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Abstract

Direct numerical simulations of the receptivity and instability of boundary lay-
ers on flat and curved surfaces are herein reported. Various flow models are
considered with the aim to capture aspects of flows over straight and swept
wings such as wall curvature, pressure variations, leading-edge effects, stream-
line curvature and crossflow. The first model problem presented, the flow over
a swept flat plate, features a crossflow inside the boundary layer. The layer
is unstable to steady and traveling crossflow vortices which are nearly aligned
with the free stream. Wall roughness and free-stream vortical modes efficiently
excite these crossflow modes, and the associated receptivity mechanisms are
linear in an environment of low-amplitude perturbations. Receptivity coeffi-
cients for roughness elements with various length scales and for free-stream
vortical modes with different wavenumbers and frequencies are reported. Key
to the receptivity to free-stream vorticity is the upstream excitation of stream-
wise streaks evolving into crossflow modes. This mechanism is also active in
the presence of free-stream turbulence.

The second flow model is that of a Gortler boundary layer. This flow
type forms on surfaces with concave curvature, e.g. the lower side of a tur-
bine blade. The dominant instability, driven by a vertically varying centrifugal
force, appears as pairs of steady, streamwise counter-rotating vortical rolls and
streamwise streaks. The Gortler boundary layer is in particular receptive to
free-stream vortical modes with zero and low frequencies. The associated mech-
anism builds on the excitation of upstream disturbance streaks from which the
Gortler modes emerge, similar to the mechanism in swept-plate flows. The
receptivity to free-stream vorticity can both be linear and nonlinear. In the
presence of free-stream turbulence, nonlinear receptivity is more likely to trig-
ger steady Gortler vortices than linear receptivity unless the frequencies of the
free-stream fluctuations are very low.

The third set of simulations considers the boundary layer on a flat plate
with an elliptic leading edge. This study aims to identify the effect of the lead-
ing edge on the boundary-layer receptivity to impinging free-stream vortical
modes. Three types of modes with streamwise, vertical and spanwise vorticity
are considered. The two former types trigger streamwise disturbance streaks
while the latter type excites Tollmien-Schlichting wave packets in the shear
layer. Simulations with two leading edges of different bluntness demonstrate
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that the leading-edge shape hardly influences the receptivity to streamwise vor-
tices, whereas it significantly enhances the receptivity to vertical and spanwise
vortices. It is shown that the receptivity mechanism to vertical free-stream
vorticity involves vortex stretching and tilting — physical processes which are
clearly enhanced by blunt leading edges.

The last flow configuration studied models an infinite wing at 45 degrees
sweep. This model is the least idealized with respect to applications in aerospace
engineering. The set-up mimics the wind-tunnel experiments carried out by
Saric and coworkers at the Arizona State University in the 1990s. The numer-
ical method is verified by simulating the excitation of steady crossflow vortices
through micron-sized roughness as realized in the experiments. Moreover, the
receptivity to free-stream vortical disturbances is investigated and it is shown
that the boundary layer is most receptive if the free-stream modes are closely
aligned with the most unstable crossflow mode.

Descriptors

Boundary-layer receptivity, laminar-turbulent transition, swept-plate boundary
layer, Gortler flow, leading-edge effects, swept-wing flow, crossflow vortices,
Gortler rolls, disturbance streaks, wall roughness, free-stream turbulence
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Part 1

Introduction



CHAPTER 1

Introduction

The present thesis reports numerical studies of the receptivity, instability and
breakdown to turbulence of boundary-layer flows over flat and curved surfaces.
Obviously, the notions ‘boundary layer’, ‘receptivity’, ‘instability’ and ‘break-
down’ play a central role for the current work. These are briefly introduced
here and explained in more detail in §§2, 4, 3 and 5, respectively.

1.1. Boundary layer

The boundary-layer concept is closely related with the internal friction in a flow
field due to the viscosity of the fluid. Already Newton described in his Principia
Mathematica (1687) that the friction force per unit area (the shear stress 7)
behaves as 7 = —p(du/dy) for one-dimensional flows, where p stands for the
viscosity and du/dy is the gradient of the flow velocity. Before the 20th century
it was believed that 7 is negligible in Newtonian fluids because of the very low
viscosity of these fluids (air: p ~ 1075). This assumption led to the result that
a solid body moving relative to a fluid does not experience a drag force. This
is clearly against intuition, experience and experimental evidence, as already
noticed by d’Alembert in the mid of the 18th century. About 150 years later
the German physicist Ludwig Prandtl was able to resolve d’Alembert’s paradox
by introducing the concept of boundary layer (Prandtl 1905). This is a very
thin fluid layer on the surface of a body in a flow, for instance a wing in an
airstream (see figure 1.1a). Prandtl assumed that the fluid sticks to the wall
of the body (no slip) where the flow velocity — for a fixed body — hence is
zero, and that the velocity increases from zero to the value of the free stream
across a very thin layer. Thus, the wall-normal component of Vu becomes
large inside the boundary layer and the shear stress is relevant even in fluids
with low viscosity. In particular, the shear stress at the wall exerts a drag force
on the body, the skin-friction drag. The boundary-layer theory thus offered an
explanation for the conventional wisdom that a body moving through a fluid
experiences a force. Outside the boundary layer, where both x4 and Vu are
small, the flow behaves essentially as an inviscid flow.

The flow in the boundary layer may be smooth and ordered (laminar) or
swirling and chaotic (turbulent). On an airplane wing, for instance, the flow
starts out as laminar at the leading edge. At some location downstream of the
leading edge, the laminar flow becomes unstable and turns into a turbulent
motion. The boundary layer is said to undergo a laminar-turbulent transition.

2
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(a) (b)

Uso 7

free
stream

FIGURE 1.1. (a) The boundary layer on a fixed airfoil in a moving
fluid (e.g. in a wind tunnel). The fluid sticks to the surface of the
airfoil, and the flow velocity increases from zero to the free-stream
velocity across the thin boundary layer. (b) The receptivity of the
boundary layer to external perturbations, e.g. free-stream eddies or
sound waves, may induce instabilities inside the boundary layer.

Being a complex process, transition does not happen suddenly but in three
steps — the receptivity, the instability and the breakdown.

1.2. Receptivity

No flow in nature and engineering applications is disturbance-free. The dist-
urbances present in the flow field may enter the boundary layer via its bound-
aries, which are the wing surface and the edge separating the layer from the
free stream (figure 1.1a). Examples are roughness or vibrations of a wing sur-
face and sound waves or eddies in the free stream, as sketched in figure 1.1(b).
These disturbances may transfer energy to the boundary layer and establish
boundary-layer instabilities which may amplify and attain amplitudes far above
those of the external disturbances. The coupling between the ambient distur-
bances and the boundary-layer instabilities is denoted receptivity. It is obvious
that the receptivity strongly depends on the perturbation environment around
the boundary layer. Thus, receptivity is not a characteristic of the bound-
ary layer alone, but of the entire flow field including the free stream and the
boundaries, e.g. the surface of a wing.

1.3. Instability

Laminar boundary layers cannot be sustained under all flow conditions. Con-
sider the flow over a wing model in a wind tunnel. The wing surface is usually
imperfect and exhibits tiny irregularities. These perturb the laminar bound-
ary layer given that the layer is receptive to the surface irregularities. The
strength of these perturbations depends, among other aspects, on the speed of
the airstream in the wind-tunnel test section. For low speeds the kinetic en-
ergy of the perturbations is small and fully converted into heat by the frictional
forces in the boundary layer. At higher flow rates, the perturbations due to
the surface imperfections become more energetic such that the energy drain by
the frictional shear stresses may become insufficient. The perturbation energy
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is no longer fully removed from the boundary layer. Thus, the energy balance
of the original laminar flow is disrupted and the perturbations grow in ampli-
tude. The instabilities produced can be of modal or nonmodal type. Modal
instabilities (modes) take the form of disturbance waves. The amplitudes of
these modes grow or decay exponentially depending on the flow conditions. In
many boundary-layer types, nonmodal instabilities may emerge in the presence
of several interacting modes. The amplitude of these nonmodal disturbances
does not grow exponentially, which allows for a clear distinction between modal
and nonmodal instabilities. Even in the presence of boundary-layer disturban-
ces, the fluid motion near the wing surface is still called laminar; however, the
boundary-layer state is different from the original undisturbed laminar flow.

1.4. Breakdown to turbulence

The boundary-layer instabilities cannot amplify beyond all bounds, as nature
does not allow for infinities. Instead, the disturbance amplitude levels out at
a certain value. At this stage, the disturbance energy inside the boundary
layer is tremendous and the instabilities themselves become unstable. Any
additional supply of perturbation energy from the free stream over the wing may
feed a new type of disturbance called secondary instability. These secondary
disturbances amplify rapidly and force the boundary layer towards a new state
which is more dissipative. The primary instabilities fall apart into smaller flow
structures — they break down to turbulence. In the turbulent boundary layer
the balance between the kinetic energy of the turbulent flow structures and the
energy drain in the form of heat is reestablished.



CHAPTER 2
Boundary-layer flows

2.1. Characteristic scales

It is convenient to describe fluid flows in terms of non-dimensional variables. For
this purpose, a reference length L,.f and a reference speed UL are introduced,
chosen such that they reflect the characteristics of the flow. The scales Lyof
and User also define a reference time tref = Lyer/Urer. The pressure of the flow
field is normalized by pyefUZ;/2, where pyef is the reference density of the fluid?.
Finally, the fluid viscosity v is made non-dimensional by the convective scale
UsefLrof, which is a measure for the inertia of the flow?.

