oy’ ( )

D Dw'  u?+0v"?

D(1 +€Fp) |U? (L?Dt’_ . )—29Uu’cos9 =

== gy [T UloLpap'] = D(L+ eFpl)g., (A35)

where the subscript * denotes dimensional quantities and
D

51.

(A.36)
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The vertical component (A.35) can be further simplified by expansion of the
right hand side, to yield, after division by U foL;

Duw' 65L(u,2+v,2) 5 ,cosﬁ} 1 0 ,

— PR / —
Dt Ty Y sin 0o (psp') = 1.

1+ eFp) |ed? -
(L+eFp') |e P

(A.37)
The nondimenzionalized total derivative takes the following form

D 0 ;rocosbp 0 rg O , 0

—_— = —_— —_ A.
Dt ot b r. cos@ Ox' Y 7. Oy v 0z (A.38)
Note that
T4 <L> " (A.39)
To To

Expanding the mass continuity equation (A.4) and applying the substitutions
result in the nondimensional version

Dy w' dps  Ow’ D ro OV
F 1+eFp) | — 2—w' + ——
¢ Dt +(L+eFp) ps 02’ + 0z * r*w +may’
‘90 ou
— S tang+ QLSBT (A40
r*v ant+ re cosf Ox' ( )

In the following, the superscripts’ denoting the nondimensional variables will be
dropped and the subscript * will denote dimensional remnants in the equations.
It is important to note that no restrictive approximations have been applied
so far. The equations have just been scaled so that their relative magnitude
can be estimated by the nondimensional parameters multiplying the individual
terms. Before investigating any specific parameter settings, we expand the
trigonometric terms around the fp-latitude in Taylor expansions, i.e.,

d(sin 0) d?(sin 9) (6 —00)?
do dgz =%
With the use of (A.24) and (A.26) we thus obtain

sinf = sin 6y + |9=90(9 — 90) + + ... (A.41)

2
sin @ = sin 6y + %ycos@o — % (%) y?sinfy + ... ,

T

2
cos 6 = cos by — %y sinfy — 1 (L) y?cosy + ... , (A.42)

5 T0

2
tanH:tanﬁoJr%y ! +(L> y2lanbe 4

cos? g 0 cos? Oy

Last, but not the least, we now define the S-parameter as

d . 1d . 2Q
Bo = dy (2Q2sin ) =g, = o df (2Q2sin ) |o=p, = T 8 %o (A.43)
It can be noted here that BJ‘}—OL =..= %CO’E 0o ~ O (%) and hence BJ?TL -

’8"—UL2 ~ O (L) so that the magnitude of the relative vorticity- to the planetary

€T
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vorticity gradient is measured by

1 - U To
Lo (L) , (A.44)

which is evidentally determined by the relative size of the Rossby number and
the inverse ratio between the horizontal length scale and approximately the
Earth’s radius for tropospheric considerations.

A.3. The geostrophic approximation

So far, no specific scale of motion has been chosen. By noting that in the
midlatitude atmosphere,

U~ O(10 ms™1),
L ~ O(1000 km),
D ~ O(10 km),
for~r 0107 571,

(A.45)

we first choose to study the case ¢ ~ O (% << 1), i.e., motions that are

less than global. Under these circumstances, ﬂo% ~ 0 (W) ~ O(1).
Thus, the planetary vorticity gradient is expected to play an active role in the
atmospheric dynamics at this horizontal length scale. Making use of (A.45),
we can summarize the key parameters as

e~ 01071,

F =55 0001071 ~0(e)
gD ’

§=2~0(107%) ~ 0(e?),

= o1~0(0k) ~ o),

The limit € — 0, 52 ~ O(1), is a special case that examines geostrophic dy-
namics when the planetary vorticity gradient contributes equally to the relative
vorticity gradient. We now express all the dynamic variables, i.e., u, v, w, p, p,
in series of the key parameter € such that

u(z,y, 2,t) = uo(x,y, 2, t) + eur (z,y, 2,t) + uz(2,y, 2,t) + ... ete.  (A.47)
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Applying (A.42), (A.46) and the first two terms of (A.47) for the dynamic
variables to (A.33), (A.34) and (A.37), we obtain

