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Hybrid grid generation for viscous flow computations around
complex geometries

Lars Tysell
Department of Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract

A set of algorithms building a program package for the generation of two-
and three-dimensional unstructured/hybrid grids around complex geometries
has been developed.

The unstructured part of the grid generator is based on the advancing front
algorithm. Tetrahedra of variable size, as well as directionally stretched tetra-
hedra can be generated by specification of a proper background grid, initially
generated by a Delaunay algorithm.

A marching layer prismatic grid generation algorithm has been developed
for the generation of grids for viscous flows. The algorithm is able to handle
regions of narrow gaps, as well as concave regions. The body surface is described
by a triangular unstructured surface grid. The subsequent grid layers in the
prismatic grid are marched away from the body by an algebraic procedure
combined with an optimization procedure, resulting in a semi-structured grid
of prismatic cells.

Adaptive computations using remeshing have been done with use of a gradi-
ent sensor. Several key-variables can be monitored simultaneously. The sensor
indicates that only the key-variables with the largest gradients give a substan-
tial contribution to the sensor. The sensor gives directionally stretched grids.

An algorithm for the surface definition of curved surfaces using a bihar-
monic equation has been developed. This representation of the surface can
be used both for projection of the new surface nodes in h-refinement, and the
initial generation of the surface grid.

For unsteady flows an algorithm has been developed for the deformation
of hybrid grids, based on the solution of the biharmonic equation for the defor-
mation field. The main advantage of the grid deformation algorithm is that it
can handle large deformations. It also produces a smooth deformation distri-
bution for cells which are very skewed or stretched. This is necessary in order
to handle the very thin cells in the prismatic layers.

The algorithms have been applied to complex three-dimensional geome-
tries, and the influence of the grid quality on the accuracy for a finite volume
flow solver has been studied for some simpler generic geometries.

Descriptors: grid generation, unstructured grids, hybrid grids, surface grids,
three-dimensional grids, adaptive grids, moving grids, grid quality, accuracy.



Preface

This thesis deals with algorithms for three-dimensional hybrid grid generation.
The papers in the thesis have been written concurrently with the develop-
ment of a complete grid generation system. This development spans over two
decades, and the papers, including the appendix, may be viewed as a survey of
the advances in grid generation during this period, from structured grid gener-
ation to hybrid grid generation. Each paper covers a separate subject of grid
generation.

The thesis is divided into three parts. The first part is an introduction
and background to the work covered by the papers. The contribution to the
field of grid generation by this thesis is also included. A guide to the papers is
included as the last chapter of this part. The second part contains the papers,
and the last part is an appendix with the supplementary papers.

The papers in part two and three are adjusted to comply with the present
thesis format for consistency, but their content have not been altered compared
to published versions except for minor corrections.

Stockholm, December 2009
Lars Tysell
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CHAPTER 1

Overview

1.1. Introduction

Continuum mechanic problems, like fluid dynamics, can be represented by a
set of partial differential equations. These equations can normally be solved
analytically only for very simple cases. For general cases the equations need to
be solved numerically. The numerical methods for solving partial differential
equations require a discrete set of points covering the physical domain. The
solution of the system of partial differential equations can be greatly simplified
by a well-constructured grid. Thus, one of the central problems in computing
numerical solutions to partial differential equations is that of grid generation.
The most important requirements for grids are smooth distribution of grid
points in the entire field and the concentration of grid points in regions of
large gradients of the flow quantities. The efficiency of the computation can be
greatly improved if the points are placed where they are most needed.
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FI1GURE 1.1. Single block grid for a transport aircraft - fuse-
lage, wing, wake and symmetry plane.
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4 1. OVERVIEW

From the point of view of practical engineering applications, it is desirable
for the grid generation method to be fast and of great generality. The appli-
cation of computational fluid dynamics in the solution of real world problems
has given rise to many difficult grid generation problems. Although remarkable
progress has been made in numerical grid generation, there is still room for the
development of numerical procedures, especially for complex three-dimensional
geometries.

Finally, grid generation is an applied science, and a set of grid generation
algorithms has a value only when they have been packaged together into a
well-written, robust, fast and user friendly environment.
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F1GURE 1.2. Single block grid for a delta wing.
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1.2. The Navier-Stokes equation from a grid generation point
of view

The set of partial differential equations governing steady viscous flow is the
Reynolds-averaged Navier-Stokes equation. This equation expresses the con-
servation of mass, momentum and energy. The turbulent viscosity introduced
in these equations is calculated by adding equations for a turbulence model,
thus closing the set of equations. To solve the Navier-Stokes equations for a
real complex three-dimensional configuration is a challenging task. The space
must be properly resolved by the grid. In many regions, like at shocks, wing
leading and trailing edges, regions of separation, and in boundary layers having
very steep gradients, the grid cells must be very fine. In order to resolve the
boundary layer close to boundaries, without using wall functions, the grid must
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1.2. THE NAVIER-STOKES EQUATION
region the grid cells are extremely stretched. Due to computational require-
ments it is not possible to have these fine grid cells throughout the entire flow

have extremely fine resolution in the direction normal to the boundary. In this
field. Thus, this is also a challenging task for grid generation.
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Unstructured grids have for a long

F1GURE 1.3. Close-up of a two-dimensional multiblock grid

for a high-lift configuration.
Finite volume methods have an inherent requirement of high grid quality.

method. The last two methods can be applied on grid cells of general type, like
hexahedra, pyramids, prisms or tetrahedra. The main reason for using methods
time been used in finite element methods but have later become popular also
for finite volume methods. For the flow computations in this thesis the edge-
based finite volume solver in Eliasson (2001) and Eliasson (2002) has been
The size and shape of the grid cells should not vary to much between two
adjacent cells. Tetrahedra having large dihedral angles should also be avoided.
Theoretically the order of accuracy should be second order

used. The accuracy of the solution is dependent on the grid resolution and is
It is well known that the errors can be reduced by clustering the grid points in

should be distributed in a manner which minimizes the error in the solution.
regions where the solution is changing rapidly.

improved as the grid is refined. However, the number of grid points used is
limited in practice by the available computer. Thus, the number of grid points

capable of handling different types of grid cells is the major simplification in

the finite difference method, the finite element method and the finite volume
grid generation for complex geometries.

The most common methods for space discretization in continuum mechanics are

1.2.1. Spatial discretization
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FIGURE 1.4. Three-dimensional multiblock grid for a space vehicle.

of normal quality it is often lower. Finite element methods are more forgiving
in the respect of grid cell quality, even if it has been shown that large dihedral
angles should be avoided, see Babuska & Aziz (1976).

In finite volume methods the governing equations are written in integral
form. This integral equation represents the conservation of mass, momentum
and energy. The conservation holds for any volume, in particular for the control
volumes. In a cell-centered method the control volumes are taken to be the
volumes defined by the grid itself, whereas in a node-centered method the
control volumes are defined by the union of the volumes around each grid
point in the dual grid. These control volumes defined by the dual grid are
normally not convex and they may have very odd shapes. Only for a completely
tetrahedral grid generated by a Delaunay method the control volumes will
always be convex. The Navier-Stokes equations are solved by computing the
fluxes for the control volumes. For the node-centered method the conserved
flow variables are stored at the grid points.

1.2.2. Temporal discretization

Either implicit or explicit techniques may be used for solution in time of the
Navier-Stokes equation. In the finite volume solver used for the flow computa-
tion in this thesis an explicit technique is applied. Convergence to steady-state
can be accelerated by sacrificing the time accuracy and advancing the solution
at each grid point in time by the maximum possible time step at this grid point.
For further convergence acceleration the multigrid techniques must be used.
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FIGURE 1.5. Two-dimensional Chimera grid.