Boundary-layer flows develop owing to a competition between inertial and
frictional forces acting on the fluid (cf. §1.1). It is therefore customary to
introduce the parameter

re Lre
Re — &7 (2.1)
v

the Reynolds number, called after the experimenter Osborne Reynolds (Rey-
nolds 1883). Small values of Re indicate flows dominated by viscous forces,
whereas large Reynolds numbers characterize convection-dominated flows with
thin boundary layers. Common choices of L,ef and Uses are the boundary-layer
thickness § and the free-stream speed U, respectively. These two scales reflect
in a proper manner the fastest variations of boundary-layer flows (those across
the layer), which are of the order Uy /0. There exist different ways of defining
the boundary-layer thickness; § may, for instance, be taken as the distance
from the wall, at which the streamwise velocity has reached 99 % of the outer
flow velocity Us,. This measure is called the 99 % thickness and labeled by the
symbol dgg. The boundary-layer thickness can also be described in terms of
integral quantities. These are obtained after an integration of the streamwise
velocity profile U(y) along the vertical coordinate y, starting at the wall (‘0’)

IThis thesis deals exclusively with incompressible flows, for which the fluid density p is a
constant and pref is needed for dimensional reasons only.
2The symbol v stands for the kinematic viscosity, related to the dynamic viscosity u used in

§1.1 via v = pu/p.
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The thicknesses §* and 6 are the displacement thickness and the momentum-
loss thickness of the boundary layer, respectively. These are illustrated in
figure 2.1 for the example of a Blasius profile. Blasius flow is the boundary-
layer flow over an infinitely thin flat plate downstream of the plate leading
edge (zero pressure gradient). The displacement thickness is the distance, by
which a hypothetical inviscid-flow profile must be shifted away from the wall in
order to obtain the same volume flux as for the boundary-layer profile (figure
2.1a). Analogously, the momentum-loss thickness corresponds to the distance,
by which an inviscid-flow profile must be shifted away from the wall in order to
obtain the same transport of streamwise momentum as for the boundary-layer
profile (figure 2.1b). The displacement thickness is often used to define the
Reynolds number, i.e. Re = Uyd0*/v. In §2.3, we will also consider alternative
definitions of Re.

(a) (b)

8 8
6 6
>4 >4
h
1 :
2 ! 2 1
! 1
_________________ | |
16* Lo e o o,
0 0
0 0.4 0.8 12 0 0.4 0s * 12
U(y) Uly)

FIGURE 2.1. (a) The displacement thickness and (b) the
momentum-loss thickness of a Blasius profile.

2.2. Flow over wings

Figure 2.2 sketches the flow over a straight and a swept wing. Straight wings
are preferable for low-speed flight due to the beneficial lift performance at
low velocities. An example of a modern aircraft with straight wings is the
Bombardier Dash 8 Q400 (cruise speed 650 km/h). In contrast, high-speed
airliners usually have swept wings. The sweep of the wing shifts the formation
of shock waves at the wing leading edge towards speeds above those typical for
cruising flight, thus avoiding an increase of resistance due to wave drag. The
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Boeing 777 (cruise speed 900 km/h), with a wing sweepback of about 32°, shall
serve as an example here.

(a) (b)

X

FIGURE 2.2. The features of flow over wings. (a) z-y plane of
the pressure p and the streamlines around a straight wing (blue,
P < Poo; Ted, p > Poo, With pso being the free-stream pressure).
The flow is from left to right. (b) Schematic of the flow around a
swept wing.

Figure 2.2(a) highlights the features of the flow field around a straight
wing. The flow ahead of the leading edge separates into two streams passing
the upper and the lower side of the wing. A stagnation region forms where the
fluid impinges on the leading edge. In this region the pressure is significantly
higher than that of the free stream. Downstream of the stagnation line, the
shape of the wing redirects and accelerates the flow, causing a pressure drop in
the streamwise direction. After passing its minimum value on the upper wing
side, the pressure rises again towards the wing trailing edge, accompanied by
a flow deceleration. The streamwise pressure and velocity gradients depend
on the wing curvature and in particular on the shape of the leading edge. In
figure 2.2(b) the characteristics of flow over a swept wing are depicted. Swept
wings also impose chordwise pressure variations on the flow, but the pressure
gradient is no longer aligned with the free stream. This leads to a deflection of
the streamlines from their original orientation upstream of the wing, producing
the S-shape shown in the figure. The streamline curvature is associated with a
centrifugal force driving a secondary flow inside the boundary layer (see §2.3.1).
This crossflow is of great importance for the instability of swept-wing flows.

Even with today’s computer power, it is not possible to perform accurate,
well-resolved simulations of flows around entire wings. Instead, researchers
resort to simplified model flows, retaining certain aspects of wing flows while
discarding others. The flows discussed herein are assumed to be incompressible.
All flow models incorporate the assumption of a spanwise invariant mean flow,
i.e. they reflect the flow over a wing with infinite span. Obviously, airplane
wings have finite spans. However, in the mid-span region — far enough away
from the wing tip and the fuselage — flows over infinite- and finite-span wings
are essentially the same. On the other hand, flow phenomena related to the
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FIGURE 2.3. Schematic of the flow over a swept flat plate down-
stream of the leading edge.

finite wing length, e.g. the drag induced by the wing tip vortices, fall outside
the assumption of spanwise invariant mean flows. In the following, the flow
models considered in this thesis are presented.

2.3. Model problems
2.3.1. Swept-plate flow

The first model problem considered is the flow over a swept flat plate (figure
2.3). The inflow boundary of the physical domain is located downstream of
the leading edge, i.e. the incoming flow features a developed boundary layer
with a displacement thickness 65. The incident free stream (o, is at an angle
¢o with respect to the chord of the plate. Here, Q, is decomposed into the
chordwise and spanwise velocities Uy, and W, respectively. The quantities
05 and Uy, are used here to define the inflow Reynolds number

0090
R650 = U Z/O 0 . (2.3)

The characteristic feature of swept-plate flow is the chordwise velocity variation
and the presence of a spanwise velocity. Here, we impose a free stream obeying

2 m

Woo (J?) - Woooa (24)

where x denotes the chordwise coordinate (z = 0 at the inflow plane) and
xo is the chordwise distance between the virtual origin of the boundary layer
(‘leading edge’) and the inflow plane. The exponent m determines the degree of
acceleration (m > 0) or deceleration (m < 0) of the free stream. The relations
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FIGURE 2.4. (a) Chordwise velocity (Us) according to (2.4) and
streamline angle (¢oo) in the free stream (y = 25) versus the chord-
wise coordinate for m = 0.2. (b) Streamwise velocity profiles (thin
lines) and crossflow profiles (multiplied by 5; thick lines) at various
chordwise locations.

in (2.4) are those of Falkner-Skan-Cooke flow, allowing for a self-similar solution
of the mean-flow profiles (Falkner & Skan 1931; Cooke 1950). Note that the
swept-plate flow is fully characterized by the values of Res,, ¢o and m, which
are given in figure 2.3. The distance z( follows from

m+1 Res,

xro= —

0 2 c2

where ¢ is a constant for self-similar boundary layers, which must be calculated

numerically. The value of the present swept-plate flow is ¢ = 0.893

: (2.5)

Figure 2.4 shows some important characteristics of swept-plate flows. The
chordwise acceleration of the free stream (m = 0.2) causes curved external
streamlines with downstream decreasing streamline angles (figure 2.4a). The
streamline curvature is associated with a centrifugal force on the fluid elements.
If the flow field is decomposed into components parallel and normal to the ex-
ternal streamlines, the profiles Q(y) and C(y) in figure 2.4(b) are obtained.
These are the streamwise and crossflow velocities, respectively. The physical
explanation of the crossflow is as follows. In the free stream, the centrifu-
gal force is counterbalanced by the pressure force. Towards the wall, the flow
is retarded and the centrifugal force decreases, whereas the pressure is essen-
tially unaffected. The resulting force imbalance induces a secondary flow in
the cross-stream direction — the crossflow — which is maximum in the bulk
of the boundary layer and vanishes at the layer edge. The crossflow profiles
are crucial for the instability characteristics of swept-plate flows (see §3.3.1)
and also play an important role in flows over swept wings. Therefore — and
because of the availability of analytical baseflow profiles — swept-plate flows

3The constant c is the ratio between the displacement thickness and the Falkner-Skan length
scale, ¢ = §*(x)/0rs(z). The Falkner-Skan length drg(z) = 1/2/(m + 1)y/vz/Us is used
to form the similarity variable n(z,y) = y/drs(z). See paper 1 for details.
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Gy, = 1.54
Res, = 198.36

FIGURE 2.5. Schematic of the flow over a concave plate down-
stream of the leading edge.

of Falkner-Skan-Cooke type were extensively studied (Crouch 1993; Choudhari
1994; Hogberg & Henningson 1998, for instance). On the other hand, the in-
fluences of the leading edge and of the surface curvature of swept wings are not
captured within this approximation.

2.3.2. Flow over concave plates

Figure 2.5 depicts the flow over a concave plate downstream of the leading edge.
The boundary layer forming on the plate is known as the Gortler boundary layer
(Gortler 1941). The prominent characteristic of Gortler flows is the presence
of a centrifugal force acting on the fluid in the wall-normal direction. The
speed of the incoming free stream is U.,, and the boundary layer features a
displacement thickness of 5 at the inflow plane of the physical domain. The
quantities Uy, and J3, chosen to be the reference length and speed, are used to
formulate the inflow Reynolds number

50000
Res, = U VO U (2.6)

The flow is fully determined by Res, and by the radius of curvature R of the
plate, which are given in figure 2.5. Gortler (1941) introduced an alternative
control parameter, the Gortler number

Usof [0 [0
G0 = T E = R€0 E (27)

Traditionally, the momentum-loss thickness 6 rather than the displacement
thickness §* of the Gortler boundary layer is used in the definition of the
Gortler number. Gy combines the Reynolds number (based on #) with a non-
dimensional curvature parameter. The flow over the concave plate is hence
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FIGURE 2.6. (a) Wall-normal pressure distribution of Gortler flow.
(b) Displacement and momentum-loss thicknesses of the Gortler
boundary layer as compared with the Blasius boundary layer.

fully described by one single parameter (Gyp,) instead of two (Res, and R),
where Gy, is the inflow Gortler number

UsoBo |6
G90 - VO < an (2.8)

with 0y being the inflow momentum-loss thickness. The value of Gy, considered
here is given in figure 2.5.

Figure 2.6(a) shows that the vertical pressure decreases away from the con-
cave wall. This pressure distribution is a result of the increase of the balancing
centrifugal force in the wall-normal direction owing to a decrease of the radius
of the streamlines. The inset of figure 2.6(a) shows that the wall-normal pres-
sure gradient relaxes towards zero inside the boundary layer, in agreement with
the vertical boundary-layer momentum equation dp/dn = 0. The streamwise
development of the boundary layer (e.g. its thicknesses) is hardly affected by
the presence of the wall-normal centrifugal force and essentially corresponds
to that in Blasius flow (figure 2.6b). The Gortler boundary layer is a model
for the flow past the concave regions of wings and blades. These regions are
usually found on the lower side of the aerodynamic shape. Gortler flow is in
particular relevant on turbine blades. The present model incorporates the most
important aspects of these flows — the wall curvature and the resulting wall-
normal centrifugal forces. Leading-edge effects are, however, excluded from our
analysis.