D L
€ [(utheul) + . (eQ(uo + euy)(wo + ewy)+

L
— (up + euy) (v + €vy) (tan 0o + Ty cos 2 9())) +
0

(sin Oy + % cos 00)
) sin Oy
cos B 1 O(po + €ep1)

To
=T , (A.48)
T (cos 0y — %’ sin 90> L+ €2(po + €p1) ox

(cos 0y — % sin 00)
)

+ e(wo + .
€(wo + ewn sin 0

— (vo + evq

D L
€ [(vol;evl) + . (62(U0 + evy)(wo + ewy )+

Ly (sin 0o + % cos 90)
+ (up + €uy)? (tan 0o + —= cos 2 90) + (up + €uq) =

o sin 6y

e 14 €2(po + ep1) Ay

D(U)() + Gwl) 3L

14 2 ) s P\Wo T €wy)
( +€*(po + €p1) lé D1 o

((uo +euy)? + (vo + ev1)2> +

) cos by — % sin 90)
— € (UO + Gul) " =
sin 6y

10
= T .02 (ps(po +ep1)) = (po + epr), (A.50)

The mass continuity equation (A.40) takes the form

62D(po +€ep1) wo + ew Ops n O(wo + ewl)Jr

+ (1 +€(po + epl)) {

Dt Ps 0z 0z
D 0 L L
+2—(wo + ewy) + ro 9vo +evy) — (vo + €vy) (tanHO + =Y cos2 9()) +
Ty Ty y Ty 0
o cos by A(uo + euy)

=0. (A5l
Tx cos y — f—;’ sin 6y Ox ( )
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If we note that O (TQ) < O(€?), and establish that terms of like order in e

must balance, we obtain, to first order,

<

10 (A.52)

Po ; _FS)E (Pops) ,
1 9(wops 9 9
S
The equation set (A.52) is the geostrophic approximation. The O(1) motion
is thus determined by the horizontal pressure gradient. Furthermore, it can be
established that the O(1) geostrophic velocities are horizontally nondivergent,
since
81}0 8u0
—+——=0 A.53
oy "o = (A.53)
which implies that
0
E(pswo) =0. (A.54)

Hence, pswq is independent of z and if wy = 0 for any z, it will be zero Vz, e.g.,
if the domain is bounded below or above. Thus, the vertical velocity is given
by

’LU(.T,‘, Y, z, t) = €W (.’13, Y,z t) + 621112(£C7 Y,z t) + .. (A55)

which is a direct consequence of the geostrophic approximation. Therefore,
we cannot determine py and hence ug and vy without considering higher order
dynamics. The O(e) terms with the use of (A.55) are given below, starting
with the zonal component

Dug Ly

—— — —wygcotby — vy = ——— — —tanbfy—, A.56

Dt €rg 0 0 ! or  erg 09 ( )
where the second term on the right hand side was obtained by a little manip-
ulation;

To COs 00 (9p0 -

T« cos By — %sin&o Oz

7o 9po

T (cos 0o — %’ sin 90> (cos 0o + %’ sin 00) O

cos by (COS 0y + j;“—é’ sin 00>

cos? 0y + L2 cos B sin O L
__To 0% 5y 05005 Opo L nae 2 QED. (A.57)

2
r . ox r ox
* cos? Oy — (TLO) y2 sin’ 0 *

The meridional O(e) component is given by

D L 0
~Y% +u0—ycot90 +up = —ﬂ.

Dt €ro dy (A.58)
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The total derivative is given by

D 0 70 cos by 0 rog O 1o}
— == — — —— —, (A.59
Dt 3t+(u0+6u1>7‘* cos B — L2 sin 6, a$+(vo+€vl)r* ay+6wl 0z’ ( )
0
so that (A.56) and (A.58) become
% + UQ% + ’Uo%% — V] — 1}0% cot By = —% — i—:ztanﬂo%,
% + Uo% + 1)0%71;? +up + U()eLTZ C0t90 = —%.
(A.60)
We complete with the mass continuity equation:
1 0 3u1 6’01 L Ly 8“0
—— — 4+ — —vo—tanfy + —tanfy—— = 0. A.61
ps 0z (pswn) + ox + Qy o €ro anfo + €ro anto ox ( )
Pedlosky (1987) discusses the presence of terms that are ~ -2 in the momen-