Q

For structured multiblock grids multigrid can easily be applied by just
excluding every second point in each direction for the grid on one coarser
level. This is not possible to do in the same natural way for unstructured
grids. To generate a coarser grid from a fine one is a difficult task. The main
characteristics of the configuration should preferably be kept and the grid cell
distribution should be smooth. Some algorithms have been presented by Waltz
& Lohner (2000) and Ollivier-Gooch (2003). The opposite approach is to first
generate a coarse grid and then successively refine it, see Connel & Holmes
(1994). A disadvantage with this approach is the difficulty to generate very
coarse grids for complex three-dimensional configurations, e.g. in narrow gaps
between a wing and a flap. Another approach is to generate a set of completely
unnested grids, see Mavripilis (1990) and Berglind (1997). This means the
nodes in one grid do not coincide with the grid in the next finer grid. This
approach share the same disadvantage as the previous one above. Another
disadvantage is the burden on the user generating a set of grids, not only one
grid. The most promising approach is the agglomeration of fine grid volumes to
coarse control volumes, see Smith (1990). In this way multigrid can naturally
be applied. This can be done automatically resulting in large polyhedra. This
method has been used in Eliasson (2001) and Eliasson (2002).

1.3. Grid generation - a survey

Grids can generally be said to be of two types, boundary conforming grids or
non-conforming grids. Today the most common type of grid is the boundary
conforming grid. A very coarse single block grid partly conforming is shown
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FIGURE 1.6. Two-dimensional cut of a structure
ated by transfinite interpolation.

grid gener-

in Figure 1.1. The grid is conforming to the wing but not entirely to the
fuselage-symmetry intersection.

Methods for boundary conforming grid generation can be divided into
structured grid methods and unstructured grid methods. The first developed
methods were those for structured grids, due to the simplicity both for the flow
solver as well as for the grid generator.

Structured as well as unstructured grids may be used for all kind of contin-
uum mechanic problems. The application of the grid generation in this work
has been computational fluid dynamics. For this application the prismatic grid
close to the boundary is of particular interest.

1.3.1. Structured grids

Different approaches for the generation of structured grids can be seen in the
early review of grid generation methods by Thompson (1984). The first meth-
ods were only able to generate single block grids. A three-dimensional single
block grid around a delta wing is shown in Figure 1.2. To make good grids
for finite volume calculations about realistic three-dimensional geometries is
a very difficult task. Therefore, the tendency in grid generation two decades
ago was to develop a new grid generation program for each new type of ap-
plication. But this was a very expensive way to generate grids. In the long
run it would be better with grid generation programs of a more general na-
ture. Some more general codes were developed by Thompson (1987), Holcomb
(1987) and Woan (1987). A general code should be interactive so the user
can build up the grid step by step, inspect it, and gradually improve it. The
program should also be able to handle grids composed of a number of blocks,



1.3. GRID GENERATION - A SURVEY 9

.

w7 %
.
il "I'ri”'l::"';:i',,//,// //////// / /////////
.

i
il I
i)
s /// /// 7 /
Wit //// 7 // //

.

.
7

)
7
o
1 2
s

i
%

LR ARANAN ARSEER RN
TR TR

IR
M Iiaiaa:iI

FIGURE 1.7. Two-dimensional cut of a structured grid
smoothed by elliptic smoothing.

where some early references are Rubbert & Lee (1982), Shaw et al. (1986),
Eriksson (1987), Sorensen & Mccann (1991) and Soni & Thompson (1992). A
two-dimensional multiblock grid is shown in Figure 1.3 and the complex block
structure of a three-dimensional multi block grid is shown in Figure 1.4. To
write an interactive program for two-dimensional grid generation is relatively
easy, since the user in such a case can treat all areas of the grid where diffi-
culties arise one at a time. There is only one grid plane to inspect, and the
user can run the program without too much work, even if such a program can
do only very basic operations. On the other hand, to write a general purpose
grid generation program for three-dimensional grid generation is a much more
difficult task, since it is impossible for the user to inspect all grid planes and
treat them one at a time. This implies that the operations for such a program
must be performed on large regions of the grid each time they are used. Thus,
the operations must be very robust, reliable and function within a range of
geometry variations.

An alternative to the multiblock method for complex geometries is the so
called Chimera method. An application for a very complex geometry is given in
Pearce et al. (1993). A simple two-dimensional example is shown in Figure 1.5.
In this method separate grids are generated around each component. This
makes the grid generation much simpler. The disadvantage is the interpolation
between different grids that must be done in the solver.

There are two dominating types of methods for structured grid generation:

algebraic methods and elliptic methods. The dominating algebraic method is
transfinite interpolation, see Eriksson (1982), Smith (1983), Eriksson (1985)
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FIGURE 1.8. Quadtree grid, from Cheng et al. (1988).

and Thompson et al. (1985). Good references for elliptic methods are Thomp-
son et al. (1985) and Sorenson (1986). A simple grid generated by transfinite
interpolation is shown in Figure 1.6. Transfinite interpolation is much faster
than elliptic methods. The main disadvantage with transfinite interpolation,
compared to elliptic methods using a Laplace system, is that there is no inher-
ent guarantee against grid inversion. This guarantee against grid inversion is
based on the maximum principle for the Laplace equation. Unfortunately, the
Laplace grid generation system is not so attractive, since it does not give the
desired grid point distribution. Usually a Poisson system is used instead, see
Thompson et al. (1985). Then the maximum principle is lost. Nevertheless,
these elliptic methods are probably safer than transfinite interpolation. A grid
generated by transfinite interpolation and smoothed by an elliptic algorithm is
shown in Figure 1.7.

When using transfinite interpolation the grid points in the interior of a
region are computed by interpolation from the grid points on the boundaries.
This means, if the boundaries are non-smooth the grid will not be smooth
either. Thus the grid must be postprocessed after the transfinite interpolation
in order to smooth the grid and remove cross-overs. This is usually done by an
optimization algorithm, see e.g. Carcailett (1986) and Jacquotte (1991), or by
use of elliptic methods, as in Figure 1.7.

1.3.2. Unstructured grids

Generating a structured multiblock grid may be very time consuming. The
time to generate a grid for a complex configuration with many blocks can take
up to a month. Thus there is a need for some more automated methods.

Grid generation programs for unstructured grids are normally based on
the quadtree/octree-method, see Shephard et al. (1988), the advancing front
method, see Lohner & Parikh (1988) and Peraire et al. (1990), or Delaunay
triangulation, see Baker (1988) and Weatherill et al. (1993). The principle of
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FI1GURE 1.9. Two-dimensional hybrid grid for a car configuration.

the quadtree method is shown in Figure 1.8. A triangular grid can then easily

be constructed by drawing the diagonals in each quad. A grid generated by
the advancing front method is shown in Figure 1.15

The major advantage of using unstructured grids is that the grid gener-
ation process can be automated to a much higher extent than for multiblock
grids. The grid generation time can be reduced from months to days. Another
important advantage of using unstructured grids is the possibility to efficiently
implement adaptive grid refinement. In this manner it is possible to improve
the resolution of flow gradients during the flow computation. The disadvantage
of using unstructured grids is that the computational time will be longer than
for computations using a multiblock grid. The disadvantage of a slower flow

solver is of much less importance than the advantage of a much more simple
and user friendly grid generation procedure.

1.3.3. Hybrid grids

Structured hexahedral grids have successfully been used for aerodynamic com-
putations for a long time, for inviscid as well as viscous computations. Unstruc-
tured tetrahedral grids have successfully been used for inviscid computations,
but they are not well suited for viscous computations where there is a need for
very stretched grid cells in the boundary layer. The solution is to use what is
called a hybrid grid. That is, an unstructured tetrahedral grid in the inviscid
part of the flow domain and a prismatic grid in the viscous part. A two-
dimensional hybrid grid is shown in Figure 1.9 and a three-dimensional grid
is shown in Figure 1.10. Another three-dimensional prismatic grid is shown in
Figure 1.12 for the surface grid in Figure 1.11.
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A prismatic grid can be said to be a compromise between a structured and
an unstructured grid, having the best properties of both. A prismatic grid uti-
lizes an unstructured surface grid, while it is structured in the direction normal
to the body surface. Thus, the advantage of using an unstructured surface
grid for complex three-dimensional configurations is retained. The main tech-
nique for generating prismatic grids is the advancing layer method, described
in Pirzadeh (1996) and Kallinderis et al. (1996). Problem areas are concave
regions and regions of narrow gaps.
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F1GURE 1.10. Hybrid grid around cockpit for an aircraft configuration.