2.3.3. Flow past elliptic leading edges

Figure 2.7 shows the third flow model considered. A flat plate with an elliptic
leading edge serves as a model of a straight wing. The shape of the leading
edge is that of a modified super-ellipse (MSE, Lin et al. 1992). In contrast to
a regular ellipse, the exponent p of the MSE (see inset of figure 2.7b) is not a
constant of two, but changes monotonically from two to three between the nose
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(a)

9510/) X

FIGURE 2.7. Schematic of the flow over a flat plate with an elliptic
leading edge.

of the leading edge and the joint to the flat plate. This guarantees that not
only the contour but also the slope and the curvature of the plate are smooth
at the juncture. The shape of the leading edge can be altered by changing
the semi-major and semi-minor ellipse axes a and b, which are related with
each other via the leading-edge aspect ratio AR = a/b. A small value of AR
indicates a blunt leading edge, whereas slender leading edges have a large AR.
Here, the semi-minor axis b, which is also the half-thickness of the plate, shall
serve as the reference length and the free stream velocity U, as the reference
speed of the flow. The Reynolds number is based on these two quantities,

b
Rey, = U% (2.9)

It is also common to express the Reynolds number in terms of the streamwise
location x,: of the outflow boundary of the physical domain, i.e. Re, , =
Uso®out/v. The flow field around the plate is fully characterized by the values
of Rey (or Rey,,,) and AR, which are given in figure 2.7.

Figure 2.8(a) shows the streamwise pressure variations for two different
plates with blunt (AR = 6) and slender leading edges (AR = 20). Downstream
of the stagnation line (¢, = 1), the pressure drops rapidly, accompanied by a
strong flow acceleration, and attains its minimum value (‘suction peak’) be-
tween the nose and the junction of the leading edge. Subsequently, the fluid
passes a region of adverse pressure gradient where the flow decelerates. Far-
ther downstream, on the flat part of the plate, the pressure relaxes towards a
constant value. Figure 2.8(b) shows that downstream of the leading-edge junc-
ture, the wall vorticity of the flows over the plates with elliptic leading edges
converges with that of the Blasius boundary layer. Many relevant aspects of
flows around straight wings are included in the model flow over a flat plate with
an elliptic leading edge, for instance the stagnation region, the attachment line
and the streamwise flow variations in the leading-edge vicinity. On the other
hand, the downstream pressure distribution is different from that on a wing,
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2.3. MODEL PROBLEMS
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FIGURE 2.9. Schematic of the flow over a swept wing. (a) Spatial
dimensions and flow parameters considered. Lengths are normalized
by the nose radius (red circle). (b) The NLF(2)-0415 airfoil at an
angle-of-attack of —4°.

where regions of adverse pressure gradient are usually less pronounced than for
the plate model.

2.3.4. Swept-wing flow

The next configuration studied is the flow over a wing with a sweep angle ¢y,
as sketched in figure 2.9. The wing cross section is that of the NLF(2)-0415
airfoil (Somers & Horstmann 1985). The wing is turned at a negative angle-
of-attack «. This produces a long region of accelerated flow on the upper wing
side, which is desirable in order to study crossflow instability. The oncoming
free stream o, is decomposed into its chordwise and spanwise components Uy,
and W.,. We choose U, and the wing nose radius r, to be the reference speed
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FIGURE 2.10. (a) Pressure coefficient (black) and streamline an-
gle in the free stream for flow over a swept wing. (b) Streamwise
velocity profiles (thin lines) and crossflow profiles (multiplied by 5;
thick lines) at downstream locations on the wing surface.

and reference length, respectively. The Reynolds number hence is

Usorn
Re,,, = .

5 (2.10)

Flows over wings are also often characterized in terms of a chord-based Rey-
nolds number, Rec = QoC/v, where C is the length of the swept wing chord.
The quantities Re,, (or Rec), ¢o and « fully describe the flow conditions and
are given in figure 2.9.

Figure 2.10(a) depicts the pressure distribution on the upper wing side.
Downstream of the stagnation point, the pressure decreases monotonically,
which gives rise to a long region of flow acceleration. Figure 2.10(a) also shows
the angle of the external streamlines. The flow is incident at ¢g = 45°. The
chordwise velocity vanishes in the stagnation region such that the flow is purely
spanwise when attaching to the leading edge. The subsequent chordwise ac-
celeration becomes manifest in a monotonic decrease of the streamline angle.
Downstream of the leading edge the flow behaves similar to the accelerated
swept-plate flow discussed in §2.3.1. Indeed, a decomposition of the flow field
into a streamwise and a cross-stream component (figure 2.10b) yields similar
crossflow profiles as those shown in figure 2.4(b). The swept-wing model con-
sidered here incorporates most aspects of the flow in the mid-span region of
a simple aircraft swept wing. However, we truncate the physical domain and
only study the flow over the upper wing side up to a certain chordwise loca-
tion. Phenomena in the trailing-edge region (e.g. flow separation) and the wake
behind the wing are not considered.



CHAPTER 3

Instability

3.1. Linearized stability equations

The present study is restricted to incompressible boundary-layer flows. These
flows are governed by the time-dependent incompressible Navier-Stokes equa-
tions and the continuity condition,

ou 1
ZLu-vu = —V£+EV2Q, (3.1a)

ot
V.U = 0. (3.1b)

The instantaneous flow field (marked by an underline) is described by the ve-
locity vector U(x,t) = (U,V, W) and the pressure P(x,t), which both depend
on space X = (z,y, z) and time t. The equations in (3.1) are in non-dimensional
form, where velocities have been normalized by U,.s and lengths by Lef, and
Re = UyetLyet/v is the Reynolds number (cf. §2.1). The solution U(x,t) de-
pends on the initial state of the flow field at time g,

U(x,ty) = Uy, (3.2)

and on the conditions at the boundaries of the physical domain. An example
is the no-slip condition for the velocity at a solid wall.

The objective of a stability analysis is to determine the evolution of small
disturbances u to the underlying baseflow U. If these disturbances grow in
amplitude as time passes by (temporal perspective) or as they are advected
in downstream direction (spatial perspective), the boundary layer is unstable;
if they, in contrast, decay, the flow is stable. The evolution of disturbances
is governed by the stability equations. These are derived by substituting the
decomposition

U + eu, (3.3a)
- Piep (3.3b)

el
|

into (3.1), where P denotes the mean pressure and p the pressure perturbation.
Within the framework of linear stability theory the disturbance amplitude € in
(3.3) is assumed to be small as compared with U,er. This allows for a lineariza-
tion of the stability equations, i.e. the terms of order 2 are discarded. After

15
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subtracting the equations of the baseflow, we obtain

du +U-Vju+(u-vV)U = —-Vp+ éVQu, (3.4a)

ot
V-u = 0. (3.4b)

The solution for u requires the specification of an initial state, e.g. a
disturbance-free flow field, and of boundary conditions, for instance an incom-
ing disturbance at the inflow boundary of the physical domain.

3.2. Linear stability theory
If the space and time variables are separable, the boundary-layer instabilities
can be assumed as time-periodic. Then, (3.3) is written as

Q(z,y,2,t) = Q(z,y,2) +eq(z,y, z)e ™", (3.5)

where Q = (U,P) and Q = (U, P). The disturbance takes the form of a
temporal Fourier mode with an amplitude function ¢ = (@,p). In classical
linear theory, (3.5) is simplified by assuming a one-dimensional, locally parallel
baseflow and a disturbance with an amplitude function depending on the wall-
normal direction only (‘normal mode’),

Q(z,y,2,t) = Q(y) + eq(y)e’ @ +F2=wt) 4 compl. conjugate. (3.6)

This approach was in particular successful in viscous theory based on the Orr-
Sommerfeld/Squire system (Orr 1907; Sommerfeld 1908; Squire 1933). The
normal-mode ansatz is valid not only in strictly parallel flows (e.g. Couette
flow), but also in flows with a slow streamwise evolution. An example is the
laminar flat-plate boundary layer at large enough Reynolds numbers (Blasius
boundary layer). The normal modes of Blasius flow predicted by the linear
theory are referred to as Tollmien-Schlichting (T-S) waves. Instabilities of T-S
type were indeed observed in the wind-tunnel experiment on a flat plate by
Schubauer & Skramstad (1947).

The Orr-Sommerfeld and Squire equations are derived from (3.4) by in-
voking the assumption of parallel flow (see Schmid & Henningson 2001). This
allows for the elimination of the pressure term of the vertical momentum equa-
tion after taking the divergence of the momentum equations and the Laplacian
of the vertical momentum equation. The remaining pressure terms are removed
by combining the streamwise and spanwise momentum equations in order to
obtain a transport equation for the wall-normal vorticity. Hence, the flow vari-
ables governed are the wall-normal velocity v and the wall-normal vorticity 7.
For three-dimensional boundary layers (e.g. in Falkner-Skan-Cooke flows), the
Orr-Sommerfeld/Squire system takes the form

) , (3.7)

0 . ('D2 —a? - ﬁ2)_1£os 0
o\ ) iaW' —iBU’ Lsq

[SH
S <
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where the tilde indicates a Fourier transformation to wavenumber space. The
linear Orr-Sommerfeld and Squire operators Log and Lg, are

Los = (—iaU —ifW)(D* —a? — %) +ialU” +ipW"”  (3.8a)
1
(D2 o2 — 322
+ el o — %),
. . L o 2 2
Lsg, = —iaU —ifW + ﬁ(D —ao® — 7). (3.8b)

The quantities a and 8 are the streamwise and spanwise wavenumbers, respec-
tively, and D stands for the derivative operator in wall-normal direction. The
prime and double prime denote the first and second derivatives of the parallel
baseflow. The system (3.7) is an initial-value problem with the solution

G =e""qlit,, (3.9)

where ¢ = (0,7), and £ labels the matrix operator of (3.7). Key to a sta-
bility analysis are the eigenvalues o; and the eigenfunctions ¢; of the matrix
exponential

€£t¢i = Ui¢ia |U1| > > |0’n| (310)
The instability condition stated in §3.1 can now be mathematically formulated:

Asymptotically unstable flow, if |oy| >1 (3.11a)
Asymptotically stable flow otherwise. (3.11b)

The eigenvalues \; of of the matrix operator £ are related with those of e£? via
A = %log 0;. The values of \; are a measure for the temporal amplification
or decay rates of the eigenmodes ¢;. The conditions (3.11) indicate that one
eigenvalue alone governs the modal instability of the basic state, namely that
pertaining to the least stable eigenmode. The value of |o1| determines whether
the least stable mode grows beyond all bounds or decays to zero as time t — oo,
i.e. it characterizes the asymptotic temporal stability of the baseflow.