€T
tum equation (A.60), and notes that these terms on the left hand side are due

to the variation of the Coriolis parameter on a f-plane whereas on the right
hand side, these terms reflect the variation of the metric term cos@. If tan 6y
would be small, this term would be negligible. Then (A.60) would reduce to
the O(€e) momentum equation for a flat Earth with a linearly varying Coriolios
parameter in the meridional direction. However, this would push the domain
to latitudes near the equator, where the theory fails. Thus, a model of a flat
Earth with sphericity accounted for only by a varying f is not valid for the
O(e) momentum balance. Pedlosky (1987) states however, that the (-plane
approximation only requires that the vorticity equation satisfies the (-plane
approximation. By taking —6% (A.60 a) +a% (A.60 b), and noting that the
relative vorticity is given by

(9’00 8u0
=— - — A.62
CO O ay ’ ( )
we yield after some simplification that
6<O 8C0 8{0 8U1 81}1 L -
ot +u08x+v08y + ox + dy +err0COt90_
L dpo Ly 9po
= — — + —= A.
ero tan 00 Oz + ero tan 90 8w8y’ ( 63)

where use have been made of the nondivergence of the O(1)-momentum. We
can simplify this further by taking advantage of the fact that

Lwv v L] U (v _1_ .1
5750L277{f0[,200t907 0 ~ efoLcot@y | foL ~ cotby’
(A.64)

upon which we obtain

0Co 9o 9o L dpo 9%po Ouy  Ovy

— - - = — |[tanfy—— tanfp——— | — | — + — | .

ot to ox +o Ay +Bvo €ro anvo ox tytan O@x@y ox * Ay
(A.65)
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From the geostrophic approximation (A.52), the mass continuity equation
(A.61) can be rewritten as

1 0(psw1) Oup  Ouy L Opy Ly 9*po
ps 0z * ox * dy €ro tan o dr  erg tan o Ox0dy 0, (A.66)
from which we clearly can rewrite (A.65) as
Dy 1 d(psw1)
— = ———= A.
where D 5 5 5
70:7+U()7+’Uof (A68)

Dt — 0ot Ox oy’
It is now clear that (A.67) is the vorticity equation for a flat Earth model with
a linearly varying Coriolis parameter in the meridional direction. The O(1)
velocity field is determined in terms of py by the O(1) momentum equation so
that o2 o2
Po Po

(o = 92 R (A.69)
However, we still need to resolve wy, which requires the use of the thermody-
namic equation.

A.4. Using static stability to resolve the vertical motion

To complete the derivation of the quasi-geostrophic motions we need to to
represent ew; in terms of the O(1) geostrophic fields. This will be possible by
making use of the thermodynamic equation. By considering adiabatic motions,
the potential temperature 6 (see A.22), is conserved. By making use of the
ideal gas law (A.23), 6 can be rewritten as

R R 1
p [P0\ p (po\* p [P\
[ =P (P _ P (P A.
pR(p> =7 R9<p> RO (po> ’ (A.70)
where .
1= (A.71)

If we consider vertical displacement of an air parcel between a lower level z (A)
to an upper level z + dz (B), the density of parcel A will have changed by an

amount .
1pyo (p\" Opdz
App=——|— ] ——. A.72
PA= 5 R <p0> 0z p (A.72)
Hence, the new density at z + dz is thus
1p0
pat+Apa=palz)+ ~PIg,. (A.73)
v p Oz

However, the density of parcel B at z+ dz in terms of the undisturbed density
A had at z, is given by

_ Op
pp = pa(z) + %dz. (A.74)
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The excess density of A at z + dz is

Lpdp dp
A —pp=|(—-—"~7——=—1)d A.
(pa+Apa) = pB (Waz 5. ) 4% (A.75)
which causes a restoring force
g Lpdp Op
J Apa — =g 28 ) gy =
p(pA+ pA = PB) g(ypaz 82) z