1.3.4. Adaptive grids

For flows about complex geometries the locations of rapid variations in the flow
are not known a priori. Generation of a fine grid throughout the entire flow field
will give unacceptable execution times. To be able to solve this type of problem
one has to use solution adaptive grid refinement. During the last decades an
extensive number of papers have been written about adaptive computations.
Four different strategies can be used to generate adaptive grids. Mesh
node movement: The number of grid nodes is constant, but the grid nodes are
redistributed, see Catherall (1988). This method is natural to use for structured
grids but it can give rise to very distorted grid cells. An example is shown in
Figures 1.13. Node insertion: New nodes are inserted into the existing grid.
see Weatherill et al. (1993). This method is very well suited for Delaunay grid
generation. Mesh enrichment: Cells which are too large are divided into smaller
ones, see Figure 1.14. A similar technique can also be used for unstructured
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grids, see Lohner (1995). This method is fast and well suited for transient flows
where the grid is updated often. A drawback is that stretched grid cells can
not be generated easily. An example is shown in Figure 1.16. Remeshing: The
entire grid is regenerated, see Peraire et al. (1990). This method is natural
to implement into an advancing front grid generator. It is well suited for
stationary problems, but not for transient flows, since it will take some time
to regenerate the entire grid. It is also easy to generate grids with moderate
stretching. An example is given in Figure 1.17
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FiGURE 1.11. Surface grid for a high-lift configuration.

1.3.5. Hybrid grid generation systems

Generation of hybrid grids, consisting of prismatic layers close to the bodies
and tetrahedral cells outside of these layers, is a much more automatic process
than the generation of block structured grids. Nevertheless, much work must
be spent to put all hybrid grid generation algorithms into a high quality grid
generation system. Such a system must have a user friendly graphical interface,
taking care of the entire process from import of the CAD file, through geometry
clean-up and cell size setting to export of the final grid. There exist several such
systems. An overview of the most well known hybrid grid generation systems
is given below.

The two hybrid grid generation systems, CENTAUR, showing some appli-
cations in Khawaja & Kallinderis (2000) and VGRIDus, given in e.g. Pirzadeh
(1999), with two different user interfaces described in Jones (2003) and For-
rester & Bogue (2008) are similar to the grid generator described in this theses.



14 1. OVERVIEW

A
e T
(.V" ”4
gr?é's/rv(}
e A D ‘

’i

A
Jor.

& AV ANCAW Y
AV
AW

2 ety
L\ TS
e

v{lﬁgvA’@

St
] =t
e
S
—

e

VLT
‘agfi

E
R,
T

S LR
S N
R
A A s
TN

)
N
o]

A

DAV
ot

ava

<R

AN
Y
ViYj

K
5

FIGURE 1.12. Outer layer of prismatic grid for a high-lift configuration.

SolidMesh, see Gaither et al. (2000), is another example of a similar hybrid grid
generator, but where the tetrahedral part of the grid is generated by the De-
launay algorithm instead of the advancing front algorithm. A large set of grid
generation routines has been developed at the University of Wales, see e.g.
Weatherill et al. (1998) and Weatherill et al. (2001), which also use the Delau-
nay method. The graphic user interface for this grid generation system is called
PSUE, which is described in Zheng et al. (2002). Gridgen, see e.g. Chawner
et al. (2000) and Steinbrenner & Abelanet (2007), can be used for the genera-
tion of structured as well as hybrid grids. The program SOLAR, see Leatham
et al. (2000) and Martineau et al. (2006), can generate hybrid grids with a mix
of different cell types. The toolkit GGTK, see Soni et al. (2001), is a set of
general modules which can be put together to grid generation programs for
different purposes. The set of programs from Loéhner, see e.g. Lohner (2000)
and Aubry & Lohner (2007) defines an extensive set of grid generation methods
and algorithms. The grid generator Gmsh described in Geuzaine & Remacle
(2009) is a grid generator for unstructured grids. Finally, the software ICEM
CFD from ANSYS has several methods to generate hybrid grids.

An overview of the TRITET hybrid grid generation system is given in
Tysell (2007) together with some new extensions in Tysell (2009). All the
different modules in this unstructured /hybrid grid generation system (in total
around 85,000 active lines) are put together into one system by use of a C-shell
script. The user access the system by an interactive user interface and can do
all operations in the chain of steps from importing the geometry definition to
exporting the final grid through the interactive user interface.



1.4. GRID QUALITY AND ACCURACY 15

| T YOO [ ] I'ITII'”’TI 11

11

FIGURE 1.13. Adaption by node movement, from Dannenhof-
fer (1988).

FIGURE 1.14. Adaption by node insertion, from Dannenhoffer (1988).

1.4. Grid quality and accuracy

A grid of good quality is a grid that for a certain number of grid cells, or
nodes, gives a solution having a small error. Thus, the question of grid quality
is coupled to the specific solver being used. What is a good grid for some
solvers may not be this for other type of solvers. The question of grid quality
can be divided into two separate parts. The first is the global distribution of the
grid cells and the second is the local distribution and shape of the individual
cells. The first part is handled by grid adaptation, which has already been
discussed, and will also be covered in more detail later. The second part is
about generating the grid with as smooth node distribution and well-shaped
grid cells as possible. These two aspects are not completely uncoupled, since
a grid that at a first glance may look very irregular may be well fitted to the
solution. Thus, the shape of the grid cells should not be measured in the
physical space, but in the transformed space given by the adaptation. In this
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transformed space all grid cells should have equal size and all cells should be
isotropic.

Many quality indicators for unstructured grids have been proposed in the
literature, see e.g. Woodard et al. (1994), Weatherill et al. (1994), Lewis et al.
(1996) and Kallinderis & Kwong (2001). However, the relationship between
quality indicators and the overall solution accuracy is difficult to establish.
Some of them only detect specific types of degenerated grid cells. Many indi-
cators are also very similar. A common quality indicator for structured grids is
orthogonality, but this can not be used for unstructured grids. Quality indica-
tors for individual tetrahedra can only be computed during the grid generation
process, since the transformed space is not known afterwards. In Tysell &
Nordstrom (2007) local quality indicators, originally given in Tysell (2000:1),
are proposed, where tetrahedra connected to each other are compared. These
indicators are very similar to those given in Kallinderis & Kwong (2001). Con-
nected tetrahedra should have about the same volume. If one tetrahedra have
a non-optimal shape or volume it will differ from its neighbours. In Kallinderis
& Kontzialis (2009) quality indicators for two-dimensional hybrid grids with a
direct relation to the truncation error for the gradient are given.

The question if a grid cell is valid or not is dependent of the specific solver in
use. In this work the volumetric coefficient for hexahedra, prisms and pyramids
are computed by decomposing these grid cells into all possible combination of
tetrahedra. If all combinations give a negative volume for some tetrahedron the
grid cell is considered invalid. If only some combinations have a tetrahedron of
negative volume the grid cell is considered skewed, but still valid.
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1.16. H-refined grid for NACA 0012 airfoil,
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well known that it is important to have as low maximum angle as possible for
triangular cells. In Tysell (2007) and Tysell (2008) stretched triangular surface
grids aligned to the principal curvature directions are shown. The maximum
angle is about 90° (not 180°) for most triangles, since special care has been
taken in the advancing front algorithm to achieve this, but still there will be
a lot of edges not completely aligned with the curvature, opposed to what is
the case for a well fitted structured grid, where these ”diagonal” edges are not
present. This may affect the accuracy. Nevertheless, the computations show
the stretching effects the result very little, see Tysell (2008). The dual grid
can be constructed in a modified way for these stretched cells which improves
the accuracy, see Mavripilis (2008). A better way is to allow a combination of
quadrilateral and triangular surface cells, as in Leatham et al. (2000), which also
will reduce the number of cells. The drawback is the complex data structure
in the grid generator.