In convection-dominated flows, the spatial stability is often more relevant.
The spatial Orr-Sommerfeld/Sqire problem is formulated by re-ordering the

terms of (3.7),
_ Los 0
0= ( iBU" —iaW' L, > ( ) (3.12)

where Log and Lg, are the spatial Orr-Sommerfeld and Squire operators

e <

Los = (iw—iaU —ifW)(D* —a? — %) +iaU"” +ifW" (3.13a)
1
(D2 _ 52 _ B2)2
+ Re( o =B,
1
Ls, = iw—ial —iBW + ﬁ(DQ —a? - p?) (3.13b)

and w is the angular frequency. The spatial stability of the basic state is
characterized by the spatial eigenvalues of the operator matrix in (3.12), which
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are the complex streamwise wavenumbers «. The spatial instability conditions
are formulated with respect to the imaginary part of «

Convectively unstable flow, if Im{a;} <0 , (3.14a)
Convectively stable flow otherwise, (3.14b)

where «; is the eigenvalue with the smallest imaginary part. The attribute
‘convective’ in (3.14) indicates the streamwise nature of the modal evolution®.
The value of Im{«;} plays the role of the spatial decay rate of the least stable
mode, with negative values indicating streamwise exponential growth.

Predictions from classical linear stability theory prove inaccurate when
‘non-parallel effects’ become important. This is, for instance, the case for the
flow field near a leading edge where the boundary layer rapidly grows in thick-
ness and cannot be assumed as locally parallel. A successful effort to cope with
flows with more than one inhomogeneous direction was the development of
the method of parabolized stability equations (PSE) by Herbert & Bertolotti
(1987) (see also Herbert 1997). In the PSE framework, the profiles of the
boundary-layer disturbance are still locally one-dimensional, but the baseflow
and the modal instability are allowed to develop moderately in the other two
directions®. Since the stability equations are parabolic, their solution can be
obtained by an efficient spatial marching technique. Therefore, the PSE ap-
proach is ideally suited for parametric studies of boundary-layer stability. An
alternative attempt to generalize the classical stability analysis is the theory of
global modes (see e.g. Theofilis et al. 2002; Henningson & Akervik 2008; Mack
et al. 2008), which is based on the eigenmode ansatz

Q(z,y,2,t) = Q(z,y) + ea(z, y)e'P*~“Y 4 compl. conjugate. (3.15)

The shape functions of the global eigenmodes are dependent on two spatial
directions, whereas the dependence on the third direction and on time is cap-
tured by the periodic wave function. The global-mode approach is therefore
appropriate in order to investigate the global stability of spanwise periodic
flows.

3.3. Two examples of modal boundary-layer instability
3.3.1. Crossflow instability

A spatial linear stability analysis of the Falkner-Skan-Cooke boundary layer
reveals that there exist eigenvalues with Im{a} < 0 for Res» = 220. Hence,
the swept-plate boundary layer discussed in §2.3.1 is linearly unstable. Fig-
ure 3.1(a) depicts the wall-normal structure of the eigenmode with frequency
w = 0 and spanwise wavenumber 5 = —0.190. The associated spatial eigen-
value is @ = 0.168 + 0.0011i, where the real part plays the role of the streamwise

IThe boundary-layer flows studied are convectively unstable. Absolute instabilities (see e.g.
Schmid & Henningson 2001) are not discussed here.

2The PSE are usually applied to spanwise periodic flows, which only develop in the streamwise
direction.
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FIGURE 3.1. (a) Eigenmode with w = 0 and 8 = —0.19 of the
Falkner-Skan-Cooke boundary layer with Res= = 220. (b) Ampli-
tude and growth rate of the disturbance energy obtained from a
direct numerical simulation (DNS, linearized equations) of swept-
plate flow with Res+ = 220. In the framework of linear stability
theory, the energy growth rate is oc s = —2Im{a}.

wavenumber and the imaginary part that of the streamwise decay rate. Hence,
this particular mode is damped under the inflow conditions (Res« = 220) while
becoming linearly unstable farther downstream (Res« = 253). This mode is
chosen here because it is globally dominant in the present swept-plate bound-
ary layer. Figure 3.1(b) depicts the streamwise evolution of the modal ampli-
tude and of the growth rate for the disturbance energy. Since the wave vector
(Re{a}, B) points in the direction of the crossflow, the mode is referred to as a
crossflow mode. Figure 3.2 shows the spatial structure of the crossflow mode.
Note that the streamwise and spanwise velocity components are one order of
magnitude larger than the wall-normal component. A projection of the mode
onto a streamwise aligned coordinate system reveals that the disturbance takes
the form of a streamwise vortex. Therefore, crossflow modes are often referred
to as crossflow vortices.

The mechanism of the crossflow instabilities is closely related with the
crossflow profiles of the basic state (cf. figure 2.4b). These profiles exhibit an
inflection point between their maximum and the boundary-layer edge. Based
on the paper by Rayleigh (1880), Fjgrtoft (1950) demonstrated that a necessary
condition for the instability of inflectional profiles is C”'(y)[C(y) — C(yip)] <O
at some location in the flow, where C(y) and C”(y) stand for the present
crossflow profiles and their wall-normal second derivative, respectively, and the
inflection point is located at y;p, (C”(yip) = 0). Indeed, the crossflow profiles
exhibit regions where Fjgrtoft’s criterion is fulfilled, indicating that the swept-
plate boundary layer is potentially unstable. The associated instability is called
inflectional — or inviscid, because the instability mechanism is not related to
the viscosity of the fluid. The viscosity has, however, a stabilizing effect on
the mechanism. The physical explanation of inviscid instability is based on the
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FIGURE 3.2. Spatial evolution of a steady crossflow mode (8 =
—0.19) in a swept-plate boundary layer (Res= = 220) as obtained
from direct numerical simulation (DNS). (a) Streamwise, (b) wall-
normal and (c¢) spanwise disturbance velocity.

dynamics of vorticity perturbations in the vicinity of the inflection point (Lin
1955).

3.3.2. Gortler instability

The linear instability of boundary-layer flows over concave plates was first ex-
amined by Gértler (1941). Gortler boundary layers become linearly unstable
for Gortler numbers above Gy = 0.4638 (Floryan & Saric 1982)%. The inflow
Gortler number of the concave-plate flow considered in §2.3.2 is G, = 1.54, i.e.
the flow is expected to be unstable. Figure 3.3(a) shows the streamwise evolu-
tion of the mode with frequency w = 0 and spanwise wavenumber 5 = 0.546
in terms of the r.m.s. of the streamwise disturbance velocity. Apart from the
concave plate sketched in figure 2.5, two additional plates with twice and four
times as large radius of curvature are considered in the figure. While being
stable at the inflow plane, the disturbances exhibit the exponential amplifica-
tion typical of modal instabilities farther downstream. When plotted versus
the local Gortler number the curves pertaining to the three plates collapse,
which highlights the role of the Goértler number as the governing stability pa-
rameter in Gortler flows. In figure 3.4, the spatial appearance of the steady
Gortler mode with 8 = 0.546 is shown. The mode consists of long streamwise
structures of positive and negative streamwise velocity (figure 3.4a) caused by
counter-rotating streamwise vortices (figures 3.4b and 3.4c). Because of this
vortical motion, these modes are also called Gortler vortices or rolls.

The physical mechanism of the Gortler instability is associated with the
wall-normal centrifugal force in concave-plate flows. Like the crossflow insta-
bility, the centrifugal instability is of the inviscid type, while the fluid viscosity

3The instability of Gortler boundary layers depends on the inflow conditions owing to tran-
sient behavior (Hall 1983). Classic linear stability results are therefore ambiguous for small
values of Gy, and hence the concept of critical Goértler number is not well-defined. The
number given by Floryan & Saric (1982) should be understood as an approximate value.
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FIGURE 3.3. (a) Streamwise evolution (r.m.s. of streamwise veloc-
ity) of the steady Gértler mode with 8 = 0.546 in flows over concave
plates with three different radii of curvature. (b) Spatial growth
rates of the streamwise disturbance velocity of Goértler modes with
different spanwise wavenumbers at three streamwise locations.
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FIGURE 3.4. The structure of the steady Gértler mode with
B8 = 0.546. (a) Streamwise disturbance velocity giving rise to
streaks. (b) and (c) Gortler vortices and streamwise streaks at
two downstream locations.

has a stabilizing effect. Rayleigh (1916) developed a necessary and sufficient
criterion (in inviscid flow) of instability known as the circulation criterion. Its
simplified form (see e.g. Saric 1994) states that the baseflow profile U(r) is un-
stable if d|rU(r)|/dr < 0 anywhere in the flow, with r being a radial coordinate
pointing towards the plate. This criterion is indeed fulfilled for the basic state
on a concave plate, which is essentially of Blasius type (cf. §2.3.2). The Gortler
instability is physically explained by the inability of the pressure to act as a
restoring force when fluid is vertically displaced into regions of larger or smaller
centrifugal forces.
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3.4. Nonmodal stability theory

The wind-tunnel experiment by Schubauer & Skramstad (1947) gave strong
support to the linear stability theory, which was apparently able to predict
the instability of flat-plate boundary layers. However, already the work by
Taylor (1939) had cast a shadow on the classical approach. Later research ef-
forts revealed that an eigenmode analysis fails to predict the response of the
Blasius boundary layer to free-stream turbulence. Klebanoff (1971) observed
boundary-layer disturbances in a wind-tunnel experiment which differed se-
verely from the T-S waves predicted by a linear eigenmode analysis. These
disturbances occurred farther upstream, had a different shape and exhibited a
non-exponential amplification rate. Since these instabilities are not associated
with a single eigenmode of the baseflow, they are called nonmodal instabili-
ties. The historical term ‘Klebanoff modes’ for these disturbances was coined
before their nonmodal nature was fully understood. The development of the
nonmodal stability theory started with the paper by Ellingsen & Palm (1975)
who demonstrated for inviscid shear layers that there exist initial disturban-
ces growing linearly instead of exponentially in time. These disturbances were
found to produce a streaky pattern of alternating high and low streamwise
velocities. The amplification of the streaks was termed ‘transient growth’ by
Hultgren & Gustavsson (1981). Transient growth was shown to occur also in
viscous flows.