1

_ 1519_1*?9(?)%3 po(ﬁ) o
g Y90z  po \Po 0z \ RO \ po
_, 1&919_1%(p>i () ()0
Yp 0z po \Po 020z \po) R  ~OpR \po) Oz

100

Thus, if % > 0, the buoyancy force is restoring and the static state is stable
with respect to small adiabatic displacements. The static stability is defined as

109

o=55. (A.77)
and the fluid parcel oscillation frequency is defined by
}
N= (ggi) , (A.78)

which is commonly referred to as the Brunt-Vaiséld frequency. From the defi-
nition of 6, it can be found that

100 1

oT g]

0z ¢

if the hydrostatic approximation (% = —pg) is used. Hence, if %—Z < 0, the

atmosphere will be statically stable as long as the lapse rate, —%—z < %. Finally

we note that for the atmosphere, N ~ O(1072s71).
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A.5. The quasi-geostrophic potential vorticity equation

Recalling (A.70), we note that (in dimensional form)

Inp=1In Po (D )
RO Po

Do 1 (P)
Inp=In{—=— ) +-In| — |
g (RG) Y Po

1 1
Inp=Inpg —InR—1Inf+ —lnp— —Inpy <
8 v

1 1
ln0—lnp—lnp+<1—>lnp0—lnR<:> {7_% i ep=cCy + R| =
v Y c

v

Ind = 1lnp—lnp—kC, (A.80)
Y

where

C= e Inpy — In R. (A.81)

Cp

Nondimensionalizing (A.80), by the use of (A.30) and (A.31), we obtain

1
ng, — > In (ps + psU foLp) —In [ps (1 + €Fp)] + C =

U foL
. (1+Pk fo p>

= -1
Y " ps/ThOS

—Inps —In(1+eFp)+C =

U foLp

1 1
zlnps—f—ln{l—l— }—lnps—ln(l—&—er)—i—C:
v Y

Ps/ps
1 1 2712
= —Inp, —Inp, +—In [1+e"2—p| —In(1+€Fp)+C ~
gl gl Ps/ps
. . 1 1 foL? 2
[Taylor series expansion] =~ —Inps —Inps +e— p—eFp+0(e)+C.
gl Y Ps/ps
(A.82)
By setting
Ind, =0, [1 +eFl(x,y, z,t)} , (A.83)
where
1
Inf, = ; Inps, —Inps + C, (A.84)

and expanding 6 in an e-series

0 = 90 + 691 + 6292 + ... (A85)
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(A.82) becomes

1 1 f212
In [05(1 4 €F (0 + €61))] = = Inps—In ps+e— Jo (po+ep1)—€eF (potepr) <
gt ¥ ps/ps
1 1 2712
Infs —eF(0p+€b1) = —Inps —Inps + e— 0~ (po + ep1) — €F(po + €p1) =
v Y ps/ps
1 f2L?
F90 = — fO Po — Fpo. (A86)
’Yps/Ps
Since
feL?
F= A7
i (A87)
we yield
1 gD
0o = — (pg) Po — po- (A.88)
Y Ps

From the hydrostatic and geostrophic approximation, we can rewrite 6y as

0z  ps Oz  ps 0z

Yps 0z ps Oz

as 13 a as 85
go — Do Op (pupo) = 200 4 PoOps _ po Op (A.89)

By noting that (A.84) is equivalent to

1 1

pd 90, 9 pd 190, 1 dps 1 0ps

65 = C == | — — = - — ,

Ps to= 0z 0z \ ps = = 0, 0z Yps 0z ps 0z
(A.90)

we can rewrite 0y as

- 8]?0 1 805

o= — —po— . A.91
0 2 Po 0. 0z ( 9 )
However, if we make use of the observation that
1 00,
— 278 A.92
I3~ 00 (4.92)
we obtain
6o = 20 (A.93)
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Now, let us invoke (A.83) into the thermodynamic equation (A.21), i.e.,

Do, 0 [k,
- - T* * —
Dt,  ¢,T. (p* ViIrQ )