F1cURE 1.18. Adapted solution by remeshing showing Mach
number, scale [0.0 - 1.5], for NACA 0012 airfoil, M, = 0.95,
a = 0.0°

For viscous flow there is a need for an extremely fine grid resolution normal
to the surface in the viscous layer. This can be achieved by the use of prismatic
cells. It is important to keep the marching direction for these prismatic layers
as orthogonal to the surface as possible. Of course this restriction must be
somewhat relaxed in convex and concave corners in order to get a smooth non
overlapping grid, see Tysell (2000:2). It is also important not to have a too
rapid expansion of the cell sizes from one layer to another. The expansion
ratio should not be more than 1.2 for good accuracy. Some quality indicators
for prismatic cells are given in Tysell & Nordstrom (2007). In order to get a



1.4. GRID QUALITY AND ACCURACY 19

smooth transition between the outermost cells in the prismatic layers and the
tetrahedral grid it is also better to have a variable number of prismatic layers,
than just reducing the thickness of the prismatic layers, keeping a constant
number of layers.

The question of accuracy has been studied in the ATAA Drag Prediction
Workshop I-IV, see Mavripilis (2005), Eliasson & Peng (2007), Mavripilis et al.
(2008) and Vassberg et al. (2008). Due to the increase in computer capacity the
last decades it has became possible to do flow computations on more complex
cases with an ever increasing number grid points. To compute viscous flow on
grids with more than 10 million nodes is now a daily routine. For some special
studies grids with more than 30-50 million nodes are being used. For grids with
this resolution on a simple wing/fuselage configuration it should be possible to
do a series of computations on grids of different resolution and extrapolate
the result to infinite grid resolution. This has been done in the AIAA Drag
Prediction Work Shop series. Surprisingly these studies have shown that many
solvers do not show the predicted asymptotic behaviour, and there is a big
discrepancy between different solvers. Even the same solver may show different
results for slightly different type of grids, see Mavripilis et al. (2008), suggesting
that the solutions are not grid converged and the grid resolution is not in the
asymptotic region for these grids. The scatter in the results is about 5-10%. A
conclusion that may be drawn from these studies is that the usual resolution
of 10 million nodes used today for complex wing-body configurations does not
give grid converged solutions.

|
il

|
I

FIGURE 1.19. Change in total pressure within each cell for
NACA 0012 airfoil. Dark colour indicates more change: regu-
lar grid.
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F1GURE 1.20. Change in total pressure within each cell for
NACA 0012 airfoil: randomly disturbed grid with a distortion
of 15%.

In Svérd et al. (2005) the accuracy questions were investigated for a num-
ber of model problems related to the Euler and Navier-Stokes equations for a
node-centered edge-based finite volume method. This scheme should be sec-
ond order accurate for very regular unstructured grids, but it is shown that for
non-smooth grids the order of accuracy is lower. For two-dimensional hybrid
grids with a non-smooth structured region or a non-smooth interface between
the structured region and the unstructured region the order of accuracy may be
much lower. In Tysell & Nordstrom (2007) the accuracy of the Euler equation
has been studied. There it has been shown that the accuracy for real life con-
figurations is lower than second order, especially for two-dimensional configura-
tions. The interface between the prismatic region and the unstructured region
seems to be smooth enough not reducing the accuracy globally. The order of
accuracy is significantly reduced if the prismatic region is non-smooth for two-
dimensional configurations, but seems not to be affected for three-dimensional
configurations. This is shown by Figure 1.19 and Figure 1.20 which show the
change in total pressure within each cell for the double NACA 0012 inviscid
computations at Mo, = 0.3 in Tysell & Nordstrém (2007). If there is no error
the total pressure should be constant throughout the entire flow field. Here
it can be seen that the error is higher at the interface between the structured
region and the unstructured region at locations where the number of prismatic
layers change, as predicted in Svérd et al. (2005). Figure 1.20 also shows that
the error is increased for a non-smooth grid.

Computations in Eliasson et al. (2008) show that the accuracy is lower than
second order also for viscous flow around a simple NACA 0012 airfoil for very
fine grids. This is the same result as for the inviscid computations in Tysell
& Nordstrom (2007). A study of the change in total pressure for the Euler
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equations for the single NACA 0012 triangular grid computation at M,, = 0.1
in Tysell & Nordstrom (2007) shows that there is a significant error at the
trailing edge, see Table 1.1. Here it can be seen that the error at the leading
edge is reduced, and the accuracy order is 1.6 in average, but the error at the
trailing edge is constant, when the grid size is reduced. This error is introduced
by the lack of proper boundary condition at the sharp trailing edge. A closer
look into the result shows in Figure 1.21 that the local error at the trailing
edge introduce an error in the circulation around the airfoil. This error is very
small but might cause an accuracy loss in studies using very fine grids.

1/A [ AP,o; LE % | APo; TE % | u,/Us TE %
0.0625 3.36 0.709 2.1478
0.125 1.80 1.045 -2.5365

0.25 | 8.58E-01 0.939 -0.0050

0.5 3.40E-01 1.042 -0.0205

1.0 4.02E-02 1.063 0.2581

2.0 5.54E-03 0.959 1.1696

4.0 1.55E-03 0.990 -0.5865

8.0 6.65E-04 0.886 0.8471

16.0 | 3.88E-04 0.888 0.5623

TABLE 1.1. Change in total pressure within each cell for
NACA 0012 airfoil at a@ = 0.0° at leading and trailing edges.

1.5. The grid generation environment

The structured grid generation algorithms described in Tysell & Hedman (1988)
together form one of the first general purpose codes, where well known algo-
rithms were put together to an interactive code. This grid generator has for
many years been used for the generation of structured multiblock grids, see
Figures 1.1, 1.2, 1.3 and 1.4. The grid can be generated by use of transfinite
interpolation, see Figure 1.6, or elliptic methods, see Figure 1.7. Transfinite
interpolation is a fast algebraic method, but for complex geometries it may
give grid inversion. The grid generated by transfinite interpolation can be used
as input to the slower elliptic grid generation method in order to improve grid
quality. Modules for projection of grids on other grids, and computation of the
intersection between grids have also been implemented.

It was decided not to import CAD files directly into the unstructured/hybrid
grid generator, since the grid generator then has to handle a large number of
different surface entities. The surface input to the grid generator is simply a
higher order representation defined by a structured network of points and the
trim curves for each surface patch. These surface patches has for several cases
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FIGURE 1.21. [§ (Cpupper (¥) — Cpiower () )dz for NACA 0012
airfoil at o = 0.0°.

shown in the papers been created by importing the CAD file into a CAD inter-
face program called Spider, developed by Petter Eneroth at FOI. The CAD file
can now also be imported into the grid generator using the newly developed
CAD interface described in Tysell (2009).

Today the structured grid generator described in Tysell & Hedman (1988)
has been extended to be used as a geometry editor, like a simple CAD program
for surface patches defined by bicubic splines through a structured network of
points. This grid generator has now been integrated with the unstructured grid
generation system for use as a geometry manipulation tool. It can do almost any
geometry editing on geometry patches given by a structured network of points
and a set of trim curves. Surfaces can be trimmed, exchanged, deleted, created
or modified in almost any way. Figure 1.22 shows a surface patch structure
for a wing-body combination inside a wind tunnel, and Figure 1.23 shows a
surface patch description completely generated, from blue prints, within the
structured grid generator.