The mathematical framework for transient growth was given by Butler
& Farrell (1992); Reddy & Henningson (1993); Trefethen et al. (1993) (see
also Schmid & Henningson 2001). It is based on the non-normality of the
linear Navier-Stokes operator in shear flows (or of the Orr-Sommerfeld /Squire
operator discussed in §3). An operator £ is non-normal if LL* # L£*L, where
the star denotes the adjoint operator?. The transient growth of an initial
disturbance at time t = t; is given by

G(t) = 1€ @l |I*. (3.16)

The condition for nonmodal instability is formulated by means of the singular
values o;, which are the eigenvalues of the matrix e teft,

ety = oy, o1 > >0, > 0. (3.17)

The condition for transient growth is stated as
Transient growth, if o7 > 1, (3.18a)
No transient growth otherwise. (3.18b)

Transient amplification describes the short-time behavior of the boundary-layer
disturbances. In contrast, the linear growth is approached when ¢ — oo, as re-
flected by the attribute ‘asymptotic’ in (3.11). The instabilities undergoing
transient growth are nonmodal, because the underlying mechanism does not

4The adjoint operator is implicitly defined as the operator £* fulfilling (Lx,y) = (z, L*y),
where z,y € H (Hilbert space) and (-) is an inner product defined on H.
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FIGURE 3.5. Streamwise amplification of steady boundary-layer
streaks with different spanwise wavenumbers in the flow over a plate
with an elliptic leading edge. Leading edges with aspect ratio AR =
6 (dashed lines) and AR = 20 (solid lines) are considered.

rely on the evolution of a single growing eigenmode. Instead, a linear interac-
tion between eigenmodes of Orr-Sommerfeld and Squire type gives rise to the
nonmodal instability. This results in a boundary-layer disturbance changing its
shape as individual modes grow or decay in time and space at different rates.
Transient growth may for this reason occur before the subsequent exponential
behavior and trigger the laminar-turbulent transition prior to the asymptotic
instability. The ‘natural transition mechanism’ due to the most unstable eigen-
mode is then ‘bypassed’, and the transition route is called bypass transition.

3.5. An example: Boundary-layer streaks

Consider the boundary layer on the flat plate with an elliptic leading edge
introduced in §2.3.3. When exposed to a free stream with vortical disturban-
ces, this type of flow can develop nonmodal instabilities. Figure 3.5 shows the
streamwise evolution of nonmodal disturbances with frequency w = 0 and three
different spanwise wavenumbers. Obviously, these instabilities do not amplify
exponentially in the downstream direction, which distinguishes them from the
boundary-layer eigenmodes discussed in §3.3. Eventually, the nonmodal dist-
urbances decay (cf. figure 3.5, 5 = 2.16), i.e. their amplification is limited in
space and time. Therefore, the evolution of nonmodal instabilities is referred
to as transient (short-term) growth, as opposed to the asymptotic (long-term)
behavior of the unstable eigenmodes of the flow. Figure 3.5 indicates that the
transient growth rate is substantial near the leading edge and that the am-
plitude of the nonmodal instabilities can exceed the amplitude of their source
(the free-stream disturbance here) by orders of magnitude. Therefore, non-
modal disturbances may cause a transition to turbulence before the modal
instabilities (T-S waves in this case) attain significant amplitudes. Figure 3.6
illustrates the spatial appearance of the nonmodal instabilities. Most of the dis-
turbance energy is concentrated in the streamwise velocity component (figure
3.6a). The disturbance structures are elongated in the streamwise direction
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FIGURE 3.6. Streaks in the boundary layer on a flat plate with el-
liptic leading edge (aspect ratio AR = 6). (a) Instantaneous stream-
wise, vertical and spanwise disturbance velocities u, v and w in the
z-y plane where u is maximum. The lines mark dg9. (b) Spanwise
plane of u along the wall-normal maximum of u,ms. Several streaks
with different spanwise wavenumbers are shown.

and feature positive and negative streamwise disturbance velocities alternat-
ing in the spanwise direction (figure 3.6b). Because of their appearance, these
steady disturbances are called boundary-layer streaks. Streaks were observed
in a number of wind-tunnel experiments (‘Klebanoff modes’) long before the
advent of the theory of nonmodal instability and transient growth.

A physical explanation of the nonmodal instability mechanism was pro-
posed by Landahl (1980). It builds on the wall-normal displacement of fluid
particles in shear flows by weak pairs of counter-rotating streamwise vortices
(‘lift-up mechanism’). These vortices originate in the free stream and pene-
trate into the shear layer. By promoting a vertical exchange of low-momentum
fluid and high-momentum fluid, the streamwise vortices give rise to high-speed
streaks in the low-momentum region near the wall and low-speed streaks in the
high-momentum region near the boundary-layer edge.



CHAPTER 4
Receptivity

Boundary-layer instabilities emerge as a result of a forcing of the layer by its
environment!. Sources of such a forcing are, for example, the vortical fluctua-
tions of a free stream or the roughness of a wall. If the forced boundary-layer
disturbance is able to feed the eigenmodes of the layer with energy and modal
or nonmodal instabilities arise, the layer is said to be receptive to the forcing.

The simplest receptivity mechanism is that of direct receptivity. Direct re-
ceptivity requires a resonance between the frequencies and wavenumbers of the
enforced disturbances and those of the boundary-layer eigenmodes. A swept-
plate boundary layer, for instance, is directly receptive to natural wall rough-
ness, because the roughness exhibits a broad range of length scales — among
them those of the steady crossflow modes. However, many natural free-stream
disturbance sources are not ‘wavenumber resonant’ with the boundary-layer
modes. The mismatch in wavenumber arises because the length scales of the
free-stream disturbances are governed by the inviscid dynamics of the outer
flow, whereas those of the eigenmodes are determined by the viscous effects
inside the boundary layer. An example is the Blasius boundary layer exposed
to a free-stream sound wave at a low Mach number. In the incompressible
limit, the streamwise wavenumber of the acoustic wave is zero and so is the
wavenumber of the disturbance enforced inside the layer (Stokes wave). Thus,
the Stokes wave does not directly couple to the large-wavenumber T-S mode of
the Blasius boundary layer.

Despite the lack of a direct receptivity mechanism, Blasius flow was found
to be receptive to free-stream sound under certain conditions. Goldstein (1983)
and Ruban (1985) proposed an explanation for this apparent contradiction by
introducing the concept of length-scale conversion. For the example of Bla-
sius flow with free-stream sound, a second — steady — source is required in
order to provide the T-S wavenumber. Therefore, the receptivity mechanism
is sometimes called indirect receptivity. Goldstein (1983) demonstrated by an
asymptotic analysis that the rapidly developing boundary-layer region near a
leading edge can convert the length scale of the enforced Stokes solution into
that of the T-S wave. This is shown in figure 4.1 for the case of free-stream
vorticity. Although the free-stream wave exhibits a longer wavelength than the
T-S mode, the boundary layer is receptive to the free-stream disturbance. As

'Tn absolutely unstable flows, the instabilities are sustained without an external forcing (e.g.
Schmid & Henningson 2001).
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FIGURE 4.1. Excitation by free-stream vorticity of a T-S wave
inside the boundary layer on a plate with an elliptic leading edge.
(a) Streamwise and (b) vertical disturbance velocities.

demonstrated by Goldstein (1985), a streamwise variation in surface geometry,
e.g. a roughness bump or a suction hole, can also promote the length-scale
conversion. The asymptotic theory considered by Goldstein (1983, 1985) and
Ruban (1985) is based on an expansion of the disturbance in powers of 1/Re,
which leads to the linearized triple-deck equations. These govern the distur-
bance evolution in the limit of high Reynolds numbers. The triple-deck for-
mulation is only valid at the first neutral point of the unstable mode (branch
I). A successful attempt to extend the receptivity analysis to finite Reynolds
numbers and to the regions away from the first branch of instability was the fi-
nite Reynolds-number theory (FRNT) first proposed by Zavol’skii et al. (1983).
The FRNT relies on the same ideas as the classical linear stability theory (see
§3.2). These are the assumption of a locally parallel baseflow and the limitation
to small disturbance amplitudes, allowing for a linearization of the governing
equations. The FRNT was successfully applied to two-dimensional flat-plate
flows (Crouch 1992; Choudhari & Streett 1992) and to Falkner-Skan-Cooke
boundary layers (Crouch 1993, 1994; Choudhari 1994).

4.1. Receptivity coefficients

During the receptivity phase, the external forcing imposes the upstream ampli-
tude (‘initial condition’) of the boundary-layer instabilities at the receptivity
site (e.g. a roughness bump). This amplitude may therefore be called receptiv-
ity amplitude (denoted by Ag here). It is obvious that the receptivity amplitude
depends on the amplitude € of the ambient perturbation. If Ag is proportional
to €, the receptivity to the forcing is linear. It is customary to introduce the
ratio between Agr and €, referred to as receptivity coefficient,

_Ar
= 2R

Cr (4.1)
For linear receptivity, Cr is constant upon varying the forcing amplitude €. The
assumption of linear receptivity only holds for ambient perturbations with small
amplitudes. The receptivity of swept-plate flow to shallow localized roughness
bumps is an example for a linear mechanism. For indirect receptivity, i.e. the
receptivity to a combination of two external sources (e.g. coupling of sound at



4.1. RECEPTIVITY COEFFICIENTS 27

roughness), Cr is written as

Cp= A2 (4.2)

€1€2

where €1 and €5 are the amplitudes of the two sources. The indirect receptivity
is linear if Ag is proportional to both €; and 5. There also exist receptivity
mechanisms which are nonlinear even for small amplitudes. For example, the
receptivity of boundary layers to pairs of oblique vortical free-stream waves
is quadratic in the amplitude of the free-stream disturbance. The receptivity
coefficient for quadratic receptivity is

A
Cr = E—f (4.3)
In general, we may summarize (4.1), (4.2) and (4.3) by stating
O Initial instability amplitude (4.4)

- Amplitudes of the perturbation sources’

i.e. the receptivity coefficient is a measure for the efficiency of the energy trans-
fer from the forcing to the boundary-layer instability. The receptivity amplitude
Apg and the forcing amplitude € should be chosen such that they reflect in a
proper way the nature of the triggered instability and the characteristics of the
forcing. Common choices of Ar are the wall-normal maximum of the stream-
wise disturbance-velocity amplitude (or the r.m.s.) and quantities based on
a wall-normal integration of the disturbance-velocity profiles. The choice of
depends on the type of disturbance source considered. An example for surface
roughness is given in §4.2.1.