D@S(l + GF(QO + 691)) _ 95(1 + 6F(90 + 691))
D (%t) T
U [D@S

L | Dt

(jVQT* + Q*> —

D
(14 €F (0 +€01)) + HSEFM} =

dt

_ 0s(1 + eF (6 + €61)) (kVQT* i Q*> —
CpT P

Db w(i+eFO)0, [ _ U . R :a*< b ) gD
Dt eFo, 0z foL '’ gD 0, \ Ty | U%fo’
(A.94)
where
Ky = pﬁvm + Q. (A.95)

Pedlosky (1987) notes that for the atmosphere, ¢, T ~ O(gD) = k. <
O(U? fy) and so we nondimensionalize k. as

gD
CpT* fo U2 '
Since the vertical velocity can be expressed as w = ew; + €2wy + ..., we rewrite
(A.94) as

3(00 + 691)
ot

(A.96)

R = Rx

8(90 + 601)

6(90 + 691) +
Ox

+ (ug + €uq) By

+ (vo + €vy)

00,
Lot ews) s g by ) = (14 eF(00 + 1)), (A97)
Fo, 0z
Thus, to lowest order we have
Doy 1 005
Dt T Fg ge (4.98)
We now define the stratification parameter, S(z), as

1 99, N2D?

— 557 L 0O(1 A.
()= %6 52 e o), (A.99)
and 56
2 g s
N = Do as (A.100)

The heating rate x can be considered small over the advective time scale, but
in general, the O(e) vertical motion is obtained from

wy = |:I€: - Dlgfo} S(lz). (A.101)
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Hence, the vertical velocity is now described by the O(1) dynamical 6y-field
and can be substituted into the right hand side of (A.67) to yield

19(psw1) 1 0 | ps . Do\ |
ps 0z  ps0z |S(2) Dt B

_ L0 k] 1D O ps g NI L (Ouod , 9oy
T 0.0z |S(2)|  ps Dt |92\ S(z) " S(z)y\ 0z oz "~ 0z dy )

(A.102)

From the geostrophic approximation (A.52) and the hydrostatic approximation
(A.93) the thermal wind relation can be established;

ove _ 900
8z, _ %9, (A.103)
0z oy °

upon which the last term in (A.102) identically vanish. Thus, the vorticity
equation (A.67) reduces to

o+ By + i% (g((;) (90)] = i% {p;((zz))“] . (A.104)

=0

Dt
In the absence of a heating source, we can neglect the right hand side and thus
obtain a conservation statement

Do L0 (ps2)y N 2
Dr Co + By + 0. 02 < (%) 0o )| =0, (A.105)
or, equivalently,

Do _ (A.106)

Dt ’
where

B 1 0 (ps(2)
qg==Co+ Py + .02 (S(z) 0o ) . (A.107)

The geostrophic and hydrostatic approximations allow us to express each de-
pendent variable as py = 1, whereupon

o oo awa”a?w 924 18(p(z)81/1 0

9 oyor " ozoy| a2 T a0z s<z>az>+ﬂy

(A.108)
This is the governing equation of motion for a stratified fluid at large (synoptic)
scales, the so-called quasi-geostrophic potential vorticity equation. It is com-
pletely written in terms of the O(1) pressure field or stream function. Once it
has been determined, ug, vo, po, 0o and wy follow directly.
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A.6. Connecting the QGPYV equation to Charney’s theory

Charney (1971) derived an original theory on geostrophic turbulence following
the conservation of the quantity he denoted pseudo-potential vorticity. The
aim is to link (A.108) to Charney’s theory. We start by noting that (A.108)
can be written as

Do | s 1 0 (ps(z) oy
— —— — || = Al
Dt VY 8y + ps Oz ( S(z) 0z 0 (4.109)
and that
1 80, NZ2D?
S(z) = 70, 9-  J2L%’ (A.110)
which hence leads to
Dy 5 10 [ feL*> o B
Dt Vi + By + ps 0z <N§D2pS 0z =0 (A-111)