The complete interactive system for grid generation in two and three di-
mensions is described in more detail in Tysell (2007). The input to the grid
generator is given by using a graphical interface, also described there.

1.6. Major grid generation algorithms in use

To be able to generate grids for very complex configurations within one or a few
days, the unstructured grid approach was chosen. The advancing front method
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was selected, see Tysell (1994). This method can naturally handle anisotropic
cells better than the Delaunay method. The octree method can not handle
anisotropic cells at all. Another advantage with the advancing front method,
compared to the Delaunay method and the octree method, is the easy way
to handle the boundaries of the computational region. The disadvantage with
the advancing front method is longer execution times, because of the heavy
use of three-dimensional search algorithms. Important search algorithms are
described in Lohner (1988) and Bonet & Peraire (1991). The unstructured grid
generation algorithms described in this work includes some new features at the
time the paper was written. The use of extra ideal points for the advancing
front algorithm as well as the recognition of the typical cavity (the so called
Schénhart prism) build up by eight faces are described. See Figure 1.15 for
a simple two-dimensional grid and Figure 1.11 for a three-dimensional surface
grid. The method to generate a background grid by use of a Delaunay method
is also described in Tysell (1994) and further extended in Tysell (2009). An
important feature in the advancing front algorithm is the possibility to generate
stretched surface and volume grids. This significantly reduces the number
of cells needed for an unstructured grid. This has previously been a major
drawback compared to structured grids. Results of stretched grid generation
and flow solution are presented in Tysell (2008).

FIGURE 1.22. Structure of surface patches for a wing-body
configuration in a wind tunnel.

A completely unstructured grid can not be used for viscous computations,
since the boundary layer will not be resolved. The region close to the bound-
aries should be covered by a prismatic grid, having a very fine resolution in
the direction normal to the boundary. A marching layer algorithm was se-
lected to generate the prismatic grid. The implemented algorithm, see Tysell
(2000:2), is tuned to give a prismatic grid of good quality. In this method
also a new algorithm to compute the most visible normal vector to a surface
is given. This algorithm is straightforward in opposite to the algorithms pro-
posed in Kallinderis & Ward (1993) and Pirzadeh (1994), which most likely
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do not give the same solution. An optimization algorithm used in order to
give prismatic cells of good quality is also described. This also increases the
distance the prismatic layers can advance before the process may break down
due to grid inversion. The marching layer process can stop locally, depending
of different criteria, see Tysell (2007). Figure 1.9 shows the hybrid grid around
a two-dimensional car configuration, whereas Figure 1.10 shows the hybrid grid
around a three-dimensional aircraft configuration. Figure 1.12 shows the outer
layer of a prismatic grid around the tip of a three-dimensional wing, with the
surface grid shown in Figure 1.11.

FI1GURE 1.23. Surface patches for a fighter configuration.

The adaptive remeshing makes use of a gradient sensor. Several key-
variables can be monitored simultaneously. Only the key-variables with the
largest gradients will give a substantial contribution to the sensor, since the
square of the gradients are added to form the sensor. The sensor gives direc-
tionally stretched grids, by computing a new background grid, which is used in
order to completely regenerate a new grid, see Tysell et al. (1998). Strictly a
gradient sensor should be used only for first order accurate flow solver schemes.
This implies that the second order derivatives should be used for second order
schemes, see Lohner (1995). Nevertheless, gradient sensors have been used with
success even for formally second order accurate schemes. One explanation is
that the estimation of the error from the second order derivatives inherently
assumes that the solution is smooth and sufficiently close to the exact solution.
This is not the case at e.g. shocks and if the grid resolution is too coarse.
An adaptation procedure for a formally second order accurate scheme often
starts with a very coarse grid where second order accuracy is not achieved.
Furthermore, it has been shown by Delanaye & Essers (1997) that for grids of
good quality the accuracy order might be only about 1.7, and for grids of lower
quality as low as just above 1.1. The order of accuracy has also been studied
in Tysell & Nordstrom (2007), where it is shown that for typical aeronautical
problems the order of accuracy is less than second order. Figures 1.17 and 1.18
show the result of remeshing of the initial grid in Figure 1.15.

The disadvantage with adaptive remeshing is the computational time for
the regeneration of the entire grid. The advantage with adaptive h-refinement
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is the computational speed, whereas the disadvantage is that it is not possible
to generate larger or anisotrop cells. For h-refinement the technique in Lohner
(1995) has been implemented. The new nodes on the boundary are in the first
stage located on the triangular surface grid. Thus, they are not located on
the true surface. In a later stage the new boundary nodes are projected onto
the surface by use of the higher order surface grid representation reported in
Tysell (2005). The interior nodes are relocated to match the new location of
the boundary nodes. This is done by use of the technique for moving grid, see
Tysell (2002). The nodes in the prismatic layer are redistributed to match the
flow gradients for the first cell. This is done by computing the yT value of each
first node connected to the surface and then redistribute the nodes so the first
cell will have the ™ value specified by the user. Figure 1.16 shows the result
of h-refinement of the initial grid in Figure 1.15.
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FI1GURE 1.24. Original grid before deformation.

There are two common methods used for deforming unstructured grids.
They are the spring analogy method, represented by the work in Batina (1991)
and Singh et al. (1995) and the solution of the Laplace equation represented
by Lohner & Yang (1996) and Baum et al. (1997). Both work sufficiently well
for small deformations, but lack in quality for larger deformations, especially
the spring analogy method. The algorithm developed in this work for the
deformation of hybrid grids in two and three dimensions is based on the solution
of the biharmonic equation for the deformation field, see Tysell (2002). The use
of the biharmonic equation has also been reported by Helenbrook (2003). The
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main advantage of this grid deformation algorithm is that it can handle large
deformations, especially close to the boundaries. It also produces a smooth
deformation distribution for cells which are very skewed or stretched. This
is necessary in order to handle the very thin cells in a prismatic layer. The
algorithm can handle skewed cells since the finite element method is used for
the solution of the biharmonic equation. The disadvantage is that the method is
slow, compared to algebraic methods, since a set of partial differential equations
needs to be solved. Figure 1.25 shows the deformation of the initial twin airfoil
grid in Figure 1.24.

The biharmonic surface grid projection algorithm used for h-refinement
may also be used for the generation of the initial surface grid. This algorithm
is better to handle surface patches with poor parameterization and internal sur-
face discontinuities than bicubic splines. The algorithm has later been modified
in Tysell (2009). The latest improvements are the use of more edge swapping
in order to get a more regular mixed grid and also the setting of a fix position
of some nodes close to or on the curves defining the surface patch. The initial
position of the nodes in the mixed grid can be computed using a tensor-product
patch definition. The algorithm is then used to adjust the position of the nodes
in order to get a smooth surface grid.
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FIGURE 1.25. Grid after deformation.

Since the internal geometry format for the surface grid generation routines
is the higher order representation through a structured network of points the
structured multiblock grid generator described in Tysell & Hedman (1988) can



1.7. APPLICATIONS OF THE GRID GENERATION ALGORITHMS 27

be used as a geometry editor. The inclusion of this interactive module in the
hybrid grid generation system is described in Tysell (2007).

To summarize - the main aspects of grid generation introduced in the pa-
pers are:

- The use of a directional adaptivity sensor consisting of an arbitrary
number of flow quantities in a consistent way.

- The algorithm to compute the most visible normal in the marching layer
generation method.

- The use of an optimization method to smooth the layers in the marching
layer generation method.

- The biharmonic grid deformation algorithm.

- The use of the biharmonic grid algorithm for higher order representation
of triangular surface grids.

In addition, in the appendix are also included:

- The introduction of extra ideal points at the corners of the triangles in
the front when using the advancing front method. These points are also
essential when generating highly stretched grid cells.

- The generation of the background grid by a Delaunay algorithm.