The receptivity coefficients are key to a receptivity analysis of boundary-
layer flows. They can be combined with standard transition-prediction methods
based on linear stability theory (e.g. the e’-method) in order to provide a
refined prediction tool for industrial use, including the receptivity. Since the
instability amplitudes obtained by the e’N-method are usually normalized by
their magnitude at the first neutral instability point, it is more convenient to
define the receptivity coefficients at branch I rather than at the receptivity site.
These branch-I coefficients are sometimes referred to as effective coeflicients,
denoted by C¢T here. The effective receptivity coefficients can be used to
determine the disturbance amplitude A(z) at any location in the linear regime
downstream of the receptivity site. If the N-factor of the instability is known,
the disturbance amplitude can be written as

A(z) = eCylfeN @), (4.5)

Since the receptivity mechanisms depend on a wealth of factors — e.g. the flow
configuration, the perturbation environment and the nature of the dominant
instabilities — the application of the results from a receptivity analysis in an
industrial context will require a vast database of receptivity coefficients. This
motivates the continuation of receptivity research in order to develop refined
theoretical receptivity models. Direct numerical simulations and large-eddy
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FIGURE 4.2. Streamwise localized roughness element with span-
wise sinusoidal shape.

simulations like those presented in this thesis will continue to serve as validation
tools for these models.

4.2. Examples of boundary-layer receptivity
4.2.1. Direct receptivity of swept-plate flow to roughness

Consider the swept-plate boundary layer depicted in figure 2.3, which is un-
stable to crossflow modes (§3.3.1). Steady crossflow vortices can be excited by
wall roughness via a direct receptivity mechanism. This receptivity was ex-
amined here by considering the roughness element sketched in figure 4.2. The
roughness is localized in the chordwise direction and periodic in the spanwise
direction. Therefore, the bump enforces a steady boundary-layer disturbance
with a large number of chordwise wavenumbers (denoted by «) and one single
spanwise wavenumber (3,). Instead of prescribing the roughness as a deforma-
tion of the wall, we modeled it in terms of inhomogeneous boundary conditions
for the enforced disturbance. These conditions are obtained by a projection of
the no-slip conditions at the bump contour onto the smooth wall (index ‘0’),
using the wall-normal gradient of the baseflow profiles,

ug(z, z) = —h(z) (%ij)o sin (5,2), (4.6)

where h(z) is the chordwise shape of the roughness. After a chordwise Fourier
transformation, the roughness model becomes

(e, B,) = —H(a) (a;;)()sin (Brz), (4.7)

with H () being the chordwise wavenumber spectrum of the roughness. Here,
the spectrum was manipulated by altering the chordwise bump shape. This
is seen in figure 4.3(a), where three different bump contours (inset) and their
wavenumber spectra \I;T | are depicted. We also varied the spanwise wavenumber
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FIGURE 4.3. (a) Bumps with three different streamwise shapes in
physical space (inset) and Fourier space. (b) Receptivity coefficients
for roughness elements with different spanwise wavenumbers and
streamwise shapes. The coefficients were extracted from DNS data.
The peak is explained in paper 1. The thin curve pertains to the
receptivity of a streamwise constant (‘parallel’) basic state.

Br of the roughness. The symbols in figure 4.3(a) mark the spectral bump am-
plitudes |H (acr)| obtained at the wavenumbers acr of the unstable crossflow
modes pertaining to three values of §,.. Figure 4.3(b) shows the receptivity co-
efficients obtained. The most remarkable result is that the receptivity becomes
independent of the chordwise bump shape for nearly all spanwise wavenumbers
considered?. This shape independence is obtained if the amplitude ¢ of the
forcing (cf. §4.1) is defined as € = &,|H(c)|, where ¢, is the roughness height.
The receptivity coefficient for roughness-induced steady crossflow instability is
then

Cp= —or

er|H(acr)|

where Acp is the receptivity amplitude of the excited crossflow vortex at the
roughness site. Note that (4.8) can be derived in the FRNT framework when the
roughness model (4.7) is used (see e.g. Choudhari 1994, for indirect receptivity
to roughness and sound).

(4.8)

4.2.2. Receptivity to vertical vorticity at a leading edge

Figure 4.4 is a close-up of the leading edge region of the flow configuration
depicted in figure 2.7. A steady free-stream vortical disturbance in the form of
a spanwise sinusoidal distribution of the streamwise velocity is considered. This
particular disturbance is characterized by a vertical vorticity vector, i.e. the
streamwise and spanwise vorticity components are zero. When the disturbance
impinges onto the leading edge, a spanwise velocity disturbance (‘crossflow’) is
produced (figure 2.7, plane I). Downstream of the leading edge (plane II), we

2Conditions for which the shape independence becomes invalid are discussed in paper 1.
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FIGURE 4.4. Instantaneous boundary-layer response to a single
free-stream vortical mode with vertical vorticity only. The lead-
ing edge with aspect ratio AR = 6 is considered. Plane I: colors,
spanwise disturbance velocity; vectors, streamwise and spanwise
disturbance. Plane II: vertical disturbance velocity (x5). Plane
III: colors, streamwise disturbance velocity; vectors, vertical and
spanwise components.

also identify a weak vertical velocity component. The vertical and spanwise
disturbances establish a streamwise vortical motion near the boundary-layer
edge. These counter-rotating vortices are able to penetrate into the boundary
layer and produce streamwise disturbance streaks inside the layer (figure 2.7,
plane III). The receptivity mechanism to vertical free-stream vorticity at a
leading edge is summarized as follows. When impinging on the leading edge, the
vertical vorticity is converted into streamwise vorticity via vortex stretching and
vortex tilting. The counter-rotating streamwise vortices produce the boundary-
layer streaks by the lift-up mechanism (cf. §3.5). Figure 4.5 shows boundary-
layer streaks generated by this receptivity mechanism. Two leading edges with
different bluntness and various spanwise wavenumbers are considered. The
streak amplitudes are significantly larger when the leading edge is blunt. This
suggests that the stretching and tilting of the vertical disturbance vorticity are
enhanced at blunt leading edges. We conclude that boundary layers on bluff
bodies are more receptive to vertical free-stream vorticity than those on slender
bodies.
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FIGURE 4.5. Downstream development of boundary-layer streaks
with different spanwise wavenumbers. These streaks were initiated
by the receptivity of the leading-edge flow to a free-stream distur-
bance with vertical vorticity only. Downstream of a blunt leading
edge (AR = 6, dashed lines), the streak amplitudes are larger than
downstream of a slender leading edge (AR = 20, solid lines).

4.2.3. Nonlinear receptivity of Gortler flow to free-stream vorticity

For low-amplitude perturbations, the receptivity mechanisms presented in
§84.2.1 and 4.2.2 are linear in the amplitude of the external forcing (rough-
ness and vortical mode, respectively). Here, we present a nonlinear receptiv-
ity mechanism for a pair of high-frequency oblique vortical modes in the free
stream over a concave plate (see §2.3.2). Figure 4.6 shows the response of the
Gortler boundary layer to this kind of external forcing. A temporal-spanwise
Fourier transform reveals that the flow response not only contains components
with the fundamental frequency and spanwise wavenumber of the forcing, but
also harmonic and subharmonic contributions (figure 4.6a). Downstream, the
most energetic component is a zero-frequency disturbance with twice the span-
wise wavenumber of the free-stream vorticity. This component is the Gortler
roll shown in figure 3.4 and results from a nonlinear interaction between the
fundamental components enforced by the free-stream disturbance. Hence, the
Gortler boundary layer is receptive to high-frequency free-stream vortices, and
the receptivity mechanism associated with the steady Gortler roll is nonlinear
in the forcing amplitude. Figure 4.6(b) shows that the receptivity coefficient
of this mechanism (defined in 4.3) decreases with increasing frequency of the
free-stream disturbances.
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FIGURE 4.6. (a) Decomposition of the disturbance enforced in-
side a Gortler boundary layer by a weak pair of oblique vortical

free-stream modes.

Contributions with different frequencies and

spanwise wavenumbers versus the tangential plate coordinate £. (b)
Coefficient for nonlinear receptivity to oblique free-stream modes
versus frequency of the external forcing.



CHAPTER 5

Breakdown

The final step of laminar-turbulent transition in boundary layers is the break-
down to turbulence, which occurs in layers with high-intensity disturbances.
The breakdown is preceded by a saturation of the disturbance amplitude, in-
dicating a nonlinear redistribution of energy to a broad range of disturbance
scales (frequency/wavenumber cascade). This cascade results from nonlinear
self-interactions of the fundamental disturbance and from mutual interactions
between different disturbance components, promoting the emergence of har-
monic and subharmonic modes, respectively. At this stage, the disturbance
environment inside the boundary layer is complex, the primary disturbances
in turn become unstable and a new type of instability develops on top of the
flow. These new disturbances are referred to as secondary modes in order
to distinguish them from the primary disturbances. It is believed that the
secondary instabilities are excited by high-frequency fluctuations of the flow
(e.g. free-stream turbulence). The appearance of the secondary instabilities
depends on the type of boundary layer and on the kind of primary distur-
bance (e.g. modal/nonmodal). The secondary instabilities have, on the other
hand, in common that they are three-dimensional in nature, appear as small-
scale vortical structures and feature large growth rates, thus promoting a rapid
breakdown of the primary instabilities. The breakdown becomes manifest in
the formation of turbulent spots at random locations. These spots are patches
of turbulent motion in a perturbed laminar flow (intermittent state). Since the
leading edge of the turbulent spots propagates faster than the trailing edge, the
spots grow in size and merge with each other. This leads to a fully turbulent
boundary layer downstream.