Expansion of the third term in (A.111) yields

19 (f&L2 81/)) % <621/J+18p5(9¢ 2 N, 9

ps 0z NSQDQ'OSE TON2D2\ 922 " p, 0z 8z N, 9z 0z )
(A.112)
so that
Dy | s 2L? (0% 1 0ps O 2 ONg Oy oy
Dt Vv + NZD2 \ 922 + ps Oz 0z N, 0z 0z +6ax =0
(A.113)
Introducing the Charney substitution
b = (”) % (A114)
Ps

which is inserted into (A.113) to yield, after a little simplification,

Do | (p0\" —, CF2L% | 0ps [ . 2mON.  _. o o (0ps\’
Dt (ps) VX0 yaps [ X\ P N e T ) )T

Ips Ix | _,0°x

0z 0z Ps 0z2

po\" Ox _
+ﬂ(ps) 5 =0 (A115)

-1 (92[)5 ,ni aNSal —n—1

771[)3 822 X ps NS 82 az ps +

(1—2n)
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Choosing n = %, we yield a convenient cancellation of the second term involving

g—’;. Rescaling the vertical coordinate as

o, N.D o
0z foL 077

82 . NSZD2 82 N.?DQ 1 8Nsi (A].].G)
BES fgL? 022 feL?* N, 0Z 07>

we obtain, after multiplication by (Z—z) * and using n = %,

Dylgo 1 (0ps\" 1 &p. 10N, dp,
Dt | " HXT 2 oz 205 922X 25 07 9z
OlN, oy x| ox
o7 o7 oz +5%—0. (A.117)

Assuming that the atmospheric density profile can be approximated as (for
example, this choice is arbitrary and does not influence the validity of the

theory); .
oLz

ps = poe” DNs 7, (A.118)
we obtain
Dy 9 OnNg (Ox 1 foL 1 f2L? ox
— - = 4= - = —==0. (A1l
ot | VX~ "8, \az Tan.p AN2D2 o O (A119)
Introducing the internal Rossby deformation radius
NsD
A= , (A.120)
Jo
this can be simplified to
Dy | o OlmN; (Ox L L? ax
— — — + — - — — =0. A.121
Dt [V?’X 9= (az oY) T meX| Thg, (A4.121)

A comparison with Charney (1971) shows that the governing equations are
exactly the same except from the presence of the potential temperature 6 in-
stead of Ng. Tt is likely that this is just a typo in Charney (1971), which is
supported by the subsequent assumption that the scale of variation of Ny is
larger than the vertical scale of the turbulence, upon which terms involving the
vertical gradient of N, are neglected. Note however, that the assumption that
the vertical scale of variation of In/N, is smaller than the vertical scale of the
turbulence, is a weaker assumption. In addition, Charney neglected the S-term
by noting that advection of relative vorticity dominates over the advection of
the Earth’s vorticity. Charney also made the assumption that O(L) < O(2))
and hence neglected the potential term. However, for completeness, we will
keep both the potential and the S-term in the following. Thus,

+ B =0, (A.122)
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where the total derivative is given by

Dy aHﬂLAZ(aXa 8)(8)

Dt~ ot

Ox 0y 0Oy ox (A-123)

where use have been made of (A.114) and (A.118). Since Charney assumed
that O(L) < O(2)), the exponential term multiplying the advective operator
vanishes.

We now wish to examine the time evolution of energy and enstrophy. By
multiplying (A.122) by psx we obtain

9 (X9 _I0x9 2 L)
psX 8T+(8x8y 8y8x)] [VSX 4)2 =0 (A.124)

The first term can be rewritten as

0 9 L%y 50X L? oy
V2 — 22X = p V22X A12
psx&[ X~ e | = PsxXVags —Ps Xy, (A.125)

Omitting the subscript 3 for the three-dimensional Laplacian and noting that
V- VR] = x5 4+ Vx -V,
5 (Vx)? T 5 T T (A.126)
B vy v,

the first term (A.125) can be rewritten as
2 2 2
L
). (v. [Xvaﬂ _é’(Vx)_aX), (A127)

The second term in (A.124) can be rewritten as

O 0 Ox 0N\ ([ga, LX) _
PsX\ Bz dy Oy ox sX™ e | T

Ox 0 o Ox 0y
— v [ 222 _AZ . (A2
PsX (ax 8yV X~ 73, oY X (A.128)