- The observation of the special kind of cavity in the front formed by
eight triangles ordered in a particular way often preventing closure of
the front.

- The use of the multiblock grid generation module as an interactive ge-
ometry editor.

1.7. Applications of the grid generation algorithms

In Tysell & Hedman (1988) - Tysell (2005) the given grid generation algorithms
have mainly been demonstrated for some simple test cases. The compilation
of all grid generation modules into a grid generation system was reported in
Tysell (2007). In Tysell (2008) the use of these algorithms on real complex
geometries are shown together with usage of the edge-based finite volume flow
solver for viscous flow computations described in Eliasson (2001) and Eliasson
(2002). In that paper hybrid grid generation and flow computations for six
different three-dimensional geometries are presented, showing the versatility of
the grid generator. The built-in capability for flow visualization is also used.
The most complex geometry studied is the wing-fuselage-slat-flap configuration
in a wind tunnel. For this case several features of the grid generator are used,
among them curvature stretched surface grid along the leading edges, flow
adaptation and grid deformation. Another study shows that stretched cells
can be used as a way to reduce the number of grid points with only minor
changes of the result. A third case studied in that paper is the rear-fuselage and
empennage configuration. This case supports the conclusion that finer grids
than are usually used for production runs are needed for grid converged results.
Several other applications have also been carried out. Figure 1.26 shows the
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surface grid and the number of prismatic layers at the trailing edge of a high-
lift configuration. This configuration is the same as the MLA configuration
studied within the HiReTT project, see Rolston & Elsholz (2002). Despite the
very thin gap between the wing and the aileron there is at minimum twenty
prismatic layers in the grid. Figure 1.27 shows the surface grid and solution for
a configuration studied in an aircraft accident investigation, see Winzell et al.
(2004).
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FI1GURE 1.26. Close-up of surface grid for a wing-aileron-
spoiler configuration. Minimum/maximum number of pris-
matic layers is 20/50. Dark colour represents more prismatic
layers.

1.8. Recent advances in hybrid grid generation

There is a need for an ever increasing resolution of flow field computations,
requiring grids with more grid points. Thus there is a need for faster grid gen-
eration algorithms. Fornasier et al. (2003) show a method where surface grid
generation is done in parallel. Each processor generates the surface grids for
a number of surface patches. Lohner (2000) reports on the use of a parallel
advancing front algorithm for volume grid generation. The front is dynamically
divided into boxes by use of the octree algorithm. For each processor the grid
is generated for a number of boxes. The number of boxes is much larger than
the number of processors. Another alternative is to first generate a surface grid
in parallel and then divide the surface grid and volume into smaller regions, as
in Larwood et al. (2003). The volume grid in these regions is generated in par-
allel. Parallel grid generation by the Delaunay algorithm has been presented in
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FIGURE 1.27. Streamlines and y* for first prismatic layer for
a high mounted wing configuration at M., = 0.4, o = 0.0°.
Dark colour represents higher y™ value. Average y™ is < 2.0

Weatherill et al. (2001). Ito et al. (2008) describe a method where it is possible
to introduce new components into an existing grid without regenerating the
entire grid. The grid needs only to be regenerated in the region where the new
component has been introduced. This speed up the time for the grid generation
significantly. A similar extension of the grid generator TRITET with routines
for the generation of locally remeshed grids has been done. This local remesh-
ing works also for hybrid grids, but the original prismatic layers must be kept.
Figure 1.28 shows the cavity in a grid where the grid around a rotated airfoil
is inserted into a grid around another airfoil. The cavity is formed by a set of
inner and outer boxes. Inside the cavity a grid is generated by the advancing
front algorithm. The merged grid is shown in Figure 1.29. An application of
this technique together with the flow solver Edge, see Eliasson (2002), for store
separation computations are reported in Berglind (2009) and Berglind et al.
(2009).

The use of stretched grids in the advancing front method, which was re-
ported in Tysell (2008), has also been reported in Ghidoni et al. (2006). The
methods are similar but the specification of the background grid differs from
the smoothing technique used in Ghidoni et al. (2006), since the algorithm used
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here only modify the background grid cell size for a node if it is larger than
allowed by the prescribed expansion from the nodes in the background grid
connected to the node. The technique is similar to the one used for isotrop cell
sizes reported in Kania & Pirzadeh (2005), where surface curvature dependent
grids also are generated.

A modification of the advancing front algorithm for surface grid generation,
in which the algorithm prefers a newly generated edge as base face for the
generation of the next triangle, has been given in Fornasier et al. (2003). This
gives a front with less cavities, which will reduce the time spent for searching,
since there will be less edges in the front.
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FI1GURE 1.28. Local remeshing - mix of two grids. Cavity
formed by a set of boxes.

A way to improve the initial background grid by introducing extra back-
ground grid nodes using background boxes is given in Tysell (2009). This play
somewhat the same role as the concept of bounding boxes and volume sources
introduced in Pirzadeh (2008). A method to achieve an even better background
grid by first generating a coarse volume grid and then interpolating the sur-
face cell size specification into this grid and finally using this grid as a new
background grid is given in Tysell (2009). This is an alternative to the octree
background grid generation method given in McMorris & Kallinderis (1997).

In Aubry & Lohner (2008) the same prismatic grid generation algorithm
as was given in Tysell (2000:2) to compute the most visible normal vector to
a surface is described. A problem in prismatic grid generation is the quality
of the grid in corners of the surface. Sharow et al. (2001) suggest this can be
solved by generating extremely fine surface grids at corners, having a cell size
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of about the height of the first cells in the prismatic layer. A drawback of this
approach is of course that the number of cells will increase considerably. Soni
et al. (2001) use the concept of a semistructured topology in the near surface
regions, generated by a parabolic grid generation algorithm. In this concept
corners can be handled by excluding or introducing nodes from one layer to
the next layer. Khawaja et al. (1999) introduce the concept of varying number
of prismatic layers, where different surface nodes can have different number of
layers. This concept has also been used in Tysell (2007). For some surface nodes
there may not be possible to define a visible normal vector. Thus a prismatic
layer can not be generated at these nodes. A remedy is to use multiple normal
vectors at these nodes. This has been shown in Ito et al. (2006) and Aubry
& Lohner (2007). The use of multiple normals also improve the grid quality
at sharp convex corners like wing trailing edges. In Steinbrenner & Abelanet
(2007) difficult regions, especially concave regions, is handled by collapsing
cells. Thus, the number of nodes in one layer may be less than in the previous
layer. This kind of technique can only be used for layers consisting of stretched
tetrahedra instead of prisms.
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FI1GURE 1.29. Local remeshing - merged inner and outer grid.
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In all the methods above the stretched cells close to the boundary have been
generated first and the isotrop tetrahedra have been generated in a second step.
Ito & Nakahashi (2004) and Karman (2007) use a different strategy where a
grid comnsisting of isotrop tetrahedra has been generated first. In a second step
this grid is pushed away from the boundary and the gap is filled with prismatic
cells. A drawback with this method is that it will likely be a jump in cell size
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at the interface between the prismatic layer and the isotrop tetrahedra, since
it is difficult to push the initial tetrahedra far enough without inversion to get
a sufficient height of the prismatic layer. Lohner & Cebral (2000) present a
method where an isotropic tetrahedral grid is generated first and then refined
with stretched tetrahedra close to the boundary. The use of prismatic layers
along imaginary surfaces in the flow field in order to catch shocks is presented
in Shih et al. (2007).