5.1. Examples of secondary instability and breakdown
5.1.1. Streak instability in flat-plate flows

Figure 5.1 shows quasi-steady low-momentum and high-momentum stream-
wise disturbance streaks in a flat-plate boundary layer. These streaks were
extracted from a DNS of zero pressure-gradient flow with a turbulent free
stream (cf. Brandt et al. 2004; Schlatter et al. 2008). Upon saturation, the
streaks strongly deform the underlying baseflow, producing inflectional wall-
normal and spanwise profiles of the streamwise velocity. At this stage, the
low-speed streaks become susceptive to secondary instabilities, which may be-
come manifest in a spanwise meandering of the streaks (figure 5.1a). This type

33
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(a) (b)

FIGURE 5.1. Secondary instabilities of low-speed streaks in a flat-
plate boundary layer as obtained from DNS (Brandt et al. 2004). (a)
Sinuous and (b) varicose streak breakdown. Isocontours of stream-
wise disturbance velocities (blue, u = —0.15; red, u = 0.15) and of
the A2 vortex criterion (green, Ao = —2 X 10*3)A The flow is from
lower left to upper right (reproduced after Schlatter et al. 2008).

of secondary motion appears as quasi-streamwise vortices at the flanks of the
low-speed streaks. Because of the odd symmetry of the meandering, the in-
stability is termed sinuous mode. Brandt et al. (2004) also identified a second
type of instability, manifested as a train of horseshoe-shaped vortices (figure
5.1b). The underlying streak oscillations are symmetric about the streak axis;
therefore, this secondary instability is referred to as varicose mode. The sinu-
ous and varicose streak instabilities are closely related with the odd and even
modes predicted by secondary instability theory (Li & Malik 1995). These
modes were demonstrated to occur near the inflection points of the spanwise
(z) and wall-normal (y) flow profiles. Therefore, Li & Malik (1995) denoted
the odd (sinuous) modes by ‘z type’ and the even (varicose) modes by ‘y type’.
Brandt et al. (2004) found that the sinuous mode occurred more frequently in
their DNS data than the varicose type.

5.1.2. Secondary instability of Gortler rolls

Figure 5.2 depicts the disturbances occurring in a Gortler boundary layer ex-
posed to free-stream turbulence. The layer develops strong streamwise vortices
and a pattern of streaklike flow structures with positive and negative stream-
wise disturbance velocities. The vortices and streaks constitute the steady
Gortler modes described in §3.3.2. Farther downstream, small-scale vortical
structures emerge on the low-speed streaks. These are the secondary instabil-
ities initiating the breakdown to turbulence. Thus, the breakdown scenario in
Gortler boundary layers is that of a streak breakdown — as in flat-plate bound-
ary layers; however, the nature of the primary streaks is different (modal versus
nonmodal). Figure 5.2 also shows that the secondary motions of the low-speed
streaks are similar to those seen in figure 5.1 for the flat-plate boundary layer.



5.1. EXAMPLES OF SECONDARY INSTABILITY AND BREAKDOWN 35

200

100

FIGURE 5.2. Disturbance structures in the transitional region of

a Gortler boundary layer subject to free-stream turbulence (from
DNS). Isosurfaces of streamwise disturbance velocities (blue, u =
—0.25; red, u = 0.2) and of the A2 vortex-identification criterion
(green, A2 = —5 x 10™%). The flow is from left to right.

In particular, a distinct horseshoe-vortex train is prominent in figure 5.2, indi-
cating a varicose streak breakdown. The low-speed streak at z = 30, in contrast,
features the spanwise meandering due to quasi-streamwise vortices typical of
a sinuous secondary instability. The downstream region of the boundary layer
is characterized by spanwise alternating patches of laminar and turbulent flow
(intermittency), which highlights the local nature of the breakdown to turbu-
lence.

5.1.3. Turbulent spots in swept-plate flows

We now consider the swept-plate boundary layer described in §2.3.1. Figure
5.3 depicts the boundary-layer disturbance structures excited by free-stream
turbulence. The primary disturbances consist of traveling crossflow waves
with different frequencies, spanwise wavelengths and amplitudes (‘wave pack-
ets’). After saturating, these waves become susceptive to secondary instability
modes. Malik et al. (1999) performed a secondary instability analysis of sat-
urated crossflow vortices and identified ‘z modes’ and ‘y modes’ in analogy to
those discussed in §5.1.1. Wassermann & Kloker (2003) investigated in detail
the secondary instabilities of traveling crossflow waves, using DNS. The most
unstable secondary mode was found near the wall and corresponded to the ‘z
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FIGURE 5.3. Turbulent spots in a swept-plate boundary layer with
traveling crossflow vortices. The boundary-layer disturbances were
excited by free-stream turbulence. (a) and (b) are snapshots at two
times of a plate-parallel plane inside the boundary layer (y = 2),
showing the instantaneous chordwise disturbance velocity.

type’. However, Wassermann & Kloker (2003) conjectured that the ‘y mode’
might be more relevant in boundary layers exposed to turbulent free streams
because it appeared near the layer edge. Figure 5.3 shows that the secondary
instabilities trigger a rapid breakdown of the traveling crossflow waves to local-
ized turbulent spots. These spots grow in size while propagating downstream
(figure 5.3b) and finally merge with the fully turbulent flow.



CHAPTER 6
Numerical methods

6.1. Direct numerical simulation

Most results presented in this thesis were obtained by spatial direct numeri-
cal simulations (DNS). DNS is a numerical technique, by which the governing
equations are solved directly. Terms of the Navier-Stokes equations are neither
omitted (as in the PSE) nor modeled (as in the RANS equations). However,
some modeling is introduced in the DNS framework by the treatment of the
boundaries. These boundaries arise due to a truncation of the flow domain. An
example is the modeling of (statistically) spanwise invariant flows by periodic
boundary conditions. The assumption of periodicity at the spanwise bound-
aries introduces a fundamental spanwise wavelength (the width of the domain),
which must be chosen such that it does not interfere with the physically relevant
length scales of the flow.

The DNS approach requires a resolution of all dynamically important flow
structures. This is an easy task for a low Reynolds-number laminar bound-
ary layer. However, since the ratio between the largest and the smallest flow
structures is proportional to Re®/4 (length-scale cascade), the spatial resolution
demands for a three-dimensional DNS increase as Re?/* (Moin & Kim 1997)".
Moreover, an increase in spatial resolution requires — for methods with explicit
time advancement — a reduction of the time step in order not to violate the CFL
condition of numerical stability. Kim et al. (1987) and Spalart (1988) give rec-
ommendations for the maximum allowed grid spacings for DNS of wall-bounded
turbulent flows. These are Az™ = 15, Ay™ = 1 at the wall and Az = 8 in
the streamwise, vertical and spanwise directions, respectively. The symbol ‘+’
denotes a normalization by v/u, (‘wall units’), where u, = /7, /p is the fric-
tion velocity. Most simulations reported in this thesis consider pre-transitional
laminar boundary layers, characterized by larger flow structures than those in
turbulent layers. The grid spacings of these DNS can therefore be chosen larger
than the values given above?. On the other hand, we also present simulations
of transition to turbulence in a swept-plate boundary layer. In the chordwise

IThis scaling holds for DNS of homogeneous isotropic turbulence. The increase in grid points
is usually less for DNS of boundary layers, because only the resolution of the layer — but not
that of the free stream — needs to be refined.

2This holds, in particular, for DNS of linear receptivity and instability by a spectral method
for the solution of the linearized Navier-Stokes equations, allowing for a significant reduction
of the spanwise resolution.
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and spanwise directions, the grid spacings of these simulations fulfilled the rec-
ommendations cited above, whereas the smallest wall-normal grid spacing was
somewhat larger than Ay™ = 1. Therefore, while being small enough to cap-
ture the flow structures in the pre-transitional boundary layer, the vertical grid
spacing was insufficient in order to resolve the smallest scales of the fully turbu-
lent flow. This lack of resolution was compensated for by using an LES subgrid
model. The model mimicked the influence of the unresolved fluctuations on
the smallest turbulent motions resolved, while being inactive in the laminar
region of the boundary layer. This example shows that simulations may be
considered DNS in certain regions of the flow field, whereas other regions are
under-resolved, requiring a model.

We summarize that the DNS technique allows for high-fidelity simulations
including all relevant length and time scales of a flow. On the other hand, the
price to pay is that of long simulation times. In recent years, DNS has be-
come more affordable thanks to the advent of supercomputers and parallelized
simulation codes.

6.2. Simulation codes

The results in this thesis were obtained by using the simulation codes Simson
and Nek5000. Simson uses a global spectral method (GSM) and is documented
in Chevalier et al. (2007). The time-dependent incompressible Navier-Stokes
equations are implemented in the velocity-vorticity formulation, where the wall-
normal components of the velocity and the vorticity are the dependent flow vari-
ables. The wall-parallel velocity components are retrieved using the continuity
equation and the definition of wall-normal vorticity. The spatial discretization
of the governing equations builds on Fourier expansions in the wall-parallel
directions and a Chebyshev expansion in the wall-normal direction. The use
of Chebyshev polynomials is beneficial for simulations of wall-bounded flows,
because the associated weight functions naturally concentrate the wall-normal
resolution towards the wall. The use of Fourier modes requires spatially pe-
riodic solutions. Periodicity can often be assumed in the spanwise direction
(spanwise invariant flows); however, boundary-layer flows are not streamwise
invariant. The required streamwise periodicity must be artificially imposed by
a ‘fringe region’ at the downstream end of the computational domain, in which
the flow is forced towards the inflow conditions (Bertolotti et al. 1992)3.

The terms of the governing equations are evaluated in Fourier-Chebyshev
spectral space except for the nonlinear terms, which are computed in physical
space (‘pseudo-spectral’ treatment). This involves products between expansion
coefficients, with the products at highest order (NN, say) effectively leading to
an expansion up to order 2N. If the number of collocation points is only equal
to IV, the numerical quadrature is not exact and introduces aliasing errors. For
incompressible flows, these can be removed by using > 3N/2 collocation points
(3/2-rule, Spalart et al. 1991). The time advancement of Simson is based on

3See also paper 1
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a combined implicit-explicit scheme. The linear terms of the Navier-Stokes
equations are discretized in time by a second-order implicit Crank-Nicolson
scheme, whereas the nonlinear terms are discretized explicitly, using a third-
order four-step Runge-Kutta scheme.