This can be reformulated by the use of the following observation;

0 x a9 (0x
. 2 = — _— 2 _ o 2 = = . 2
Y (uxV x) 8x< 6yXV X) *+ 3 <axxv x> e =x(u-V) Vi,
(A.129)
upon which (A.124) can be written as

0

(VX)2 L’
Pa or

5 T aeX

—psV - [uxvzx + xvg)ﬂ =0. (A.130)
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Integration of (A.130) over a normalized cubic volume L? yields

S]] -

—psV [uxVQX + ngiﬂ Ldx Ldy

foL
dZ = 0.
ND 0. <=

S

9 Ps 2 L? 9
E///ﬁ (Vx)™ + eX dz dy dZ+
/// ps . l:uXVQX'FXVg):] dr dy dZ = 0. <
0 L Ps

i (A.131)

Making use of the divergence theorem and multiplying by A, this can be rewrit-
ten as

Ps o
at/// lVX + AQx]dxdde #pSJ ndA=0. (A.132)

The closed integral vanishes and we obtain

Ps -
/// [VX +4>\2xldxdde—const.<=>

///Ps ( X) +<8X>2 + (8X>2+§2 2 dx dy dZ = const
ay o0z X Y K
(A.133)
where
L
= o (A.134)

The first bracketed term in (A.133) corresponds to the kinetic energy whereas
the second bracketed term contains the available potential energy, APE. The
major point here is that energy is conserved.

Now, let us examine the temporal evolution of enstrophy. We begin by
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multiplying (A.122) by (VZy — £%x), thus obtaining

o [(ox 9 Ox 0 o L?x
( X~ £X> [8T+(&3y 8y8x)1 [VX 4N?

3o (=89 (-2 (G~ gy ) (T ) =0

=0<=

(A.135)
The second term can be rewritten as
Ox 0 Ox 0
2. ¢2 oX 9 99X 9 2., ¢2.) _
(VX fX) (83:83/ 8y6x> (VX 5)()
= (V3 - €) (u- V) (VA - %) = [0 = Vi — %] =
<I>2 1,
=P(u-V)d=(u- V) . =V.u §<I> (A.136)
Thus, (A.135) can be reformulated as
10 1
. % =0. Al
59, +V- u[Q } 0 (A.137)
Defining the potential enstrophy as
R N T
Q=502 =3 (Vix—¢) . (A.138)
we obtain
0
a—? + V- (uQ) =0. (A.139)

Normalized triple integration yields

///<+v Q)> deLdy§Z=0.<:>
E///Xdedde—&-#%Qu.ﬁdAzol:>
///QdfC dy dZ = const. (A.140)

Thus, both energy and enstrophy are conserved within the quasi-geostrophic
framework when Charney assumptions have been implemented.

A.7. The role of the g-term

Up to now, we have not considered the possible role of the -term in terms
of quasi-geostrophic dynamics. One way to gain further insight is to study
a simplified model such as the two-layer model. It is the most basic model
in which baroclinic effects are present. Following Holton (2004), we start by
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looking at the quasi-geostrophic potential vorticity equation, where we have
restored the z-coordinate from Charney scaling.

0
8—3 + (un - V)g=0, (A.141)
where
82
q=Viy+ )\;2@1/) + f, (A.142)
and
f=1Jfo+By (A.143)
is the Coriolis parameter on a (3-plane and
Ad = @ (A.144)
Jo

is the Rossby radius of deformation corresponding to a vertical scale D. We
now separate the equation into two vertically separated layers so that

@ = fo+ By + Vitr + A% (2 — ), (A.145)
and
G2 = fo+ By + Vi + A (Y1 — o), (A.146)

where 1 and 2 denotes the upper and lower layer, respectively. The barotropic
(denoted m) and baroclinic (denoted t) components can be defined as

— Yityo
m — 2 b
Wy = 1111511&7

and equivalently

— q1+qg2
dm = 2
— 9192
G = 5.