The spring analogy method in Batina (1991) for grid deformation easily
gives grid inversion for larger deformations. This has been improved by Farhat
et al. (1998) by the introduction of torsion springs in addition to the tensions
springs. In Acikgoz & Bottaasso (2006) springs has been introduced also be-
tween nodes and edges and not only between nodes as in the previous methods.
This greatly improves the capability to prevent the generation of inverted cells.
Still there can be cells of bad quality, especially close to the boundaries, since
only translation of the boundary has been taken into account. In Martineau &
Georgala (2004) the rotation has been taken into account by rigid movement
of the nodes close to the boundary and use of the spring analogy away from
the boundary. In Samareh (2002) the use of quaternions has been introduced.
Quaternions is an extension of complex analysis to three-dimensional space,
which are ideal for modeling rotations. Since the method in Tysell (2002) solves
a 4:th order partial differential equation it is possible to have two boundary
conditions on the boundary. In the original paper the derivative of the displace-
ment was set to zero on the boundary. Later an option has been introduced to
take the local rotation around each boundary node into account, see Figure 1.25
and compare with the result without local rotation in Tysell (2007). Another
modification of the algorithm is that in the discrete minimization problem the
volume of the tetrahedra is retained when solving the biharmonic equation,
otherwise the movement will be too rigid for the small tetrahedra close to the
boundaries. If the deformation is governed by the Laplace equation only the
original formulation is kept.

In Nielsen & Anderson (2001) a structural mechanic analogy is used by
solving the equation for isotropic linear elasticity. A similar approach is used
in Sheta et al. (2006) where the structural Navier equation is applied. Both
methods show good results, but they probably suffer by the fact that they both
solve a 2:nd order partial equation, thus only one boundary condition can be
applied. In Liu et al. (2006) a fast algebraic method is presented based on the
deformation of a temporary grid generated from the boundary nodes only by a
Delaunay algorithm. The deformation of the grid is computed by interpolation
in the temporary Delaunay grid. The deformation of the boundary must be
done in such small steps that the Delaunay grid is not inverted. After each
step the Delaunay grid may be regenerated. For large three-dimensional grids
this may take a considerable time, and the method does not account for surface
rotation. Another new algebraic method is the use of radial basis functions,
see Jakobsson & Amignon (2005) and Allen & Rendall (2007).
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In Peraire et al. (1992) the use of the Hessian, which measures the second
derivatives of the flow quantities, is introduced in order to generate direction-
ally adapted grids. One drawback with the use of the Hessian is that the grid
can only be adapted to one selected flow quantity. It is in most cases not pos-
sible to find one single flow quantity that works for all cases, or even for all
regions of one case. One remedy to this has been presented in Castro-Diaz et al.
(1997) by computing the Hessian for several flow quantities and then compute
the combined Hessian by so called metric intersection. This way to compute
the metric intersection is not optimal, since only the combined eigenvalues are
computed, while the eigenvectors are arbitrarily chosen from one of the flow
quantities. Thus, the way to compute the combined metric from several flow
quantities presented in Tysell et al. (1998) is done in a more rigorous way, but
the drawback may be that only the first derivatives of the flow quantities are
used instead of the second derivatives. Another way to compute the metric
intersection has been presented in Frey & Alauzet (2005). The Hessians can be
represented by a set of ellipsoids and in that paper the intersection is computed
by computing the largest ellipsoid inscribed in all intersected ellipsoids. A rig-
orous way to compute this metric intersection has recently been presented in
McKenzie et al. (2009), where each Hessian is introduced successively by trans-
forming the Hessian to a space where the current transformation is represented
by a sphere. In this space the intersection is easy to compute.

Both for first and second derivative adaptive sensors limits of the cell sizes
must be set in regions of flow discontinuities, where the cell size otherwise
would become indefinitely small, and in regions where the flow is varying very
slowly, where the cell sizes would become too large. One drawback by using the
Hessian is also that the cell sizes tends to be indefinitely large where the flow
is varying linearly. I has been shown in Venditti & Darmofal (2003), where
they compare results for flow around a multiple airfoil configuration, that a
Hessian based method gives too large cell sizes in regions of linearly varying
flow compared to an adjoint based adaptation method. In the paper they
propose a combination of the two methods, where the cell sizes are taken from
the adjoint computation, whereas the directional stretching are taken from the
Hessian. In Remaki et al. (2006) the metric tensor is computed by taking a
weighted sum of the Hessian and the gradient tensor, in order to get better
grid resolution also in areas of linearly varying flow quantities.

The use of the Hessian and combinations of grid cell split, merge, swapping
and node movement is used in Xia et al. (2001) and Dompierre et al. (2002)
for directional h-adaptation. In these papers the method has been applied in
two dimensions. The same method has been used to present three-dimensional
results in Park & Darmofal (2008). This method is faster than the total remesh-
ing used in Peraire et al. (1992) and Tysell et al. (1998) but appears to give
grids of less good quality. In Pirzadeh (2000) adaption by remeshing is done
by only doing local remeshing, where the grid needs to be adapted. In this
way the time for remeshing is reduced. In Xia et al. (2001) the edge length
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proposed by the sensor is optimized for all grid points around each grid point in
the transformed space defined by the metric tensor in order to get the optimal
grid.

A problem in grid adaptation is that almost all grid points usually tend
to be placed in regions of strong phenomena and very few points are left for
regions of weak phenomena. A way to overcome this is to estimate the local
relative error instead of the absolute error. This has been done in Frey &
Alauzet (2005).

In Dompierre et al. (2002) grid adaptation has been done in several steps
until the process is converged, i.e. the cell sizes and stretching ratios do not
change anymore. A finite volume as well as a finite element flow solver were
used. For studies on some two-dimensional test cases they could show that on
properly adapted grids the two solvers gave the same solution. They also draw
the provocative conclusion that much of the advantage of some solver scheme
over another are due to not properly adapted grids.

In Tchon et al. (2005) a novel method to generate two-dimensional adapted
grids by use of the Hessian has been reported. The tensor lines generated by
the Hessian are connected to a quad dominated grid.

For all the adaptive methods described above the metric tensor given in
Tysell et al. (1998) may be used instead of the Hessian.

1.9. Summary and conclusion

The advancing front algorithm, which is able to generate anisotrop cells, has
been used for the generation of unstructured grids. A marching layer algorithm
has been developed for the generation of prismatic grids. Together these two
algorithms form the basis for the generation of hybrid grids. Adaptation is
made by remeshing or h-refinement. The adaptive remeshing algorithm is able
to do directional adaptation as well as larger cells than in the original grid. The
h-refinement algorithm is faster but lacks in this respect. A biharmonic grid
deformation algorithm has been developed. A modification of this biharmonic
method has also been used for surface grid generation, especially together with
the h-refinement algorithm. The total set of algorithms is able to generate
tetrahedra and prismatic cells in three dimensions and triangles and quads in
two dimensions. The grid quality and the sensitivity to irregular grids has been
studied for a node-centered edge-based finite volume solver. This study shows
the accuracy is often lower than the theoretically estimated value, especially at
surface slope discontinuities, like wing trailing edges.

The emphasis in the development of the algorithms has been on grid quality
and reliability, thus sacrificing speed. The advancing front method is able
to generate smooth stretch grids. This is in opposite to the octree methods
which can not generate stretched grids. Delaunay generated grids also suffers
in this respect. On the other hand booth these methods are faster than the
advancing front method. The implemented marching layer algorithm is reliable
and fast. The biharmonic grid deformation is more reliable but much slower
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than algebraic methods, since a set of partial differential equations must be
solved.

The included methods produce grids of good quality for real complex con-
figurations, which has been shown by the application to numerous configura-
tions during several years.

1.10. Outlook

The number of grid points used in typical studies has increased dramatically
during the last decades due to increase in computer capacity. The complexity
of the studied configurations has also increased significantly. These trends can
be expected to continue. The interest in aerodynamic applications is also going
in the direction of computations of drag and moments accurately, not only for
complete configurations but also the contributions from separate parts. Thus,
this may renew the interest in grid generation in order to generate high qual-
ity grids. Since there is a complex interdependence between grid quality and
solution accuracy, and the CFD solutions can only be as good as the under-
lying grid, this may require increased collaboration between grid generation
and flow solver development communities. Furthermore there is a trend to un-
steady computations, where the geometry is changing during the computation.
This requires a closer coupling between the grid generator and the flow solver,
which may be difficult to achieve with commercial software. There is also a
need for further parallelization of grid generation routines in order to facilitate
the generation of very large grids. The most recent trend is the use of higher
order methods for flow computations. These methods do not only require the
location of the grid nodes at the boundaries, but also the surface derivatives.