The global nature of the GSM becomes manifest in the use of global
basis functions in the expansions, i.e. these functions are defined on the
entire numerical domain. The major benefit of the GSM is the exponential
convergence of the approximated solution, as the number of grid nodes is
increased. The major shortcoming is the inability to deal with complex flow
geometries and discontinuities of the flow field, e.g. shock waves.

Nek5000 is an implementation of the spectral element method (SEM) by Patera
(1984) and is documented in (see Tufo & Fischer 1999; Fischer et al. 2008). The
flow domain is decomposed into spectral elements, which in turn are subdivided
by arrays of spectral interpolation nodes. Thus, the decomposition is both in
a spatial and a spectral sense. Therefore, the SEM is sometimes classified as a
method in between finite element methods and global spectral methods. The
SEM is based on the weak statement of the incompressible Navier-Stokes equa-
tions, obtained by multiplying the terms of the equations by test functions and
integrating over the physical domain. In particular, the viscous terms are inte-
grated by parts, which leads to a reduction of the order of the derivatives in the
viscous terms from two to one. The spatial discretization uses a Galerkin pro-
jection onto a subspace spanned by orthogonal polynomial functions. These are
Lagrangian interpolants defined on Gauss-Lobatto-Legendre (GLL) nodes for
the velocity space and Gauss-Legendre (GL) nodes for the pressure space, using
Legendre polynomials. The interpolation is performed on GLL/GL reference el-
ements; therefore, the linear combination of the basis functions must be mapped
onto the actual elements of the flow domain in order to retrieve the expansions
for the velocity and the pressure. The use of different subspaces for the velocity
and the pressure is similar to the strategy of staggered grids in finite difference
and finite volume methods. The aim is to avoid spurious pressure fluctuations.
In Nek5000, the so-called Py-Py_o discretization by Maday & Patera (1989) is
used. As indicated by this notation, the highest order of the polynomials used
for the pressure expansion is by two lower than that for the velocity expan-
sions. As in the GSM, the evaluation of the nonlinear terms leads to aliasing
errors. These are removed by ‘over-integration’ similar to the 3/2-rule of fully
spectral methods. Moreover, a filtering technique is implemented in Nek5000
(Fischer & Mullen 2001), allowing for a damping of the highest-order modes
included in the expansions. The filtering procedure was developed in order to
ensure numerical stability for simulations of high-Reynolds number turbulent
flows. The discretization in time follows the implicit-explicit operator-splitting
method by Maday et al. (1990). The viscous terms are treated implicitly, us-
ing a third-order backward-difference scheme, while the nonlinear terms are
discretized explicitly by a second-order extrapolation.
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The local nature of the SEM is manifested by the spatial decomposition
into spectral elements. This allows — together with the spectral intra-elemental
discretization — for two refinement strategies, based on decreasing the size of the
elements (‘h refinement’) and on raising the highest order of the polynomials
included in the expansions (‘p refinement’). The major benefit of the SEM arises
from its local nature, allowing for its application to flows of complex geometry;
the major shortcoming is the large computational cost. In order to compensate
for this, Nek5000 was designed for an efficient use on supercomputers with
thousands of processors (Tufo & Fischer 2001).

6.3. Comparison

Table 6.1 gives a comparison between the GSM code Simson and the SEM code
Nek5000 in order to highlight their applicability and limitations. We summa-
rize that the GSM is — due to its efficiency — the preferred tool whenever the
geometry of the simulation domain can be kept simple, allowing for a represen-
tation of the flow field in terms of a linear combination of Fourier modes. For
complex geometries or flow fields with local steep gradients, requiring local-
ized refinement, the SEM is an accurate alternative to finite difference or finite
volume methods. Also note that the SEM passes into a GSM, if the physical
domain of interest is decomposed into one single element only.
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TABLE 6.1. Global spectral method (GSM) versus spectral ele-
ment method (SEM).

| GSM | SEM
Simulation Simson Nek5000
code
Programming | Mainly Fortran77 Mainly Fortran77
language
General Global approach Local approach
characteristics | Fourier-Galerkin- Galerkin method
Chebyshev tau method
Fast Fourier transforms
Special ~ fea- | Fringe technique
tures
Numerical Equidistant in the hori- | Sub-domains (spectral
grid zontal directions, Gauss- | elements) with arbi-
Lobatto-Chebyshev  nodes | trary shape, Gauss-
in the vertical direction Lobatto/Gauss-Lobatto-
Legendre points, staggered
grids
Basis func- | Fourier modes in the hor- | Polynomial interpolation of
tions/ spatial | izontal directions, Cheby- | Lagrange form at Legendre
discretization | shev polynomials in the ver- | nodes
tical direction
De-aliasing 3/2-rule in the horizontal di- | Filtering at the high-
rections est  wavenumbers,  over-
integration
Time integra- | Implicit/explicit split- | Implicit/explicit  splitting
tion ting: Four-step third order | technique: Third-order
Runge- Kutta  method | backward differentiation
+  second-order  Crank- | +  third-order =~ Adams-
Nicolson Bashforth
Parallelisation | MPI and OpenMP MPI
Partitioning into slices in | Element-wise partitioning
the spanwise direction
Applications Incompressible laminar and | Massively parallelized sim-
turbulent flows: Channel | ulations of incompressible
flow, 2D and 3D boundary- | laminar and turbulent flows
layer flows on flat plates in complex geometries
Limitations To problems which can be | Less efficient than the global

made periodic using the
fringe technique

Simple geometries, e.g. no
curved walls or leading edge

spectral method
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CHAPTER 7
Summary and outlook

The present thesis reports results on the receptivity and instability of spatially
evolving boundary layers to wall roughness and free-stream vortices. The re-
sults have been obtained by direct numerical simulations (DNS), using two
different spectral methods. Various boundary-layer flows are considered; these
are a three-dimensional boundary layer of Falkner-Skan-Cooke type, a Gortler
boundary layer, a two-dimensional boundary-layer flow past a flat plate with el-
liptic leading edge and a swept-wing boundary layer. These flows accommodate
various characteristics of the flows over straight and swept wings and blades
such as the stagnation and attachment at the leading edge, wall curvature,
chordwise pressure gradients, streamline curvature and crossflow.

The focus is on the receptivity of these boundary layers. The receptivity
describes the coupling between the boundary-layer instabilities and the pertur-
bations from the surroundings of the boundary layer. A receptivity analysis
explains, by which mechanisms boundary-layer disturbances are produced and
how large the initial amplitudes of these disturbances are. The boundary-
layer receptivity must be considered in order to predict the transition location
in boundary layers. Different receptivity mechanisms such as direct and in-
direct receptivity and linear and nonlinear receptivity are herein discussed.
These mechanisms are characterized in terms of receptivity coefficients, which
are a measure for the coupling efficiency between ambient perturbations and
boundary-layer instabilities. Once these receptivity coefficients are known, the
streamwise evolution of the amplitudes of the boundary-layer instabilities can
be predicted, using linear or nonlinear methods (e.g. the PSE method).

The present thesis also reports the linear and nonlinear phases of instability
growth and the breakdown to turbulence. The spatial DNS presented here
are ideally suited in order to identify the relevant flow structures in spatially
developing boundary layers. The value of data from spectral DNS lies in the
accuracy and the completeness of the results; the drawback, on the other hand,
is the tremendous computational cost. To date, DNS cannot be used to produce
huge databases of receptivity coefficients for different flow parameters of interest
for aeronautical engineers (e.g. Reynolds number or Mach number). Instead,
simplified and more efficient methods such as the PSE and the FRNT must be
addressed. These methods must, however, be verified and validated with the
help of experiments or DNS. A successful validation of the PSE is, for instance,
presented in Hogberg & Henningson (1998) and Tempelmann et al. (2010).
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In the near future, the study of swept-wing flows will be extended in order
to determine the receptivity of the wing boundary layer to vortical free-stream
modes and free-stream turbulence. We will also consider different representa-
tions of surface roughness (both meshed and modeled) and compute the asso-
ciated receptivity coefficients. In particular, we will identify the performance
of the standard linear roughness model based on inhomogeneous disturbance
boundary conditions by a comparison with the results for a meshed roughness
element. PSE calculations will also be considered. The aim is to combine the
DNS and the PSE methods by prescribing mean-flow and disturbance profiles
obtained by DNS as the upstream (‘initial’) condition for the PSE marching
procedure. DNS is thus only used where needed (e.g. in the leading-edge re-
gion), and the PSE is employed to computed the downstream evolution of the
disturbance input from the DNS.

In the far future, the optimization and flow-control techniques developed
at KTH Mechanics will be applied to some of the flow configurations discussed
in this thesis. Optimization techniques in hydrodynamics aim to identify the
upstream flow structures causing the largest downstream disturbance ampli-
tudes inside the boundary layer (‘worst-case scenario’). These techniques have
been successfully applied to relatively simple flows such as the Blasius bound-
ary layer (Monokrousos et al. 2010a) and the Falkner-Skan-Cooke boundary
layer (Tempelmann et al. 2010). Research is currently underway in order to
extend the optimization analysis to the flat plate with an elliptic leading edge
presented in this thesis.

The objective of flow control is to manipulate the flow by passive or ac-
tive methods such that a certain objective (e.g. the delay of transition or the
enhancement of mixing) is achieved. This is, for instance, accomplished by
inserting actuators into the boundary layer (e.g. suction holes or active dim-
ples). Flow-control techniques devise optimal strategies in order to achieve
the objective chosen with the least possible amount of energy for the oper-
ation of the actuators. The concepts of flow control were demonstrated in
two-dimensional Blasius flow (Bagheri et al. 2009), and they were recently ex-
tended to a three-dimensional configuration of the flat-plate boundary layer
(Semeraro et al. 2010). These methods still await their application, for ex-
ample, to the swept-wing flow considered in this thesis in order to control the
amplitudes of more complicated instabilities such as crossflow vortices. Finally,
the concepts of flow control need to be tested by wind-tunnel and in-flight ex-
periments. A comparison between experimental and numerical results on flow
control in a flat-plate boundary layer is given by Monokrousos et al. (20100).
A setup for wind-tunnel experiments in swept boundary layers is available at
KTH Mechanics (Kurian 2010) and may be used for experimental flow control
of crossflow vortices.
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