Thus, the potential vorticity equations in each layer can be rewritten as

@1 =By + V7 (2hm — th2) — 227y, (A.147)
and
g2 = By + V1o + 20, ¢y, (A.148)
and hence
Gm = By + V¢, (A.149)
G = V2 — 20 %y (A.150)

At this point we note that in the midlatitude atmosphere, there is climatolog-
ically a mean zonal flow. So it is convenient to linearise the equations about a
uniform mean zonal wind state so that

Ym = —UmY + ¢,/m,
Yy = —wy + 1y,

where u,, is the mean zonal wind and u; is the mean thermal wind;

— ui1tu
Um = 12 2a
— U1 —U2
Ut = T-
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Substitutions into the vorticity equations and linearisation (neglecting products
of perturbation quantities) for each layer yield

{;Jrul;i] (q1+q’1)+u’l% +v1%—q;=o, (A.151)
[gt + uggx] (a2 + o) + ug% + v;%—q; =0, (A.152)

where ¢; and ¢y are given by (A.147) and (A.148) and
UL = Uy + Uy, (A.153)
U = Uy, — Ug. (A.154)

Furthermore, it could be noted that

Gm = By, (A.155)
¢, = V3 (A.156)
@ = 227 Puy, (A.157)
g = V2 — 227 (A.158)

Summation, rearrangement and dropping the primes for the stream functions
give eventually the evolution of the barotropic perturbation vorticity;

0] 0 9 OV, 0 _,
il = Zrm —_ = Al
bt+%Wh}v¢W+ﬂih +urg Vi =0, (A.159)
whereas subtraction gives the baroclinic evolution
9 9 2 -2 Oy 9 2 —2 _
[at +um8x} (V20 = 207200 ) + B85+t (V246m + 207 %m ) = 0.
(A.160)
In the simplest case, we study wave-like solutions of the form
Y = Aetk@=ct) (A.161)
Yy = Betklz=et) (A.162)

which we substitute into (A.159) and (A.160) upon which we obtain (after
dividing through by the exponential factors) a set of linear equations for the
coefficients:

ik [(c — up)K? + 5} A~ ik3u,B = 0, (A.163)
w[@—wﬂu?+zg%+5]B—wma¥—zg%A:o, (A.164)

which gives us nontrivial solutions only if the determinant is zero and hence we
obtain a dispersion relation for c:

(¢ = um )2 K2 (k2 4+ 20%) 4 2(c — um) B(k? + 2, 2) + B2 + ulk? (202 — k%) = 0,

(A.165)
from which the phase speed can be obtained as (see Holton, 2004):
K2+ 2.0
¢z — PEFAT) sy (A.166)

k2(k2 +2X;?)
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where 2y 2002 12

s=_ P — ALY 72). (A.167)

EA(k2 +2)0,7)? k2 42X,

It is immediately apparent that if 6 < 0, we will obtain solutions that grow in
time. If we consider the case when 8 = 0, we find that § < 0 if k? < 2)\;2.
Thus, we can conclude that long waves are sensitive to perturbations and will
tend to grow with time. Furthermore, a greater Rossby radius decreases the
critical wave number at which perturbations start to grow according to this
simple model. The main question of this chapter is the role of the (-effect.
Already in (A.167) it is clear that for 8 > 0 and everything but the thermal
wind kept constant, the role of the f-effect is to stabilize the flow. Thus, for
perturbations to grow, the vertical wind shear (reflected in w;) must increase
for instabilities to develop. It can also be noted that in the absence of a vertical
wind shear we only obtain free oscillations upon a barotropic flow with a phase
speed for the barotropic perturbation that corresponds to that for a barotropic
Rossby wave, i.e., 5

k2’
How is the (-effect expected to manifest itself in our simulations? Ac-
cording to Vallis (2006), we could expect an inverse energy transfer that is
deflected into the k, = 0-mode so that the flow becomes more zonal. We could
also, depending on the strength of the (-effect and hence at which length-
scales its presence is felt, expect Rossby waves to develop. Thus, if there is a
wide enough region in k-space between the so-called Rhines scale and the scale
at which the friction dominates, waves would dominate the flow rather than
geostrophic turbulence itself, in this particular range.

C = U,

(A.168)
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