CHAPTER 2
Summary of papers and authors contributions

Paper 1: Adaptive computations have been done both for two- and three-
dimensional cases with use of a gradient sensor. Several key-variables can be
monitored simultaneously. The sensor gives directionally stretched grids. The
grid generation is based on the advancing front method, whereas the adaptation
strategy used is remeshing, where the entire grid is regenerated. The flow solver
is based on finite volume discretization. Computations are shown for a NACA
0012 airfoil, the Aerospatiale AS28G-wing and the JAS-39 Gripen fighter.

The development of the adaptation sensor and grid adaptation program, as

well as the generation of the grids and writing of the paper were done by Tysell.
The development of the flow solver was done by Berglind. The development
of the tool for translating CAD-files, and even the translation of the Gripen
fighter configuration were done by Eneroth. The computations were done by
Berglind and Tysell in cooperation.
TysELL, L., BERGLIND, T. & ENEROTH, P. 1998, Adaptive Grid Generation
for 3D Unstructured Grids. Proceedings of the 6th International Conference on
Numerical Grid Generation in Computational Field Simulations, pp. 391-400,
Greenwich, UK. International Society of Grid Generation (ISGG).

Paper 2: A marching layer prismatic grid generation algorithm is described.
The algorithm is able to handle regions of narrow gaps, as well as concave
regions. The body surface is described by a triangular unstructured surface
grid. The subsequent grid layers in the prismatic grid are marched away from
the body by an algebraic procedure combined with an optimization procedure,
resulting in a semi-structured grid of prismatic cells. The algorithm is demon-
strated for a high-lift configuration and a complex wing-body-pylon-nacelle
configuration.

TyseLL, L. 2000, Hybrid Grid Generation for Complex 3D Geometries. Pro-
ceedings of the 7th International Conference on Numerical Grid Generation
in Computational Field Simulations, pp. 337-346, Whistler, British Columbia,
Canada. International Society of Grid Generation (ISGG),

Paper 3: An algorithm is described for the deformation of hybrid grids in two
and three dimensions, based on the solution of the biharmonic equation for the
deformation field. The main advantage of the grid deformation algorithm is
that it can handle large deformations. It also produces a smooth deformation

36
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distribution for cells which are very skewed or stretched. This is necessary in
order to handle the very thin cells in a prismatic layer.

TyseLL, L. 2002, Grid Deformation of 3D Hybrid Grids. Proceedings of the
8th International Conference on Numerical Grid Generation in Computational
Field Simulations, pp. 265-274, Honolulu, Hawaii, USA. International Society
of Grid Generation (ISGG).

Paper 4: An algorithm is described for the generation of unstructured surface
grids using a higher order representation of an existing unstructured representa-
tion. This algorithm can be used both for the initial generation of the surface
grid and the projection of new surface points generated by an h-refinement
method.

TyseLL, L. 2005, A Higher Order Representation of Unstructured Surface
Grids. Proceedings of the 9th International Conference on Numerical Grid
Generation in Computational Field Simulations, San Jose, California, USA.
International Society of Grid Generation (ISGG).

Paper 5: The accuracy of the unstructured node-centered edge-based finite
volume method is evaluated for inviscid flow around typical aerodynamic con-
figurations. Both two-dimensional as well as three-dimensional configurations
have been studied. The results show the order of accuracy is lower than the
assumed order of two.

The selection of geometries, grid topologies, as well as the grid generation
and flow computations were done by Tysell. The analysis of the results was
done by Tysell in cooperation with Nordstrom. The paper was mainly written
by Tysell, while Nordstrom was responsible for the chapter about the model
equation.

TysELL, L. & NORDSTROM, J. 2007, Accuracy Evaluation of the Unstruc-
tured Node-Centered Finite Volume Method in Aerodynamic Computations.
Proceedings of the 10th ISGG Conference on Numerical Grid Generation, Her-
aklion, Crete, Greece. International Society of Grid Generation (ISGG),

Paper 6: The grid generation algorithms described in the previous papers for
the generation of unstructured/hybrid grids have been used for the generation
of two-dimensional and three-dimensional grids. An edge based finite volume
solver has been used for the flow computations. In this paper the results for
several practical studies on complex geometries are summarized.

TYsELL, L. 2008, Experiences of Grid Generation and Steady/Unsteady Vis-
cous Computations for Complex Geometries. Paper ICAS-2008-2.5.2. Pro-
ceedings of the 20th ICAS Congress, Anchorage, Alaska, USA.

Papers in Appendix

Paper 1: The first version of a general purpose three-dimensional grid gen-
eration system is described. The system is interactive and user-friendly. It can
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be applied to grids in one to three dimensions. The grid can be composed of
a number of structured blocks, both patched and overlaid grids, where each
block can have its own topology. The patched grid blocks can be either contin-
uous or discontinuous at the block interfaces. The grid is generated by means
of transfinite interpolation. A procedure for smoothing of the normal vectors
to a surface is presented, as well as a procedure for smoothing of grids. Grid
generation routines developed for special applications can be added to the sys-
tem. It can also be used to postprocess grids from, or preprocess grids to,
other grid generation programs. An example with a grid around a wing-body
configuration is given.

The development of the grid generation program, generation of the grids
and writing of the paper were done by Tysell. The development of the special
routine for wing-body configurations was done by Hedman.

TvyseLL, L. & HEDMAN, S. 1988, Towards a General Three-Dimensional Grid
Generation System. Paper ICAS-88-4.7.4, pp. 1048-1058. Proceedings of the
16th ICAS Congress, Jerusalem, Israel.

Paper 2: A grid generation system for the generation of three-dimensional
unstructured grids around complex geometries is described. The grid generator
is based on the advancing front algorithm. Tetrahedra of variable size, as well
as directionally stretched tetrahedra can be generated by specification of a
proper background grid. Efficient data structures have been implemented. The
geometry is defined by a set of surface patches. Each patch is represented by a
structured network of points. The surface patch connectivity is computed by
the grid generator. The surface triangle grid and volume tetrahedra grid are
automatically generated. The grid generator can also be used for the generation
of two-dimensional grids.

TyseLL, L. 1994, An Advancing Front Grid Generation System for 3D Un-
structured Grids. Paper ICAS-94-2.5.1, pp. 1552-1564. Proceedings of the
19th ICAS Congress, Anaheim, California, USA.

Paper 3: The grid generator TRITET for generation of unstructured /hybrid
grids in two and three dimensions is described. The main algorithm for the
grid generation is the advancing front algorithm. This paper is concentrating on
user aspects and some miscellaneous algorithms which have not been presented
before. Most of the algorithms developed during the years are also summarized
here.

TyserLL, L. 2007, The TRITET Grid Generation System. Proceedings of
the 10th ISGG Conference on Numerical Grid Generation, Heraklion, Crete,
Greece. International Society of Grid Generation (ISGG).

Paper 4: The use of a CAD geometry import interface to the hybrid grid
generator is demonstrated. The interface reads geometry files in a format used
by one major commercial grid generation system. In this format all surfaces
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are defined by NURBS. This makes it easy to convert the surface patches to the
structured network of points used as input to the grid generator. The interface
program is explained and an example is given of the use of it. New features
related to the surface grid generation algorithm is also explained.

TysELL, L. 2009, CAD Geometry Import for Grid Generation. Proceedings of
the 11th ISGG Conference on Numerical Grid Generation, Montreal Canada.
International Society of Grid Generation (ISGG).

The papers are re-set to the present thesis format.
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